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Abstract
Multi-task learning leverages structural similarities between multiple tasks to learn despite very
few samples. Motivated by the recent success of neural networks applied to data-scarce tasks, we
consider a linear low-dimensional shared representation model. Despite an extensive literature, ex-
isting theoretical results either guarantee weak estimation rates or require a large number of samples
per task. This work provides the first estimation error bound for the trace norm regularized esti-
mator when the number of samples per task is small. The advantages of trace norm regularization
for learning data-scarce tasks extend to meta-learning and are confirmed empirically on synthetic
datasets.
Keywords: Multi-task learning; Meta-learning; Trace norm regularization; Low rank matrix esti-
mation

1. Introduction

Common supervised learning requires a large number of training examples, which are often costly
in time and resources to acquire. The available dataset for a single task can be very limited, making
impossible to learn solely based on it. Multi-task learning instead estimates a model across multiple
tasks, by leveraging structural similarities among them. It jointly uses all datasets and thus learns ef-
ficiently as already observed in numerous applications including natural language processing (Ando
et al., 2005), image segmentation (Cheng et al., 2011) and medical prediction (Caruana, 1997).

This work considers the problem of multi-task learning, where an unknown linear low-dimensional
representation is shared among different tasks (Rohde and Tsybakov, 2011). It studies the following
question: how can we learn across multiple tasks with a very limited number of observations for
each of them? This question is also of fundamental interest to meta-learning and few-shot learning,
which aim at aggregating knowledge among multiple tasks to learn a shared representation (Vinyals
et al., 2016; Finn et al., 2017).

In spite of the vast multi-task learning literature, the existing results remain unsatisfying. In par-
ticular, guarantees on trace norm regularization (Rohde and Tsybakov, 2011) and Burer-Monteiro
factorization (Tripuraneni et al., 2021) both assume that the number m of observations per task is
large. The former assumes it is larger than the features dimension d, while the latter assumes it
scales logarithmically in T , the total number of tasks. Such conditions are not always met in prac-
tice, when it is much easier to acquire high dimensional data on new tasks than on existing ones (see
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e.g. Wang et al., 2017). On the other hand, the Method of Moments (Tripuraneni et al., 2021) learns
with a very limited number of observations per task, but requires very specific feature distributions.

Similarly to Rohde and Tsybakov (2011), we study the trace norm regularized estimator. It
is a natural choice when estimating low rank matrices, since the trace norm convexifies the rank
function. Trace norm based methods have already been successfully used in numerous multi-task
learning applications (Amit et al., 2007; Cheng et al., 2011; Harchaoui et al., 2012), but lack theo-
retical guarantees when the number of observations per task is limited.

Contributions. This work bounds the estimation error of the trace norm regularized estimator
with a few observations per task (m < d). The analysis becomes particularly intricate when the
number of samples per task is smaller than the features dimension, since no restricted isometry
condition holds (Rohde and Tsybakov, 2011). Instead, our analysis uses a weaker restricted strong
convexity condition (van de Geer and Bühlmann, 2009). Proving that this restricted strong convexity
condition holds is our main technical contribution, besides upper bounding a stochastic term using
concentration of heavy tailed distributions. These techniques lead to our main result, of which an
informal version is given in Theorem 1.

Theorem 1 (informal). For any number of observations per task m, the trace norm regularized
estimator M̂ satisfies with high probability

‖M̂ −M∗‖F ≤ Õ

σ
√
r
d2

m + T

m
+

√
rd
d+ T

m2

 ,

where T is the number of tasks, d is the dimension of the feature space, σ2 is the variance of the
label noise, M∗ ∈ Rd×T is the ground-truth parameter matrix and r is its rank. The notation Õ
hides multiplicative constants and logarithmic terms in d,m and T .

Note that by using linear regressions on each individual task independently, the estimation error

scales as O
(
σ
√

dT
m

)
(Hsu et al., 2012). In the regime when the number of tasks is large, trace

norm regularization thus improves this estimation by a factor
√

r
m , leveraging the low rank structure

of the parameter matrix. A gap yet remains with the oracle baseline knowing beforehand the r-
dimensional subspace induced by the parameters. This baseline computes linear regressions with r

parameters and thus has an error scaling as O
(
σ
√

rT
m

)
.

To our knowledge, Theorem 1 is the first general estimation error bound for a multi-task esti-
mator with an arbitrarily small number of observations per task. As discussed in Section 3, a better
bound can be proven for the Method of Moments in this setting1, but it only holds for a very specific
data model (e.g., Gaussian) and behaves much worse in practice as highlighted in Section 6.

Theorem 1 also allows in Section 5 to bound the estimation error for a new, previously un-
observed task. This result illustrates the interest of trace norm regularization for meta-learning.
Finally, we compare empirically different multi-task regression methods and discuss the practical
advantages/drawbacks of trace norm regularization in Section 6.

1. Such a bound is proven in Appendix A and is a minor contribution of this work.

2



TRACE NORM REGULARIZATION FOR MULTI-TASK LEARNING

2. Model

Notations. In the following, [n] := {1, . . . , n}. For a matrix M ∈ Rd×T , M (t) ∈ Rd denotes
its t-th column, λi(M) its i-th largest singular value and ‖M‖∗ its trace (or nuclear) norm, i.e.,
‖M‖∗ =

∑min(d,T )
i=1 λi(M) . We use the notation 〈·, ·〉 for the canonical inner product both for

vectors and matrices.

Model. In the remaining of the paper, we consider the model described in this section. There are
T tasks, each of which contains m observation samples (xti, y

t
i) ∈ Rd × R. We consider the linear

model
yti = 〈M ∗ (t), xti〉+ εti for any (i, t) ∈ [m]× [T ], (1)

where M∗ is the matrix of parameters to estimate. We assume in the following that rank(M∗) = r,
where r � d, and that the features and noise variables are well behaved as stated in Assumption 1.

Assumption 1 (Random design). The (xti) are independent centered 1-sub-Gaussian random vari-
ables and the εti are independent centered σ-sub-Gaussian random variables. Moreover, the features
are isotropic, i.e., E[(xti)

>xti] = Id.

We also assume the task diversity condition, which claims that the scale of the parameters is roughly
the same for all tasks.

Assumption 2 (Task diversity). Given some constant C, the parameters matrix M∗ verifies:

max
t∈[T ]
‖M∗ (t)‖2 ≤ C.

The task diversity assumption has been introduced by Tripuraneni et al. (2021) and is also consid-
ered in subsequent works (Thekumparampil et al., 2021a,b). It ensures that a single task does not
get too significant with respect to the others. However, we do not require any lower bound on the
norm of task parameters.

3. Related work

This section discusses the related literature and Table 1 summarizes the available error bounds for
the model described in Section 2.

Different structural assumptions have been considered in the multi-task literature. For example,
Denevi et al. (2019); Cesa-Bianchi et al. (2021) assume that the task parameters all lie in a small
Euclidean ball and Argyriou et al. (2008); Lounici et al. (2009) assume that each parameter vector is
sparse and its support is shared among the tasks. In the latter, the parameter matrix M∗ has a small
`2,1 norm. This paper studies a classical structural assumption generalizing the sparse setting: the
parameter matrix has a small rank. In that case, it seems natural to consider the following estimator

argmin
M∈Rd×T

rank(M)≤r

1

mT

∑
(i,t)∈[m]×[T ]

(
yti − 〈M (t), xti〉

)2
. (2)

When the features are shared among the tasks, i.e., xti = xt
′
i , the considered model is equivalent

to multivariate regression (Izenman, 1975; Obozinski et al., 2008) and a closed form solution of
Equation (2) is known (Bunea et al., 2011). Maurer et al. (2016) bound the error of this estimator
in a general multi-task setting, using Gaussian complexity arguments. Besides holding only for
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bounded Lipschitz loss functions, this bound is weaker than what can be obtained for the squared
loss, since it does not use any smoothness property on the loss function.

Computing the above optimization program yet becomes intractable when the features differ
among the tasks, which corresponds to the setting of interest. A natural approach replaces the rank
constraint by a trace norm constraint, since it convexifies the rank function (similarly to the `1 norm
that convexifies the `0 norm). Equivalently, a regularized problem can be considered:

argmin
M∈Rd×T

1

mT

∑
(i,t)∈[m]×[T ]

(
yti − 〈M (t), xti〉

)2
+ λ‖M‖∗.

Multi-task learning can be considered as a particular case of matrix completion. Candes and Plan
(2011); Rohde and Tsybakov (2011) studied low-rank matrix completion, using restricted isometry
conditions. In particular, Rohde and Tsybakov (2011) bound the error of the trace norm regularized
estimator described above for multi-task learning. However, they assume a restricted isometry con-
dition, which only holds when the number of samples per task is larger than the features dimension
(m ≥ d), limiting the interest of this result in practice.

The only known error bounds for trace norm based methods when the number of observations
per task is small (m < d) derive from Rademacher complexity arguments (Pontil and Maurer, 2013;
Yousefi et al., 2018). For the same reasons as Maurer et al. (2016), they only hold for Lipschitz loss
functions and are weaker than what can be obtained for the squared loss.

Other approaches yet manage to provide near tight error bounds when the number of observa-
tions per task is smaller than the features dimension. In particular, the Burer-Monteiro factorization
considers the problem

argmin
U∈Rd×r
V ∈RT×r

1

mT

∑
(i,t)∈[m]×[T ]

(
yti − 〈(UV >)(t), xti〉

)2
.

In words, low-rank matrices are factorized as M = UV >. This optimization problem is equivalent
to Equation (2). It is not convex in its arguments (U, V ), but only bilinear. As a consequence, we can
only aim at computing a local minimum of the objective, for example with first order optimization
methods. Tripuraneni et al. (2021) nevertheless bounded the estimation error of any local minimum
of the above optimization program. Their work is the closest in spirit to ours and is motivated by
the theoretical study of meta-learning.

Thekumparampil et al. (2021a,b) recently improved the error guarantees of the Burer-Monteiro
factorization, in terms of the distance between the estimated r-dimensional features subspace and
the ground-truth one. It is achieved using an alternate minimization algorithm. This allows to pro-
vide tighter estimation bounds on a new task in the meta-learning setting considered in Section 5,
but does not improve the existing multi-task bounds. However, all the bounds for Burer-Monteiro
factorization require that the number of samples per task scales with log(T ). Since we might con-
sider a very large number of tasks in practice, along with a limited number of samples per task, this
requirement is a major drawback.

The Method of Moments introduced by Tripuraneni et al. (2021) is actually the only estimator
that provides satisfying bounds with a very limited number of observations per task. It directly es-
timates the r-dimensional features subspace. Yet, only a bound on the error of the subspace estima-
tion is known, besides requiring the feature distribution to be Gaussian. In Appendix A, we extend
these results to an error bound on the whole estimated parameters matrix and to any spherically
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Estimator Error bound ‖M̂ −M∗‖F Samples per task Extra assumption

Trace norm regularization
(Rohde and Tsybakov, 2011)

σ
√
r d+T

m Ω(d) Deterministic features

Burer-Monteiro factorization
(Tripuraneni et al., 2021)

σ
√
r d+T

m Ω(r4 log(T )) -

Method of Moments
Theorem 3 adapted from
(Tripuraneni et al., 2021)

σ
√
r σ

2rd+T
m + r

√
d
m Ω(r log(r)) Spherically symmetric

feature distribution

Trace norm regularization
Theorem 2

σ

√
r
d2

m
+T

m +
√
rdd+T

m2 Ω(1) -

Table 1: Different bounds for multi-task learning. Only the dependencies in σ, r, d,m, T are pro-
vided and eventual logarithmic terms are omitted. Our main result is highlighted in bold.

symmetric feature distribution. This assumption on the feature distribution is yet often unverified in
practice, and the Method of Moments might fail to learn the features subspace without it as shown
in Section 6. Moreover, it empirically performs poorly with respect to the other estimators even for
Gaussian distributions, as observed in Section 6.

Multi-task classification has also been studied in previous works (Maurer, 2006; Cavallanti et al.,
2010), but is not further discussed as it is beyond the scope of this paper.

4. Bound on the estimation error

In this section, we provide error guarantees for the estimator

M̂ = argmin
M∈W

1

mT

∑
(i,t)∈[m]×[T ]

(yti − 〈xti,M (t)〉)2 + λ‖M‖∗ (3)

whereW =
{
M ∈ Rd×T | maxt∈[T ] ‖M (t)‖2 ≤ C

}
and C is the constant introduced in Assump-

tion 2. We restrict the estimator to the ballW for analysis purpose, but we do not need to enforce
this constraint in practice, i.e. we empirically obtain good results when solving the unconstrained
problem.

Our proof relies on the decomposability of the trace norm (Negahban et al., 2012). Since the re-
stricted isometry condition does not hold with a limited number of observations per task, we instead
prove a restricted strong convexity condition. Its proof is particularly difficult, since the condition
is non-uniform and considered for an intricate subset of matrices. On the other hand, bounding
the effective noise level is challenging because of the random design model. As a consequence,
our analysis uses concentration on heavy tailed distributions, while previous works on trace norm
regularization use Bernstein inequalities that only hold for sub-exponential distributions.

Showing both restricted strong convexity and noise level conditions is the main technical chal-
lenge of this work. These conditions are respectively presented in Sections 4.1 and 4.2. We now
state our main result, which bounds the error of the estimator defined in Equation (3). Its proof is
given in Section 4.3.

5



BOURSIER KONOBEEV FLAMMARION

Theorem 2. Assume T = Ω(d), for λ = 4τ where τ = c2σ√
T

√
T+d2/m
mT , with probability at least

1− (2T + c0)e−c1d − 2e−c1r(d+T ):

‖M̂ −M∗‖F ≤ cσ

√
r
d2

m + T

m
+ c

√
Crd

d+ T

m2
ln

(
dT

m

)
, (4)

where c, c0, c1 and c2 are universal positive constants.

This bound is of the same order as the known error bound when the number of samples per task is
larger than the dimension (Rohde and Tsybakov, 2011). This result is of great significance when
m < min (d, log(T )) since it provides the first estimation guarantees in this case. We recall it is the
regime of interest in most applications. It illustrates the success of trace-norm methods in multi-task
learning settings. It indeed leads to a

√
r
m estimation improvement with respect to the single-task

baseline, which proceeds to T independent linear regressions.

We believe that the extra
√

d
m factor in the second term is only an artefact of the analysis as

explained in Section 4.1. It is confirmed empirically. In this case, leveraging the low rank structure
of the parameter matrix through the trace norm regularization would lead to a

√
r
d improvement over

single-task learning and the trace norm regularized estimator would be comparable to the baseline
oracle that knows beforehand the r-dimensional subspace induced by the parameters.

4.1. Restricted strong convexity

To define the restricted strong convexity condition, we first need to define matrices U ∈ Rd×d and
V ∈ RT×T , such that the SVD of M∗ reads M∗ = UΣ∗V >, where Σ∗ ∈ Rd×T has only its first r
diagonal elements that are non-zero. We now define the following cone of matrices, which is key to
the analysis

C =

{
∆ ∈ Rd×T | ‖∆22‖∗ ≤ 3

∥∥∥∥
( )

∆11

∆21

∆12

0

∥∥∥∥
∗

where ∆ = U

( )
∆11

∆21

∆12

∆22

r
d
−
r

r T − r

V >

}
. (5)

Note that matrices of the form U

( )
·
·

·
0

V > are of rank at most 2r with the block dimensions

given in Equation (5). Any matrix in C is thus close to low-rank, since a submatrix of rank 2r counts
for a significant amount of its nuclear norm. We now define the linear operator L : Rd×T → Rm×T

L : M 7→ 1√
mT

(〈xti,M (t)〉)1≤i≤m
1≤t≤T

,

which is lower bounded in norm over C with high probability by Lemma 1 below.

Lemma 1 (Restricted strong convexity). With probability larger than 1 − 2e−cr(d+T ) − 2Te−d,
the operator L satisfies

‖L(∆)‖2F ≥
c0

T
‖∆‖2F −

c1rd(d+ T )

m2T
max
t∈[T ]
‖∆(t)‖22 ln

(
dT

m

)
for all ∆ ∈ C, (6)

where c, c0 and c1 are positive universal constants.
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This condition generalizes the restricted eigenvalue condition, which is used to prove estimation
guarantees of the Lasso or Dantzig estimator in the problem of sparse linear regression (van de Geer
and Bühlmann, 2009). It is weaker than the restricted isometry property, which does not hold in the
multi-task setting (Rohde and Tsybakov, 2011).

The proof of Lemma 1 is deferred to Appendix C.1. Lemma 11 by Tripuraneni et al. (2021)
states a similar condition on the subset of matrices of rank at most 2r. Besides correcting minor
errors in its proof, we extend this condition to the set C, which is much larger: its ε-covering number
scales exponentially with 1

ε2
. As a consequence, our bound includes an additional d

m factor in the last
term. Although we believe this d

m factor to be an artefact of the analysis, covering arguments might
not yield better bounds, since the considered subset for the restricted strong convexity condition is
much larger here. We let the investigation of more advanced techniques as future work.

4.2. Effective noise level

The next lemma bounds the effect of label noise on the prediction.

Lemma 2 (Effective noise level). If T = Ω(d), then for universal positive constants c0, c1, c2,
with probability at least 1− (2T + c0)e−c1d:∣∣∣∣ 1

mT

∑
(i,t)∈[m]×[T ]

εti〈xti,M (t)〉
∣∣∣∣ ≤ τ‖M‖∗ uniformly for all M ∈ Rd×T , (7)

where τ = c2σ√
T

√
T+d2/m
mT .

The proof is given in Appendix C.2 and uses concentration results on heavy tailed distributions
(Bakhshizadeh et al., 2020) to bound the operator norm of the matrix 1

mT

∑
(i,t)∈[m]×[T ] ε

t
iet(x

t
i)
>.

For “nice” fixed features xti, the best possible bound on τ is of order σ√
T

√
T+d
mT using classical

bounds on the spectral norm of Gaussian matrices. Our bound is thus tight, up to the d2

m term, which
is actually due to the randomness of the features xti. Because of the random design, we cannot
directly use Bernstein inequality but instead use concentration on heavy tailed distributions. In any
case, when the number of tasks is large enough, the T term prevails over d

2

m and the bound becomes
similar to the easier setting of fixed features.

4.3. Proof of Theorem 2

The proof assumes that Equations (6) and (7) both hold, which happens with high probability thanks
to Lemmas 1 and 2. By definition, the estimator M̂ minimizes the objective function inW , to which
M∗ belongs, thanks to Assumption 2. In particular:

1

mT

∑
(i,t)∈[m]×[T ]

(yti−〈xti, M̂ (t)〉)2+λ‖M̂‖∗ ≤
1

mT

∑
(i,t)∈[m]×[T ]

(yti−〈xti,M∗ (t)〉)2+λ‖M∗‖∗. (8)

Using simple manipulations, this inequality is equivalent for ∆̂ = M̂ −M to

‖L(∆̂)‖2 ≤ 2

mT

∑
(i,t)∈[m]×[T ]

εti〈xti, ∆̂(t)〉+ λ
(
‖M∗‖∗ − ‖M̂‖∗

)

7
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Thanks to Equation (7), this becomes ‖L(∆̂)‖2 ≤ 2τ‖∆̂‖∗ + λ
(
‖M∗‖∗ − ‖M̂‖∗

)
.

With the SVD decomposition M∗ = UΣ∗V >, we can decompose ∆̂ = ∆̂1 + ∆̂2 where

∆̂ = U

(
∆̂11 ∆̂12

∆̂21 ∆̂22

)
V >; ∆̂1 = U

(
∆̂11 ∆̂12

∆̂21 0

)
V > and ∆̂2 = U

(
0 0

0 ∆̂22

)
V >.

Using the triangle inequality, ‖M̂‖∗ ≥ ‖M∗ + ∆̂2‖∗ − ‖∆̂1‖∗. Moreover, as M∗ and ∆̂2 have
orthogonal column and rowspaces, ‖M∗ + ∆̂2‖∗ = ‖M∗‖∗ + ‖∆̂2‖∗. Equation (8) then leads with
the choice λ = 4τ to

‖L(∆̂)‖2 ≤ 6τ‖∆̂1‖∗ − 2τ‖∆̂2‖∗.
From there, we can first observe that 3‖∆̂1‖∗ ≥ ‖∆̂2‖∗, i.e. ∆̂ ∈ C. Moreover, since ∆̂1 is of rank
at most 2r, ‖∆̂1‖∗ ≤

√
2r‖∆̂1‖F ≤

√
2r‖∆̂‖F , i.e.

‖L(∆̂)‖2 ≤ 6τ
√

2r‖∆̂‖F . (9)

Now since ∆̂ ∈ C, Equation (6) directly gives

‖L(∆̂)‖2 ≥ c0

T
‖∆̂‖2F −

c1rd(d+ T )

m2T
max
t∈[T ]
‖∆̂(t)‖22 ln

(
dT

m

)
. (10)

Moreover, as M̂ and M∗ are both inW , maxt ‖∆̂(t)‖22 ≤ 4C. Combining Equations (9) and (10),
this yields

c0

T
‖∆̂‖2F − 6τ

√
2r‖∆̂‖F −

4Cc1rd(d+ T )

m2T
ln

(
dT

m

)
≤ 0.

Note that the left expression is a 2-degree polynomial in ‖∆̂‖F . To be non-positive, it requires
Equation (4) to hold, which concludes the proof.

5. Meta-learning: transfer on a new task

Meta-learning is of significant interest in modern applications, where the knowledge acquired on
previous tasks is transferred to a single new task. The objective of the meta-learning setting is to
estimate the parameters of a new single task, based on the regression obtained on the previous T
tasks. This section provides estimation error guarantees for this setting.

In the following, we use the decomposition M∗ = Bα where B ∈ Rd×r and α ∈ Rr×T such
that B>B = Ir

2. Now consider the matrix M̃ , defined as the rank r matrix which is the closest
to M̂ :

M̃ ∈ argmin
L∈Rd×T

rank(L)≤r

‖L− M̂‖F . (11)

M̃ can be computed from the SVD of M̂ by keeping its r largest singular values. Now decompose
M̃ as M̃ = B̃α̃ where B̃ ∈ Rd×r, α̃ ∈ Rr×T and B̃>B̃ = Ir.

The meta-learning setting considers a T + 1-st task, with m observations (xT+1
i , yT+1

i ) gen-
erated as described in Section 2. Using the estimated subspace matrix B̃, we compute the least
squares estimate

α̃T+1 ∈ argmin
θ∈Rr

m∑
i=1

(
yT+1
i − 〈B̃θ, xT+1

i 〉
)2
.

2. B corresponds to the r first columns of U defined in Section 4.1, up to any rotation of Rr .
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The idea behind meta-learning is that even for a small number of observationsm on this single task,
the parameters vector M∗ (T+1) can still be well estimated using the T previous tasks.

Before bounding the error ‖B̃α̃T+1 −M∗ (T+1)‖2, Lemma 3 bounds the angles between the
r-dimensional subspaces corresponding to B and B̃. It is adapted from Tripuraneni et al. (2021,
Lemma 16) to take into account the additional error that might appear from the low-rank projection
step given in Equation (11). Its proof is given in Appendix C.4.

Lemma 3. For B and B̃ defined as above:

sin2 θ
(
B, B̃

)
≤

4r‖M̂ −M∗‖2F
Tν

,

where ν = rλr

(
M∗M∗>

T

)
and θ

(
B, B̃

)
is the principal angle between the subspaces correspond-

ing to the orthogonal projections B and B̃.

The variable ν in Lemma 3 is introduced for clarity. Note that if the tasks are rich3, then ν = Ω(1).
Lemma 3 states that the r-dimensional feature subspace is well estimated if the parameter matrix is
well estimated. From there, Theorem 4 by Tripuraneni et al. (2021) allows to bound the error of the
estimation of the parameter vector for the T + 1-th task. Corollary 1 below is stated in the balanced
case, where the new task also has m samples. It can easily be extended to the unbalanced case.

Corollary 1. If Equation (4) holds andm = Ω(r log(r)), then for B̃ and α̃T+1 defined above, with
probabilty at least 1− c

m100 :

‖B̃α̃T+1 −M∗ (T+1)‖22 ≤ c′Cσ2 r
2

mν

(
d2

mT
+ log(m)

)
+ c′C2 r

2d

m2ν

(
d

T
+ 1

)
,

where c and c′ are universal constants.

The squared estimation error on a new task is roughly bounded by r2d
m2 . In contrast, it is known that

a (single task) linear regression on this task would lead to an estimation error of order d
m (Hsu et al.,

2012), i.e., leveraging the low rank structure of the parameters and the past observations leads at
least to an improvement r

2

m for the trace norm regularized estimator.

As a comparison, the best known bounds for Burer-Monteiro factorization (Thekumparampil
et al., 2021a) and Method of Moments (Tripuraneni et al., 2021) on a new task are of order σ2 r

m
for a large number of tasks, thus being comparable to the oracle baseline. These approaches yield
better meta-learning bounds, but require respectively m = Ω(log(T )) or a spherically symmetric
feature distribution.

The discrepancy between these bounds is due to different analyses. Our meta-learning bound di-
rectly derives from the multi-task bound using Lemma 3, while the tight analyses of Burer-Monteiro
(with alternate minimization) and Method of Moments directly bound the principal angle between
the estimated subspaces. Lemma 3 indeed considers the unrealistic worst case, where the entirety of
the estimation error of the matrix M∗ is due to the error in subspace estimation. As a consequence,
Lemma 3 leads to a loose bound on the subspace angle of O

(
r2d
m2

)
, while this angle clearly goes to

0 when the number of tasks grows to infinity in the simulations of Section 6. Showing it actually
converges to 0 for a large number of tasks is left for future work and should be done by directly

3. For example if ‖M∗‖2F = Ω(T ) and λ1(M
∗M∗T )

λr(M∗M∗T )
= O (1)
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bounding the subspace angle. Such a result would then lead to an optimal meta-learning bound for
trace norm based methods, without any further requirement on the number of observations per task
or on the feature distribution.

6. Experiments

This section compares empirically different multi-task methods on synthetic datasets and discusses
the practical aspects of their implementation.

6.1. Simulations

With the exception of Figure 4, our experimental setup follows that of Tripuraneni et al. (2021);
Thekumparampil et al. (2021b). More specifically, we set d = 100, r = 5 and sample xti

iid∼
N (0, Id), εti

iid∼ N (0, σ2). The following experiments study how the normalized Frobenius distance

‖M̂ − M∗‖F /
√
T and the angle between the subspaces sin θ

(
B, B̃

)
behave when varying the

number of tasks T , the size of each task m and the label noise level σ. In all experiments the mark-
ers show the average and the shaded area shows the standard deviation over 12 independent runs.
The code is available in github.com/MichaelKonobeev/meta and additional experimental
details are given in Appendix B.

In this section, altmin corresponds to the alternating minimization algorithm (Thekumpara-
mpil et al., 2021a); bm and mom respectively correspond to Burer-Monteiro factorization and the
Method of Moments (Tripuraneni et al., 2021); nuc corresponds to the nuclear norm regularized
estimator. Additionally, we implement two other baselines labeled single, which implements in-
dependent least squares regression of the d-dimensional parameter vectors (the columns of M ) for
each task; and oracle which knows the ground-truth subspace B and only estimates the matrix
α by performing independent least squares regression for each task in the projected r-dimensional
space. Some algorithms perform very poorly for certain values of T,m, σ in Frobenius distance. In
such cases, we omit displaying these points in the figures for the sake of readability.
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Figure 1: Evolution of the estimation error with the number of tasks T for m = 10.

Figure 1 displays the normalized Frobenius distance and the angle between the subspaces when
varying the number of tasks T for a small number of observations per task (m = 10). We observe
that nuc outperforms the other algorithms in both distances. When the number of tasks becomes
large, altmin and bm nevertheless become comparable in sine distance (even in Frobenius distance
for bm).
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Figure 2: Evolution of the estimation error with the number of tasks T for m = 25.

On the other hand, altmin and bm outperform nuc with larger m (m = 25) as shown in
Figure 2. The regime of interest for nuc thus seems to be for small values of m, as can be seen in
Figure 3 below. These empirical results confirm the different known theoretical bounds.
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Figure 3: Evolution of the estimation error with the task size m for T = 800.

Method of Moments is largely outperformed by the other algorithms, unless the number of
tasks is very large. Furthermore, as highlighted in Figure 4 below, it might fail for non-spherically
symmetric distributions4. In particular, the largest principal angle between its estimated subspace
and the real one remains equal to π

2 . Method of Moments yet outperforms single in Frobenius
distance, because it still manages to learn some of the directions of the r-dimensional subspace.
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Figure 4: Evolution of the estimation error with the number of tasks T for m = 25 and a non-
spherically symmetric feature distribution.

4. Further details on the chosen feature and parameters distribution are given in Appendix B.
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Finally, Figure 5 studies the evolution of the estimation error with the level noise σ. Algorithms
altmin and bm do not perform well in Frobenius norm here and are not displayed for a clearer
figure. Although nuc scales better with σ than mom, both methods seem to not recover the exact
parameters matrix in the noiseless setting, confirming the (1 + σ) dependence in Theorem 1 for the
former.
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Figure 5: Evolution of the estimation error with the noise level σ for T = 800 and m = 10.

As explained in Section 5, nuc is comparable to altmin in subspace estimation in the exper-
iments. This suggests that the meta-learning bound of Corollary 1 is not tight and it needs further
investigation.

6.2. Numerical complexity

A local minimum of the Burer-Monteiro factorization can be approximated up to ε using first order
methods such as gradient descent (Jin et al., 2017) in O

(
1
ε2

)
steps. Computing the gradient of the

objective function here requires at each step a multiplication between d × r and r × T matrices,
leading to a total complexity of O

(
rdT
ε2

)
.

For trace norm regularization, algorithms approximating a solution of Equation (3) up to ε in
O
(

1√
ε

)
steps exist (Ji and Ye, 2009; Toh and Yun, 2010), but require an SVD computation (of com-

plexity dT 2) at each step, thus leading to a considerable numerical complexity for a large number of
tasks. Instead, Jaggi and Sulovskỳ (2010) propose an algorithm approximating the solution of the
equivalent constrained problem with a numerical complexity O

(
dT
ε2

)
. In practice, it might thus be

preferable to consider the constrained problem, as it is cheaper in computation and the considered
optimization programs are equivalent for properly tuned regularization/constraint parameters.

On the other hand, Method of Moments is much better in terms of complexity as it only com-
putes a single truncated SVD and then proceeds to T linear regressions with r parameters. In
total, its complexity is thus of order O

(
rT (d+m2)

)
, largely outperforming the other methods in

terms of numerical complexity. The Method of Moments is thus computationally cheaper than both
Burer-Monteiro factorization and trace norm constrained minimization, which end up being similar
in computational cost.

Parameter tuning. Another important practical aspect of these algorithms is parameter tuning.
Although trace norm methods require tuning the regularization parameter, Theorem 2 needs this
parameter to depend on known variables except from the noise level σ. On the other hand, Burer-
Monteiro factorization and Method of Moments both require the knowledge of the rank of the

12
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parameters matrix, which is unknown. The parameter tuning is thus easier in practice for trace
norm based methods, being one of their main practical advantages in multi-task learning.

7. Conclusion

This work proposes the first multi-task estimation error bound when the number of samples per task
is very limited. It illustrates the interest of nuclear norm regularization for low rank matrix estima-
tion in this intricate regime and confirms empirically its good performance on synthetic datasets,
with respect to the other known methods. It confirms that learning shared representation is possi-
ble with a limited number of samples per task, in the sample linear representation model, grasping
insights of the empirical success on learning non-linear representation.

In light of the experiments, the proposed bounds might be improvable, especially in the subspace
estimation. Such an improvement is left open for future work and would require more refined
analytical tools.
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Appendix A. Multi-task analysis of Method of Moments

This section provides a multi-task analysis of the Method of Moments (MoM) algorithm introduced
in (Tripuraneni et al., 2021). Tripuraneni et al. (2021) only provided a meta-learning type bound
(similar to Corollary 1) for this algorithm, in the particular case of a Gaussian feature distribution.
This section adapts this result to derive a multi-task bound for Algorithm 1, with any spherically
symmetric feature distribution5.

Algorithm 1: Method of Moments

Input: (xti, y
t
i)i,t ∈

(
Rd × R

)mT
B̂1D̂1B̂

>
1 ← top r-SVD of

∑m
i=1

∑T
t=dT

2
e+1

ytix
t
i(x

t
i)
> // B̂1 ∈ Rd×r

α̂1 ← argmin
α∈Rr×d

T
2 e

∑m
i=1

∑dT
2
e

t=1

(
yti − 〈B̂1α

(t), xti〉
)2

B̂2D̂2B̂
>
2 ← top r-SVD of

∑m
i=1

∑dT
2
e

t=1 y
t
ix
t
i(x

t
i)
>

α̂2 ← argmin
α∈Rr×T−d

T
2 e

∑m
i=1

∑T
t=dT

2
e+1

(
yti − 〈B̂2α

(t), xti〉
)2

return (B̂1α̂1, B̂2α̂2)

This algorithm directly estimates the low dimensional subspace by aggregating all the obser-
vations (for different tasks) together. This estimation relies on the fourth moments of the features,
hence its name. Note that the considered MoM algorithm is slightly modified with respect to the
original one: we split the tasks in two batches and estimate a batch parameters using the estimated
subspace on the other batch. This trick is used to get independence between the estimated subspace
and the estimated parameters, which allows to apply Theorem 4 by Tripuraneni et al. (2021). This
result could not be directly used without splitting the data.

Theorem 3 bounds the estimation error of MoM. Its proof is deferred to Appendix C.5.

Theorem 3. Consider the setting defined in Section 2. Denote M∗1 ∈ Rd×d
T
2
e the matrix cor-

responding to the first dT2 e columns of M∗ and M∗2 the matrix corresponding to the remaining
columns. Additionally, if the feature distribution is spherically symmetric and m ≥ cr log(r) and

mT ≥ c
log6(dmT )(σ4+C2)r2

κ2ν2
d, then with probability at least 1 − 2

m2T 2 , the estimator returned by
Algorithm 1 verifies:

‖M̂ −M∗‖2F ≤ c′σ2 r

m
T log(mT ) + c′C log6(dmT )r2σ

4 + C2

κ2ν̄2

d

m
, (12)

where ν̄ = rmin
(
λr

(
M∗1M

∗>
1

T

)
, λr

(
M∗2M

∗>
2

T

))
, κ = E[〈e1, x〉4] − E[〈e1, x〉2〈e2, x〉2] > 0, c

and c′ are universal positive constants.

Similarly to the term ν in Section 5, ν̄ = Ω(1) for rich tasks. For large T , the first term then prevails
and Theorem 3 recovers (up to a logarithmic term) the estimation error of a linear regression on an r-
dimensional subspace. The method of moments algorithm however requires the feature distribution
to be spherically symmetric and might fail otherwise as illustrated by Figure 4 in Section 6.

5. A distribution is spherically symmetric if it is invariant under any orthogonal transformation.
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Moreover, the method of moments is significantly worse than Burer-Monteiro factorization and
trace norm regularization in practice, hence the need for a better understanding of these methods.

Appendix B. Experimental details

In Figures 1 to 4, we choose σ = 1. Except for Figure 4, the ground-truth matrix M∗ is generated
as follows. We first take B as the top r left singular vectors of a d× d random matrix whose entries
are i.i.d. and drawn from N (0, 1). Next, we sample α ∈ Rr×T with αi,j

iid∼ N (0, 1) and compute
the resulting matrix M∗ = Bα.

In all experiments except the one in Figure 5 the value of the regularization coefficient for nuc is

chosen as λ = σ√
T

√
T+d2/m
mT . In the experiment with varying σ in Figure 5, we found that for small

values of σ the regularization coefficient computed using the above formula becomes too small. We
thus use validation sets of size 0.2m for each task to find the value of the regularization coefficient
via grid search.

For the setting in Figure 4 of Section 6, the feature distribution samples independently each
coordinate. The k-th coordinate is given by 〈xti, ek〉 = cos(kd

π
2 )ξti,k + sin(kd

π
2 )ηti,k, where ξti,k

iid∼
U [−
√

3,
√

3] and ηti,k
iid∼ N (0, 1). The r-dimensional parameters are generated by first sampling

r × r matrix α′ with each element (α′)i,j
iid∼ N (0, 1) and next completing this to a T × r matrix by

sampling T − r vectors uniformly at random among the set of columns of the matrix α′.
This choice of feature distribution is to ensure different fourth moments of the features along

different directions, while this choice of parameters avoids that the average parameters matrix is too
well behaved.

Appendix C. Proofs

This section provides all the proofs deferred from the main text.

C.1. Proof of Lemma 1

In the whole section, we assume m = O (d). Adapting Lemma 4 below, we can actually show if
m & d that with probability at least 1− 2T exp (−d):

c√
T
≤ min

∆∈Rd×T
‖L(∆)‖F
‖∆‖F

≤ max
∆∈Rd×T

‖L(∆)‖F
‖∆‖F

≤ c′√
T
,

thus leading to a restricted isometry condition that also implies Lemma 1.

The proof first bounds the operator norm of L.

Lemma 4. With probability at least 1− 2T exp (−d):

max
∆∈Rd×T

‖L(∆)‖F
‖∆‖F

≤ c
√
d+
√
m√

mT
,

for some universal constant c.
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Proof. Note that by definition of L, for any ∆ ∈ Rd×T :

‖L(∆)‖F2 =
1

mT

T∑
t=1

‖Xt∆
(t)‖22, (13)

where ∆(t) is the t-th column of ∆ and Xt = [xt1, . . . , x
t
m]> ∈ Rm×d.

By design of the setting, Xt is a matrix with independent, mean zero, sub-gaussian isotropic
random vectors in Rd. Theorem 4.6.1 by Vershynin (2018) directly yields for a universal constant c
that

‖Xt‖2 ≤ (1 + c)
√
d+ c

√
m with probability at least 1− 2e−d.

Taking a union bound over all tasks, with probability at least 1−2Te−d, ‖Xt‖2 ≤ (1+c)
√
d+c
√
m

for all tasks t ∈ [T ]. This finally leads to Lemma 4 using Equation (13).

We then show an RSC condition on the set of low rank matrices similar to Lemma 11 by Tripu-
raneni et al. (2021).

Lemma 5. For any r′ ∈ N, with probability at least 1− exp (c1r
′(d+ T )):

‖L(∆)‖2F ≥ 3
‖∆‖2F

8T
−c′ r

′(d+ T )

mT
max
t∈[T ]
‖∆(t)‖2 ln

(
dT

m

)
uniformly over all matrices of rank at most r′,

where c, c′, c1, c2 are positive universal constants.

Proof. By homogeneity, it suffices to show this for any matrix in Γr′ where

Γr′ = {M ∈ Rd×T | rank(M) ≤ r′ and ‖M‖F = 1}.

For any ε ∈ (0, 1), we know there exists an ε-covering of Γr′ of cardinality smaller than
(

9
ε

)r′(d+T+1)

(Candes and Plan, 2011, Lemma 3.1). For ε = min
{
c
4

√
m√

d+
√
m
, 1√

T

}
where c is the constant

in Lemma 4, let N be an ε-covering of Γr′ of minimal size. By union bound, taking log 1
δ of

order r′(d + T ) ln
(
dT
m

)
in Lemma 6 of Appendix C.3 then states that with probability at least

1− exp (−c1r
′(T + d)), for all M ∈ N :

‖L(M)‖2 ≥ 1

T
− c1

4

maxt ‖M (t)‖2√
mT

√
r′(d+ T ) ln

(
dT

m

)
−c2

1

maxt ‖M (t)‖2

mT
r′(d+T ) ln

(
dT

m

)
.

(14)
Also, Lemma 4 states that with probability at least 1− 2T exp(−d),

‖L‖22 ≤ c
d+m

mT
. (15)

Assume in the following that Equations (14) and (15) both hold. Consider ∆ ∈ Γr′ and decompose
as ∆ = M +A where M ∈ N and ‖A‖F ≤ ε.

Note that Equation (14) leads to the following inequality, using a2 − ab
4 − b

2 ≥ 7
8a

2 − 9
8b

2:

‖L(M)‖2 ≥ 7

8T
− 9c2

1

8

maxt ‖M (t)‖2

mT
r′(d+ T ) ln

(
dT

m

)
.

Moreover, maxt ‖M (t)‖2 ≤ 2 maxt ‖∆(t)‖2 + 2 maxt ‖A(t)‖2. As ε ≤ 1√
T
≤ maxt ‖∆(t)‖, this

last inequality yields that maxt ‖M (t)‖2 ≤ 4 maxt ‖∆(t)‖2, and we thus have:

‖L(M)‖2 ≥ 7

8T
− 9c2

1

2

maxt ‖∆(t)‖2

mT
r′(d+ T ) ln

(
dT

m

)
. (16)
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Thanks to Equation (15) and the choice of ε, we also have

‖L(A)‖2 ≤ 1

16T
. (17)

Finally, this leads to

‖L(∆)‖2 ≥ (‖L(M)‖ − ‖L(A)‖)2 by triangle inequality

≥ ‖L(M)‖2

2
− ‖L(A)‖2 using (a− b)2 ≥ a2

2
− b2

≥ 3

8T
− 9c2

1

8

maxt ‖∆(t)‖2

mT
r′(d+ T ) ln

(
dT

m

)
from Equations (16) and (17).

We can now prove Lemma 1. By homogeinity, it suffices to show it for any ∆ ∈ C of Frobenius
norm 1. Lemma 5 yields that with high probability:

‖L(∆)‖2F ≥
3‖∆‖2F

8T
−cr(d+ T )

mTε2
max
t∈[T ]
‖∆(t)‖2 ln

(
dT

m

)
for all matrices of rank at most

32

ε2
r.

(18)
Recall that Lemma 4 states that with high probability,

‖L‖22 ≤ c
d+m

mT
. (19)

Assume in the following of the proof that both Equations (18) and (19) hold for ε = 1
4
√
c

√
m√

d+
√
m

.

Let ∆ = Ũ Σ̃Ṽ > be the SVD decomposition of ∆, i.e. Ũ>Ũ = Id, Ṽ
>Ṽ = IT and Σ̃ =

diag(σ1, . . . , σmin(d,T )), where the sequence (σi) is non-increasing.
Denote in the following Σ̃r′ = diag(σ1, . . . , σr′ , 0, . . . , 0) and ∆r′ = Ũ Σ̃r′ Ṽ

>. Note that by
definition of C, ‖∆‖∗ ≤ 4

√
2r‖∆‖F , i.e.

min(d,T )∑
k=1

σk ≤ 4
√

2r.

By monotonicity of the sequence, this implies the following decrease rate for the singular values
σk:

σk ≤
4
√

2r

k
for any k ≤ min(d, T ). (20)

From this, it follows:

‖∆−∆r′‖2F =

min(d,T )∑
k=r′+1

σ2
k

≤ 32r

min(d,T )∑
k=r′+1

1

k2
using Equation (20)

≤ 32r

r′
by integral comparison.

Fix in the following r′ = 32r
ε2

and decompose ∆ = ∆r′+(∆−∆r′). Note that ‖∆−∆r′‖F ≤ ε and
∆r′ is of rank at most 32

ε2
r. Moreover, the columnspaces of ∆r′ and ∆−∆r′ are orthogonal, thanks
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to the used decomposition. Thanks to that, it follows that maxt∈[T ] ‖∆
(t)
r′ ‖2 ≤ maxt∈[T ] ‖∆(t)‖2.

From Equations (18) and (19), we then have for ε = 1
4
√
c

√
m√

d+
√
m

.

‖L(∆r′)‖2F ≥
3‖∆r′‖2F

8T
− 2

rd(d+ T )

m2T
max
t∈[T ]
‖∆(t)‖2 ln

(
dT

m

)
‖L(∆−∆r′)‖2F ≤

1

16T
.

As ‖∆r′‖2F ≥ 1 − 1
16 , we can show similarly to the proof of Lemma 5 that these two inequalities

yield

‖L(∆)‖2 ≥ 1

10T
− c2

rd(d+ T )

m2T
max
t
‖∆t)‖2 ln

(
dT

m

)
for universal positive constants c1, c2. Moreover, this inequality holds uniformly over all ∆ ∈ C
of norm 1, as soon as the Equations (18) and (19) simultaneously hold. Lemmas 4 and 5 allow to
conclude.

C.2. Proof of Lemma 2

By trace duality property we have∣∣∣∣ 1

mT

∑
(i,t)∈[m]×[T ]

εti〈xti,M (t)〉
∣∣∣∣ =

∣∣∣∣ 1

mT

∑
(i,t)∈[m]×[T ]

εtitr(et(x
t
i)
>M)

∣∣∣∣ ≤ ‖M‖∗‖F‖,
where (et)j = I{j = t} for 1 ≤ j ≤ T and F := 1

mT

∑N
t=1

∑m
i=1 ε

t
iet(x

t
i)
>.

The remaining of the proof aims at bounding the spectral norm of F ∈ RT×d. Equivalently, we
consider A = T

√
m
σ F . Note that the t-th row of A is

At =
1√
mσ

m∑
i=1

εtix
t
i.

In particular, the rows ofAt are i.i.d. and isotropic, i.e. E[A>i Ai] = Id. We can then show Lemma 7
in Appendix C.3, which shows for a fixed y ∈ Sd−1 and for any ε ≥ ε0:

P
(
‖Ay‖22 ≥ (1 + ε)T

)
≤ (2T + c) exp

(
−c′min{Tε,

√
mTε}

)
, (21)

where c, c′ and ε0 are universal constants.

Let N be a 1
4 -net covering of Sd−1 of cardinality 9d. Using Equation (21) and a union bound

argument leads, for any ε ≥ ε0 to

P
(

max
y∈N
‖Ay‖22 ≥ (1 + ε)T

)
≤ (2T + c) exp

(
d ln(9)− c′min{Tε,

√
mTε}

)
As we assumed that T = Ω(d), taking ε = c2

(
1 + d2

mT

)
for some positive constant c2 gives

P
(

max
y∈N
‖Ay‖22 ≥ c1(T +

d2

m
)

)
≤ (2T + c)e−c0d.

Thus, with probability at least 1 − (2T + c)e−c0d, maxy∈N ‖Ay‖2 ≤
√
c1

√
T + d2

m . Using a
classical covering argument (e.g. Vershynin, 2018, Lemma 4.4.1), this implies that

‖A‖2 ≤
4

3

√
c1

√
T +

d2

m
,
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which leads to Lemma 2, since ‖A‖2 = T
√
m
σ ‖F‖2.

C.3. Auxiliary lemmas

Lemma 6. For any matrix M ∈ Rd×T and δ > 0, with probability at least 1− δ:∣∣∣∣‖L(M)‖2 −
‖M‖2F
T

∣∣∣∣ ≤ c

4

maxt ‖M (t)‖2‖M‖F√
mT

√
log

1

δ
+ c2 maxt ‖M (t)‖2

mT
log

1

δ
,

where c is a universal constant.

Proof. Recall that
‖L(M)‖2 =

1

mT

∑
(i,t)∈[m]×[T ]

〈M (t), xti〉2.

As a consequence, E[‖L(M)‖2] =
‖M‖2F
T . Moreover, the random variables 〈M (t), xti〉2 are inde-

pendent and c′‖M (t)‖2-sub-exponential for some constant c′. Bernstein inequality then yields for
some universal constant c1 (Vershynin, 2018, Theorem 2.8.1):

P
(∣∣∣∣‖L(M)‖2 −

‖M‖2F
T

∣∣∣∣ ≥ ε

mT

)
≤ 2 exp

(
−c1 min

{
ε2

c′2m
∑T

t=1 ‖M (t)‖4
,

ε

c′maxt ‖M (t)‖2

})

≤ 2 exp

(
−c1 min

{
ε2

c′2m‖M‖2F maxt ‖M (t)‖2
,

ε

c′maxt ‖M (t)‖2

})
.

The second inequality comes from the inequality
∑T

t=1 ‖M (t)‖4 ≤ ‖M‖2F maxt ‖M (t)‖2.

Taking ε = cmaxt ‖M (t)‖2‖M‖F
√
m log 1

δ + c2 maxt ‖M (t)‖2 log 1
δ for a large enough con-

stant c leads to Lemma 6.

Lemma 7. Let A = 1
σ
√
m

∑N
t=1

∑m
i=1 ε

t
iet(x

t
i)
>. For a fixed y ∈ Sd−1 and any ε ≥ ε0:

P
(
‖Ay‖22 ≥ (1 + ε)T

)
≤ (2T + 2) exp

(
−c′min{Tε,

√
mTε}

)
,

where ε0 and c′ are positive universal constants.

Proof. By definition of A and At:

‖Ay‖22 =
T∑
t=1

〈At, y〉2

=

T∑
t=1

1

m

(
m∑
i=1

εti
σ
〈xti, y〉

)2

.

Define for the remaining of the proof Xt
i = 〈xti, y〉, Y t

i =
εti
σ and Zt = 1

m

(∑m
i=1X

t
iY

t
i

)2. By
design of the problem, Xt

i and Y t
i are independent, 0-mean, 1-subgaussian variables. The Bernstein

inequality (e.g. Vershynin, 2018, Theorem 2.8.1.) then gives for a universal positive constant c′:

P

(∣∣∣∣∣
m∑
i=1

Xt
iY

t
i

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−cmin{ε

2

m
, ε}
)
.
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And so

P (Zt ≥ ε) = P

 1

m

(
m∑
i=1

Xt
iY

t
i

)2

≥ ε


≤ 2 exp

(
−cmin{ε,

√
mε}

)
.

Moreover, note that the Zt are independent, positive and E[Zt] = 1. We now want to use the
following concentration result on heavy tailed distributions:

Lemma 8 (Bakhshizadeh et al. 2020, Theorem 1). Let ZL = ZI{Z ≤ L} and c be any constant
such that αL ≤ c for any L ∈ R where

αL = E
[(
ZL − 1

)
I{Z ≤ 1}+

(
ZL − 1

)2
exp

{
c′min(ε,

√
mε)− ln(2)

2L
(ZL − 1)

}
I{ZL > 1}

]
and

εmax = sup

{
ε ≥ 0 | ε ≤ c

2

c′min(ε,
√
mε)− ln(2)

Tε

}
,

then for any ε ≥ εmax:

P

(
T∑
t=1

Zt − T > Tε

)
≤ 2 exp

(
−c
′min(Tε,

√
Tmε)

4

)
+ 2T exp

(
−c′min(Tε,

√
Tmε)

)
.

Using Lemma 2 from (Bakhshizadeh et al., 2020), we can bound αL as follows:

αL ≤ 1 + 2

∫ ∞
0

exp

(
−c
′

2
min(u+ 1,

√
m(u+ 1))

)
(2u+

c′t

2
min(u,

√
mu)))du.

A simple calculation allows to bound the integral by some constant value that does not depend onm,
i.e. we can use Lemma 8 where c is a universal constant. εmax is then smaller than some universal
constant ε0 and thus, for ε ≥ ε0:

P

(
T∑
t=1

Zt > (1 + ε)T

)
≤ (2T + 2) exp

(
−c
′

4
min{Tε,

√
mTε}

)
.

This leads to Lemma 7 as
∑T

t=1 Zt = ‖Ay‖22.

C.4. Proof of Lemma 3

As M∗ is of rank r, the definition of M̃ in Equation (11) implies

‖M̂ − M̃‖F ≤ ‖M̂ −M∗‖F .

By triangle inequality, ‖M̃ − M∗‖F ≤ 2‖M̂ − M∗‖F . A direct application of Lemma 16 by
Tripuraneni et al. (2021), which we recall below, then allows to conclude.

Lemma 9 (Tripuraneni et al. 2021, Lemma 16). Suppose we have matrices B̃, B ∈ Rd×r and
α̃, α ∈ Rr×T such that B̃>B̃ = Ir = B>B and ‖B̃α̃−Bα‖2F ≤ ε, then

sin2 θ
(
B, B̃

)
≤ ε

λr (αα>)
.
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C.5. Proof of Theorem 3

Similarly to Theorem 7 by Tripuraneni et al. (2021), we can show the following lemma. Its proof is
omitted as it follows the exact same lines as the proof from (Tripuraneni et al., 2021).

Lemma 10. For any set S ⊂ [T ] such that card (S) ≥ c, then with probability at least 1− 1
m2T 2 :∥∥∥∥∥ 1

m card (S)

m∑
i=1

∑
t∈S

(
(yti)

2xti
(
xti
)> − E

[
(yti)

2xti
(
xti
)>])∥∥∥∥∥ ≤ c′ log3(dmT )

(
σ2 + C

)(√ d

mT
+

d

mT

)
,

for universal constants c and c′.

Lemma 11 below explicits the expected term in Lemma 10. It generalizes the Lemma 2 by Tripura-
neni et al. (2021) to the case of any spherically symmetric distribution.

Lemma 11. If x is spherically symmetric and y = 〈u, x〉 + ε, where ε is independent from x,
centered and σ-subgaussian, then

E
[
(yt)2xt

(
xt
)>]

= κuu> +
(
Var(ε) + γ‖u‖2

)
Id,

where γ = E[〈e1, x〉2〈e2, x〉2] and κ = E[〈e1, x〉4]− γ.

Note that in the Gaussian case γ = 1 and κ = 2, hence recovering the previous result by Tripuraneni
et al. (2021).
Proof. Using the relation between y and x, it comes:

E
[
(yt)2xt

(
xt
)>]

= Var(ε)Id + E[x>uu>xxx>].

By rescaling and invariance under orthogonal transformations, it actually suffices to show Lemma 11.
We then have, still by invariance under orthogonal transformation(

E[x>e1e
>
1 xxx

>]
)
i,j

= E[〈x, e1〉2〈x, ei〉〈x, ej〉]

=


E[〈x, e1〉4] if i = j = 1,

E[〈x, e1〉2〈x, e2〉2] if i = j 6= 1,

E[〈x, e1〉2〈x, e2〉〈x, e3〉] if i 6= j and i 6= 1 and i 6= j,

E[〈x, e1〉3〈x, e2〉] if 1 = i 6= j or 1 = j 6= i.

By considering the orthogonal transformation e2 7→ −e2, the term is 0 in the last two cases. This
finally gives

E[x>e1e
>
1 xxx

>] = κe1e
>
1 +

(
Var(ε) + γ‖e1‖2

)
Id,

which leads to Lemma 11 by rescaling and rotating e1 to u
‖u‖ .

We can now bound the subspace estimation error due to the estimators B̂1 and B̂2 in Algo-
rithm 1.

Lemma 12. Consider B̂1, B̂2 defined in Algorithm 1 and B defined in Section 5. Then if mT ≥
c

log6(dmT )(σ4+C2)r2

κ2ν2
d, with probability at least 1− 2

m2T 2 :

sin θ
(
B̂i, B

)
≤ c′ log3(dmT )r

σ2 + C

κν̄

√
d

mT
, for i = 1, 2,
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where θ(Bi, B) is the principal angle between the subspaces induced by Bi and B, c and c′ are
universal constants.

Proof. The proof assumes that the concentration bound given by Lemma 10 holds and uses the
Davis-Kahan theorem on it. Note that B̂1 derives from the top-r SVD ofA = 1

mbT
2
c
∑m

i=1

∑
t=dT

2
e+1(yti)

2xti
(
xti
)>.

Thanks to Lemmas 10 and 11, it holds with probability at least 1− 1
m2T 2 that

A = κΓ̄ +
(
Var(ε) + γtr(Γ̄)Id

)
+ E,

with ‖E‖ ≤ c′ log3(dmT )(σ2 + C)

(√
d

mT
+

d

mT

)
.

For T large enough, as given in Lemma 12, we have ‖E‖ ≤ κν̄
2r . Now note that λr(A − E) −

λr+1(A− E) ≥ κ ν̄r and B corresponds to the top-r left singular vectors of the A− E.

Davis-Kahan theorem then yields that sin θ
(
B̂1, B

)
≤ 2r‖E‖

κν̄ . The same argument for B̂2

finally yields to Lemma 12.

Theorem 3 then follows from Lemma 12 and Theorem 4 from Tripuraneni et al. (2021), using the
independence between the features used for the estimator B̂i and the ones used for the estimator α̂i.

It now just remains to show that κ ≥ 0. We actually have the following series of (in)equalities:

E[〈x, e1〉2〈x, e2〉2] ≤ E[〈x, e1〉2]E[〈x, e2〉2]

= E[〈x, e1〉2]2

≤ E[〈x, e1〉4].

The first inequality derives from Cauchy-Schwarz inequality. The equality is by invariance over
orthogonal transformation, while the last inequality comes from Jensen inequality. This directly
implies that κ ≥ 0.

Now show that the case of equality is impossible. In particular, it would imply from the first
inequality that 〈x, e1〉2 = 〈x, e2〉2 almost surely. By invariance under rotation, we can even show
that for any u of norm 1: 〈x, e1〉2 = 〈x, u〉2, which implies that x = 0 almost surely, hence leading
to a contradiction. We thus have κ > 0.
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