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Abstract

We consider kernel ridgeless ridge regression with kernels whose associated RKHS is a Sobolev
space H®. We show for d/2 < s < 3d/4 that interpolation is not consistent in fixed dimension,
extending earlier results for the Laplace kernel in odd dimensions and underlining again that benign
overfitting is rare in low dimensions. The proof proceeds by deriving sharp bounds on the spectrum
of random kernel matrices using results from the theory of radial basis functions which might be of
independent interest.
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1. Introduction

In the past years, numerous works starting with Zhang et al. (2017) showed empirically that over-
paramatrized models that interpolate the training data can nevertheless generalize. This posed a
challenge to the traditional bias-variance tradeoff picture Belkin et al. (2019a) and to the learning
theory bounds based on uniform convergence Nagarajan and Kolter (2019). Many works then es-
tablished conditions for benign overfitting for different model classes, e.g., kernel smoothing Belkin
et al. (2019b), linear regression Bartlett et al. (2020); Hastie et al. (2019); Koehler et al. (2021), ker-
nel ridge regression Liang and Rakhlin (2020); Liang et al. (2020), and random feature models Mei
and Montanari; Mei et al. (2021), see also Bartlett et al. (2021) for an overview. A complementary
line focuses on the characterization of implicit regularization Soudry et al. (2018); Azulay et al.
(2021). For (deep) neural nets less rigorous results are known and most of them rely on the relation
to kernel methods for wide networks through the neural tangent kernel Jacot et al. (2018); Du et al.
(2019). Thus, a precise understanding of generalization in kernel ridge regression is desirable and
potentially necessary to study more complex neural nets Belkin et al. (2018). Here the Laplace
kernel k(z —y) = exp(—|z —y|) is of particular interest because it has been shown that the Laplace
kernel is more similar to the neural tangent kernel than, e.g., the Gaussian kernel, in particular they
have a similar spectral behaviour Geifman et al. (2020).

Almost all results establishing benign overfitting study the high dimensional regime where di-
mension d and sample size n diverge jointly n o< d*. In contrast, Rakhlin and Zhai (2019) showed
that for fixed (odd) dimension minimum norm interpolants for the Laplace kernel cannot have van-
ishing error for noisy data as n — oo even if the kernel-bandwidth is chosen depending on the data.
This result provides evidence that high dimension is a requirement for benign overfitting. However,
their proof is specific to the Laplace kernel and relies on a rather explicit constructions of small
norm interpolants. To derive more general results it is desirable to directly control the kernel ma-
trix without using the specific structure of the Reproducing Kernel Hilbert Space (RKHS). This is
also the approach used in the asymptotic statistical theory of regularized ridge regression. There
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the convergence of the kernel matrix to the Mercer operator is established and optimal convergence
rates can be derived Caponnetto and Vito (2007); Rosasco et al. (2010). Similar arguments can be
applied in high dimensions even tough one obtains a very different limiting operator Karoui (2010).
Here we consider an intermediate setting where the dimension is fixed but the bandwidth varies and
we add no regularization.

It was argued in Belkin (2018) that using results from approximation theory and radial basis
functions (see, e.g., Buhmann (2003); Wendland (2004)) gives much tighter control of the kernel
spectrum for the Gaussian kernel than using standard concentration results for random matrices
which become void for small eigenvalues. We find that this is also true in our setting and we derive
lower bounds on the spectrum of kernel matrices with Sobolev spaces as an RKHS using a well-
known result from Schaback (1995). Together with results for fractional Sobolev spaces this allows
us to generalize the results of Rakhlin and Zhai (2019) to more kernels and remove the restriction
on the dimension. We summarize the main contributions of this work as follows:

* We show how results from approximation theory can be used to get a precise control on the
spectrum of kernel matrices that improves upon concentration bounds.

* The previous point allows us to considerably simplify the proof of Rakhlin and Zhai (2019), in
particular our geometric arguments on the pairwise distances of data points are considerably
simpler.

* We generalize their result to (fractional) Sobolev spaces in all dimensions.

* Finally, we note that the proof strategy is limited to Sobolev spaces with a moderate degree of
smoothness and we clarify that new approaches are required to address interpolation in low
dimensions for RKHS consisting of very smooth functions like the Gaussian kernel.

2. Setting and main result
In this section we introduce the setting, our main result and give an overview of the main ingredients

of the proof.

2.1. Setting

We consider kernel ridge regression for some dataset {(x1,¥1),..., (Zn,yn)} C R x R

.1
friage = argmin — % _(f(x:) — i) + Allf I3 (1)
i
where H denotes the RKHS for some kernel £ and A > 0 is a regularization parameter. As A — 0
one obtains minimum norm interpolation given by

finterpolation = arjg rftin]\ fll such that f(x;) = y; for all q. 2)
€

We will restrict our attention to translation invariant kernels k(x,y) = k(x — y) whose Fourier
transform is given by

k(€)= (1+1¢)~° 3)
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for some s > d/2. In this case the RKHS norm can be written as

I = [ as = [1F@R0 + 16y ae = It @

where H® = W?# denotes the Sobolev space consisting of L? functions whose derivatives up to
order s are square integrable. An important special case is s = (d-+1)/2 where k(z—y) = e 1*=¥lis
the popular Laplace kernel (here we neglect scaling constants depending on the choice of the Fourier
transform normalization, we refer to Rakhlin and Zhai (2019) for a proof). A standard procedure in
kernel methods is to use a data dependent choice of the bandwidth selected by cross-validation. We
define the kernel with bandwidth v > 0 by

%@—yﬁvf%<x;y) )

The scaling relation F(f (/7)) = v*f(yz) implies that /’2:7 (&) = k(~€). In particular for kernels as
in (3) we obtain k(€) = (1 + ~v2|€|2)~5 such that changing the bandwidth just changes the relative
weight of the derivative norms compared to the L? norm. For the first part of the paper we only
need the following slightly less restrictive bound on the kernel.

Assumption 1 The kernel k satisfies the bound

cx(1+ €))7 < k(€) (©6)
for some o > d and constants c > 0.

Note that the kernels in (3) satisfy the assumption with @ = 2s. All the results until Section 3.4
require only this assumption and not the specific form of the kernels in (3). Next, we state a standard
assumption on the regularity of the data distribution.

Assumption 2 Let Q C R? be a bounded open Lipschitz domain. The measure p has support Q
and a bounded density c, < p(x) < C,.

The last assumption is about the data generation.

Assumption 3 The training data D = {(z1,91), ..., (Tn,yn)} consists of i.i.d. points x; dis-
tributed according to p and

yi = [ (i) + & 7

where f* € CZ° is a smooth function that does not vanish identically on ) and €; is i.i.d. Gaussian

noise with variance o>.

2.2. Main results

We now state our main result.
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Theorem 1 Assume training data D with |D| = n satisfies Assumption 3 where the measure p
satisfies Assumption 2. Let k be a kernel as in (3) with d/2 < s < 3d/4. Then, with probability
1 — O(1/n), the kernel interpolants f- of D for the kernel k., with bandwidth v < 1 satisfy

Eo(fy(x) = f*(x))* > c¢>0 (8)

uniformly in v where c is a constant depending on everything except the sample size n and the

bandwidth vy (i.e., d, s, Q, c,, C,, f*, and o).
Let us informally state the special case for the Laplace kernel as a separate corollary.

Corollary 2 Kernel interpolation with the Laplace kernel and adaptive bandwidth is not consistent
asn —ooind > 2.

Remark 3 The condition v < 1 could be removed but would require minor additional technical-
ities. The restriction on s could probably be loosened to s < d. but this condition is of more
fundamental nature. While we conjecture that learning with smoother kernels in fixed dimension is
not consistent, the proof given in this paper and also the proof from Rakhlin and Zhai (2019) do
not extend to s > d. The reason is, loosely speaking, that the RKHS norm of the interpolant is
determined by the quantity min,; |x; — x;| for s > d while it is governed by the average value
n~t3" minj, |, — x| for s < d. See also Remark 13 below.

2.3. Proof overview

Now we give an overview of the approach used to prove the theorem. As already explained in
Rakhlin and Zhai (2019) there are two different failure modes of kernel interpolation as also shown
in Figure 1 in their paper. For bandwidths v > n!/?, i.e., the typical distance between neighbouring
points, kernel interpolation will be smooth on scale n~!/¢ and we will make an error of order
(n=1/4)? = n=1 in the ball B(x;,n'/%) around each data-point. So the total error is bounded from
below by a constant. On the other hand, for v < n~!/¢, the minimum norm interpolant will be
a sum of little hat functions around each data-point and the interpolant will be very small away
from the data points. As in Rakhlin and Zhai (2019) we state the result for the different regimes as
separate propositions.

Proposition 4 Under the same assumption as Theorem 1 there is for every A > 0 a constant ¢ > 0
such that with probability 1 — O(1/n) the kernel interpolants f. with bandwidth 1 > ~ > An~1/d
satisfy

Ep(fv(x) _f*(x))Q >c>0. 9)
The constant c depends on everything except the sample size n and bandwidth .

Proposition 5 Under the same assumption as Theorem 1 there is a constant B > 0 and a constant
¢ > 0 such that with probability 1 — O(1/n) the kernel interpolants f., with bandwidth Bn~Hd > 4
satisfy

Ey(f,(2) — f*(2))2 > ¢ > 0. (10)

The constant c depends on everything except the sample size n and bandwidth ~.
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Clearly, the two propositions together imply the main result. Next, we give an informal overview
of the proof strategy. The general strategy in both regimes is to bound the norm of the interpolant
f~- For small ~y this norm bound will imply that f, has small L2-norm which allows us to prove
Proposition 5. On the other hand, for v > An~1/? the control of the RKHS norm allows us
to conclude that the interpolant is Hoelder continuous around most data points which will imply
Proposition 4.

We remark that the RKHS norm of the kernel interpolant is given by
1£515, = (v, K4(X, X)~'y) (11)

where K.(X, X);; = ky(x;,2;) € R™" denotes the kernel matrix and y = (y1,...,y,) € R"
the vector of outputs. Thus we need to find lower bounds on the spectrum of the kernel matrix to
prove the result. A substantial part of the proof only works with the inputs z; and does not use the
outputs y;. To clarify this, it is convenient to introduce the notation P = {x1,...,x,} for the data
points without their labels. There are four main ingredients.

Lower bound on kernel matrices for radial basis functions. The radial basis function commu-
nity has developed several lower bounds for the spectrum of kernel matrices which are used to show
approximation results. Those are of the form

K, (X, X) > h(6) (12)

where h is a function and 6 = min |x; — ;| denotes the minimal distance between two points. This
bound is not directly useful when applied to the full kernel matrix but we show that we can find
good subsets where this bound is useful.

Geometric arguments. We show that we can find large subsets P/ C P so that the bound
min, yeps | —y| > 6 holds for varying §. The construction of these sets will be based on a martin-
gale argument. Applying (12) to such subsets we obtain lower bounds for subblocks of K (X, X).

Spectral arguments. Combining the previous two arguments provides us with lower bounds on
(almost) the entire spectrum of K, (X, X) using varying values of 6. Now the relation (11) and the
lower bound on the eigenvalues of K, (X, X) allow us to control the RKHS norm of the minimum
norm interpolant of the noise with high probability using concentration bounds.

Functional analytic arguments. We bound the RKHS norm of the interpolant of f* from above
for small values of -y using a truncation argument. Together with the norm-bounds of the noise inter-
polant we conclude that || f+|7; — 0 as v — 0 which allows us to finish the proof of Proposition 5.

Since we restrict our attention to kernels whose RKHS is a Sobolev space (potentially with non-
standard weights for the derivative terms due to the bandwidth) and we can bound the Sobolev norm
of the interpolant we can apply standard results from functional analysis and the theory of Sobolev
spaces to also prove Proposition 4. In particular, Sobolev embedding implies that H° — Ch=d/2,
i.e., the interpolant will be Hoelder continuous. We apply this locally around the data points (where
we make an error of order 1) and patch these estimates using truncation.

Let us finally clarify the relation to the proof for the Laplace kernel in odd dimensions d.



BUCHHOLZ

Relation to Rakhlin and Zhai (2019). While we use a similar structure in our proof, e.g., we
separate the cases in Proposition 4 and 5, there are differences in several key aspects. Their proof
relies on a strong control of » | Ty I where T; = Minj; |z — Tj |. This is based on a careful analysis
of the expectation and covariance of r;” 1. Then they construct an explicit interpolating function of
the dataset using cut-off functions, i.e.,

Xr — Xy
f=2ym< - > (13)

and control its Sobolev norm. In contrast, our use of the radial basis function lower bound requires
us only to find well separated subsets and not to control the minimal distances r;. Therefore our
geometric arguments are much shorter and simpler than the arguments in Appendix A in Rakhlin
and Zhai (2019) which involve substantial amount of computations. Their argument bounding the
RKHS norm of interpolations as in (13) does not extend to s ¢ N because then the RKHS norm is
not local and a control of the distance to the closest data point is not sufficient. Our bound based on
the spectrum of the kernel matrix is robust to non-locality. Our functional analytic arguments are
simplified and more general and rely essentially only on Sobolev embeddings.

3. Proof

In this section we collect the key steps of the proof of the main result.

3.1. The radial basis function part

We now state a lower bound on the spectrum of kernel matrices from the theory of radial basis
function. There those estimates are used to control approximation properties of kernel interpolation
and the lower bound is typically in terms of the minimal distance between any two points. We use
the seminal lower bound from Schaback (1995).

Theorem 6 (Theorem 3.1 in Schaback (1995)) Let P = {z1,...,2m} C Q be a set of points
such that min,; |x; — ;| > 6. Suppose the kernel k satisfies the lower bound from Assumption 1.
Then the kernel matrix K. (X, X) = ky(x; — ©;)1<i j<m satisfies

Aunin (B (X, X)) 2 e17 ™ min (= (=52, 1) (14)
where Apin denotes the smallest eigenvalue of a matrix and ¢, is a constant depending on cj, and o
from Assumption 1 and d.

Sketch of the proof. As the proof is simple and instructive and is seemingly not too well known
in kernel theory we sketch it here. For translation invariant kernels we can introduce the Fourier
transform to express

2
VTR, X = 201 S we, / F(€)ei€@2) e = (27)~) / He) S vivyeit®| de.
0,J i
(15)
Thus, when replacing k by a kernel &’ such that k(¢) > k/(¢) for all £, then K (X, X) > K'(X, X)
where K (X, X) = k(z;,z;)1<i j<n denotes the kernel matrix for any dataset {z1,...,z,} and
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similarly for K’. Now we choose a kernel &’ with compact support in (0, ) and scale it such that
k> K. Itis essentially sufficient to use a smooth bump function for £/, its Fourier transform will
then decay super-polynomially. As &’ has support in (0, §) the kernel matrix K is diagonal because
|z; — x| > 6. Now it is trivial to lower bound its spectrum and this ends the proof. Surprisingly,
this already gives sharp bounds. A full proof can be found in Section C.1.

3.2. The geometric part

In this section we show some geometric results on the distribution of the data points, in particular
on the distribution of their distances. The main result of this section is Lemma 7 below. There
we show that with high probability it is possible to remove a small fraction of the points from the
dataset such that all pairwise distances between the remaining points are of order O(nfl/ ), Later,
we will apply the bound from Theorem 6 to such subsets. We denote by wy = |B(1,0)| the volume
of the unit ball in dimension d.

Lemma 7 Let p satisfy Assumption 2. Let P = {x1,...,x,} be a set of i.i.d. points distributed
according to p. Then for k € (0, 1) there is with probability 1 — e~ 56" a subset P' C P such that
|P'| > (1 — k)n and ming, |z — y| > 6 for x,y € P’ where

1

1 K d
d=n d . 16
<2C’pwd> (16)

A difficulty in deriving this type of geometric arguments is that the distance to the nearest point
is not an independent variable for different points in the dataset. This was one difficulty faced
in Rakhlin and Zhai (2019). Since we only need weaker geometric results about the existence of
suitable subsets we can resort to an argument where we select points depending only on the previous
data points. This gives us a martingale and we can use concentration results for martingales which
are almost as strong as concentration results for i.i.d. variables. The full proof can be found in
Section C.2.1.
We also need a bound on the minimal distance between any two points with high probability.

Lemma 8 Let p satisfy Assumption 2. Let P = {x1,...,x,} be a set of i.i.d. points distributed
according to p. Then with probability 1 — n~"' the bound

min |z; — x| > (Cpngwd)_l/d (17)
]

holds.

The simple proof can be found in Section C.2.2. Lemmas 7 and 8 are used to upper bound the
RKHS norm of the minimum norm interpolant and this requires good control for the entire dataset.
To then lower bound the error of the interpolant we need to show that there is a reasonably large
subset of the data with good properties. We assume p and 2 satisfy Assumption 2. Let cq > O be a
constant such that

P,(1(dist(z,09Q) < cq) < % (18)
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Such a constant exists since €2 has a Lipschitz boundary. We define

St = 4 (2 w. (19)
1Oprd

Lemma9 Let1 > v > 0. Then there is a constant © > depending on d, v and C, such that
the following holds. Let P = {x1,...,x,} be a set of i.i.d. points whose distribution satisfies
Assumption 2. With probability at least 1 — e"/2% there is a good subset P’ C P with the
following properties. For © € P’ we have dist(z,0Q) > Cq, |x — y| > Omin for x # y € P/,
|P'| > |P|/2, and for all z € P’

Y-yl T <05 n. (20)
yeP'\{z}

Remark 10 The purpose of this lemma is to construct a good subset of the dataset such that all
points are well separated from each other and the boundary so that the errors made around those
points accumulate gracefully. The condition (20) might appear a bit surprising and enforces a more
global control of the point distances. It is not needed for integer values of s where norms are local
but for fractional s we need this condition to control the effect of the non-locality.

The proof of this result is similar to the proof of Lemma 7 and can be found in Section C.2.3.

3.3. The spectral part

Next, we show how the results in Theorem 6 on the lower bound on a block of the kernel matrix
can be used to show lower bounds on parts of the spectrum of the complete kernel matrix using
Lemma 7. We denote the eigenvalues of K., (X, X) by 1, and assume they are ordered in decreas-
ing order. The key argument of this section appears in Proposition 11 below. The remaining results
are mostly algebra.

Proposition 11 Let p satisfy Assumption 2 and k satisfy Assumption 1. Let P = {x1,...,2,}

be a set of i.i.d. points distributed according to p. Then for k > 0 with probability 1 — e~ 16 the
eigenvalue [i,,, of K. (X, X) withm = (1 — k)n satisfies for all ~

> cor~ mi _wlem i 1 1)
L > 2y~ ¢ min ,

m (nl/d~)a—d

where cy is a constant depending on d, C), cj, and o.

Proof Using Lemma 7 we find with probability 1 — e~ f¢" a set P’ C P with || > (1 — x)n such
that the pairwise distances of points in P’ are at least 6 where

1

1 K d
=n"d . 22
5 " <Qprd> ( )
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Denote with X’ the data matrix of the data points in P’. Using Theorem 6 we conclude that

Amin (K (X', X)) > e1y @ min (4@ D527 1) > ¢y min e 1 (23)

min Y ) - Cl’}/ m ’Y 9 - 02'7 mi (nl/d’y)a_d7
where ¢ = ca(d,Cp, v, ) is a constant. In particular, all eigenvalues of K. (X', X’) can be
lower bounded by the right-hand side of the last display. Note that K. (X', X’) is a submatrix
of K,(X, X) and using the Courant-Fischer-Weyl min-max principle and [P'| > (1 — k)n we
conclude. |

Applying the last result for varying values of £ we can control the entire spectrum of K, (X, X).

Theorem 12 Let p satisfy assumption 2 and k satisfy Assumption 1. Let P = {x1,...,2,} be a
set of i.i.d. points distributed according to p. With probability at least 1 — 2/n the following bound
holds for the spectrum of K~ (X, X) for all v > 0

n2/d~o—d
-1 {csfyd ((n(_m)% + 1) form < n —32In(n)

- (24)
csyd (,Y(a—d)nii(a—d)/d + 1) form >n — 321In(n)

where c3 is a constant depending on o, ¢y, C), and d.

Remark 13  From this result it becomes apparent that the nature of the spectrum changes for
o > 2d because then =D/ js not integrable at 0 and thus the smallest eigenvalues dominate
the trace while for o < 2d the bulk dominates. This becomes clearer in the proof of Corollary 14.

The proof of this Theorem can be found in Section C.3.1. For future reference we introduce the
event

Espec = {The conclusion of Theorem 12. holds for all v > 0}. 25)

We have shown that P(Egpec) > 1—2/n. As a consequence of Theorem 6 we can deduce a bound on
the trace of the inverse kernel matrix. This is (up to %) the expectation of the squared RKHS-norm
of the minimum norm interpolant of the noise.

Corollary 14 Let k satisfy Assumption 1 and p satisfy Assumption 2. Let P = {x1,...,z,} be a
set of i.i.d. points distributed according to p. Assume that 2cc < 3d. On Egpec the following bounds
hold

Tr Ky (X, X) 7! < ea(ny® + (ny?)*/?) (26)
d d, yo/d
(Tr K, (X, X)72)1/2 <cs (OyH) 4 (v \T/l% + ln(n)(nl/d,y)an@asd)/d) 27)

for some constants cq, cs5 > 0.

The proof of this corollary is a bit technical so we provide a short heuristic. Note that a typical
eigenvalue satisfies the bound

ft < AL+ (nt/dy)omd), (28)

So we indeed expect a trace of order ny?(1 + (nvd)(a_d)/ ). The actual proof shows that this is
indeed true by controlling the tail eigenvalues. It can be found in Section C.3.2.
We now state the consequence for the norm of minimum norm interpolants of random noise.
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Proposition 15 Let ¢ € R"™ be a random vector with Gaussian distribution N (0, 021d). Suppose
that P = {x1,...,zn} is a set of i.i.d. points distributed according to p where p satisfies Assump-
tion 2. Denote the minimum norm interpolant defined in equation (2) of {(x;,&;) : 1 <1i < n} for
the kernel k- by f  for some ~y. Assume that Egpyec holds. Let 0 < 7 = (3d — 2«)/d < 1. Then
there are constants cg, ¢ > 0 such that with probability at least 1 — e ™" the bound

I £y.el3, < ezo®(ny® + (ny®)*/?) (29)
holds conditioned on the event Egpec.

The proof relies on (11), Corollary 14, and concentration results for x? variables. It can be found in
Section C.3.3.

Since we want to show that even tuning the bandwidth to the realization of the noise cannot
be consistent we need the following improvement of the previous result that shows that the same
result holds uniformly over . This is not completely obvious because even tough the bounds on
the spectrum hold for all  simultaneously, the eigenvalues could a-priori align with the few large
eigenvalues when adapting v to the data.

Corollary 16 Let (z;,¢;)1<i<n be as in Proposition 15. Assume that Egyec occurs. Let T =

3d — 2a)/d > 0. There is a constant ¢ > 0 such that with probability 1 — e_C”T/2 over the
( p 1y
realization of the noise the bound

1frellFe, < eso®(ny® + (ny)*/?) (30)
holds for all v < 1.

The proof is based on monotonicity of the RKHS norm and a union bound over a grid combined
with a simple argument for v — 0 where the kernel approaches the d-kernel. The full proof is in
Section C.3.4.

3.4. The functional analytic part

In this section we collect the functional analytic results required to prove the main theorem. It has
two parts, in the first part we show that the minimum norm interpolant of the ground truth function
has very small RKHS norm as v+ — 0. This allows to conclude the proof of Proposition 5. In
the second part we show how upper bounds on the RKHS norm can be converted to lower bounds
on the error. Then we can finish the proof of Proposition 4. While all results until here relied on
Assumption 1 for the kernel £ we make from now on the stronger assumption that & is given by (3).

Lemma 17 Let f* € C2° and not identically zero on Q). Let {x1,...,x,} be any n points in .
Denote the minimum norm interpolant of (x;, f*(x;)) by fy p+. Then there is a constant cg > 0
depending on C,, f*, d, and s such that

1 * S S
| £ 13, < gl Ieg) + coly®n/® + 42 n9). 31)
P

The proof of this Lemma is based on multiplying f* by a cut-off function equal to 1 at the data
points and vanishing close by. This gives an interpolating function which has a small RKHS norm
when choosing the scaling properly. The proof can be found in Section C.4.1.

10
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Now we can conclude the proof of Proposition 5.
Proof [Proof of Proposition 5] Suppose v < Bn~1/4. We assume that the conclusion of Corol-
lary 16 holds which occurs with probability 1 — O(n~!). Then we can bound

117 = e + FrplBe < 201 Fve 7 + 20 fpe 13

1
< eso?(my + (1) 4 51 g+ a4 2

(32)
< 5 I Mg + s (B B) 4 eo(BE 4+ B¥) < 2 g
for B sufficiently small. Then we obtain
1f*— f’YHLQ(p) > Hf*||L2(p) - Hf’YHLQ(p) > Hf*HLQ(P) - \/(Tprsz (33)

> 1N 200) — Vol Fyllae, = (1= V2/3)1f* | 12(0)-
Here we used || fy |2 < || f; ||z, (Which follows from 1%7(5 ) < 1 and (4)) and (32) in the last step. l

Next we will use results from the theory of Sobolev spaces to address the second failure case.
A very brief overview of Sobolev spaces can be found in Section B

The main idea is that interpolation of Sobolev spaces shows that any function u with u(zg) = 1
cannot have the two norms ||u||2 and ||u|| s both arbitrarily small because, loosely speaking the
smoother the function becomes the larger its total integral will be. After formalizing this result we
will apply this argument to each data point and patch the result together to get a global estimate.

Lemma 18 Let u € H*(RY) with s > d/2 with u(xg) = 1 for some o € R% Then there is a
constant C' = C(d, s) > 0 such that the bound

4s—2d
full, < CllullFe (34)
holds.

As a heuristic argument, we note that if the endpoint Sobolev embedding H /2 _5 [, would hold
then the claim would follow from the interpolation inequality (63) with 0 < d/2 < s. Indeed, this
would imply

d/(2s d25
lulloo < Cllallgare < Cllulls™ @) a4,

(35)

We can fix this by using that for s > d/2 we embed into a Hoelder space and we can lower bound
the L? norm of a function with u(0) = 1 in terms of the Hoelder constant. The full proof is in
Section C.4.2

Next, we apply this lemma locally around each point and patch the local inequalities together.
We fix a cut-off function n € C2°(RY) such that suppn C B(0,1) and nlB,1/3) = 1. We use the
shorthand 7s(z) = n(z/J) in the following. To increase readability, we provide two versions of the
following Proposition. Here we give a simpler one for s € N. The general case for fractional spaces
that involves additional technicalities is moved to Section C.4.4.

11
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Proposition 19 Let P’ = {z1,...,2m} C Q be points such that |x; — x;| > 30 for i # j and
dist(x;, 0Q) > 0 for some 6 > 0. Let w € H® with s > d/2, s € N be a function such that
|u(z;)| > co for 1 < i < m. Then there is a constant c19 > 0 depending on d, s, and cy such that

4s—

4s 2d

1< ciom™ 467 ul foygy + crom™ 4 [Jull g, | D*ul3. (36)
The main idea of the proof is to consider the functions u; = uns(- — ;) where we truncate u around
each data point. We can apply Lemma 18 to each of the u;. Then we can patch those estimates
using generalized mean inequalities and additivity of norms for disjoint sets (for s € N). The full
proof is in Section C.4.3.

We can finally finish the proof of Theorem 1 by showing Proposition 4.

Proof [Proof of Proposition 4 for s € N] We consider the minimum norm interpolant f, = f, . +
f~,f+- We assume that Corollary 16 holds which occurs with probability 1 — O(n~1). We can bound

| fy el < N, < Cpe(14+7%) < 2C)-. (37)

Here the first step follows from minimum norm interpolation and the second step follows from
1£5112 < U5 + 251D f*13). We set w = fy — f* and infer using the last display and
Corollary 16 that

lulle, = lIf+ = I3, <3 (Hf%a”gu + 1 f g e, + Hf*H%W) < C(ny? + (ny")*/? + 1),
(38)
This implies
ID*ull3 < v~ lull3,, < Cy 2 (m? + (ny?h)?/? 4 1). (39)

We assume that P’ is a set as in Lemma 9. By choosing ¢, > 0 sufficiently small we find a further
subset still denoted by P’ such that |;| > ¢, on P’ and P’ > n/4. We can now apply Proposition 19
with P’ and u (note that |u(x;)| = | f*(x;) + i — f*(z4)| > ¢, for z; € P’) and we get

1< e 472s/dn723/d37235—2s” H%s + 472s/d 72s/d|| ”45%.12’1 HDs HQ (40)
= 1o min 1Yl [2(@) T €10 n Ul L2 I Ul
where 0yin > cn~'/4 was defined in (19). From the last display we conclude that either
1 3 o _ 4s 4s
B < c104 2s/d3 =2y 2S/d5m121f”u”52(g) < CH(U’H[?Q(Q) (41)
or
1 - _ 4s5—2d
5 < 102 23/dn 28/dHu”L2((zQ)HDsuH%
4s—2d
< Cn_Qs/d’y_Zs(n’yd + (n,yd)2s/d+ I)HUH X
L2(Q) (42)
4s—2d
< C((nl/d,}/)d—Qs +1+ (nl/d,y)—Zs)‘|uHL2(zQ)
4s—2d
d—2 —2 =z
<CAT™™ + A 4 l)HuHLQ‘ZQ)
if v > An~'/4_In either case we conclude (since 4s — 2d > 0) that
[ullZ2(,) = epllull3 = Ca. 43)
This ends the proof for s € N. |

Having proved Proposition 5 and 4 the main result Theorem 1 follows directly.

12
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4. Conclusion

We investigated minimum norm interpolation in fixed dimension for kernels whose RKHS is a
Sobolev space. We showed that the minimum norm interpolant is not consistent as n — oo ex-
tending results from Rakhlin and Zhai (2019). Our results provide a small step towards a better
understanding of the relation between the problem parameters (dimensions, sample size, data dis-
tribution, method class) that govern success and failures of interpolating estimators which is overall
still a poorly understood question. We gave evidence that tools from approximation theory can be
useful to tackle these questions for kernel minimum-norm interpolation, in particular for regimes
where more classical approaches from the kernel literature fail. Natural questions that arise from
our result is whether they can be extended to slowly growing dimension d and how they can be
generalized to smoother kernels. It is known that the RKHS norm grows exponentially with sample
size in this case Belkin et al. (2018), thus likely entirely different techniques are required in this
case.
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Appendix A. Concentration inequalities

We collect some concentration inequalities.

A.1. Martingale concentration bounds

We state two well known martingale concentration inequalities. Azuma’s inequality is the extension
of Hoeffding’s inequality from independent random variables to martingales.

Theorem 20 (Azuma’s inequality, Theorem 5.2 in Chung and Lu (2006)) Let M; be a discrete
martingale with My = 0 that satisfies for all i > 0

|M; — M; 1] < ¢;. (44)

Then

A2

P(|M, —E(M,)| > ) <2 2Tt (45)

The second bound is the martingale version of Bernstein type inequalities that is stronger when the
conditional variance of the martingale is small.

Theorem 21 (Freedman’s inequality, Theorem 6.1 in Chung and Lu (2006)) Let M; be a dis-
crete martingale adapted to the filtration F,, with My = O that satisfies for all i > 0

|M;y1 — M;| < K, (46)
Var(M;|Fi_1) < o2. 47)
Then
I C R
P(M, — E(M,) > \) < e 2Xim1oitiVs, (48)

A.2. Chi-squared concentration lemma
The following Lemma can be used to bound the tail of a sum of weighted y?-variables.

Lemma 22 (Lemma 1 in Laurent and Massart (2000)) Let X; be i.id. standard normal vari-
ables and a; > 0 for 1 < i < n. Denote the {* and (> norm as usual by |a|z and |a|. Consider

Z =Y a;i(X}-1). (49)
=1
Then, for any x > 0
P(Z = 2lalav/z + 2]alocz) < 7" (50)

Appendix B. Functional analytic tools

In this Appendix we collect results from functional analysis and Sobolev spaces that are used in the
proof. A completely self-contained introduction is beyond the scope of this paper and we refer to
Leoni (2009); Adams and Fournier (2003) for an introduction and to Di Nezza et al. (2012) for the
extension to fractional Sobolev spaces.
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B.1. Sobolev spaces

We only consider the Hilbert space case p = 2 on RY. In this case H*(R?) can be defined as the set
of all functions in L?(R?) such that the following norm is finite

ul%. = / (1+ [¢2)]af? de. 1)

In Fourier space it is easy to see that using (1 + |£])?® or 1 4 |£|?* as Fourier multipliers leads to
equivalent norms and we switch between without explicitly noting that. In particular, we use the
equivalent norm

ullFs = [|ull3 + || D%ul3 (52)

where D%u = F~1(|¢|*4). Equivalently one can define the fractional derivative for v € (0, 1) by

WVM—// Wbddy (53)

And for s = k + v with v € (0, 1) we can define
ID*ull2 = || DY (D*u)|3. (54)

We only need (53) in Lemma 23 below. Otherwise we can resort to the Fourier picture and use that
the same Sobolev embedding results as in the integer case hold (see Theorem 6.5 in Di Nezza et al.
(2012)).

B.2. Some basic results for fractional derivatives
We state two well-known results on fractional derivatives.
Lemma 23 Letv € (0,1) and d > 1. Let u,v € HY(R?) such that supp(u) = U and supp(v) =
V withr = dist(U, V) > r > 0. Then
d+2v d+2v

UitV
(D"u, D"v) < O%HUHHVHUHH% (55)

Proof By definition
(D"u, D"v) / / ’x - ;jgfgz —vW) 44y, (56)

For the numerator not to vanish we need to have x € U, y € V or vice versa. We now set
p = 2d/(d — 2v) and ¢ = 2d/(d + 2v) such that p~! + ¢! = 1 and by Sobolev embedding
|lullp < [Ju| g». Then we can bound using Hoelder’s inequality

|u(zx
(D"u, D"v) <2// ,r.d+21/ d dy.
< 2|l 1o llgl v llgllll, (57

d+2v d+2v

< Cllullgsllvlla=|U] * (V]

The following standard result gives a simplified product rule’ for Sobolev functions.
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Lemma 24 Let u,v € H*(R?) with s > d/2. Then the following bound holds
1D (wo)[13 < 2% ([uD*v|[3 + [[oD*ull3). (58)

Proof We observe

1D (u) 2 = / €2 a2 de = / \sﬁsmwr?ds

= [1e| [ 50a -0

Noting that [£]2* < (|€ — ¢| + [¢])?®* < 225(|€ — ¢|** + [¢|**) for all £, ¢ € RY we can continue to
estimate

(59
dg.

1D o)l < +2 | ' JEGIERES e

g / ‘ / o= Ole—clac| ae 60)
= 225 (|- [5) % 012 + 2% ik (| - D)2
— 2% |[(Dou)v2 + 22 [uD*v] 2.
[ |

B.3. An interpolation result for Sobolev spaces

We need an interpolation inequality to interpolate between Sobolev spaces of different smoothness
parameters. It is a special case of general interpolation results which we state here for completeness.

Lemma 25 For0 < 8 < 1andu € H*(R?Y) with s > d/2 + j3 the bound

2s—d—28 d+28

fullgs < Cllully > flull gz (61)
holds.

Proof This is a special case of the general Gagliardo-Nirenberg interpolation theorem for fractional
Sobolev spaces (see Leoni (2009) for the non-fractional setting). The proof of this special case
is much simpler than the general case. Sobolev embedding theory for fractional Sobolev spaces
implies that there is a constant such that for t = 3 + d/2

[ulles < llullae- (62)

The spaces H? satisfy for 0 < s; < s,,, < s9 the interpolation inequality

S92 —Sm Sm —S1

[ell s < full g2 Nlullg2)™ - (63)

While this is also contained in the Gagliardo-Nirenberg inequality it can also be shown using the
Fourier transform and a Hoelder estimate (just like the interpolation of LP norms). The claim
follows by setting s,,, =¢,s1 = 0,and so = s |
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Appendix C. Omitted proofs

Here we collect the full proofs of all results in the paper. We use the same structure as in Section 3
to facilitate orientation.

C.1. Proofs for the radial basis function arguments

For completeness, we give a streamlined version of the proof of Theorem 6 (Theorem 3.1 in Sch-
aback (1995)) which also takes care of the dependence on -y which is not considered there.

C.1.1. PROOF OF THEOREM 6

Proof The main idea is to lower bound the Fourier transform of the kernel function by the Fourier
transform of a compactly supported distribution.

Recall that by assumption k(&) > c(1 + |£])~* for all £ and note that k. (§) = k(y€) which
implies

by (€) = k(7€) = (1L +l¢) ™ (64)
Let ¢ € C°(R) with suppy C (—3, 3) be a symmetric bump function such that |[¢[j2 = 1.

Since smooth functions with compact support are in the Schwartz class there are constants C, such
that

C
O < —E 65
Consider the function
Xs(x) = M(p* ¢)(z/0) (66)
where M > 0 is chosen later. Note that supp x5 C (=6, ). We can now bound
MC,6¢ MCo6® (14 ~|€)* -
0 < X5(€) = M&?|p(¢0)|* < < by (6. (67)
(&) = IR = ey = a1+ aighe ™
For 7|¢| < 1 we can bound
. MCy o car
xs(§) < 72 5dkv(§) (68)

and similarly for v|£| > 1

Mcaéd 20{(7‘8)& 7,

)25(5) < ch (1 +5’€‘)ak7(§) (69)
so we conclude
MCQ a~d 3 3 L R
(O = 7 max (0677, (367 7) i €). (70
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Now, for M = ¢ (Co2%y% max ((y6~1)*, (75*1)*‘[))_1 we infer that

Xs(1€]) < Ey(6). 1)

After this preparation the proof is straightforward. We write

VK (X, X)v = Zvivjk,y(xi —xj)

]

= (277)_1/Zvivjffv(f)eig(xi_mj)df

= (277)—1/

Using the lower bound (71) we can further estimate

i
where we used |z; — ;| > ¢ and supp x5 C (—6, ) in the last step. Then

Xs(0) = M(¢* ¢)(0) = M

implies K (X, X) > M. Note that for v < ¢ we can apply the same argument with ¢’ = ~ to
conclude that

(72)
2

ey (€) de.

g ;e

i

2
oK (X, X)o > (27)! / (€ de = v — 2;) = s O (73)
(2]

Ky (X, X) > o (Caz%d max (ya*dﬁa*d), 1) ) - (74)

Setting ¢; = ¢ /(Cy2%) finishes the proof. [

C.2. Proofs for the geometric arguments

Here we collect the omitted proofs from Section 3.2.

C.2.1. PROOF OF LEMMA 7

Proof We define the filtration F; = o(x1,...,x;). We consider the events
E; = {z; € | B(x;,0)} (75)
7<i

and define X; = 1g,. Note that X; is measurable with respect to F; and therefore S; = > <i X
defines an adapted stochastic process. We denote the Doob decomposition of S; by S; = M; + A;
where Sy = My = Ay = 0 and M; is a martingale and A; predictable (w.r.t. ;). Our goal is to use
concentration inequalities to bound S,, with high probability, which will quickly imply the claim.
We observe that

P(Ei|Fin) =P, | wi € | JB(),0)21,..., 21 | < Cp|| Blaj,0)| < Conwgd?  (76)
J<i J#
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and this implies
Ai - Ai—l = E(XZ‘J_"Z_1) = P(EZ‘ ./T"Z‘_l) < Cpnwdéd. (77)
Now fix the value of § to be as in (16) which implies
" Kn
A, = Z; A — Ay < Cpnwgdn = > (78)
1=

Note that |M; — M;_1| < 1 and thus using Azuma’s inequality (for reference the statement is
Theorem 20 in the appendix) implies

K/Q 7L2

P (Mn > %) < e S (79)

As we want to apply this to small values  of order almost n~! we need a stronger concentration
result. We note that

Then the concentration inequality stated in Theorem 21 implies

N2"2 3kn

P (Mn > %) < e 8(nn/24nk/6) = 7 16 . (81)

We conclude that
KN KN
> < > — > — ) <e 16,
P(Sn_m)_P(An_2>+P(Mn_2)_e ' (82)

We consider the set P’ = {z; € P|X; = 0} and claim that |z; — z;| > ¢ for z;,z; € P'.
Indeed, assume j < 4. Then X; = 0 implies that z; ¢ |J;, B(z;,0) and thus |z; — z;| > 6. If
Sn =Y X; < kn we conclude that |P’'| > n(1 — x) and together with (82) this ends the proof. W

C.2.2. PROOF OF LEMMA 8

Proof As before, we can bound the probability that a fixed point x; is close to any other point by

P(min |z; — x| <6) < C, U B(zj,6)| < Cpnwad?. (83)
J g7 i

The union bound implies

P( min |z; — 2| < ) < Cynwgd?. (84)
Gyl g7
Setting § = (C,n3wy) 1/ finishes the proof. [ |
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C.2.3. PROOF OF LEMMA 9

Proof We argue similar to the proof of Lemma 7. Since the structure of the proof is similar, we do
not spell out all the details of the martingale construction. We assume z; € €2 for ¢ < j are given
and z; follows the distribution p and control the probability of certain events uniform in ;. Note
that by assumption on p (1 denotes the indicator function)

1
P,(1(z; € U'B(xi,émin))) < Cpwaddin < o (85)
1<)
Also forall y € 2
(@ eyl zom) = [y g
y 5[[)1“) @ (86)
<C / ‘ —d- 2de_ %5m12;1/
for some © > 0 depending only on C), d, and v. We conclude that for each j
—d—2v G)(smlzrllj 1
Z |z — ] 1|z = 5] > bmin) > =80 | < . (87)
1<)
Also P,(dist(z,99) < cq) < 7. The union bound implies that
—d—2v @5;11211’/” : [0)
Pp Z; ¢ U B<xu 5min)7 Z ’xz - xj‘ 1|9«“i*1j|>5min < 20 ,dlSt(l’j, 0 ) > cQ
i<j 1<J
Ob,.n 7
=P,z ¢ UB (i, Omin) Z|$z — x| d=2v % dist(z,00) > Cq | > 0
i<j 1<j
(88)

Using Azuma’s bound from Theorem 20 just like in the proof of Lemma 7 we conclude that with
probability at least 1 — 2¢~1P1/200 we can find a subset Py = {z1,..., zm} with [P, > % and
ming; |z; — z;| > 0, dist(z;, 002) > cq and
@5—21/ 2
3 i — | < Zomin (89)
— 10
]
Using Markov’s inequality we see that there are at most n/10 points in Ps such that
Yoo =T >0 n (90)
2 €Ps,z#2"
Removing those points we find a subset P’ C P; such that |P’| > |P|/2 and for each z € P’
> =A< es i, o1
2 €Ps,z#2!
|
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C.3. Proofs for the spectral arguments

Here we collect the omitted proofs from Section 3.3.

C.3.1. PROOF OF THEOREM 6

Proof Let m; = n — 27'n with 1 < i < ig where i is chosen such that 161n(n)/n < 27% <
321In(n)/n. We set k; = (n —m,;)/n such that m; = (1 — k;)n. Using Proposition 11 we conclude

that with probability 1 — e=3(n=m4)/16 — 1 _ ¢=3-27"n the bound

— o N a—d)/d
—d_. n—m;
Hm; = C27Y 4 min <( (n2/dp)),)a—d ,1) (92)

holds for all . Using a union bound we conclude that with probability 1 — 2e~3(n=mig)/16 >
1 —e 3 =1 — =3 the bound

— m)(a—d)/d
la— a . n—m
fom = €22 ( d)/d')/ 4 min (Wl7 1> 93)

holds for all m < n — 27%n where we used that if m; > m and i is chosen minimal we have
n —m; > (n—m)/2. Form > n — 32In(n) we use Lemma 8§ (together with Theorem 6) to
conclude that with probability 1 — n~! all eigenvalues satisfy

tim = e1(Cpa) ™My min (0= =He= D/ 1) (94)
Passing to the inverse ends the proof. Note that all results are uniform in « as they only rely on

geometric conditions. |

C.3.2. PROOF OF COROLLARY 11

Proof We have
Tr Ky (X, X) 7' =) ) (95)
m
so we can use Theorem 12 to control the sum.
We bound
n n 2/d.\a—d
-1 d (n*/%y) —d, 3e=d
TI“KV(X,X> < c37 (z:ll-i- Z:I(TL—WL)(Q_‘W—F?QIH(TL)’YQ n° d )
m= m= 96)
dpeaCm 2 (n2/4 an_mo 1 1 1/dya, 22=3d
< e37'nesCn™"(n” %) 21 W+C3 n(n)(yn /%)
1=
The last term can be bounded by
c3In(n) (Yo n ™ T < c3(ynt/)e 97)
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under the assumption 2a < 3d. We control the sum in (96) using the following approximation for
o< 2d

n

Z m%d)/d < / o (e=d)/d g, < Cnp—(@=2d)/d _ o, (2d—a)/d ©98)
t 0

i=1
This implies
Tr KW(X,X)*l <C (n,yd + n72(n2/d,y)an(2d7a)/d i (’Ynl/d)a)
< C (my+ (nM)* + (0% (99)
< Cmy" + (my)*).
Exactly the same argument can be used to bound
Tr K (X, X)*2 — Zﬂgf

< C’n72d + Cn—Q(nQ/d,y)an(3d—2a)/d + C1n(n)(n1/d’7)2an(4a_6d)/d (100)

n*yd)Q e (de)za/d

n n

< ol + O In(n) (n}/ )20 4a=6d)/d

where we require (2o — 2d)/d < 1, i.e. 2a < 3d to control the integral fx_z(o‘_d)/d dz that
appears in the bound. Now the bound (27) follows using v/a + b < \/a + v/b for a, b > 0. |

C.3.3. PROOF OF PROPOSITION 15

Proof Denote the eigendecomposition of K (X, X) by K, (X, X) = > fmvm ® vy, Where vy, are
normalized. Then we have

1 frellfe = (e, Ky (X, X)) = Yt (evm) (101)

As v,, constitutes an orthonormal basis we conclude that the variables v,, are independent Gaus-
sian variables with variance 2. Thus,

m

2
D g _
I fyell3 =D . (Z7 —1)+0*Tr Ko (X, X)™ (102)

m

where Z; are standard normal variables. Now we use a result for the concentration of sums of
rescaled x? variables stated in Lemma 22 where a,,, = o?1!. Note that using (27) in Corollary 14
we get

d a/d
< o2 /T -2 < o [ () | (v"n) 1/d, e, (2a=3d)/d |
lal2 < o r K, (X, X)2<cs0 ( NG + I + +/In(n)(n'/4y)n

(103)
From Theorem 12 we moreover find that

|a|oo < UQCs(n,yd)a/dn(Qaf?;d)/d. (104)
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We now set 7 = (3d — 2ar)/d > 0 (note that o > d implies 7 < 1) and

Cg = min (sup In(z) 1) . (105)

e>1 27 ’

Let x = cgn”. Then we get from (103)

1
‘a|2\/5 < 050_2 (n’yd + (,ydn)a/d) nT/271/2 —|—C50’2 ln(n)(nl/dv)an—T sup n/(;) n7/2
>1 27

< 2¢50° (nvd + (vdn)a/d) .

(106)
Similarly we obtain
la|oor < JQCgl(nwd)a/dn_TnT < o2eg(ny®)e/?. (107)
Applying the concentration bound in Lemma 22 and (102) we get
P (Il fy.cl3 = 2vzlalz + 2]alos + Tr Ky (X, X))
< P (Il = o + ()*/4) < oo o
where c¢7 = c4 + 2c3 + 4cs. |

C.3.4. PROOF OF COROLLARY 16

Proof We first show the result for very small ~y. In this case the kernel matrix becomes diagonally
dominant and it is easy to lower bound it. By assumption we have |z — y| > en3/4 for x #
y € P. Moreover, Assumption 1 implies that k(x) < e~¢*. This implies that for v < Y <
(Cen=173/4)1/d we have

D ky(w—ay) <my e <y7Y)2, (109)
i#j
This implies K (X, X) > ~v~%/2 and thus
(e, K (X, X)e) < 2[¢|*4% (110)
Using the concentration bound in Lemma 22 we conclude that
P(le|* > 40%n) <e™™. (111)

This shows the result uniformly for v < Ymin. To conclude we note that || f|[3, < [[f]ls, for
v <~/ and the fact that f, . has minimal RKHS norm of all interpolating functions implies that it
is sufficient to establish the result for a grid 7; = 2~% and i = 0, ..., 4o where 4q satisfies Yiin/2 <
27% < ~in. Applying Proposition 15 to each y; we can conclude with the union bound that with
probability at least 1 — ™™ — logy(Ymin)e %" > 1 — e=<"'? the bound

1feli3e, 2 (er2* +4)o® (my? + (ny)*/) (112)

holds for all v < 1. With cg = ¢72% + 4 the proof is finished. |
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C.4. Proofs of the functional analytic arguments

Here we collect the omitted proofs from Section 3.4 and the extension to s ¢ N.

C.4.1. PROOF OF LEMMA 17

Proof Let a > 0 be such that
* ]' *
L@k < oo (17 @) da (113)
U p

holds for all measurable sets U C R™ such that |[U| < a. Note that ¢ only depends on f* and C,,.
Pick

SHEN

We now consider the function 7 defined by

1 if min; | — x;| <26
n(xz) = ¢ 35 — min; [z — ;| if 26 < min; |z — x;] < 36 (115)
0 if 30 < min; [x — 2]

which is a continuous cut-off function around the data points. Let o5 be a smooth mollifier with
support in B(0,8) with [ ps = 1. Then 7] = @5 * n satisfies 7 = 1 on |J; B(z;,6), 7 = 0 on
(U; B(®i,50)) and | D*7]|sc < Cd~°. We conclude that 77 f* interpolates the points (x;, f*(x;))

and we control its RKHS norm as follows

Ls)
17 W3, < NSN3 + Y e D' )3 + e I1D° (1) 13

— (116)
= A; + Az + Az.
We estimate Ao as follows
Ay <2 (| £ D'l5 + 17D *13)
i=1
<> a2y (| DIZ 115 + 1D F7113) (117)
i=1

Ls]
< Cp ZCiQZiVQi(CS_Qi 1)
i=1

where we used that f* is smooth in the last step to bound all its norms. Similarly, we obtain for the
last term

Az < Cpecs22y5 (6572 4+ 1), (118)
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To bound the first term we note that

| B(#:,40)| < (46)"nwq < a. (119)
Thus we can estimate using (113) to obtain
A < /\f*(z)|21 (:c € UB(mi,45)> dx < —Hf ||L2 (120)

Combining (117), (118), and (120) together with § > en~1/? and the definition of the minimum
norm interpolant we conclude that

Ls]

13 < 1 e, < 602\\1" 1220 + C D"/ 4 Oy, (121)
i=1

This ends the proof. n

C.4.2. PROOF OF LEMMA 18

Proof The proof has two steps. We bound the Hoelder norm using an interpolation inequality and
then show that the Hoelder norm lower bounds the .2 norm. First, we bound the Hoelder norm of
u. Let 0 < B < 1 such that d/2 + 8 < s. Using the Sobolev interpolation result for fractional
Sobolev spaces stated in Lemma 25 gives us
2s—d—28 da+28
lulles < Cllully = JlullgF - (122)
We now lower bound the L? norm of u in terms of its Hoelder constant. By definition

|u(z) — u(@o)|

|z — zo|?

This implies u(x) > 1/2 for = such that |z — xo| < (2||u/|cs)~"/# and therefore

< ||ullcs. (123)

lul3 > 2~ wa(2]ullcs) =7 (124)
This implies that there is a constant C’ such that
_928/d —d—28 d+28
Jul;%/ < Clulloa < Cllully = Jully® (125)

We now take the last display to the power d/(d + 2/3). Note that

d % 2s —d— 28 458 2sd _i_ _i (126)
d+28 \ d 2s 2s(d + 25) 2s(d +26) 25 25
d d+28 d
- “ 127

d+28 2s 2s (127)

implying that
1< Cllally™ ™ Juf 7. (128)
This finishes the proof. n

28



KERNEL INTERPOLATION IN SOBOLEV SPACES IS NOT CONSISTENT IN LOW DIMENSIONS

C.4.3. PROOF OF PROPOSITION 19

Proof We apply Lemma 18 to each of the functions u; = un;s(- — x;) where we cut off u around
each data point. This implies

_ 4s—2d
Yooy T <O Y Hlulge (129)
iz €P! iz, €P!
Since s € N the H® norm has a local expression and we conclude

2

S7luillde =1 Y (130)

iz, EP! iz, EP! Hs

because the functions u; have disjoint support. For s ¢ N we will need a more involved argument
because the H*® norm is not local. We use the shorthand @ = > 7, cprujand =3 ;. pi 05(- —
x;) so that & = fju. We now bound using Lemma 24

~112 ~112 ~112
Il 7s = ||all5 + [[D*al|3
< ||@l|3 + 2%%||[uD%j|3 + 2% || D%u|3 (131)
< a3 + 223||DSﬁII§OIIUI|2Lz(Q) + 22|12, || D ull3

In the last step we used that by assumption supp(77) C 2. This again relies on s € N because
otherwise D? can increase the support. Now we can bound || D*7||oc < C'6~* and obtain

[all3e < C5**[full72(q) + Cl Dull3. (132)

We continue to lower bound the left-hand side of equation (129) using the generalized mean in-
equality which implies

_2s—d\ T35-g
Sl . [ Sieser (luil3) 1)
[P'| - P
We infer that
_2s—d
4s—2d 2s ! 2s 4s—2d
S lluilly, T =P (w3 Zmd ||ull 2y - (134)
ix; €P’ 1z, P!

Here we again used that u; have disjoint support. Combining the estimates (129), (130), (132), and
(134) we obtain the bound

_2s s _2s ds—2d
1< O™ F67 ull gy + O ul ey | Dol (139)
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C.4.4. EXTENSION OF THE RESULTS FROM SECTION 3.4 TO s ¢ N

In this section we discuss the extension of Proposition 19 to fractional Sobolev spaces. Instead
of Proposition 19 we use the following extension to fractional spaces that takes into account the
non-locality of the Sobolev norm.

Proposition 26 Let P’ = {x1,...,xm} C Q. Assume there are constants cq > 0, dpin > 0,
© > 0 such that for x € P’ we have dist(z,0Q) > cq, |© — y| > Omin for x # y € P’, and for all
zeP
Yo o le—y < (136)
yeP\{=}

Let w € H® with s > d/2, s € N be a function such that |u(z;)| > cofor 1 < i < m. Then there is
a constant c11 depending on d, v, cq, and cy such that

_2s ps/(d2v)), _2sy TR0 2
l<enm 40 [ull 2y + crim™ @ [lull 2(q, (1D%ullz + [[ull2)- (137)

Proof Let 0 < § < dpmin/4 be a constant to be chosen later. As in the proof of Proposition 19 we
consider the functions u; = uns(- — x;) where we cut off u around each data point. We now write
s = k + v. To emulate the step (130) we bound using Lemma 23 (and dist(B(z;,0), B(xj,0)) >
‘l‘i — .%'j|/2 as \xz — $j| > 5min > 45)

—(d+2v)
Ti— T
Z |<DSUZ’DSu]>| g ZC||Dkul||HV||Dku]||HV(Wd6d)(d+2V)/d <7,2])
i#d i#]
<Y Clualldrs + gl )02 s — ]~ (+2)
i#j (138)

= ZCZIIwHHséd“”Z i — |2
JF#i

< C’ZHuiH%{sdd“”@’.
i
We now fix § = (200")~1/(@+2¥) and conclude that
1
> 1D, Doug)| < o3 sl (139)
ij i

This implies using that the u; have disjoint support

I3 el = I3l + 10" 3wl
>Zuuzuz+2\w8uzuz D s D) 140)

i#j
> 5 il
i
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The same reasoning as in the proof of Proposition 19 (see equation (129) and (134)) implies then

4s—2d
m full ey < CIY il (141)

We use the shorthand @ = ) . u; and 77 = . 1)5(- — ;) Moreover we consider an additional cut-off
function xy € C°(Q) that satisfies x(z) = 1 if dist(z, 9Q) > cq/2 in particular x is constant 1 on
the support of each of the 7; and its derivatives can be bound with constants only depending on cq.
Then we get u = 7yu. We now bound similarly to (131)

a7 = a3 + |1 Dall3
< |lall3 + 2% [lux D*73 + 22 [[7.D° (wx) 3 (142)
< |lall3 + 221 D71 % lux 3 + 2% 17ll3 Ix 3 D ull3 + 2% ll3 1 DXl il

We can estimate | D*7)||oo < C0~% and || D*X||oc < C where the constant only depends on cq and

d. We get using that supp(x) U supp(77) C
lallFs < C67lullf2(q) + ClID*ull3 + Clull3. (143)
Combining (141) and (143) we obtain
1< Cm™ 7o 2SHUHLZ +Cm HuHLz (D% ul3 + [ul3). (144)
Plugging in the definition of § the proof is completed. |
Finally, we indicate the necessary modifications in the proof of Proposition 4 for general s using
Proposition 26.

Proof [Proof of Proposition 4 for arbitrary s] The proof is essentially the same as for s € N. The
only difference is that we apply Proposition 26 and get instead of (40) the bound

1< cpm™ 7 @7/ (H42) HUHd ) Henm” dHUIILz (HDSU\\%H\UH%) (145)

where m > n/4 and © = O46_2'n with © is the absolute constant from Lemma 9 that depends

min

only on v, d, and C),. Using Opin > en/? we obtain
02s/(d+2) < ¢ (n(2y+d)/d> 2s/(d+2v) < Cn't. (146)
The rest of the proof is the same. |
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