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Abstract
We study the subject of universal online learning with non-i.i.d. processes for bounded losses.
The notion of universally consistent learning was defined by Hanneke [18] in an effort to study
learning theory under minimal assumptions, where the objective is to obtain low long-run average
loss for any target function. We are interested in characterizing processes for which learning is
possible and whether there exist learning rules guaranteed to be universally consistent given the
only assumption that such learning is possible. The case of unbounded losses is very restrictive
since the learnable processes almost surely have to visit a finite number of points and as a result,
simple memorization is optimistically universal [18; 4]. We focus on the bounded setting and
give a complete characterization of the processes admitting strong and weak universal learning. We
further show that the k-nearest neighbor algorithm (kNN) is not optimistically universal and present
a novel variant of 1NN which is optimistically universal for general input and value spaces in both
strong and weak settings. This closes all the COLT 2021 open problems posed in [19] on universal
online learning.
Keywords: online learning, universal consistency, stochastic processes, measurable partitions, sta-
tistical learning theory, Borel measure

1. Introduction

We consider the fundamental question of learnability and generalizability for online learning. In
this framework, a learner is sequentially given input points X := (Xt)t≥0 from a general separable
metric instance space (X , ρ) and observes the corresponding values Y := (Yt)t≥0 from a separable
near-metric value space (Y, ℓ). The learner’s goal is to predict the values before their observation.
The input points are given according to some stochastic process X on X and we assume that the
process Y is generated from X in a noiseless fashion, i.e., that there exists an unknown measurable
function f∗ : X → Y such that Yt = f∗(Xt) for all t ≥ 0. At time step t, the learner outputs
a prediction Ŷt based solely on the historical data (Xu, Yu)u<t and the new input point Xt. We
wish to obtain low long-run average errors 1

t

∑
u≤t ℓ(Yu, Ŷu). Specifically, we consider two types

of consistency: strong consistency is achieved when the average error converges to 0 almost surely;
and weak consistency is achieved when the expected average error converges to 0. We are interested
in universal online learning, in which we ask for consistency for any unknown measurable target
function f∗. In this framework, the two main questions are 1, to characterize the input processes
X for which universal consistency is achievable, and 2, if possible, provide a learning rule which
would guarantee universal consistency whenever such objective is achievable.
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Motivation and related work. This work builds upon the stream of papers on universal online
learning [18; 4; 2], which aims to study the question of learnability under minimal assumptions.
A classical objective in statistical learning is to provide learning rules with guarantees for some
large class of problem instances. In general, it is not possible to be consistent under all stochastic
processes X and target functions f∗. Therefore, it is necessary to impose instance constraints. In the
literature, there is a rich variety on the types of proposed restrictions. The first category of works
does not restrict the input sequences X but instead the target functions f∗ [24; 7; 1; 27]. A large
portion of the literature belongs to a second category which restricts both input processes and target
functions. For instance, if we assume that the input process is independent identically distributed
(i.i.d.) and that the target function belongs to a class of finite VC dimension, then there exists an
algorithm guaranteeing O(log t) mistakes in expectation [21]. Other more involved restrictions on
X and f∗ have been considered [23; 28; 32; 5]. The subject of this paper is of a third category, in
which we impose no assumptions on the set of target functions f∗, but instead, restrict the input
sequences X. Specifically, we focus on universally consistent algorithms that achieve consistency
for all target functions.

Most of the literature on universal learning considers standard ad-hoc probabilistic assumptions
on the input stochastic process, for instance assuming that the training samples are i.i.d. A classic re-
sult in this i.i.d. setting shows that in the Euclidean space, the 1-nearest neighbor rule is universally
consistent [9; 30; 11]. Also in the Euclidean case, the kt-nearest neighbor rule with kt/ log t→∞
and kt/t → 0 is also strongly consistent under mild assumptions in the noisy setting where (X,Y)
is any i.i.d. process [10]. More recently, [20; 17; 31] proposed algorithms which achieve mini-
mal risk for i.i.d. process (X,Y) in any metric spaces where this is possible—namely essentially
separable metric spaces which generalize separable metric spaces. This setting is referred to as
universal Bayes consistency. Other similar assumptions on the input process X include stationary
ergodic [25; 14; 13] or satisfying the law of large numbers [26; 12; 29]. Instead, we are interested
in provably-minimal assumptions rooted in the learning problem itself. Specifically, we follow the
so-called optimist’s decision theory introduced by Hanneke [18] and frequent in universal learning
[31]: to achieve a given objective, the optimist’s sole assumption is that this objective is at least
achievable by some learning rule. In some sense, this assumption is minimal as it is necessary for
any algorithm to have any positive guarantees. In this framework, we are particularly interested in
algorithms that would reach the objective without further assumptions. These are named optimisti-
cally universal learning rules. Such algorithms enjoy the convenient property that if they fail for a
particular problem instance, any other learning rule would fail as well. In our case, we are inter-
ested in the set of learnable processes X, i.e., for which universal consistency is possible, and aim
to provide optimistically universal algorithms if they exist, i.e., learning rules which are universally
consistent on all processes X for which universal consistency is achievable.

In the case of unbounded losses ℓ, these questions are settled [18; 4]. Precisely, the learnable
processes are exactly the sequences visiting a finite number of input points almost surely, and as a
result, simple memorization is optimistically universal. Hence, universal learning with unbounded
losses is very restrictive. In this paper, we focus on the bounded loss case for which it is known
that i.i.d. and convergent relative frequencies processes are learnable [18]. Recently, [2] provided a
reduction from any general bounded output setting (Y, ℓ) to binary classification.

Contributions. We propose a class of learning rule kC1NN for k ≥ 2, which we prove are
strongly and weakly optimistically universal for general separable metric instance spaces (X , ρ)
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and separable near-metric value spaces (Y, ℓ) with bounded loss. These learning rules are simple
variants of the classical 1-nearest neighbor (1NN). They essentially perform 1NN on a restricted
dataset by deleting any input point from the historical dataset whenever it has been used as nearest
neighbor at least k times. We also show that any (kt)t−nearest neighbor fails to be optimistically
universal under very mild conditions on the sequence (kt)t even for very simple input spaces X
e.g. Euclidean spaces. Finally, we give a complete characterization of processes admitting strong
and weak universal learning. This closes all main questions on universal online learning, which are
stated as open problems in [19].

Outline of the paper. The rest of this paper is organized as follows. In Section 2, we formally
introduce universal learning and present the two main questions of this topic. The main results are
then stated in Section 3. In Section 4 we focus on nearest neighbor learning rules and show that
they are not universally consistent, by constructing learnable processes for which nearest neighbor
methods fail. This example gives motivation for the 2C1NN learning rule, constructed in Section
5, and then show that it is optimistically universal. We further provide a complete characterization
of the set of learnable processes. We then turn to weak universal learning in Section 6. Finally, we
give open research directions in Section 7.

2. Formal setup and preliminaries

Instance and value space. In this paper, we follow the general framework of online learning
where one observes an input sequence X = (Xt)t≥1 of points in a separable metric instance space
(X , ρ), together with their corresponding target values Y = (Yt)t≥1 coming from a separable near-
metric value space (Y, ℓ). The loss ℓ : Y2 → [0,∞) is said to be a near metric if it is symmetric
ℓ(y1, y2) = ℓ(y2, y1), satisfies ℓ(y1, y2) = 0 if and only if y1 = y2, and also satisfies a relaxed
triangle inequality ∀y1, y2, y3 ∈ Y3 : ℓ(y1, y3) ≤ cℓ(ℓ(y2, y1) + ℓ(y2, y3)), where cℓ is a fixed
constant. Note that all metrics are near-metrics with cℓ = 1. As an important example for regression,
the squared loss is near-metric with cℓ = 2. We denote by ℓ̄ := supy1,y2∈Y ℓ(y1, y2) the loss function
supremum and will be particularly interested in bounded losses, i.e., ℓ̄ <∞.

Input and output processes. In an effort to study non-i.i.d. processes, the input sequence of
points is a general stochastic process on the Borel space (X ,B) induced by a metric ρ. This is
a major difference with a majority of the relevant statistical learning literature imposing ad-hoc
hypothesis on X as discussed in Section 1. We consider a noiseless setting in which the output
values Y are generated from X through an unknown measurable function f∗ : X → Y such that
Yt = f∗(Xt) for all t ≥ 1.

Online learning and consistency. In online learning, the learning process is sequential: at time
t ≥ 1, one observes a new input data-point Xt and outputs a prediction Ŷt based solely on the
historical data (X≤t−1,Y≤t−1) and the new covariate Xt. We measure the performance of the
learning rule through the loss function ℓ. Strong consistency is achieved when the algorithm obtains
asymptotic average loss 0 almost surely. Alternatively, a learning rule is weakly consistent when
it guarantees 0 asymptotic average loss in expectation. We now formally write these notions. A
learning rule is a sequence f· = {ft}∞t=1 of measurable functions with f1 : X → Y and ft :
X t−1×Yt−1×X → Y for t ≥ 2. Given a history (Xi, Yi)i<t and a new input point Xt, the rule f·
makes the prediction ft(X<t,Y<t, Xt) for Yt and t ≥ 2. For simplicity, for t = 1 we may also use
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the notation f1(X<1,Y<1, X1) instead of f1(Xt). We write the average loss at time T as

LX(f·, f∗;T ) :=
1

T

T∑
t=1

ℓ(ft(X<t,Y<t, Xt), f
∗(Xt)).

We aim to minimize the long-run average loss. The online learning rule f· is strongly consistent
under the input process X and for the target function f∗ when LX(f., f∗;T ) → 0 (a.s.). For
simplicity, we define LX(f., f∗) = lim supT→∞ LX(f·, f∗;T ). Therefore, the above condition can
be rewritten as LX(f·, f∗) = 0 (a.s.). We also consider weak learning: similarly, f· is weakly
consistent under X and for f∗ when ELX(f·, f∗;T )→ 0.

Universal consistency and optimistically universal learning rule. Following [18], we are in-
terested in learning rules which achieve strong (resp. weak) consistency under a specific input
sequence X for all measurable target functions f∗ : X → Y . Such learning rules are said to be
strongly (resp. weakly) universally consistent under X. We define SUOL as the set of all stochas-
tic processes X for which strong universal online learning is achievable by some learning rule.
Similarly, we denote by WUOL the set of all processes X that admit weak universal online learn-
ing. These sets may depend on the setup (X , ρ), (Y, ℓ) so we will specify SUOL(X ,ρ),(Y,ℓ) and
WUOL(X ,ρ),(Y,ℓ) when the spaces are not clear from the context. In this framework, two main areas
of research are (1) characterizing the sets SUOL (resp. WUOL) for a given setup in terms of the
properties of the stochastic process X, and (2) identifying learning rules which are strongly (resp.
weakly) universally consistent for any input process X in SUOL (resp. WUOL), i.e. that achieve
strong (resp. weak) universal consistency whenever it is possible. These are called optimistically
universal learning rules. In the case of unbounded loss functions i.e. ℓ̄ = ∞, both questions are
answered for any choice of (X , ρ), (Y, ℓ) for strong universal consistency [18; 4]. Specifically, [4]
shows the stochastic processes X which admit strong universal online learning are exactly those
which visit a finite number of distinct input points of X almost surely. As a consequence, the sim-
ple memorization learning rule is optimistically universal. Further, for unbounded losses, strong
and weak universal learning are equivalent [18]. These results are rather negative in the sense that
unbounded loss results in a very restricted set SUOL.

Bounded loss. The present paper will therefore focus on the bounded loss case i.e. ℓ̄ < ∞, for
which both questions are open. This is the main case of interest for universal online learning. Con-
trary to the unbounded case, for bounded losses, the set of learnable processes SUOL contains,
in particular, all i.i.d. processes [18]. In fact, the simple 1-nearest neighbor (1NN) learning rule
achieves strong (and weak) universal consistency for all i.i.d. processes X in for the Euclidean space
X = Rd [10]. It is even known that the (kt)t-neighbor algorithm ((kt)tNN) with kt/ log t→∞ and
kt/t → 0 achieves Bayes minimal risk in the noisy setting for large classes of input spaces X [8].
This implies in particular that kNN achieves strong universal consistency in our noiseless setting
for these input spaces. However, it is an open question whether there exist simple input spaces X—
e.g. Euclidean spaces—for which some kNN algorithms would be optimistically universal. In other
terms, does there exist an input process X such that 1NN fails to achieve consistency for some target
function f∗ but universal consistency would still be achieved by some other—more sophisticated—
learning rule? No characterization of SUOL is known either, although [18] proposed a necessary
condition for belonging to SUOL and conjectured that it is also sufficient. We refer to this condition
as SMV (sub-linear measurable visits). Intuitively, it asks that for any measurable partition of the
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input space X , the process X only visits a sublinear number of its regions. Note that this condition
does not depend on the choice of output setup (Y, ℓ).

Condition SMV Define the set SMV(X ,ρ) as the set of all processes X satisfying the condition
that, for every disjoint sequence {Ak}∞k=1 in B with ∪∞k=1Ak = X (i.e., every countable measur-
able partition), |{k ∈ N : Ak ∩ X<T ̸= ∅}| = o(T ) (a.s).

For the weak setting we can define a similar condition WSMV (weak sub-linear measurable visits).

Condition WSMV Define the set WSMV(X ,ρ) as the set of all processes X satisfying the condition
that, for every countable measurable partition {Ak}∞k=1, E[|{k ∈ N : Ak ∩ X<T ̸= ∅}|] = o(T ).

Hanneke [18] showed that these conditions are necessary for strong and weak universal learning.

Proposition 1 (Hanneke [18]) For any separable Borel spaceX and separable near-metric output
setting (Y, ℓ) with 0 < ℓ̄ < ∞ we have SUOL(X ,ρ),(Y,ℓ) ⊂ SMV(X ,ρ) and WUOL(X ,ρ),(Y,ℓ) ⊂
WSMV(X ,ρ).

However, it is an open question whether SMV (resp. WSMV) is also a sufficient condition for strong
(resp. weak) universal learning. Together with the question of the existence of an optimistically
universal learning rule, these are the main objectives for universal online learning. These questions
are posed in the COLT 2021 open problems [19], which we now formally restate.

Hanneke’s $5000 open problem 1 [19] Does there exist an optimistically universal online learn-
ing algorithm? (in either the weak or strong sense)

Hanneke’s $1000 open problem 2 [19] Is SMV (resp. WSMV) equal to the set of all X such that
strong (resp. weak) universal online learning is possible under X?

It is important to note that these questions are easily solved in the case where X is countable
[18]. Therefore, the main interest is to answer these questions for any uncountable X . In fact,
Hanneke [19] even announced a $5000 (resp. $1000) reward for solving open problem 1 (resp.
2) for the Euclidean X = Rd case. Both questions will be solved in Appendix B for X = [0, 1]
specifically. This is a rather general case because its extension to all standard Borel spaces X is
immediate through an equivalence result from Kuratowski of all uncountable standard Borel spaces.
For instance, this solves the question for all Euclidean spaces Rd for d ≥ 1. Most importantly, the
special case X = [0, 1] allows for a simplified exposition and provides all useful intuitions. The
complete result holds for all separable Borel spaces and is presented in Section 5.

Notations. For any sequence x, we will use the following notations when analyzing finite time
horizons: x≤t := {x1, ..., xt} and x<t := {x1, ..., xt−1} for simplicity. For a metric space (X , ρ),
a point x ∈ X and r ≥ 0, we denote by Bρ(x, r) := {x′ ∈ X , ρ(x, x′) < r} the open ball centered
in x of radius r, and Sρ(x, r) = {x′ ∈ X , ρ(x, x′) = r} the sphere centered in x of radius r. We
might omit the metric ρ in subscript if there is no ambiguity. We also denote by ℓ01 the indicator
loss function, i.e., ℓ01(i, j) = 1(i ̸= j). Since it is a metric, it is also a near-metric with cℓ = 1. For
simplicity, we will use the same notation ℓ01 irrespective of the output space Y . For any measurable
set A, we denote by 1A the function 1A(·) := 1·∈A. We will denote by | · | any norm on R. Recall
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that all norms are equivalent on finite dimensional spaces, hence the topology induced by these
metrics is identical. When the space (X , ρ) is obvious from the context, we may reduce the notation
SUOL(X ,ρ),(Y,ℓ) to SUOL(Y,ℓ). We might omit also the loss ℓ when there is no ambiguity.

3. Main results

We first show that the simple nearest neighbor rule (1NN) is not optimistically universal. The proof
generalizes to general (kt)t-nearest neighbor algorithms under very mild assumptions on (kt)t.

Theorem 2 The (kt)t−nearest neighbor learning rule is not strongly optimistically universal for
the input space X = [0, 1] with usual topology and for binary classification, for any sequence (kt)t

such that kt = o
(

t
(log t)1+δ

)
for any δ > 0.

This is obtained by constructing a specific process X ∈ SUOL([0,1],|·|),({0,1},ℓ01) under which
nearest neighbor is not universally consistent. Intuitively, 1NN fails on the process because cer-
tain “bad” data points are used an arbitrarily large number of times as nearest neighbor for future
input points and hence, induce a large number of mistakes for 1NN. To resolve this issue, we pro-
pose a new learning rule 2-Capped-1-Nearest-Neighbor (2C1NN), a variant of the classical 1NN,
designed to ensure that the number of times each datapoint is used as nearest neighbor is capped
by 2. Specifically, once a datapoint Xt has been used as nearest neighbor twice, it is deleted from
the training dataset. We show that this is an optimistically universal learning rule for both strong
universal learning and weak universal learning.

Theorem 3 For any separable Borel space X , and any separable near-metric output setting (Y, ℓ)
with bounded loss, i.e., supy1,y2 ℓ(y1, y2) < ∞, 2C1NN is a strongly (resp. weakly) optimistically
universal learning rule.

More generally, we can define learning rules kC1NN for any k ≥ 2. The proof further shows that
all kC1NN is optimistically universal for any k ≥ 2. Further, we give a characterization of the
processes admitting strong and weak universal learning.

Theorem 4 For any separable Borel space X , and any separable near-metric output setting (Y, ℓ)
with 0 < supy1,y2 ℓ(y1, y2) <∞, we have

SUOL(X ,ρ),(Y,ℓ) = SMV(X ,ρ) and WUOL(X ,ρ),(Y,ℓ) = WSMV(X ,ρ).

If supy1,y2 ℓ(y1, y2) = 0, then the loss is identically null. Therefore, all stochastic processes are
strongly and weakly learnable.

It is worth noting that although the sets SUOL and WUOL differ—the set of weakly learnable
processes WUOL is larger than the set of strongly learnable processes SUOL—the same learning
rule 2C1NN is optimistically universal in both strong and weak settings. Theorem 3 and Theorem
4 close the two open problems of the existence of an optimistically universal learning rule and a
characterization of the set of learnable input sequences, formulated in [19].

6



UNIVERSAL ONLINE LEARNING

4. On nearest neighbor consistency

A natural candidate for good learning rules in general spaces are the nearest neighbor algorithms.
We recall that the (kt)t−nearest neighbor ((kt)tNN) learning rule, at step t, considers the closest kt
neighbors to the new input point and follows the majority vote to make its prediction. Indeed, for
instance, forX = R and binary classification, under any process X ∈ SUOL which admits universal
learning, nearest neighbor successfully learns simple functions—representing union of intervals
[2]. Further, the special case of binary classification is not restrictive because if nearest neighbor
were optimistically universal for binary classification, it would also be optimistically universal in
the general separable bounded case [2]. Additionally, in the Euclidean space, 1NN is universally
consistent under all i.i.d. processes [10]. Further, (kt)tNN learning rules with kt/ log t → ∞ and
kt/t → 0 are also universally consistent under i.i.d. processes for smooth classes of input spaces
X [8]. However, it is known that there exist separable input spaces for which no (kt)tNN algorithm
achieves universal consistency [6]. In this section, we show that (kt)tNN learning rules are not
optimistically universal even on the interval X = [0, 1].

Theorem 2 The (kt)t−nearest neighbor learning rule is not strongly optimistically universal for
the input space X = [0, 1] with usual topology and for binary classification, for any sequence (kt)t

such that kt = o
(

t
(log t)1+δ

)
for any δ > 0.

As a direct consequence, (kt)t−nearest neighbors are not optimistically universal for any input
spaces X such that there exists a measurable injection [0, 1]→ X and for any output setting (Y, ℓ)
with bounded loss and at least two distinct values y1, y2 ∈ Y such that ℓ(y1, y2) > 0. In particular,
this shows that (kt)tNN algorithms are not optimistically universal in Euclidean spaces. To prove
Theorem 2, we first define the set of processes with convergent relative frequencies CRF as the set
of processes X such that ∀A ∈ B,

lim
T→∞

1

T

T∑
t=1

1A(Xt) exists (a.s.).

We then explicitly construct a process X(1) ∈ CRF on which (kt)t−nearest neighbor fails. Because
convergent relative frequencies processes are learnable CRF ⊂ SUOL [18], this shows that (kt)tNN
is not optimistically universal for the online learning setting. Note that we have CRF ⊊ SUOL for
any infinite space X . As a remark, it was already known that the self-adaptive/inductive near-
est neighbor learning rule is not optimistically universal for the self-adaptive setting [18] (Section
3.2). Inductive learning differs from online learning in that the learner has access to a fixed his-
torical dataset (Xt, Yt)t<T and from time T has to commit to a (non-adaptive) learning rule. Self-
adaptive learning is an intermediate setting between inductive learning and online learning where
the learner can be adaptive on observed instances (Xt)t≥T but not the values (Yt)t≥T . Hence, the
self-adaptive/inductive nearest neighbor learning rule corresponds to performing nearest neighbor
with the fixed dataset (Xu, Yu)u<T for any t ≥ T . The performance of this learning rule is taken
as a double limit: first as t → ∞, then as T → ∞. We refer to [18] for details on these set-
tings. Similarly to the set SUOL, we can define the set SUAL of processes X admitting strong
universal learning in the self-adaptive setting. The proof that self-adaptive nearest neighbor is not
optimistically universal is also constructive but not relevant for the online setting because it relies
on a completely different process X(2) ∈ SUAL under which self-adaptive 1-nearest neighbor fails
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but online learning 1-nearest neighbor is universally consistent. Indeed, the set of learnable pro-
cesses for online learning is larger than the set of learnable processes for self-adaptive learning
SUAL ⊂ SUOL, and strictly larger whenever X is infinite [18].

Sketch of proof. For the sake of simplicity, we give the main arguments for the negative result
on the 1−NN learning rule which already provides all necessary intuitions. The process X(1) is
designed so that nearest neighbor fails on the function f∗(·) = 1D(·) where D is the set of dyadics.
Intuitively, the process alternates between a carefully chosen random dyadic Xnk

∈ D and a se-
quence of random points Xt, nk < t < nk+1 which converges exponentially to Xnk

but that does
not fall in the dyadics almost surely—which is achieved by including uniform noise in Xnk+1. The
nearest neighbor algorithm therefore uses the dyadic Xnk

as representant for most of the points
Xt for nk < t < nk+1 and as a result assigns the wrong category Ŷt = 1. We then impose
nk+1 − nk → ∞ so that nearest neighbor makes an asymptotic error rate of 1. A major technical
difficulty is to ensure that the process X(1) is still universally learnable. To do so, we aim to prove
the stronger statement that X(1) ∈ CRF. We randomly select Xnk

in high-order dyadics so that the
convergence of the points Xt for nk < t < nk+1 is mild compared to the discretization of [0, 1] of
these high-order dyadics.

The generalization to (kt)t−nearest neighbor follows the same structure. The main difference
in the construction of the process X(1) consists in creating “copies” of the dyadic Xnk

using close
high-order dyadics. As a result, the nearest neighbors of non-dyadic points are included in the set
of copies of Xnk

which all provide wrong predictions. Note that keeping the process X(1) in CRF

constraints the possible number of copies. This results in a limitation kt = o
(

t
log t1+δ

)
necessary

to use Kolmogorov’s convergence criteria for independent random variables.

5. An optimistically universal learning rule

In this section, we present an optimistically universal algorithm and give a characterization of
SUOL. We start by defining our new learning rule k−Capped 1−Nearest Neighbor (kC1NN) for
any k ≥ 2. This is a simple variant of the traditional 1NN learning rule where kC1NN performs the
1NN learning rule over a reduced training set. Recall that in the 1NN learning rule, we assign to the
new input Xt the value of the nearest neighbor YNN(t) where NN(t) = argminu<t ρ(Xt, Xu). We
refer to the input point XNN(t) as the representant of the input value Xt. In the kC1NN learning
rule, we keep in memory the number of times nt each point Xt is used as a representant for following
input data and cap this value at k. Precisely, at each step t we update the dataset Dt ⊂ {u, u < t}
containing the indices of data points on which 1NN may be performed. To do so, when nu reaches
k for some u < t, we delete u from the current dataset Dt. At each iteration, if the input Xt has al-
ready been visited, we use simple memorization to predict Yt, we do not update the values (nu)u<t

and do not include t in the dataset Dt+1. Otherwise, kC1NN performs the 1NN learning rule on
the current dataset (Xu, Yu)u∈Dt , where ties can be broken arbitrarily for instance with minimum
index, and updates (nu)u∈Dt and the dataset accordingly. In the following, we denote by ϕ(t) the
index of the representant used for Xt, i.e. of its closest neighbor within the dataset Dt. The rule is
formally described in Algorithm 1.

In Section 4 we presented a process X on which nearest neighbor fails. The main reason for
this failure is that some specific input points Xt can be used an arbitrarily large number of times as
representant for future points, thereby inducing a large number of prediction errors. The learning
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Algorithm 1: kC1NN learning rule
Input: Historical samples (Xt, Yt)t<T and new input point XT

Output: Predictions Ŷt = kC1NNt(X<t,Y <t, Xt) for t ≤ T
Ŷ1 := 0
D2 := {1}
n1 ← 0
t← 2
while t ≤ T do

if exists u < t such that Xu = Xt then
Ŷt := Yu
Dt+1 := Dt

else
ϕ(t) := argminu∈Dt ρ(Xt, Xu)
Ŷt := Yϕ(t)
nϕ(t) ← nϕ(t) + 1
nt ← 0
if nϕ(t) = k then
Dt+1 := (Dt \ {ϕ(t)}) ∪ {t}

else
Dt+1 := Dt ∪ {t}

end
end
t← t+ 1

end

rule kC1NN is designed precisely to tackle this issue by ensuring that any datapoint Xt for t ≥ 1 is
used at most k times as representant, i.e., |{u > t : ϕ(u) = t}| ≤ k. The goal of this section is to
show that 2C1NN is optimistically universal for general separable Borel instance space (X , ρ) and
near-metric separable value space (Y, ℓ) with bounded loss.

We first start with the case of binary classification ({0, 1}, ℓ01). This will then be used to prove
the result for general output settings using a reduction technique introduced in [2]. Specifically, we
show that 2C1NN is universally consistent for binary classification under all processes in SMV(X ,ρ)

which yields SMV(X ,ρ) ⊂ SUOL(X ,ρ),({0,1},ℓ01). Together with Proposition 1, this shows that we
have in fact an equality SMV(X ,ρ) = SUOL(X ,ρ),({0,1},ℓ01) and as a result, that 2C1NN is optimisti-
cally universal. We start by showing that under any process in SMV(X ,ρ), 2C1NN is consistent on
functions representing balls of the metric ρ.

Proposition 5 Let (X ,B) be a separable Borel space constructed from the metric ρ. We consider
the binary classification setting Y = {0, 1} and the ℓ01 binary loss. For any input process X ∈
SMV(X ,ρ), for any x ∈ X , and r > 0, the learning rule 2C1NN is consistent for the target function
f∗ = 1Bρ(x,r).

To prove this result, we introduce a tree structure G for the 2C1NN algorithm on times t such
that each new input is linked to its representant which was used to derive the target prediction.
Times t corresponding to instances Xt that were previously visited are therefore not considered in

9
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x

Bρ(x, r)

xp2

xp1

xp0

xq1

xq0

l

≤ l

≤ ρ(xq1 , xp1)

≤ ρ(xq0 , xp1)

Figure 1: Illustration for Lemma 6 for d = 2 and f = 1, where the order of appearance is p0 <
q0 < p1 < q1 < p2. The arrows represent the relations of nodes within the tree G, e.g.,
Ŷp1 = Yp0 . If the end points xp2 and xq1 are close, then so are the beginning points xp0
and xq0 . The proof by induction is summarized by the upper bounds in red.

this tree. Precisely, we consider parent relations given by (t, ϕ(t)) for all times t such that a new
input Xt was visited—i.e. memorization was not performed directly. By definition of the 2C1NN
learning rule, no time t ∈ G has more than 2 children. Further, for any t, t′ ∈ G, if the time t′ < t is
not present in dataset Dt, it has exactly 2 children. The proof uses the following lemma.

Lemma 6 Consider two distinct paths pd → pd−1 → . . . → p1 → p0 and qf → qf−1 → . . . →
q1 → q0 i.e. ϕ(pi) = pi−1 for 1 ≤ i ≤ d and ϕ(qi) = qi−1 for 1 ≤ i ≤ f . Suppose p0 < q0 and
that there exists t ≥ max(pd, qf ) such that pd, qf ∈ Dt (in other words the two end times are in
some final dataset). Then, with v(0) := max{0 ≤ i ≤ d, pi < q0} we have

ρ(xpv(0) , xq0) ≤ 2f+d+1ρ(xpd , xqf ) and ρ(xpv(0) , xpd) ≤ 2f+d+1ρ(xpd , xqf ).

Sketch of proof of Proposition 5. Having fixed a horizon T ≥ 1, the proof consists in analyzing
the subgraph of G of times t ≤ T corresponding to points xt falling in B(x, r). These form a collec-
tion of disjoint trees where roots correspond to times where the 2C1NN algorithm made a mistake
in the prediction. This structure allows to cluster times {t ≤ T, xt ∈ B(x, r)} by connected com-
ponent and show that these connected components are “well separated”. Specifically, reasoning by
contradiction, if two connected components were close from each other, so would be their roots as
shown in Lemma 6. However, the SMV(X ,ρ) property of X allows to “separate” the parents of all
roots—input points which induced a future mistake for points in B(x, r)—which provides a contra-
diction. Hence, all connected components are well separated, and hence there should be a sublinear
number of these components, i.e., of mistakes within the ball B(x, r), using the SMV(X ,ρ) property
once again. The same analysis can be made for times {t ≤ T, ρ(xt, x) > r}. However, times
falling precisely at the border {t ≤ T, ρ(xt, x) = r} require an additional partition specifically on
the border {t ≤ T, ρ(xt, x) = r}.

We are now ready to show that 2C1NN is optimistically universal for the binary classification
setting under processes of SMVX ,ρ). Intuitively, given a fixed process X ∈ SMV(X ,ρ), we analyze

10



UNIVERSAL ONLINE LEARNING

the set of functions on which 2C1NN is consistent and show that it is a σ−algebra. Further, Propo-
sition 5 shows that this σ−algebra contains all open balls, and as a consequence is the complete
Borel σ−algebra, i.e., 2C1NN is universally consistent under X.

Theorem 7 Let (X ,B) be a separable Borel space. For the binary classification setting, the learn-
ing rule 2C1NN is universally consistent for all processes X ∈ SMV(X ,ρ).

Sketch of proof. We fix a process X ∈ SMV(X ,ρ) and define SX as the set of functions on which
it is consistent. Because we focus on the binary classification we can write

SX := {A ∈ B, LX(2C1NN,1A) = 0 (a.s.)}.

Proposition 5 implies that all open balls are included in SX. Thus, it suffices to check that it satisfies
the properties of a σ−algebra. The invariance of 2C1NN to value labels directly shows that SX is
invariant to complementary. Showing the σ−additivity is the main technical difficulty of this result.
Let (Ai)i≥0 be a sequence of disjoint set of SX. Writing A =

⋃
i≥0Ai, we wish to bound type I

errors—Xϕ(t) ∈ A but Xt /∈ A—and type II errors—Xϕ(t) /∈ A but Xt ∈ A. The main interest
of the 2C1NN rule is that any input point Xt can induce at most 3 prediction errors: potentially a
prediction mistake for Yt and at most 2 children. Hence, we can lower bound the number of errors of
type I until time horizon T ≥ 1 by the number of distinct points falling in A within horizon T . The
errors of type II already correspond to times with points falling in A. In other words, the property
of 2C1NN that any point can induce at most a finite number of future mistakes implies that to make
a linear number of mistakes, 2C1NN must visit the set A =

⋃
i≥0Ai a linear number of times. We

then use 1. the SMV(X ,ρ) property on the partition (Ai)i≥0, and 2. the fact that individually on each
Ai, 2C1NN makes a sublinear number of errors, to prove that the total number of errors for 1A is
sublinear.

In particular, Theorem 7 shows that SMV(X ,ρ) ⊂ SUOL(X ,ρ),([0,1],ℓ01). Together with Proposi-
tion 1, this shows that the set of learnable processes for binary classification is exactly SMV(X ,ρ).
As a result, 2C1NN is optimistically universal for binary classification. The binary classification
setting is not restrictive. Indeed [2] shows that any bounded separable value space (Y, ℓ) can be
reduced to binary classification using randomized hypothesis testing:

Theorem 8 (Blanchard and Cosson [2]) Let X be a Borel space and k ≥ 2. For any separable
near-metric space (Y, ℓ) with 0 < ℓ̄ < ∞, we have SUOL(X ,ρ),(Y,ℓ) = SUOL(X ,ρ),({0,1},ℓ01).
Further, if there exists an optimistically universal for the binary classification setting, then there
exists an optimistically universal for the setting (Y, ℓ). Finally, if kC1NN is optimistically universal
for binary classification, it is also optimistically universal for the setting (Y, ℓ).

Applying this reduction from a general bounded output setting to binary classification, we obtain
a full characterization of the set of processes admitting strong universal learning for general value
spaces and obtain that 2C1NN is optimistically universal for general input and output spaces.

Corollary 9 For any separable Borel space X and any separable near-metric space (Y, ℓ) with
0 < ℓ̄ <∞, we have SUOL(X ,ρ),(Y,ℓ) = SMV(X ,ρ).

Corollary 10 For any separable Borel space X , and any bounded separable near-metric space
(Y, ℓ), 2C1NN is an optimistically universal learning rule.

11
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Note that the case ℓ̄ = 0 can be treated separately: in this case all processes X are learnable and
any learning rule is optimistically universal. The same proofs imply that the learning rules kC1NN
are also optimistically universal for any k ≥ 2. As a remark, one can note that 2C1NN is the simplest
algorithm of this class which is optimistically universal. Indeed, 1C1NN systematically deletes the
previous points from the dataset and as a result, at any time, the dataset Dt is a singleton. Hence,
1C1NN is not optimistically universal. To present a simpler exposition of the optimistical universal
consistency of rules from the class kC1NN, we provide in Appendix B a proof of the result for the
special case of 4C1NN and the space X = [0, 1] with the usual topology. This can then directly be
generalized to all standard Borel spaces using the Kuratowski theorem. This proof provides the main
ideas for the general result without the added technicalities induced by constructing partitions for
general separable spaces (X , ρ), or reduced convergence speeds for 2C1NN compared to 4C1NN.

6. Weak universal learning

We now turn to weak universal learning. In this section, we show that the results for the char-
acterization of learnable processes and the existence of optimistically universal learning rules for
the strong setting can also be adapted to the weak setting. Although the set of learnable processes
differ—SUOL ⊂ WUOL in general and SUOL ⊊ WUOL whenever X is infinite [18]—we show
that the same learning rule 2C1NN is optimistically universal in the weak setting. We recall the
necessary condition WSMV for weak learnability for near-metric separable value spaces (Y, ℓ)
with 0 < ℓ̄ <∞.

Condition WSMV For every countable measurable partition {Ak}∞k=1,

E[|{k ∈ N : Ak ∩ X<T ̸= ∅}|] = o(T ).

Similarly to the strong consistency case, we will show that WSMV(X ,ρ) is also sufficient for
weak universal consistency. Note that whenever X is infinite we have WSMV(X ,ρ) ⊊ SMV(X ,ρ).
We start by adapting Proposition 5 for the weak setting by showing that 2C1NN is weakly consistent
on balls under any process X ∈WSMV(X ,ρ).

Proposition 11 Let (X ,B) be a separable Borel space constructed from some metric ρ. We con-
sider the binary classification setting Y = {0, 1} and the ℓ01 binary loss. For any input process
X ∈ WSMV(X ,ρ), for any x ∈ X , and r > 0, the learning rule 2C1NN is weakly consistent for the
target function f∗ = 1Bρ(x,r).

We then show that 2C1NN is weakly consistent under processes of WSMV(X ,ρ) for binary classifi-
cation adapting the proof of Theorem 7.

Theorem 12 Let (X ,B) be a separable Borel space constructed from the metric ρ. For the binary
classification setting, the learning rule 2C1NN is weakly universally consistent for all processes
X ∈ WSMV(X ,ρ).

Finally, we turn to the case of a bounded separable output setting (Y, ℓ) and show that 2C1NN is
weakly optimistically universal. In the case of weak learning, the reduction from any separable
bounded output setting does not require a sophisticated argument as in the proof of Theorem 8 [2],
and can be made using the dominated convergence theorem.

12
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Theorem 13 Let (X ,B) be a separable Borel space constructed from the metric ρ. The learning
rule 2C1NN is weakly universally consistent for all processes X ∈ WSMV(X ,ρ) and any separable
bounded output setting (Y, ℓ).

As an immediate consequence, we have WSMV(X ,ρ) ⊂ WUOL(X ,ρ),(Y,ℓ). Together with Proposi-
tion 16 we obtain a complete characterization for weak learnable processes and show that 2C1NN
is weakly optimistically universal for general output value spaces.

Corollary 14 For any separable Borel space (X ,B), and every separable near metric space (Y, ℓ)
with 0 < ℓ̄ < ∞ we have WUOL(X ,ρ),(Y,ℓ) = WSMV(X ,ρ). In particular, SUOL is invariant from
the output setup.

Corollary 15 For any separable Borel space (X ,B) and any bounded separable output setting
(Y, ℓ), 2C1NN is weakly optimistically universal.

This completely closes the main questions on universal online learning [18; 19] as we have now
proved Theorem 3 (Corollary 10 and 15) and Theorem 4 (Corollary 9 and 14).

7. Conclusion

In this paper, we provided a strong and weak optimistically universal learning rule 2C1NN, which
is a simple variant of the nearest neighbor algorithm. We further gave a characterization of the
processes admitting strong or weak universal learning, closing the study of universal online learning
with bounded losses.

The case of unbounded losses was already settled in [18; 4], which was shown to be very re-
strictive because the target functions are unrestricted. It would be interesting to bridge the gap
between these two cases by considering restricted universal learning. Specifically, by adding a con-
straint on the target functions—for example, moment constraints are fairly common in the literature
[15; 16]—one could hope to recover the large set of learnable processes SUOL characterized in this
paper, even for the unbounded loss case. We refer to [4] for further motivation of this open direction.

In our setting, we assume that the values are generated from the stochastic process X through
a target function f∗ and without noise. Another interesting line of research would be to add noise
to the value process Y. This relates to the Bayes consistency literature in which an objective is to
reach the minimal risk, known as the Bayes minimal risk; instead of obtaining exact consistency
i.e. vanishing average error rate as considered in this paper. A possible direction would be to find
mild independence conditions on the noise—generalizing the i.i.d. setting [31]—so that there exist
learning rules which are Bayes universally consistent under a large set of processes X. The author
notes that subsequently to this paper, [3] used the results of this work to design universal learning
rules for arbitrary noise in the responses.
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[14] L Gyorfi, Gábor Lugosi, and Gusztáv Morvai. A simple randomized algorithm for sequential
prediction of ergodic time series. IEEE Transactions on Information Theory, 45(7):2642–
2650, 1999.
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Appendix A. Proofs of Section 4: On nearest neighbor consistency

A.1. Proof of Theorem 2

Let δ > 0 and a sequence kt = o
(

t
(log t)1+δ

)
. To show that (kt)t−NN is not optimistically univer-

sal, we construct a process X ∈ SUOL on which (kt)t−NN has asymptotic error rate 1. We denote
by Dp := { i

2p , 0 ≤ i ≤ 2p, i odd} the set of dyadics of order p i.e. with reduced denominator 2p,
and D for the set of dyadics. Let ϵ > 0 such that 1+2ϵ

1−2ϵ < 1 + δ
2 . Then pose for k ≥ 1,

nk = ⌊ek1/2−ϵ⌋, dk = min

(⌊
nk

(log nk)1+δ

⌋
, nk+1 − nk − 1

)
, pk = 4k.

First note that nk+1 − nk ∼
(
1
2 − ϵ

)
nk

k1/2+ϵ ∼
(
1
2 − ϵ

)
nk

(lognk)
1/2+ϵ
1/2−ϵ

therefore we obtain

dk = o

(
nk

(log nk)1+δ/2

)
= o(nk+1 − nk).

Also, for k large enough, dk =
⌊

nk

(lognk)1+δ

⌋
. We now construct a process X on X . Let (Uk)k≥1 be

an i.i.d. sequence of uniforms U([0, 1]) and (Dk)k≥1 a sequence of independent random variables—
also independent of (Uk)k—such that Dk ∼ U(Dpk). Additionally, we denote by Dk,i the i−th
closest dyadic of order pk to Dk. For instance, Dk,1 = Dk, and |Dk,i−Dk| ≤ i

2pk−1 . For intuition,

if Dk is not close to the boundary of [0, 1], we have Dk,i = Dk + (−1)i · ⌊i/2⌋2pk . We now define the
process X as follows for any k ≥ 1,

Xnk+i = Dk,i+1, 0 ≤ i ≤ dk and Xnk+dk+j = Dk +
Uk −Dk

2nk4j
, 1 ≤ j < nk+1−nk− dk.

We first prove that (kt)t−NN is not consistent for the function f∗ = 1D. For any k ≥ 1,

P
[
min
t<nk

|Xt −Dk| <
1

2nk

]
≤
∑
t<nk

P
[
Xt −

1

2nk
< Dk < Xt +

1

2nk

]
≤ 2nk

2nk
,

because nk ≤ pk. Now note that for all k ≥ 1 and 0 ≤ i ≤ dk we have Xnk+i ∈ Dpk , while almost
surely, all other random variables do not fall in D. Then, denote by E the event of probability 1
where X does not visit D except for times nk + i for k ≥ 1 and 0 ≤ i ≤ dk. In other words,

E := {Xnk+i /∈ D, k ≥ 1, dk < i < nk+1 − nk}

and P(E) = 1. We also denote by Ak the event Ak := {mint<nk
|Xt − Dk| ≥ 2−nk} and Bk

the event Bk := {|Uk − Dk| ≥ 2−k}. We have P(Bck) ≤ 2−k+1 and we showed previously
P(Ac

k) ≤
2nk
2nk . Now note that dk

2pk−1 = o( 1

2nk+2nk+1+k+1 ). Therefore, let k0 such that for any
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k ≥ k0, dk
2pk−1 ≤ 1

2nk+2nk+1+k+1 . Then, for any k ≥ k0, on the event Ak ∩ Bk ∩ E , for any
1 ≤ j < nk+1 − nk − dk, the dk + 1 nearest neighbors of Xnk+dk+j are exactly the points
{Xnk+i = Dk,i+1, 0 ≤ i ≤ dk}. Indeed,

|Xnk+dk+j −Dk,i| ≤ |Xnk+dk+j −Dk|+
dk

2pk−1
≤ 1

2nk4j
+

1

2nk+2j
<

1

2nk+2j−1
.

Further, for all t < nk,

|Xnk+dk+j −Xt| ≥ |Dk −Xt| − |Xnk+dk+j −Dk| ≥
1

2nk
− 1

2nk+2
>

1

2nk+2j−1
.

and finally, for 1 ≤ j′ < j and any 0 ≤ i ≤ dk, we have

|Xnk+dk+j −Xnk+dk+j′ | ≥ |Xnk+dk+j −Xnk+dk+j−1| = 3 · |Uk −Dk|
2nk+2j

≥ |Xnk+dk+j −Dk|+ 2 · 1

2nk+2j+k

≥ |Xnk+dk+j −Dk|+ 2 · dk
2pk−1

> |Xnk+dk+j −Dk|+ |Dk −Dk,i|
≥ |Xnk+dk+j −Dk,i|.

We now observe that

max
nk+dk+1≤t<nk+1

kt = o

(
nk+1

(log nk)1+δ

)
= o(dk).

Therefore, let k1 such that for any k ≥ k1, and any 1 ≤ j < nk+1−nk−dk, we have knk+dk+j ≤ dk.
Now for any k ≥ max(k0, k1), on the event Ak ∩Bk ∩ E , (kt)tNN makes an error in the prediction
of all Xnk+dk+j for 1 ≤ j < nk+1− nk − dk since its kt closest neighbors are in the set {Xnk+i =
Dk,i+1, 0 ≤ i ≤ dk} which all have value 1D(Xnk+i) = 1 instead of 1D(Xnk+dk+j) = 0.

Last, note that the frequency of the times of the form nk+i for k ≥ 1 and 0 ≤ i ≤ dk vanishes to
0, because dk = o(nk+1−nk) and nk+1 ∼ nk. Therefore, on the event E ∩∪k′≥1

⋂
k≥k′(Ak ∩Bk),

the learning rule (kt)tNN has error rate LX((kt)tNN, f∗) = 1. Now note that P[E ∩ Ac
k ∩ Bck] ≤

2−k+1 + 2nk
2nk . Because we have

∑
n≥1 2

−n+1 <∞ and
∑

n≥1
2n
2n <∞, the Borel-Cantelli lemma

implies P[E ∩∪k′≥1

⋂
k≥k′(Ak ∩Bk)] = 1. To summarize, with probability one, (kt)tNN has error

rate 1 hence is not consistent for process X and target function f∗ = 1D. This ends the proof that
(kt)tNN is not universally consistent for process X.

We now show that X ∈ SUOL by showing that in fact X ∈ CRF. Let A ⊂ [0, 1]. We will
show that the frequencies of falling in A converge almost surely to µ(A) where µ is the Lebesgue
measure. We introduce the random variables

Yk =

nk+1−nk−1∑
i=0

1A(Xnk+i).

Again, for k ≥ 1, and 1 ≤ j < nk+1 − nk − dk, Xnk+dk+j is an absolutely continuous random
variable with density f(x) = 1

2pk−1

∑2pk−1−1
l=0 fl(x) where fl(x) corresponds to the conditional
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density to Dk = 2l+1
2pk =: dl, i.e.

fl(x) = 2nk4j · 1
(
x ∈

[
dl −

dl
2nk4j

, dl +
1− dl
2nk4j

])

But x ∈
[
dl − dl

2nk4i
, dl +

1−dl
2nk4i

]
i.if

2pk−1(x− 1

2nk 4i
)

1− 1

2nk 4i

− 1
2 ≤ l ≤ 2pk−1x

1− 1

2nk 4i

− 1
2 . Therefore, the number

N(x) of non-zero terms in the sum f(x) = 1
2pk−1

∑2pk−1−1
l=0 fl(x) is

2pk−1−nk−2i

1− 1
2nk4i

− 1 ≤ N(x) ≤ 2pk−1−nk−2i

1− 1
2nk4i

+ 1

Hence, ∣∣∣∣∣f(x)− 1

1− 1
2nk4i

∣∣∣∣∣ =
∣∣∣∣∣2nk4iN(x)

2pk−1
− 1

1− 1
2nk4i

∣∣∣∣∣ ≤ 1

2pk−1−nk−2i
.

Finally, we obtain

|P(Xnk+dk+j ∈ A)− µ(A)| ≤ 1

2pk−1−nk−2j
+

1

2nk+2j − 1
.

Therefore,

|EYk − (nk+1 − nk)µ(A)| ≤
dk∑
i=0

|P(Xnk+i ∈ A)− µ(A)|+
nk+1−nk−dk−1∑

j=1

P(Xnk+dk+j ∈ A)

≤ dk + 1 +
nk+1 − nk

2pk−2nk+1
+

nk+1 − nk

2nk − 1

≤ dk + C

where C ≥ 1 is some universal constant, given that nk+1−nk

2pk−2nk+1
→ 0 and nk+1−nk

2nk−1 → 0 as k → ∞.
Now note that because Yk is a sum of nk+1 − nk random variables bounded by 1, then

V ar(Yk) ≤ (nk+1 − nk)
2 = O

(
n2
k+1

k1+2ϵ

)
.

Therefore,
∑

k≥1
V ar(Yk)

(nk+1−1)2
< ∞. Further, we can note that the random variables (Yk)k≥1 are

together independent. Thus, by Kolmogorov’s Convergence Criteria, we obtain

k∑
l=1

Yl − EYl
nk+1 − 1

→ 0 (a.s.)

We then apply Kronecker’s lemma which gives

ϵk :=

∑k
l=1 Yl − EYl
nk+1 − 1

→ 0 (a.s.)
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We now compute,∣∣∣∣∣∣ 1

nk+1 − 1

nk+1−1∑
t=1

1A(Xt)− µ(A)

∣∣∣∣∣∣ = 1

nk+1 − 1

∣∣∣∣∣
k∑

l=1

Yl − (nk+1 − nk)µ(A)

∣∣∣∣∣
=

1

nk+1 − 1

∣∣∣∣∣(nk+1 − 1)ϵk +
k∑

l=1

EYl − (nk+1 − nk)µ(A)

∣∣∣∣∣
≤ ϵk +

Ck +
∑k

l=1 dl
nk+1 − 1

.

Because k
nk+1−1 → 0 and

∑k
l=1 dl = o(nk+1 − 1), we obtain 1

nk+1−1

∑nk+1−1
t=1 1A(Xt) →

µ(A) (a.s.). We complete the proof by noting that for any nk ≤ T < nk+1,

1

nk+1 − 1

nk−1∑
t=1

1A(Xt) ≤
1

T

T∑
t=1

1A(Xt) ≤
1

nk − 1

nk+1−1∑
t=1

1A(Xt),

and that nk−1
nk+1−1 → 1 as k → ∞. Therefore 1

T

∑T
t=1 1A(Xt) → µ(A) (a.s.) which shows that

X ∈ CRF. Because CRF ⊂ SUOL [18], this ends the proof of the theorem.

Appendix B. An optimistically universal learning rule for standard Borel spaces

To provide a simpler exposition of the main results Theorem 3 and Theorem 4, we now show that
kC1NN is in fact optimistically universal for k ≥ 4 starting with X = [0, 1]. This will in turn give
the result for general standard Borel space as shown in Appendix B.2 and already provides all the
intuitions necessary for the general case presented in Section 5 and proved in Appendix C.

B.1. Universal online learning on X = [0, 1]

We will consider the case X = [0, 1] in this section and show that 4C1NN is optimistically universal
for this input space. To do so, we prove that 4C1NN is universally consistent under all processes
in SMV([0,1],|·|) which yields SMV([0,1],|·|) ⊂ SUOL([0,1],|·|),({0,1},ℓ01). Together with Proposition
1, this will show that SUOL([0,1],|·|),({0,1},ℓ01) = SMV([0,1],|·|) and as a result, that 4C1NN is opti-
mistically universal. As a first step, we focus on the simple function f∗ represented by the fixed
interval [0, 1/2] in the binary classification setting, and show that 4C1NN is consistent under any
input process for this target function.

Proposition 16 Let X = [0, 1] with the usual topology. We consider the binary classification
setting Y = {0, 1} with ℓ01 binary loss. Under any input process X ∈ SMV([0,1],|·|), the learning
rule 4C1NN is strongly consistent for the target function f∗ = 1[0,1/2].

Proof We reason by the contrapositive and suppose that 4C1NN is not consistent on f∗. We will
show that the process X disproves the SMV([0,1],|·|) condition by considering the partition P of X
defined by {

1

2

}
∪
⋃
k≥1

[
1

2
− 1

2k
;
1

2
− 1

2(k + 1)

)
∪
⋃
k≥1

(
1

2
+

1

2(k + 1)
;
1

2
+

1

2k

]
.
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Precisely, we will show that the process does not visit a sublinear number of sets of this partition
with nonzero probability.

Because 4C1NN is not consistent, δ := P(LX(4C1NN, f∗) > 0) > 0. Define

A := {LX(4C1NN, f∗) > 0}.

We now consider a specific realization x = (xt)t≥0 of the process X falling in the event A. Note
that x is not random anymore. We now show that x does not visit a sublinear number of sets in the
partition P . By construction ϵ := Lx(4C1NN, f∗) > 0. We now denote by (tk)k≥1 the increasing
sequence of all times when 4C1NN makes an error in the prediction of f∗(xt). Now define an
increasing sequence of times (Tl)l≥1 such that

1

Tl

Tl∑
t=1

ℓ01(4C1NN(x<t,y<t, xt), f
∗(xt)) >

ϵ

2
.

For any l ≥ 1 consider the last index k = max{u, tu ≤ Tl} when 4C1NN makes a mistake. Then
we obtain k > ϵ

2Tl ≥ ϵ
2 tk. Considering the fact that (Tl)l≥1 is an increasing unbounded sequence

we therefore obtain an increasing sequence of indices (kl)l≥1 such that tkl <
2kl
ϵ .

At an iteration where the new input xt has not been previously visited we will denote by ϕ(t)
the index of the nearest neighbor of the current dataset in the 4C1NN learning rule. Now let l ≥ 1.
We focus on the time tkl . Consider the tree G where nodes are times T := {t, t ≤ tkl , xt /∈
{xu, u < t}} for which a new input was visited, where the parent relations are given by (t, ϕ(t)) for
t ∈ T \ {1}. In other words, we construct the tree in which a new input is linked to its representant
which was used to derive the target prediction. Note that by definition of the 4C1NN learning rule,
each node has at most 4 children and a node is not in the dataset at time tkl when it has exactly 4
children.

By symmetry, we will suppose without loss of generality that the majority of input points on
which 4C1NN made a mistake belong to the first half [0, 12 ] i.e.

|{t ≤ tkl , ℓ01(4C1NN(x<t,y<t, xt), f
∗(xt)) = 1, xt ∈ [0, 1/2]}| ≥ kl

2

or equivalently,
∣∣{k ≤ kl, xtk ≤ 1

2

}∣∣ ≥ kl
2 .

Let us now consider the subgraph G̃ given by restricting G only to nodes in the first half-space
[0, 1/2] which are mapped to the true value 1 i.e. on times {t ∈ T , xt ≤ 1

2}. In this subgraph, the
only times with no parent are times tk with k ≤ kl and xtk ≤ 1

2 and possibly time t = 1. Indeed,
if a time in G̃ has a parent ϕ(t) in G̃, the prediction of 4C1NN for xt returned the correct answer 1.
The converse is also true except for the root time t = 1 which has no parent in G. Therefore, G̃ is
a collection of disjoint trees with roots times {tk, k ≤ kl, xtk ≤ 1

2} (and possibly t = 1). For a
given time tk with k ≤ kl and xtk ≤ 1

2 , we will denote by Tk the corresponding tree in G̃ with root
tk. We say that the Tk is a good tree if all times t ∈ Tk of this tree are parent in G to at most 1 time
from the second half-space (12 , 1] i.e. if

∀t ∈ Tk,
∣∣∣∣{u ≤ tkl , ϕ(u) = t, xu >

1

2

}∣∣∣∣ ≤ 1.

We denote by G = {k ≤ kl, xtk ≤ 1
2 , Tk good} the set of indices of good trees. By opposition,

we will say that a tree is bad otherwise. We now give a simple upper bound on Nbad the number of
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bad trees. Note that for any time t ∈ Tk of a tree, times in
{
u ≤ tkl , ϕ(u) = t, xu > 1

2

}
are when

4C1NN makes a mistake on the second-half (12 , 1]. Therefore,

∑
k≤kl, xtk

≤ 1
2

∑
t∈Tk

∣∣∣∣{u < tkl , ϕ(u) = t, xu >
1

2

}∣∣∣∣ ≤ ∣∣∣∣{k ≤ kl, xtk >
1

2

}∣∣∣∣ ≤ kl
2

because by hypothesis
∣∣{k ≤ kl, xtk ≤ 1

2

}∣∣ ≥ kl
2 . Therefore, since each bad tree contains a node

which is parent to at least 2 times of mistake in (12 , 1], we obtain

Nbad ≤
∑

k≤kl, xtk
≤ 1

2

∑
t∈Tk

1

2

∣∣∣∣{u < tkl , ϕ(u) = t, xu >
1

2

}∣∣∣∣ ≤ kl
4
.

Thus, the number of good trees is |G| =
∣∣{k ≤ kl, xtk ≤ 1

2

}∣∣−Nbad ≥ kl
4 . We now focus on good

trees only and analyze their relation with the final dataset Dtkl
. Precisely, for a good tree Tk, denote

Vk = Tk ∩Dtkl
the set of times which are present in the final dataset and belong to the tree induced

by error time tk. One can note that the sets {xu, u ∈ Vk}k∈G are totally ordered:

∀k1 < k2 ∈ G, ∀t1 ∈ Tk1 , ∀t2 ∈ Tk2 , xt1 < xt2 .

This can be shown by observing that at each iteration t of 4C1NN, the following invariant is con-
served: the sets {xu, u ∈ Tk ∩Dt}k∈{l∈G, tl≤t} are totally ordered. The induction follows from the
fact that when a new input point is visited, 4C1NN performs the 1NN learning rule on the current
dataset Dl. Therefore, either the sets {xu, u ∈ Tk ∩ Dt}k∈{l∈G, tl≤t} are conserved, or a new point
is added when t = tk for some k ≤ kl which forms its own tree and is closest to (12 , 1] than all other
sets {xu, u ∈ Tk ∩ Dt}k∈{l∈G, tl≤t}, or a new point is added to an existing tree Tk in which case
it should be closer to some time of Tk ∩ Dt than any time in Tk−1 ∩ Dt or Tk+1 ∩ Dt—if Tk−1 or
Tk+1 exist. Additionally, a time may be removed which is still consistent with the invariant. Last,
we observe that these sets never run empty because a time is removed only when at least 3 other
points were added to the same set.

We now reason by induction to show that the sets {xu, u ∈ Vk}k∈G are also well separated—in
a multiplicative way. Let us order the good trees by G = {g1 < . . . < g|G|} and start with tree Tg1 .
Consider any leaf of this tree and the corresponding path to the root pl → pl−1 → p0 = tg1 and
define x1 = min1≤i≤l xpi . By construction, any point on this path is being replaced by its parent.
Therefore, at any step of the algorithm 4C1NN at least one point on this path is available in the
dataset Dt for any t ≥ tg1—for instance the last time pi such that pi ≤ t. This point x1 provides
a lower bound for the maximum point in {xu, u ∈ Tg1 ∩ Dt} which in turn will provide a lower
bound for all points in {xu, u ∈ Tg2 ∩ Dt}.

Let us now turn to Tg2 . By construction, in a good tree Tk, a time t ∈ Tk which is not in the final
dataset Dtkl

must be parent to at least 3 other times within Tk. Therefore, until the minimal depth
of an available time Vg2 = Tg2 ∩ Dtkl

in the current dataset Dtkl
, each node of the tree Tg2 has at

least 3 parents which correspond necessarily to times t > tg2 . Therefore, the minimal depth d(g2)
of an available time Vk in the current dataset satisfies

d(g2)−1∑
i=0

3i ≤ |Tg2 | ≤ tkl .
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Therefore d(g2) ≤ log3(2tkl+1) ≤ log3 tkl . Now consider the specific path from this node in Vg2 of
minimal depth to the root tg2 . Denote this path pd(g2) → pd(g2)−1 → p0 = tg2 . Each arc of this path
represents the fact that at the corresponding iteration pi of 4C1NN, the parent xpi−1 was closer from
xpi than any other point of the current dataset Dpi , in particular any point of {xu, u ∈ Tg1 ∩ Dpi}.
This gives |xpi−1 − xpi | ≤ |x1 − xpi−1 | = xpi−1 − x1 because we have xpi−1 , xpi > x1. Therefore
we obtain

xpi−1 ≥
x1 + xpi

2
.

Indeed, if this were not the case we would have |xpi−1−xpi | = xpi−xpi−1 > xpi−1−x1. Similarly,
considering the fact that 4C1NN makes a mistake at time tg2 , the parent of tg2 satisfies xϕ(tg2 ) >

1
2

which yields xtg2 ≥
x1+xϕ(tg2 )

2 ≥ x1+ 1
2

2 . Hence, for any 0 ≤ i ≤ d(g2),

xpi ≥ x1
(
1− 1

2i

)
+

xtg2
2i
≥ x1 +

xtg2 − x1

2d(g2)
≥ x1 +

(
1

2
− x1

)
t
− log 2

log 3

kl
.

Again, at every iteration t ≥ tg2 of 4C1NN, at least one of the points xpi is available in the dataset
Dt—for instance the last xpi such that pi ≤ t. By total ordering, this x2 := min0≤i≤d(g2) xpi
provides a lower bound for all points {xu, u ∈ Tg3 ∩ Dt} whenever t ≥ tg3 . Hence, the lower
bound x2 acts as a new barrier: the equivalent of x1 for the above argument with Tg2 .

For clarity, we precise the next iteration of the induction for Tg3 . The minimal depth d(g3) of an
available time Vg3 satisfies d(g3) ≤ log3(tkl − tg3 +1)+1 using the same argument as above. Now
consider the corresponding path in Tg3 from this minimal depth node to the root pd(g3) → . . . →
p0 = tg3 . By definition of the 4C1NN learning rule, the parent xpi−1 was closer to xpi than any
point of {xu, u ∈ Tg2 ∩ Dt}. By the previous step of the induction, we know that the maximum
value of this set is at least x2. Therefore, we obtain |xpi−1−xpi | ≤ |x2−xpi | = xpi−x2. We recall

that we also have xpi−1 ≥ x2 and xpi ≥ x2. The same argument as above gives xpi ≥
x2+xpi−1

2 .

Further, we obtain similarly xtg3 ≥
x2+xϕ(tg3 )

2 ≥ x2+ 1
2

2 . Hence, for all 0 ≤ i ≤ d(g3),

xpi ≥ x2 +
xtg3 − x2

2d(g3)
≥ x2 +

(
1

2
− x2

)
t
− log 2

log 3

kl
.

We denote x3 := min0≤i≤d(g3) xpi , which now acts as a lower barrier for the tree Tg4 and we can
apply the induction.

We complete this induction for Tg3 , . . . , Tg|G| . This creates a sequence of distinct visited input

points (xi)1≤i≤|G| with xi ≤ 1
2 such that for any 1 ≤ i < |G|, xi+1 ≥ xi +

(
1
2 − xi

)
t
− log 2

log 3

kl
i.e.

1

2
− xi+1 ≤

(
1

2
− xi

)(
1− t

− log 2
log 3

kl

)
.

In particular, we can observe that 0 ≤ x1 < x2 < . . . < x|G| ≤ 1
2 . Further, recalling that we have

tkl <
2kl
ϵ , we get

log

(
1

2
− xi+1

)
− log

(
1

2
− xi

)
≤ log

(
1− t

− log 2
log 3

kl

)
≤ −t

− log 2
log 3

kl
≤ −

(
ϵ

2kl

) log 2
log 3

,
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for any 1 ≤ i ≤ |G| − 1. We will now argue that most of these points xi fall in distinct sets
of the type [ak, ak+1) where ak := 1

2 −
1
2k for k ≥ 1. We observe that for any k ≥ 1, we

have by concavity log
(
1
2 − ak+1

)
− log

(
1
2 − ak

)
= log

(
1− 1

k+1

)
≥ − log 2

k+1 . Therefore, with

k0 =

⌈
log 2 ·

(
2kl
ϵ

) log 2
log 3

⌉
, for any k ≥ k0 we have

log

(
1

2
− ak+1

)
− log

(
1

2
− ak

)
> −

(
ϵ

2kl

) log 2
log 3

.

Therefore, for any 1 ≤ i ≤ |G| − 1 such that xi > ak0 , xi and xi+1 would lie in different sets of the
type [ak, ak+1), k ≥ 1. In fact because the sequence (xi)1≤i≤|G| is increasing, if xi

∗
> ak0 then all

points (xi)i∗≤i≤|G| lie in distinct sets of the type [ak, ak+1), k ≥ 1. Recall that |G| ≥ kl
4 . Denote

i∗ = ⌊kl8 ⌋. Because (kl)l≥1 is an increasing sequence, we have

log

(
1

2
− xi

∗
)
≤ log

(
1

2

)
− (i∗ − 1)

(
ϵ

2kl

) log 2
log 3

∼
l→∞

−cϵk
1− log 2

log 3

l ,

where cϵ :=
1
8

(
ϵ
2

) log 2
log 3 is a constant. Therefore,

log

(
1

2
− ak0

)
= − log(2k0) ∼

l→∞
− log 2

log 3
log kl = o

(
log

(
1

2
− xi

∗
))

which shows that for some constant l0 and any l ≥ l0 we have ak0 < xi
∗
< 1

2 . Hence, for any l ≥ l0,
all the points (xi)i∗≤i≤|G| lie in distinct sets of the partition and there are at least |G|− kl

8 ≥
kl
8 such

points. Therefore, for any l ≥ l0,

|{P ∈ P, P ∩ x≤tkl
̸= ∅}| ≥ kl

8
≥ ϵ

16
tkl .

Because tkl → ∞ as l → ∞, this shows that |{P ∈ P, P ∩ x<T ̸= ∅}| ≠ o(T ). Because this
holds for any realization of the event A, we obtained

P(|{P ∈ P, P ∩ X<T ̸= ∅}| = o(T )) ≤ P(Ac) = 1− δ < 1.

This shows that X /∈ SMV([0,1],|·|) and ends the proof of the proposition.

Note that using the same proof, we observe that the result from Proposition 16 holds for all learning
rules kC1NN with k ≥ 4.

We are now ready to prove that 4C1NN is universally consistent under processes of SMV([0,1],|·|)
for the binary classification setting. Intuitively, we analyze the set of functions on which 4C1NN is
consistent under a fixed process X ∈ SMV([0,1],|·|) and show that this is a σ-algebra. Proposition 16
will be useful to show that this σ-algebra contains all intervals and as a result is the complete Borel
σ-algebra B i.e. 4C1NN is universally consistent under X.

Theorem 17 Let X = [0, 1] with the usual topology B. For the binary classification setting, the
learning rule 4C1NN is universally consistent for all processes X ∈ SMV([0,1],|·|).
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Proof let X ∈ SMV([0,1],|·|). We will show that 4C1NN is universally consistent on X by consider-
ing the set SX of functions for which it is consistent. More precisely, since Y = {0, 1} in the binary
setting, all target functions can be described as f=

1Af∗ where Af∗ = f<−1>({1}) is a measurable
set. In the following, we will refer interchangeably to the function f∗ or the set Af∗ , and define SX
using the corresponding sets:

SX := {A ∈ B, LX(4C1NN,1A) = 0 (a.s.)}

By construction we have SX ⊂ B. The goal is to show that in fact SX = B. To do so, we will show
that S satisfies the following properties

• ∅ ∈ SX and SX contains all intervals [0, s) with 0 < s ≤ 1,

• if A ∈ SX then Ac ∈ SX (stable to complementary),

• if (Ai)i≥1 is a sequence of disjoint sets of SX, then
⋃

i≥1Ai ∈ SX (stable to σ−additivity for
disjoint sets),

• if A,B ∈ SX, then A ∪B ∈ SX (stable to union).

Together, these properties show that SX is a σ−algebra that contains all open intervals ofX = [0, 1].
Recall that by definition, B is the smallest σ−algebra containing open intervals. Therefore we get
B ⊂ SX which proves the theorem. We now show the four properties.

We start by showing the invariance to complementary. Note that 4C1NN is invariant to labels
and that the loss ℓ01 is symmetric. Therefore, if it achieves consistency for 1A it also achieves
consistency for 1Ac . Indeed, at each step, 4C1NN will use the same representant for the prediction
hence for any t ≥ 0,

ℓ01(4C1NN(x<t,1x<t∈A, xt),1xt∈A) = ℓ01(4C1NN(x<t,1x<t∈Ac , xt),1xt∈Ac).

4C1NN is clearly consistent for f∗ = 0. Therefore ∅ ∈ SX. Now let 0 < s ≤ 1. We will
show that [0, s) ∈ SX. Proposition 16 shows that [0, 12 ] ∈ SX. In fact, one can note that the same
proof shows that [0, 12) ∈ SX. Further, for any 0 < s ≤ 1 using the same proof with the following
partition centered in s,

{s} ∪
⋃
k≥1

[
s

(
1− 1

k

)
; s

(
1− 1

k + 1

))
∪
⋃
k≥1

(
s+

1− s

k + 1
; s+

1− s

k

]

shows that [0, s], [0, s) ∈ SX.

We now turn to the σ−additivity for disjoint sets. Let (Ai)i≥1 is a sequence of disjoint sets of
SX. We denote A :=

⋃
i≥1Ai. We consider the target function f∗ = 1A. There are two types of

statistical errors: errors of type 1 correspond to Xt ∈ A and a predicted value 0 while type 2 errors
correspond to Xt /∈ A and a predicted value 1. We then write the average loss in the following way,

1

T

T∑
t=1

ℓ01(4C1NN(X<t,Y<t, Xt), f
∗(Xt)) =

1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A,
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where the first term corresponds to type 1 errors and the second term corresponds to type 2 errors.
We suppose by contradiction that P(LX(4C1NN, f∗) > 0) := δ > 0 Therefore, there exists

ϵ > 0 such that P(LX(4C1NN, f∗) > ϵ) ≥ δ
2 . We denote this event byA := {LX(4C1NN, f∗) >

ϵ}. We first analyze the errors induced by one set Ai only. We have

1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai) ≤
1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈Ai
+ 1Xt /∈Ai

1Xϕ(t)∈Ai)

=
1

T

T∑
t=1

ℓ01(4C1NN(X<t,1X<t∈Ai , Xt),1Xt∈Ai).

Then, because 4C1NN is consistent for 1Ai , we have

1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai)→ 0 (a.s.).

We take ϵi =
ϵ

4·2i and δi =
δ

8·2i . The above equation gives

P

 ⋃
t0≥1

⋂
T≥t0

{
1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai) < ϵi

} = 1.

Therefore, let T i such that

P

 ⋂
T≥T i

{
1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai) < ϵi

} ≥ 1− δi.

We will denote by Ei this event. We now consider the scale of the process X≤T i when falling in Ai,
by introducing ηi > 0 such that

P

 min
t1,t2≤T i; Xt1 ,Xt2∈Ai;

Xt1 ̸=Xt2

|Xt1 −Xt2 | > ηi

 ≥ 1− δi.

We denote by Fi this event. By the union bound, we have P(
⋃

i≥1 Eci ∪
⋃

i≥1Fc
i ) ≤ δ

4 . Therefore,
we obtain P(A ∩

⋂
i≥1 Ei ∩

⋂
i≥1Fi) ≥ P(A) − P(

⋃
i≥1 Eci ∪

⋃
i≥1Fc

i ) ≥ δ
4 . We now construct

a partition P obtained by subdividing each set Ai according to scale ηi. For simplicity, we use the
notation Ni = ⌊ 1ηi ⌋ and construct the partition given of X = [0, 1] given by

P : Ac ∪
⋃
i≥1

([Niηi, 1] ∩Ai) ∪
Ni−1⋃
j=0

([jηi, (j + 1)ηi) ∩Ai)

 .

Let us now consider a realization of x of X in the event A ∩
⋂

i≥1 Ei ∩
⋂

i≥1Fi. The sequence x
is now not random anymore. Our goal is to show that x does not visit a sublinear number of sets in
the partition P .
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By construction, the event A is satisfied, therefore there exists an increasing sequence of times
(tk)k≥1 such that for any k ≥ 1, 1

tk

∑tk
t=1 ℓ01(4C1NN(x<t,1x<t∈A, xt),1xt∈A) >

ϵ
2 . Therefore,

we obtain for any k ≥ 1,

∑
i≥1

1

tk

tk∑
t=1

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) >
ϵ

2
.

Also, because the events Ei are met, we have

∑
i≥1; tk≥T i

1

tk

tk∑
t=1

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) <
∑

i≥1,tk≥T i

ϵi ≤
ϵ

4
.

Combining the two above equations gives

1

tk

tk∑
t=1

∑
i≥1; tk<T i

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) >
ϵ

4
. (1)

We now consider the set of times such that an input point fell into the set Ai with T i > tk, either
creating a mistake in the prediction of 4C1NN or inducing a later mistake within time horizon tk:
T :=

⋃
i≥1; T i>tk

Ti where

Ti :=
{
t ≤ tk, xt ∈ Ai,

(
xϕ(t) /∈ A or ∃t < u ≤ tk s.t. ϕ(u) = t, xu /∈ A

)}
.

We now show that all points xt for t ∈ T fall in distinct sets of the partition P . Indeed, because the
sets Ai are disjoint, it suffices to check that for any i ≥ 1 such that T i > tk, the points xt for t ∈ Ti
fall in distinct of the following sets

[Niηi, 1] ∩Ai, [jηi, (j + 1)ηi) ∩Ai, 0 ≤ j ≤ Ni − 1.

Note that for any t1 < t2 ∈ Ti we have xt1 , xt2 ∈ Ai and xt1 ̸= xt2 . Indeed, we cannot have
xt2 = xt1 otherwise 4C1NN would make no mistake at time t2 and xt2 would induce no future
mistake either (recall that if an input point was already visited, we use simple memorization for the
prediction and do not add it to the dataset). Therefore, because the event Fi is satisfied, for any
t1 < t2 ∈ Ti we have |xt1 − xt2 | > ηi. Hence xt1 and xt2 lie in different sets among [Niηi, 1] ∩Ai

or [jηi, (j + 1)ηi) ∩Ai for 0 ≤ j ≤ Ni − 1. This shows that all points {xt, t ∈ T } lie in different
sets of the partition P . Therefore,

|{P ∈ P, P ∩ x≤tk ̸= ∅}| ≥ |T |.

We now lower bound |T |, which will uncover the main interest of the learning rule 4C1NN. Intu-
itively, this learning rule prohibits a single input point xt to induce a large number of mistakes in the
learning process. Indeed, any input point incurs at most 1 + 4 = 5 mistakes while this number of
mistakes incurred by a single point can potentially by unbounded for the traditional 1NN learning
rule. We now formalize this intuition.
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tk∑
t=1

∑
i≥1; tk<T i

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai)

=

tk∑
t=1

∑
i≥1; tk<T i

1xt∈Ai1xϕ(t) /∈A +
∑

t<u≤tk

1xu /∈A1xt∈Ai1ϕ(u)=t


=

∑
i≥1; T i>tk

∑
t≤tk, xt∈Ai

1xϕ(t) /∈A +
∑

t<u≤tk

1xu /∈A1ϕ(u)=t


≤

∑
i≥1; T i>tk

∑
t≤tk, xt∈Ai

5max
(
1xϕ(t) /∈A,1xu /∈A1ϕ(u)=t, t < u ≤ tk

)
= 5|T |

where in the last inequality we used the fact that a given time t can have at most 4 children i.e.
|{u > t, ϕ(u) = t}| ≤ 4 with the 4C1NN learning rule. We now use Equation (1) to obtain

|{P ∈ P, P ∩ x≤tk ̸= ∅}| ≥ |T | ≥
ϵ

20
tk.

This holds for any k ≥ 1. Therefore, because tk → ∞ as k → ∞ we get |{P ∈ P, P ∩ x≤T ̸=
∅}| ≠ o(T ). Finally, this holds for any realization of X in the event A∩

⋂
i≥1 Ei ∩

⋂
i≥1Fi. There-

fore,

P(|{P ∈ P, P ∩ x≤T ̸= ∅}| = o(T )) ≤ P

A ∩⋂
i≥1

Ei ∩
⋂
i≥1

Fi

c ≤ 1− δ

4
< 1.

Therefore, X /∈ SMV([0,1],|·|) which contradicts the hypothesis. This concludes the proof that

LX(4C1NN,1·∈A) = 0 (a.s.),

and hence, SX satisfies the σ−additivity property for disjoint sets.

Note that the choice of disjoint sets for the proof of σ−additivity was made for convenience so
that the partition defined is not too complex. However to complete the proof of the σ−additivity of
SX, we have to prove that we can take unions of sets. Let A1, A2 ∈ SX. We consider A = A1 ∪A2

and f∗(·) = 1·∈A. Using the same arguments as above, we still have for T ≥ 1,

1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai)→ 0 (a.s.).
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for i ∈ {1, 2}. But note that for any T ≥ 1,

1

T

T∑
t=1

ℓ01(4C1NN(X<t,Y<t, Xt), f
∗(Xt))

=
1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A

≤ 1

T

T∑
t=1

(1Xt∈A1 + 1Xt∈A2)1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A(1Xϕ(t)∈A1 + 1Xϕ(t)∈A2)

=
2∑

i=1

1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai).

Therefore we obtain directly LX(4C1NN,1·∈A) = 0 (a.s.). This shows that A1 ∪ A2 ∈ SX and
ends the proof of the theorem.

As an immediate consequence of Theorem 17 and Proposition 1, we obtain the following results.

Theorem 18 SUOL([0,1],|·|),({0,1},ℓ01) = SMV([0,1],|·|).

Theorem 19 For X = [0, 1] with usual measure, and for binary classification, 4C1NN is an
optimistically universal learning rule.

B.2. Generalization to standard Borel input spaces and separable bounded output spaces.

The specific choices of input space X = [0, 1] and binary classification for output setting are in fact
not very restrictive. Indeed, any standard Borel input space X can be reduced to either [0, 1] or a
countable set through the Kuratowski theorem. We recall that two standard Borel spaces i.e. com-
plete separable Borel spaces, are Borel isomorphic if there exists a measurable bijection between
them.

Theorem 20 (Kuratowski’s theorem) Any standard Borel space X is Borel isomorphic to one of
(1) R, (2) N or (3) a finite space.

This classical result can be found for example in [22] (Section 15.B). Further, any bounded out-
put setting (Y, ℓ) can be reduced to binary classification using Theorem 8 [2]. Using these two
reductions, we can generalize Theorem 18 and Theorem 19 to any standard Borel space X and any
separable bounded setting (Y, ℓ).

Corollary 21 For any standard Borel space X and any separable near-metric output space (Y, ℓ)
with 0 < ℓ̄ <∞, we have SUOL(X ,ρ),(Y,ℓ) = SMV(X ,ρ).

Corollary 22 For any standard Borel space X , and any separable near-metric output space (Y, ℓ)
with bounded loss, there exists an optimistically universal learning rule.
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Proof of Corollary 21 and 22 Using Theorem 8 directly gives the result for X = [0, 1] and any
bounded separable near-metric output space. The results are already known when X is countable
and in these cases, memorization is an optimistically universal learning rule [18]. We now fix a
bounded separable ouptput setting (Y, ℓ) and a standard Borel space X , Borel isomorphic to R and
as a result Borel isomorphic to [0, 1]. Let g : X → [0, 1] be a measurable bijection and a process X ∈
SMV(X ,ρ). Note that the process g(X) := (g(Xt))t≥1 belongs to SMV([0,1],|·|) by bi-measurability
of g. We can construct the learning rule f· for value setting X and output setting (Y, ℓ) such that
for any x≤t ∈ X t and y<t ∈ Yt−1 we define ft(x<t, y<t, xt) = 4C1NN t(g(x<t), y<t, g(xt)). By
construction, for target function f∗ : X → Y this learning rule under X has same losses as 4C1NN
under g(X) for the target function f∗ ◦ g−1. Therefore, f· is universally consistent under X which
yields SMV(X ,ρ) ⊂ SUOL(X ,ρ),(Y,ℓ). Using Proposition 1 we have SUOL(X ,ρ),(Y,ℓ) = SMV(X ,ρ).
We can also end the proof of Corollary 22 by noting that f· is an optimistically universal learning
rule.

Although quite intuitive and direct, this generalization has two limitations. First, it only applies
to standard Borel spaces instead of general separable Borel spaces. Second, it does not provide a
practical optimistically universal rule in general. Indeed, the constructed optimistically universal
learning rule in Corollary 22 uses a bimeasurable bijection between X and [0, 1]—in the non-trivial
case whereX is Borel isomorphic to R—which can be very complex and non-intuitive. For instance,
the constructed learning rule for [0, 1]2 is not 4C1NN but instead a complex learning rule using a
measurable bijection [0, 1]→ [0, 1]2. In the next section we solve these two issues by showing that
2C1NN is optimistically universal in the general case.

Appendix C. Proofs of Section 5: An optimistically universal learning rule

C.1. Proof of Lemma 6

Define
v(j) := max{0 ≤ i ≤ d, pi < qj}, j = 0, . . . , f.
u(i) := max{0 ≤ j ≤ f, qj < pi}, i = v(0) + 1, . . . , d,

Now observe that for any v(0) + 1 ≤ i ≤ d, we have qu(i) ∈ Dpi i.e. the datapoint qu(i) is
available in the current dataset. Indeed, it is possibly removed after all of its children have been
revealed, in particular qu(i)+1 if it exists. By definition of u(i), even if qu(i)+1 exists, it has not yet
been revealed since pi < qu(i)+1. Therefore, we have ρ(xpi , xpi−1) ≤ ρ(xpi , xqu(i)). Similarly, we
have for all 1 ≤ j ≤ f , ρ(xqj , xqj−1) ≤ ρ(xqj , xpv(j)). We now take v0 + 1 ≤ i < d. We have
qu(i) < pv(u(i))+1 < . . . < pi < qu(i)+1 < . . . < qu(i+1) < pi+1 (where some terms might not
exist). Therefore,

ρ(xpi , xqu(i)) ≤ ρ(xpi , xpi+1) + ρ(xpi+1 , xqu(i+1)
) + ρ(xqu(i) , xqu(i+1)

)

≤ 2ρ(xpi+1 , xqu(i+1)
) +

u(i+1)−1∑
w=u(i)

ρ(xqw , xqw+1)

≤ 2ρ(xpi+1 , xqu(i+1)
) +

u(i+1)−1∑
w=u(i)

ρ(xpi , xqw+1)
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where in the last inequality, we used the fact that for all u(i) ≤ w ≤ u(i + 1) − 1, we have
v(w + 1) = i. Now observe that for any u(i) + 1 ≤ w ≤ u(i+ 1)− 1,

ρ(xpi , xqw) ≤ ρ(xpi , xqw+1) + ρ(xqw , xqw+1) ≤ 2ρ(xpi , xqw+1).

Therefore we have by induction ρ(xpi , xqw) ≤ 2u(i+1)−wρ(xpi , xqu(i+1)
). which yields

ρ(xpi , xqu(i)) ≤ 2ρ(xpi+1 , xqu(i+1)
) + (2u(i+1)−u(i) − 1)ρ(xpi , xqu(i+1)

).

Finally, we observe that ρ(xpi , xqu(i+1)
) ≤ ρ(xpi , xpi+1) + ρ(xpi+1 , xqu(i+1)

) ≤ 2ρ(xpi+1 , xqu(i+1)
).

Hence,
ρ(xpi , xqu(i)) ≤ 2u(i+1)−u(i)+1ρ(xpi+1 , xqu(i+1)

).

By recursion, this yields

ρ(xpv(0)+1
, xqu(v(0)+1)

) ≤ 2u(d)−u(v(0)+1)+(d−v(0)−1)ρ(xpd , xqu(d)).

We now relate the quantity ρ(xpv(0)+1
, xqu(v(0)+1)

) (resp. ρ(xpd , xqu(d))) to ρ(xpv(0) , xq0) (resp.
ρ(xpd , xqd)). We have by construction pv(0) < q0 < q1 < . . . < qu(v(0)+1) < pv(0)+1. There-
fore, similarly to before,

ρ(xpv(0) , xq0) ≤ ρ(xpv(0) , xpv(0)+1
) + ρ(xpv(0)+1

, xqu(v(0)+1)
) +

u(v(0)+1)−1∑
w=0

ρ(xqw , xqw+1)

≤ 2ρ(xpv(0)+1
, xqu(v(0)+1)

) +

u(v(0)+1)∑
w=1

ρ(xpv(0) , xqw).

But ρ(xpv(0) , xqw) ≤ ρ(xpv(0) , xqw+1)+ρ(xqw , xqw+1) ≤ 2ρ(xpv(0) , xqw+1). Hence ρ(xpv(0) , xqw) ≤
2u(v(0)+1)−wρ(xpv(0) , xqu(v(0)+1)

) ≤ 2u(v(0)+1)−w+1ρ(xpv(0)+1
, xqu(v(0)+1)

). Then,

ρ(xpv(0) , xq0) ≤ 2u(v(0)+1)+1ρ(xpv(0)+1
, xqu(v(0)+1)

) ≤ 2u(d)+(d−v(0))ρ(xpd , xqu(d)).

Finally, we have qu(d) < pd < qu(d)+1 < . . . < qf . Then,

ρ(xpd , xqu(d)) ≤
f−1∑

w=u(d)

ρ(xqw , xqw+1) + ρ(xpd , xqf )

≤
f−1∑

w=u(d)

ρ(xpd , xqw+1) + ρ(xpd , xqf ).

Again, note that for u(d)+1 ≤ w ≤ f−2, we have ρ(xpd , xqw) ≤ ρ(xpd , xqw+1)+ρ(xqw , xqw+1) ≤
2ρ(xpd , xqw+1). Hence, ρ(xpd , xqw) ≤ 2f−wρ(xpd , xqf ) and we obtain

ρ(xpd , xqu(d)) ≤ (2f−u(d) − 1)ρ(xpd , xqf ) + ρ(xpd , xqf ) = 2f−u(d)ρ(xpd , xqf ).

Putting everything together yields

ρ(xpv(0) , xq0) ≤ 2f+dρ(xpd , xqf ).
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Finally, we compute

ρ(xpv(0) , xpd) ≤
d∑

i=v(0)+1

ρ(xpi−1 , xpi)

≤
d∑

i=v(0)+1

ρ(xpi , xqu(i))

≤
d∑

i=v(0)+1

2u(d)−u(i)+d−iρ(xpd , xqu(d))

≤
d∑

i=v(0)+1

2u(d)−u(v(0)+1)+d−iρ(xpd , xqu(d))

≤ 2u(d)−u(v(0)+1)+d−v(0)ρ(xpd , xqu(d))

≤ 2f−u(v(0)+1)+d−v(0)ρ(xpd , xqf )

≤ 2f+dρ(xpd , xqf ).

This ends the proof of the lemma.

C.2. Proof of Proposition 5

We fix x̄ ∈ X , r > 0 and f∗ = 1B(x̄,r). We reason by the contrapositive and suppose that 2C1NN
is not consistent on f∗. We will show that the process X disproves the SMV(X ,ρ) condition by
considering a partition for which, the process X does not visit a sublinear number of sets with
nonzero probability.

Because 2C1NN is not consistent, δ := P(LX(2C1NN, f∗) > 0) > 0. Therefore, there exists
0 < ϵ ≤ 1 such that P(LX(2C1NN, f∗) > ϵ) > δ

2 . Denote A := {LX(2C1NN, f∗) > ϵ}. We
therefore have P(A) > δ

2 . We now define a partition P . Because X is separable, there exists a
sequence (xi)i≥1 of elements of X which is dense i.e.

∀x ∈ X , inf
i≥1

ρ(x, xi) = 0.

We focus for now on the sphere S(x̄, r) and for any τ > 0 we take (Pi(τ))i≥1 the sequence of
sets included in S(x̄, r) defined by

Pi(τ) :=
(
S(x̄, r) ∩B(xi, τ)

)
\

 ⋃
1≤j<i

B(xj , τ)

 .

These sets are disjoint. Further, they partition S(x̄, r). Indeed, if x ∈ S(x̄, r), let i ≥ 1 such that
ρ(x, xi) ≤ τ . Then, x ∈ S(x̄, r) ∩B(xi, τ) ⊂

⋃
j≤i P

τ
j . We now pose

τl := cϵ ·
r

2l+1
,
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for l ≥ 1, where cϵ := 1

2·225/ϵ
is a constant dependant on ϵ only. We also pose τ0 = r. Then, because

X ∈ SMV(X ,ρ), the process visits a sublinear number of sets of Pi(τl) almost surely. Therefore,
there exists an increasing sequence (nl)l≥1 such that for any l ≥ 1,

P
[
∀n ≥ nl, |{i, Pi(τl) ∩ X<n ̸= ∅}| ≤

ϵ

27
n
]
≥ 1− δ

2 · 2l+2
and nl+1 ≥

26

ϵ
nl

We denote by El this event. Thus, P[El] ≤ δ
2·2l+2 . Now, for any l ≥ 1, we now construct µl > 0

such that

P
[

min
i<j≤nl, Xi ̸=Xj

ρ(Xi, Xj) > µl

]
≥ 1− δ

2 · 2l+2
.

We denote this event by Fl. Thus P[Fl] ≤ δ
2·2l+2 . Note that the sequence (µl)l≥1 is non-increasing.

We now define radiuses (zi)i≥1 as follows:

zi =

{
µli+1 if ρ(xi, x̄) < r, where r

2li+1 < r − ρ(xi, x̄) ≤ r
2li

0 if ρ(xi, x̄) ≥ r,

and consider the sets Ri := B(xi, zi) ∩
{
x ∈ X : ρ(x, x̄) < r − r

2li+2

}
. We construct

Pi := Ri \

(⋃
k<i

Rk

)
,

for i ≥ 1. As shown in the following lemma, (Pi)i≥1 forms a partition of B(x̄, r).

Lemma 23 (Pi)i≥1 forms a partition of B(x̄, r).

We now define a second partition. We start by defining a sequence of radiuses (ri)i≥1 as follows

ri =


cϵ inf

x: ρ(x,x̄)≤r
ρ(xi, x) if ρ(xi, x̄) > r,

cϵ inf
x: ρ(x,x̄)≥r

ρ(xi, x) if ρ(xi, x̄) < r,

0 if ρ(xi, x̄) = r.

We consider the sets (Ai)i≥0 given by A0 = S(x̄, r) and for i ≥ 1,

Ai = B(xi, ri) \

 ⋃
1≤j<i

B(xj , rj)

 .

We now show that these sets form a partition in the following lemma.

Lemma 24 (Ai)i≥0 forms a partition of X .

We now formally consider the product partition of (Pi)i≥1 and (Ai)i≥0 i.e.

Q :
⋃

i≥0, Ai⊂B(x̄,r)

⋃
j≥1

(Ai ∩ Pj) ∪
⋃

i≥0, Ai⊂X\B(x̄,r)

Ai.
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where we used the fact that sets Ai satisfy either Ai ⊂ B(x̄, r) or Ai ⊂ X \B(x̄, r). We will show
that this partition disproves the SMV(X ,ρ) hypothesis on X. In practice, we will either prove that the
process visits many sets from partition (Ai)i≥0 or (Pi)i≥1 and use the fact that the same analysis
would work for Q, the product partition as well.

We now consider a specific realization x = (xt)t≥0 of the process X falling in the event
A
⋂

l≥1(El ∩ Fl). This event has probability

P

A⋂
l≥1

(El ∩ Fl)

 ≥ P[A]−
∑
l≥1

(P[Ecl ] + P[Fc
l ]) ≥

δ

2
− δ

4
=

δ

4
.

Note that x is not random anymore. We now show that x does not visit a sublinear number of sets
in the partition Q.

We now denote by (tk)k≥1 the increasing sequence of all times when 2C1NN makes an error in
the prediction of f∗(xt). Because the event A is satisfied, Lx(2C1NN, f∗) > ϵ, therefore, we can
define an increasing sequence of times (Tl)l≥1 such that

1

Tl

Tl∑
t=1

ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) >

ϵ

2
.

For any l ≥ 1 consider the last index k = max{u, tu ≤ Tl} when 2C1NN makes a mistake. Then
we obtain k > ϵ

2Tl ≥ ϵ
2 tk. Considering the fact that (Tl)l≥1 is an increasing unbounded sequence

we therefore obtain an increasing sequence of indices (kl)l≥1 such that tkl <
2kl
ϵ .

At an iteration where the new input xt has not been previously visited we will denote by ϕ(t)
the index of the nearest neighbor of the current dataset in the 2C1NN learning rule. Now let l ≥ 1.
We focus on the time tkl . Consider the tree G where nodes are times T := {t, t ≤ tkl , xt /∈
{xu, u < t}} for which a new input was visited, where the parent relations are given by (t, ϕ(t)) for
t ∈ T \ {1}. In other words, we construct the tree in which a new input is linked to its representant
which was used to derive the target prediction. Note that by definition of the 2C1NN learning rule,
each node has at most 2 children and a node is not in the dataset at time tkl when it has exactly 2
children.

Step 1. We now suppose that the majority of input points on which 2C1NN made a mistake belong
to B(x̄, r) i.e.

|{t ≤ tkl , ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) = 1, xt ∈ B(x̄, r)}| ≥ kl

2
,

or equivalently |{k ≤ kl, xtk ∈ B(x̄, r)}| ≥ kl
2 .

Let us now consider the subgraph G̃ given by restricting G only to nodes in the ball B(x̄, r)—
which are mapped to the true value 1—i.e. on times {t ∈ T , xt ∈ B(x̄, r)}. In this subgraph, the
only times with no parent are times tk with k ≤ kl and xtk ∈ B(x̄, r) and possibly time t = 1.
Indeed, if a time in G̃ has a parent ϕ(t) in G̃, the prediction of 2C1NN for xt returned the correct
answer 1. The converse is also true except for the root time t = 1 which has no parent in G.
Therefore, G̃ is a collection of disjoint trees with roots times {tk, k ≤ kl, xtk ∈ B(x̄, r)}—and
possibly t = 1 if x1 ∈ B(x̄, r). For a given time tk with k ≤ kl and xtk ∈ B(x̄, r), we will denote
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by Tk the corresponding tree in G̃ with root tk. We will say that the Tk is a good tree if all times
t ∈ Tk of this tree are parent in G to at most 1 time from X \B(x̄, r) i.e. if

∀t ∈ Tk, |{u ≤ tkl , ϕ(u) = t, ρ(xu, x̄) ≥ r}| ≤ 1.

We denote by G = {k ≤ kl, xtk ∈ B(x̄, r), Tk good} the set of indices of good trees. By
opposition, we will say that a tree is bad otherwise. We now give a simple upper bound on Nbad
the number of bad trees. Note that for any t ∈ Tk, times in {u ≤ tkl , ϕ(u) = t, ρ(xu, x̄) ≥ r} are
times when 2C1NN makes a mistake on X \B(x̄, r). Therefore,∑

k≤kl, xtk
∈B(x̄,r)

∑
t∈Tk

|{u < tkl , ϕ(u) = t, ρ(xu, x̄) ≥ r}| ≤ |{k ≤ tkl , ρ(xtk , x̄) ≥ r}| ≤ kl
2

because by hypothesis |{k ≤ kl, xtk ∈ B(x̄, r)}| ≥ kl
2 . Therefore, since each bad tree contains a

node which is parent to at least 2 times of mistake in X \B(x̄, r), we obtain

Nbad ≤
∑

k≤kl, xtk
∈B(x̄,r)

∑
t∈Tk

1

2
|{u < tkl , ϕ(u) = t, ρ(xu, x̄) ≥ r}| ≤ kl

4
.

Thus, the number of good trees is |G| ≥ |{k ≤ kl, xtk ∈ B(x̄, r)}| − Nbad ≥ kl
4 . Now note that

trees are disjoint, therefore,
∑

k∈G |Tk| ≤ tkl <
2kl
ϵ . Therefore,∑

k∈G
1|Tk|≤ 16

ϵ
= |G| −

∑
k∈G

1|Tk|> 16
ϵ
> |G| − ϵ

16

∑
k∈G
|Tk| ≥

kl
8
.

We will say that a tree |Tk| is sparse if it is good and has at most ϵ
16 nodes. With S := {k ∈

G, |Tk| ≤ 16
ϵ } the set of sparse trees, the above equation we have |S| ≥ kl

8 . We now focus only on
sparse trees Tk for k ∈ S and analyze their relation with the final datasetDtkl

. Precisely, for a sparse
tree Tk, denote Vk = Tk ∩ Dtkl

the set of times which are present in the final dataset and belong
to the tree induced by error time tk. Because each node of Tk and not present in Dtkl

has at least
1 children in T , we note that Vk ̸= ∅. We now consider the path from a node of Vk to the root tk.
We denote by d(k) the depth of this node in Vk and denote the path by pkd(k) → pkd(k)−1 → pk0 = tk

where pkd(k) ∈ Vk. Then we have,

d(k) ≤ |Tk| − 1 ≤ 16

ϵ
− 1.

Each arc of this path represents the fact that at the corresponding iteration pki of 2C1NN, the parent
xpki−1

was closer from xpki
than any other point of the current datasetDpki

. We will now show that all

the points {pkd(k), k ∈ S} fall in distinct sets of the partition (Ai)i≥0. Suppose by contradiction that
we have k1 ̸= k2 ∈ S falling into the same set Ai. Note that because x

p
k1
d(k1)

, x
p
k2
d(k2)

∈ B(x̄, r), we

obtain Ai ∩ B(x̄, r) ̸= ∅. However, the partition (Ai)i≥0 was constructed so that sets are included
totally in either B(x̄, r), S(x̄, r) or {x ∈ X , ρ(x, x̄) > r}. Therefore, we obtain Ai ⊂ B(x̄, r)
and xi ∈ B(x̄, r). We can now apply Lemma 6 to pk1d(k1) → pk1d(k1)−1 → . . . → pk10 and pk2d(k2) →
pk2d(k2)−1 → . . . → pk20 —which we write by convenience pd → pd−1 → . . . → p1 → p0 and
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qf → qf−1 → . . . → q1 → q0—assuming without loss of generality that p0 < q0. Therefore,
ρ(xpv(0) , xq0) ≤ 2f+dρ(xpd , xqf ) ≤ 2f+d+1ri and ρ(xpv(0) , xpd) ≤ 2f+dρ(xpd , xqf ) ≤ 2f+d+1ri.
But recall that these two paths come from sparse trees, so d, f ≤ 16

ϵ − 1. Hence, 2f+d+1 ≤
1
22

25/ϵ = 1
4cϵ

. Let us now consider xϕ(q0) the point which induced a mistake in the prediction of
xq0 , i.e. ρ(xϕ(q0), x̄) ≥ r. Then,

ρ(xq0 , xϕ(q0)) ≥ ρ(xϕ(q0), x
i)− ρ(xi, xpd)− ρ(xpd , xpv(0))− ρ(xpv(0) , xq0)

≥ ri

cϵ
− ri − ri

4cϵ
− ri

4cϵ

≥ ri

4cϵ

where in the last inequality we used the fact that cϵ < 1
4 . Recall that we also proved ρ(xpv(0) , xq0) ≤

ri

4cϵ
< ρ(xq0 , xϕ(q0)). However, datapoint xpv(0) is available in dataset Dq0 . This contradicts the fact

that xϕ(t) was chosen as representant for xq0 . This ends the proof that all the points {pkd(k), k ∈ S}
fall in distinct sets of the partition (Ai)i≥0. Therefore,

|{i, Ai ∩ x≤tkl
̸= ∅}| ≥ |S| ≥ kl

8
≥ ϵ

16
tkl .

Step 2. We now turn to the case when the majority of input points on which 2C1NN made a
mistake are not in the ball B(x̄, r) i.e.

|{t ≤ tkl , ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) = 1, ρ(xt, x̄) ≥ r}| ≥ kl

2
,

or equivalently |{k ≤ kl, ρ(xtk , x̄) ≥ r}| ≥ kl
2 . Similarly as the previous case, we con-

sider the graph G̃ given by restricting G only to nodes outside the ball B(x̄, r) i.e. on times
{t ∈ T , ρ(xt, x̄) ≥ r}. Again, G̃ is a collection of disjoint trees with root times {tk, k ≤
kl, ρ(xtk , x̄) ≥ r} (and possibly t = 1). We denote Tk the corresponding tree of G̃ rooted in
tk. Similarly to above, a tree is sparse if

∀t ∈ Tk, |{u ≤ tkl , ϕ(u) = t, ρ(xu, x̄) < r}| ≤ 1 and |Tk| ≤
16

ϵ
.

If S = {k ≤ kl, ; ρ(xtk , x̄) ≥ r, Tk sparse} denotes the set of sparse trees, the same proof as
above shows that |S| ≥ kl

8 . Again, for any k ∈ S, if d(k) denotes the depth of some node from
Vk := Tk ∩ Dtkl

in Tk we have d(k) ≤ 16
ϵ − 1. For each k ∈ S we consider the path from this

node of Vk to the root tk: pkd(k) → pkd(k)−1 → . . .→ pk0 = tk where pkd(k) ∈ Vk. The same proof as
above shows that all the points {pkd(k), k ∈ S, ρ(xpk

d(k)
, x̄) > r} lie in distinct sets of the partition

(Ai)i≥0.
Indeed, let pd → pd−1 → . . . → p1 → p0 and qf → qf−1 → . . . → q1 → q0 two such paths

with ρ(xpd , x̄) > r and ρ(xqf , x̄) > r and suppose by contradiction that xpd , xqf ∈ Ai for some
i ≥ 0. Necessarily, i ≥ 1 and ρ(xi, x̄) > r. Lemma 6 gives again ρ(xpv(0) , xq0), ρ(xpv(0) , xpd) ≤
2f+dρ(xpd , xqf ) ≤ 2f+d+1ri ≤ ri

4cϵ
. Then, if xϕ(q0) is the point that induced a mistake in the pre-

diction of xq0 , we have ρ(xϕ(q0), x̄) < r. Using the definition of ri we obtain the same computations

ρ(xq0 , xϕ(q0)) ≥ ρ(xϕ(q0), x
i)− ρ(xi, xpd)− ρ(xpd , xpv(0))− ρ(xpv(0) , xq0) ≥

ri

4cϵ
> ρ(xpv(0) , xq0)
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which contradicts the fact that xϕ(q0) was used as representant for xq0 . This ends the proof that all
the points {pkd(k), k ∈ S, ρ(xpk

d(k)
, x̄) > r} lie in distinct sets of the partition (Ai)i≥0. Suppose

|{k ∈ S, ρ(xpk
d(k)

, x̄) > r}| ≥ |S|
2 , then we have

|{i, Ai ∩ x≤tkl
̸= ∅}| ≥ |{k ∈ S, ρ(xpk

d(k)
, x̄) > r}| ≥ |S|

2
≥ kl

16
≥ ϵ

32
tkl .

Step 3. In this last step, we suppose again that the majority of input points on which 2C1NN made
a mistake are not in the ball B(x̄, r) and that |{k ∈ S, ρ(xpk

d(k)
, x̄) > r}| < |S|

2 . Therefore, we
obtain

|{k ∈ S, ρ(xpk
d(k)

, x̄) = r}| = |S| − |{k ∈ S, ρ(xpk
d(k)

, x̄) > r}| ≥ |S|
2
≥ kl

16
≥ ϵ

32
tkl .

We will now make use of the partition (Pi)i≥1. Because (nu)u≥1 is an increasing sequence, let
u ≥ 1 such that nu+1 ≤ tkl ≤ nu+2 (we can suppose without loss of generality that tk0 > n2).
Note that we have nu ≤ ϵ

26
nu+1 ≤ ϵ

26
tkl . Let us now analyze the process between times nu and

tkl . In particular, we are interested in the indices T = {k ∈ S, ρ(xpk
d(k)

, x̄) = r} and times

Uu = {pkd(k) : nu < pkd(k) ≤ kl, k ∈ T}. In particular, we have

|Uu| ≥ |{k ∈ S, ρ(xpk
d(k)

, x̄) = r}| − nu ≥
ϵ

32
tkl −

ϵ

26
tkl =

ϵ

26
tkl .

Because the event Eu is met, we have

|{i, Pi(τu) ∩ xUu ̸= ∅}| ≤ |{i, Pi(τu) ∩ x≤tkl
̸= ∅}| ≤ ϵ

27
tkl .

Note that xUu ⊂ S(x̄, r). Therefore, each of the points in xUu falls into one of the sets (Pi(τu))i≥1.
Let i ≥ 1 such that the set Pi(τu) was visited by xUu and consider Ti = {k ∈ T, xpk

d(k)
∈ Ai}. We

will show that at least |Ti| − 1 of the points {xϕ(tk), k ∈ Ti} fall in B(x̄, r) \B(x̄, r − r
2u+2 ).

To do so, let k1, k2 ∈ Ti. Similarly as above, for simplicity, we will refer to the path pk1d(k1) →
pk1d(k1)−1 → . . . → pk10 (resp. pk2d(k2) → pk2d(k2)−1 → . . . → pk20 ) as pd → pd−1 → . . . → p1 → p0
(resp. qf → qf−1 → . . . → q1 → q0), and assume without loss of generality that p0 < q0.
Note that by hypothesis, k1, k2 ∈ Ti, therefore, ρ(xpd , x

i), ρ(xqf , x
i) ≤ τu Then, using the above

computations yields

ρ(xpv(0) , xq0) ≤ 2f+dρ(xpd , xqf ) ≤ 2f+d(ρ(xpd , x
i) + ρ(xqf , x

i)) ≤ 2f+d+1τu ≤
τu
4cϵ

,

where in the last inequality we used the fact that f, d ≤ 16
ϵ − 1 hence 2f+d+1 ≤ 1

4cϵ
. Now by

definition of a representant, we obtain

ρ(xϕ(q0), xq0) ≤ ρ(xpv(0) , xq0) ≤
r

8 · 2u
.

Therefore, ρ(xϕ(q0), x̄) ≥ ρ(xq0 , x̄)− ρ(xϕ(q0), xq0) ≥ r − r
8·2u . Because xϕ(q0) induced a mistake

in the prediction for xq0 we have xϕ(q0) ∈ B(x̄, r). Now order Ti = {k1 < . . . < k|Ti|}. We
then have tk1 < . . . < tk|Ti| . The argument above then shows that for any 2 ≤ j ≤ |Ti|, we have
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xϕ(tkj )
∈ B(x̄, r)\B(x̄, r− r

2u+3 ). Therefore, defining T ′ := {k ∈ T, r− r
2u+3 ≤ ρ(xϕ(tk), x̄) < r}

we obtain ∣∣T ′∣∣ ≥ |Uu| − |{i, Pi(τu) ∩ xUu ̸= ∅}| ≥
ϵ

27
tkl .

We will now show that all the points in {xtk , k ∈ T ′} lie in distinct sets of (Pi)i≥1. Note that
because we have tkl ≤ nu+2 and because the event Fu+2 is met, we have that for any p, q ∈ T ′ that
ρ(xϕ(tp), xϕ(tq)) > µu+2. Now suppose by contradiction that xϕ(tp), xϕ(tq) ∈ Pi for some i ≥ 1.
Then, with li such that r − r

2li
≤ ρ(xi, x̄) < r − r

2li+1 we have that

xϕ(tp), xϕ(tq) ∈
{
x ∈ X : ρ(x, x̄) < r − r

2li+2

}
But we know that ρ(xϕ(tp), x̄) ≥ r − r

2u+3 . Therefore we obtain r − r
2li+2 > r − r

2u+3 and hence
li ≥ u+ 1. Recall that Pi ⊂ B(xi, µli+1). Therefore, we obtain

ρ(xϕ(tp), xϕ(tq)) ≤ µli+1 ≤ µu+2,

which contradicts the fact that ρ(xtp , xtq) > µu+2. This ends the proof that all points of {xtk , k ∈
T ′} lie in distinct subsets of (Pi)i≥1. Now we obtain

|{i, Pi ∩ x≤tkl
̸= ∅}| ≥ |T ′| ≥ ϵ

27
tkl .

Step 4. In conclusion, in all cases, we obtain

|{Q ∈ Q, Q ∩ x≤tkl
̸= ∅}| ≥ max(|{i, Ai ∩ x≤tkl

̸= ∅}|, |{i, Pi ∩ x≤tkl
̸= ∅}|) ≥ ϵ

27
tkl .

Because this is true for all l ≥ 1 and tkl is an increasing sequence, we conclude that x disproves the
SMV(X ,ρ) condition forQ. Recall that this holds whenever the eventA

⋂
l≥1(El∩Fl) is met. Thus,

P[|{Q ∈ Q, Q ∩ X<T }| = o(T )] ≤ 1− P[A
⋂
l≥1

(El ∩ Fl)] ≤ 1− δ

4
< 1.

This shows that X /∈ SMV(X ,ρ) which is absurd. Therefore 2C1NN is consistent on f∗. This ends
the proof of the proposition.

C.3. Missing proofs from Section C.2

Lemma 25 (Pi)i≥1 forms a partition of B(x̄, r).

Proof These sets are clearly disjoint. Now let x ∈ B(x̄, r) and consider j ≥ 0 such that r
2j+1 <

r − ρ(x, x̄) ≤ r
2j

. Then, let i ≥ 1 such that

ρ(xi, x) < min
(
µj+1, r −

r

2j+1
− ρ(x, x̄), ρ(x, x̄)− r +

r

2j−1

)
.

We have ρ(xi, x̄) ≤ ρ(xi, x) + ρ(x, x̄) < r − r
2j+1 , hence r − r

2li
< r − r

2j+1 i.e. li ≤ j.
Then, we obtain ρ(xi, x) < µj+1 ≤ µli+1 which gives x ∈ B(xi, zi). Last, we observe that
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ρ(xi, x̄) ≥ ρ(x, x̄) − ρ(xi, x̄) > r − r
2j−1 . Therefore, r − r

2li+1 > r − r
2j−1 i.e. li + 1 ≥ j.

Therefore, we have

ρ(x, x̄) < r − r

2j+1
≤ r − r

2li+2
,

which shows x ∈ Ri =
⋃

k≤i Pk. This ends the proof that (Pi)i≥1 forms a partition of B(x̄, r).

Lemma 26 (Ai)i≥0 forms a partition of X .

Proof We start by proving that the sets are disjoint. By construction, if 1 ≤ j < i, we have
Ai ⊂ B(xj , rj), therefore Ai ∩Aj = ∅ by construction. Further, for i ≥ 1, if ρ(xi, x̄) > r, we first
note that ri > 0. Indeed, if ri = 0, then there exists a sequence of points xj for j ≥ 1 such that
ρ(xj , x̄) ≤ r and ρ(xi, xj)→ 0 as j →∞. By triangle inequality,

ρ(xi, x̄) ≤ ρ(xi, xj) + ρ(xj , x̄) ≤ ρ(xi, xj) + r.

This holds for any j ≥ 1, therefore we obtain ρ(xi, x̄) ≤ r which contradicts our hypothesis.
Therefore ri > 0. Further, we have ri < infx: ρ(x,x̄)≤r ρ(x

i, x). Therefore, for any x ∈ A0 =
S(x̄, r), we have ρ(xi, x) > ri which implies x /∈ B(xi, ri). Hence, A0 ∩ Ai = ∅. Now if
ρ(xi, x̄) < r we show again that ri > 0. Similarly, if this is not the case, we have a sequence xj for
j ≥ 1 such that ρ(xj , x̄) ≥ r and ρ(xi, xj)→ 0 as j →∞. Then, observing that

ρ(xi, x̄) ≥ ρ(xi, xj)− ρ(xi, xj) ≥ r − ρ(xi, xj).

This holds for any j ≥ 1, therefore we obtain ρ(xi, x̄) ≥ r which contradicts our hypothesis. This
shows ri > 0. Now for x ∈ A0, we have by construction ri < ρ(xi, x) which gives x /∈ Ai. Hence
A0 ∩Ai = ∅. Finally, if ρ(xi, x̄) = r, we have ri = 0 so Ai = ∅ and we obtain direly A0 ∩Ai = ∅.
This ends the proof that for any 0 ≤ i < j, we have Ai ∩Aj = ∅.

We now prove that ∪i≥0Ai = X . Let x ∈ X . If ρ(x, x̄) = r then x ∈ A0. If ρ(x, x̄) > r (resp.
ρ(x, x̄) < r), using the same arguments as above, we can show that inf x̃: ρ(x̃,x̄)≤r ρ(x, x̃) > 0 (resp.
inf x̃: ρ(x̃,x̄)≥r ρ(x, x̃) > 0). Therefore, we let i ≥ 1 such that ρ(xi, x) < 1

1+ 2
cϵ

inf x̃: ρ(x̃,x̄)≤r ρ(x, x̃)

(resp. ρ(xi, x) < 1
1+ 2

cϵ

inf x̃: ρ(x̃,x̄)≥r ρ(x, x̃)). This is possible because the sequence (xi)i≥1 is

dense in X . Then, we have for any x̃ such that ρ(x̃, x̄) ≤ r (resp. ρ(x̃, x̄) ≥ r),

ρ(xi, x̃) ≥ ρ(x, x̃)− ρ(xi, x) >

(
1 +

2

cϵ
− 1

)
ρ(xi, x) =

2

cϵ
ρ(xi, x).

Therefore, ri ≥ 2ρ(xi, x) > ρ(xi, x) which gives x ∈ B(xi, ri). Now note that
⋃

1≤j≤iAi =⋃
1≤j≤iB(xi, ri), therefore we obtain x ∈

⋃
1≤j≤iAi. This ends the proof that (Ai)i≥0 forms a

partition of X .
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C.4. Proof of Theorem 7

let X ∈ SMV(X ,ρ). We will show that 2C1NN is universally consistent on X by considering the set
SX of functions for which it is consistent. More precisely, since Y = {0, 1} in the binary setting,
all target functions can be described as f∗ = 1Af∗ where Af∗ = f<−1>({1}). We define SX using
the corresponding sets:

SX := {A ∈ B, LX(2C1NN,1·∈A) = 0 (a.s.)}

By construction we have SX ⊂ B. The goal is to show that in fact SX = B. To do so, we will show
that S satisfies the following properties

• ∅ ∈ SX and SX contains all balls B(x, r) with x ∈ X and r ≥ 0,

• if A ∈ SX then Ac ∈ SX (stable to complementary),

• if (Ai)i≥1 is a sequence of disjoint sets of SX, then
⋃

i≥1Ai ∈ SX (stable to σ−additivity for
disjoint sets),

• if A,B ∈ SX, then A ∪B ∈ SX (stable to union).

Together, these properties show that SX is a σ−algebra that contains all open intervals of X . Recall
that by definition, B is the smallest σ−algebra containing open intervals. Therefore we get B ⊂ SX
which proves the theorem. We now show the four properties.

The invariance to complementary and to finite union can be shown with the same proof as
Theorem 17. Further, we clearly have ∅ ∈ SX. Now let x ∈ X and r ≥ 0, Proposition 5 shows that
B(x, r) ∈ SX.

We now turn to the σ−additivity for disjoint sets. Let (Ai)i≥1 is a sequence of disjoint sets of
SX. We denote A :=

⋃
i≥1Ai. We consider the target function f∗ = 1A. We write the average loss

in the following way,

1

T

T∑
t=1

ℓ01(2C1NN(X<t,Y<t, Xt), f
∗(Xt)) =

1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A.

where the first term corresponds to type 1 errors and the second term corresponds to type 2 errors.
We suppose by contradiction that P(LX(2C1NN, f∗) > 0) := δ > 0 Therefore, there exists

ϵ > 0 such that P(LX(2C1NN, f∗) > ϵ) ≥ δ
2 . We denote this event byA := {LX(2C1NN, f∗) >

ϵ}. We first analyze the errors induced by one set Ai only. We have

1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai) ≤
1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈Ai
+ 1Xt /∈Ai

1Xϕ(t)∈Ai)

=
1

T

T∑
t=1

ℓ01(2C1NN(X<t,1X<t∈Ai , Xt),1Xt∈Ai).

Then, because 2C1NN is consistent for 1·∈Ai , we get

1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai)→ 0 (a.s.).

39



BLANCHARD

We take ϵi =
ϵ

4·2i . The above equation gives T i such that

P

 ⋂
T≥T i

{
1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai) < ϵi

} ≥ 1− δ

8 · 2i
.

We will denote by Ei this event. We now consider the scale of the process X≤T i when falling in Ai,
by introducing ηi > 0 such that

P

 min
t1,t2≤T i; Xt1 ,Xt2∈Ai;

Xt1 ̸=Xt2

ρ(Xt1 , Xt2) > ηi

 ≥ 1− δ

8 · 2i
.

We denote by Fi this event. By the union bound, we have P(
⋃

i≥1 Eci ∪
⋃

i≥1Fc
i ) ≤ δ

4 . Therefore,
we obtain P(A ∩

⋂
i≥1 Ei ∩

⋂
i≥1Fi) ≥ P(A) − P(

⋃
i≥1 Eci ∪

⋃
i≥1Fc

i ) ≥ δ
4 . We now construct

a partition P obtained by subdividing each set Ai according to scale ηi. Because X is separable,
there exists a sequence of points (xj)j≥1 in X such that ∀x ∈ X , infj≥1 ρ(x, x

j) = 0. We construct
the following partition of X given by

P : Ac ∪
⋃
i≥1

⋃
j≥1

(B (xj , ηi2 ) ∩Ai

)
\
⋃
k<j

B
(
xk,

ηi
2

) .

Let us now consider a realization of x of X in the event A ∩
⋂

i≥1 Ei ∩
⋂

i≥1Fi. The sequence x
is now not random anymore. Our goal is to show that x does not visit a sublinear number of sets in
the partition P .

By construction, the event A is satisfied, therefore there exists an increasing sequence of times
(tk)k≥1 such that for any k ≥ 1, 1

tk

∑tk
t=1 ℓ01(2C1NN(x<t,1x<t∈A, xt),1xt∈A) >

ϵ
2 . Therefore,

we obtain for any k ≥ 1,

∑
i≥1

1

tk

tk∑
t=1

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) >
ϵ

2
.

Also, because the events Ei are met, we have

∑
i≥1; tk≥T i

1

tk

tk∑
t=1

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) <
∑

i≥1,tk≥T i

ϵi ≤
ϵ

4
.

Combining the two above equations gives

1

tk

tk∑
t=1

∑
i≥1; tk<T i

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) >
ϵ

4
. (2)

We now consider the set of times such that an input point fell into the set Ai with T i > tk, either
creating a mistake in the prediction of 4C1NN or inducing a later mistake within time horizon tk:
T :=

⋃
i≥1; T i>tk

Ti where

Ti :=
{
t ≤ tk, xt ∈ Ai,

(
xϕ(t) /∈ A or ∃t < u ≤ tk s.t. ϕ(u) = t, xu /∈ A

)}
.
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We now show that all points xt for t ∈ T fall in distinct sets of the partition P . Indeed, because the
sets Ai are disjoint, it suffices to check that for any i ≥ 1 such that T i > tk, the points xt for t ∈ Ti
fall in distinct of the following sets

Pi,j :=
(
B
(
xj ,

ηi
2

)
∩Ai

)
\
⋃
k<j

B
(
xk,

ηi
2

)
, j ≥ 1.

Note that for any t1 < t2 ∈ Ti we have xt1 , xt2 ∈ Ai and xt1 ̸= xt2 . Indeed, we cannot have
xt2 = xt1 otherwise 2C1NN would make no mistake at time t2 and xt2 would induce no future
mistake either (recall that if an input point was already visited, we use simple memorization for the
prediction and do not add it to the dataset). Therefore, because the event Fi is satisfied, for any
t1 < t2 ∈ Ti we have ρ(xt1 , xt2) > ηi. Now suppose that xt1 , xt2 fall in the same set Pi,j for j ≥ 1,
then we have ρ(xt1 , xt2) ≤ ρ(xi, xt1) + ρ(xi, xt2) < ηi, which is absurd. Therefore, all points
{xt, t ∈ T } lie in different sets of the partition P . Therefore,

|{P ∈ P, P ∩ x≤tk ̸= ∅}| ≥ |T |.

We now lower bound |T |, which will uncover the main interest of the learning rule 2C1NN. Intu-
itively, any input point incurs at most 1 + 2 = 3 mistakes, contrary to the traditional 1NN learning
rule. We now formalize this intuition.
tk∑
t=1

∑
i≥1; tk<T i

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai)

=

tk∑
t=1

∑
i≥1; tk<T i

1xt∈Ai1xϕ(t) /∈A +
∑

t<u≤tk

1xu /∈A1xt∈Ai1ϕ(u)=t


=

∑
i≥1; T i>tk

∑
t≤tk, xt∈Ai

1xϕ(t) /∈A +
∑

t<u≤tk

1xu /∈A1ϕ(u)=t


≤

∑
i≥1; T i>tk

∑
t≤tk, xt∈Ai

3max
(
1xϕ(t) /∈A,1xu /∈A1ϕ(u)=t, t < u ≤ tk

)
= 3|T |

where in the last inequality we used the fact that a given time t can have at most 2 children i.e.
|{u > t, ϕ(u) = t}| ≤ 2 with the 2C1NN learning rule. We now use Equation (2) to obtain

|{P ∈ P, P ∩ x≤tk ̸= ∅}| ≥ |T | ≥
ϵ

12
tk.

This holds for any k ≥ 1. Therefore, because tk → ∞ as k → ∞ we get |{P ∈ P, P ∩ x≤T ̸=
∅}| ≠ o(T ). Finally, this holds for any realization of X in the event A∩

⋂
i≥1 Ei ∩

⋂
i≥1Fi. There-

fore,

P(|{P ∈ P, P ∩ x≤T ̸= ∅}| = o(T )) ≤ P

A ∩⋂
i≥1

Ei ∩
⋂
i≥1

Fi

c ≤ 1− δ

4
< 1.

Therefore, X /∈ SMV(X ,ρ) which contradicts the hypothesis. This concludes the proof that

LX(2C1NN,1A) = 0 (a.s.),

and hence, SX satisfies the disjoint σ−additivity property. This ends the proof of the theorem.
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Appendix D. Proofs of Section 6: Weak universal learning

D.1. Proof of Proposition 11

The proof uses a similar structure to the proof of Proposition 5. We fix x̄ ∈ X , r > 0 and f∗(·) =
1B(x̄,r). We reason by the contrapositive and suppose that 2C1NN is not weakly consistent on f∗.
We will show that the process X disproves the WSMV(X ,ρ) condition.

Because 2C1NN is not weakly consistent for f∗, there exists ϵ and an increasing sequence of
times (Tl)l≥1 such that for any l ≥ 1,

ELX(f·, f∗;Tl) ≥ ϵTl.

We now define a partition P . Because X is separable, there exists a sequence (xi)i≥1 of elements
of X which is dense. We focus for now on the sphere S(x̄, r) and for any τ > 0 we take (Pi(τ))i≥1

the sequence of sets included in S(x̄, r) defined by

Pi(τ) :=
(
S(x̄, r) ∩B(xi, τ)

)
\

 ⋃
1≤j<i

B(xj , τ)

 .

These sets form a partition of S(x̄, r) as shown in the proof of Proposition 5. We now pose τl :=
cϵ · r

2l+1 , for l ≥ 1, where cϵ := 1

2·225/ϵ
is a constant dependant on ϵ only. We also pose τ0 = r. Then,

because X ∈WSMV(X ,ρ), the expected number of sets visited of Pi(τl) tends to 0. Therefore, there
exists an increasing sequence (nl)l≥1 such that for any l ≥ 1,

∀n ≥ nl, E[|{i, Pi(τl) ∩ X<n ̸= ∅}|] ≤
ϵ2

210
n and nl+1 ≥

26

ϵ
nl

Now, for any l ≥ 1, we now construct µl > 0 such that

P
[

min
i<j≤nl, Xi ̸=Xj

ρ(Xi, Xj) > µl

]
≥ 1− ϵ

2l+3
.

We denote by Fl this event. Therefore P[Fc
l ] ≤

ϵ
2l+3 . Note that the sequence (µl)l≥1 is non-

increasing. We now define radiuses (zi)i≥1 as follows:

zi =

{
µli+1 if ρ(xi, x̄) < r, where r

2li+1 < r − ρ(xi, x̄) ≤ r
2li

0 if ρ(xi, x̄) ≥ r,

and consider the sets Ri := B(xi, zi) ∩
{
x ∈ X : ρ(x, x̄) < r − r

2li+2

}
. We construct Pi :=

Ri \
(⋃

k<iRk

)
, for i ≥ 1. By Lemma 23, (Pi)i≥1 forms a partition of B(x̄, r). We now define a

second partition (Ai)i≥1 similarly as in the proof of Proposition 5. We start by defining a sequence
of radiuses (ri)i≥1 as follows

ri =


cϵ inf

x: ρ(x,x̄)≤r
ρ(xi, x) if ρ(xi, x̄) > r,

cϵ inf
x: ρ(x,x̄)≥r

ρ(xi, x) if ρ(xi, x̄) < r,

0 if ρ(xi, x̄) = r,
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and consider the sets (Ai)i≥0 given by A0 = S(x̄, r) and for i ≥ 1, Ai = B(xi, ri)\
(⋃

1≤j<iB(xj , rj)
)

.
By Lemma 24, this forms a partition of X . We now formally consider the product partition of
(Pi)i≥1 and (Ai)i≥0 i.e.

Q :
⋃

i≥0, Ai⊂B(x̄,r)

⋃
j≥1

(Ai ∩ Pj) ∪
⋃

i≥0, Ai⊂X\B(x̄,r)

Ai.

where we used the fact that sets Ai satisfy either Ai ⊂ B(x̄, r) or Ai ⊂ X \B(x̄, r). We will show
that this partition disproves the WSMV(X ,ρ) hypothesis on X.

We now fix l0 ≥ 1 such that Tl0 ≥ n2 and consider l ≥ l0. We focus on time Tl. Define the
event A := {LX(f·, f∗;Tl) ≥ ϵ

2Tl}. Note that we have

ELX(f·, f∗;Tl) ≤
ϵ

2
Tl + P[A]Tl.

Therefore, P[A] ≥ ϵ
2 . Also, because (nu)u≥1 is an increasing sequence, let u ≥ 1 such that

nu+1 ≤ Tl ≤ nu+2. We define the event E = {|{i Pi(τu) ∩ X≤Tl
̸= ∅}| ≤ ϵ

27
Tl}. Then, we have

by construction
ϵ2

210
Tl ≥ E|{i Pi(τu) ∩ X≤Tl

̸= ∅}| ≥ ϵ

27
TlP[Ec].

Therefore, we have P[Ec] ≤ ϵ
8 . Consider a specific realization x = (xt)t≥0 of the process X falling

in the event A ∩ E ∩
⋂

l≥1Fl. This event has probability

P

A ∩ E ∩⋂
l≥1

Fl

 ≥ P[A]− P[Ec]−
∑
l≥1

P[Fc
l ] ≥

ϵ

2
− ϵ

8
− ϵ

8
=

ϵ

4
.

Note that x is not random anymore. We now show that x visits a large number of sets in the partition
Q. We now denote by (tk)k≥1 the increasing sequence of all times when 2C1NN makes an error in
the prediction of f∗(xt). Define kl such the last time of error before Tl i.e. kl = max{k ≥ 1, tk ≤
Tl}. By construction, because A is met we have kl ≥ ϵ

2Tl.
At an iteration where the new input xt has not been previously visited we will denote by ϕ(t)

the index of the nearest neighbor of the current dataset in the 2C1NN learning rule. Now let l ≥ 1.
Consider the tree G where nodes are times T := {t, t ≤ Tl, xt /∈ {xu, u < t}} for which a new
input was visited, where the parent relations are given by (t, ϕ(t)) for t ∈ T \ {1}. Again, each
node has at most 2 children and a node is not in the dataset at time Tl when it has exactly 2 children.

Step 1. We now suppose that the majority of input points on which 2C1NN made a mistake belong
to the B(x̄, r) i.e.

|{t ≤ Tl, ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) = 1, xt ∈ B(x̄, r)}| ≥ kl

2
,

or equivalently |{k ≤ kl, xtk ∈ B(x̄, r)}| ≥ kl
2 .

Let us now consider the subgraph G̃ given by restricting G only to nodes in the the ball B(x̄, r)
which are mapped to the true value 1 i.e. on times {t ∈ T , xt ∈ B(x̄, r)}. As in the proof of
Proposition 5, G̃ is a collection of disjoint trees with roots times {tk, k ≤ kl, xtk ∈ B(x̄, r)}—and
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possibly t = 1 if x1 ∈ B(x̄, r). For a given time tk with k ≤ kl and xtk ∈ B(x̄, r), denote Tk the
corresponding tree in G̃ with root tk. We will say that the tree Tk is sparse if

∀t ∈ Tk, |{u ≤ Tl, ϕ(u) = t, ρ(xu, x̄) < r}| ≤ 1 and |Tk| ≤
16

ϵ
.

We denote by S = {k ≤ kl, ρ(xtk , x̄) < r, Tk sparse} the set of sparse trees. Similarly as in
the proof of Proposition 5, we have |S| ≥ kl

8 . We now focus only on sparse trees Tk for k ∈ S
and analyze their relation with the final dataset DTl+1. Precisely, for a sparse tree Tk, denote Vk =
Tk ∩ DTl+1 the set of times which are present in the final dataset and belong to the tree induced by
error time tk. Because each node of Tk and not present in DTl+1 has at least 1 children in T , we
note that Vk ̸= ∅. We now consider the path from a node of Vk to the root tk. We denote by d(k)
the depth of this node in Vk and denote the path by pkd(k) → pkd(k)−1 → pk0 = tk where pkd(k) ∈ Vk.
Then we have, d(k) ≤ |Tk| − 1 ≤ 16

ϵ − 1. The same arguments as in the proof of Proposition 5
show that all the points {pkd(k), k ∈ S} fall in distinct sets of the partition (Ai)i≥0. Therefore,

|{i, Ai ∩ x≤Tl
̸= ∅}| ≥ |S| ≥ kl

8
≥ ϵ

16
Tl.

Step 2. We now turn to the case when the majority of input points on which 2C1NN made a
mistake are not in the ball B(x̄, r) i.e.

|{t ≤ tkl , ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) = 1, ρ(xt, x̄) ≥ r}| ≥ kl

2
,

or equivalently |{k ≤ kl, ρ(xtk , x̄) ≥ r}| ≥ kl
2 . Similarly as the previous case, we con-

sider the graph G̃ given by restricting G only to nodes outside the ball B(x̄, r) i.e. on times
{t ∈ T , ρ(xt, x̄) ≥ r}. Again, G̃ is a collection of disjoint trees with root times {tk, k ≤
kl, ρ(xtk , x̄) ≥ r}—and possibly t = 1. We denote Tk the corresponding tree of G̃ rooted in
tk. Similarly to above, a tree is sparse if

∀t ∈ Tk, |{u ≤ Tl, ϕ(u) = t, ρ(xu, x̄) < r}| ≤ 1 and |Tk| ≤
16

ϵ
.

If S = {k ≤ kl, ; ρ(xtk , x̄) ≥ r, Tk sparse} denotes the set of sparse trees, the same proof as
above shows that |S| ≥ kl

8 . Again, for any k ∈ S, if d(k) denotes the depth of some node from
Vk := Tk ∩ Dtkl

in Tk we have d(k) ≤ 16
ϵ − 1. For each k ∈ S we consider the path from this

node of Vk to the root tk: pkd(k) → pkd(k)−1 → . . .→ pk0 = tk where pkd(k) ∈ Vk. The same proof as
above shows that all the points {pkd(k), k ∈ S, ρ(xpk

d(k)
, x̄) > r} lie in distinct sets of the partition

(Ai)i≥0. Suppose |{k ∈ S, ρ(xpk
d(k)

, x̄) > r}| ≥ |S|
2 , then we have

|{i, Ai ∩ x≤Tl
̸= ∅}| ≥ |{k ∈ S, ρ(xpk

d(k)
, x̄) > r}| ≥ |S|

2
≥ kl

16
≥ ϵ

32
Tl.

Step 3. In this last step, we suppose again that the majority of input points on which 2C1NN made
a mistake are not in the ball B(x̄, r) and that |{k ∈ S, ρ(xpk

d(k)
, x̄) > r}| < |S|

2 . Therefore, we
obtain

|{k ∈ S, ρ(xpk
d(k)

, x̄) = r}| = |S| − |{k ∈ S, ρ(xpk
d(k)

, x̄) > r}| ≥ |S|
2
≥ kl

16
≥ ϵ

32
Tl.
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We will now make use of the partition (Pi)i≥1. Recall that u ≥ 1 was defined such that nu+1 ≤
Tl ≤ nu+2. Note that we have nu ≤ ϵ

26
nu+1 ≤ ϵ

26
Tl. Let us now analyze the process between

times nu and Tl. In particular, we are interested in the indices T = {k ∈ S, ρ(xpk
d(k)

, x̄) = r} and

times Uu = {pkd(k) : nu < pkd(k) ≤ kl, k ∈ T}. We have

|Uu| ≥ |{k ∈ S, ρ(xpk
d(k)

, x̄) = r}| − nu ≥
ϵ

32
Tl −

ϵ

26
Tl =

ϵ

26
Tl.

Because the event Eu is met, we have

|{i, Pi(τu) ∩ xUu ̸= ∅}| ≤ |{i, Pi(τu) ∩ x≤Tl
̸= ∅}| ≤ ϵ

27
Tl.

The same arguments as in the proof of Proposition 5 show that defining T ′ := {k ∈ T, r− r
2u+2 ≤

ρ(xtk , x̄) < r} we obtain

∣∣T ′∣∣ ≥ |Uu| − |{i, Pi(τu) ∩ xUu ̸= ∅}| ≥
ϵ

27
Tl.

We will now show that all the points in {xtk , k ∈ T ′} lie in distinct sets of (Pi)i≥1. Note that
because we have Tl ≤ nu+2 and because the event Fu+2 is met, we have that for any p, q ∈ T ′ that
ρ(xϕ(tp), xϕ(tq)) > µu+2. Now suppose by contradiction that xϕ(tp), xϕ(tq) ∈ Pi for some i ≥ 1.
Then, with li such that r − r

2li
≤ ρ(xi, x̄) < r − r

2li+1 we have that

xϕ(tp), xϕ(tq) ∈
{
x ∈ X : ρ(x, x̄) < r − r

2li+2

}
But we know that ρ(xϕ(tp), x̄) ≥ r − r

2u+2 . Therefore we obtain r − r
2li+2 > r − r

2u+2 and hence
li ≥ u+ 1. Recall that Pi ⊂ B(xi, µli+1). Therefore, we obtain ρ(xϕ(tp), xϕ(tq)) ≤ µli+1 ≤ µu+2,
which contradicts the fact that ρ(xϕ(tp), xϕ(tq)) > µu+2. This ends the proof that all points of
{xϕ(tk), k ∈ T ′} lie in distinct subsets of (Pi)i≥1. Now we obtain

|{i, Pi ∩ x≤Tl
̸= ∅}| ≥ |T ′| ≥ ϵ

27
Tl.

Step 4. In conclusion, in all cases, we obtain

|{Q ∈ Q, Q ∩ x≤Tl
̸= ∅}| ≥ max(|{i, Ai ∩ x≤Tl

̸= ∅}|, |{i, Pi ∩ x≤Tl
̸= ∅}|) ≥ ϵ

27
Tl.

Recall that this holds for any realization x in the event A ∩ E ∩
⋂

l≥1Fl. Therefore,

E[|{Q ∈ Q, Q ∩ X≤Tl
̸= ∅}|] ≥ P

A ∩ E ∩⋂
l≥1

Fl

 ϵ

27
Tl ≥

ϵ2

29
Tl.

Because this is true for all l ≥ l0 and Tl is an increasing sequence, we conclude that X /∈WSMV(X ,ρ)

which is absurd. Therefore 2C1NN is consistent on f∗.
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D.2. Proof of Theorem 12

Again, we follow a similar proof to that of Theorem 7. Let X ∈ WSMV(X ,ρ) and consider the set
SX of functions for which it is weakly consistent SX := {A ∈ B, ELX(2C1NN,1A) → 0}. By
construction we have SX ⊂ B. The goal is to show that in fact SX = B. To do so, we will show that
S satisfies the following properties

• ∅ ∈ SX and SX contains all balls B(x, r) with x ∈ X and r ≥ 0,

• if A ∈ SX then Ac ∈ SX (stable to complementary),

• if (Ai)i≥1 is a sequence of disjoint sets of SX, then
⋃

i≥1Ai ∈ SX (stable to σ−additivity for
disjoint sets),

• if A,B ∈ SX, then A ∪B ∈ SX (stable to union).

Together, these properties show that SX is a σ−algebra that contains all open intervals of X . The
invariance to complementary is again due to the fact that 2C1NN is invariant to relabeling. Further,
we clearly have ∅ ∈ SX. Now let x ∈ X and r ≥ 0, Proposition 5 shows that B(x, r) ∈ SX.

We now turn to the σ−additivity for disjoint sets. Let (Ai)i≥1 is a sequence of disjoint sets of
SX. We denote A :=

⋃
i≥1Ai. We consider the target function f∗ = 1A. We write the average loss

in the following way,

1

T

T∑
t=1

ℓ01(2C1NN(X<t,Y<t, Xt), f
∗(Xt)) =

1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A.

We suppose by contradiction that 2C1NN is not weakly consistent on f∗. Then there exists ϵ >
0 and an increasing sequence of times (Tl)l≥1 such that ELX(2C1NN, f∗;Tl) ≥ ϵTl. We first
analyze the errors induced by one set Ai only. Simililarly to the proof of Theorem 7 we have

1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai) ≤
1

T

T∑
t=1

ℓ01(2C1NN(X<t,1X<t∈Ai , Xt),1Xt∈Ai).

Then, because 2C1NN is consistent for 1·∈Ai , we get

E

[
1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai)

]
→ 0.

We take ϵi =
ϵ

4·2i and T i such that

∀T ≥ T i, E

[
1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai)

]
<

ϵ2i
2
.

We now consider the scale of the process X≤T i when falling in Ai, by introducing ηi > 0 such that

P

 min
t1,t2≤T i; Xt1 ,Xt2∈Ai;

Xt1 ̸=Xt2

ρ(Xt1 , Xt2) > ηi

 ≥ 1− ϵi
2
.
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We denote by Fi this event. Thus, P[Fc
i ] ≤

ϵi
2 . We now construct a partition P obtained by

subdividing each set Ai according to scale ηi. Because X is separable, there exists a sequence of
points (xj)j≥1 in X such that ∀x ∈ X , infj≥1 ρ(x, x

j) = 0. We construct the following partition of
X given by

P : Ac ∪
⋃
i≥1

⋃
j≥1

(B (xj , ηi2 ) ∩Ai

)
\
⋃
k<j

B
(
xk,

ηi
2

) .

We now fix l ≥ 1 and consider the event A := {LX(2C1NN, f∗;Tl) ≥ ϵ
2}. Note that

ϵTl ≤ ELX(2C1NN, f∗;Tl) ≤
ϵ

2
Tl + P[A]Tl,

which gives P[A] ≥ ϵ
2 . We also define the following event

Ei =

{
1

Tl

Tl∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai) < ϵi

}
,

for any i ∈ I := {i ≥ 1, Tl ≥ T i}. Then, we have

ϵ2i
2
≥ E

[
1

Tl

Tl∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai)

]
≥ ϵiP[Eci ],

which yields P[Eci ] ≤
ϵi
2 . We will now focus on the event A ∩

⋂
i∈I Ei ∩

⋂
i≥1Fi, which has

probability P[A ∩
⋂

i∈I Ei ∩
⋂

i≥1Fi] ≥ P(A)−
∑

i∈I P[Eci ]−
∑

i≥1 P[Fc
i ] ≥ ϵ

2 −
ϵ
4 = ϵ

4 . Let us
now consider a realization of x of X in the event A ∩

⋂
i∈I Ei ∩

⋂
i≥1Fi. The sequence x is now

not random anymore. We will show that x does visits a linear number of sets in the partition P .
Because the event A is met, we have

∑
i≥1

1

Tl

Tl∑
t=1

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) ≥
ϵ

2
.

Also, because the events Ei are met, we have

∑
i∈I

1

Tl

Tl∑
t=1

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) ≤
∑
i∈I

ϵi ≤
ϵ

4
.

Combining the two above equations gives

1

Tl

Tl∑
t=1

∑
i/∈I

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) >
ϵ

4
. (3)

We now consider the set of times such that an input point fell into the set Ai with i /∈ I , either
creating a mistake in the prediction of 4C1NN or inducing a later mistake within time horizon Tl:
T :=

⋃
i/∈I Ti where

Ti :=
{
t ≤ Tl, xt ∈ Ai,

(
xϕ(t) /∈ A or ∃t < u ≤ Tl s.t. ϕ(u) = t, xu /∈ A

)}
.

47



BLANCHARD

Because the events Fi are met, the same arguments as in the proof of Theorem 7 show that all points
xt for t ∈ T fall in distinct sets of the partition P , i.e. |{P ∈ P, P ∩ x≤tk ̸= ∅}| ≥ |T |. We also
obtain with the same arguments

tk∑
t=1

∑
i/∈I

(1xt∈Ai1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai) ≤ 3|T |.

We now use Equation (3) to obtain |{P ∈ P, P ∩ x≤tk ̸= ∅}| ≥ |T | ≥ ϵ
12Tl. Therefore, because

this holds for any realization in A ∩
⋂

i∈I Ei ∩
⋂

i≥1Fi we obtain

E[|{P ∈ P, P ∩ X≤Tl
̸= ∅}|] ≥ P

A ∩⋂
i∈I
Ei ∩

⋂
i≥1

Fi

 ϵ

12
Tl ≥

ϵ2
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Tl.

This holds for any l ≥ 1. Therefore, because (Tl)l≥1 is an increasing sequence, this shows that
X /∈ WSMV(X ,ρ) which contradicts the hypothesis. This concludes the proof that A ∈ SX and
hence, SX satisfies the disjoint σ−additivity property.

We now show that SX is invariant to finite unions. Let A1, A2 ∈ SX. We consider A = A1 ∪A2

and f∗(·) = 1·∈A. Using the same arguments as above, we still have for T ≥ 1,

E

[
1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai)

]
→ 0.

for i ∈ {1, 2}. But note that for any T ≥ 1,

1

T
LX(2C1NN, f∗;T ) =

1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A

≤ 1

T

T∑
t=1

(1Xt∈A1 + 1Xt∈A2)1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A(1Xϕ(t)∈A1 + 1Xϕ(t)∈A2)

=

2∑
i=1

1

T

T∑
t=1

(1Xt∈Ai1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai).

Therefore we obtain directly E
[
1
T LX(2C1NN, f∗;T )

]
→ 0. This shows that A1 ∪ A2 ∈ SX and

ends the proof of the theorem.

D.3. Proof of Theorem 13

We fix an output setting (Y, ℓ) and let X ∈ WSMV(X ,ρ). We will show that 2C1NN is weakly
universally consistent on X for (Y, ℓ).

We first start by showing that it is weakly universally consistent for classification with countable
number of classes (N, ℓ01). We fix a target function f∗ : X → N. For any i ∈ N we define the
binary function f∗

i := 1(f∗(·) = i). We define

Li(T ) :=
T∑
t=1

1f∗(xt)=iℓ01(f
∗(xϕ(t)), f

∗(xt))
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for all i ≥ 0. Then,

Li(T ) =
1

T

T∑
t=1

1f∗(xt)=iℓ01(f
∗
i (xϕ(t)), f

∗
i (xt)) ≤ LX(2C1NN, f∗

i ;T )

Therefore, because 2C1NN is weakly universally consistent, we have ELX(2C1NN, f∗
i ;T ) → 0,

hence ELi(T ) → 0 for all i ≥ 0. Since Li(T ) ≥ 0 and
∑

i≥0 Li(T ) = LX(2C1NN, f∗;T ) ≤ 1,
we can apply the dominated convergence theorem and obtain

ELX(2C1NN, f∗;T )→ 0,

which proves that 2C1NN is weakly universally consistent for classification with countable number
of classes.

We now turn to the general setting (Y, ℓ). Let (yi)i≥1 be a a dense sequence on Y with respect
to ℓ, let ϵ > 0 and consider the function h(y) := inf{i ≥ 1 : ℓ(yi, y) < ϵ}. Then, we have

ℓ(yϕ(t), yt) ≤ ℓ̄ · 1h(yϕ(t) ̸=h(yt) + ℓ(yϕ(t),yt)1h(yϕ(t)=h(yt)

≤ ℓ̄ · ℓ011h◦f∗(xϕ(t) )̸=h◦f∗(xt) + cℓ(ℓ(yϕ(t), y
h(yϕ(t))) + ℓ(yh(yt), yt))

≤ ℓ̄ · ℓ011h◦f∗(xϕ(t) )̸=h◦f∗(xt) + 2cℓϵ.

This yields LX(2C1NN, f∗;T ) ≤ ℓ̄LX(2C1NN,h ◦ f∗;T ) + 2cℓϵ. Because 2C1NN is weakly
universally consistent for countably-many classification, we have ELX(2C1NN,h ◦ f∗;T ) → 0.
Therefore, we obtain

lim sup
T

ELX(2C1NN, f∗;T ) ≤ 2cℓϵ.

This holds for any ϵ > 0 therefore, ELX(2C1NN, f∗;T ) → 0, which ends the proof that 2C1NN
is weakly universally consistent on X for the setting (Y, ℓ).
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