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Abstract

We consider the Ising perceptron model with N spins and M = Na« patterns, with a general
activation function U that is bounded above. For U bounded away from zero or U (z) = 1{z > s},
it was shown by Talagrand (2000, 2011b) that for small densities «, the free energy of the model
converges as N — 0 to the replica symmetric formula conjectured in the physics literature by
Krauth and Mézard (1989) (see also Gardner and Derrida, 1988). We give a new proof of this
result, which covers the more general class of all functions U that are bounded above and satisfy
a certain variance bound. The proof uses the (first and second) moment method conditional on the
approximate message passing iterates of the model. In order to deduce our main theorem, we also
prove a new concentration result for the perceptron model in the case where U is not bounded away
from zero.

Keywords: List of keywords

1. Introduction

1.1. Overview

We study a class of generalized Ising perceptron models, defined as follows. Let G = Gy« v be
an M x N matrix with i.i.d. standard gaussian entries. Denote the rows of G as g!, ..., g"; each
g% is an independent standard gaussian vector in R"Y. Let U : R — [0, c0) be a bounded measurable
function (the activation function), and denote u = logU : R — [—0,00). The associated Ising
perceptron partition function is

ZEZ(G)EZJ]exp{ Zu<(?\;£;)>}, (1)

as<M

where the sum goes over J € {—1,+1}". The J; are called the spins, while the vectors g are
called the patterns. The random matrix G is also called the disorder of the model.

A special case of the above is the half-space intersection model defined by the function U (x) =
1{z > x}, where x € R s a fixed parameter. In this case, the pattern g € R defines a “half-space”
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Hga, which is the set of J € {—1, +1}" such that (g%, J)/N'/2 > . The partition function (1) is
then the cardinality of the intersection of random half-spaces,

M
(] Hee
a=1

This is connected to a neural network memorization model, which has been much studied following
seminal works from the physics literature in the late 1980s (reviewed in §1.2 below).

The model (1) with general U was introduced by Talagrand (2000, 2002). From the mathemat-
ical perspective, a motivation for the generalized model is that it may be more tractable to analyze
under restrictions on the function U — for instance, results of Talagrand (2000) impose bounds on
u = log U and its derivatives. In the physics language, these restrictions may be viewed as describ-
ing subsets of the “high-temperature” regime. On the other hand, from the statistical perspective,
another motivation to consider the model (1) with general U is that we may view u = logU as a
loss function. Thus, understanding the behavior of the model (1) may shed insight on the nature of
certain high-dimensional loss surfaces.

In this paper we focus on the problem of understanding the free energy of the perceptron model
(1), i.e., the first-order asymptotic behavior of the partition function Z. We develop a method to
compute the asymptotic free energy of (1) with M = aN for small o, and N — o0. The small
« requirement amounts to a high-temperature condition, which is less restrictive than in previous
results (because there are fewer conditions on U), but still does not identify the full high-temperature
regime for any given U.

Before stating our main result, we lay out our assumptions on U. Note that if U is scaled by
any factor c, then the partition function (1) is simply scaled by c*. Therefore, since we assume U
is bounded, we may as well assume that U maps into [0, 1]. More precisely, we impose:

Z = <2V, Q)

Assumption 1 The function U is a measurable mapping from R into [0,1]. Moreover, with E¢
denoting expectation over the law of a standard gaussian random variable &, we have

EAHM@]=fouwmwdz¢o, 3)

where o denotes the standard gaussian density.

See Remark 1.2 below for more discussion on the above assumption; in particular, we will
explain that the condition (3) only rules out an easier case of the problem. We also impose:

Assumption 2 Writing E¢ ¢ for expectation over i.i.d. standard gaussians &, &', the quantity
Beol(6— €U +cUE+e€)] 2 _ 7
Ee ¢|U(x + c€)U(z + c£')] ’ 5 T3
is finite. This assumption implies that the quantity
Ece[(§— &)Uz + c§)U(x + c€')] 1
Ky(U) = 1 : : R,-<ec¢<2
o) = ma {1 swp | EeelUlr + @0 +c@)] " P se

is also finite, and indeed Ko(U) < K ,(U). (The bound on K»,(U) further ensures that Ko(Uy)
is bounded, where U, is a smoothed approximation of U; see Lemma B.9. )

K»,(U) = max {1, sup {

1. Assumption 2 is the “certain variance bound” mentioned in the abstract of this paper: K2(U) and K3 ,(U) refer to
variances of certain measures i, . on the real line, which are essentially gaussian measures reweighted by translates
of U — see Definition B.1.
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Discussion of Assumption 2 is also deferred to Remark 1.2. We now state our main result:

Theorem 1.1 (main theorem) If the function U satisfies Assumptions 1 and 2, then there exists
a positive constant oy(U) > 0 such that, if G is an M x N matrix with i.i.d. standard gaussian
entries and M /N — a with 0 < o < oy (U), then for the (generalized) Ising perceptron model (1)
the following limit holds in probability:

. 1
]\Pinoo N log Z(G) = RS(;; U), 4)

where RS(c; U) is an exact expression known as the “replica symmetric free energy” of the model,
defined by (12) and (29) below. Moreover, we can take o, (U) explicitly as in (31) below.

For U bounded uniformly away from zero, as well as for the half-space intersection model
U(z) = 1{z > k}, the result of Theorem 1.1 was previously shown by Talagrand (2000, 2011b).
Our proof is very different, and is based on the idea of conditioning on the AMP (approximate
message passing) iteration: this method was previously introduced by Ding and Sun (2018) and
Bolthausen (2019) (see also Alaoui and Sellke, 2020; Fan and Wu, 2021; Brennecke and Yau, 2021);
and is described in §1.2.5 and §1.3 below. By contrast, Talagrand uses an interpolation approach,
which seemingly necessitates more conditions on U, while our result covers the much more general
class of functions U satisfying only Assumptions 1 and 2. To name a simple example, we will see
below that the function U(x) = 1{x € [—1, 2]} is covered by Theorem 1.1 but not by Talagrand’s
results. The main contributions of this work are the implementation of the AMP conditioning ap-
proach, together with new concentration results, for a more general model than has been considered
in prior works. See §1.2.3 below for further discussion and comparison.

In general terms, the left-hand side of (4), whenever it exists, is called the asymptotic free
energy density of the model. The right-hand side of (4) is the replica symmetric free energy of
the model: it is an exact expression which was derived by heuristic methods of statistical physics,
and conjectured to coincide with the left-hand side in the high-temperature regime — i.e., at least
for a small enough, and potentially for all o where the left-hand side has a positive limit. In the
case of the perceptron model this calculation was done by physicists in the late 1980s; the historical
background is given in §1.2.1. It is not very difficult but requires some care to show that the formula
RS(«a; U) is in fact even well-defined; the details of this will be given in §A.1 below. The physics
derivation of (4) is non-rigorous because it relies on unproven hypotheses about the structure of the
perceptron model, as we will discuss further in §1.2.1. One of the motivations of this project is to
develop a deeper rigorous understanding of the perceptron model.

Remark 1.2 We make some further comments on our assumptions:

(1) From our perspective, Assumption 1 is relatively mild. It may be possible to relax the condition
U < 1 to accommodate functions U(x) that do not grow too quickly in |z|, but we will not pur-
sue this here. Next, if the condition (3) fails — meaning that E¢[EU (§)] = 0 — then the replica
symmetric free energy RS(o; U) reduces?® to the annealed free energy

ann(a; U) = %log EZ(G) =log2 + alogEU(§) . 5)

2. To see that this occurs, note that the fixed-point equation (9) is solved by ¢ = 1) = 0. As a result, the expression (12)
for RS(a; U) simplifies to the right-hand side of (5).
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In this case, it is known that the limiting free energy can be obtained by a direct first and second
moment method approach, without the need of a conditioning scheme. This is done for the case of
symmetric U by Aubin et al. (2019), and the argument of that paper can be extended to cover the
case E¢[EU(€)] = 0. Moreover it is expected that this case may be more tractable to analyze for
finer properties of the solution space, following Perkins and Xu (2021); Abbe et al. (2021) (further
discussed in §1.2.6 below).

(2) We view Assumption 2 as the somewhat more restrictive condition, although we will show (by
straightforward arguments) that it holds if U is bounded away from zero, compactly supported,
or logconcave (see Proposition 1.3 below). Moreover, Assumption 2 is essentially necessary to
ensure that in the approximate message passing (AMP) iteration associated with our model ((14)
and (15)), the message-passing functions are Lipschitz — this is by an easy calculation, which we
give in Lemma B.14. This allows us to use existing results on AMP and state evolution (Bayati and
Montanari, 2011; Bolthausen, 2014) — see §1.3 and §A.2 — which all require the message-passing
functions to be Lipschitz. On the other hand, we give in Remark B.5 an example of a function U
that does not satisfy Assumption 2.

Assumption 1 holds throughout this paper, even if not explicitly stated. However, we will point out
explicitly each place where Assumption 2 is used.

Proposition 1.3 (proved in §B.4) Suppose U satisfies Assumption 1. If in addition U is bounded
away from zero, compactly supported, or logconcave, then U also satisfies Assumption 2.3

1.2. Background and related work

In this subsection we give some background on the perceptron model, and survey the related work.
Some high-level discussion of key ideas in this paper is given in §1.2.3-1.2.5.

The perceptron problem originates from a toy model of a single-layer neural network, as follows.
Suppose we have N + 1 input nodes, labelled 0 < 7 < V. Likewise we have N + 1 output nodes,
labelled 0 < ¢ < N. For all ¢ # j, between the j-th input node and the i-th output node there is
an edge weight J; ;, to be determined. It will be convenient to fix J; ; = 0 for all <. The system
is given M input “patterns” ¢', ..., g™, which are vectors in R¥*!. We then say that the system
memorizes the pattern g¢ if

sgn (Ji Ji,j(9a>j> = sgn ((g“)i) (6)

forall 0 < ¢ < N. One can then ask, given M = Na i.i.d. random patterns, whether there exists
a choice of edge weights J such that the system memorizes all M patterns. The storage capacity
a, of the model is the supremum of all &« = M /N for which memorization of all M given patterns
is possible with probability 1 — ox(1). Models of this type have been considered at least since the
mid-20th century (e.g. McCulloch and Pitts, 1943; Hebb, 1949; Little, 1974; Hopfield, 1982).
Suppose the random patterns g% are modeled as i.i.d. standard gaussian vectors in RY*1. One
can consider the constraint (6) separately for each 0 < ¢ < N, and by symmetry it suffices to
understand the case 7+ = 0. Recall that Jyo = 0, and denote J; = J;o for 1 < 7 < N. Denote
Ga,j = sgn((9%)o)(g*)j foralll < a < M and 1 < j < N, and note the g, ; are i.i.d. standard

3. Note that Proposition 1.3 implies that the function U(z) = 1{x € [—1, 2]} indeed satisfies Assumptions 1 and 2, as
was mentioned above.
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gaussian random variables. Writing g% = (ga.;)i< N, We see that (6) is equivalent to (g®, .J) /N2 >
k for k = 0. Of course, one can then generalize the model by taking a non-zero parameter «: taking
Kk < 0 weakens the original constraint (6), while taking x > 0 gives a more restrictive constraint than
(6). This is equivalent to the model (1) with U (x) = 1{x > x}. The configurations J € {—1, +1}"
which have a positive weight in (1) are precisely the choices of (J;0)1<i<n such that the neural
network memorizes the ¢ = 0 spin on all M input patterns. To make the connection with the
question considered in this paper, note that if the asymptotic free energy density is positive, there
are many valid choices of (J;0)1<i<n, S0 We expect that this corresponds to o = M /N being below
the storage capacity a,. For the models discussed in this paper, it is conjectured that RS(«; U) is
a strictly decreasing function of o > 0, and that o corresponds to the unique positive root of this
function. Our main result Theorem 1.1 addresses a subcritical regime, where o/« is small.

The two most commonly studied variants of the model are the Ising perceptron where J; €
{—1, 41} (as in this paper), and the spherical perceptron where J = (J;);<y is restricted to the
sphere of radius N''/2; these are both discussed further below. (Both the replica symmetric formula
and the value of «. depend on U, and on whether the model is spherical versus Ising.)

1.2.1. NON-RIGOROUS RESULTS FROM STATISTICAL PHYSICS

In the physics literature, the spherical perceptron model with the threshold activation function
U(z) = 1{z > k} for K > 0 was analyzed in a series of celebrated works (Gardner, 1987, 1988;
Gardner and Derrida, 1988, 1989), using the non-rigorous replica method. In general terms, the
replica method starts from the observation that

Z"—1
log Z = lim .
nl0 n

The replica method is then to calculate E(Z™) for large integer n, and apply analytic continuation
to take the limit n | 0. The expectation E is over the disorder of the system, which in the case of
the perceptron model is the random matrix G. The n-th moment E(Z™) is the expected partition
function of n replicas of the same random system. The calculation of E(Z™) is typically a saddle
point analysis, and the result is called replica symmetric if the optimal saddle point has the n
replicas behaving independently, even though they are coupled through the shared disorder G. For
the spherical perceptron with U(x) = 1{z > k} — where Z is the volume of the intersection of
the sphere in R with the random half-spaces — this calculation was carried out by Gardner and
Derrida, yielding a conjectured replica symmetric limiting formula for N ~! log Z similar to (4).

The replica method also applies to the Ising perceptron with U(x) = 1{x > x} for any x € R,
but the original Gardner—Derrida analysis contained an error leading to incorrect predictions. A
corrected replica calculation for the Ising model was given by Krauth and Mézard (1989); this is
the first appearance of the correct prediction for the right-hand side of (4). The same results were
rederived using the cavity method by Mézard (1989). Roughly speaking, the basic idea of this
method is to estimate

1 Z(Garx(n+1)) Z(G(p+1)xN)
—log Z(G ~Elog ————~ _—

where on the right-hand side the first term is the effect of adding one more spin Jy 41, and the
second term is the effect of adding one more pattern g®. Both terms can be computed heuristically

+ aElog
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by making assumptions about the structure of the Gibbs measure
1 (8", J )>
— 11 U( : (7)
1/2
Z(G) oy NY/

(When U is {0, 1}-valued, p is simply the uniform probability measure on all configurations .J
that give a non-zero contribution in the sum (1). For instance, in the half-space intersection model
U(x) = 1{z = k}, p is the uniform measure on the intersection of half-spaces appearing in (2).)
In particular, the replica symmetric hypothesis says, roughly speaking, that any O(1) subset of
coordinates are asymptotically independent under the Gibbs measure p. The replica and cavity
methods are both non-rigorous, and are regarded by physicists to be morally equivalent to one
another — in particular, the interpretation of replica symmetry in the replica method (independent
replicas) is expected to be essentially equivalent to the meaning in the cavity method (independence
on any O(1) subset of coordinates). However, the cavity method may be generally considered to
yield more transparent derivations.

The Gardner—Derrida and Krauth—-Mézard predictions primarily concern the replica symmetric
regime. The spherical perceptron with U(z) = 1{x > k} (also called the positive spherical per-
ceptron) is expected to be replica symmetric for all £ > 0 and all @ < a.. In contrast, the Ising
perceptron with U(xz) = 1{x > k} is expected to be replica symmetric for all x € R. Our The-
orem 1.1 shows that for a more general class of activation functions U, the Ising perceptron has
the replica symmetric free energy for a small enough; it leaves open the question of what happens
for larger ae. More recently there have been several works in the physics literature investigating the
spherical perceptron model with U(z) = 1{z > k} for k < 0 (also called the negative spherical
perceptron), which is expected to exhibit replica symmetry breaking, e.g. Franz and Parisi (2016);
Franz et al. (2017).

()

1.2.2. RIGOROUS RESULTS ON THE SPHERICAL PERCEPTRON

The mathematical literature contains numerous very strong results on the spherical perceptron for
U(x) = 1{x > K}, especially for x > 0 (conjecturally the replica symmetric regime). For k = 0,
the storage capacity a. = 2 was known since the 1960s (Wendel, 1962; Cover, 1965). For general
k = 0, the storage capacity «a.(x) was proved by a short and elegant argument (Stojnic, 2013), us-
ing convex duality together with Gordon’s gaussian minimax comparison inequality (Gordon, 1985,
1988; Thrampoulidis et al., 2014). However, perhaps the most striking result for this model is that
of Shcherbina and Tirozzi (2003), proving the Gardner free energy formula for the spherical per-
ceptron for all £ > 0 and all « up to a¢(k). The proof of Shcherbina and Tirozzi (2003) makes
crucial use of the classical Brunn—Minkowski inequality for volumes of bodies in euclidean space
(Lusternik, 1935; Hadwiger and Ohmann, 1956). The main result of Shcherbina and Tirozzi (2003)
was later reproved (Talagrand, 2011a, Ch. 3) and (Talagrand, 2011b, Ch. 8) with a perhaps simpler
argument, using instead the functional Brunn—Minkowski (Prékopa-Leindler) inequality (Prékopa,
1971; Leindler, 1972; Prékopa, 1973). This inequality implies concentration of Lipschitz function-
als under strongly logconcave measures (Maurey, 1991), which can be used to deduce concentration
of overlaps and cavity equations (see e.g. Talagrand, 2011a, Thm. 3.1.11).* As noted by Shcherbina
and Tirozzi (2003) and Talagrand (2011a, §3.4), similar concentration results can also be obtained

4. In this work we have also used the result of Maurey (1991) (restated in Theorem B.12), but only to prove Proposi-
tion 1.3 which is not required for the main result Theorem 1.1.
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using instead the Brascamp-Lieb inequality (Brascamp and Lieb, 1976); and indeed this idea ap-
pears in earlier work on the Hopfield model (Bovier and Gayrard, 1998). Thus, all existing results
on the positive spherical perceptron (excluding the case k = 0) use powerful tools from convex
geometry.’

1.2.3. RIGOROUS RESULTS ON THE ISING PERCEPTRON

The mathematical literature on the Ising perceptron is far less advanced than for the spherical
perceptron. For the half-space model, the free energy was computed heuristically by Krauth and
Meézard (1989); their method applies also to the more general model (1). One consequence of that
calculation is an explicit prediction «, for the storage capacity o for the model U(z) = 1{z > &}
— for k = 0, the conjectured threshold a, is approximately 0.83.

In the rigorous literature, most results concern the half-space model U (z) = 1{z > 0}.® For
this model, it was shown by Kim and Roche (1998) and Talagrand (1999b) that there is a small
absolute constant e > 0 such that the transition must occur between € and 1 — e: that is, the partition
function (1) is non-zero with high probability for @ < ¢, and zero with high probability for o > 1—e.
A more recent work of Ding and Sun (2018) (further discussed below) uses some of the methods
of this paper to show, under a certain variational hypothesis, that the partition function is non-zero
with non-negligible probability for « < a., where a, is the conjectured threshold from Krauth
and Mézard (1989). A more recent work of Xu (2021) confirms that the model indeed has a sharp
threshold, meaning that P(Z > 0) transitions from 1 — ox/(1) to ox/(1) in an oy (1) window of «.”

For the situation where we have a more general function U in (1), Talagrand (2000) (see also
Talagrand, 2011a, Ch. 2) proves that the limiting free energy is given by the replica symmetric for-
mula RS(«; U), for small enough «, under the assumption that the function v = log U is uniformly
bounded. This corresponds to the case of our main result Theorem 1.1 where u is bounded, which
we prove at the end of Section D. Even for bounded wu, the two proofs are very different: Talagrand
(2000) uses an interpolation method to derive replica symmetric equations, while this paper uses
first and second moments conditional on the AMP iteration. We remark also that the argument of
Talagrand (2000) seemingly needs to go through a smoothed approximation of u, while our proof
for bounded u requires no smoothing.

In comparison with previous work of Talagrand, the main new result of this work is that the
limiting free energy is given by the replica symmetric formula RS(«; U), for small enough «, for
all U satisfying Assumptions 1 and 2. A special case of this result, for the half-space model U () =
1{x > k}, was previously obtained in (Talagrand, 2011a, Ch. 9) (with partial results appearing in a
previous work (Talagrand, 1999a)).® Talagrand’s proof for the half-space model relies crucially on
an estimate (Talagrand, 2011b, Thm. 8.2.4) which says roughly that if (u;);<, i a near-isotropic
gaussian process, then the fraction of indices ¢ where u; > k cannot be too small. The proof

5. The Prékopa—Leindler inequality generalizes the Brunn—Minkowski inequality, and also can be used to deduce the
Brascamp-Lieb inequality (Bobkov and Ledoux, 2000). For more on the relations among these inequalities we refer
to the survey of Gardner (2002).

6. The existing results for U(xz) = 1{x > 0} can likely be extended to cover U(z) = 1{z > x} for any k € R.

7. To be precise, the result of Ding and Sun (2018) is with gaussian noise G (as in this paper), while the other results
(Kim and Roche, 1998; Talagrand, 1999b; Xu, 2021) are for the Bernoulli noise model where g, ; are i.i.d. symmetric
random signs. It is reasonable to expect that the results of Kim and Roche (1998); Talagrand (1999b); Xu (2021) can
be transferred to the gaussian noise model.

8. The function U(x) = 1{x > k} satisfies the hypothesis of Theorem 1.1: it clearly satisfies Assumption 1, and one
can check that it satisfies Assumption 2 either by direct calculation or by applying Proposition 1.3.
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of this estimate uses a gaussian comparison inequality (see (Talagrand, 2011a, Lem. 1.3.1) and
(Talagrand, 2011b, Propn. 8.2.2)), and does not extend for instance to the event u; € E where E/
is a bounded measurable subset of R. In this paper we prove an analogous (although quantitatively
weaker) estimate for general I by different methods (Proposition F.1), and use this in the proof of
Theorem 1.1 in the case of unbounded .

1.2.4. BELIEF PROPAGATION AND TAP

The main idea in the proof of Theorem 1.1, which we discuss further in §1.3 below, is to compute
(first and second) moments of the partition function (1) conditional on the AMP filtration.
The motivation originates from the TAP (Thouless—Anderson—-Palmer) framework, which was
introduced for the classical Sherrington—Kirkpatrick model (Sherrington and Kirkpatrick, 1975) by
Thouless et al. (1977) (and further investigated by de Almeida and Thouless (1978); Plefka (1982)).
We describe the TAP idea heuristically, in the context of the perceptron (1). Given ¢ € [0, 1) let

1 Ee[¢U(z + (1 —q)V%)]

Fy(z) = (1—q)2 EeU(x + (1—q)1/2€)

®)
In Proposition A.1 we will show that the fixed-point equation
q _ @W) — E[th(¢l/2z)2] 9)
v)  \ar(g)) ~ \aE[Fy(¢"2)%]

has a unique solution in a certain regime, which we hereafter denote (g, v). For the model (1), the
TAP equations (see Mézard (1989, 2017); and explained futher below) read

G'n 1o 1/2

m = th(H) = th <N1/2 - 5m> . B=aE(F,)(¢"*2) (10)
G

0= = £y g - ). 81, 1)

where the functions th and F} are applied coordinatewise, m = th(H) is a vector in (—1, +1)¥
with [m|?/N = ¢, and n = F,(h) is a vector in R? with |n||2/N = 1. The terms Sm and A'n
are the Onsager corrections (more below). For the model (1) at small «, it is conjectured that the
TAP equations (10) and (11) have a unique solution (m*, n*), such that the vector m* approximates
the mean value of a random configuration J sampled from the Gibbs measure p defined by (7).
The vector n* describes the distribution of the vector G.J/N 1/2 where J is sampled from p.0 It
is further expected that N~!log Z concentrates very well around a TAP free energy ®(m*, n*),
which in turn concentrates (more on this below) around the replica symmetric value

P(1—q)

RS(o; U) = — 5

+ IE{ log 2 ch(v'%2) + alogIEgU(ql/QZ +(1— q)1/2§>} . (12)
where Z and ¢ are independent standard gaussians. Note (12) is the quantity in Theorem 1.1.

The TAP equations and TAP free energy can be viewed as a dense limit of the belief propaga-
tion (BP) equations and Bethe free energy. We describe this briefly, and refer to Mézard (1989,

9. Note that m*, n*, and p all depend on G. These statements are conditional on a typical realization G.



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

2017) for the details. The basic idea is to consider the analogues of (7) with the a-th factor removed,
or with the i-th spin removed; let us denote these 11~ and p_;. Write A, = (g%,.J)/N/2. The
belief propagation (BP) equations for the model (1) have a total of 2M N variables m;_,, and n4—,;
(forz < N and a < M), with the following interpretation:

mi_q = “mean of J; under ¢, i.e. in absence of a-th factor,”

nge—i = “mean of A, under p_;, i.e. in absence of i-th spin.”

The BP equations are a closed system of heuristic equations among these 2M N variables: m;_,q
is expressed as a function of (gp;, np—;) for b € [M]\a, and n,_,; is expressed as a function of
(Gaj» Mj—q) for j € [N]\i. The equations are derived assuming the “replica symmetric” hypothe-
sis described in §1.2.1. The Bethe free energy @Bethe(me, ngp) is a heuristic approximation for
N1 log Z as a function of the BP solution (mgp, ngp). Note the BP solution depends on the ran-
dom disorder G, so the Bethe free energy depends on G also. The Bethe free energy is expected to
be a good approximation for the true free energy in the replica symmetric regime.

The TAP equations above can be viewed as a dense limit of the BP equations, as follows. Since
every spin ¢ < N interacts with every factor a < N, the differences m;_,, — m; will be small
in the large-N limit, although not completely negligible. Similarly, all the n,—,; (¢ < N) will be
close to a single value n,. In absence of the a-th factor, we have A, = (g%, J)/N 1/2 where each
J; is a random sign with mean m;_,,. If the J; are not too correlated (cf. the discussion of replica
symmetry in §1.2.1), it is reasonable to expect that the law of A, under =% is roughly gaussian
with mean h, and variance 1 — ¢,, where

1 1
N1/2 Z Ga,iMi—aqa 1-— Ga = N Z (ga,i)2 (1 — (miHQ)Z) .

i<N <N

ha

This suggests that, once we add back in the a-th factor, the mean of A, under p will be

EE[(ha + (1 - Qa)1/2£>U(ha + (1 - Qa)l/zf)]
EEU(ha + (1 - Qa)l/zg)

= ha + (1 = ¢a)Fg,(ha) -

On the other hand, from the definition A, = (g®,.J)/N'/2, the mean of A, under z should also
coincide with (g, m) where m is the mean of .J under p. This explains the rationale for the second
TAP equation (11) above, which arises from equating the last two displays and substituting g, = q.
The reason for this substitution is that [m|?/N = g, and m;_,, is close to m;. On the other hand,
in the equation for h, we cannot simply replace m;_,, by m;, and the Onsager correction in (11)
takes into account that the discrepancy m;_., — m; is correlated with g, ;. The other TAP equation
(10) is derived by analogous considerations.

Ultimately, the TAP equations are a closed system of equations among the M + N variables
m; and n,, which can be viewed as a simplification of the BP equations described above. The
TAP free energy ®(m,,n,) is a heuristic approximation for N ~!log Z as a function of the TAP
solution (m,,n,), and it can be regarded as a simplification of the Bethe free energy. The TAP
solution depends on the random disorder G, so the TAP free energy depends on G also. The TAP
approximation is expected to be valid throughout the replica symmetric regime, where we expect

1 . 0,(1) |1 . . 0,(1)
N log Z(G) — ®(m,, n,; G)| < N ’NCI)(m*,n*,G)—RS(a, U)| < NIz (13)

9
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That is, conjecturally, the TAP solution captures “most” of the randomness in the disordered system,
which fluctuates around a deterministic thermodynamic limit described by RS(«; U). For more
work on the general TAP framework in a variety of settings, we refer to Chen et al. (2018, 2021);
Fan et al. (2021); Ben Arous and Jagannath (2021); Adhikari et al. (2021).

1.2.5. AMP AND CONDITIONING

As we commented in Remark 1.2, if we have E¢[(U(§)] = 0 (i.e. if the assumption (3) does not
hold) then the (unconditional) first and second moment method can be used to analyze the partition
function Z from (1), following Aubin et al. (2019). If E¢[£U ()] # 0, however, it is well known that
the unconditional moment method does not say anything about the random variable Z, because in
fact Z « EZ with high probability at any positive « = M /N. The first moment EZ overestimates
the typical value of Z because it is dominated by rare events where the disorder G favors large Z
in some atypical way.

The discussion of §1.2.4 leads to the following idea for improving the moment calculation.
Since the TAP fixed point (m*, n*) is described by a relatively simple set of equations (10) and (11),
and is conjectured to carry a great deal of information about the random measure (7), it is natural to
consider the first and second moment method conditional on the TAP solution (m*, n*). Indeed,
the prediction (13) suggests that the fluctuations of N~!log Z away from RS(a;U) are mostly
accounted for by the randomness in the TAP free energy ®(m*, n*). It is then natural to attempt to
show that

E(Z|m*,n*) E(Z? | m*,n*)
exp(NRS(a; U)) ~ E(Z|m*, n*)?
and thereby deduce the desired conclusion (4).

A major problem with the above approach is that it is not in fact known that the equations (10)
and (11) have a unique solution, although this is conjectured to be true in the replica symmetric
regime. As a result, “conditioning on the TAP solution” is not a mathematically justified approach.
A way to get around this issue (while implementing the same high-level strategy) is to condition
instead on the AMP (approximate message passing) iteration, which constructs approximate so-
lutions of the TAP equations, and will be described in more detail in §1.3 below. The asymptotic be-
havior of AMP has been rigorously characterized (Bayati and Montanari, 2011; Bolthausen, 2014),
and this substitutes for the unproven properties of the TAP solution.

The idea of conditioning on the AMP iteration was introduced by Ding and Sun (2018);
Bolthausen (2019) and has been developed in subsequent works (Alaoui and Sellke, 2020; Fan and
Wu, 2021; Brennecke and Yau, 2021). Of these prior works, Bolthausen (2019) and Brennecke
and Yau (2021) concern the classical Sherrington—Kirkpatrick (SK) model with a gaussian coupling
matrix (i.e., the Hamiltonian is a scalar multiple of J'G'J where G is an N x N matrix with i.i.d.
random gaussian entries). To make the analogy, the condition E¢[{U ()] = 0 in the perceptron
(cf. (3)) is analogous to having zero external field in the SK model. For the SK model with zero
external field, the asymptotic behavior of the partition function is characterized in the entire high-
temperature regime by Aizenman et al. (1987, 1988). By contrast, the SK model with non-zero
external field remains not fully understood in the high-temperature regime. The work of Fan and Wu
(2021) concerns more general SK models with random orthogonally invariant coupling matrices,
and uses a simplified “memory-free” AMP iteration that was developed and analyzed by Opper and
Winther (2001); Opper et al. (2016); Cakmak and Opper (2019); Fan (2020). The works of Ding
and Sun (2018) and Alaoui and Sellke (2020) concern the perceptron model, but only use the AMP

~ 1
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conditioning method for lower bounds. In the current work, we show that the AMP conditioning
method gives sharp upper and lower bounds for the generalized perceptron (1) at small c.

1.2.6. OTHER RELATED WORK

As noted above, in the special case that U satisfies E¢[(U(£)] = 0 (i.e. if assumption (3) does not
hold), the model (1) is mathematically much more tractable, and can be analyzed by an (uncondi-
tional) second moment method. The condition E¢[£U (§)] = 0 holds for instance if U is a bounded
symmetric function. The second moment analysis was done for the cases U (z) = 1{|z| < x} and
U(z) = 1{|xz| = x} in Aubin et al. (2019). For the model U(x) = 1{|z| < s}, much finer struc-
tural results (on the typical geometry of the solution space) were obtained by Perkins and Xu (2021);
Abbe et al. (2021). These results were inspired in part by questions raised in the physics literature
about the algorithmic accessibility of CSP solutions (see e.g. Baldassi et al., 2016; Budzynski et al.,
2019). For the perceptron model in statistical settings, there is an extensive literature which we will
not describe here; we refer the reader for instance to Barbier et al. (2019); Montanari et al. (2021)
and many references therein. Lastly, we remark that while “naive mean field” would approximate
the entire Gibbs measure (7) by product measures, the TAP framework goes beyond this by requir-
ing independence only on O(1) subsets of coordinates. It remains an open question to prove general
results for TAP in the spirit of what has been done for the mean-field approximation by Jain et al.
(2018, 2019); Eldan (2020); Eldan and Gross (2018); this was another motivation for this project.

1.3. AMP iteration and conditional moment results

In this subsection we outline the main steps in the proof of Theorem 1.1. We first introduce the
AMP iteration in more detail. Our convention throughout is that if f : R — R and z = (z;);
is any vector, then f(z) = (f(z;)); denotes the vector of the same length which results from
applying f componentwise to z. Recall F' = F|, from (8). Let m©® = 0e R, n® = 0eRM,
m® = ¢21 € RV, n() = (¢/a)'/?1 € R™. The approximate message passing (AMP)
iteration for the perceptron model is given by (cf. (228) and (229))

G'n® _
mt) = th(H(tH)) = th < Nz Am 1)> ) (14)
Gm() _
n*) = F(h(t+D) = F< Nz B'n 1)> . (15)

Recall from the discussion of §1.2.5 that the main idea in the proof of Theorem 1.1 is to compute
(first and second) moments of the partition function (1) conditional on the AMP filtration

F=7(t) = 0<<Gm(s),n(s+1) 18 < t), (th(é),m(“l) A <t— 1)) (16)

in the limit ¢ — co0. The computation relies on existing results on the asymptotic behavior of AMP in
the large-/V limit from Bayati and Montanari (2011) and Bolthausen (2014) (see also Donoho et al.,
2009; Javanmard and Montanari, 2013; Rush and Venkataramanan, 2018; Berthier et al., 2020). In
§A.2 we review the relevant results from Bayati and Montanari (2011); Bolthausen (2014) that are
used in our proofs. The results from our conditional method of moments calculation are summarized
as follows:

11
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Theorem 1.4 (conditional first moment) If U satisfies Assumptions 1 and 2, then there exists a
positive constant a(U) > 0 such that, if G is an M x N matrix with i.i.d. standard gaussian entries
and M/N — awith0 < a < «(U), and F (t) is the AMP filtration defined by (16), then

IE(Z ‘ 9(15)) < exp {N(RS(@; U)+ ot(l))}
with high probability (i.e., with probability 1 — on(1)).

Theorem 1.4 implies the upper bound in Theorem 1.1 by standard arguments, using Markov’s
inequality. The proof of the upper bound in Theorem 1.1 is therefore given at the end of Section C,
after the proof of Theorem 1.4.

Theorem 1.5 (conditional second moment) Suppose U satisfies Assumptions 1 and 2, and 0 <
a < «(U) as defined by (27). If G is an M x N _matrix with i.i.d. standard gaussian entries and
M/N — «, we can construct a random variable Z < Z (formally defined by (144)) such that

IE(Z(G) ‘ ﬁ(t)) > exp {N(Rs(a; U)— ot(l)) } (17)

with high probability, and for which we have the second moment estimate

E(Z(G)ﬂﬁ(t)) < exp{2N(RS(a;U) —l—ot(l))}, (18)
also with high probability.

In Theorem 1.5, the restricted partition function Z is essentially the contribution to the partition
function (1) from all configurations J that approximately satisfy

J—m® 1| span {m(s),H(s) 18 < t} (19)

(this condition is formalized by (144)). A similar restriction was introduced by Ding and Sun (2018)
in the context of the Ising perceptron, and was also subsequently used by Brennecke and Yau (2021)
to obtain an improvement on the result of Bolthausen (2019) in the context of the SK model.

In the bounded case |u| < oo (recall w = logU), Theorem 1.5 implies the lower bound in
Theorem 1.1 by standard arguments, using the Azuma—Hoeffding martingale inequality. The proof
of the lower bound in Theorem 1.1 in the bounded case is given at the end of Section D, after
the proof of Theorem 1.5. In the more general setting where © may be unbounded, the proof of
Theorem 1.1 requires further estimates, as we outline in the next subsection.

1.4. Concentration results for unbounded case
Assumption 1 implies that we must have
1>U(x) > d1{xe E(U)} (20)

where ¢’ is a positive constant, and F(U) is a subset of the real line of positive Lebesgue measure
(which we denote |E(U)|). Moreover we can assume without loss that E(U) is bounded, i.e.,
E({U) € [—Emax(U), Emax(U)] for some finite Epax(U). Following (Talagrand, 2011b, §8.3),
define the truncated logarithm log 4(z) = max{—A,logxz}. The following is an adaptation of
(Talagrand, 2011b, Propn. 9.2.6) (see also (Talagrand, 2011b, Propn. 8.3.6)):

12
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Proposition 1.6 Suppose U satisfies Assumption 1, and let &' and E(U) be as above. Then for
T = exp(—12) we have

1 Z Z (log V)2 1
P(N’ngT (w) ~ Elogn- <2N>| > NiE ) S
for all N large enough (depending on |E(U)|, Enax(U), and §').
Next let 7 be a small positive constant, and consider the smoothed function
Up(z) = (U * ¢y)(x) = JU(:): +nz)p(z) dz = EcU(z + né) . (21)

Let Z(n) denote the perceptron partition function with U, in place of U:

zm= 1] Un((fvai/g)> : 22)

J as<M

Note that U,, satisfies Assumption 1: it is a smooth mapping from R into [0, 1] for any > 0,
and condition (3) holds for 7 small enough. We will show (see Lemma B.9) that Kg(Un) can be
bounded in terms of K ,(U). We then have the following approximation result:

Proposition 1.7 Suppose U satisfies Assumption 1, and let &' and E(U) be as above. Then for
T = exp(—12) we have

. 1 Z(n) z
h]r\][a_s).ol(l)p N‘E[logNT <2N> —log - <2N>” <oy(1).

Propositions 1.6 and 1.7 are proved in Section F. The proofs rely on a bound for near-isotropic
gaussian processes, Proposition F.1, which we mentioned in §1.2.3 above. Finally, we have:

Proposition 1.8 If U satisfies Assumption 1, then we have lim; o RS(c; Uy) = RS(o; U) for all
0 < a < (U) (as defined by (31)).

Proposition 1.9 Suppose U satisfies Assumption 1, and let Z(n) be as in (22). Then we have

Nz?
IP‘I Z(n) —Elog Z ‘;N < 32N . __ Nz
< 0g Z (1) —Elog Z(n) fv> exp { 32C5Ch (U ,7)2}
forall 0 < x < 5(C2)Y2C1(U;n), where Cs is an absolute constant while C1(U; 1) depends on U
and 1.

The proof of Proposition 1.8 is given in Section B, while the proof of Proposition 1.9 is given
in Section F. Then Propositions 1.6, 1.7, 1.8, and 1.9 can be combined to finish the proof of The-
orem 1.1 in the unbounded case |u]s, = 00. The argument goes roughly as follows: by Proposi-
tions 1.6 and 1.7, with high probability

1 Z 1 zZ 1 Z(n)
v 08nr oy —on(l) = TElogy, o = Elogy, — 5 +0y(1).

13
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By applying Theorem 1.5 to U,;, and combining with Proposition 1.8 and Proposition 1.9, we obtain

1 VA
NElogNT 2%7) —on(1) =RS(a; Up) —log2 = RS(o;; U) — log2 + 0,(1) .
For 0 < a < a(U), the above is = —7/2 by straightforward estimates (Corollary B.8). Therefore

1 Z 1 VA
< RS(o;U) —log2 = on(1) + NlogNT oN = on(1) + N logZ—N

o[ S

with high probability, as desired. At the end of Section F we give the conclusion of the proof of
Theorem 1.1, where the above sketch is made precise.

Organization

The remaining sections of the paper are organized as follows:

* In Section A we give a preliminary expression (see Theorem A.12) for the first moment of
the perceptron partition function conditional on .7 (t).

* In Section B we collect some technical results, including basic consequences of Assump-
tions 1 and 2. We also give the proofs of Propostions A.1, 1.3, and 1.8.

* In Section C we analyze the conditional first moment calculations from Section A and com-
plete the proof of Theorem 1.4. This leads to the upper bound in Theorem 1.1.

* In Section D we prove Theorem 1.5, which bounds the first and second moments of the
(truncated) perceptron partition function conditional on .% (¢). From this we deduce the lower
bound in Theorem 1.1 for the case |juls < o0.

* In Section E we prove a local central limit theorem (Proposition E.13) which is required for
the calculations of Sections A-D.

* In Section F we prove Propositions 1.6, 1.7, and 1.9; and use these to conclude the proof of
Theorem 1.1.

* Lastly, in Section G we prove a gaussian resampling identity (Lemma A.16) which is used in
the conditional moment calculations of Sections A—D. We also give a heuristic review of the
state evolution limit of AMP, which was rigorously established in earlier works (Bayati and
Montanari, 2011; Bolthausen, 2014). Finally, in §G.5 we present a simplified version of the
moment calculations of this paper, which highlights some of the main ideas.
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Appendix A. First moment conditional on AMP

We consider the perceptron model (1) with an independent copy G’ of the disorder matrix G — this
is clearly equivalent (in law) to the original model. The (random) weight of the configuration J is

s=5,(6) =exn{ (1u( 575 ) )} 23

where u = logU : R — [—o0, 0] is applied componentwise by the convention of this paper. As in
(1), the corresponding perceptron partition function is

Z(G) = ZsJ(G’) . (24)
J

Let m®) and n®® be generated from the AMP iteration (14) and (15) with G’ in place of G (and
with the same initial values for m(o), n(O), m(l), n) ag before). Then, similarly as in (16), let

Ft) = g((afmcs), n) s <), (@m0 mH) <t - 1)) | (25)

We emphasize that %’ (t) in (25) is defined with respect to G’ while .7 (t) in (16) was defined with
respect to GG. This section is organized as follows:

* In §A.1 we state Proposition A.1, which allows us to formally define the parameters (g, 1)
appearing in the definition (12) of the replica symmetric free energy.

* In §A.2 we give a brief review of known results (Bayati and Montanari, 2011; Bolthausen,
2014) on the state evolution limit of AMP.

* In §A.3 we decompose Z(G’) into two parts (see (59)): one part Z,(G’) roughly captures
the contribution of configurations J € {—1,+1}" which lie close to m® in some sense
(see (57)), while Z,(G") is the remainder of the partition function. We then state the main
result of this section, Theorem A.12, which gives the conditional first moment upper bound
for Z,(G).

* In §A.4 we state and prove Proposition A.13, which gives a conditional first moment upper
bound for a single configuration .J € {—1, +1}V.

* In §A.5 we complete the proof of Theorem A.12. We also supply some large deviations
bounds, Lemmas A.22 and A.23, which will be used later to bound Z,(G") (see Corollary C.1
in §C.1).

The bound from Theorem A.12 will be analyzed in Section C to conclude the proof of Theorem 1.4.

Throughout this section, U satisfies Assumption 1 and 2.

A.1. Formal definition of replica symmetric free energy

In this subsection we formally define the quantity RS(«; U) appearing in the statement of the main
result Theorem 1.1. As above, let £ denote an independent standard gaussian random variable, and
let E¢ denote expectation over the law £. Given ¢ € [0, 1) let

Ly(z) = logEgU(x +(1— q)1/2§> = logJU<x +(1— q)1/22>cp(z) dz, (26)
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where ¢ denotes the standard gaussian density as above. Recall from (8) that we defined

1 EeU( + (1 9)'?)]
(1-"? EeU(x+ (1-q)"/%)

Fy(x) = (Lg)'(w) =
We will sometimes abbreviate L = L, and I’ = Fj,.

Proposition A.1 (proved in Section B) If U satisfies Assumption I, then there exists a positive
constant o(U) > 0 such that for all 0 < o < a(U) there exists a unique pair (q,1)) € [0,1/25] x
[0, c0) satisfying (9). Moreover we can take

1
T el0.¢ - CLU)S - Ky (U

o(U) 27

where cy is an absolute constant characterized by Lemma B.7 and Corollary B.8, and C1(U) is a
finite constant depending only on U which is characterized by Lemma B.3. The solution (q,) of
(9) satisfies

(B[eU(©)])? _

q 2
= K < .
5 < - < - <3-C1(0) (28)

SERSS

forall0 < a < oU).

For any U and « such that (9) has a unique solution (¢,%) € [0,1) x [0,00), the replica
symmetric formula for the free energy of the corresponding perceptron model (1) is given by (12),
which can be written equivalently as

Y(1—q)

RS =RS(;U) = — 5

+ E{ log2ch(v'2Z) + an(ql/zZ)}, (29)

where the expectation is over an independent standard gaussian random variable Z. Let us also
remark that since th'(x) = 1 — (th z)?, it follows using (9) that we can rewrite the coefficients 3, 3’

from (14) and (15) as
B\ _ (eEF'(¢"*Z)
Lastly, we comment that in Theorem 1.1 we can take

_ 1 a(U)
T ey (CUU)S - Koy(U)!

a(U) ) D

where K5 ,(U) is defined by Assumption 2, a(U) is defined by (27), and (C;)(U) will be defined
by Lemma B.3.

A.2. Review of AMP state evolution

In this subsection we review the main results on approximate message passing (as introduced in
§1.3) that will be used in our proofs. What follows is primarily based on Bayati and Montanari
(2011) and Bolthausen (2014). A more detailed review (with heuristic derivations) is given in
Section G.
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Definition A.2 (state evolution recursions) Let (q, ) be as given by Proposition A.1, and abbre-
viate F' = I Let

1\ 12 o)\ 12
pL=A = <Q) Eth(¢'?2) =0, m=m= <1/1> EF(q"*Z) (32)

(cf. (240)). Next let £, &' be independent standard gaussian random variables, and for s > 1 let
1 /
ps1 = plps) = qE[th (wl/Q{us§ + [1— (ps)?]"/%¢ }) th(wmf)} :
e = (o) = SE| (2o 1= (12} ) a2 (3

(cf. (246) and (251)). Supposing that 1, ...,v¥s—1 and A1, . . ., As—1 have been defined, we let

Ps — A Ms — s
A= LRl s e e 34
(1 _ As—l)l/Q i (1 _ Fs—l)l/Q (34)
(cf- (255)), where we have used the abbreviations
o= Y (W), A= D) ()2 (39)

<s—1 1<s—1

The above recursions are standard in the AMP literature, so we defer the explanations to Section G.
We will confirm in Lemma B. 10 that the recursions result in well-defined quantities for all s > 1.

We now explain how the constants given in Definition A.2 describe the large-N behavior of the
AMP iteration. To this end, we define the (deterministic) matrices

1
v (1—Ty)Y2

r=|m Yo (1—Ty)Y2 e RO-Dx(-1) (36)
" VYo (1 —Ty_0)'2
1
A (1—AY?

A= M A2 (1—Ag)t/? e RY¥t (37)
A1 A2 (1—Apq)Y?

It will follow from Lemma B.10 below that in our setting we will have I's € [0,1) and A4 € [0,1)
for all s > 0, which implies that both I' and A are non-singular matrices. As in (25), let m(®)
and n) be generated from the AMP iteration (14) and (15) with G’ in place of G. Recall that
m() = th(H®)) and n®) = F(h()), where F = F, is given by (8). We define vectors y(*) and
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x () by setting

H[t — 1] 1 (HE) ol (t—1)xN
VSVZRRRN VP : =T : =Ty[t—1]eR ; (38)
EO)y) )
(h())t (x(M)t
21[2] = q11/2 : =A : = Ax[t] e R"M, (39)
(h(t+1))t (X(t))t

for I and A as in (36) and (37). Then the x(5) “behave like” i.i.d. standard gaussian vectors in RM,
while the y(®) “behave like” i.i.d. standard gaussian vectors in R . For an intuitive explanation we
refer to the heuristic derivation of (253) and (254) given in Section G. The formal version is given
by the next definition and lemma:

Definition A.3 (pseudo-Lipschitz functions) Following Bayati and Montanari (2011), we say that
a function f : Rt — R (where { is any positive integer) is pseudo-Lipschitz of order k if there exists
a constant L > 0 such that

|f(x) = F(y)l < L<1 + ¥ + !y'”> |z =yl

for all z,y € RY. We say for short that f is a PL(k) function.

Throughout what follows we let e; (for ¢ < NN) denote the i-th standard basis vector in RNV,
With a minor abuse of notation we also let e, (for a < M) denote the a-th standard basis vector in
RM: the dimension of the vector should be clear from context.

Lemma A.4 ((Bayati and Montanari, 2011, Lem. 1)) Suppose U satisfies Assumptions I and 2.
In particular, this guarantees that the function Fy of (8) is Lipschitz (see Lemma B.14). Let G be an
M x N matrix with i.i.d. standard gaussian entries, such that M /N = «. Assume 0 < a < a(U),
and let (q,1)) be the solution given by Proposition A.1. Then let m(*) = th(H®)) and n'9) =
Fq(h(e)) be generated from the AMP iteration (14) and (15), with the same initial values for m(),
n®, m® nM g5 before. If f : R™" — R is a PL(k) function, then

3 r(H - 1e) F B0 2re)

<N

where & here denotes a standard gaussian vector in R'™1, and the convergence holds in probability
as N — oo for any fixed t. Likewise, if f : Rt — R is a PL(k) function, then

53 7(hlren)t) Y=F B (g Ag)

as<M

where & here denotes a standard gaussian vector in R,
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We remark that the results of Bayati and Montanari (2011) are for a more general setting where
the AMP iteration starts from a random initialization with bounded moments up to order 2k — 2;
the result then holds for any f which is PL(k). In this paper we start from an initialization with
bounded moments of all finite orders, so in Lemma A.4 we can take f to be in PL(k) for any finite
k. We now present a few applications of Lemma A.4 which illustrate how some of the recursions
from Definition A.2 naturally arise. First, it follows from Lemma A.4 and the definition (33) that

(m®),m) _ (th(H"), th(HO))

= ~ 'Y, 1.1).
o Lt (T, 100

In the above and throughout this paper, we write f ~ g to indicate that f — g converges to zero in
probability as N — oo. In the case » = s we have
36 35
(T ® > ()2 + (1-Tye) ' Top+ (1-Ty) = 1. (40)
I<r—2
If r # s, we can suppose without loss that r < s, in which case
36 35 34
(rrt)r—l,s—l (:) Z (75)2 + Wr—l(l - FT‘—Q)l/Q (:) o+ ’Y’r—l(l - Fr—2)1/2 (:) Hr—1 -

I<r—2
It follows that |m(") |2 ~ Ngq for all 7, and for r < s we have

(m(r) , m(s))
Ng

33 34 36
~ p(r—1) E e P A+ A (1 -Tm)2 2 (AAY,, @1)

A similar calculation gives that [n(")||2 ~ N for all , and for < s we have

(n(r)’ n(s))

N ~ p(pr—1) = pr = (T 42)

Let r(®) be the Gram—Schmidt orthogonalization of the vectors m® for s > 1: thus r) =
m®/[m] = 1/N2,

m® — (m®, r1)e®)

[m® — (Mm@, r)r@)|”

r(2) —

and so on. The r(®) form an orthonormal set in N-dimensional space (assuming the number of
iterations is much smaller than the dimension). Likewise, let ¢(*) be the Gram—Schmidt orthogonal-
ization of the vectors n(®) for s > 1; these form an orthonormal set in M-dimensional space. Let
A, I’y be the (random) matrices such that

] 1 (m)! (r®)t
m
= . = A . = A t RtXN s 43
(Ng)'2 — (Nq)l/2 m't))t " (r(;f))t vl e “
(n(l))t (C(l))t
nit—1] 1 . . _ (t—1)x M
_ . |=rn| ¢ |=Twe[t-1]eR L 44
(N2 (Nep)1/2 () (ct=Dy:
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It can be deduced from (41) and (42) that

Ay A
()~ () ®
(This means Ay — A and I'y — I converge entrywise to zero, in probability, as N — c0.) Since
r[¢] and c[t — 1] have orthonormal rows, the above implies

UL O g e can) = Av(any ~ PEEE g,
M 1]1;;[75 = Cnc[t — 1]c[t — 1] (Tn)' = Tn(Tn)" ~ H[gflz[t]t e RU-DX-D,

where the approximations on the right-hand side use Lemma A.4. The above is of course consis-
tent with the previous calculations (41) and (42) (cf. (Bayati and Montanari, 2011, eq. (3.18) and

(3.19))).

A further consequence of Lemma A 4 is that for all k, ¢ > 1 we have

(m(k+1)7y(e)) B (th(H(ml))’y(z)) 33 1 1/2 r o @)
Nq1/2 = Nq1/2 - Ngq 1/2 Z koY Y

U<t—1

L r
1/2 [Zth(@bl/zZ)] 1/21/)1/2E[th’(¢1/22)] ©) 1k/§1/}1/2( q),

where the transition from the first line to the second is an application of Lemma A.4, and we also
used the gaussian integration by parts identity. Recall also that m®) = ¢'/21, so Lemma A.4 also
implies

(m®, y(0)

Nq1/2 ~[EE=0

for all ¢ < t — 1, where ¢ is a standard gaussian random variable. The above calculations can be
summarized as

ylt — Umit} < L > '
L (0 S o(1-¢qT <ERR;; ~0, (46)
‘ Ng'/2 q ( o0

where 0 denotes the zero vector in ¢ — 1 dimensions, and ERR; ; is an an .%# (¢)-measurable random
variable that converges to zero in probability as N — oo (cf. (Bayati and Montanari, 2011, eq.
(3.20) and (3.21))). This concludes our review of the required results on the state evolution of AMP,
and we turn next to the conditional moment calculations. We introduce some notation which will
be used later in the paper:

Remark A.5 (bounds on Ay and I'y) Since A and T are both non-singular (this will be verified
in Lemma B.10 below), we can define a large finite constant ; such that we have the bound

1/2
— _ S
o 1Al LAY e [Pl | (E) o < () @)
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with high probability. In the above, and throughout this paper, |||« denotes the entrywise maximum
absolute value of a vector or matrix. On the other hand, we write |u| for the euclidean norm of a
vector u, and | A| for the spectral norm a matrix A. It follows from (47) that we also have

max {|AN, I(An)~], T <rN>—1||} < ()
with high probability.

The proof of the following proposition is deferred to §B.4. It amounts to checking that an
Almeida—Thouless (AT) condition (de Almeida and Thouless, 1978) is satisfied; see Lemma B.11.

Proposition A.6 Suppose U satisfies Assumptions I and 2. For 0 < a < «(U) as defined by (27),
the state evolution recursions from Definition A.2 result in1'y — 1 and Ay — 1 ast — .

A.3. Positions of configurations relative to AMP iterates

We now define parameters 7(J) and w(J) which summarize the position of configurations J €
{—1, +1}N relative to the vectors r®) and y(e) from (43) and (38).

Definition A.7 (parameters 7 and @) Let .’ (t) be as in (25). For J € {—1, +1}¥, define

_rft]J ((P(S)J)> ¢
J) = - eRt, (48)
™) = e N2,
ylt —1]J <(y(z), )> 1
J) = = eR" . 49)
@(J) N N )

Note that for any given J € {—1, +1}¥, its parameters 7(J) and ©(.J) are measurable with respect
to F'(t).

Recall that the vectors r(*) and m(®) (1 < s < t) are linearly related by (43), while the vectors
y(“l) and HY (1 < £ <t —1) are linearly related by (38). For part of our calculation it is more
convenient to work with m(®) and H+1) rather than with r®) and y®). For this reason we also
define the following parameters:

Definition A.8 (parameters 7 and §) Given .#'(t) as in (25), and given any J € {—1,+1}V, we
decompose J as J = J' + J" where J' is the orthogonal projection of .J onto the span of the vectors
m®), 1< s <t Welet 7 for 1 < s < t be the coefficients such that

(s) ta
, . m m|t]'7
s<t

Next let v = J"/|J"|, and let § € R'™! be defined by

H[t —1]v

P (Cn)'8 = s

D

Note that for any given J € {—1,+1}V, its parameters 7 (J) and §(.J) are measurable with respect
to F'(t).
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The parameters (7, w) of Definition A.7 are related as follows to the parameters (7, §) of Defi-
nition A.8:

Lemma A.9 (change of basis) Given .7’ (t) as in (25), suppose J € {—1,+1}" has parameters
7(J), w(J), #(J), 6(J) as in Definitions A.7 and A.8. Then we have w(J) = (An)'7(J), and

o) = LR 0+ (1= 1m2) PE oo,

Proof For convenience we will often abbreviate # = 7(J), etc. The expression (50) can be
rewritten as , o

J' o) mt|'m @3y o tn

N2 = (N2 ~ r[t] (AN

so by comparing with (48) we see that w(.JJ) = (Ay)'7(J). Next we have

H[t — 1]J" s0) H[t — 1]m[t]'" 38) Ty[t — 1]m[t]'7
Nyl N2 Ng'P2

(52)

It is clear from (48) that | J'| /N2 = |«

, and since v = J" /||.J"

, it follows that

H[t—1]J" |J"| H[t—1]v 12H[t — 1]v 51 1/2
N2 N2 (Ng)E (1—H7TH2) N2 <1—H7THz) Tn(Tn)'0. (53)

Combining (38), (52), and (53) gives

49 y[t —=1]J @y T'H[t —1]J 53 T H[t — 1]’ ( B 2)1/2 4 ¢
52y y[t — 1ml¢]t . /2~
@Y s (1= 1e?) P,
This concludes the proof. |

Lemma A.10 (approximate change of basis) Given .7'(t) as in (25), suppose again that J €
{—1, +1}N has parameters w(J), w(J), #(J), §(J) as in Definitions A.7 and A.8. Define also
7(J) = A'#(J) and

. B /2 ) 1/2
#0) = O Lz (- 00 + (1= 1=)F) "5 | (54)
where 7 = 7(J) = (#a,...,7;) € RI™L Then

max {ku) - 7'r(J)HOO + Hw(J) - w(J)HOO L Je {1, +1}N} <ERR;,

where ERRy 9 is an an F'(t)-measurable random variable that converges to zero in probability as
N — oo.
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Proof It follows trivially from the definition (48) and the Cauchy—Schwarz inequality that

] 7]

[7(J)]oo < max{ N2

:sét}—l,

where we emphasize that the bound clearly holds uniformly over all J € {—1, +1}". Now recall
from Lemma A.9 that 7(.J) = A'w(J) and w(J) = (An)'7(J). It follows that

ufeo < 1}.
0

The right-hand side above is .%(t)-measurable and does not depend on .J, and it follows from (45)
that it tends to zero in probability as N — oo. Next, to compare to(J) with o (.J), we note that
w(J) — w(J) can be expressed as I(J) + II(.J) where

el /
) = (L - (0 Yna - away) w0,

() = (1 =) 2r-1<rN —D)(TN)8().

Since |7(J)|x < 1 as noted above, it follows using (45) and (46) that |I(.J)| can be bounded
uniformly over J by an .%’(t)-measurable quantity that tends to zero in probability as N — 0.
Next we note that (51) combined with the Cauchy—Schwarz inequality gives, for all J,

7)) =#()] <sup {1 ((Aer(AN - A))tu

Iraras) < max{ HO] 1}

o Nyt/2 o= '

The right-hand side above is .#’(t)-measurable, and it can be deduced from Lemma A.4 that it
converges in probability to 1 as N — oco. It follows by combining with (45) that ||II(.J)| o, can also
be bounded uniformly over .J by an .%#’(t)-measurable quantity that tends to zero in probability as
N — o0. This proves the claim. |

We next use the AMP iteration to define a convenient change of measure on the discrete cube:

Definition A.11 (change of measure) Let P be the uniform probability measure on {—1, +1}¥,
and let Q be the probability measure on the same space which is given by

dQ 1—[ exp(( ) _ exp{(H(t),J)}
ch I—I(t exp{(1,logch H®))}

If J is sampled from the measure Q, its expected value is exactly th(H(t)) = m®. We now compute
the expected values under Q of the parameters from Definition A.7. First we note that

_ r[tjm®  r[t]mlt]'e; @3 1/2
=Nz T Nz 1

. =
where é4 denotes the s-th standard basis vector in RY. Let us define also 7, = ql/ 2Aé,, and note
that m, ~ T4 by (45). Next we note that

r[t]r[t]' (An)'é = ¢"*(An)'ér, (55)

) t—1lm (46) , _
Gy = Y[N] P21 = )(T'1) = mu e R, (56)

where é; denotes the (-th standard basis vector in Rt™1.

29



BOLTHAUSEN NAKAJIMA SUN XU

Recalling (1) and (23), we now define

N = {n,@) smax {Ia(0) - mlh =) - @l } <36 G0} 67
where the constant C'1 (U) comes from Lemma B.3 below. We also let
H, = {J e{-1,+1}" : (n(J),w(J)) € NO} : (58)
and we let H, = {—1, +1}V\H,. Now decompose (24) as Z(G') = Z,(G') + Z.(G") where
Z.(G)= ) S)(G), Z.(G)= ) $,;(G), (59)
JeH, JeH.

The main result of this section is as follows:

Theorem A.12 Suppose U satisfies Assumptions 1 and 2, and let F'(t) be as in (25). Given € € R,
define

X(m,w) = x[t]'ms + {X[t]t(w — ) + NY2ec[t — 1] (w — w*)} eRM
for my and w.. as in Definition A.11. (The parameter € will be fixed later in (114).) Then define
|@ — &@ — @)

(w*a
TR i W 5, Heelen ).

as<M

U(r, w) =

If Q is the measure on {—1, +1}" from Definition A.11, then we have

eXp{((l légglf' \J;H Q(J exp{ { (W(J),w(J))JrERRt,g,H,

where ERRy 3 is an an F'(t)-measurable random variable that converges to zero in probability as
N — oo,

The proof of Theorem A.12 is given in §A.5.
A.4. First moment for a single configuration
The main result of this subsection is the following:

Proposition A.13 Suppose U satisfies Assumption 1 and 2, and let F'(t) be as in (25). Define

A(r, 70, 5,0) = oo = 01" 9“2 Z Lige | x[t]'n + NY2c[t — 1]'0
) ) ) (1 _ ”T{'H N a<M |’7TH )

where the function L is defined by (26). Recall S ;(G") from (23). There exists a finite constant o
such that for any large finite constant Oy, it holds with probability 1 — oy (1) that

1
NlogE(SJ(G’)

! . . . . @
F (t)) < inf {A(?T(J),W(J),W(J)ﬁ) 6] < emax} + 2
uniformly over all J € {—1, +1}¥ with | (J)| < 4/5.
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The proof of Proposition A.13 is given at the end of this subsection.

Definition A.14 (row and column subspaces) Given .#'(t) as in (25), define the linear subspaces
Vk = Vk(t) = span {ea(m(s))t l<a<M,1<s< t} ,
Ve=Ve(t—1) :Span{nw)(ei)t 1<i<N,1 <€<t1}.

Let Vrc = Vr + V. Let projg denote the orthogonal projection onto Vx, and define analogously
projc and projgc. Note that (G')rc = projre(G’) is measurable with respect to F'(t).

Definition A.15 (row and column events) We now let G be an independent copy of G', and define

the events
Gm®)
R= {projR(G) = (G’)R} = {Nl/? = h6Y 4+ b Y forall1 < s < t} : (60)
G'n®

C= {projC(G) = (G’)C} — { —HD £ gmYforalll <<t — 1} . (6D

N1/2

We shall refer to R as the row event (since it constrains the rows of the matrix G). Likewise we shall
refer to C as the column event.

Recall .#’(t) from (25), and define also
H'(t) = a((m(s) 15 < t), (n(e) A<t— 1)) c Z'(t).

Our calculation is based on the following resampling principle (proved in §G.2):
. RMXN

Lemma A.16 (resampling) If f — R is any bounded measurable function, then

E(£(G)

F(t)) = IE< (@) ljf’(t),R, C, (G’)RC>
where G denotes an independent copy of G'; and the events R and C are defined by (60) and (61).

Definition A.17 (configuration-dependent subspaces) Given %'(t) as in (25), and a spin con-
figuration J € {—1,+1}", recall from Definition A.8 that we decompose J = J' + J", and let
v = J"/|J"|. We then define the linear subspaces

szspan{eavt:léagM},
VAEspan{n(@vt:1<£<t—1}.

Note that Va is a subspace of Vp, and is also a subspace of Vc. Let proj, denote the orthogonal
projection onto Va, and note that (G') s = projs (G') is measurable with respect to F' (t).
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Definition A.18 (admissibility event) As in Definition A.15, let G be an independent copy of G,
and define
t—1]Gv H[t—1]v

A= {prOjA(G) = (G,)A} @ {n[Nw1/2 - (Nw)1/2 }’ (62)

where the last identity holds assuming that the event C from (61) occurs. Note that H[t — 1]v is
determined by the parameter 6(.J) from Definition A.8. We refer to A as the admissibility event, and
note C € A.

In the setting of the perceptron model, the calculation of Lemma A.16 can be simplified as
follows:

Lemma A.19 (reduction of column constraints) If h : RM — R is any bounded measurable
function, then

E (h(GJ) ‘ H'(1),R,C, (G’)Rc) —E (h(GJ) ‘ A (), R, A, (G’)RA>

where G denotes an independent copy of G' and the events R, C, A are defined by (60), (61), and
(62).

Proof Let Vc\r be the orthogonal complement of Vg inside Vk + Ve that s,
W+ Ve=WSVeRr,

where we use @ to denote the sum of two orthogonal vector spaces. Note that Vy is a subspace of
Ve which is orthogonal to Vg, so it follows that Vy is also a subspace of Vc\r. Let projc\g denote
the orthogonal projection onto Vc\g. Note that Vy is a subspace of Vp, and Vp is orthogonal to V.
We claim that

projc\r (V) = Va . (63)

Since we already noted that VA S Vg, it suffices to show inclusion in the other direction. The

space Vp is spanned by the elements e, v'. Let ¢(), 1 < ¢ < t — 1, be any orthonormal basis for the
span of the vectors n(Y), 1 < ¢ < t — 1. An orthonormal basis for Vj is then given by the matrices
cv' 1 < ¢ <t — 1. On the other hand, the space V¢ is spanned by the elements c( (e;)". We
therefore have

<eavt — proju (eavt) ,c0) (e;)' — projg (c(g) (ei)t>> = (eavt — Proju (eavt> ,c0) (ei)t>

— (cD),v; — ( Z (eqv', ¢y c®yt c® (ei)t> = (cD)qv; — (cD)v; = 0.

k<t—1

It follows that for any Gp € Vp we have Gp — proj, (Gp) orthogonal to Ver, Which concludes the
proof of (63). It follows that Vp = VA © Vp\s where Vp\4 is the orthogonal complement of Va
inside Vp, and Vp\ 5 is orthogonal to Vog. As aresult, if G is an M x N matrix with i.i.d. standard

32



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

gaussian entries, we can decompose Gp = Ga + Gp\a Where Gp\s = projP\A(G) is independent
of Gc\g. It follows that

E(h(GJ) ‘jf’(t),R,C, (G’)Rc> - E(h(GRJ’ + GpJ") | A (1), R, A, C, (G’)RC)

E(h GRJ + (Ga + GP\A)J”)

H'(t),R,A,C, (G’)RC)

E<h GRJ + (Ga + GP\A)J”)

()R <G/>RA>

E(hGJ'%”’ RA(G) ),
as claimed. |

Further towards the proof of Proposition A.13, we record the following calculations:

Lemma A.20 For J € {—1,+1}", recall the decomposition J = J' + J", and define X; =
GJ'/N 12 On the event R from (60), we have

¥ 1 [ / t.
X, = qm{h[t] #(J) + Bn[t — 1] W(J)}

_ x[t]'#(J) + NY2c[t - 1]t(w(J) (1~ \|7T(J)|\2)1/ Q(FN)‘cS) .

In the above, w(J) is given by Definition A.7; 7 (J) and §(J) are given by Definition A.8; and 7(.J),
7(J), and wo(J) are defined by Lemma A.10.

Proof Fix J and abbreviate 7 = 7(J), etc. Conditional on the event R from (60), we have

- _ GJ oo Gm") (60) pls+1 1o (s—1
XJ:N1/2 Z *(Ng)\/? Z 1/2< )+ f'nl )>'

Recall the notation (39) and (44), and also that n(®) = 0 € RM. Therefore the above can be

rewritten as
h(t]'r B[t —1]'%
q1/2 q1/2

X =
Recalling from (11) that 3’ = 1 — ¢, and combining with (39) and (44), gives

(1 —gn[t — 1]'F 4

N1/2w1/2(1 o
tALA
pY = x[t]'A'7r +

72

X; D x['AF +

9D e[t — 1)(Tn )

Recalling the notation of Lemma A.10 gives, with 7 = A'# and @ as in (54),

X, = x[t]'n + NV2c[t — 1] <w (1~ |\7r\|2>1/ 2(I‘N)‘5> .

This concludes the proof. |

33



BOLTHAUSEN NAKAJIMA SUN XU

Lemma A.21 Given J € {—1,+1}¥, define the cumulant-generating function

K (r) = % logE{exp {NW gt;l T(c®), Gv)}SJ(G) ’ A0, R]

for 7 € RU™L. Then, with L as in (26), the function K J satisfies

ey IT2 1

£atr) = I = 2 (1 L (R4 802 (1= 1n ) el - 117 ) = £,

with w(.J) as in Definition A.7 and X j is as in Lemma A.20.

Proof Conditional on .7’ (t) and on the event R, it follows from Lemma A.20 that G.J'/N'/? =

X'J = X. We also have
GJ// HJ//H

1/2
_ — 2
N1/2 - N1/2Gv = (1 - “7TH ) 57

where 7 = m(J), and €& = G is distributed as an independent gaussian vector in RV, It follows
that

Ro(r) = 5 35 toge| exp { M2 3 reOufu (Kot (1= 1712) ¢ |

as<M I<t—1

where ¢ denotes a standard gaussian random variable. Making a change of variable gives

” T 2 1 ~ 1/2
Ky(r) = I 2\ + N Z logE§U<Xa + (1 — H?T||2> [5 4 N2 Z Tng)D ’
a<M

I<t—1

from which the result follows. |

Having collected most of the necessary ingredients, we now prove the main result of this sub-
section. The proof requires one more slightly technical estimate which we defer to Proposition E.13
in Section E.

Proof [Proof of Proposition A.13] With .#’(t) as in (25) and S;(G’) as in (23), let us abbreviate
the quantity of interest as

E; EE(SJ(G’)

ﬂ”(t)) .

By the resampling principle from Lemma A.16, we can express
Ey = E(S,(G)| #/(t).R,C,(G')ke)

where G is an independent copy of G’, and R and C are the row and column events of Defini-
tion A.15. Applying Lemma A.19 then gives the further simplification

By = E(S/(G) | #(t), R, A, (G')ra ) (64)
where A is the admissibility event defined by (62).
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Let Vg be as in Definition A.14, and note that an orthonormal basis for Vi is given by the
elements e, (r(®)! for1 < a < M, 1 < s < t. Denote

gr = <(G,ea<r<8))t) 1<a<M,1<s< t) e RM'.

Likewise let Vp and V4 be as in Definition A.17: recall that Vp is orthogonal to Vg, and Vj is a
subpsace of Vp. An orthonormal basis for Vp is given by the elements e, v' for 1 < a < M. Denote

gpz<(G,eavt):1<a<M):GVERM. (65)
An orthonormal basis for Vj is given by the elements cOv'for1 < ¢ <t— 1, and we shall denote
gA = <(G,c(€)v‘) I<i<t— 1> =c[t—1]Gve R, (66)

Lastly, as in the proof of Lemma A.19, let Vp 5 be the orthogonal complement of Vj inside Vp.
Choose an orthonormal basis for Vp\ 5, and denote it B for 1 < j < M — (t — 1). We then let

m=((G.B) 1<j<M—(-1) eRY . (67)

Note that there is an orthogonal transformation of R™ which maps gp to the pair (ga, gg). In what
follows we let pr denote the probability density function for gg, so

1 2
Pr(9R) = (22 exp{ - Hgg” } (68)

Likewise let pa and pg denote the densities for ga and gp respectively. Since the three subspaces
VR, Va, and Vg are mutually orthogonal, the joint density of (gr,ga,gp) is simply the product
PR (gR)pA (gA)pB (gB ) .

The weight S ;(G), as defined by (23), is a function of G'J, which we decomposed in the proof
of Lemma A.21 as a sum of GJ’' and GJ”. Note that GJ’ is a function of gg, while GJ” is a
function of gp which in turn is a function of (ga, gg). Thus (23) can be rewritten as a function S;

of (gr, 8a,gg): explicitly,

r(s) "
s,(G) = [ U(Z ) (g)as + 12 (gp>a) — S(gr gnrgn).

1/2 1/2
as<M s<t N N

On the event R, the value of gg is fixed to a value gg:

Gm[t]t((AN)t)l)
(Ng)1/2 as

(‘(_]R)a’s = (Gr[t]t)a,s 2 (

where the right-hand side can be computed from (60). Likewise, on the event A, the value of ga is
fixed to a value g5. We then introduce a parameter 7 € R‘~!, and define

S1+(G) = S;-(gr,ga,88) = Ss(gr,8A,EB) €XP {Nl/z(ﬂ gA)} . (69)
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Then, for any 7 € R‘~!, we can rewrite (64) as

By —E(S/(G) ‘ H(E),RA, (G)ra) = E< i ‘;T(Efff/;fj’ggf))) ’ (gr,8A) = (3R, 9A)>
1

- S12(3R, G, dgs . o
exp(NV2(7,ga)) J (9 ga, 98)pB(98) dgB (70)
8R = 9R>

= pr(gA) JSJ,T(§R79A79B)pB(gB) dgp dga = exp(NK (7)), (71)

By contrast, the expected value of S; - given only the row constraints is

B (r|0) = B(5.,(G) | #/(0.R. () = B( Sl s )

which was computed in Lemma A.21 above. We then let p; (- |gr) be the probability density
function of ga under the measure that is biased by S Jﬂ—(G), conditional on the event R, that is to
say,

E(Ss-(G)1{ga € dga} | #'(t), R, (G')r)
E(S+(G)| (1), R, (G")r)

_ Pa(ga) B
= m [ J SJ,T(gR’ ga,98)pB(9B) ng} dga . (72)

PJ-(9a | 9r) dga =

Then, for any 7 € R!~1, we can rewrite (70) as

B, — E;(T|3r) - Psr(galdr)
exp{N2(7,3a)} - pa(9a)

(73)
We will show in Proposition E.13 (deferred to Section E) that there is a finite constant g; ¢ such that
for any finite constant Ty,,x, We have the uniform bound

4
wax {[p(190)] 7€ LAY IR € 217 < T} <500 )

with high probability. It therefore remains to estimate the other two terms on the right-hand side of
(73). We then note that Definition A.18 implies that, on the event A, we have

9ga ga o c[t —1]Gv @4 (Cny) 'nft —1]Gv

N1/2 = N12 T N1/2 o Npl/2
© (On) H[E = 1]v 61 0
= =" (I'n)%. 75
Substituting (75) into the formula for p (similar to (68)) gives
. 1 N[(Tn)'|?
pa(ga) = W eXP{ - 5 (- (76)
Meanwhile, it follows by combining (71) and (75) that
E;(7|3r) : t
= N|K — T'ny)o . 77
o2 gy ~ P Y[R = (. (0)) an
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Substituting (74), (76), and (77) into (73) gives

E;

<27r)t/2 . @ao 2

< exp {N[KJ(T) = (m (Tw)'0) + ’(FNW} } '

Recalling the calculation of K ;(7) from Lemma A.21 gives

(27T>52J'Pt,0 <€XP{N|:T_(];N>t5’2+ZJ(T):|} = exp {N./ZL](T)}, (78)

where A is defined by the last identity. To simplify the above expression, we will recenter 7 around

1/2(1 _ ts :
T i e E e R "
We then make a change of variables from 7 to 6, via the definition
T=T+ 79 . (80)
(1= [ [2)1/2
This change of variables results in the simplification
T (Tn) P 7+ =T |i|2)1/2 —(Ty)6 2 TEEOTE f%ﬁ)m :

The computation of X ; from Lemma A.20 can also be rewritten as

1/2
X; P X[ — N1/2(1 - \|7r|\2) clt —1]'7. 1)
As a result the function £ ; from Lemma A.21 can be reparametrized as

_e 0 @y 1 .
£ <T " (1—||7r|2)1/2> N (1’ L2 (X[ + N'2elt - ”t9)> |

It follows by substituting the above calculations into (78) that

./le <T + 4 N1 2) = Hw — 9H22 + i Z L”ﬂ.”2 <X[t]t7:[' + N1/2C[t — 1]t9) .
(1 = [x[) 20— =) N 5,
The claim follows by taking g 1 = (log ¢ + tlog(2m))/2. [

The above completes the proof of Proposition A.13, modulo Proposition E.13 which is deferred
to Section E.
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A.5. First moment for partition function

We now collect some of the preceding results to complete the proof of the main result of this section:
Proof [Proof of Theorem A.12] For any .J € {—1, +1}* we can calculate (abbreviating @ = w(.J))

HY,J) _ (&-1)H[t — 11T @8) ©"/2(é-1)'Ty[t — 11T @) (2T, 1, ) & (@, @)

N N N 1—gq
It follows by combining with Definition A.11 that
(G’ f’ P(J
exp{(l log(2 ch(H == J) exp{(1,log ch(H®))}
N(w,, ™
- Y Q) exp{ SEEle (s 2w). e
)
JeH,
Combining Proposition A.13 with Lemma A.10 gives, with high probability,
N gt Hw - GHQ 1/2 t
IE(SJ(G) F (t)) < 30-Te Z L2 | X[(]'7 + NY2c[t — 1]' | + ERRy 3,

a<M

uniformly over |7 (J)| < 4/5 and ||| < pax. The claim follows by setting 0 = é(w — w,). M

Recall from (59) that Z = Z, + Z, where Z, is bounded by Theorem A.12. In the remainder
of this section we show that the other quantity Z, can be bounded by a priori estimates. For this
purpose we prove a rough estimate on 7(.JJ) (Lemma A.22), followed by a more precise estimate on
w(J) (Lemma A.23). In fact Lemma A.23 is more precise than what is needed to analyze Z,, but
it will be needed later (in Section C) in the analysis of Z,. We first state and prove the estimate for

w(J):

Lemma A.22 Recall 7t(J) from Definition A.7 and 7 from (55). For Q as in Definition A.11, we

have
t/2 201 _ 2,1/2
2af) < () ew{ -
q

forall |d| = 1/N'2. (The bound is vacuous unless Nd? is large compared to t1ogt.)

Q({J e {—1,+1}V HW(J) —

Proof Under the measure Q, the random vector .J — m(®) has independent entries of mean zero.
We note also that

(m;)* = Inax{ ; — (m®);

2 2
:Ji€ {—1,+1}} < <1+|(m(t))i|) <1+43|(m®);] <4. (83)

Thus for any a € R? we can bound

V@) = 3 (S as):)

i<N Ns<t

= 4al*.

2
43 4

s<t
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It follows by the Azuma—Hoeffding bound that

1 Nz? Nz?
- ) 7_m® v _
Q(N1/2<Zasr ,J —m ) 293) ieXP{ QVmaX(a)} <6XP{ 8|a2}' (84)

s<t

On the other hand, it follows from Definition A.7 and (55) that

1 .
i ( Z; asr®, J — m(t)> - (a, w(J) — 7r*) . (85)
EES
Given d > 0 and € € (0, 1/4], note there exists a (de)-net of [—4d, 4d]* of cardinality at most
8t1/2 3 8t1/2 t
5] < (25 ) (36)
€ €

If J is any element of {—1, +1}" with d < ||7(J) — 74| < 2d, and 7, is an element of the (de)-net
at minimal distance from 7(.J), then |[mye; — 4| = d(1 — €), and

2

(wnet — () — 7%*) > HTF(J) B > d2(1 - 2¢).

(ﬂnet —n(J),n(J) — 7'1'*>

Thus, by taking @ = me — 7% and € = ¢%/2 in (84) and (85), we obtain

t/2 401 _ 9,1/2\2
<2d) < o5t exp{ — Nd'(1-2¢")
q 8d2(1 _ q1/2)2

(65t>t/2 { Nd2(1 - 3q1/2)}
<[ — exp<{ — - a—
q

Since 4¢ > 3k for all k > 0, as long as Nd? > 1 we can bound

Q <d < Hw(J) i

. d) <y (65¢/9)""2 o 2A65t/q)

@ (H”(‘] ) = exp{N (2~d)2(1 — 3¢1/2)/8} ~ exp{Nd2(1 — 3¢'/2)/8}

k>0

This proves the claim. n

The result for w(.J) is very similar, although slightly more involved since we require a more
precise estimate:

Lemma A.23 Recall w(J) from Definition A.7, and to from (56). For Q as in Definition A.11,

we have
t/2 201 _ Q41/2
2af) < () ew{ - T
q

Sorall |d| = 1/N1/2. (The bound is vacuous unless Nd? is large compared to tlogt.)

Q<{J e {~1,+1}V: Hw(J) — @,
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Proof Recall the definition of m; from the bound (83) in the proof of Lemma A.22. For b € Rt
denote

1 2
Wnax(b) = +- > ( > bg(y(e))i> (m)? < Wo(b) + 3W1(b).
iSN N e<t—1
Applying (83) gives Wiax < Wy + 3W7 where

1
Wo(b)zﬁ Z by |
I<t—1
1 2
Wib) = 2] ( 2 be(y“))i) |(m®);].
SN M<t—1

It follows from Lemma A.4 that Wy(b) — | b]? in probability as N — oo. Lemma A.4 also implies

PO E[(pZ . p2>1/2z'> ] th<w1/22>|] = wip).

in probability, where p € [—1, 1] is a value that can depend on b. However we can crudely bound

4 1/2 7\2 12 9 1/2
wi(p) < (E(Z E[th(4"22) ]) O (39)1/2.

It follows by the Azuma—Hoeffding inequality that

1 Nz? Na?
Q<< bgy(e),J—m(t)> >:U> <exp{—}<exp{— }
N 42:11 2Winax (b) 2[b[2(1 + 64%/2)
(87)

On the other hand, it follows from Definition A.7 and (56) that

1 .

N( S by, m<t>> — (bw) =) (88)
e<t—1

Given d > 0 and ¢ € (0,1/4], note there exists a (de)-net of [—4d,4d]'~! with cardinality upper

bounded by (86). If J is any element of {—1, +1}" with d < || (J) — @«| < 2d, and wye is an

element of the (de)-net at minimal distance from w(.J), then ||cner — @« | = d(1 — €), and

2

(wnet — Oy, w(J) — w*) > HW(J) — T > d?(1 — 2¢).

- (@ ), () — )

Thus, by taking € = ¢"/2 and b = wpe — s in (87) and (88), we obtain

t/2 401 _ 9,1/2\2
<2d) < o5t exp{ — Nd'(1=2¢77)
q 2d%(1 — q'/2)2(1 + 641/2)

<65t>t/2 { Nd2(1 - 8q1/2)}
< | — exp< — — 5 ("
q

Since 4¥ > 3k for all £ > 0, as long as Nd? > 1 we can bound

65¢/q)"/> 2(65t/9)"?
>d) < 2 o INEP( 53]~ exp{NaP(1L— 5]

The claim follows. |

Q (d < Hw(J) —

Q(|m) - &
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Appendix B. Technical estimates

We now collect some technical results which will be used later in the proof. This section is organized
as follows:

* In §B.1 we prove some basic consequences of Assumptions 1 and 2.

* In §B.2 we give the proof of Proposition A.1, which characterizes the replica symmetric fixed-
point solution. As a consequence of this analysis we obtain a rough estimate (Corollary B.8)
of the replica symmetric formula (29), which will be used in later sections. We also prove
Proposition 1.8, showing that the replica symmetric formula for U,, converges to the one for
Uasn| 0.

* In §B.3 we prove Lemma B.11, which gives the Almeida—Thouless (AT) condition in our
setting.

* In §B.4 we give the proof of Proposition 1.3, showing that Assumption 2 holds if u = log U
is either bounded or concave. We also give the proof of Proposition A.6 (convergence of
the state evolution recursions), which amounts to checking that AT condition derived in
Lemma B.11 holds for 0 < o < a(U). We conclude the section with some further con-
sequences (Lemmas B.14 and B.15) of Assumption 2.

The following notation will be used throughout the paper:

Definition B.1 Forc > 0 and x € R, let i, . denote the probability measure on the real line whose
density (with respect to the Lebesgue measure) is given by

dpiec _ (2) = Uz + cz)p(z)
dz P Ee[U(z + )]

We use E,, ., Var, ., and Cov, . to denote expectation, variance, and covariance under [iz ..

B.1. Preliminary bounds

In this subsection we prove some basic consequences of Assumptions 1 and 2. As before, & denotes
a standard gaussian random variable, and [E¢ denotes expectation over §.

Lemma B.2 Suppose U satisfies Assumption 1, and let q, .(z) = U(x + cz)p(z) as above. Then,
given any € > 0 and any L < oo, it is possible to choose 1/ small enough such that we have the
bound

J‘U(m +c2) = U@ +d2)|p(2)dz < e
as long as ¢, € [1/3,3], ,2' € [-L, L], and max{|z — 2’|, |c — |} < 7.

Proof Given ¢ > 0, we can clearly choose L(e) large enough (depending only on €) such that
L(e) > L, and

L|>L<e>

(89)

Ulx +cz) — Uz’ + c’z)’gp(z) dz < J p(z)dz <
|21>L(e)

o
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< L(e), then the assumptions imply |z + cz| < 4L(€) and |2’ + ¢/z| < 4L(e), so
J
where @(z) = U(z)1{|z| < 4L(¢)}. Then, since @ € L', it is well known that we can choose a

function @ which is compactly supported and smooth, such that ||a — @|; < €/4 (see e.g. (Lieb and
Loss, 2001, Lem. 2.19)). Therefore

Uz +cz) —U(z" + c’z)‘gp(z) dz < J‘u(az + cz) —u(z' + 2)|p(z) dz
z|<L(e)

f‘u(x +cz) —u(x + cz)’cp(z) dz < ¢(0) J ‘ﬂ(m +cz) —u(x + cz)‘ dz = POl = @ << ;

C

S

where this estimate holds for all z € R and all ¢ > 1/2. We also have
| [+ e2) — 2’ + 2otz < 1@ [ (1o = &'+ e = 11l )ol) do < 2
which can be made at most €/4 by taking ' = ¢/(8|@'| ). Combining the above estimates gives

L|<L(e>

and combining with the estimate (89) for |z| > L(e) gives the conclusion. [

Uz + cz) —U(:c’+c’z)‘ < %,

Lemma B.3 Suppose U satisfies Assumption 1 . There exists a finite constant C1(U), depending
on U only, such that

Ee(|€[PU(x + c£))

B2 = =

<Ci(U) + (M>p

c

Sorall 0 < p <200, 1/2 < ¢ <2, and x € R. (We can assume, without loss, C1(U) = 10.)

Proof It follows from Assumption 1 that EcU(c{) > 0 for any ¢ > 0. Lemma B.2 gives that
EcU (c€) is a continuous function of 1/2 < ¢ < 2, so by compactness considerations we must have

cl(U)Emax{Zsup{EéUl(cé):;<c<2}}<oo (90)

(where we chose ¢;(U) > 2 for convenience). Next, for any M > 0, it holds forall 1/2 < ¢ < 2

that
¢(M/c)
M/c ~

M
e (Ucilec) = ) < P(je > 7 ) <
If we take K > Ko(U) = (8log e (U))Y? = 2, then for all 1/2 < ¢ < 2 we have

(K/2) 1
K/2 7 2¢6(U)"

Be(U(ct)ile] < K) = BeU(c) - £
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In what follows let K (z) = max{Ky(U), |z|}. Then we can lower bound

EeU(z + c€) = JU(cz)g0<z - x) dz = JU(CZ) exp{ . m}g&(z) dz

C @ C
E(U(cS); €] < K(2)) _ 1/2a())
exp{(3/2)K (2)?/c?} ~ exp{(3/2) K (x)?/c?}

Next we note that for any M > 0 and / = 1/10 we have

oD

2
Be(lePi el > 1) = | S exp{—z }dz

|z|=M (271')1/2 ?

N(p+1)/2| (P .2
f (L+17) E exp{_(Hn)z }dz
|21 M /(14+7)1/2 (2m)1/2

1.05PF1|z|P M (M /1.05)
< S T 2eRP( ]2 ——s | S oL, (92
oy <P (1> ) <o g O

where ¢y > 5 is an absolute constant since we restricted 0 < p < 200. Combining (91) with (92)
gives

Ec(l€lPU(x + <€) _ <1-82 : K(fﬂ)>p L Ec(€l”s 1] > 1.82 - K(z)/c)

EeU(x + c€) ¢ EeU(@ + ct)
(Y K5 e
< . 0" 182 K(2)/(1.05 - ¢) 1/2aU))

(The first inequality above also uses that U < 1, from Assumption 1.) Recalling again the restric-
tions 1/2 < ¢ < 2 and 0 < p < 200, we can simplify the above to obtain

Efl(él;i;(it;)&)) < <1'82 'CK(SE))p 4+ 200 a1(U) - go(l'?o';fix)) exp{gl;g)Q }

(22 2

< <182|"”|>p ; {(4K0(U))200 +oo- cl(U)}

C

) P
_ (182’”4) Loy, 93)

C

where the last equality defines C7(U). The above choices guarantee C1(U) = ¢g - ¢1(U) = 10. We
define (C1)!(U) similarly, replacing ¢ (U) with

(EI)I(U)EmaX{Q,sup{IEév}(Cf):gécég}}<00. 94)

Note that a bound on (¢;)}(U) implies a bound on ¢ (U,) for 1 small enough; this will be spelled
out below in the proof of Proposition 1.8. |
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Remark The bound from Lemma B.3 is reasonably tight. To see this, consider the function

U(z) = 1{]w—a| < g}

fora>0.IfU(x+&) =1 thenx + & > a/2, s0& > a2 — x. In the case that x < 0, it implies
|€] = a/2 + |x|. It follows that for any x© < 0 we have

_ Ee(|§FU@+E)) _ (a P (a\?
Ex,C(|Z|p) = EgU(l‘ +£) = (2 + |£U|> = (2> + |;U|p’

where a > 0 can be chosen to be arbitrarily large.

Next we combine Assumption 2 (which bounds Var, .(Z)) with the calculations of Lemma B.3
to obtain bounds on Var, .(Z?) and Cov, .(Z, Z?):

Lemma B.4 Suppose U satisfies Assumptions 1 and 2, and let C1(U) be as in Lemma B.3. Then
we have

2
Varm,c(ZQ)<K2(U)-{(M2CM> +01(U)}, (95)
Ky (U 1.82 -
Covyo(Z,Z%) < 221(/2) ( ; 2 +C’1(U)1/2>, (96)

forall1/2 < c<2andall x € R.

Proof Let K (z) be as in the proof of Lemma B.3. From the definition of K3(U) (see Assump-
tion 2),

(1) = Zeelle = EN2(E+ &2 (x + c)U(z + &) |€ + €] < 242182 K(2)/c]
Eee[U(z + c§)U(x + )]

< 2K,(U) - (

If £ and ¢’ are independent standard gaussian random variables, then £ —¢ and £ +¢ are independent
gaussian random variables with mean zero and variance 2. It follows that

©2) ©(M/1.05)

Beo| (€~ €€ +E)16+ €1 > VaM | = 4 Be[lef 6] > M| < 4 e T e 07

Combining (97) with our earlier bound (91) gives

Eeo[(€ =€) (E+€)°U(x + c)U(x + cf); € + €| = 212 - 1.82 - K(a)/c]
Ee ¢ [U(z + c§)U(z + c£')]
p(1.82 - K(x)/(1.05-¢)) exp{(3/2)K(z)*/c*}
1.82- K(z)/(1.05 - ¢) 1/(2¢.(U))

(1) =

<4‘CO
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(The first inequality above also uses that U < 1, from Assumption 1.) By combining the above
bounds for the quantities (I) and (II), and recalling again that 1/2 < ¢ < 2, we obtain

Eee[(€—€)°(E+ &)Uz + c§)U(x + )]

2\ _
Var, o(Z°) = 2 Ee Uz + c)U(z + )
182 K(2)\>  4-co-a(U) (182 K(x) 3K ()?
<K2(U>-<c> + 1.82/1.05 ~90< 1.05-¢ )exp{ 2¢2 }

< el {(msz " (1821/?((]))2} - TR @

C

< Ks(U) - {(18“:”')2 + Cl(U)},

C

< Ky(U) - {(18“:”')2 +14- Ko(U)? + co - cl(U)}

where the second-to-last inequality uses that we took Ko(U) > 1 (see Assumption 2), and the
last inequality uses the definition (93) of C(U) from the proof of Lemma B.3. This proves (95).
Combining with Assumption 2 and the Cauchy—Schwarz inequality gives

2 g 189. 2 1/2
Cov, o(Z,7%) < {Varx,c(Z) Varm,c(ZQ)} < 221(/2U) {( 8 » |m|> + C’l(U)}

ST ( c OO ),

where the last inequality again uses that Ko(U) > 1. This proves (96). |

Remark B.5 We include here an example of a function U that satisfies Assumption I but does
not satisfy the bound (95) (and hence, by Lemma B.4, must violate Assumption 2). For k = 1 let
b, = exp(—100 - 4¥), and let

Ap(z) = (1{:(: e [o, 1]} + 1{.7; e [2F - 1,2’“]}) ;’;) = bkgfg} .

Then clearly Ay, is a nonnegative measurable function supported on [0,1] U [2F — 1,2F], with

b 1/ pk (27T)1/2
A < = 2 / X — | < —F— .

Let C be a large absolute constant, and define z;, = C2F and
U(z) = > Aglag + ).
k=1
From the above bound on | A« it is clear that U satisfies Assumption 1. Next we note that
E¢[¢%A 1 o(1
k

Eg[fi;:ﬂf)] _ f24fk(2) ds — ;((2k)5 (2P 1)+ 1) _ otk (1 n O;:)) _
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Forany k = 1, we have EcU (—x 4+ &) = E¢ A (§) = 2by. For £ = k + 1 and 0 < p < 4, we have

Eell€? Ar(—a + 7+ )] _ [ Adl oEe(€") _ 3(2m)"2 exp(100 - 4)
b b b h exp(99 - 49)
_ 3(2m)1/? _ 3(2m)1/? 1
= exp(4k[74 - 40k (25 - 46K —100)]) T exp(74-4¢) T exp(70 - 44)°
On the other hand, for 1 < { < k — 1 and 0 < p < 4, we have (again taking C' large enough)

Ee[|€]P Ae(—zk + ¢ + )] HAeﬂooEs[€4 €] = C2¥/4] _ (2m)'% exp(100 - 4)
by by = exp(99 - 4¢ + C24k/33)
_ (2m) /2 exp(100 - 4%) _ (2m)1/2 1
= exp(99 + C24%/33) T exp(99 + C4k) T exp(70 - 4F)

(In the first inequality above, we used that the support of A, is contained in [0, 2"].) Altogether we
conclude

Eg[»s?U(—xwg)]:(H o(1 >E5[52Ak<f>]:(1+ o) )2%

EeU(—z + ) xp(4¥) ) EeAx(§) exp(4F)
Ee[¢*U(—ar +£)] O(1) \Ee[¢'Ax(©)] O(1) \2*
EU(—z, +&) <1 i eXP(4k)> EcAR(€) (1 * GXP(4k)> 2

Recalling the notation of Definition B.1, we obtain

o= (1 2N (5} v

Thus shows that U does not satisfy the bound (95), as claimed.

B.2. Estimates of the replica symmetric solution

In this subsection we give the proof of Proposition A.1. As a consequence we obtain a rough
estimate (Corollary B.8) of the replica symmetric formula which will be used later in our analysis.

Lemma B.6 Suppose U satisfies Assumption 1. As in Proposition A.1, let (v) = E[th(y'/2Z)?].

Then
dq

ap ST

max {0 1— 4¢}
forally =0

Proof It is clear that g is increasing with respect to ¢ > 0: indeed,

d /
df/l} [th(zpl/?Z) th (zpl/?Z)wl/Q] >0,

since th'(x) > 0 for all z € R, and z th(z) > 0 for all z € R. Integrating by parts gives

.
ﬁ - E[(th’(¢1/22))2 + th(yY/22) th”(wl/ZZ)}

= E(l — 4th('22)? + 3th(w1/22)4) .
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Note that z = th(y'/2Z)? € [0, 1] almost surely, and 1 — 4z < 1 — 4z + 322 < 1 forall z € [0, 1],

SO
dq

dip
forall ¢ = 0. |

1>% E(l - 4th(1/11/2Z)2> >1— 4y E(Z2) =149,

Lemma B.7 Suppose U satisfies Assumption 1. As in Proposition A.1, let 7(q) = E[F,(¢"/?Z)?).
dr 1
! -0<q<} <e-C(U),

Then
sup { d—q 5

where c1 = 1 is an absolute constant while C(U) is the constant from Lemma B.3.

Proof For convenience we shall rewrite (8) as

EcU'(x + (1 — q)V/%)
EeU(x + (1 —q)V2¢)

Fy(x) = (98)

Note that the above makes sense for any U satisfying Assumption 1, without any smoothness as-
sumption, since U’ can be interpreted as a distributional derivative (as in e.g. (Lieb and Loss, 2001,
Ch. 6)). Similarly one can make sense of the distributional derivative U*) for any integer k& > 1
We can then calculate

dr

d[Fy(q"?Z)]
o alfqla"2)]

] =[O —{Dn
where, abbreviating U*) = U®) (¢1/27 + (1 — q)'/%¢), we have

0 - E| R0 2)- (5 @72)| - B R "2)- (R ") + (R 0 P2)) .

Fy(¢'2) (E»:(fU”) B (EgU’)Es(W’)ﬂ
(1-q)2\ EU (EcU)? '

) = E[

It follows by repeated applications of the inequality 2ab < a? + b? that

Ee[[€'U(¢"22 + (1 — 9)/%0)]
<C ) < EeU(q'2Z 1 (1 g)'/%) >

0<k,p<3

forall0 < ¢g<1 / 2, where C' is an absolute constant. It then follows from Lemma B.3 that

<c ) [( (4¢"2|Z)) + C’l(U)>2p} <er- Oy (U)

0<k,p<3

for all 0 < ¢ < 1/2, where ¢; > 1 is an absolute constant. |

Proof [Proof of Proposition A.1] We seek a value g € [0, 1/25] that satisfies the fixed-point equation
9), i.e., ¢ = g(a7(q)). This is the same as a root ¢ € [0, 1/25] of the function

7 M)

—7(q). 99)
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Note that G(0) = 0, and it follows from Lemma B.6 that ¢’ () € [4/5, 1] for all ¢ < 1/20, so

4 _
gw <q¥) <v
for all ¢ < 1/20. Consequently, if g(¢/) < 1/25 then we must have ¢ < 1/20, that is to say,

sup {071 0) 0% 5} < 5

It follows from Lemma B.6 that (771)'(¢) € [1,5/4] for all ¢ < 1/25. Combining with Lemma B.7
gives

1 dg 5

-0 < 2L <= - Ch (D)8,

o C1 1( ) dq 4o +ta 1( )
where ¢; is the absolute constant from Lemma B.7. It follows that as long as o < «(U) as defined
by (27), then for all 0 < ¢ < 1/25 we will have

1 dg 2
< — < —
200 dg  «

At ¢ = 0 we have g(0) = —7(0), and it follows by Assumption 1 combined with Lemma B.3 that

(eetevie) < o) = (570) - (ALY < 0w

It follows that on the interval 0 < g < 1/25, the function g has a unique root ¢, which must satisfy

(Ec[€U©)])

q 2
<= <20:(0).
2 « 1()

It follows from the earlier bound on ) that

(Ec[¢U©)])
2

so this concludes the proof. |

Corollary B.8 [If the function U satisfies Assumptions 1 and 2, then for all 0 < o < o(U) we have

RS(a; U) . ann(e; U) 151 C1(U)2 >
a a a

log 2

—1.53-C1(U)?,
where C1(U) is the constant from Lemma B.3, and o(U) is given by (27).

Proof Let (g,1)) be the solution from Proposition A.1, and recall from (29) that

P(1—q)

RS(a;U) —log2 = — 5

+ E{ log ch(yp'2Z) + oqu(ql/zZ)} .
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We hereafter abbreviate
U(q) =ELy(q"?2) = E[log EgU(ql/QZ +(1- q)l/Qg)] :

Since ch(z) > 1 for all x € R, we can lower bound

RS(o;U) —log2 = —% + a]ELq(ql/2Z) > —% + Q{Z(O) —q sup

0<g<1/2

di
dql|)”
Similarly as in the proof of Lemma B.7, we can bound

e Ee[|€]FU (¢"2Z + (1 — ¢)2O)1\? 5

for all 0 < g < 1/2, where ¢; is an absolute constant (and can be arranged to be the same as the ¢q
from Lemma B.7). By combining the above bounds we conclude

' B Z ¢ (100)
RS(a;U) — (log 2 + af(0)) > v sup at > ¥ _ q-c1-C(U)?
a 2 0<g<1/2|dq 20
(28) 1
> —301(U)2<2 +cp - Cl(U)2a>
@7 51 1 2
0 _ 1 > 151 :
3G) <2 * ewcl(U>4K2<U>4> el

where the last bound uses that we chose C1(U) = 10 in the proof of Lemma B.3. Then, recalling
(5), we have

1 ©0 ,
Er(z) > “lesal) = —ea(l) 2 _aG )

ann(o; U) — log 2 = af(0) = —alog 50

using that we also chose C(U) = 5-¢;(U) > 10 in the proof of Lemma B.3. The claim follows. H

Lemma B.9 Suppose U satisfies Assumptions 1 and 2, and let Uy, = U * @y, as in (21). Then, using
the notation of Assumption 2, we will have Ko (U,)) < 4K»,(U) for alln < 1.

Proof Let &, ¢ be i.i.d. standard gaussian random variables. We need to bound the quantity

Egé/[(f — §I)2Un($ + Cf)Un(.T + Cfl)] _ Nn(x, C) (101)
Ee ¢ [Uy(z + c&)Up(x + c£’)] Dy(z,c)

Let ¢, ' be independent copies of &, £’, and note that
Nyf,0) = Bercor| (€~ €U + e 40U + € 40|

Taking an orthogonal transformation of (£, ) gives another pair of i.i.d. standard gaussians,

) = e (2 (O
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Likewise we like (X', Y”) be the pair obtained by the same transformation applied to (£, (). Then
note that

(E—e)? = (X = X) =Y —=Y)\? <9 AX =X+ (Y -Y')?
o (¢2 + n2)1/2 = 2+ 2 :
Rewriting N, (z, ¢) in terms of the random variables X, X', Y, Y” gives
X - XN +n*(Y -Y')?
c? + n?

Ny(z,c) <2-Ex x/ vy [ (

x Uz + (& + )2 X)U(z + (2 + 772)1/2X’)}

B 202
242

4772
2 +n?

No(a, (¢ +17%)'%) + Doz, (¢ + 1)),

where Ny and Dy are as in (101) but with U in place of U,. If 1/2 < ¢ < 2 and < 1, then
1/2 < (¢ 4+ n?)Y/2 < 7/3, so Assumption 2 will give

2¢? 4 2 2y1/2
Nn(l',C) < <C2—|—T]2K2’Z(U> + M)DO(QE’, (C +n ) / ) <4K272(U)D77(IL‘,C).
The claim follows. u
Proof [Proof of Proposition 1.8] Recall from Lemma B.3 the constants C;(U) and (C4)!(U): they

depend on the absolute constant ¢, as well as the constants ¢1(U) and (¢1)!(U) defined by (90) and
(94). Let &, ¢ be i.i.d. standard gaussians, and note

EeUy(c€) = B U (& +1¢) = BeU (¢ +1)M2%¢)

It follows from this that in the limit | 0, we have ¢;(U,) asymptotically upper bounded by
(¢1)Y(U). Next recall from Lemma B.9 that if < 1 then we have K(U,) < 4K»,(U). Conse-
quently, recalling (27) and (31), we have

~
s

) 1 1 3
= = U). 102
ell . c1 - Cl(Un)G . KQ(UW)4 el6 . c1 - (01)2((])6 . K27Z(U)4 O‘Z( ) ( )

a(Uy)

This shows that for all 0 < o < oy(U), we also have o < a(U,) for all n small enough, which
means that the results of Proposition A.1 apply for U, as well as for U. We see from the proof
of Proposition A.1 that the replica symmetric fixed point ¢, for U, is a root ¢, € [0,1/25] of the

function (cf. (99))
——1

_ q
gn(Q) = _T’ﬂ(Q)a
where 7, is defined as in (9) but with U, in place of U:
! E[ <E<[£Un<z F (- q)l/@]ﬂ
1—q) EcUy(Z + (1 —q)V¢)

It is clear that g, converges uniformly to g over 0 < ¢ < 1/25, so g, converges to ¢, and conse-
quently 1), converges to 1. It is then straightforward to deduce from the formula (29) that RS(«a; Uy)
converges to RS(a; U) asn | 0. [

fn((l) = (

50



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

B.3. Almeida-Thouless condition

Recall from Definition A.2 the state evolution recursions.

Lemma B.10 Suppose U satisfies Assumption 1. The recursions of Definition A.2 are well-defined:
the recursions (33) lead to |ps| < 1 and |us| < 1 for all s > 1, and the recursions (34) leads to
As€[0,1)andT's € [0,1) forall s = 0.

Proof We abbreviate F' = F, throughout this proof. We have p; = Ay and p; = 71 asin (32), and
it follows that

0<(p1)?=(\)*< ;E[th(wl/ZZ)Q] @,

and likewise 0 < (1) = (71)? < 1. Then for s > 1 we have p,,1 and p,1 defined by (33), and
it follows by the Cauchy—Schwarz inequality that

1/2 7\2 1/2 7\2

q (0

Thus |ps| < 1 and |us| < 1 forall s > 1, which confirms that the recursions (33) are well-defined.

It remains to verify that the quantities A;_; and I's_; from (35) are strictly smaller than 1 for
all s > 1. The claim holds trivially in the base case s = 0, since clearly Ag = I'g = 0. We therefore
suppose inductively that we have A;_; < 1 and I's_; < 1. This means that the quantities \s and
are well-defined by the recursions (34). Denote M; = ¢/? and Ny = (¢/a)"/2. Next let Y;, X, be
a collection of i.i.d. standard gaussian random variables, and let

|ps+1’ <

M1 =th (@01/2{715/1 + .o+ + (1 - Ti1)1/2Yz}>
Nj+1 = F(q1/2{)\1X1 + ...+ >\j—1Xj—1 + (1 — Ai_1)1/2X]}>

(cf. (253) and (254)). This gives well-defined random variables M}, Ny forall 1 < k < s+ 1, with
E[(M)?] = qand E[(N:)?] = ¥/a. f2 < k < £ < s+ 1, then

E(M.M
(;‘5) - p<(%)2 oot (e-2)” e (1 - Fk2)1/2> D 1) D pr, (103
E(NyN,
W = M(()\l)Q + ...+ ()\k‘—2>2 + )\k—l(l _ Ak—2)1/2> (2) ,U/(pk_l) (2) L - (104)

(cf. (41) and (42)). Now let R;, C; (¢ = 1) be the Gram—Schmidt orthogonalization of the random
variables M;, N;:

1
Riy = {Mm - E(MHle)Rj} : (105)
Ti+1 j<i
1
Ci1 = {Nm - E(Ni+10j)cj} (106)
Ci+1 j<i

where 7;, 1 and ¢; 1 are the normalizing constants such that E[(R;11)?] = 1 and E[(C;41)?] = 1.
To see that 541 is a well-defined positive number, we apply the inductive hypothesis I's_; < 1:
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then follows from the above definition (together with the fact that th is a non-constant function)
that M1 depends non-trivially on Y. On the other hand, the random variables R; for j < s can
depend only on Y7, ..., Y, ;. It follows that the random variable

M1 — EE M, 1Rj)R

J<s

has strictly positive variance, so 7511 is well-defined and positive. Likewise, using the inductive
hypothesis A;_1 < 1 together with the fact that F' is non-constant, we deduce that ¢z 1 is also well-
defined and positive. Next, since we see from above that the quantities E(My M) and E(N;Ny)
depend only on min{k, £}, it follows that there is a value I; such that E(M; 1 R;) = ¢*/?l; for all
i > j, and likewise there is a value y; such that E(N; C’J) (¢/a)1/2y] forall i > j. Asin (35),
let us abbreviate

It follows by the above calculations that

- E(MisioRis1) 105) q"? (B(Mj2M;yq) B Z(HQ 103) piv1 — L
i+1 q1/2 Tit1 q = J (1 _ Li)1/2 )
Yir1 = E(Nit2Civ1) (106) (w/a)l/z{E(Ni+2Ni+l) ~ 3 .)2} 04 piv1 =Y
v (/a)'/? rit1 b/ = (1—Y;)H2

Recalling that r; 1 and ¢;41 are positive for all ¢ < s, we deduce

271/2
Tit1
0< q1J;2 - 1/2E{<Mi+1 - ZE(Mi-i-le)Rj) ] = (1—Ly"?,

Jj<i

and similarly 0 < (1 — Y;)%2, which implies L;, Y; € [0,1). We see moreover that the sequences
l;, m; satisfy the same recursions (34) as the sequences \;, i;, which implies [; = A\; and m; = p;
for all ¢ > 1. This proves that A; = L; and I'; = Y; both lie in [0, 1) for all ¢ > 1. Therefore the
recursions (34) give well-defined quantities \s and v, for all s > 1, as desired. |

Lemma B.11 (Almeida-Thouless condition) Suppose U satisfies Assumption 1, and moreover

that
AT(e;U) = a - {E((Fq)’(ql/22)2> }{E(th’(wl/22)2> } <1. (107)
In this case, the recursions of Definition A.2 leadtoI's — 1 and Ay — 1 as s — oo.

Proof We begin with a general observation. Let Z, &, ¢ be i.i.d. standard gaussians. Suppose
f : R — R is any function with at most polynomial growth, and consider the function

rp(t) = E{f (0722 + (1 =02 £ (122 + (1 - t)1/2§’>] ,
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which is defined for 0 < t < 1. Write Z(t) = t'/2Z + (1 — t)1/2¢, and note that

rp(t) = E[(Eff(tl/QZ +(1- t)1/2§>>2] = E[(ng(Z(t)))Q] > 0.

Next we differentiate with respect to ¢t and apply gaussian integration by parts to obtain

(' 0) = 5{ (Bes20) e 120075 - =507 ) ||
~ | (Bes'20) | =70 > 0.

It follows moreover that (r)"(t) = (ry)'(t) = r¢(t) = 0 forall 0 < ¢ < 1, so ry is convex.
Now, returning to the state evolution recursions from Definition A.2, we will consider rg and
rp for

S(z) = (g)l/zF(ql/%), T(x) = (;)m th(e2z)

Denote s = rg o rp. Note that the fixed point equation (9) implies rg(1) = 1 and rp(1) = 1,
so rgr(1) = 1. We also have from (32) that 5(0) = w1, while r7(0) = p; = 0;s0if u3 = 0
then 7s7(0) = 0. However, the condition (107) is equivalent to (rsr)’(1) < 1, which implies
(rsr)'(t) < 1forall t € [0, 1], and consequently

1
1-— TST(O) = TST(l) — TST(O) = f (T’ST)/(t) dt < (T'ST)/<1) <1.
0
This shows that if (rg7)’(1) < 1 then we must have r57(0) = 75(0) = (1)? > 0.
Next we argue that po # 0. To this end, for the function T we can directly calculate that for all
0<t<1,

Y

_¥ 2@ ¢(1-9)?
q

q

() (0) = r(8) > r20(0) = (BT'(2))” = & (Beb (4122 -0,

so rp(t) is strictly increasing. Thus, in the case 1 > 0 we obtain

33
p2 E p(u1) = rr(un) > rr(0) = 0.
Since T is an odd function, in the case p1; < 0 we obtain
33
p2 E pl) = —rr(—p) < —rr(0) = 0.
In both cases we obtain pa # 0 as claimed.

To conclude, note that Lemma B.10 implies that A; T Ay < 1land 'y 1 'y < 1ass — oo. If
(rs7)'(1) < 1, the above considerations give (I'e)? = (71)% = (u1)? > 0, as well as

2
a4 [ p2—A (32)
0= 0af @ (2550) @ = 0.
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Clearly we must also have Ay — 0 and v — 0 as s — o0, s0

Ps ) (34 As—l + )\5(1 - As—1)1/2 s AOO = 0
Hs B Is_q + 'Ys(]- - 115—1)1/2 'y 0"

Thus, for s large enough, we can express

(33) (33)
psr1 = p(ps) = p(p(ps—1) = rsr(ps—1) -

which shows that I, must be a fixed point of g7, and Ay, = r7(I'y). Since we saw above that
rsr(t) is convex on the interval 0 < ¢ < 1, if (rgz)’(1) < 1 then the only fixed point of g7 (t) on
the interval 0 < ¢ < 1 occurs at ¢ = 1, and thus we obtain Ax, = 'y = 1. |

B.4. Logconcavity

In this subsection we review the proof of Proposition 1.3 which follows from well-known results
on logconcave measures. We then state and prove Lemmas B.14 and B.15, which give some further
consequences of Assumption 2. We also present the proof of Proposition A.6.

Theorem B.12 ((Maurey, 1991)) Suppose U satisfies Assumption 1 and is logconcave. Recall
that o denotes the standard gaussian density on R, and let . be the probability measure on R whose
density (with respect to Lebesgue measure) is

dp _ U()p(2)
dz  EU(€)

Then for any measurable subset B = R we have the concentration bound

Jexp (W) dp(z) < M(l)

where d(z, B) denotes the minimum distance from z to B.

Theorem B.12 is obtained as a consequence of the Prékopa—Leindler inequality (or functional
Brunn—Minkowski inequality) (Prékopa, 1971, 1973; Leindler, 1972) from convex geometry; see
also Bobkov and Ledoux (2000) and Talagrand (2011a, Thm. 3.1.4). In this paper we use Theo-
rem B.12 only in the proof of Proposition 1.3, which is not needed for the main result Theorem 1.1.
See §1.2.2 for a discussion of results on the positive spherical perceptron which use convex geom-
etry in more essential ways. By well-known arguments, Theorem B.12 can be used to deduce the
following:

Theorem B.13 (see e.g. (Talagrand, 2011a, Thm. 3.1.4)) [n the same setting as Theorem B.12, if
f : R — R is Lipschitz, then

_ Py 2k — z 2
J(f(y)(w;f)(k D™ dute) du(z) < fexp{(J”(i‘/)lﬁf())}du(y) dp(z) <4

for any integer k = 1.
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Note that the concentration bounds from Theorems B.12 and B.13 rely on the strong logconcav-
ity of the gaussian density ¢(z), and the bounds hold uniformly over all logconcave functions U.
As a consequence we obtain:
Proof [Proof of Proposition 1.3] Suppose U satisfies Assumption 1. If U is bounded away from
zero or compactly supported, then Assumption 2 holds by trivial calculations. In the case that U is
logconcave, Assumption 2 follows from the above result Theorem B.13. |

Lemma B.14 If U satisfies Assumption I and 2, then the function Fy of (8) satisfies

IF e < o (57 +1).

Therefore Fy is Lipschitz for any q € [0, 1).
Proof From (8) and (98) we calculate

e _\1)2 N 12 2
oy - B (1= 9) f)_(ng +(1-0) 5>>‘

EeU(z + (1—q)%)  \EU(x 1 (1 q)1%) (108)

Applying gaussian integration by parts gives

oy 1 (B[ - DU+ (1-q)20)]  [Ee[€U(x + (1 - g)'/2¢)]
B e e e s Rl e s erien) |
_ 1 {11“3@5/[(5 —&PU(@@ + U +c€')] 1}
1—ql|2 Ee e [U(x + c€)U(x + c£')] '
The result follows from Assumption 2. |

Proof [Proof of Proposition A.6] In view of Lemma B.11, it suffices to check that the condition
(107) holds for 0 < a < a(U). By Lemma B.14 and the fact that th'(z) € (0,1) for all z € R, we
can bound

AT (o U) < +1

[0 KQ(U)
(1- Q)2< 2

(2<7) 3 -1
= el0C (U)K (U)? ’

) <G e

having used that C1(U) > 10 and K»(U) > 1. [ |

Lemma B.15 Suppose U satisfies Assumption I and 2. Let F'(t) be as in (25). Then
max{|h(£)oo’ [0 oo, [H oo, Jm® oo s s < 8,0 <t — 1} =N
with probability 1 — oy (1).
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Proof Note that Lemma A.4 implies, forall 1 </ <t —1landall1 < s <t,

HE),\ ! 101 o
N—»ooNZ<¢1/2 > :]\P_I,DOOMZ< 1/2 > =E(Z7),

where the convergence holds in probability. It follows that the event

(s)).\ 101 O) 101
Qz{max{l > <(I;1/2)> 17 > <h1/2 > :s<t,€<t—1}<2E(2101)}

<N a<M

occurs with probability 1 — ox(1). We claim that € implies the desired bounds. Indeed, €2 clearly
implies

1/101
max {|rn(5)|OC 18 < t} < max {|H loo : 8 < } < 12 <2NE(2101)> < N1/100

In the above, the first inequality uses that m(*) = th(H()) and | th(z)| < |=|; and the last bound
holds for N large enough (depending on ). Similarly, €2 implies

1/101
maX{|h(Z)|oo <t — 1} < q1/2 (NQE(Zlol)) < Nl/lOO,

where the last bound holds for N large enough (depending on «, ¢). Finally, it follows using
Lemma B.3 that

E h®), + (1 — )1/ ),
’(n(f))a _ ’F((h(f))a) @ 1 f[EU(( ) +( Q) g)] < Cl(U) +4|(h ) | ’
(1=@)V? EcU((hO)q + (1 - q)"/%) (1—q)'2
and combining with the previous bound on |h®)|, gives
max {Hnwyoo U<t - 1} — max {yp(h“))oo < t— 1}
< C1(U) + 4¢"*(NaE(Z'01))1/101 < N0,
(1—q)t2
where the last bound holds for IV large enough. This proves the claim. |

Appendix C. Analysis of first moment

In this section we finish analyzing the conditional first moment bound (Theorem A.12) obtained in
Section A. This leads to the proof of Theorem 1.4, our main result on the conditional first moment.
From this we can deduce the upper bound in Theorem 1.1, as presented at the end of this section.
For the reader’s convenience, we begin by reviewing some important notations. Recall from (55)

that
A1

e = ¢ PN, = ¢'/? 1 e Rt. (109)
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Recall also from (56) that we defined

il

@y = (1 — Q)" PT%,_1 = (1 — ¢)p*/? 71 e RFL. (110)
t—2
(1-Ty2)"?)

Given 7 € R! with |7]?> < 1, we denote ¢(7) = (1 — |x|?)"/2. Next, as in the statement of
Theorem A.12, given a parameter € € R (see (114) below), we let

X (m, @) = x[t]'nms + {x[t]t(w — ) + NV2ec[t — 1] (w — w*)} eRM. (111)
We then recall the function L from (26), and use it to define

1 1
L(mw) = D Ligpe(Xa(m, @) = v > log EeU (Yo (r, @) . (112)
as<M

as<M

(Note the last identity above serves as the definition of Y = Y (7, @).) The bound in Theorem A.12
is expressed in terms of the function

> (=, @)
2e(r)? i + L(m,w). (113)

() = oo — €(w — wx)

Recall (59) that we decomposed Z(G') = Z,(G') + Z.(G"). The rest of this section is organized
as follows:

* In §C.1 we use Lemmas A.22 and A.23 to prove Corollary C.1, which gives a bound on
Z.(G"). This takes care of the case (7, @) ¢ N, (see (57)), so in the rest of the section we

restrict to (7, ) € No.

* In §C.2 we prove Lemmas C.2 and C.3, which show that the point (7, w.), as defined by
(109) and (110), is approximately a stationary point of the function ¥ of (113).

¢ In §C.3 we prove Proposition C.4, which bounds Hess W for (7, w) € No.

* In §C.4 we combine the results described above to conclude the proof of Theorem 1.4. We
then use this to conclude the proof of the upper bound in Theorem 1.1.

Lastly, we now fix the parameter

1

27)
€ = 650 U a1/2 < —— .
1) L 02 (0)

(114)

However, this choice of € will not become important until Lemma C.10 below.
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C.1. Azuma-Hoeffding bounds
Corollary C.1 [fU satisifes Assumptions 1 and 2, then with high probability we have

E(Z.(G’)

y'(t)) < exp {N(Rs(a; U)— cl(U)%)}
for Z.(G') as defined by (59).

Proof Recall from Corollary B.8 that for @ < a(U) we have

RS(o;; U) — log 2
a

> —1.53-C1(U)?,

where C1(U) > 10 is the constant from Lemma B.3. Recalling (59), we will first bound the case
where || (J) — w.|| is large. To this end, denote

2,6 = R 1{d < |=() - ] < 245G,
J

Thanks to Assumption 1, in Proposition A.13 we also have the trivial bound E(S;(G’) | .Z'(t)) < 1.
Substituting this into the calculation (82) from the proof of Theorem A.12 gives

N(wl*,_zz(J)) } .

E(Zy(G') | 7'(1))
exp{(1,log(2ch(H®)))} ~

Q) exp{ -

Jd<|w(J)—ws|<2d
By Lemma A.4 combined with Jensen’s inequality, we have

(t)
lim (1,1log ch(H"))
N—w N

= Elog ch(¢"/?Z) < logE ch(¢"22)

Y @) 301(U)2a
2 ~

= logEexp(q/)l/zZ) = 5 ;

(115)

where the convergence holds in probability as N — co. It follows that, with high probability,

exp{ (1, log(2 ch(H®)))}
exp{ NRS(«; U)}

< exp {N(1.53 + 1.51) Cl(U)Qa} < exp {3.05 - NCl(U)Za} .

Next, it follows from (36) and (56) that

1/2
56) , 36)
] (DO B Y R (R)
0<t—2
Note also that if d < |w(J) — ws| < 2d then
(@, w(]) _ @l (@, w(T) — @) < ||| (J) — x| < 2w _ 20124
1—gq 1—gq 1—¢q 1—g¢q
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Combining the above bounds gives, with high probability,

E(Z4(G") ]|
exp{ NRS(

F'(t))

Ty <o {N<3.05 . C1(U)2a + 2¢1/2d> }Q <d < Hw(J) i

< 2d>

d2
<exp{—N(201 201/2d — 3.05 - Cl(U)2a+oN(1)>},

where the last inequality is by Lemma A.23. If we take d > dy = 8 - C;(U)a/?, then we obtain

E(Z4(G") | 7'(1))
exp{ NRS(«; U)}

82
< exp{ —NCl(U)2a< -2

.31/2.8 _3.05—
501 31/2.8_3.05 oN(1)>}

< exp{ —-1.1- NCl(U)2a}.

This concludes our analysis of the case where |w(.J) — @ is large, so we next turn to the case that
| (J) — 7|l is large. To this end, let us denote

{Iw(J) — x|
Cl(U)Oél/Q

[7w(J) = m(J)]|
Cl(U)Ozl/2

Z'(G)=>1

J

<8, > 16}SJ(G’).

It follows from the previous bounds that

E(Z'(G") | 7'(1))
exp{NRS(o; U)}

< exp {N<3.05 LCL U2+ 2912 - 8. 01<U)a1/2) }

|7(J) = m(J)]
<o "Gmar )

1 2
gexp{Ncl(U) (3 05 +2-32. 8—%+ N(1)>}

< exp{ -1.2- NC’l(U)Qa} ,

where the second-to-last inequality is by Lemma A.22. Recalling the definition (59) of Z,(G’), we
have

Z.G) < Z'(G) + ) Zyyy(G
k=0

where dy = 8 - (U)ozl/ 2 as above. It follows by combining the above bounds that

E(Z.(G)|
exp{ NRS(

Z'(t))

) < exp{ — NCl(U)Qa}

with high probability, which proves the claim. |
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C.2. Stationarity at replica symmetric value
In this subsection we show that the function ¥ (7, @) from (113) is approximately stationary at the

point (7, @y ).

Lemma C.2 Suppose U satisfies Assumption 1 and 2. Then for all 1 < s <t we have

ov
7(77-*7w*) =~ 07

0T

where ~ indicates convergence in probability as N — 0.

Proof Recalling (8), (98), and (108), we can rewrite

_EU"( + (1 -9)'%)

 EU(x + (1 - q)t2¢) — (Fy(@)*. (116)

(Fy)' ()

Recall from (112) the definition of Y = Y (7, w). We then calculate

oL a1y 1 {axa EU'(Y,)  dc Eg[fU’(Ya)]}

0Ty NasM ons EU(Y,) oms EU(Yq)
©8) 1 { (s) ]EfU”(Ya)}
® XV Fl oo (Xa) — b a)
Nag (X)) Fjr2(Xa) B0 (Y,)

It follows from (109) that |7, |? = ¢, and ¢, = c(ms) = (1 — ¢)*/. We also note that
h(+D = h[r]e, 2 ¢ 2] At 2 x[tir E X (i) = X
It follows using (39) and Lemma A .4 that at (7, w,) we have

(x), B, 2(X5))
N

~ al EZF,(¢1? 7)Y

Tes0B(F,) (¢%2),

having again used gaussian integration by parts at the last step. As a consequence

oL
ﬁ(ﬂ*,w*) ~ —ﬂ*,saE[Fq(ql/QZ)z] ) — T s .

Substituting this into (113) gives

oV k= “277* s (110)
7 ~ D TES =0,
P (T4, %) (EADE T s

as claimed. [ |
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Lemma C.3 Suppose U satisfies Assumption 1 and 2, and 0 < o < «(U). Then forall 1 < ¢ <
t — 2 we have

oV
— (g, ) >0,
0Wg( * @x)
where ~ indicates convergence in probability as N — 0. For £ =t — 1 we have

ov

(o) = e (31— (1= T ).
wy

where the right-hand side is o4(1) by Proposition A.6.

Proof Similarly to the proof of Lemma C.2, we calculate

oL ) 1 Z 0X, BeU'(Ya) _ &(e, Fppe (X))

Oy 0wy EcU(Y,) N1/2
It follows by recalling Lemma A.4 that
oL éc® nt+y
g o) = - = e

Substituting this into (113) gives

ov _ W 1/2
awg(ﬂ-*vw*)e{ 1iq+¢ ’YZ 9

and combining with (110) gives the claim. |

C.3. Hessian calculation

If A and B are symmetric matrices, we write A < B to indicate that B — A is positive semidefinite.
In this subsection we analyze the Hessian of the function ¥ from (113) to prove:

Proposition C.4 [f U satisfies Assumptions 1 and 2, then the function L of (112) satisfies

7 2
Hess ¥ (m, w) = <\Il“r me) < <€ C1(U)*Ky(U)al 0 )
(m,@)

Vew Voo 0 1—1.9¢

forall (m,w) € N, (as defined by (57)), for 0 < a < «(U) as defined by (27), and € = €(c;; U) as
in (114),

The proof of Proposition C.4 is given at the end of this subsection. We divide the analysis into
several steps. Define

_ EU"(w + c€) EU'(x + c€)\* )
_ E[eU" (x4 c€)]  Ee[€U'(x + c€)] EeU' (2 + c£)
Belw) = EU(x+cf)  EU(x+cf) EU(z+cf) (118)
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Define the M -dimensional vectors A = A (X ) and B = B, ;) (X). Next let

ac(z) = E%fg(f ++c§)] ; (119)
=g (Rwse ) o

and define the scalars @ = (1, ay(r) (X)) and b = (1, begr)(X)).

Lemma C.5 For the function £ defined by (112) we have
Lo = Jif{x[t](diag A)x[t] + (x[t]B(Vc)t + (vc)(x[t]B)t>}

—&-]ir{d-Hessc—i-E-(Vc)(Vc)t}, (121)
Lo = Nf/z{x[t](diagA)c[t A+ (Ve)e[t — 1]13} , (122)
Low = 62{0[t — 1](diag A)c[t — 1]t} (123)

for A, B, a, and b as defined above.

Proof Again recall from (112) the definition of Y = Y (7, w). Note that Y is linear in o, with

first derivative
Vo _ 0Xa _ nipzget)y,
Oty Owy

It follows by differentiating (112) twice that

w2 1w (B (V)R] E(U(Y) RN (Bl (V)]
e N O oy o) Crweer )}

as<M

1 0X,0X, .
— E hininiid L — A —17
N a<M Aaawk Jwy ‘ {C[t 1](dlag )C[t ] }k,/

which verifies (123). On the other hand we note that Y depends on 7 both through X and through
¢(m), and
Y, _ 0X, N oc (111)

ors  Oms 0Ty

oc
0T

x[t]s +

£.

We use this to calculate the mixed partial

oL? 1 0X,0X, Oc 0X,
O0ms0toyp N N{ ; Aa oms Oty * 07 a;/[ Ba 6wz}

x

- ﬁ <x[t] (diag A)c[t — 1] + (Ve)e[t — 1]B>87Z,
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which verifies (122). Finally, a similar calculation gives

2 2
oL l{zAaXaé’Xa+é’c ZB&XQ o0%c Eé’c 60}7

om0ms N

g om Yoo om

“ong 0wy  Omg * Oy

as<M as<M

which implies (121). |
We now proceed to bound the quantities defined above.

Lemma C.6 Suppose U satisfies Assumptions 1 and 2. With the notation from (118), we have
HBH _ HBC(W) (X)
M2 M1/2
forall0.95 < c < 1.

I X
< Ky (U) <2.5 -C1(U) +5.8- z\’41/|2> _

Proof Recalling the notation of Definition B.1, we first use gaussian integration by parts to rewrite
(118) as

B.(x) = 612{ Coveo(Z%,7Z) —2- EE,C(Z)} .

It follows by combining Lemmas B.3 and B.4 that for all 0.95 < ¢ < 1,

Bo(2)| < 62{2(01((]) + oo ) + S (oo T OO :

Recall that we assumed (without loss) C1(U) = 10 and K2(U) > 1, so for instance we can trivially
bound (Cy(U))Y? < C1(U)/10"/2. This leads to the simplified bound

i < B o ) o) )

< Ky (U) (2.5 -C1(U) +5.8- |x]) .

where the last bound again uses that C; (U) > 10. The claim follows. |

Lemma C.7 Suppose U satisfies Assumption 1. With the notation from (119), we have

lal (1, a0 (X)) | X
= ap SLLGiU) 437

forall0.95 < c< 1.

Proof We use gaussian integration by parts to rewrite (119) as

a (l‘) _ E§[£2U(x + C{)]
‘ EeU(x + c€)

It follows by Lemma B.3 (which uses only Assumption 1) that for all 0.95 < ¢ < 1,

—1.

lac(z)] < 1+ <01(U) N (1.832.595

9
where the last bound uses that we took C(U) > 10. [ |

2
) ><1.1-C’1(U)+3.7-x2,

63



BOLTHAUSEN NAKAJIMA SUN XU

Lemma C.8 Suppose U satisfies Assumptions 1 and 2. With the notation from (120), we have

ﬁ _ |(1abc(7r)(X))|
M M
1

< K»(U) <4.6 -C1(U) + 17 - H M|2>

forall0.95 < ¢ <

Proof We use gaussian integration by parts to rewrite (120) as

1 (Ee[(¢P =52+ U (x + )] (Ee[U(z +c€)] 2
bc(x> B 02{ EgU(:L’ + Cﬁ) o ( EgU(a: T Cf) — 1> }

1
= 02{ Var, (Z%) — 3 - B, .(Z?) + 1} .

It follows by combining Lemmas B.3 and B.4 that for all 0.95 < c < 1,

1be(2)] < CIZ{KQ(U){ <1'82 ' ‘”“')2 + Cl(U)} + 3<C’1(U) + (152959”)2) + 1}
(o e (22))

where the last bound uses that we took C1(U) = 10 and K5(U) > 1. The claim follows. [

Corollary C.9 If U satisfies Assumptions 1 and 2, then the function L of (112) satisfies

Lrrx Lre C1(U)*ad 0
Hess L(m, @) = (ﬁn’w £w7w> ( )<K2(U)< 1( 0) a 5,52[>

forall (w,w) € N, (as defined by (57)), for 0 < a < a(U) as defined by (27), and € = €(o;; U) as
in (27).

Proof We will bound each of the terms computed in Lemma C.5. Let u denote any vector in R
and let v denote any vector in R‘~!. It follows from Lemma A.4 that, with high probability,

2
wp (P LS ] wem ot =1} <. (124)
s<t
Next, it follows from (109) that || = ¢'/2, so the restriction (7, @) € N, (see (57)) implies
Vel

(28)
< |r < g2 +16-C1(U)a? < 18- C1(U)aV?
@ 18 1
= €5~Cl(U)2K2(U) < 66 KQ(U)

where the last bound uses that we assumed (without loss) C1(U) > 10 and K5(U) > 1. Therefore
we certainly have ¢(7) = (1 — |x[?)"/2 = 0.95. It follows from (117) and Lemma B.14 (which
uses Assumption 2) that

2

(125)

1 (K (U) Ky (U)/2+1
Al < [Agm oo = [(Flr) oo < C(ﬂ_)g{z—i_l} < 0952 < L7-Ky(U). (126)
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It follows that, with high probability, it holds for all unit vectors u, v that

o+ x[t](diag A)x “AHW-H Al <34 Ko 127
N g u < x[t]'u| < 3. 2(U)a, (127)
ut<N11/2 [£](diag A)c ) ’]j\?J/;O.HX[t]tu Jeft - 14 < 25 Ko@), (128
ot (c[t — 1](diag A)c[t — 1]t>v <Al Hc[t - 1]th2 <1.7- K (U). (129)

Next, recalling (111), for all (7, w) € N, we have

| X (m, )| (120

(57
N 0L g2 4 A2 22l D

12 (125)
< 2| +16-€C1(U) < 033-Ci(U). (130)
having used that C (U) > 10 and |é| < 1/50. Combining (130) with Lemma C.6 gives

B
M1/2

| X
M1/2

< Ky (U) <2.5 LCL(U) +5.8- > <4.5-CL(U)Ky(U).

Combining the above with (124) and (125) gives that with high probability, for all unit vectors u, v

we have
1 x[t]'ul|B| |V
ut<Nx[t]B(Vc)t>u < H [t] UHZQ[ HH CH

< (2]\]{21/2 <4.5 : Cl(U)Kg(U)MW) (36 : Cl(U)a1/2>

en 2Y2.45.36
< ST ——" " .a<016-a, 131
ENA @ (131)

S

again using that C'1 (U) > 10. Similarly, with high probability, it holds for all unit vectors u, v that

ut<N11/2(Vc)c[t - 1]B>v < ]3NH1/V26H < (4.5 : C1(U)K2(U)041/2) <36 : Cl(U)a1/2>

< = = 11-al/2. 132
Goa) @ S (13

Next, combining (130) with Lemma C.8 gives

E < Ky (U) (4.6 L C1(U) +17 - (0.33 : Cl(U))2> <24-C(U)’Ky(U).

Combining the above with (125) gives, for any unit vector w,

7 2
ut<]1vb(w)<w)t>u v

2
< <2.4 : Cl(U)QKg(U)) . <65 ' Cl(;fsz(U)2> a< . (133)
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Finally, we note that the Hessian of ¢(7) = (1 — |x|?)"/2 can be calculated as

1

Hess c(m) = {I + 07(7:); }

We can bound the above in operator norm by

1 2\ 125 1 1/€5)2
| Hess ¢(m)| < (1 + Ll ) < (1 + /e) ) < 1.1.

= 0.95 0.952 0.95 0.952

Combining (130) with Lemma C.7 gives

lal . (033 2 <06 2
M<1.1 Cl(U)+3.7 0.33 Cl(U) <0.6 Cl(U) ,

so altogether we obtain, for any unit vector u,
1
ut(Na - Hess c>u <1.1-0.6-C1(U)*a<0.7-C(U)%a.

To conclude, we note that substituting (129) into (123) implies

|£ww|

EQ

< 1.7-Ky(U).
Substituting (128) and (132) into (122) implies

|£r

al/2e

<25 Ky(U) +0.11 < 2.7 Ky (U) .

Finally, substituting (127), (131), (133), and (134) into (121) gives

[£rxl 1
o e
Consequently, for any vector z = (&, &) where & € R and # € R'"!, we have

|2 (Hess L) x|
Ky (U)

< (0.8 CL(U)? + 2.7>oé||.f]z;||2 + (1.7 + 2.7) |2 .
The claim follows.

Recalling (113), let us now denote

_z—dm-=m)|® (@ @)
Pim @) = 2¢(m)? C1-gq

sothat W =P + L.

66

1
<34-Ky(U)+2-0.16+ — +0.7- C1(U)* < 0.8 - C1(U)*Ko(U)..

<0.8-CL(U)2a|z|? +1.7- 2|2 + 2- 2.7 - «'/%¢|i| |

(134)
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Lemma C.10 [fU satisfies Assumptions 1 and 2, then the function P of (135) satisfies

Prr PW) _ (1080 -O1(U)%al 0 >

Hessp(ﬂ-’ W) - <7D7'(7w Pwyw - O (]. - 1.95 N E)I

(m,)

forall (w, @) € N, (as defined by (57)), for 0 < o < a(U) as defined by (27), and € = €(o;; U) as
in (114),

Proof We first calculate the mixed partial derivatives

P o — &(w — @) |? {I N Armt } ’

)’ )P
2(1—€ t
P = i<w)4)”(w‘€<w‘w*>) ’
-9, -
i T

We have from (110) that ||z, | = (1 — q)p"/? < '/2. Then, for (7, @) € N, (as defined by (57))
we must have

(28) (
||| < Y% +16 - CL(U)a'? < 18- C1(U)a'? < (136)

(very similarly to (125)). It follows using (125) and (136) that
2 612
15O (1, 0K Lo,
2(18 - C1(U))?
0.954
(1-#?
(18 . Cl(U))Qa

[Pl <

(114) g2
C<n0-00)3 < 5,
e

|Preol <

12 o (1% _ 2
<(1-8%+2-(18 1(U)%a < 1—2+1.03-&.

<
[Pl < 1
Consequently, for any vector z = (&, i) where & € R and # € R, we have
|2 (Hess P)z| < 360 - C(U)?a|@|* + 2 - 720 - C1(U)al|&| | + (1 —2¢+1.03- 52> [EiR
&2
< Cl(U)2<360 + 720)a\|5c\|2 + <1 —26+1.03-& + 3> |32 .
e

The claim follows. |

Proof [Proof of Proposition C.4] It follows by combining Corollary C.9 and Lemma C.10 that

C1(U)?(K2(U) + 1080)al 0
= < .
Hess ¥ = Hess P + Hess £ < < 0 (1-1.95 645 Ky(U)&)]I
We use the choice of € from (114) to bound
(114) He
5-Ky(U)e® < <0.05 - €,
2( )6 Cl(U)Q €
and the claim follows. |
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C.4. Replica symmetric upper bound

In this subsection we give the proof of Theorem 1.4. We then use this to conclude the proof of the
upper bound in Theorem 1.1.

Proof [Proof of Theorem 1.4] Recall from (59) that we decomposed Z(G') = Z,(G') + Z.(G’).
For Z,(G"), we will analyze the bound from Theorem A.12. Note that Lemma A.4 implies

(1,log(2ch(H®)))
N

N2 10g 2 + Elog ch(¢"/22) (137)

in probability. Recalling (109), (110), and (113), and applying Lemma A.4 again, we have

__l=]?

2(1-q)
in probability, for L as in (26). It follows by comparing (137) and (138) with (29) that

yNop YO —9) aEL,(¢22) (138)

U (T, w0y) = 5

+ L(7y, s

(1)
(l,log(QJC;l(H ) U(my, ) YL RS (0 1) (139)

in probability. Next, it follows by combining Lemmas A.22 and A.23 with Holder’s inequality that

)

— 8qY/
@+ -0 S ovw] b aso

> d; and Hw(J) — Wy

Q<{J e {—1,+1}V HW(J) T

(1—3¢'2)

<exp{—N[19 3

for any ¥ € [0, 1] (having used also that 7, ~ 7, and w, ~ w,, which follows from (55) and (56)).
On the other hand, if (7, @) € NN, (as defined by (57)) with |7 — 7| < d; and |w — wy| < da,
then it follows by combining Lemmas C.2 and C.3 with Proposition C.4 that

(1 —1.9¢)

U(m, @) — U(T, wx) < VU (Ts, 04 ) (; : ;;) N e7C1(U);K2(U)Oé(d1)2 n - (d)?
< ON(l) i Ot(l) I 6701(U);K2(U)Oé(d1)2 + (1_219€)(d2)2 ) (141)

Let us take ¢ = 4a'/2. Then, for d; < |7 — 7| < (1 + a)'/?dy, combining the |7 — 7,2 terms
in (140) and (141) results in

—1+3q1/2+e

6501(U)

40'2(1 = 3¢Y?)  €7C1(U)?Kq(U)a(l + a) @D (
. " s 2 10

1+ a))al/? al/?
8 2 = )

For dy < || — w4 < (1 + a)2d,, combining the | — ww,||? terms in (140) and (141) results in
g

2 2 = 2
1.9 - € (114 ( 1.9 - €
T < 8_

— 4a1/?)(1 — 8¢/ —1.98) @8 9-€

< 8CY(U)al/? —

)Cl(U)a1/2 < —1000 - o'/,
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Substituting the above bounds into the result of Theorem A.12 gives, with high probability,

2

E(Z.(G') | F'(t)) o Nal/2 y "
exp{N(RS(a; U) + 04(1))} i%}o P{ 10 ;@) (1+a) }<0(1).

The result follows by combining with the bound on Z,(G’) from Corollary C.1. |

Proof [Proof of Theorem 1.1 upper bound] It follows from Theorem 1.4 and Markov’s inequality
that for any € > 0,

cO}\/(ﬂ) < exp(NOt(l)) ,

exp(Ne)

with high probability over the randomness of .%’(t). It follows that

IP’(;] log Z(G') = RS(a; U) + €

1 exp(Noy(1))
P( —log Z(G') = RS(o;; U <on(l) + —/——~
(5 026 = RS(@i 1)+ ¢) < on(1) + "2
The left-hand side does not depend on ¢, so it follows that
1
limsup —log Z < RS(«a; U)
N—o0 N
in probability, which gives the upper bound in Theorem 1.1. |

Appendix D. Second moment conditional on AMP

In this section we give the proof of Theorem 1.5, our main result on the conditional second moment.
From this we will deduce the lower bound in Theorem 1.1 in the bounded case, as explained at the
end of this section. The lower bound in the general case will be treated in Section F. Recalling (57),
we now restrict further to

N, =< (m,w) : max 3 ||m(J) — ml|, |w(J) — ws| ¢ <on(1) ¢,
{20 peovo}

so N, € N,. Then, analogously to (58), we let

H, = {J e{—1,+1}V: (n(J),mw(J)) € N*}, (142)
so H. < H,. Analogously to (59), we let
Z.(G)= ) S)(G)< Z.(G)< Z(G). (143)
JeHy

We will prove Theorem 1.5 for the random variable

2
EEDY sJ(G)1{|G"J” < 501(U)2} < Z.(G), (144)
JeHy M

where v; = J”/|J”| as in Definition A.8, and C;(U) is the constant from Lemma B.3. The
remainder of this section is organized as follows:
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* In §D.1 we prove the first moment lower bound (17), which gives the first assertion of Theo-
rem 1.5.

* In §D.2 we introduce a parameter A = \(J, K') (Definition D.3) which captures the correla-
tion of a pair of configurations .J, K € {—1, +1}". We then prove Theorem D.9 which gives
a preliminary bound on the second moment contribution from pairs with small A (see (170)).
We also prove Corollary D.10 which bounds the second moment contribution from pairs with
larger A.

* In §D.3 we further analyze the bound obtained in Theorem D.9. We show in Proposition D.11
that the bound is approximately stationary at A = 0, and then in Corollary C.9 we control the
second derivative of the bound with respect to .

* In §D.4 we combine the results of the preceding sections to conclude the proof of Theo-
rem 1.5. From this we deduce the lower bound of Theorem 1.1 in the case |ju|| < co.

The calculation of this section follows a similar outline as that of Sections A and C, so we will point
out the parallels throughout. As before, we let G be an independent copy of G’.

D.1. First moment lower bound

In this subsection we prove (17), the first assertion of Theorem 1.5. To this end, we begin with the
following result which essentially says that the upper bound of Theorem A.12 is tight in the case
(m, ) = (T, @s).

Proposition D.1 Suppose U satisfies Assumptions I and 2. Let F'(t) be as in (25). For Z, as in
(143) we have

IE(Z*(G’)

ff’(t)) > exp {N(RS(a; U)— ot(l))}
with high probability.

Proof Recall from the proof of Proposition A.13 that

E;(7|gr) Py (9a|GR)
E;= E(S Q)| 7t ) @ : . (145)
7= RSO ) N7, 0)} - pa(ga)
If J € H,, then it follows from Lemma A.10 that 7(J) ~ 7, = ¢'/2¢,_1, and
ga (s Y P Y2 i, | 69 t—1
~in = (T 6(J)_(1_(])1/2{w*—q1/2(1—q)1"7r* 2 0eRL. (146)

Substituting this into the result of Proposition E.13 gives

Ps7(GalgR) _ 8s7(Fa)
1/)1/2‘detFN‘ N z/Jl/?]detI‘N\

(224) gJ,'r< _ (N¢>1/2 [PNT + C(?T)

n[t — I]E‘W‘P(X‘L'F
Nq/}l/Z

) + oN(1)D . (147)
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for X ;> as defined by (181). To evaluate the right-hand side above, note that J € H, implies

M1
T _ 'n7(J) (79) I, (56) s
= ~ — = —I'T¢_1=— )
PU2(1L— )2 Pl2(1 —q)V/2 P12(1 - q) fi—2
1

where the last identity uses (40) and (40). It also implies X ;- ~ h(+D and consequently

M1
" )n[t —1F-2(X7)  nft—1]F,(ht+)) @) :
T >~ >~ ’
N¢(1—Q)1/2 Ny -2
Ht—1

Note moreover that Proposition A.6 and Lemma B.11 together imply pi;—1 = 1—o04(1). Substituting
these calculations into (147) gives (cf. (74))

on(1)
pr+(aal ) ~ ¥2|det Tylgss | (V)2 | ° || =exp(Nar(1)}. (148

on(1)

Ot(l)

Substituting (76), (77), and (148) into (145) gives (cf. (78))

Ej = exp {N[AJ(%) + ot(l)]} .

It then follows from the proof of Theorem A.12 that (cf. (82))

E(Z.(G")|.7'(1)) { }
= Q(H N|¥ 1 . 149
exp{(1,log(2 ch(H®)))} Q(HL.) exp [ (7, ) + 0r( )] (149)
We have Q(H..) ~ 1 by the law of large numbers, so the claim follows by recalling (139). [ |

To finish the proof of (17), it remains only to account for the restriction on |Gv| in (144):
Proof [Proof of first moment lower bound (17)] We begin with an easy large deviations calculation.
If ¢ is a standard gaussian random variable, then it is well known that (/2 is a gamma random
variable with shape parameter 1/2, and moment-generating function

2 0 ,—(1-60)z
Eexp(%)zj £ dr= !

o 2ml2g1/2 (1—06)1/2°
for any 6 < 1. If ¢ is a standard gaussian random vector in R, then for any L > 1 we have

p('ﬁj >L> <exp{—Ajsup{log(l—e)‘FLeiee[0’1)}}

<exp{—]\24[L—logL—1]}. (150)
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Now, recalling (143) and (144), let us take L = L1(U) = 5C1(U)? > 500 and define

Z"G)=Z.(G)-Z(G) = ZsJ(G’)1{|G;WVJ|2 > L} . (151)
J

It follows from Lemmas A.16 and A.19 that

E(Z”(G’)

7'(t)) =E(2"(G) | (1), R A, (G)ra)

2
<xp(8l e LR A @)
J

Recall from Definition A.14 that Ve denotes the span of the vectors ¢(¥) for £ < ¢t —1. Let us decom-
pose Gvy € RM as (Gv )l + (Gv )+ where (Gv )l is the orthogonal projection of Gv 7 onto V.
Conditional on the events R and A, (Gv J)” is fixed by the admissibility condition (see (51), (62),
and (75)), while (Gv J)J_ behaves as an independent standard gaussian random vector in the or-
thogonal complement of V. It follows that, conditional on R and A, |Gv|?/M is equidistributed

as
N|(Tn)'| HC/”2 HC/”2
+ =on(1) + =,

where ¢’ is a standard gaussian random vector in RM —¢~1 Tt follows by applying (150) that
2 2
5aC (U
9’(7:)) < QNP(ﬂ +on(1) = L) < exp {N[log2 - al()”

3
< exp {N[RS(a; U) — OZCI(U)Q} } )

E(Z”(G’)

10

where the last bound uses the result of Corollary B.8. Combining with the result of Proposition D.1
gives

E(Z(G’)

32’@)) > IE(Z*(G’)

> exp {N<R5(a; U) - Ot(l))} ;

ﬁ’(t)) - IE(Z”(G’)

ﬁ"(t))

with high probability. |

D.2. Expected weight of a correlated pair

Definition D.2 Recall the function S;(gr,ga, &) from (69). Moreover recall that by (66) and

(67) combined, the pair (ga,gs) is equivalent to gp = Gv. We let Q;(-) denote the measure on
RM such that

Q(B) = E(S,(G)1{Gv e B} | #"(t),R,A) _ E(Ss(gr, 9, 88)1{(Ja,88) € B})
’ E(S;(G) | #(t),R, A) E(S, |9k, Ga, 88)) '

Note that Q; depends on gr and ga, where gr does not depend on J, but ga does.
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Definition D.3 (analogous to Definition A.7) Let J, K € {—1,+1}". Recall from Definition A.7
that we decompose J = J' + J" where J' is the orthogonal projection of J onto the span of the
vectors m®), 1 < s < t. Analogously decompose K = K' + K". Recall that v = J"/||J"|, and
define analogously v = K" /| K"|. Then let

J// K//
MJK) = <, > = (v,vg),
1771 L
so clearly we have —1 < \(J, K) < 1. We further denote

K'—(K",\v)v vk —Av
| K" = (K", v)v| — (1= a)l2”

(152)

W =

so w is a unit vector in RN orthogonal to v.

Definition D.4 (analogous to Definition A.17) Given .Z'(t) as in (25), and J, K € {—1,+1}¥,
recall from Definition D.3 that we decompose J = J' + J" and K = K' + K", and define corre-
sponding unit vectors v and w. Let

Vp(i) = span {eawt 1<a< M} ,

Va(k) = span {n(e)wt l<i<t— 1}.

Note V() is a subspace of Vp (), and is also a subspace of the space Vc from Definition A.14. Let
Proj () denote the orthogonal projection onto V), and note that (G")ak) = PIOjA (k) (G") is
measurable with respect to F' (t).
Definition D.5 (analogous to Definition A.18) As before, let G be an independent copy of G'. Let
B . e ©h (n[t—1]Gw  H[t —1]w
A(K) = { proiai) (@) = (G)aw } & { e iy e SHAES)

where the last identity holds assuming that the event C from (61) occurs.

Definition D.6 (extension of Definition A.11) We now let P denote the uniform probability mea-
sure over pairs (J,K) € ({—1,+1}Y)2, and let Q be the probability measure on the same space
which is given by

dQ  exp{(H",J + K)}
dP  exp{2-(1,logch H®)}

Note that J and K are independent under Q, and each has mean m(®).

Proposition D.7 (analogous to Proposition A.13) For ¢ € RM define

A2(M[¢) = m + ]i,<1an+A2(1—q) (h(tH) +(1- Q)l/Q)\C)) :

Then, for J, K € H,, we have

E(S;(G")Sk(G){|G'V|*/M < L} | 7'(t)) 1|2
- - E(S,(G) | .Z'(1)) S fl{M < L} exp{N Az (A [¢)} Qs (dC)

with Q as in Definition D.2, and A = \(J, K) as in Definition D.3.
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In preparation for the proof of Proposition D.7, we record the following calculation:

Lemma D.8 (analogous to Lemma A.21) For spin configurations J, K € {—1,+1}" and a vec-
tor ¢ € RM define the cumulant-generating function

I@KU(T |1¢) = JirlogE(SK(G) exp {Nl/Qth[ GW} ’%’ R, (G')R,Gv = C)

for T € R'=L. Next, with L as in (26) and with Xk as defined by Lemma A.20, define
. 1 -
Lri(716) = 3 L Lin(ryaa2) 002 | Xk
+ ¢(n(K)) [AC + (1= X)V2NY2¢ft — 1]%])) . (154)

where ¢(n(K)) = (1 — || (K)|?)"/2. Then the function IeK\J satisfies

Irl* H2

k(T1€) = k(7€)

Proof Conditional on the event R, it follows from Lemma A.20 that GK'/N'/? = X = X. We

also have
GK” _ HK//H

N1/2 = N1/2

where £ = Gw is distributed as an independent gaussian vector in R . Thus

Kra(r1¢) = + 2 10gE§{eXP{N/ > Te(C(Z))ag}

a<M I<t—1

x U(Xa + C(W(K)){Aca +(1— A%”%})} :

Gvi = c(n(K)) (ch +(1- >\2)1/2§> : (155)

where £ denotes a standard gaussian random variable. Making a change of variable gives

~ T
el = T LS (x,
a<M
+ C(W(K)){Aca + (1= 2212 [5 + NV Y n(c“))a} }) ,
<t—1
from which the result follows. |

Proof [Proof of Proposition D.7] We follow a very similar outline as in the proof of Proposi-
tion A.13. As in (151) above, let us write L = 5C;(U)?. Given .Z'(t) as in (25) and J, K €
{—1,+1}", we abbreviate the quantity of interest as

Ejx = E(SJ(G')SK(G/)1{”G'MV‘2 < L} ’9%)) . (156)

74



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

It follows by the obvious generalization of Lemma A.16 that

|GV

EJyK —E(SJ(G)SK(G)l{ < L} ‘%/(t),R,C, (G/)RC> ,
where G is an independent copy of G’. Next, the obvious generalization of Lemma A.19 gives the
simplification

[

Ejx = E(SJ(G)SK(G)l{ < L} ‘%”/(t),R, A, A(K), (G’)RAA(K)> ,

where A and A(K) are as in Definition A.18 and Definition D.5 respectively. By the law of iterated
expectations,

G 2
Ejx = E(SJ(G)1{|A}’” < L}

X E[SK(G) ’ff’(t),R, Gv,A(K), (G’)RAA(K)] ‘%’(t),R,A, (G’)RA> . (157)
We therefore first consider the calculation of the inner term
Eg5(¢) = E(SK(G) ‘ A (1),R,Gv = ¢,A(K), (G,)RAA(K)) (158)

(where we assume that ¢ satisfies the constraints imposed by A).

Towards the calculation of (158), recall the notation of Definition D.4, and let Vp(xya(k) be
the orthogonal complement of V) (g inside Vp(). Analogously to (65) and (66), define gp(r) and
gA(K)» for instance

BA(K) = <(G, cOwh:1<r<t— 1> —c[t—1]Gwe R, (159)

Choose an orthonormal basis for Vp(xy\a(k), and denote it B;(K) for 1 < j < M — (t — 1).
Analogously to (67), let

8B(K) = ((G, Bi(K)):1<j<M-—(t— 1)> c RM—t+1

Note that there is an orthogonal transformation of R™ which maps gp(x) to the pair (g A(K)» 8B(K) ).

The weight Si (G), as defined by (23), is a function of GK, which we decomposed in the proof
of Lemma D.8 as a sum of GK’ and GK”. Recall that GK' is a function of gg. Meanwhile (see
e.g. (155)) GK” is a linear combination of gp = Gv = ¢ and gp(x) = Gw, where gp(x) is
equivalent to the pair (ga k), 8p(k)) as noted above. Thus Sx (G) can be rewritten as a function
Sk| of (8r, 8P, BA (k) 8B(K)): explicitly,

r(s) "
i(G) = [T 0 X 5ia wn + S (Mawha + (1= ) (e )

12 12
as<M s<t N N

= SK|J(gR7gPa BA(K)» gB(K)) ’
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with A = A(J, K) as given by Definition D.3. On the event A(K), the value of g (k) is fixed to a
value ga (). We then introduce a parameter 7 € R!~!, and define (analogously to (69))

Sk17+(G) = Sk (8R: 8P: BA(K) 8B(K))
= Sk|7(8R, 8P, BA(K) 8B(K)) XD {Nl/z(ﬂ gA(K))} :

Then, analogously to (70), for any 7 € R*~! we can rewrite (158) as

Sk~ (8R, &P, BA(K)> BB(K))
exp{N1/2(r, Ia(r))}

1 _ _
= o (VG TS, JSmJ,T(gR, G, Ia(K)» 9B(K))PB(K) (9B(K)) d9B(K) - (160)

EK\J(C) = E( ‘ (gRagPagA(K)) = (ngcng(K))>

By contrast, the expected value of Sy ; - given only the row constraints is (cf. (71))
Ex;(t|gr. €) = E<SK|J,T(G) ‘jf’(t),R, Gv =, (G/)R>
= E(SKU,T(ng P, BA(K)s 8B(K)) ‘ (8r: 8pP) = (GR; C))
= JPA(K) (9a(x)) f Sk, (G €5 Ga(K)» IB(K))PB(K) (98(K)) A9B(K) AIA(K)

=am{NkKJvo}. (161)

Then, analogously to (72), we define the probability density function
( |gr, ¢) d _ EGkr(G)1{gak) € dgaua)} |27 (1),R, GV = ¢, (G')r)
PR HR AT E(Sks-(G) | #"(t),R,Gv = (, (G')R)

pax) (9a(k)) [j _ ]
= ———"——~| | Skjs-(9r, ¢, ; 4 d d . (162)
Ery (7150, C) K17, (R €5 9a(K)» 9B(K))PB(K) (9B(K)) d9B(K) | d9A(K)

Then it follows similarly to (73) that we can rewrite (160) as

Eg (7198, C) - Pr|s+(Ga) | IR, €)
E = : . 163
x1s(6) exp{NV2(7, ga(x))} - Pack) (Gack)) (169

We will show in Proposition E.14 (deferred to Section E) that (cf. (74))

4 4
mw{@m”u@w,Je&m+n%muﬂ<KW<5,ﬂsmm}<@x (164)

It therefore remains to estimate the other two terms on the right-hand side of (163). We then note
that Definition D.5 implies that, on the event A(K), we have (cf. (75))

Iak) 159) e[t —1]Gw @4) () 'n[t — 1]Gw 53 (Ty) 'H[t — 1]w

N2 N1/2 Nyl/2 (N4)1/2
Cy)"H[t - 1] [ vk — v TN)'O(K) — A6(J
. N()Nw)l[/z ]<(1Ii )\2)1/2> @l N)([l(_/\)2)1/2 Dl on(l), (165
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where the last estimate holds thanks to the restriction J, K € H,. (see (146)). Substituting (165) into
the formula for p, k) (similar to (76)) gives

_ 1 NI(T\YI(K) — N6 (J
Pa(k)(Gar)) = (27_(_)(t_1)/2exp{ - 2’( N)([l (_ )?2)1/2 W]

Meanwhile, it follows by combining (161) and (165) that (cf. (77))

Er7(1| -, ¢) o e ey (- ENTE) = AN
SDIVE(r, )] V| Rar 16— (7 ) vt | a6

2
} =exp{N -on(1)}. (166)

Substituting (164), (166), and (167) into (163), and combining with Lemma D.8, gives (cf. (78))

m < oxp { ] (3] - EIIAE) A5

2 + Ly (7] c)) + oN(l)]} . (168)

To simplify the above expression, we set 7 = 7(\) where

) = @, oy P21 —g)'?
- (1 _ q)l/Q(l _ )\2)1/2 B (1 _ )\2)1/2

,7_

t .
I‘et_l.

Substituting this into (154), and recalling the definition of X K from Lemma A.20, we obtain

1

Liar1€) = (1 yronnons (00 4 (1= 010¢) )+ on (1) = £2(A]0) . (169

where L is defined by the last identity. By substituting the above into (168), we see that the quantity
from (158) can be upper bounded by

Er1a(©) < e { V| 310+ 010+ on ()|} = e {N[4010) + ov)]

for A2(\ | ¢) as in the statement of the proposition. By comparing (157) with (158), we see that

2
Eu = B0 1R.A) [1{ 157 < £} g0 @ut00),
so the claim follows. |

Analogously to (58), we now define

(H,)*° = {(J, K)e (H,)?: 'Aff” <10- Cl(U)},

so (H.)?° is a subset of (H,)?. Then decompose Z2(G’) = Z*°(G') + Z?**(G") where (cf. (59))

ZQ,O(G/) = Z
(J,K)e(Hs) 20

|GV

SJ(G/)SK(G/>1{ 7

! 2
gL”Gz\Vf <L}. (170)

We bound Z2°(G") as follows:
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Theorem D.9 (analogous to Theorem A.12) Suppose U satisfies Assumptions 1 and 2, and let
F'(t) be as in (25). Recalling Proposition D.7 and (169), let U (X | ) be defined by

¥s(A Q) = Wl ) = ~0(1L =) + AN ]€) = ~blL =) + 50+ LaA] Q).
For Z*°(G") as defined by (170), we have

E(Z*°(G)| 7'(1)
o2 (Lloga@®)yy] S 2 QUK) | e {N[%(A 1) +ou(1)] } Q(dg)

(/. K)e(Hx )

for Qj as in Definition D.2 and Q as in Definition D.6.

Proof We follow the proof of Theorem A.12. Suppose J, K € H, with A = A\(J, K) as given by
Definition D.3. Recalling Definition A.7, the restriction J € H, implies

H[t - I]J (38) FY[t - l]J (49) (56) ,1/9 .y
N1/11/2 = N =Tw(J)~Tw, =9 / (1—q)I'T%—1 .

It follows that, for all J € H,,

(®)
T =00 - 9@y @ v —g).

Since (H®) H+1D)/(N1p) = 1 — 04(1), we conclude that, for all .J € H,.

(t+1)
B~ v -0 o).

Let E/j i be as in (156). Combining with Definition D.6 gives
E(Z*°(G") | 7'(t)

P(J, K)/QJ, K)
iz (LloganEoyy < 2 @ (spie. 1. gy ) 2o

Ej-Ejx/E;
) (J,K)EZ(H*)Q’O QUL exp{2N[¢(1 — q) — o (1)]}
EJyK/E(]
< exp {N\I/(m,w*)} (Jvmgﬂ*)m Q(J,K) N[O (= 9) — oD} (171)

where the last bound is by the calculation (149) from the proof of Proposition D.1. Combining with
Proposition D.7 gives the claim. |

Corollary D.10 (analogous to Corollary C.1) Suppose U satisfies Assumptions 1 and 2, and let
F'(t) be as in (25). We then have the bound

E(2*(@)

ﬂ’(t)) < exp {QN <RS(a; U)-0.1- C’l(U)2a>}
for Z**(G') = Z*(G") — Z*°(Q") as defined by (170).
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Proof For E; i as in (156) we also have trivially £/ k- < 1, and combining this with the calculation
(171) gives

E(Z>*(G)| F(1)  _ Q(J. K)
exp{2 - (1, log(2ch(H®)))} SpN[G(1— ) — o (D]}

(J,K)e(Hx)>

Combining Proposition A.1 with Corollary B.8 and (115) gives, with high probability,

E(Z**(G) | Z'(1))
exp{2NRS(c; U)}

< Q((H*)Q”) . exp {N : 2[3 4153+ g + ot(l)]Cl(U)Z : a}
< Q((H*)Q»') . exp {12.1 N Cl(U)2a} .

For any .J € {—1, +1}¥, it follows by the Azuma—Hoeffding inequality that

—m® K —m® 2
Q(Ke{—l,—Fl}N:‘(J m }VK m )‘>x><2exp{—N§}

for any x > 0. Recalling Definition D.3, it follows that for any J € H,,

N(l—q+ oN(l))l2}
8

Q(KEH*:\)\(J,K)‘>Z> <2€xp{— (172)

for any [ > 0. Taking [ = 10 - C;(U)a"/? and summing over J gives

Q((H*)Q”) <Y Q(KGH* DAL K| = 10-01(U)a1/2> < exp{—12.4~N~Cl(U)2a}.

JeH

It follows by combining the above bounds that

E(Z**(G") | 7'(t))
exp{2NRS(a;U)}

exp{ —-0.3- N-Cl(U)Qa},

which concludes the proof. |

D.3. Analysis of second moment
In this subsection we analyze the bound from Theorem D.9.

Proposition D.11 (analogous to Lemmas C.2 and C.3) For As(\| () as in Proposition D.7, the
derivative with respect to A at A = 0 satifies the estimate

dA2(A[€)

= on(1 DaLl/?
o . on(1) + o(1)c

provided that { = GV is compatible with the admissibility condition (62), and satisfies the bound
ICI? < ML where L = L1(U) = 5C1(U)? as defined above.
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Proof For Lo(\| () as defined by (169), we have

A Q| _de(A 9 (1-9' 3 EcU'((h"+Y), + (1 - q)'/%¢)
dA A0 dX o N oy EU ((h(t+D), + (1 — ¢)1/2¢) >
o9 (1= 9)"?(F (0" Y),¢) _ (1-9)"*(m*Y,¢)
= o — N '

On the other hand, it follows from the admissibility condition that { = G'v must satisfy

c[tN‘l/i]C @ (rp)6(T) = on (1), 173)

where the last step is by the restriction J € H,.. The span of the vectors c® for ¢ <t — 1 — which
is the same as the span of the vectors n‘® for ¢ < t — 1 — does not contain n**1), but recall from
(42) that
(n(t+1)7n(t—1)) @)
. = M1
N

It follows from Proposition A.6 and Lemma B.11 that ;1 = 1 — 04(1), so we can decompose

n(t+1) !
gz = TC

where c/l lies in the span of the vectors c() and has norm 1 — 0¢(1), while c' is orthogonal to the
vectors c(¥) and has norm o;(1). It follows that

n(t+1) |(CH 4 CL7C)| (173) ”CL” ”CH "
‘(WC)‘ =iz S ov(+ T < on(1) + og(1)(aL)"?,

having used Cauchy—Schwarz together with the assumption |¢|> < M L. In conclusion we find

dAx(A[¢)

) = on(1) +ot(1)aL1/2,

A=0

as claimed. [ |

Lemma D.12 (analogous to Corollary C.9) Suppose U satisfies Assumptions | and 2. Recall
Ky (U) from Assumption 2, and C1(U) from Lemma B.3. For Lo(\| () as defined by (169), we

have the bound
d*La(N]€)

dX?
as long as |\| < 4/5 and |¢|?/M < L = L1 (U) = 5C,(U)~

‘ <420-C1(U)*Ko(U) -

Proof Let e(\) = (1 — ¢)/2(1 — A?)'/2. Denote

Y=Y(\¢) = {h(”l) +(1— q>1/2Ac} +(1=g)"2(1 = X)L = X (A €) + e(M)EL.
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Then the function L2(A | ¢) from Proposition D.7 can be rewritten as

Lo(A[Q) =+ Z log E¢U(Ya(, €)) -

a<M

Recalling the notation of (112), (118), (119), and (120), let us now define A = A.(X), B =
B.(X),a=(1,a.(X)),and b = (1,b.(X)), for ¢ = e(A) and X = X (\; ¢). With this notation,
we have

PL0NC) % BeU(Ya) 5% + BU” (Vo) (35 (EU' (Vo) \?
dx? N a<M EﬁU( Y.) '

—~

We decompose the above as (I) + (II) + (III) + (IV) where (cf. Lemma C.5)

(1) = (X()'(diag ) X'(3) =+ (diag A)C.
= % B0 =20 e,
(V) = le ‘O = ST

We bound each of the above terms, assuming |A| < 4/5. Applying (126) gives

1 1
(D] < NHAHOOHCH2 < yLT Ka(U)[CI? < 1.7 Ka(U)aL = 8.5 - C1(U)* Kz (V) - @

It follows from the above definition of X = X (; ¢) that

I X | H h(t+1) H"’“CH 42 1/2
] <R g 4 122 <25 0,), a7t

with high probability. Combining (174) with Lemma C.6 gives

M2 X
] < g Bl < 5w (25 i) 455 L)
8aL1/2
< K (U) <2.5-01(U) +5.8-2.5-01(U)> <105- CL(U)2 Ko (U) - o

Next, combining (174) with Lemma C.7 gives

AT AT M
N AS
A7-M
<
N

()] <

fu1.cuo +ar. )

{1.1 -Cy(U) +3.7-2.5%. Cl(U)z} <110-C(U)* - a.
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Finally, combining (174) with Lemma C.8 gives

1.8 - X 2
V) < =28 < 18- Ka(U) (4.6-(]1(U) rrr X > .

2
< 1.8 Ko(U) (4.6 Oy (U) + 17 - (2.5 : Cl(U)> ) <193 CLU)2K>(U) - a.

Combining the above bounds gives the claim. |

Corollary D.13 (analogous to Proposition C.4) Suppose U satisfies Assumptions 1 and 2. For
Uy (A |€) as in the statement of Theorem D.9, we have the bound

?U5 (N[ C)
d\?

‘ <610 C (U)K (U) - o,

as long as |\| < 4/5 and ||€|?/M < L1(U) = 5C1(U)2

Proof It follows from the definition that

UM Q)| _ v(1—g)(1 +3))

d*L3(\ ] €)
| ST gy

dX?

)<62.6-¢+

d*Ly(N [ €)
d\? '

Applying Proposition A.1 and Lemma D.12 gives

2 AN [ €)
d\?

‘ < {62.6 -3-C1(U)* + 420 - C’1(U)2K2(U)} o

The claim follows. |

D.4. Conclusion of second moment

In this concluding subsection we finish the proof of Theorem 1.5, and use it to deduce the lower
bound of Theorem 1.1 in the case |u]s, < 0.
Proof [Proof of Theorem 1.5 (conclusion)] Recall that the proof of the first moment lower bound
(17) was already given at the end of §D.1. It therefore remains to show the second moment upper
bound (18), and for this we follow the proof of Theorem 1.4. Recall from (170) that we decomposed
Z?(G") as the sum of Z?°(G') and Z?*(G'). For Z*>°(G"), we will analyze the bound from
Theorem D.9. We note that at A = 0 we have

P(1 169 (1 —q)

U2(0]¢) =W (my, ) = —Q_Q)+£2(O\C) ~ TJr@][«qu(ql/2Z>

(138)
>~ U (7, wy)

It follows by combining with (137) that

(1,log(2 ch(H®))) + W =g RS(o; U).
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Next, for |A| < 4/5, it follows by combining Proposition D.11 and Corollary D.13 that

d?Wa (X 41 A
PO, 4] 2
d\? ) 2
)\2
R
Recalling that o < «(U) as defined by (27), the above can be simplified as

d¥2(A|[¢)

(A [¢) ~ W2(0/¢) < 2

-)\—i—max{

A=0

< o ()X + 610 - C1(U)?K3(U) -

610 - A2 A2

< N
5 C, U0 < M * o

27
Wa(A[€) = V2(0]¢) < o(1) +

Substituting this into the bound from Theorem D.9 gives

E(Z>°(G')| 7'(1))
P ENRS(@ 0) F oD} < 2o

)\2
Q(J,K)exp{]\;g}.

(J,K)e (B4 )2
It follows by combining with (172) that the right-hand side is bounded by a constant. Finally, we
recall that E(Z%*(G") was bounded by Corollary D.10, so the claim follows. [ |

Proof [Proof of Theorem 1.1 lower bound assuming |lull, < o0] It follows from the first bound
from Theorem 1.5 that

_ (- _EZ|ZWO | ,» E(Z|Z(t)) 1D exp{N(RS(a;U) — 04(1))}
E(Zl{Z>2}‘J(t)>2 5 > 5 , (175)

with high probability over the randomness of .% (t). On the other hand, the Cauchy—Schwarz in-
equality gives

(. R(Z|ZF( 2 _ __E(Z]
E(Zl{Z > (L‘M} ‘ ff(t)) <E(Z?| 7 (1) -IP’<Z > (7 ‘ Z( )
Combining the above with the second bound from Theorem 1.5 gives, again with high probability,

P( 7 > PV ESY) ~ o)) ‘ %)) 79 exp{2N<IIE§(sZgg;|U;(t—);ta»}/zt

18
a8 1/4

7 exp2No(D) e

Next let P/ denote probability conditional on the first j rows of G, and let E/ denote expectation
with respect to P/, Then, as in the proof of (Talagrand, 2011b, Propn. 9.2.6), we take the martingale
decomposition

1 1 . .
N{ log Z — ]ElogZ} = Z N{EJ log Z —E/! logZ} = Z X;.
J<M J<M
To bound X, let Z; denote the normalized partition function without the j-th factor,

z;i=> 11 U( Y ) (177)

J a<M,
a#j
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Since Z; does not depend on the j-th row of G, we can rewrite
. A . A
NX;=Flog— —E/ 'log —-.
’ *z *z
By Assumption 1 and the uniform bound on u = log U, we have

1 VA

— < 5 <1,
exp(ufo) — Z;
which implies | VX ;| < |u|« almost surely. It follows from the Azuma-Hoeffding bound that

2
Ns(e))

—Neé?
P llogZ—ElogZ' > Ne) < 2exp - (178)
exp(

2a([luflo)?

On the other hand, if we fix any € > 0, then (176) implies

~ log2 1/4 - 1/4

N > > on(l) + exp(2No¢(1)) = exp(Ns(e)/2) (179

1
IP’<N10gZ > RS(o;U) — ¢

Note that (178) and (179) contradict one another unless

1 log 2
— > L U) — 2¢ — .
Elog Z = RS(o; U) — 2¢ (180)

It follows using (178) again that, for NV large enough,

1 (180) (178)
]P’<NlogZ < RS(; U) —4e> < IP’<logZ —ElogZ < —Ne) < on(1).

In the above, the left-hand side does not depend on ¢, so it follows that

1
lim inf N log Z = RS(a; U)

N—o0

in probability. This gives the lower bound in Theorem 1.1 in the case |u[,, < 0. |

Appendix E. Local central limit theorem

In this section we state and prove Proposition E.13 (used in the proofs of Proposition A.13 and
Proposition D.1) and Proposition E.14 (used in the proof of Proposition D.7). Recall the calculation
of X 7 from Lemma A.20. Given J € {—1,+1}" and 7 € R*"!, we define

X =Xj, =Xy +N"c(n(J))e[t —1]'7

B hq[g;fr L - q);% “UE N2 ())elt — 1)
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Now let ¢, (a < M) be independent scalar random variables, such that ¢, has density given by (cf.

Definition B.1)
U(Xq + cz)p(2)

) = B UX + ) (152
where X = X 7, as above, and ¢ = ¢(7(J)) = (1 — |7 (J)|?)"/2. Note that
Ee[EU (X,
g, = Pl LD ) e () (183)

Eg U(X o+ € )
Let n, € R~! denote the a-th column of the matrix n[t — 1], and consider the random variable

~1](¢-E
W= W S (¢ — E¢m, = 2L }\][(52 ) g1, (184)

as<M

Let P; ;- denote the law of W. We will compare P with the gaussian distribution on R*! that
has mean zero and covariance

1
E=%sr= D7 (Var Co)ng(ng)t € RODED), (185)
as<M

(We bound the singular values of > ; - in Lemma E.2 below.) The majority of this section is occupied
with proving the following result:

Proposition E.1 (local central limit theorem) Suppose U satisfies Assumptions I and 2. Recall
that Pj ; is the law of the random variable W from (184). For any finite constant Tmax, it holds with
high probability that for all J € {—1,+1} and all ||7| < Timax, the measure P; . has a bounded
continuous density pj -. Moreover, again with high probability,

4

su {117 = 17k & (LA IR < 51171 < T <

1 1
(27.‘.)15—1]\70.35 < N0.3 )

where g denotes the density of the centered gaussian distribution on RY with covariance ¥ =
Y

At the end of this section we will show that Proposition E.1 readily implies the required results
Propositions E.13 and E.14. Towards the proof of Proposition E.1, we introduce some notation.
Write p, for the density function of the random variable {, — E{,, so in the notation of (182) we

have
E¢[§U (X, + c€)]
EE U(Xq + c) .
The characteristic function of the random variable W from (184) (i.e., the Fourier transform of the
measure P ;) is given by the function

P(s) = par(s) = Eexpli(s, W) = [ Eexp{ 5:0) (o EC“)} 17 ﬁa((s’““)>,

N1/2 1/2
as<M / as<M N /
(186)

pa(z) = XXa,c(Z + ECa) = XXg,c (Z +
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where p, denotes the Fourier transform of p,. The Fourier transform of the gaussian density g =
g, 18 given by

306) = gs:0) = exp{ = 2 - [T ewp{ - BTG [T 50 as)

2 as<M as<M

With p = p;, asin (186) and g = g~ as in (187), we define

1(0.7) = [ [pr () = s @)1 {1s] < N0} s, (188)
Ly(J,7,e) = f Drr(s) — Gy (5) 1{]\7001 < ls| < 62N1/2} ds, (189)
L(J,e) = f Brr(5) — Gy (s) 1{“5“ > 62N1/2} ds . (190)

In the analysis below we show that the integrals I;(.J,7) can be bounded uniformly over J €
{—1,+1}" such that |7(J)| < 4/5, and any bounded range of vectors 7. The remainder of this
section is organized as follows:

* In §E.1 we bound the quantities I; and I from (188) and (189).

* In §E.2, in preparation for bounding 5 from (190), we prove rough estimates concerning the
nondegeneracy of the vectors arising from the AMP iteration.

e In §E.3 we bound I3 from (190).

* In §E.4 we combine the bounds from the preceding sections to finish the proof of Proposi-
tion E.1. We then state and prove Proposition E.13 and E.14.

The analysis of this section is based on standard methods; see e.g. Petrov (1975); Borovkov (2017).

E.1. Fourier estimates at low and intermediate frequency

In this subsection we prove Lemmas E.4 and E.5, bounding the quantities /; and I from (188) and
(189).

Lemma E.2 Suppose U satisfies Assumption 1 and 2, and let 3. be as in (185). Given any Tyax <
oo, there is a positive constant 11, depending on t and on Tyayx, Such that we have the bounds

4
i { (0,250 ¢ ol = 1,7 € (-1 + 12 o] < 5] < o 20, 190)

1
sup {(u, Syru):ull =1,J € {-1, +1}2, [r(J)] < <, 7| < Tmax} < = (192)
1

with probability 1 — oy (1).
Proof Write v, = Var ¢,. Note that Assumption 2 gives, with ¢ = ¢(7(J)) = (1 — ||=(J)]?)?,

Ve = (X, ) = EES[(f —N2U(X, + U (X, + c&')] _ Ky (U)
a as ) Eﬁ,{’[U(XUL—I_Cf)U(Xa‘FCg,)] X 9 .

(193)
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It follows that, for any unit vector « € R'~!, and with ¢; as defined by Remark A.5, we have

(u, %) = & Z Va(Dg, 1) < () > (ng,u)”

as<M 2N as<M
)tu‘2 < K?(U)Wt
~ 2 )

Hn[t 1] \2 @ MH(r

which proves (191). Next, for any L, let M (L) < [M] denote the subset of indices a < M
satisfying the condition

m, = max{|(h(5))a], ()| s <t 0<t— 1} <L. (194)
It follows from Lemma A.4 that with high probability we can bound

1 1
max {57 3 ()% 3 3 (O ss<ne<e-1} <o
as<M as<M
for a constant 4. As a result, for any finite L, we can bound
1 h(s)
N B
as<M as<M
and similarly with n(®) in place of h(®). It follows using the Cauchy—Schwarz that

s 5o o)

a<M

< <J\14 y (ng))4> 1/2(1 > 1|0, > L}>1/2 ey

as<M as<M

=S {0, > 1

(s 300) " (

as<M

=

1/2
3 1flwl > 1)) <5,

as<M

Sk

where the bounds hold for all s < ¢ and all j, ¢ < t — 1. Combining these bounds gives, with m, as
defined in (194),

1 1 2t
= 2 @02 = 3 )P > L < 25 (195)
a¢M (L) as<M

Next, it follows from the definition (181) of X = X, that foralla < M,

)0 |7l stl7]
s Zt‘ (qm+ ;1/2>€2 (),
s< <t—1
< st <|<h<s>>a| FlwO] ) (196)
(q)*/2 S;t
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If | 7] < Tmax Where (without 10ss) Tiax = 1, then we obtain

4Gt Tmaxt L
maX{|Xa|:aeM(L)}<(tqw)l/25L/_ (197)

It follows using Assumption 1 that for any finite I’ we must have

1
inf{v(w,c) by <c<1,|z| SL’} >e(l')>0.

It follows that, for any unit vector u € R*~! we have the lower bound

(u, Xu) = E(NLI) Z (ng,u)? = E(JVM{“n[t - 1]%”2 - Z (na,u)Q}

aeM(L) a¢M (L)
(44) 2 1 (195) ¥ 2t2@4 G(L/)T/J
> e(L/){”L/J)(I‘N)tu‘ ) \naHQ} > e(y){gt_ ol s B

a¢ M (L)

where the last inequality can be arranged by taking L large enough (note that L depends on ¢, and
L’ depends on L). This proves the second assertion (192). |

Lemma E.3 (Taylor expansion of characteristic function) Suppose U satisfies Assumptions 1
and 2. Let p, be as in (186), and recall that it depends on both J and T. It holds with high
probability that

. (5,na)2 Var(, \ | . N 4 0.01 H5H3
max{ Pa(s) - (1 - Rl SN s e (=141, r()] < 5 Ir) < N0 < O
foralls e R and all a < M.
Proof It is well-known that for all z € R we have
, z? |3
(1t — — )| < —.
e ( + 1T 7 )‘ 6
We also note that Lemma B.3 implies the third moment bound
3 SE[|€1°U (X + c€)]
E(|¢ —E < SE(|¢a)?) = =2 <8(ClU) + (81X.a])? ) .
(6 - 26[') < smiiet) - FEELT S () + (81X.)
As a consequence, for all s € R*! we have
. (s,n4)? Var ¢, [(5,1n4)]3 3
pa(ﬁ) - (1 - IN < 6N3/2 E Ca _ECa
4)(s,n,)? 3
< TaN32 C1(U) + (8[Xal)” | - (198)

By combining Lemma B.15 with the bound (196) and the restriction |7 < N%%!, we must have
I X oo < N92! with high probability. Therefore, with high probability,

4)(s,n)[? 4||5||3L‘3/2]\70'03 HE
—yan |\ G0) + (8[Xal)? ) < — ez GO+ (81%)* ) < 17
Combining with (198) concludes the proof. -
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Lemma E.4 (low-frequency estimate) Suppose U satisfies Assumption 1 and 2. In the notation
of (188), we have

max {Il(J,T) cJe {1+ |n(J))| <

with probability 1 — on(1).

Proof Recall from (193) that Var ¢, < K2(U)/2. Combining with Lemma B.15 gives, with high
probability,
(5,10)? Var G _ [s[*t(Inalloo) K2 (U) _ |s|*tK(U) _ |s]”

\

2N = AN 4N0-98 = NO.97°

We have |log(1 — z) + z| < 2 for all z small enough, so if |s| < N, then combining with

Lemma E.3 gives
2
_ s (sl el
N14 NO097T T N14

ISP (2P 2l
= N1.4 NO.97 = N1.4 = N1.39 '

(5,n4)? Var ¢,
2N

log pa(s) +

Summing the above over a < M gives that the multiplicative error between p(s) and §(s) is small
for all 5| < N9, Therefore, with high probability, we have the bound

. M (2m)(t=1)/2 1
Li(J7) < Jg(s){ exp <N139> - 1} ds < NO385 (et 1) 1/2 S 038

uniformly over all J € {—1,+1}" and all || < N1 -

Lemma E.5 (moderate-frequency estimate) Suppose U satisfies Assumption 1 and 2. With the
notation of (189), for any finite constant Tyax, we can choose e depending on Tyax such that

1

4
: N
sup { (7. 2): 7 € (=1 + 1Y, ()] € 31171 < T} < ooy
with probability 1 — oy (1).

Proof It follows from the bound (198) in the proof of Lemma E.3 that, with high probability, we

have
6)] < 3(o)e {;;3/2 NN CIGRCES 9}

for all s € R®~1. Recall the bound (196) on X = X ;. If we assume without loss of generality that
Tmax = 1, then combining (196) with Lemma A.4 gives, with high probability,

4 n
sup{s,N > Il (C1(0) + BIXal)?) : T € (=1, 41}, 7] < Tmax} < (Tmax) 01,
as<M

89



BOLTHAUSEN NAKAJIMA SUN XU

where @7 is a finite constant. On the other hand, by Lemma E.2, with high probability

2
. Llls
g(s) <exp{ — 2}.

It follows that, with high probability,

+

Calls]? | (Tmax) 18]
2 N1/2

5(s)| < exp {

To ensure that the quadratic term dominates the cubic term, we restrict to |5 < eaN''/2 where

L1

€)= —FF.
2 4(Tmax)3@1

For this choice of €2 we find that, with high probability, we have the bound

us]? 1
I J, 5 < - S S —— o
2(J,7,€) szNo.m P { 4 exp(N0-01)

uniformly over all J € {—1, +1}" and |7 < Tiax- [

E.2. Non-degeneracy of TAP iterates

In this subsection we prove some preliminary results which will be used in §E.3 to estimate the
quantity I3 from (190).

Lemma E.6 If B is any k x M matrix such that BB' = I}, then B must have a k x k submatrix

U such that
B\ /2

Proof We argue by induction on k. If £ = 1 then B consists of a single row which is a unit vector
in RM, so clearly B must have an entry with absolute value at least 1/ 12 Now suppose k = 2
and that the claim has been proved up to k¥ — 1. Denote the columns of B as by, ..., by; where each
b, € R*. Since

S ba|? = tx(BBY) = k,

a<M

there must exist at least one index a < M with

k
ba|? > —.
Iba 7

We assume without loss that @ = 1. Let O be a k x k orthonormal matrix such that Ob; =
b1 e1, where e; denotes the first standard basis vector in R¥. Let B = OB, and note that BB' =
OBB'O" = I}, so B also has orthonormal rows. We can further decompose

s _op (Pl
B—OB—<0 B
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where 0 denotes the zero vector in R¥~!, and B is a(k—1) x (M — 1) matrix with orthonormal
rows. It follows from the inductive hypothesis that B has a (k — 1) x (k — 1) submatrix U with

- E—1)0 \Y?

As aresult, B has a k x k submatrix U with

. [baf| = SR (k=1 \Y2 O\ M2
= ~ = : = Z\ % :
|det U| ‘ det < o U [b1]| - |det U] A\ = AF
The claim follows by noting that U = O'U is a submatrix of the original matrix B. |

Corollary E.7 If B is any k x M matrix such that | BB' — Ij;| < 1/(3k), then B has a k x k

submatrix U with
1/ K\ Y2

(In the above, as elsewhere, | - ||« denotes the entrywise maximum absolute value of the matrix.)

Proof Denote the rows of B as u', ..., u” where each u’ € RM™. Consider the Gram—Schmidt

orthogonalization of these vectors: for each ¢ < k, we decompose

u’ = bl 4 ubt = 2 cz,juj +ubt
Jj<e-1

where u®ll is the orthogonal projection of u onto the span of u', ..., u’"!. Then forall j < ¢ —1
we must have

0= (ut ) = (' W)= D 1{i # jlei(u’, w) —eq 0’|
i<l—1
Abbreviate € = ¢(k) = 1/(3k), so the assumptions imply that [u/|? > 1 — € while |(u’,u/)| < €
for all i # j. Rearranging the above gives an upper bound for |c, ;| in terms of the other coefficients
ce; (i # j). If we further denote cpmax = max{|cy | : € < k,j < £ — 1}, then we have

L€
T 1—c¢

Cmax

{1 + (k — 2)cmax} .
Rearranging the inequality gives the bound

€ e(k—2) € 3e
Cmax S 1-— = < =
1—e¢ 1—e¢ 1—elk—1) 2

From this bound we can deduce that for all ¢ < k we have

> %ﬂﬁ2<<§>?w—lﬂLHﬂ+@—D@—2k}<<f)%f=e

j<t—1
91
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It follows that [u®*|? = |u’|?—|Ju®!l|? = 1—2e. (We also have trivially [[u®*||> < [[u?|? < 1+¢.)
Let R denote the Gram—Schmidt matrix, so R is k x k lower triangular with entries

1 .
R&j H EJ_” {1{5 } 1{5 < j}Cg,j} .

Since R is lower triangular, its determinant is simply the product of its diagonal entries, so

1
< detR = )
a+oF L “n — 20

By construction, B = RBisak x M matrix with orthonormal rows, so Lemma E.6 implies that B

has a k x k submatrix U with
) 1\ 12

Therefore U = R~'U is a k x k submatrix of the original matrix B, with

. P\ /2 oNE/ BINY2 1/ g\ 12
et = L9UL g o (RN (gD 2 (BT LR
det R AF 3k ) \are 3\ 2

where the bound holds for all k£ > 1. [ |

Lemma E.8 Suppose U satisfies Assumption 1 and 2. Recall from (44) that the matrix c[t — 1] is
(t — 1) x M with orthonormal rows. Let M (L) < [M] be as defined in the proof of Lemma E.2
(see (194)). If B = B(L) is the submatrix of c[t — 1] with column indices in M (L), then with high
probability it satisfies

t§tL

1Bl < -

It is possible to choose L = L(t)
1/(4¢).
Proof It follows using (44) that foreach ¢ <t — 1,
2 D) Doy ? _ ts)? )2
oy \2 _ (TN)" e a ¢ )
((“)a) < Y <N o (@) e

j<t—1 j<t—1

_Itleoo <

Applying (200) for a € M (L) gives the claimed bound on | B(L)||o. On the other hand, by applying
(200) for a ¢ M (L) and combining with the bound (195) from the proof of Lemma E.2, we find,
with high probability,

2 ((C(Z))‘J s Nw

a¢gM (L)

SN2 (195) Mt2(¢)2 2t
R

J<t—1 ¢M

which can be made < 1/(4t) by choosing L large enough. Then, for any ¢, j < t — 1, we have

A A 1

S @10 =) = | 3 @ule] < ;.
aeM(L) a¢M (L)

which shows that the matrix B = B(L) satisfies | BB' — I;_1]|c < 1/(4t) as desired. [ |
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Corollary E9 Let M (L) < [M] be as in Lemma E.8, where L = L(t). With high probability,
the matrix n[t — 1] has disjoint (t — 1) x (t — 1) submatrices Ay, ..., A|yos), all involving only
columns indexed by M (L), such that each A; has minimal singular value lower bounded by a
positive constant 15 (depending on t).

Proof Let B = B(L) be the submatrix of c[t — 1] guaranteed by Lemma E.8, so

t{tL
| Bl < Wa |IBB'—I| <

1

4t

Then B satisfies the conditions of Corollary E.7, soithas a (t — 1) x (¢ — 1) submatrix U satisfying
the determinant lower bound (199). Let B; be the matrix obtained by deleting U; from B. Then for
all N large enough we have

(oo =1, =55+ (sgm) <5

Thus B; also satisfies the conditions of Corollary E.7, so it has a (¢ — 1) x (¢ — 1) submatrix
U> which also satisfies the determinant lower bound (199). Repeating the same argument, we
see that with high probability the original matrix B has disjoint (¢ — 1) x (¢ — 1) submatrices
Ui, ..., Unog), all satisfying (199). Recalling (44), the corresponding submatrices of n[t — 1] are

given by A; = (N)/2T'yU;, and

\detAJ) = [9.

(V) D2 det U Nw) 02 (2 = 1))2
St “\M 36t

Take any A = A;, and denote its singular values 01 > ... = 0,1 = 0. Note that 07 < t]| Al <
t L, where the last bound holds since A only involves columns of n[¢t — 1] indexed by a € M (L) (as
in Lemma E.8). Then

-1 = = =12.
AR O

This concludes the proof. |

E.3. Fourier estimates at high frequency
The main result of this subsection is the following lemma:

Lemma E.10 (high-frequency estimate) Suppose U satisfies Assumption 1 and 2. With the nota-
tion of (190), it holds for any Tyax < 00 and any €3 > 0 that

1

max {13(J, T 62) 1 J e {—1,+1}V, |n(J)] < exp(INO8)

) HTH < TmaX} <

with probability 1 — oy (1).

93



BOLTHAUSEN NAKAJIMA SUN XU

Towards the proof of Lemma E. 10, recall that the random variable ¢, has density given by (182).
Thus

Pals) = Eexp {is = Ec)} - m . 201)

We also denote g, (2) = U(z + cz)¢(2), and note that

(jx,c(s) _ Qw,c(5>

Xz,c(8) = = = . (202)
O ED( 8 a0
Note that Jensen’s inequality implies
Ju,c(8) — (jz/’d(s)‘ = ‘ Jeisz <U(:c +c2) = Uz’ + c’z))go(z) dz
< J’U(m +cz) Uz’ + c/z)’go(z) dz, (203)

and the last expression is bounded by Lemma B.2.

Corollary E.11 Suppose U satisfies Assumption 1. Given any € > 0 and any L < o0, it is possible
to choose K large enough (depending on € and L) such that

N

sup {[s(9) s <0 < 2ol < Lo > K} <.
where X . is as defined by (182).
Proof Recall from (202) the relation

_ Qx,c(s) _ qu,c(S)
EeU(z +c€)  Gae(0)

)ACI,C(S)

By Assumption 1, the denominator ¢, .(0) = E¢U (x + c£) is strictly positive for any given = € R,
¢ > 0. On the other hand, it follows from Lemma B.2 and (203) that §, .(0) is continuous in (z, c).
It follows that

1
inf{ﬂ%U(m%—c&):2<c<2,|x|<L}<oo

for any finite L. Therefore it suffices to show the claim with g, . in place of x; .. By Lemma B.2
again, given any € > 0, we can choose 1’ small enough such that

qz,c — Q' ¢

< J’U(w +c2) = Uz + c’z)’@(z) dz < %
o0
as long as ¢, € [1/2,2], z, 2’ € [—L, L], and max{|xz — 2’|, |c — ¢/|} < n/. Let {x;} be a finite
n'-net of [—L, L], and let {c;} be a finite 7’-net of [1/2,2]. It follows by the Riemann-Lebesgue
lemma that there exists K finite such that

DO ™

’

sup { i, ()] 15 > K} <
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For any |z| < L and 1/2 < ¢ < 2, we can find z;, ¢; with max{|z — z;], |c — ¢;]} <7/, s0
sup {%(s) ]s| = K} <e
by combining the previous bounds. This concludes the proof. |
Corollary E.12 Suppose U satisfies Assumption 1. Let X, . be as defined by (182). Then
sup{m,c(s)y : % <c<2 |z <L s> e} <1-¢<1

for any finite L and any € > 0, where € is a small positive constant depending on U, L, and e.

Proof By Lemma E.11, we can choose K large enough such that

N =

1
sup {29 s < c < 2ol < LJo > K} <

For any given z, c, let { be a random variable with density x .. For any s # 0,
1/2

eclo)] = { (Boos(s0))”+ (Bin(s0)) ) <1

by Jensen’s inequality. It follows from Lemma B.2 and (203) that x .(s) is continuous in (z, ¢, s),
SO

1
sup{\f(w,c(sﬂ b <c<2jz| < Lie<|s| < K} <1
by compactness considerations. The claim follows. |

Proof [Proof of Lemma E.10] For any subset of indices T' = {i(1),...,i(t — 1)} < [M] denote

or(s) = H Di(e)(s¢)

I<t—1

for s € R~L. It follows from (201) and Plancherel’s identity that the L? norm of the function
Pa(s) is the same as the L? norm of the function yx, .(s) defined by (182). We also note that
Assumption 1 implies

9 Uz + c2)%p(2)? 1 f Uz + c2)p(2) 1

T @U@ PSR ) Gl ) " T B+ @)

By compactness considerations (similarly as for (90)), we must have

HXx,c

1
inf {EgU(x +c): 3 <c<2z| < L’} > e (U, L).

If T < M(L) (as defined by Lemma E.8), then it follows by combining the above with (197) that

1 t—1 1 t
forla = TT Ioials < (w0 {lxacle: 3 <c<2lel < 1)) < (=) =os:

o<t—1
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Now let Ay, ..., A|yo.9| be the submatrices of n|[¢t— 1] guaranteed (with high probability) by Corol-
lary E.9. Let T; denote the subset of column indices involved in A;, and note

R (A;)'s
i< TT Jon (Y5
ZQI_NOQJ
Moreover, each individual factor ¢, has modulus at most one. Combining with the preceding L>

bound gives
’ o NOVR(or]2)? _ ND2 ()

J o <(Jilfl)/;5) | det A;| ST ()it

It follows using the Cauchy—Schwarz inequality that

[l (22 ) (25 g 220

N2 N1/2 (12)t 1
On the other hand, if ||| > e N'/2, then the least singular value bound from Corollary E.9 implies

|(s,14)| 1 (A sl _ [(A)'s| _ eaea
max{ N1z raeT;y = N2 >(Nt)1/2>tlT'

Recall again that for a € M(L), | X,| is bounded by (197). Combining with the result of Corol-
lary E.12 gives

or, ((A )t5>‘ < sup {bzx,c@)\ :

T <c<2,|x|<L’,|s|>”62}<1_a<1.

t1/2

N | =

To conclude we note that the quantity 3(J, 7, e2) from (190) can be bounded by I3, + I3, where
I3 4 is the integral of g -, while I3 , is the integral of p ;. By (187) and Lemma E.2, we have with

high probability
I3 4= f

By the previous calculations, we also have with high probability

o< { [] ILon (5 T jor (2)] o5 o)

1
exp(N09)

a1 (&)L ls] > 2N'/2} ds <

o 11

1=1,2
N(= 1)/2<@5)2 (1- 6,)No,gs < 1
(LQ)t—l = exp(NO-S) :
This concludes the proof. |

E.4. Conclusion of local CLT

In this concluding subsection we prove the local CLT Proposition E.1, and apply it to deduce Propo-
sitions E.13 and E.14.

96



GARDNER FORMULA FOR ISING PERCEPTRON MODELS AT SMALL DENSITIES

Proof [Proof of Proposition E.1] Recall that p ;- and g, are defined by (186) and (187). It follows
by combining Lemmas E.4, E.5, and E.10 that for any finite constant 7,x, we have

4 1
sup{J‘pJT gJT ) ds:Je {—1,+1}N7 HT((J)H 5 HTH Tmax} < W

with high probability. Inverting the Fourier transform shows that, with high probability, the random
variable W from (184) has a bounded continuous density function p; , which satisfies

1 1
sup {|pJ,7— - gJ,T“oo :Je {_17 +1}N7 ”7T<'])H SE HT“ TmaX} < (271_)75_1]\70.35 < NO3°

as claimed. |

We now define the transformed gaussian density

gJJ—(Z) = 1/11/2| det PN|QJ,7— <w1/21"N(z _ N1/27—) _ n[t_l]EC> , (204)
where [EC is as in (183).

Proposition E.13 (density bound for first moment) Suppose U satisfies Assumptions 1 and 2.
Then we have

1

sup {(ph(. |98) — gur ()] i e {—L+1Y 7] < Tmax} < o

with high probability, where p j (- | gr) is as in (72), while g j - is as in (204).

Proof Recall that Proposition E.1 above estimates the density p s . of the random variable W from

(184),

nlt - 1(¢ — E¢)
N1/2

where each ¢, has density given by (182). On the other hand, let £ € R™ be a random vector with
independent coordinates, such that &, has density

W = e R\, (205)

Pa(2) = U((XJ)a + cz) exp {Nl/Qth[t - 1]eaz}<p(z) ,

where ¢ = ¢(n(J)), X s is as in Lemma A.20, and = denotes equality up to a normalizing constant.
We see from (72) that p - (- | gr) is the density of the random variable c[t — 1]&, for £ as we have
just described. Note that

Pe (z N2t — 1]ea> ~ U((XJ)a + c{z N2t — 1]%}) o(2)

(182)
(181) U((XJ,T)a +cz>s0(2) = XXoe(2)
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50 it follows that & — N''/2¢[t — 1]'7 is equidistributed as ¢ for ¢ as in (205). Thus pj,(-|gr) is

the same as the density of

4y (Ty)~'nft —1]¢
(Nep)1/2

7 OCn)"'W  (Ty) 'nft — 1]EC

+ NY27

cl[t —1] (C + N[t — 1]t7'>

T + o) + N7,
It follows by making a change of variables that
P (21 = 07| det Dl (02T (e = 2r) - BECEIEC).
Comparing with (204), we have
HPJ,T(' |grR) — g],r(')Hoo = /2| det FN|HpJ,T ~9ir|
so the result follows from Proposition E.1. |

Proposition E.14 (density bound for second moment) Suppose U satisfies Assumptions 1 and 2.
Then the bound (164) holds with high probability, where pr|;-(- | gr, €) is as in (162).

Proof Through we abbreviate ¢ = ¢(7(K)). First we slightly modify the definition from (182): let
o € RM be a random vector with independent coordinates, such that each o, has density given by

X Xa,e(\) for
X = Xg-(¢) =Xk +c- ()\(j + (1= M\)V2NY 2t — 1]%)

and e(\) = ¢- (1 — A?)Y/2. In this definition, X is as in Lemma D.8, and A = A(J, K). We define

also (cf. (184))

, _n[t—1](oc —Eo)
W= N1/2

On the other hand, let £ € RM pe a random vector with independent coordinates, such that £, has

density

eRL. (206)

Pa(?) = U<(XK)a + c(ACa +(1- AZ)WZ)) exp {Nl/Qth[t — 1]%;,«}@(2) .

We see from (162) that pg|;-(- | gr, ¢) is the density of the random variable c[t — 1]£. Note that

Da (z + Nl/Qth[t — l]ea> > U(XKJJ—(C) +c-(1— )\2)1/22> ©(2) = XX,.e(0) 5

which implies that £ — N'/2¢[t — 1]' is equidistributed as o. Thus pg|;.-(-| gr, ¢) is the same as

the density of

(Tn) W/ N (Cn) " 'nft — 1]Eo
e (NP

for o and W' as defined above. It follows by a minor modification of Proposition E.1 (replacing W

from (184) with W' from (206)) that px s - (- | gr, ¢) can be uniformly approximated by a gaussian
density. The claim follows. n

+ NY2;

oft = 1)(o + NV2eft —1]'7) =
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Appendix F. Concentration of partition function

In this section we prove Propositions 1.6, 1.7, and 1.9; and use these to conclude the proof of
Theorem 1.1. The section is organized as follows:

* As commented earlier, both Propositions 1.6 and 1.7 rely on a bound for near-isotropic gaus-
sian processes, Proposition F.1, which is proved in §F.1. See Remark F.2 for further discussion
of this result.

* In §F.2 we give the proof of Proposition 1.6.

* In §F.3 we give the proof of Proposition 1.9, and use this to deduce that the free energy of the
smoothed model (22) is given by the replica symmetric formula (Corollary F.10).

* In §F.4 we give the proof of Proposition 1.7, and conclude the proof of Theorem 1.1.

Recall from §1.4 that Assumption 1 implies (20), where we can assume without loss that E(U) <
[— Emax(U), Emax(U)] for some finite Eyax(U).

F.1. Bounds for near-isotropic gaussian processes

The following is a variant of (Talagrand, 2011b, Cor. 8.2.5):

Proposition F.1 Let c € (0,1/12]. Let v',...,v™ be unit vectors in R™ such that (v*,v?) < c for
all© # j. Then

Ly : i 1/(25¢)
]P’(n‘{z <n:(g,v')e E(U)}‘ < ’y) <7
foralllog(5/c)/(logn) < v <79 = Y (|E(U)|, Emax(U)) and n large enough.

Remark F.2 We point out that there are two main differences between Proposition F.1 and (Tala-
grand, 2011b, Cor. 8.2.5). First, (Talagrand, 2011b, Cor. 8.2.5) considers the event {(g, vi) > a},
and the proof relies crucially on Gordon’s inequality. By contrast, Proposition F.1 considers the
event {(g,v') € E(U)}, where it does not seem possible to apply standard gaussian comparison
inequalities. As a result we rely on more ad hoc arguments which yield a weaker bound, in the sense
that (Talagrand, 2011b, Cor. 8.2.5) holds for v polynomially small in n while Proposition F.1 holds
only for ~y decaying logarithmically in n.

The proof of Proposition F.1 is given at the end of this subsection. We begin with some prepara-
tory lemmas:

Lemma F.3 (used in proof of Lemma F.4) Ler ¢ € (0,1) and denote n/(c) = 1/log(4/c). For
any K € N there exists no(c, K) < oo such that the following holds for all n = no(c, K): if
vl ..., v" are unit vectors in R™ and m < n'(c)logn, then there must exist K distinct indices

m<i] <...<itg < nsuchthat

e [  (vie = v

where Py, denotes the orthogonal projection onto the span of {v',...,v™}.

‘:a,b<K}<c,
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Proof Suppose for contradiction that for all m < ¢; < ... < ix < n we have

max {‘Pm (Vi“ — Vib>

Let U denote the disjoint union of U, 1, ..., U,, where U; is a copy of

Bm(vai,;> <span {vl,...,vm}> mB(vai,;> .

Note that if x € B(P,,v*,¢/2) then |z| < ||Pnv?| + ¢/2 < 3/2, so we have a natural mapping
i:U — Bp(0,3/2). By the assumption (207), each point in B, (0, 3/2) has at most K — 1 distinct
preimages under the mapping i, so

‘:a,bgK}>c. (207)

(n—m) V01B<vai, ;) =volU < (K — 1) vol By, <0, 2) )

If m' = dimspan{v?,...,v™} < m, then it follows that
3/2\™ 3\ 7 (@) legn log (3
n—m< (K —1) 3/2 <K|(- = Kexp Mlogn ,
c/2 c log(4/c)
which yields a contradiction for n large enough (depending on c and K). |

Lemma F.4 Let c € (0,1) and denote 1/ (¢) = 1/log(4/c). There exists ny(c) < o0 such that the
following holds for all n > ng(c): if v',...,v" are unit vectors in R™ with (v*,v7) < c for all
1 # j, then the vectors can be re-indexed in such a way that

max {HvamHH 1<m<9(c) logn} < (30)'?,

where Py, denotes the orthogonal projection onto the span of {v!,... ,v™}. (The claim is non-
trivial only if ¢ < 1/3.)

Proof We shall assume the vectors are indexed such that for all 1 < ¢ < n we have
HPK,MH — min {‘Pglka I<k< n} . (208)
Now suppose for the sake of contradiction that for some m < 1’(c) log n we have
Hvam“H @ hin {‘vak‘ m+1<k< n} > (3¢)12. (209)

Take K = 2 + [1/c|. By Lemma E.3, for all n large enough we can find indices m < i; < ... <
1) < n such that
max {‘Pm (Vi“ — vib>
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As a consequence, for any a # b where a,b < K, we have

<(I — Pp)v', (I~ Pm)vib> = (v'*,v") — (Ppv'®, Ppyv')

—| Py |? + {(Vi“,vib) — (vai“,Pm(vib — vi”)>} < —c,
where the last bound uses (209), (210), and the assumption that (Vi, v ) < cforalli # j. If we let

= (I — Pp)vie
[(I = Py)vie|’

then the above implies that (x?, x?) < —c for all @ # b. It follows that

2
2, x

a<K

o
N

- Y (xx) <K<1—0(K—1)>,

a,b<K

which gives a contradiction since we chose K > 2 + 1/c.

|
Lemma F.5 Let vl ..., v™ be unit vectors in R" (for any m,n) such that
l / 1
max HPg_lv H:lé(ém <c <§’
where P;_1 denotes the orthogonal projection onto the span of {v',...,v'~1}. Let g be a standard

gaussian random vector in R". There exists vo = Yo(|E(U)|, Emax(U)) > 0 such that

IP’(;HZ <m:(gvi)e E(U)}‘ < 7) < AN/

Sforall 1/m < v < 7.

Proof We shall assume without loss that m- is integer-valued. Let u; = (g, v?), so that (u;) defines
a (centered) gaussian random vector indexed by ¢ < n. For each ¢ we can decompose u; = (; + &;
where (; = (g, P,_1v"); at the first step ; = 0. Define a parameter

s = s(U) < max {10, Brmax(U), (‘ log |E(U)|D 1/2} , 211)

and define the random subset of indices

Bz{iém:\@gs}.

Let €2, denote the event of interest,

Q, = {ﬂl%’{z <m:u; eE(U)}’ < 7}.
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On the event 2, there must be a subset A < [m] of size my such that u; ¢ E(U) for all i ¢ A.
Therefore

IP’(QV)<IP><|B <7§> + Z IP’<uZ-¢E(U) Vi¢A;|B|>T;>. (212)
[A|=msy
To bound the above we will consider a fixed subset A, without loss A = {m — m~y + 1,...,m}.

Define
%:U<(Cia§i)21<i<€>.

Let 79 = 0 and define the increasing sequence
nginf{i>7'g_1 21 < m, |G <s}.

Note that since (y, € ¥;_1, the 7, are stopping times with respect to the filtration ¢,. We take the
usual convention that inf & = o0, so the set of finite stopping times corresponds exactly to the set B.
Let f(i) = 1{u; ¢ E(U)}. It follows from the assumption that &; has the law of a gaussian random
variable which is independent of ¢;, and has variance between 1 — ()2 > 3/4 and 1. Therefore we
have

Pe = E<1{TE < Oo}f(TZ) gm—l) = 1{7—6 < Oo}]P)<u’Te = CTg + frg ¢ E(U) ‘gm—1>

< max {IP’<Z¢ E(UA)_J”) : <i>l/g < A\

To bound the above, note that the set A~} (E(U) — z) has Lebesgue measure at least | E(U)| (since
A < 1), and is contained in the interval [—5s/2, 5s/2] (by the assumption s > Epax(U) from (211),
together with the restriction A > (3/4)%/2). It follows that

5s 1 752
<S1—|E)p| =) <1 - ——5 - =4

where the last bound uses the assumption s> > |log |E(U)|| from (211). It then follows by iterated
expectations that

N

1,|z| < s}.

P(u,» ¢ E(U)Vi¢ A;|B| > ”;) < E[ [ 1 < OO}f(Tj)}

j<m/2

< E[( [] 1m< OO}f(Tj)>E<1{T[m/21 < 0} f(Tlmy21) “%m/ﬂl)]

j<m/2—1

Substituting this bound into (212) and accounting for the number of choices of A gives

- eXp(—752/2)]} |

P(Q,) < IP’(|B| < 7;) +exp {m[’H(’V) 2(27)1)2
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where H denotes the binary entropy function, and satisfies H(y) < vlog(e/vy). If we take v =
exp(—4s?), then

exp(—7s2/2) _ 1 ( 1+ 452 1 ) -1

2012 S oxp(752/2) \exp(s2/2) ~ 220012 ) S Gexp(752/2)

H(v)

where the last bound uses the assumption s = 10 from (211). It follows that

m m

and it remains to bound the probability that |[B| < m/2. To this end, note each (; is a gaussian
random variable with variance at most (¢/)2, so

d 52
]P)(‘Cl’ = 3) < P(CI‘Z‘ = 3) < SeXp{ — 2(0/)2} .

It follows by Markov’s inequality and the preceding bound that

IP’<|B] < 7;”‘) - ]P’(|BC| > 7;) < 2max {1@(|¢i| >s) i< m}

_ 2c 52 _ 1 52
ST P 2(e)2f g &P 2(c)2 7

where the last bound follows trivially from the bounds ¢’ < 1 and s > 10 (from (211)). If m > 1/,
then ) )
S 3s 1 1
~ . 6exp(7s?/2) = — 5 —~ -~ <~ <m,
g 0PI = ) 7 Sy ST

so that (213) is dominated by the first term. It follows that

2

S Ay
P(Q,) < exp{ _ 2(0/)2} _ V)

provided v = exp(—4s?) for s satisfying (211), and m > 1/~. This concludes the proof. |
Proof [Proof of Proposition F.1] As in Lemma F.4, let n/(c¢) = 1/log(4/c). Let

m — En'(c) lognJ L V‘”WJ

m
By repeatedly applying Lemma F.4, we see that there exists a re-indexing of v!, ..., v" such that
2 1/2 / 1
max{HPng_lwmﬂ :0<i<L-1,1 <i<m} < (3¢) 2=¢< 3
where P, ;1 denotes the orthogonal projection onto the span of {vzm“, . ,vgmﬂ'*l}. Let

N, = ’{1 <i<m:(g, v e E(U)}"
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Note that if N, > 2my for at least n/(2m) indices 0 < ¢ < L—1, then we will have (g, v¢) € E(U)
for at least ny indices 1 < 7 < n. It follows by combining with Markov’s inequality that

P(;'{z <n:(gv)eBU)}| < ’y) < IP(KELHM <2my} > ;n>

<2 (N < 2m).
n
0<l<L-1

Applying Lemma E.5 gives, for 1/m < 2y < 9 = % (|E(U)|, Emax(U)),

P(i‘{z <n:(gv)e E(U)}‘ < v> < 4(2y)V/ )

The claim follows. |

F.2. Polynomial concentration of free energy

In this subsection we give the proof of Proposition 1.6. Towards this end, we first state and prove
Lemma F.6 below. This is an adaptation of (Talagrand, 2011b, Propn. 8.2.6) (see also (Talagrand,
2011b, Lem. 9.2.2)), using Proposition F.1 in place of (Talagrand, 2011b, Cor. 8.2.5).

Lemma F.6 Let i1 be any probability measure on {—1, +1}" with weights proportional to w(.J)
such that 0 < w(J) < 1/2N forall J € {—1,+1}", and

W :Zw(J) > e VT
J

for T = exp(—12). If P denotes the law of a standard gaussian vector g in RY, then

]P(u({JG 11y & E(U)}) < Z) e

N1/2
forexp(14)/N < v < 9 = Y (|E(U)|, Emax(U)) and N large enough.

Proof First, it follows by a direct application of (Talagrand, 2011b, Lem. 9.2.1) that since W >
exp(—NT), we have

p®2( (I J?) e {—1,+1}*N . LT > (87)121 ) < _ (214)
’ ’ N exp(2NT)
We then proceed to adapt the proof of (Talagrand, 2011b, Propn. 8.2.6). Let
k 7t
Q= {JL” =(J, ..., Y e{-1,+1}"N . (‘]N‘]) <(8N)2Vi<k<l< n} .

It follows from (214) (and taking a union bound over all 1 < k < £ < n) that

214) n? 1
®n > 1-—>= 215
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where the last inequality holds provided n < exp(NT). Next define

Q, (J"") = {g : Tll‘{é <n: (iﬁg) € E(U)} < ’y}.

If we take ¢ = (87)/2, then ¢ < 1/12 by the assumption 7 = exp(—12), and so Proposition F.1
implies that for every J'" € (Q,, we have the bound

P(QV(JITL)> < 71/(250) 7 (216)
for log(5/c)/(logn) < v < 7o and n large enough. Define the random variable

T,= Y I m{ge (MM},
Jl:neQn
and note that Markov’s inequality combined with (216) gives
1 EY . . (216)
1@(1[7 > 4) < 74” 4 ) M®”(J1‘”)}P’(QW(J1'”)> < 490 (217
Jl:neQn

On the other hand, we can lower bound

= M<{J e {—1,+1}V . (Ji’l‘/]z) e E(U)}> - u®"(ﬂm)% {z <n: <ng’£) = E(U)}’
e
>y > u®"(J1:”)1{g ¢ QW(J”‘)} = ’Y(M®n(Qn) - T7> < ’Y(; - T7> :

Jl:neQn

As a consequence, if I' < /4, we must have Y., > 1/4. It follows that
217
u»(r < Z) < P<n > i) D 450

again for log(5/c)/(logn) < v < 7o and n large enough. Recall moreover that for (215) to hold
we must have n < exp(IN7), so we must ultimately require

o >y > 108(5/e) _ og(5/(87)"2)
Nt Nt

The claim follows by recalling 7 = exp(—12) and ¢ = (87)%/2. |

We now proceed to prove Proposition 1.6. This is an adaptation of the proof of (Talagrand,
2011b, Propn. 9.2.6), using the above result Lemma F.6 in place of (Talagrand, 2011b, Propn. 8.2.6).
Proof [Proof of Proposition 1.6] As in the proof of Theorem 1.1 in the bounded case, let P/ denote
probability conditional on the first j rows of G, and let E/ denote expectation with respect to [P/,
Then, as in the proof of (Talagrand, 2011b, Propn. 9.2.6), we let W = Z /2" and decompose

1 1 (.. .
N{ logy, W — Elogy, W} =] N{EJ logy, W —E/"Llogy, W} = > X;.
j<M j<M
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To bound X, recall (177) and denote

_Zj _ _\ (8", J)
Wj=7=2wj(J)=22W H U( N2 )
J J as<M,

a#j

Note that 0 < W < W; < 1. Since W; does not depend on the j-th row of G, we can rewrite
NX; =F (logNT W —logy, Wj> —E/! <logNT W —logy, Wj> .
Recall that 0 < W < Wy, so if W; < e 7 then logy, W; = —N7 = logy, W. It follows that
L; = logy, W; — logy, W = 1{Wj > e_NT} (ngT W, — logy, W) e [0,N7].

Recall that IP; denotes probability conditional on all rows of G’ except the j-th one, and note Ei-1 =
E;E’ where [E; is expectation with respect to IP;. We can rewrite X; = —i; + i; where

Ni; EEj[<logNTVVj —logNTW>;VVj > e_NT] =F/L;e[0,N7],

Nij =B [(1‘)ng W; —logy, W>;Wj > e_NT] =E'L; = E;(Ng;). (218)
For comparison let X; = —Z; + Z; where z; = 2; — é; and 2; = &, — é;, for
. , W el , W el
NejEEJ{Lj;VVj< 4N]:EJ[Lj;W/j<KHV]E[O’NT]’
. . W et . W et )

Similarly to Lemma F.6, let 1; be the probability measure on {—1, +1 }V with weights proportional
to w;(J). Then note the assumption U (z) > §'1{xz € E(U)} implies

w

Wj = (5/,uj <{J S {—1,+1}N :

(g7,J)
N1/2

e E(U)}) =6'T;.

Since 0 < L; < N7, we can use Markov’s inequality to bound

. W §eld 5 el4 11/2
0 < Ej(N¢j) = Néj < NTEJ—1[1{W]- > e—NT}Pj< <2 )] < NT( © )

Ww; 4N N
(219)
where the last inequality is by Lemma F.6. It follows using Markov’s inequality again that
i, 1 ) S @) el 112
]P’(Z ‘Xj—Xj‘>W)<2N S E(G+E) < N ( - . (220)
j<M j<M
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It remains to bound the random variables X j = —%; + Zj. Using Jensen’s inequality,
. W W, AN
. —1 . -1 ~N
exp(NZ;) < E' " exp(Nzj) <1+ |:W7;Wj >e VT W] < 5,614} .

It then follows by using Lemma F.6 again that the above can be bounded by

W W, 4N AN/(@'elh) W,
-1 . —NT J —1 —NT, J
1+ FE [W,Wj>€ ’W<6/614:|<1 J;) P (Wj>€ 7W>u>du
A 0 4\ 11/2
<togs [ (5] dusCo= GEW)] Bun0).5). @21)
090 Jay(rn) \O'u

It follows that we can choose Ao small enough (depending on Cjy) such that for all 0 < A < Ag,

R -1 [exp(NMij)] < exp(N ) - Ejl[exp(NM‘j)]

A
< exp(NAZj) - (Ej_l exp(N,éj)> < (Co)* < 2.

It follows by the martingale Bernstein’s inequality (see e.g. (Talagrand, 2011b, eq. (A.41))) that
- Nt tA
IP’( Z Xj| = t> < 2exp <— 2min{1,2}>

J<M
for all ¢ > 0. In particular, taking t = (log N')/ N/ gives

. log N M (log N)?
IP( Z X; >N1/2><exp(—2 . (222)
Jj<M
The claimed bound follows by combining (220) with (222). |

F.3. Exponential concentration for smoothed model

In this subsection we give the proof of Proposition 1.9, showing concentration for the log-partition
function of the smoothed model (22).

Theorem F.7 ((Pisier, 1986)) If f : R® — R is C', and X and Y are independent standard
gaussian random variables in R™, then for any convex function g : R — R it holds that

g (10) ~ 1) < 59571000 7)).
In particular, taking g(x) = exp(sx) for any real number s gives
s2m?
Bexp {s(£00) - /1) | < Bewp { T 1ws 012}

In the case that V f is bounded, this recovers the standard theorem of Tsirelson et al. (1976) (see
also Borell, 1975) on concentration of Lipschitz functionals of gaussian random variables.
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We also recall that if G is an M x N matrix with i.i.d. standard gaussian entries and M < N,
then the maximum singular value sy.x(G) satisfies the tail bound

2
exp(cat?)
for all t > 0, where ¢y and C5 are absolute constants. See for instance (Rudelson and Vershynin,
2010, Propn. 2.4) where the result is in fact stated more generally for matrices with independent
subgaussian entries (with mean zero and unit variance). From this bound it is straightforward to
deduce the following:

P(smax(G) > (CoN)'/? + t) < (223)

Lemma F8 If G is an M x N matrix with i.i.d. standard gaussian entries and M < N, then we
can take ca = 1/Cy < 1 in the bound (223). With this choice of constants, we have

Eexp (ﬂsmaX(G)Q) < 16N exp(20Cs2N)
forall 0 <Y < ¢a/2 =1/(2Cy).

Proof It follows by a change of variables that

E(9) = Eexp (0smax(G)2) = f:o P<exp(ﬁsmax(G)2) > x) dx

= 219J uexp(Yu?) -P(smax(G) > u) du < D)+ dD),
0

where (I) is the contribution to the integral from u < (CoN )1/ 2 while (I) is the contribution from
u = (CyN)'/2. We then have the trivial bound

(CoN)1/2 (CaN)1/2

uexp(Yu?) du < 20 exp(ﬂCgN)f udu
0
N
= YC2N exp(VC2N) < ) exp(9CyN),

D < 2ﬁf

0

where the last inequality uses the assumption ¥ < c2/2 = 1/(2C2). For the other term, it follows
from the singular value tail bound (223) (and again using 9 < ¢2/2 = 1/(2C%)) that

(I < 419J ((CgN)l/Q + u> exp {19((02]\])1/2 + u)2 — cqu} du
0

w
< 49 exp(VC2N) f

2
((CQN)1/2 + u) exp {2ﬁ(CgN)1/2u - 02;} du.
0

2
exp{ - cQ;}du

Completing the square and making another change of variables gives

2 @ 2
(II) < 49 exp { (1 + f)ﬁczN} f u+ <1 - 19) (CoN)'?
2 —0

C2

49 * (2 1/2 u?
< (62)1/2 eXp(Q'ﬁCQN) f_oo W + 2(CQN) eXpqy — ? du
49 (2m) /2
< exp(21902N)(c7T) (1 v 2N1/2) < 6(2m)Y2 . N exp(20CsN).
2
Combining the bounds for (I) and (II) gives the claimed bound. |
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Lemma F.9 Suppose U satisfies Assumption 1, and let Z (n) be as defined by (22). If f = log Z(n)
viewed as a function of the gaussian disorder G, then there exists a finite constant C1(U;n) such

that
E exp <82|\Vf(G)]2> < 16N - exp {N -6CCh (U; 77)252}

for all |s| < (¢2)'/2/(2C1(U;n)), where Cy and ¢y are the constants from Lemma F.S.

Proof Recall that U,, = U * ¢, and denote u,, = log U,,. Denote the probability meausure

wy, (J 1 o J
0 () g ]

as<M a<M

where we abbreviate A, = (g®,.J)/N'/2. Then
i
dga,i

=13 1 (D) () (Do)~

J

N1/2 Z )|

Note that if (u,))’ were uniformly bounded, then f would be A-Lipschitz with A = | (uy,)'|lo/ N2,
and the desired exponential concentration for log Z(n) would follow from standard concentration
theorems for Lipschitz functionals of gaussians. Since (u,)’ may be unbounded, we cannot conclude
that f is Lipschitz. However, we note that

Ee¢[§U (z + né)]
nEeU (z +ng)

where the last bound holds by an obvious extension of Lemma B.3 (using Assumption 1). Therefore

a | GlUin) Ci(U:n)
‘dgaw S N2 <1+Zﬂn A, |> N2 L+ {Auy )

N1/2

(Un)/(m) =

<O (1+ ),

where (-), denotes expectation over i,,. It follows that

2
ViR <a@in? Y (1+<1Aa|>n) <20, Y (1+<<1Aa|>n>2)
7k

as<M a<M

2 2 2 |G
<201(Usm)? 3 |1+ ((Aa)y ) = 261(Usm)* M+ =

as<M

< QCl(U;T])Q{M + SmaX(G)Q} )

where spax(G) denotes the maximum singular value of G, as above. Taking the expectation over
G and applying Lemma F.§ gives

Eexp <52]Vf(G)|2> < 16N - exp {Q(M + 202N>01(U;77)282} ,

where the bound holds provided |s| < (¢2)'/2/(2C1(U;n)). The result follows by recalling that we
assumed M < N and C5 > 1. [ |
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Proof [Proof of Proposition 1.9] Let G’ be an independent copy of G. It follows by Theorem F.7
and Lemma F.9 that

E exp {s(f(G) - IEf(G))} < Eexp {s(f(G> - f(G’))}

2 2
< Eexp {887r|Vf(G)||2} < 16N - exp {N . 80201(U;77)282} ,

for all |s| < (c2)'/2/(3C1(U;n)). Thus, for 2 = 0, it holds for 0 < s < (c2)/2/(3C1(U;n)) that
P(f(G) —Ef(G) = Nx) <Eexp {s(f(G) - Ef(G)) - Ns:c}
< 16N - exp {N(8CQC’1(U; n)%s? — sx)} .

A similar bound holds for z < 0. In any case it is clear that we can take s small enough to obtain
exponential decay. In particular, for z > 0 small enough we can let

— L < (02)1/2
N 16C5 - Cl(U; 77)2 R 301(U§ 77) ’

S

where the last bound holds for 2 < 5(C3)'/2Cy (U; 7). This results in the bound

2 (5@ - Er@)| > vo) <o e | - N )
)T P17 326,002

which concludes the proof. |

Corollary F.10 Suppose U satisfies Assumptions 1 and 2, and let Z (n) be as in (22). Then

1
lim Nlog Z(n) = RS(e; Uy)

N—o

Sforall 0 < a < ap(U).

Proof Recall from (102) that if 0 < o < ay(U), then we will also have o < a(U,) for n small
enough. The upper bound on Z(n) follows from the upper bound in Theorem 1.1, which was
already proved at the end of Section C. For the lower bound on Z(7n), we argue similarly as in the
proof of the Theorem 1.1 lower bound for the case ||u« < oo, but using the concentration result
from Proposition 1.9 in place of the Azuma-Hoeffding bound. To this end, let Z(7) be defined as
Z from (144), but with U, in place of U. It follows from Theorem 1.5 (by the same calculation
leading to (176)) that, with high probability,

1
exp(Nog(1))
On the other hand, it follows from Proposition 1.9 that, again with high probability,

Nz?

PG log Z(n) = RS(a; Uy) — or(1) ‘ 9@)) >

1 1
P(—logZ > —Elog Z
(N og Elog (n) +z
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for sufficiently small z > 0. The above two bounds are in contradiction with one another unless

1
NElog Z(n) = RS(; Up) —on(1).

It then follows by another application of Proposition 1.9 that
1 1 1
P NlogZ(n) <RS(wUy) —on(l)—z ) <P N]ogZ(n) < NElogZ(n)—x

Naz?
< 35N - .
eXp{ 350201(U;17)2}

for sufficiently small x > 0. This yields the lower bound for Z(7) and concludes the proof. |

F.4. Comparison with smoothed model and conclusion

In this subsection we prove Proposition 1.7 which gives the comparison between the quantities Z
and Z(n) from (1) and (22). We then conclude the proof of the main theorem.
Proof [Proof of Proposition 1.7] Some of the steps below are similar to the steps in the proof of

Proposition 1.6. Let
vem o 2 (5 ) 1L (59

a<k k<a<M

Recall W = Z/2"V, and write W = Z(n)/2". Note V;, = W, and Vj; = W. Let us also define

o= SISO L oG] o

a<k k<a<M

Note that V}, , > max{V}j,_1, V};}. We can then decompose
1 ~ 1
| logn, W —logy, W) = — Z E\ logy, Vi, —logn, Vi1 | = Z Yk
k<M k<M

(compare with (218)). Let G, , be the probability measure on {—1, +1 }V with weights proportional
to wy, o (J) as defined by (224). Write (-, . for expectation with respect to G, .. Abbreviate

U, = U(@’“J)) - Un((g’“J)) .

N1/2 N1/2
Recalling that U(z) > 6'1{z € E(U)} (from (20)), we have

(8", J)
N1/2

7
Vo

= Updro = 5’Gk7o({Je{ L+ € E(U)}) = 'T}o.

For 77 small enough we will also have U, (x) > ¢'1{z € E(U)}, so we can also bound

(g",J)
N1/2

Vi—
Vko

= Uk = 6’Gk,o({Je (—1,+1}V - € E(U)}) = 0'Tho-
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We also have from (Talagrand, 2011b, Lem. 8.3.10) that if z, y, 2 < 1, then

logg(22) —logy(yz)| <

logAx—logAy‘ . 1{2 > e*A}.

Combining the above bounds gives

|Nyi| < E|logy, (V?c,o<Uk>k,o> — logn, (Vk,o<0k>k,o)

<E[

for (I) and (II) defined by

102 (Ui k.0 — lognrUn k.o

Vio = e—NT] < () + (ID),

14
Nt €
(I):NT]P)<V]€’O =e N ,6/ k,o < 4]\7>

_ Uk — Uk
(I1) = E[log {1 n e

N 614
};%,o =z e 7—7Fko = :| .

Combining with Lemma F.6 gives (similarly to (219))

. & 11/2
<NT| .

Meanwhile, using the bound log(1 + x) < x together with the Cauchy—Schwarz inequality gives

Uiono — Ui o~ N7 el

< : o > D

aIn) E[ e Vi Tho >
1 3 614 1/2
<5,{ {<<UkUk>ko ] [ o=e NT,Tk,o>4N]} .

For the first factor we note that

E[<<Uk - Uk>k,o)2] < <E[(0k _ Uk)2]>

For the second factor, applying Lemma F.6 again gives (similarly to (221))

1 N eld (4N /e'*)? eld 1
| e > ke > p < [ PGy <t < i)

2 (AN/fe')? oy N\ 112 12
< <%> + f <1/2> dy < ¢ 7/2 5
4 (/02 \Y (70)

where 9 = Yo (| E(U)|, Emax(U)) is as in Proposition F.1. Altogether it follows that

el 1172 (1)eb
< - /A
vul <8 ( ) g

112

~ | () - U19)| < oat0).
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and the claim follows by summing over k < M = Na. |

We now finally finish the proof of the main theorem:
Proof [Proof of Theorem 1.1 (conclusion)] The proof of the upper bound was given at the end of
Section C, after the proof of Theorem 1.4. The proof of the lower bound in the case |u]., < oo was
given at the end of Section D, after the proof of Theorem 1.5. It remains to prove the lower bound
in the case |ullo, = 00. We follow the proof sketch given at the end of Section 1. It follows from
Propositions 1.6 and 1.7 that

1 zZ 1 zZ log V)2

Given € > 0, we can choose 7 small enough such that the o,(1) error above is at most ¢ in absolute

value. By Proposition 1.8 together with Corollary F.10, for 0 < a < ,(U) and 7 small enough we
have

PG{ log Z(n) < RS(a; U) — 2e> < P(]b log Z(n) < RS(a:; Uy) — e> <on(l). (226)

It follows from Corollary B.8 that RS(a; U) > log2 — 7/4 for 0 < o < a(U), so taking € < 7/8
in the above gives

1 Z(n) Z(n) 1. Zmn) _ 7\
< —{El S ) —Elog [ 552 ) b <P = log 2 < —= ) < on(1).
o< Lfoion, (Z00) “mog (20} rp( L1020 < 1) o0

It follows by combining with (225) and (226) that
1 z .
P NlogNT oN <RS(o;U) —log2 —4e | <on(1).
Since RS(a; U) — log 2 — 4e > —7/4 — 4e = —, it follows that in fact
1
IP(NlogZ <RS(a;U) — 46) <on(1),

as claimed. [ |

Appendix G. Review of AMP for perceptron

In §G.1 and G.2 we prove Lemma A.16. In the rest of the section, we give a heuristic derivation
of the state evolution recursions introduced in Definition A.2. We emphasize that §G.1 and G.2 are
rigorous, while §G.3—G.4 are not (and are intended only to provide intuition). For rigorous deriva-
tions of the asymptotics described in §G.3—-G.4, we again refer the reader to Bayati and Montanari
(2011); Bolthausen (2014).
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G.1. Gaussian conditioning results

Suppose for simplicity that ¢, F' : R — R are two smooth functions. Let Z denote a standard
gaussian random variable. Suppose we have (g, ¢) such that (cf. (9))

({f,) B (aIIEE[[tg/(J;Q/QZZ)j]Q]> | (227)

Letm® = 0e RV, n® = 0 RM, m™M) = ¢1/21 e RV, nM = (¢/a)"/?1 € RM. The AMP
iteration in this setting is given by (cf. (14) and (15))

Gtn® 3

mt) = t( N Bm 1>) e RV, (228)
Gm® _

n(t+1) = F< N B'nt 1>> e RM (229)

where the Onsager coefficients are defined as (cf. (30))

B\ _ (aEF'(¢"*Z)

ﬁ/ - Et/(¢1/2Z) :
A preliminary observation is the following:

Lemma G.1 Let G be any M x N matrix with real entries. Suppose r is a unit vector in RN, while
c is a unit vector in RM. Denote R, = e.r' for a < M, and denote C; = c(e;)' fori < N. Let Vg
be the span of all the R,; let Vi be the span of all the C;; and let V = Vxe = Vr + Ve. Then

projy (G) = (Gr)r' + ¢(G'c)' — (c'Gr)er' = I‘(r, c,Gr, Gtc)
where projy, denotes orthogonal projection onto V.

Proof Write (-, -) for the Frobenius inner product. The R, form an orthonormal basis for Vg, so

projy, (G) = Z (G,R,)R, = Z (Gr)qeqr' = Grr'.

as<M as<M

Similarly, the C; form an orthonormal basis for V¢, so

projy.(G) = Z (G,C;)C; = Z (G'c)ic(e;)' = cc'G.

i<N i<N

The lemma follows by noting that the matrix I' = I'(r, ¢, Gr,G'c) lies in V, and satisfies the
conditions (G —T', R,) = O0foralla < M,aswellas (G—T',C;) = 0foralli < N. [

Corollary G.2 Let G be an M x N random matrix with jointly gaussian entries. Suppose r is a
unit vector in RN, while ¢ is a unit vector in RM, and let V = Vre as in Lemma G.1. Then

E(G ’ Gr, Gtc> - r(r, ¢, Gr, G‘c) =T (230)
as long as projy, (G) is independent of G — projy (G).
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Proof Conditioning on Gr amounts to conditioning on the Frobenius inner products (G, R,,) for
all @ < M. Similarly, conditioning on G'c amounts to conditioning on the inner products (G, C;)
for all i < N. By Lemma G.1, projy (G) equals T', which is a measurable function of (Gr, G'c).
If G — T is independent of I', then it follows that I equals the conditional expectation of G given

(Gr,G'c). [ |
Let r(l), R r®) be the Gram—Schmidt orthogonalization of the vectors m(l), cey m®. Like-
wise let ¢, ... c®) be the Gram—Schmidt orthogonalization of the vectors n(, ..., n®. Let

G = G, and suppose recursively that G®) has been defined. Let G()r(s) = }2(3), (G(S))tc(S) —
y(*), and define (cf. (230))

QG+ — @) _ <r(s>, ), 20) y(s)> _ o ) 231)
We also define a corresponding o-field
F.(t) =0 <(>-<<S> cs<t), (3 s < t)) . (232)

The next lemma records some basic facts about .7, (t).

Lemma G.3 For the AMP iteration described above, the random variables
((m(s), n® & ) s <t 4 1), (Gm(e), G cr? Gge® 10 0 < t))

are all measurable with respect to F,(t).

Proof Recall that the initial vectors m(o), n(o), m(l), n) are fixed and deterministic, so they are
measurable with respect to the trivial o-field .%, (0). From these we can also obtain the deterministic
vectors r(") and c(1). Next we consider the o-field .%, (1): it is clear that T'(!) is .%, (1)-measurable.
Next note that

1
<0 = g = Y oy ey _ G

—_—, =Gc

[m()] [n®]

so we see that Gm(Y) and G'n() are measurable with respect to .%,(1). We can then apply the
AMP iteration (228) and (229) to obtain m® and n®, so these are also measurable with respect to
Z,(1). Tt follows by Gram—Schmidt orthogonalization that r(?) and ¢(!) are also .%, (1)-measurable.

Now suppose inductively that the claim holds up to .%, (¢ — 1), and consider the o-field .7, (t).
Then the matrix T'*) is clearly .%, (t)-measurable. Next note that (231) implies

G=GW =10 L q® = Z e + g

where the T'(*), s <t — 1, are all measurable with respect to .%, (t — 1) < .Z,(t). Therefore

Grt) = 2 rer® 4 x®
s=1
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is .7, (t)-measurable, as is G'c(!). Recall from the Gram—Schmidt orthogonalization that

m® — 3 (m®, )
[ m® =Y (m®, &)

which we can rearrange to obtain an expression for m(). It follows from this that Gm®) is .%, (t)-
measurable, as is G'n®. We can then apply the AMP iteration (228) and (229) to obtain m®*+1 and
n(t+1) 5o these are also measurable with respect to .#,(t). Finally, it follows by Gram—Schmidt
orthogonalization that r(**1) and c(*+1) are also .%,(t)-measurable. This verifies the inductive
hypothesis and proves the claim. |

G.2. Projection and resampling

In this subsection we give the proof of Lemma A.16. For notational convenience, the roles of G
and G’ through this section are switched from the main body of the paper.

Definition G.4 (similar to Definition A.14) Given %, (t — 1) as in (232), consider the linear sub-
spaces

VR(t) = span {ea(m(s))t 1<a<<M1<s< t} ,

Ve(t) = span {n(g)(ei)t 1<i<N,1</

N
\_\0:_/

It follows from Lemma G.3 that these (random) subspaces are measurable with respect to F,(t—1).
Let Vi (t) = VR(t) + Vc(t), and let proj, denote orthogonal projection onto V,(t).

We remark that V, (¢) is very similar to the (random) subspace Vrc = Vr(t) + V(¢ — 1) which
appears in the proof of Lemma A.16. We will address the discrepancy between V,(¢) and Vgc in
the proof of Lemma A.16, below. The following is a straightforward consequence of the preceding
lemmas and the definition:

Corollary G.5 Let G be an M x N matrix with i.i.d. standard gaussian entries. With . (t) as in
(232),
E(G ’ ﬁ*(t)) = Z F(S) =G - G(t+1) = projt(G) ’
s<t

where proj, is the orthogonal projection onto the (random) subspace V,(t) from Definition G.4.
Moreover, conditional on 7, (t — 1), G s distributed as a standard gaussian element of the
(Fx(t — 1)-measurable) subspace V,(t)*, and is independent of F.(t).

Proof Note that the recursive definition (231) implies
G =g -1t - —G-> T, (233)

By induction, conditional on .%, (t —2), the random matrix G'*) is distributed as a standard gaussian
element of the (.%,(t — 2)-measurable) subspace V,(t — 1)+, and is independent of .%, (t — 1).
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It follows that G has jointly gaussian entries conditional on Z.(t — 1). We also have from
Lemma G.3 that the vectors r®) and ¢(*) are measurable with respect to .7, (t — 1). Note that

GEHE) — (GO — T — g e RM
by the construction of I'®), and likewise (G(**1))tc(*) = 0. As a result

(s+1)
P+ o) (G +odG - (ctGr)crt> b 0 eRM,

and similarly (T'(**1))t¢(®) = 0 € RY. One can then show by induction that for all s < ¢ we have
GWr() = 0 e RM, and likewise (G™®)'c(*) = 0 € RV, It follows that

(G@) 0 ea(r(s))t> _g< <G(t> ERNORING (ei)t>

for all s < t. This shows that T'(*) is the orthogonal projection of G*) onto Vi (t). We further have,
forall ¢ < ¢,

<G - Z F(5)>r(£) @ gDy — g e RM

s<t

t
(G -y F(s)> ) @) (G0 _ g e RY |

s<t

This shows that ") + ... + T'(*) is the orthogonal projection of G onto V, (t). It follows that G(*+1)
is the orthogonal projection of G onto V;(¢)*. On the other hand, the o-field .%, (t) is generated by
Z,(t — 1) and the orthogonal projection of G(*) onto V, (t). Since G*) is standard gaussian given
Z,(t — 1), it follows that G(*+1) and .Z, (t) are independent given .%, (t — 1). We can therefore
apply Corollary G.2 (conditional on .%, (¢t — 1)) to conclude that

E(6Y| 7)) = I‘<r(t), c(t),x(t),y(”> =T (234)
It follows that
]E(G’ ‘ 9}(75)) @ ]E< M g 9}(7&)) = Y ey E<G(t) ﬁ*(t)>
s<t—1 s<t—1
234) (s) 233) (t+1)
= v =G-G ,
which concludes the proof. |

The next result is similar to Lemma A.16:

Lemma G.6 Let G be an M x N matrix with i.i.d. gaussian entries, and use it to define F,(t)
as in (232). As in Definition G.4, let proj, denote the orthogonal projection onto the F,(t — 1)-
measurable subspace V,(t). Then, for any bounded measurable function f : RM*N R, we
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have

(re) '%(t)) (re) \ Fi(t-1)) 239)

B(7(6 - prow@) | 7.~ 1) (236)
where G’ is an independent copy of G.

Proof We saw in Corollary G.5 that G(*+1) and .%, (t) are independent conditional on .%, (t — 1),
so the first claim (235) follows. Since G and G’ are independent, if we condition on %, (t — 1)
then the random matrix G’ — proj,(G”) is also distributed as a standard gaussian element of V;(¢)*.
This implies (236). |

Remark G.7 We can also give a more explicit description of the projection of G’ onto V,(t), al-
though it is not needed in the above proof of Lemma G.6. Define G*V) = G', and recursively

G +D) — o) o) — @O _ <r<t>, e G0, (G-(w)tr(t)) o)

Note that T*(®) is defined using the vectors r® and c®) that came from G, not G'. As in Defini-
tion G.4, we let proj, denote the orthogonal projection onto the .7, (t — 1)-measurable subspace
Vi(t). We then claim that

proj,(G') = G/ — g*(+) 2 Z . (23%)

s<t

This is very similar to the proof of Corollary G.5, but in fact simpler because G and G’ are inde-
pendent, which implies that G' is independent of the random subspace V,(t). Arguing as before,
we have by construction G*5+Dr(8) = 0 and (G**+1)c(*) = 0. One can then show by induction
that for all s < t we have G*Dr() = 0 and (G*M)'c(®) = 0. This implies, for all { < t,

<G’ . Z F.(s))r(e) 237 GO _ g ¢ RM,

s<t

t
(6= T ) ol & (Gt ~ 0 Y.

s<t

It follows from this that G**tV) is orthogonal to Vi(t). This verifies (238), since we see that the
right-hand side of (238) lies in V,(t).

Proof [Proof of Lemma A.16] Recall that, for notational convenience, the roles of G and G’ in this
section are switched from the statement of Lemma A.16. Thus, for the purposes of the proof, we
use G for the AMP iteration (228) and (229), and this defines .%,(t) as in (232). We also let R and
C be as in Definition A.15, but with G and G’ switched. The o-field .7 (t) from (16) is very closely
related to %, (t — 1), but is not exactly the same: indeed, we can see from the proof of Lemma G.3
that

F(t) = a<ﬁ*(t - 1),X(t)> — a<9}(t — 1), Gm(t)’n(t—&—l)) .
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By a similar (but simpler) argument as in Corollary G.5, we see that

IE(G ’ ff(t)) = 3 1@ 4 r0xO(xO) = projec(@) = Gre,

s<t—1

where projrc denotes orthogonal projection onto Vrc as in Definition A.14, except that Vrc here
is defined for G rather than G’. Conditional on .% (¢ — 1), the random matrix G — projrc(G) is
distributed as a standard gaussian element of the .% (¢ — 1)-measurable vector space (Vrc)*, and is
conditionally independent of .% (t). Therefore

E(f(c;) ‘ ff(t)) - E[f(GRC + (G' — projRC(G')>> ‘ﬂ(t)] _ E(f(G’) R,C, GRC> .

This concludes the proof. |

G.3. AMP iteratesatt =2andt¢ = 3
Returning to the AMP iteration (228) and (229) we have (cf. (38) and (39))

G'n) n®
(2 = @y T2 ) = 1/2 ot _ 12t (1) — 1/2-(1)
m' = t(H') t( N1/2) t<1/1 G(Nq/;)l/2> t(°G'c) =t(yey),

Gm® m®
@ = 2y = _ 1/2 1/2 ~..(1) 1/22(1)
n'“) = F(h'¥) F( 1/2) F(q G(Nq)1/2>_F(q Gr'’) = F(q/*x'"). (239)

It follows using (227) that [m®)|? ~ N¢, [n®||> ~ N4, and moreover (cf. (32))

2 m® 1/2
(m , 1M ) ~ <1> ]Et(wl/QZ) = )\1 =1,

Ngq q
@ O 1/2
(“N’_;‘) ~ <z> EF(¢Y2Z) =y = 11 . (240)

Therefore in the Gram—Schmidt orthogonalization we have

@) _ (m @)L R m® — A;m®
[(m@)L|— [Ng(1 = (A)?)]V2
c® — (n)* n® —yn® (241)
[(@)H] [Ny(1 = (71)H)]2
We can express the m, n vectors in terms of the r, ¢ vectors as
(2) 1/2
(]ifn)l/2 ~ )\11‘(1) + (1 — ()\1)2> / I'(2) ,
q
n® 1/2
N> ye® 4 (1 - (71)2) @ (242)
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At the next step of the AMP iteration we have (cf. (239))
G'in® (G(2))t(n(2))L (F(l))tn(2)
3) _ 3 1 1

Gm® GOm®)L T,
3) 3)y _ 1 _

— B’n(1)> . (243)

In order to evaluate (I'"))'n(?) /N1/2, we calculate
gty @ m® m
— @ - = (1) n@y = z(1) 125MWY)) ~ gm®)
{Nl/g} qu/g(x ;1 ) qu/g(x 7F(q X ))_/Bm )
Glec |V @) _ vy (n®, n®) w12
N1/2 N1/2 (Nw)1/2

(CtGr)rct (1) (2) _ 1 ]_tG]_ (n(l),n(2))m(1) _ 1 m(l)
N1/2 N2 Nql/2 N(qw)l/Z N1/2

715’(1) )

In order to evaluate T'")m(?) /N'1/2 we calculate

G\, %0 (m®,m®)
{NI/Q} T N2 (Ng)l2

cctG W n® O )
{W} m® — W(y(l)7m(2)) - W(y(l)’t(wlﬂy(l))) ~ B’n(l),

(CtCT"I'>CI't (1) (2) . 1 1tG1 (m(l),m(2)) (1) . O 1 (1)
N1/2 m T N2 Nal/2 N(qw)lﬂ nee = N1/2 n

Substituting this back into (243) gives the decomposition (cf. (38), (39), and (239))
1/2
m® = ((H®) ~ t<1/11/2{715'(1) (1) y@)}) ,
1/2
n® = F(h®) ~ F(ql/z{)\lx(l) + (1 — (/\1)2) / x(2>}) . (244)

It follows that (240) continues to hold (approximately) with m®), n®) in place of m®, n®. We
also see by combining (239) with (244) that

~ q1/2)\1)_((1) ,

HDH®) 1/ 4 Ne@) ) . _
R A CARR + (1—(71) )y ~ 1 =
h® h) 1
(Mq) ~ = (X(l),)\lx(l) + (1 - ()\1)2>x(2)) ~ A\ = p1, (245)

from which we obtain (cf. (33))

t(wm{wz + (1 - (71)2)1/2§}>t(w1/22)] = p(m1) = p(p1) = p2,

N %E F<q1/2{)\1Z v (1 . ()\1)2>1/2£}>F(q1/22)]

p(M) = plp1) = pa.-
(246)
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It follows that (cf. (34))

~m® @) ~ m®  m® - Am® N - (M) A
(Nq)l/z’ - (Nq)l/g’ [Nqg(1— (/\1)2)]1/2 B [1-— ()\1)2]1/2 e

1'1(3) n(3) n(Q) — ].’l(l) _ ( )2
. c? )~ i o ke =)
<(N¢)1/27c > B <(Nw)1/27 [Nw(l_ (71)2)]1/2> - [1 _ (71)2]1/2 =72- (247)

Then in the Gram—Schmidt orthogonalization we have (cf. (241))

L3 o m® — (Ng)2(Ar™ + \or(?)
[Nl = (M) = ()2

0@ ~ n® — (N)2 (1) 4 5¢?)
T ND((1 = (1) = ()]

We can express the m, n vectors in terms of the r, ¢ vectors as (cf. (43), (44), and (242))

3) 1/2
(;;;)1/2 ~ /\11‘(1) + )\21.(2) + (1 _ (/\1)2 _ ()\2)2) 3 :
0® o

G.4. AMP iterates att = 4
At the next step of the AMP iteration we have (cf. (243))

KHMU:t<«ﬂ@rm@»L () aﬂ»m@>_5m@v,

4 _
m® = N1/2 N1/2 N1/2

GO m®)L  TOmG)  rOHm®)
4) _ 4)\ _ 2
n® = F(h®¥) = F( Nt et N T B'n! >> : (249)
For the purposes of evaluating (I'(*))n(®) for s = 1,2 we calculate
i)W 3 r 1 3
{Nm} n = L0 (5, n0)
r(V 2\ /2 1/2 1/2 (1)
~ S NaE| (MZ + (1 — (A1) ) £VF(d22) | = (Ng)Y2 B,
Geet) W 9(1) )
{W} n(3) — N1/2 (C(l)’ n(3)) — 17&1/2’71},(1) .
Substituting back into (249) gives (cf. (38), (39), (239), and (244))
) (4) V2f 0 o) 4 @) 2 2\ "2.3)
m® = t(HO) > t( 12 gD + 925 + (1= ()2 = (12)*) 3D,
1/2
n® = F(h¥) ~ F<q1/2{)\1x(1) + x4 (1 — (A1) - (AQ)Z) x(3)}> : (250)
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It follows that (240) continues to hold (approximately) with m*), n®) in place of m®), n®.

Likewise, (247) continues to approximately hold with m®, n® in place of m®), n®. We also
have (cf. (245))

H®) H® 1/2 (47
(Nw) = (71)2+72(1—(’71)2> s,
h®) h® 1/2
(qu) jacd ()\1)2 + )\2 (]. - ()\1)2) (2i7) p2 )
from which we obtain (cf. (33) and (246))
m® m® n® n®
(Nq) ~ p(p2) = ps3, (Nw) ~ pi(p2) = p3 - (251)

It then follows that (cf. (34) and (247))

( m® (3)> R < m® m(3)/(Nq)1/2 —Alr(l) _ )\21-(2)>
N2 ) T\ W 1= () — (W)
_ors— ()* = (Ne)?
T =007 = (W)
( 2@ C(3)> R < n® 0@ /(N2 — ) _72(,(2))
)2 ) T\ T L= () — (1)) 2
o M3~ (1) = (2)? —
R TReA e (232

In summary, using the notation (35), we have (cf. (38), (39), (239), (244), and (250))

= A3,

(t+1)

m tHD) ~ t(¢1/2{fhy<1) oty (- Ft_l)l/Qy(t)D . (253)

n*) = F(h(t+)) ~ F(ql/Q{)\lx(l) NENNED VNS <ty § At_l)l/Qx(t)}> . (254)

where the coefficients are defined recursively: we start with Ay = p; and v; = w1 as in (240) (cf.
(32)). For s > 1 we let ps11 = p(us) and ps+1 = pu(ps) as in (246) and (251) (cf. (33)). Then, as
in (247) and (252) (cf. (34)), we can define recursively the constants

Ps — A1 Hs — s
A= P Bl o Hs T Zsl 255
(1 _ As—l)l/Q i (1 _ Fs—l)l/Q ( )

We use these to define the matrices I" and A as in (36) and (37). Then (253) and (254) can be
rewritten as (38) and (39). The Gram—Schmidt orthogonalization (242) and (248) then correspond
(approximately) to (43) and (44).

G.5. Idealized moment calculation

In this subsection we present a simplified version of the moment calculations that appear in this
paper. For expository purposes, we will make several non-rigorous simplifications in what follows,
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and will be loose in our handling of error terms. The mathematically rigorous moment calculation
appears in the proofs in the main body of this paper. By contrast, the purpose of this subsection is
to informally highlight some of the basic techniques underlying the proofs.

As at the start of Section A, we consider the perceptron model (1) with an independent copy G’
of the disorder matrix G. Then, rather than condition on the AMP filtration (16), we pretend that
we have access to an exact TAP solution (m, n) for G’

m = th(H) = th (%‘ — 6m> . B=aE(F) (¢"?2) (256)
G/
nEFQ(h):Fq<J\;/21_ﬁ/n>v 6/21_Q7 (257)

(i.e., the equations (10) and (11) with G’ in place of G'). We assume that H/vﬁl)l/2 and h/ql/2 behave
like standard gaussian vectors, in the sense of Lemma A.4. Let

Sy = {Je {—1,+1}N :J —m 1 span{m, H}} )

where L indicates approximate orthogonality. This is a simplification of the condition (19), which
is formalized by (142). We shall estimate the contribution to (1) only from configurations in Sy,

z.= ¥ [Tv(“55).

JGS* agM

The quantity Z, above is an informal version of (143), and is moreover essentially similar to the
quantity Z appearing in Theorem 1.5 (cf. (144)).

We will assume for simplicity that U is {0, 1}-valued, and let S ; refer to the event that J gives a
positive contribution to the sum Z, above. Recall that G is an independent copy of G’, and define
the events (cf. (60) and (61))

Gm ,

RE{NUQ =h+,3n} (258)
Gt

c= {Nl’; _H+ Bm} (259)

We next pretend that G’ is gaussian given the TAP equations (256) and (257) — that is to say, the
probability of S;(G’) given the TAP solution is the same as P(S;(G) |m, n, R, C). In the proofs,
this heuristic is formalized by Lemma A.16.

We will estimate P(S7(G) |m,n,R,C) for J € S,. Note that for such J we can decompose

J m J—m m

1/2
N1/2 - N1/2 + N1/2 = N1/2 +(1-¢q) / v, (260)

where v is a unit vector orthogonal to span{m, H}. Now note that the event C of (259) implies

A:{nth:(H—i-Bm,v):O}’ 261)

N N1/2
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where the middle equality is by (259), and the last equality is by the restriction J € S,. It follows
by orthogonality considerations (formalized by Lemma A.19) and Bayes’s rule that

P(SJ(G) | m, n, R, C) = P(SJ(G) | m, n, R, A) :
Applying Bayes’s rule gives

P(S;(G) | m,n,R)P(A|m,n,R,S;(G))
P(A|m,n,R)

P(S;(G)|m,n,R,A) = : (262)

where P denotes the tilted gaussian measure (cf. (69))

dP oy Tonf?
F exp{T(G,nv)— —5 [

The identity (262) holds for any 7 € R. We next explain how to choose 7 to facilitate the compu-
tation of the factors appearing on the right-hand side of (262). Note that we have been informal in
conditioning on events of zero probability; in the main text of the paper this is formalized by dealing
with densities rather than probabilities.

We first consider the factor P(S;(G) | m, n,R) appearing in the numerator on the right-hand
side of (262). On the event R of (258), it follows using the decomposition (260) that

GJ Gm G(J-m)

N1/2 — N1/2 + N1/2

—h+fn+(1—-¢"Gv.

Under the tilted measure P(- | R), the difference G — 7nv' has the law of an M x N matrix with
i.i.d. standard gaussian entries, so we have

P(S;(G)|m,n,R) = [] E£U<(ea)t<h + (B + (1= P+ (1 Q)1/2§)> -
as<M

To simplify the above, it is natural to choose 7 = —3/(1 — q)'/? = —(1 — ¢)'/2. This results in
P(S;(G)|m,n,R) = exp {NaELq(ql/QZ)}

for L, as defined by (26), and Z a standard gaussian.

The denominator on the right-hand side of (262) is easy to estimate for any 7: it is the probability
that (261) holds, where again we note that G — Tnv' has the law of an M x N matrix with i.i.d.
standard gaussian entries. It follows that

L T o [ N00=0)
P(A|m,n,R) 2 2 ’

/2.

where the last equality is for our particular choice 7 = — (1—-19q)
It remains to consider the other factor P(A | m, n, R, S;(G)) in the numerator on the right-hand
side of (262), and we claim this is = 1: indeed,

- /n'Gv _ (rovhnv') 1 Ee[€U(h + (1 — q)V/2¢)]
B moksy) = T L (B )
| (0.0 - 9)?F(R)
N N ’
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so P(A|m,n,S;(G),R) = 1 by (local) central limit theorem considerations. This is formalized
by the local CLT estimates of Section E.
Substituting the above calculations into (262) gives, for any J € S,

P(1—q)
2

P(S;(G)|m,n,R,A) = exp {N[ + aIELq(qI/ZZ)} } . (263)

It remains to estimate the size of S.. To this end, we can let P be the uniform measure on
{—1,+1}", and consider the change of measure

dQ _ exp{(H,J)}
dP  exp{(logch(H),1)}

The mean of the measure Q is exactly m, so S, has large probability under Q. It follows that

5 . __owilLn)
oN = P(S*) = EQ [1{S* dP} - exp{(logCh(H)7 1)} .

We then apply Stein’s identity and the fixed point equation (9) to estimate

(H, m)
N

= B[22 th(4"22)] = VE ' ("22) = ¥E|1 - th(v/22)?| = (1 - q).

Rearranging the above calculations leads to

|Sk| = exp {N[Elog (2 ch(ql/QZ)> — (1 — q)} } ) (264)
Combining (263) and (264) gives

%log E(Z«(G)|m,n,R,C) = RS(e; U)
for RS(a; U) as in (29).

The above is a simplified presentation of the first moment calculation appearing in Section C.
The two main simplifications were (i) the assumption that the disorder is gaussian conditional on an
exact TAP solution satisfying (256) and (256); and (ii) the restriction to configurations J € S,. The
above calculation then shows that the conditional expectation of the partition function restricted
to S, matches the replica symmetric formula. In Section C we remove these simplifications by
computing the first moment of the unrestricted partition function (1) conditional on the AMP fil-
tration. We show the main contribution to the conditional first moment comes from configurations
J which approximately satisfy (19) (which is similar to the S, restriction). This already implies
that the asymptotic free energy is upper bounded by the replica symmetric value. For the lower
bound, we may restrict the partition function in any way that is convenient to the calculation, and
in Section D we compute the second moment of the partition function restricted to (19) (and with a
further technical restriction; see (144)).
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