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Abstract
We revisit the problem of tolerant distribution testing. That is, given samples from an unknown
distribution p over {1, . . . , n}, is it ε1-close to or ε2-far from a reference distribution q (in total
variation distance)? Despite significant interest over the past decade, this problem is well under-
stood only in the extreme cases. In the noiseless setting (i.e., ε1 = 0) the sample complexity is
Θ(
√
n), strongly sublinear in the domain size. At the other end of the spectrum, when ε1 = ε2/2,

the sample complexity jumps to the barely sublinear Θ(n/ log n). However, very little is known
about the intermediate regime. We fully characterize the price of tolerance in distribution testing as
a function of n, ε1, ε2, up to a single log n factor. Specifically, we show the sample complexity to
be

Θ̃

(√
n

ε22
+

n

log n
·max

{
ε1
ε22
,

(
ε1
ε22

)2})
,

providing a smooth tradeoff between the two previously known cases. We also provide a similar
characterization for the problem of tolerant equivalence testing, where both p and q are unknown.
Surprisingly, in both cases, the main quantity dictating the sample complexity is the ratio ε1/ε22,
and not the more intuitive ε1/ε2. Of particular technical interest is our lower bound framework,
which involves novel approximation-theoretic tools required to handle the asymmetry between ε1
and ε2, a challenge absent from previous works.
Keywords: distribution testing, sample complexity, algorithms, lower bounds, hypothesis testing

1. Introduction

Upon observing independent samples from an unknown probability distribution, can we determine
whether it possesses some property of interest? This natural question, known as distribution testing
or statistical hypothesis testing, has enjoyed significant study from several communities, including
theoretical computer science, statistics, information theory, and machine learning. The prototypical
problem in this area is identity testing (sometimes called goodness-of-fit or one-sample testing):
given samples from an unknown probability distribution p over [n], test whether it is equal to some
reference distribution q, or ε-far in `1-distance. It is now well understood that Θ

(√
n/ε2

)
samples

are necessary and sufficient to solve this problem (Ingster, 1994; Goldreich and Ron, 2000; Batu
et al., 2001; Paninski, 2008; Valiant and Valiant, 2014; Diakonikolas et al., 2015; Acharya et al.,
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2015; Diakonikolas et al., 2018). Quite surprisingly, this sample complexity is strongly sublinear in
n, enabling sample-efficient testing even over large domains.

The drawback of this formulation is that it is very particular in terms of the relationship between
p and q. More precisely, it prescribes only that one must distinguish between the cases where p and
q are far versus when they are exactly equal – no guarantees are provided for any intermediate case,
e.g., for when p and q are close but not identical. This restriction limits the relevance of solutions to
this problem, as it is unrealistic to assume precise knowledge of a distribution due to a number of
reasons, including model misspecification, imprecise measurements, or dataset contamination.
To address these concerns, the problem of tolerant identity testing was introduced (Parnas et al.,
2006), which is the main focus of our work.

Tolerant Identity Testing: Given an explicit description of a distribution q over [n], sample
access to a distribution p over [n], and bounds ε2 > ε1 ≥ 0, and δ > 0, distinguish with
probability at least 1 − δ between ‖p − q‖1 ≤ ε1 and ‖p − q‖1 ≥ ε2, whenever p satisfies
one of these two inequalities.

We will also study the problem of tolerant equivalence testing (sometimes called tolerant closeness
or two-sample testing):

Tolerant Equivalence Testing: Given sample access to distributions p and q over [n], and
bounds ε2 > ε1 ≥ 0, and δ > 0, distinguish with probability at least 1 − δ between
‖p− q‖1 ≤ ε1 and ‖p− q‖1 ≥ ε2, whenever p, q satisfy one of these two inequalities.

Focusing our attention on tolerant identity testing and constant ε2, it is natural to consider the
strong tolerance requirement of ε1 = ε2/2, in which the two cases are separated only by a constant
factor. One would ideally like to maintain the strongly sublinear sample complexity of O(

√
n),

as in the non-tolerant case where ε1 = 0. Unfortunately, this is impossible: as shown by Valiant
and Valiant (2010a,b, 2011a), Θ

(
n

logn

)
samples are necessary and sufficient, see also (Jiao et al.,

2018, 2017; Han et al., 2016). On the other end of the spectrum, it is known that mild tolerance of
ε1 = ε2

2
√
n

is achievable with the same strongly-sublinear sample complexity ofO(
√
n), by convert-

ing `2-tolerance to `1-tolerance (Goldreich and Ron, 2000; Batu et al., 2001, 2013; Diakonikolas
et al., 2015; Diakonikolas and Kane, 2016; Daskalakis et al., 2018). However, existing results only
capture these two extremes, and we have very little understanding of the intermediate landscape of
tolerant testing. Does there exist a smooth hierarchy of increasingly difficult testing problems, or is
there a sharp transition in the sample complexity from strongly to barely sublinear?

1.1. Results and Techniques

We provide a complete characterization of the sample complexity of tolerant identity and equiv-
alence testing (up to a single logarithmic factor in the domain size n). Our main results are as
follows:

Theorem 1 (Identity testing (Informal; see Theorem 5 and Corollary 8)) The sample complex-
ity of tolerant identity testing over [n] with parameters 0 ≤ ε1 < ε2 ≤ 1 is

Ω

(√
n

ε2
2

+
n

log n
·max

{
ε1

ε2
2

,

(
ε1

ε2
2

)2
})

and O

(√
n

ε2
2

+ n ·max

{
ε1

ε2
2

,

(
ε1

ε2
2

)2
})

.
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Theorem 2 (Equivalence testing (Informal; see Theorem 6 and Corollary 9)) The sample com-
plexity of tolerant equivalence testing over [n] with parameters 0 ≤ ε1 < ε2 ≤ 1 is

Ω

(
max

{√
n
ε22
, n

2/3

ε
4/3
2

}
+ n

logn ·max

{
ε1
ε22
,
(
ε1
ε22

)2})
and O

(
max

{√
n
ε22
, n

2/3

ε
4/3
2

}
+ n ·max

{
ε1
ε22
,
(
ε1
ε22

)2})
.

In both cases, we give computationally-efficient algorithms which achieve the upper bounds. More-
over, one interesting feature of our algorithms is that they require no knowledge of ε1, which only
arises in the sample complexity: that is, our algorithm automatically achieves the best possible ε1,
for a given target ε2 and number of samples.

It is worth noting that prior to our work, only two extreme points of the full tradeoff we show
were known:

• the “non-tolerant” (noiseless) case where ε1 = 0, for which the Θ(
√
n/ε2

2) sample complex-
ity (or, for the equivalence testing version, Θ(max{

√
n/ε2

2, n
2/3/ε

4/3
2 })) (Paninski, 2008;

Valiant, 2011; Chan et al., 2014; Valiant and Valiant, 2014). In the case of identity testing,
it is further known that some of the optimal testers (namely, those based on testing in the `2
distance as a proxy) achieve a weak tolerance of ε1 = ε2/

√
n “for free”, due to the relation

between `1 and `2 norm along with the Cauchy–Schwarz inequality.

• the maximally noisy case where ε1 = Θ(ε2), for which results of Valiant and Valiant (2010a,b,
2011a) as well as follow-up works (Jiao et al., 2018, 2017; Han et al., 2016) show that the
sample complexity must grow as Θ(n/ log n). Interestingly, the dependence on ε1, ε2 was
not fully understood, even in this case, as most lower bounds dealt with estimation of the
distance between p, q to an additive ε, which is a related yet different problem (essentially,
showing that Ω(n/(ε2 − ε1)2 log n) samples are required, when ε1 = Θ(1) and ε2 − ε1

can be arbitrarily small). The lower bound from (Valiant and Valiant, 2010a) does imply, by
“scaling,” an Ω(n/(ε2 log n)) lower bound for arbitrary ε2 and ε1 = Θ(ε2), but it is still far
from the upper bound ofO(n/(ε2

2 log n)) in this regime that both (Valiant and Valiant, 2010b)
and (Jiao et al., 2018) prove in this setting. Our result shows that this upper bound is tight in
this parameter regime, as our lower bound is then Ω(n/(ε2

2 log n)).

We emphasize that our results go beyond those two extreme points, and essentially settles the land-
scape of tolerant testing. As just one example, the question of testing 1/n1/10-close vs. 1/n1/5-far
was left completely open by previous work; our results imply that the sample complexity is Θ̃(n).
We depict in Figure 1 the different regimes of sample complexity this leads to, for both identity and
closeness testing.

Surprisingly, our results for both tolerant identity and equivalence testing show that the relevant
quantity governing the “price of tolerance” is not the ratio ε1/ε2, as one might naı̈vely think; but
instead is the (inhomogeneous!) ratio ρ := ε1/ε

2
2, which might seem counterintuitive – especially

in view of the two different regimes the max(ρ, ρ2) scaling implies.
Another interesting and unexpected byproduct of our result is to show that even the known

“weak tolerance” of the standard `2-based testers, which allow to test identity with tolerance ε1 =
ε2/
√
nwith the sameO(

√
n/ε2

2) sample complexity as the non-tolerant case, is not the best one can
do with this sample complexity. Indeed, our results imply that one can actually achieve tolerance up
to ε1 = min(1/

√
n, ε2/ 4

√
n) “for free,” a significant improvement over ε2/

√
n. One can rephrase
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Figure 1: The different regimes of sample complexity corresponding to Theorem 1 (identity testing,
left) and Theorem 2 (closeness testing, right), as a function of 0 ≤ ε1 < ε2 ≤ 1 (for fixed
n), depicting in both cases which of the terms of the sample complexity bound dominates.

this as saying that the Cauchy–Schwarz inequality, from which this “natural” weak tolerance pro-
vided by `2-based testers stems from, is (oddly) not the right way to look at the problem.

Finally, our techniques allow us to derive an analogue of Theorem 1 for the “instance-optimal”
setting (Valiant and Valiant, 2017) (see also (Blais et al., 2017; Diakonikolas and Kane, 2016)),
where the sample complexity is expressed as a function of the known reference distribution q instead
of the domain size n (which corresponds to a worst-case over all possible reference distributions).
Specifically, we show the following:1

Theorem 3 (Instance-optimal identity testing (Informal; see Theorem 39 and Theorem 38)) For
any fixed q over N, the sample complexity of tolerant identity testing with reference distribution q
with parameters 0 ≤ ε1 < ε2 ≤ 1 is

Θ̃

(
‖q−Θ(ε2)‖2/3

ε2
2

+ ‖q−Θ(ε2)‖1/2 ·
(
ε1

ε2
2

)2

+ ‖q−Θ(ε2)‖0 ·
ε1

ε2
2

)
,

where q−α denotes the (sub)distribution obtained by removing as many of the smallest elements of
q as possible, without removing more than a total of α probability mass overall.

We defer the details and proof of this result to section D; and discuss some of its aspects here.
First, note that by choosing q to be the uniform distribution, we see that ‖q−Θ(ε2)‖2/3 ≈

√
n,

‖q−Θ(ε2)‖1/2 ≈ n, and ‖q−Θ(ε2)‖0 ≈ n, so that Theorem 3 retrieves Theorem 1 up to logarithmic
factors. In particular, this gives a refined perspective on Theorem 1, showing that the Θ̃(n) term
actually arises due to two separate costs, which happen to coincide for the uniform distribution.

1. Here and in section D, we slightly abuse the Θ̃ notation to also hide logarithmic factors in n, not just in the argument.
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This brings us to our second point: the term ‖q−Θ(ε2)‖2/3 corresponds to the non-tolerant instance-
optimal identity testing bound established in (Valiant and Valiant, 2017), i.e., a testing term; while
the quantity ‖q−Θ(ε2)‖1/2 can be interpreted as capturing the difficulty of learning, as the 1/2-
quasinorm is known to capture the sample complexity of learning a probability distribution (see,
e.g., (Kamath et al., 2015; Canonne, 2020b)). Thus, the bound of Theorem 3 can be read as saying
the sample complexity of tolerant identity testing is (nearly) characterized by three aspects of the
reference distribution: how hard it is to test, how hard it is to learn, and how large its effective
support size is.

Relation to the Statistics literature. Despite their pervasive use, the Statistics community is
outspoken about the pitfalls associated with point nulls (i.e., ε1 = 0) for statistical hypothesis
testing (Berger and Sellke, 1987; Rao and Lovric, 2016; Abadie, 2020). Instead, the community
advocates for composite nulls, where the null hypothesis is a set of distributions rather than a sin-
gle one. This more-general problem is often reduced to our tolerant testing problem (sometimes
called the imprecise null by the Statistics community) by assuming the null holds and performing
estimation to obtain a candidate distribution q. Thus, we believe our results may be a useful tool for
solving more challenging composite-versus-composite hypothesis testing problems. While some
classic work provides minimax rates for certain related tolerant testing problems (Ingster, 2000), re-
sults in this direction have been relatively hard to come by. A recent survey paper by Balakrishnan
and Wasserman (2018), specifically highlight the problem of designing non-conservative thresholds
for imprecise null hypothesis tests, which we believe to be an interesting direction for future work.

Overview of our techniques. Given the extensive literature on distribution testing, the community
has developed a rich set of tools for problems in this space. However, the techniques used for the
two extreme cases appear to be qualitatively quite different. In the non-tolerant case, algorithms
usually take the form of simple `2- or χ2-test statistics, and lower bounds are established via either
Ingster’s method (Ingster, 1994) or mutual information arguments. On the other hand, analysis for
the maximally noisy case depends on results from the literature on best-polynomial approximation.
Given the contrasting approaches for these two cases, it is natural to wonder which set of techniques
will be effective for the problems which lie between the two. Interestingly, our results borrow from
both: our algorithms are more similar to those from the non-tolerant setting, while our lower bound
techniques resemble those in the maximally noisy case.

Our main algorithm thresholds a rescaled `2-statistic (in certain cases called a χ2-statistic),
similar to testing algorithms in the past (see, e.g., (Chan et al., 2014; Valiant and Valiant, 2014;
Acharya et al., 2015; Diakonikolas et al., 2015)). Specifically, our statistic takes the form Z =∑

i

(
(Xi − Yi)2 −Xi − Yi

)
/f̂i, whereXi and Yi are the number of occurrences of symbol i drawn

from distribution p and q, respectively, and f̂i are symbol-dependent rescaling factors. While prior
works either computed these factors for identity testing based on the reference distribution q, or used
the same set of samples for both the numerator as well as the rescaling factor in the denominator, we
use sample-splitting to separately obtain empirical estimates f̂i for the relevant quantities. We show
multiplicative concentration for these factors to ensure they are close to the values for which we
are using them as a proxy. These rescaling factors are empirical estimates of two terms. A typical
choice, now common in the literature, is based on pi + qi, which limits fluctuations in the estimator
caused by individual terms. Our approach crucially introduces an additional novel rescaling term
based on |pi − qi|, which prevents the statistic from placing too much emphasis on the the `2-norm
of the distribution. The contributions of both terms are crucial for making the analysis work out.
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We note that our test statistic only involves the first two moments of the distribution. This is in
contrast to previous upper bounds for tolerant testing in the maximally noisy case, which instead
inspected log n moments. Thus, we show that considering only two moments suffices for near-
optimal tolerant testing. Interestingly, our algorithm achieves the optimal sample complexity (up to
constants) for the non-tolerant case, but loses a log n factor in the maximally noisy case. Removing
this final logarithmic term may require a statistic which exploits higher-order moments, and is an
interesting question for future work.

Our lower bounds are obtained via the generalized two-point method. At a high level, we follow
the moment matching approach pioneered by Wu and Yang (2016). We construct two priors over
distributions, where distributions drawn from the two priors are ε1-close to and ε2-far from uniform,
respectively. To prove lower bounds, we must choose these priors such that the process of drawing a
distribution and then m samples from it has low total variation distance between the two priors. By
considering priors over product distributions, we can further reduce our task to simply constructing
a pair of univariate random variables with properties described in Theorem 7. By appealing to
results from polynomial approximation (Lemma 11), it suffices to construct this pair such that their
low-order moments match.

Prior works construct this pair of random variables by expressing this moment matching prob-
lem as an infinite dimensional convex program and analyzing its dual. Our approach follows the
same recipe, however, the analysis of the dual convex program is much more involved in our case.
Prior lower bounds only considered the special case where ε1 and ε2 differ by a fixed, constant
factor. In this regime, tolerant testing becomes essentially equivalent to learning the `1 distance
between p to q to error ε1. This is a setting which is much easier for this formalism to handle; in-
deed, the moment matching paradigm was initially designed for estimation problems. Importantly,
this induces a key symmetry in the lower bound construction, and consequently, the dual has a very
nice interpretation in terms of the best uniform approximation of a given function by a low-degree
polynomial.

In our case we must handle general ε1 and ε2, and this symmetry is lost. As a result, we analyze
a convex program which directly captures the testing problem. However, the dual has a much more
complex interpretation. At a high level, the goal is now to approximately fit a low-degree polynomial
within a “wedge” of minimal arc length. Interestingly, in our formulation of the dual, instead of
having to prove that there is a good approximating polynomial, we must demonstrate that no low
degree polynomial can achieve this task. This is the main technical difficulty in the lower bound,
and we do so from first principles by leveraging classic tools from polynomial approximation theory
to prove new approximation-theoretic results in our setting. Due to space constraints, all proofs are
deferred to the appendix, and this extended abstract focuses on providing an outline of the results
and arguments.

1.2. Related Work

Distribution testing was first considered in the theoretical computer science community by Gol-
dreich and Ron (2000), who analyzed and applied an algorithm for uniformity testing towards the
problem of testing whether a graph is an expander. Batu, Fischer, Fortnow, Kumar, Rubinfeld,
and White (Batu et al., 2001) studied the general problem of identity testing. A number of results
have discovered and rediscovered optimal bounds for identity testing (Paninski, 2008; Valiant and
Valiant, 2014; Acharya et al., 2015; Diakonikolas et al., 2015; Goldreich, 2016; Diakonikolas and
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Kane, 2016; Diakonikolas et al., 2018; Daskalakis et al., 2018; Diakonikolas et al., 2019), even with
optimal dependence on the failure probability δ and on an instance-by-instance basis. The harder
problem of equivalence testing was studied in (Batu et al., 2000), and optimal upper and lower
bounds were given in (Valiant, 2011; Chan et al., 2014; Daskalakis et al., 2018; Diakonikolas et al.,
2021). Some work has also studied the case where an unequal number of samples are received from
the two distributions (Acharya et al., 2014; Bhattacharya and Valiant, 2015; Diakonikolas and Kane,
2016).

Tolerant testing has been previously considered, in a few different regimes. Strong tolerance,
or equivalently, estimating distance between distributions, was studied first by Valiant and Valiant
(2010a,b, 2011a,b), and in more recent works by Han, Jiao, Venkat, and Weissman (Jiao et al., 2018,
2017; Han et al., 2016). Tolerance in distances besides `1 (including chi-squared, KL, Hellinger, and
`2) has also been considered (Goldreich and Ron, 2000; Batu et al., 2000; Chan et al., 2014; Acharya
et al., 2015; Daskalakis et al., 2018). An interesting direction for future work is to understand the
sample complexity of tolerant testing for these other distances in a fine-grained manner, as we do for
`1 distance. Moreover, results with `2-tolerance imply testers with weak `1-tolerance, through the
relation between `1 and `2 norms and the Cauchy–Schwarz inequality. Finally, very recent work sets
out to understand whether, for general properties of distributions, the (near)-quadratic gap between
tolerant and non-tolerant testing achievable for identity testing is the worst possible (Chakraborty
et al., 2021). For additional background on distribution testing, see surveys and related work in (Ru-
binfeld, 2012; Balakrishnan and Wasserman, 2018; Kamath, 2018; Canonne, 2020a).

Techniques involving moment matching and best-polynomial approximation are useful for tol-
erant distribution testing, but also play a key role in estimation of distributional properties, including
entropy, support size, support coverage, and distance to uniformity (Raskhodnikova et al., 2009; Wu
and Yang, 2016; Jiao et al., 2018; Acharya et al., 2017; Orlitsky et al., 2016; Wu and Yang, 2018)
See (Wu and Yang, 2020) for a survey on applications of polynomial methods in statistics.

Preliminaries. We identify a probability distribution p over a known discrete domain [n] :=
{1, 2, . . . , n}with its probability mass function (pmf), i.e., a nonnegative vector p = (p1, p2, . . . , pn)
such that

∑n
i=1 pi = 1. Given two distributions p, q, their total variation distance (also known as

statistical distance) is defined as

TV(p, q) = sup
S⊆[n]

(p(S)− q(S)) =
1

2

n∑
i=1

|pi − qi| =
1

2
‖p− q‖1 .

Due to this equivalence with the `1 norm, we will interchangeably use the TV and `1 norms in
our paper. We will also extensively use the `2 distance between probability distributions, which is
just the `2 norm ‖p − q‖2 between their pmfs and, by Cauchy–Schwarz, satisfies 1√

n
‖p − q‖1 ≤

‖p− q‖2 ≤ ‖p− q‖1.
Let p, q be two distributions over the domain [n]. For given ε1 and ε2 such that 0 ≤ ε1 < ε2,

we want to understand the sample complexity (i.e., minimum number of i.i.d. samples required) to
distinguish between:

Yes: ‖p− q‖1 ≤ ε1,

No: ‖p− q‖1 > ε2.
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with probability at least 4/5.2

We consider the problems of tolerant uniformity, identity, and equivalence testing. In identity
testing the distribution q is explicitly known in advance, while p is unknown: the sample complexity
is then the number of i.i.d. samples from p. Uniformity testing is a special case of identity testing,
where q = ( 1

n ,
1
n , . . . ,

1
n) is the uniform distribution, denoted Unifn. In equivalence testing, both p

and q are unknown and we get samples from each. The sample complexity is then the total number
of samples obtained from both p and q. We will typically denote the number of i.i.d. samples used
by an algorithm by m. Note that uniformity testing is a special case of identity testing (and hence
lower bounds for the former imply lower bounds for the latter), and that equivalence testing is at
least as hard as identity testing, in terms of sample complexity.

2. Algorithms for Tolerant Testing

In this section, we describe our testing algorithm (Algorithm 1), before analyzing its performance.
As a preliminary simplification, instead of assuming the algorithm is provided with m independent
samples we will rely on the so-called “Poissonization trick” and assume we obtain Poi(m) samples
each from both p and q. The benefit of Poissonization is that the number of occurrences of each
domain element will be an independent Poisson, eliminating correlations between symbols which
arise with a fixed budget. This is without loss of generality, as by standard arguments about con-
centration of Poisson random variables this changes the sample complexity by at most a (small)
constant factor. Moreover, losing again a factor 2 in the sample complexity, our algorithms will take
as input two sets of Poi(m) samples for each of p and q.

Let X̃i and Xi be the count of occurrences of symbol i ∈ [n] in the first and the second set of
the samples from p, respectively. Similarly, let Ỹi and Yi be the count of symbol i in the first and
the second set of the samples from q, respectively. Let

fi :=

{
max{

√
mn · |pi − qi|, n · (pi + qi), 1} if m ≥ n

max{m · (pi + qi), 1} if m < n.

We will use the first set of counts X̃i and Ỹi to estimate fi with f̂i, defined as

f̂i :=

max

{
|X̃i−Ỹi|√
m/n

, X̃i+Ỹim/n , 1

}
if m ≥ n

max{X̃i + Ỹi, 1} if m < n.

Let Zi := (Xi − Yi)2 −Xi − Yi and let

Z :=
n∑
i=1

Zi

f̂i
. (1)

and τ := c·min
(
m3/2ε2
n1/2 ,

m2ε22
n

)
, where c > 0 is an absolute constant determined in the course of the

analysis. Our tester is then as follows: Note that the algorithm itself requires no knowledge of ε1,

2. The exact constant here is immaterial, and by standard amplification arguments one can achieve a probability of
success of 1− δ at the cost of a multiplicative O(log(1/δ)) factor in the sample complexity.
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Algorithm 1: Tolerant testing algorithm.
Data: 0 ≤ ε1 < ε2 ≤ 1, m, n, two sets of Poi(m) samples from both p and q
Set the threshold

τ ← c ·min

(
m3/2ε2

n1/2
,
m2ε2

2

n

)
Compute Z from the sets of samples, as per (1)
if Z ≥ τ then return ‖p− q‖1 ≥ ε2

return ‖p− q‖1 ≤ ε1

and thus as the number of samples m increases, the same test statistic (with appropriate substitution
of m) becomes more and more tolerant.

To gain some intuition, we first remark that our tester is a modification of the `2 testers in (Chan
et al., 2014; Diakonikolas and Kane, 2016), and akin to the chi-square tester from (Acharya et al.,
2015). The main difference lies in the choice of normalizing factor fi (of which f̂i is merely the
natural estimator). The goal of this denominator is twofold: the relatively standard term n · (pi+ qi)
(which is comparable to the standard deviation of Zi; for m < n, we use m(pi + qi) to make up for
larger imprecision in our estimates) ensures that no single term of the sum will make the estimator
fluctuate too much. The term

√
mn · |pi − qi| (which is only needed the regime m ≥ n, since for

m < n the best accuracy we can get for |pi − qi| is ≈ 1/m, but scaling by m|pi − qi| would be
unnecessary as the m(pi + qi) term already dominates) is a crucial difference with previous work;
its goal is to “tamper down” the numerator Zi when the `2 contribution (pi−qi)2 is too large, which
is key for our `2-based tester to work. Indeed, in the “far” case where ‖p − q‖1 ≥ ε2, this is not a
problem; however, in the “close” case where ‖p− q‖1 ≤ ε1, the relation between `2 and `1 does not
preclude an individual element to have a large contribution (pi−qi)2, which could cause the statistic
to be too large and the tester to incorrectly reject. To avoid this, the term

√
mn · |pi − qi| in the

denominator will “kick in” for any such element i, and make the ratio Zi/fi behave proportionally
to |pi−qi|/

√
mn instead of (pi−qi)2, ensuring that the algorithm does not mistakenly reject “close”

distributions due to any single large element contribution.

Remark 4 For the identity testing problem, where the reference distribution q is known, we use
the now-standard “splitting operation” of Diakonikolas and Kane (2016) (see Section A for details)
to obtain distributions p′ and q′ over a domain of size 2n such that ‖p′ − q′‖1 = ‖p − q‖1 and
‖q′‖2 ≤ 1/

√
n. Moreover, samples from p and q can be used to simulate the same number of

samples from distributions p′ and q′, respectively. We apply our tester on the modified distributions
p′ and q′, instead of using it for p and q directly. As the new reference distribution q′ is over a
domain of size 2n and satisfies ‖q′‖2 ≤

√
2/
√

2n, this transformation lets us assume without loss
of generality that the reference distribution q over [n] in the identity testing problem is such that
‖q‖2 ≤

√
2/n.

We now formally state the performance of Algorithm 1 for tolerant identity and equivalence
testing, i.e., that it achieves near-optimal sample complexity in both cases.

Theorem 5 (Identity testing) Let q be a known reference distribution and p be an unknown dis-
tributions, both over [n]. There exists an absolute constant c > 0 such that, for any 0 ≤ ε2 ≤ 1 and

9
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0 ≤ ε1 ≤ cε2, given

O
(
n
(ε1

ε2
2

)2
+ n

(ε1

ε2
2

)
+

√
n

ε2
2

)
samples from each of p and q Algorithm 1 (after the splitting operation of Remark 4) distinguishes
between ‖p− q‖1 ≤ ε1 and ‖p− q‖1 ≥ ε2 with probability at least 4/5.

Theorem 6 (Equivalence testing) Let p and q be two unknown distributions over [n]. There exists
an absolute constant c > 0 such that, for any 0 ≤ ε2 ≤ 1 and 0 ≤ ε1 ≤ cε2, given

O

(
n
(ε1

ε2
2

)2
+ n

(ε1

ε2
2

)
+

√
n

ε2
2

+
n2/3

ε
4/3
2

)

samples from each of p and q Algorithm 1 distinguishes between ‖p− q‖1 ≤ ε1 and ‖p− q‖1 ≥ ε2

with probability at least 4/5.

Note that for a unified exposition, we assumed in Theorem 5 that the algorithm is provided with
samples even from the explicitly known reference distribution q. This is not a restriction, as given
this explicit knowledge it is possible to efficiently sample from the distribution q.

We prove both the theorems in Appendix B.1.

3. Lower Bounds for Tolerant Testing

In this section, we derive our lower bounds on the “price of tolerance,” i.e., on the increase in the
sample complexity as a function of the parameters ε1, ε2. The main technical result is a lower bound
for tolerant uniformity testing, from which the results for identity and equivalence will follow. In
particular, we show:

Theorem 7 (The price of tolerance for uniformity testing) For any n and ε1 < ε2 < c, for some
universal constant c > 0, any tester which for any unknown distribution p over [n] distinguishes
between ‖p−Unifn‖1 ≤ ε1 and ‖p−Unifn‖1 ≥ ε2 with probability at least 4/5 must use

Ω

(
n

log n

(ε1

ε2
2

)
+

n

log n

(ε1

ε2
2

)2
)

samples from p.

By combining the above lower bound with previously known lower bounds for non-tolerant unifor-
mity/identity testing (Paninski, 2008), we obtain:

Corollary 8 (Tolerant uniformity testing lower bound) For any n and 0 ≤ ε1 < ε2 < c, for
some universal constant c > 0, any tester which for any unknown distribution p over [n] distin-
guishes between ‖p−Unifn‖1 ≤ ε1 vs ‖p−Unifn‖1 ≥ ε2 with probability ≥ 4/5 needs at least

Ω

(
n

log n

(ε1

ε2
2

)
+

n

log n

(ε1

ε2
2

)2
+

√
n

ε2
2

)
samples from p.

10
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Similarly, by combining our lower bound with previously known lower bounds for non-tolerant
equivalence testing (Valiant, 2011; Chan et al., 2014), we obtain:

Corollary 9 (Tolerant equivalence testing lower bound) For any n and 0 ≤ ε1 < ε2 < c, for
some universal constant c > 0, any tester which for any unknown distributions p and q, both over
[n], distinguishes between ‖p− q‖1 ≤ ε1 and ‖p− q‖1 ≥ ε2 with probability at least 4/5 must use

Ω

(
n

log n

(ε1

ε2
2

)
+

n

log n

(ε1

ε2
2

)2
+

√
n

ε2
2

+
n2/3

ε
4/3
2

)
samples.

3.1. The moment matching technique

The starting point for our proof of Theorem 7 is the moment matching technique first used in (Wu
and Yang, 2016), which we considerably extend to address the “asymmetric” setting we must con-
sider. We briefly review this technique here; we encourage the reader to refer to Appendix C for
the details of our lower bound, and the extension to the asymmetric case we must handle. The first
step is to consider the Poissonized version of the problem. Namely, given Θ(m) samples from a
distribution p = (p1, . . . , pn), then with high probability, we can simulate a set of Poi(m) samples
from the same distribution. Thus, without loss of generality, we may assume that we are given
Poi(m) samples from p, and our goal is to distinguish with high probability given these samples
whether ‖p − Unifn‖1 ≤ ε1 or ‖p − Unifn‖1 ≥ ε2. A classical fact is that the result of sampling
Poi(m) samples from p is identical in distribution to a draw from (X1, . . . , Xn), where now the
Xi ∼ Poi(mpi) are independent.

The high-level idea of the moment matching technique to construct two priors U ,U ′ over dis-
tributions on n elements so that with high probability two conditions hold. First, if p ∼ U and
p′ ∼ U ′, then with high probability, ‖p−Unifn‖1 ≤ ε1 and ‖p′ −Unifn‖1 > ε2. Second, the
result of (i) sampling a distribution p ∼ U then (ii) sampling Poi(m) elements from p is close in TV
distance to applying the same process to U ′. Specifically, the priors we construct will be product
distributions, that is, U = Pn and U ′ = (P ′)n for some positive univariate distributions P,P ′.
Then, ignoring some technical issues which we will address momentarily, the problem becomes:
find distributions P,P ′ supported on nonnegative values such that (1) nEP |pi − 1/n| ≤ ε1 and
nEP ′ |p′i − 1/n| > ε2, and (2) the following distance is small:

TV

(
E
Pn

(Poi(mp1), . . . ,Poi(mpn)) , E
(P ′)n

(
Poi(mp′1), . . . ,Poi(mp′n)

))
= o(1) .

Note that, in view of the subaditivity of TV distance, this condition can be relaxed to the condition

TV

(
E
P

Poi(mpi), E
P ′

Poi(mp′i)

)
= o(1/n) . (2)

While this will make later calculations much simpler, this introduces a couple of minor com-
plications here. First, the vectors in the domain of U ,U ′ may not sum to 1, that is, U and U ′
may not actually be priors over bona fide distributions. However, if we additionally enforce that
EV∼P [V ] = EV ′∼P ′ [V ′] = 1/n, then under some mild conditions on theP,P ′, by standard concen-
tration arguments, the resulting vectors are very close to summing to 1 and thus form “approximate”

11
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distributions. One can then show that by slightly changing the construction, we can create priors
over distributions that satisfy the desired properties. Second, the vectors p, p′ in the domain of U ,U ′
may not deterministically satisfy the properties that ‖p−Unifn‖1 ≤ ε1 and ‖p′ −Unifn‖1 > ε2.
However, again by standard concentration inequalities, with high probability these random vari-
ables will not exceed their expectation by too much, and thus will satisfy these same constraints
with high probability, perhaps relaxed by constant factors. We make this discussion more precise in
the following theorem, whose (rather technical) proof is deferred to Section C.4:

Theorem 10 Let 0 ≤ ε1 < ε2 ≤ 1, and let n,m be positive integers and m ≥ c, where c > 0 is
an absolute constant. Suppose there exist random variables U,U ′ supported on the domain [a, b] so
that b− a ≤ ε22

1000 , E[U ] = E[U ′] = 1/n, and

E
[∣∣∣∣U − 1

n

∣∣∣∣] ≤ ε1

n
, and E

[∣∣∣∣U ′ − 1

n

∣∣∣∣] ≥ ε2

n
. (3)

Moreover, assume

TV
(
EPoi(mU), EPoi(mU ′)

)
≤ 1

20n
. (4)

Then, any tester which for any unknown distribution p distinguishes between ‖p−Unifn‖1 ≤ 25ε1

and ‖p−Unifn‖1 ≥ ε2/2 with probability at least 4/5 requires at least m/2 samples from p.

Thus, for given m, n and ε1 the problem reduces to finding the maximum value of ε2 for which
we can construct a pair of random variables U and U ′ for which the assumptions of Theorem 10
hold. The next key insight is that we can further reduce the condition in (4) to designing two random
variables with matching moments:

Lemma 11 ((Jiao et al., 2018, Lemma 32); see also (Wu and Yang, 2016)) For any κ ≥ M ≥
0, let Y, Y ′ be two random variables over [κ−M,κ+M ] so that EY i = EY ′i for all i = 1, . . . , L.
Then, we have

TV
(
EPoi(Y ),EPoi(Y ′)

)
≤ 2

(
eM√
κ(L+ 1)

)L+1

.

With this lemma in place, our goal can be restated as follows: maximize n · E |U ′i − 1/n| such that
n ·EP |U − 1/n| ≤ ε1 and the first Lmoments of U and U ′ match, where the support of U and U ′ is
over [κ−Mm , κ+M

m ] for some κ ≥M ≥ 0. The value of this maximum is a function of the parameters
κ, M and L, whose values we choose later appropriately so that this function is maximized, while

2

(
eM√
κ(L+ 1)

)L+1

≤ 1

20n
(5)

holds, so that (4) is satisfied. We formulate the problem of maximizing n · E |U ′ − 1/n| for any
given choice of parameters as the following linear program over infinitely many variables, where
we have used random variables V and V ′ to denote n · U and n · U ′, respectively,

max E |V ′ − 1| s.t. E |V − 1| ≤ ε1 and

EV = EV ′ = 1, and

EV i = EV ′i, i = 2, . . . , L, and

V, V ′ ∈
[n(κ−M)

m
,
n(κ+M)

m

]
. (6)

12



THE PRICE OF TOLERANCE IN DISTRIBUTION TESTING

Let L(ε1, n,m,M, κ, L) denote the value of the optimal solution of the above optimization prob-
lem. Observe that we do not need to find the exact solution to the above linear program: instead,
any reasonable lower bound on the solution of the above optimization problem suffices. The next
theorem gives one such lower bound. To state the theorem, we define

A :=
n(M + κ)

m
− 1− ε1, and B :=

n(M − κ)

m
+ 1− ε1. (7)

Theorem 12 For any κ, M , n, m, L, and ε1, if for A,B, defined in (7), 0 < ε1 ≤ min
{
B
4 ,

A
4

}
,

then the value of optimal solution of (6) is lower bounded by

L(ε1, n,m,M, κ, L) ≥ 1

12
max

{√
ε1 ·

A+B

32L2
,

√
ε1 ·
√
AB

16L

}
. (8)

To prove this theorem, which is the key technical component in the proof of lower bound, we
had to completely diverge from the previous works, which bound the solution of the dual that arise
for their applications by finding the best uniform approximation of a given function by a low-degree
polynomial (for example in (Wu and Yang, 2016)). Indeed, the asymmetry in the range of V and V ′

around zero makes it difficult to find such a low-degree polynomial. Instead we prove the theorem
in Appendix C.2 from first principles by a novel use of classic tools from polynomial approximation
theory. In Appendix C.1, we then use this theorem to prove the distribution testing lower bounds.
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Appendix A. Details on the “splitting” operation

Given an explicit reference distribution q over [n], we describe the splitting operation with respect
to q, as introduced in Diakonikolas and Kane (2016). For i ∈ [n], let ai := 1 + bnqic and D :=
{(i, j) : i ∈ [n], j ∈ [ai]}. The splitting operation with respect to q maps any given distribution
p over [n] to a new distribution pS(q) over the new domain D such that the new distribution pS(q)

assigns the probability pi
ai

to element (i, j).
We note a few properties of the splitting operation:

1. The new domain is at most twice as large: indeed, |D| =
∑n

i=1(1 + bnqic) ≤
∑n

i=1(nqi +
1) = 2n.

2. If q is known, then m i.i.d. samples from an unknown distribution p can be used to simulate
the m i.i.d. from pS(q), by (independently for each) mapping a sample i ∈ [n] to a (i, j), for
j chosen uniformly at random in [ai].

3. The resulting distribution obtained by applying splitting operation w.r.t. q on itself has small
`2 norm,

‖qS(q)‖22 =
∑

(i,j)∈D

(q
S(q)
i,j )2 =

n∑
i=1

∑
j∈[ai]

(
qi
ai

)2

=

n∑
i=1

q2
i

ai
≤

n∑
i=1

qi
n

=
1

n
≤ 2

|D|
.

4. The pairwise `1 (and thus total variation) distances between any two distributions p and p′ are
preserved after the splitting operation, namely for any distributions p, p′ over [n],

‖p− p′‖1 = ‖pS(q) − p′S(q)‖1 ;

this follows from observing that

‖pS(q) − p′S(q)‖1 =
n∑
i=1

∑
j∈[ai]

|pS(q)
i,j − p

′S(q)
i,j | =

n∑
i=1

∑
j∈[ai]

∣∣∣p(i)
ai
− p′(i)

ai

∣∣∣ =
n∑
i=1

|pi − p′i|.

Appendix B. Upper bound proofs

B.1. Analysis of Algorithm 1

This section is devoted to the proofs of Theorems 5 and 6, which are both established in a similar
manner.

Observe that, following the Poissonization, all Zi’s and f̂i’s are independent random variables.
From the properties of Poisson distribution, it is not hard to check that the expectation and variance
of the Zi’s are given by

E[Zi] = m2|pi − qi|2, (9)

Var[Zi] = 4m3(pi − qi)2(pi + qi) + 2m2(pi + qi)
2. (10)

Next, using the independence of Zi and f̂i’s, we get that the conditional expectation of Z is

E
[
Z
∣∣∣ f̂i for i ∈ [n]

]
= E

[
n∑
i=1

Zi

f̂i

∣∣∣∣∣ f̂i for i ∈ [n]

]
=

n∑
i=1

E[Zi]

f̂i
, (11)
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while its conditional variance is given by

Var
[
Z
∣∣f̂i for i ∈ [n]

]
= Var

[
n∑
i=1

Zi

f̂i

∣∣∣∣f̂i for i ∈ [n]

]
=

n∑
i=1

Var(Zi)

f̂2
i

. (12)

To prove the optimality of the tester, we first bound the conditional expectation and variance of
Z. These bounds differ for the regimes m ≥ n and m ≤ n, and are characterized in Lemmas 13
and 14, respectively.

Lemma 13 There exist absolute constants c1, c2, c3 > 0 such that the following holds. Form ≥ n,
and any distributions p and q over [n], the following bounds simultanously hold with probability at
least 9/10:

c1 min

(
m3/2‖p− q‖1

n1/2
,
m2‖p− q‖12

n

)
≤ E

[
Z
∣∣∣ f̂i for i ∈ [n]

]
≤ c2

m3/2‖p− q‖1
n1/2

,

and Var
[
Z
∣∣∣ f̂i for i ∈ [n]

]
≤ c3

m2

n .

Lemma 14 There exist absolute constants c1, c2, c3 > 0 such that the following holds. Form ≤ n,
and any distributions p and q over [n], the following bounds simultanously hold with probability at
least 9/10:

c1
m2‖p− q‖12

n
≤ E

[
Z
∣∣∣ f̂i for i ∈ [n]

]
≤ c2m‖p− q‖1,

and Var
[
Z
∣∣∣ f̂i for i ∈ [n]

]
≤ c3m. Additionally,

Var
[
Z
∣∣∣ f̂i for i ∈ [n]

]
≤ 1

40
(E[Z | f̂i for i ∈ [n]])2 + 324E[Z | f̂i for i ∈ [n]] + 648m2‖q‖22.

We prove these lemmata in Section B.2. We now show that, assuming these statements, we can
establish Theorems 5 and 6. We handle the cases m ≥ n and m < n separately.

Proof of the theorems for m ≥ n: Using Lemma 13, we show that for any m ≥ n such that m =

Ω

(
n
(
ε1
ε22

)2
+
√
n
ε22

)
the estimator correctly distinguishes between ‖p − q‖ ≤ ε1 vs ‖p − q‖ ≥ ε2

with probability at least 8/10.
Applying Chebyshev’s inequality to the conditional expectation and variance and using Lemma 13,

we get that, with probability ≥ 8/10,

Z ≥ c1 min

(
m3/2‖p− q‖1

n1/2
,
m2‖p− q‖12

n

)
−
√

10c3
m√
n
, (13)

and

Z ≤ c2
m3/2‖p− q‖1

n1/2
+
√

10c3
m√
n
. (14)
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• In the case ‖p− q‖1 ≥ ε2, the lower bound in Equation (13) reduces to

Z ≥ c1 min

(
m3/2ε2

n1/2
,
m2ε2

2

n

)
−
√

10c3
m√
n
≥ c1

2
min

(
m3/2ε2

n1/2
,
m2ε2

2

n

)
,

the last step as long as m ≥ C
√
n/ε2

2 for C := max(2
√

10c3/c1, 40c3/c
2
1). Therefore, with

probability at least 8/10 the tester correctly outputs that ‖p− q‖1 ≥ ε2.

• In the case, ‖p− q‖1 ≤ ε1, the upper bound in Equation (14) reduces to

Z ≤ c2
m3/2ε1

n1/2
+
√

10c3
m√
n
≤ c1

4
min

(
m3/2ε2

n1/2
,
m2ε2

2

n

)

where we used that m ≥ C ′
√
n/ε2

2 for C := max(8
√

10c3
c1

, 640c3
c21

) to ensure that
√

10c3
m√
n
≤

c1
8 min

(
m3/2ε2
n1/2 ,

m2ε22
n

)
, and that (i) ε1 ≤ c1

8c2
ε2 and (ii) m ≥ C ′′ ·n

(
ε1
ε22

)2
with C ′ = 64c2

2/c
2
1

to ensure that c2
m3/2ε1
n1/2 ≤ c1

8 min
(
m3/2ε2
n1/2 ,

m2ε22
n

)
. Therefore, with probability at least 8/10

the tester correctly outputs that ‖p− q‖1 ≤ ε1.

This proves the two theorems for the case m ≥ n. We next turn to the case m ≤ n.

Proof of the theorems for m < n: The argument for this case is similar to the previous, using

Lemma 14 instead of Lemma 13. We show that for anym ≤ n such thatm = Ω

(
n ε1
ε22

+ min

{
n‖q‖2
ε22

, n
2/3

ε
4/3
2

})
the estimator correctly distinguishes between ‖p − q‖ ≤ ε1 and ‖p − q‖ ≥ ε2 with probability at
least 8/10. This in turn follows from computations nearly identical to the ones above, which we
thus omit in the interest of space.

The proofs for the two cases, combined with the fact that for identity testing we can as discussed
before assume without loss of generality that ‖q‖2 ≤

√
2/n, establish Theorems 5 and 6. �

B.2. Proof of Lemmas 13 and 14

In this section, we give the proof of the remaining two pieces in our analysis of Algorithm 1,
Lemmas 13 and 14. The following lemma will be useful to lower bound the conditional expectation
E
[
Z
∣∣∣ f̂i for i ∈ [n]

]
.

Lemma 15 There exist absolute constants c1, c2, c3 > 0 such that, for every m, n, and i ∈ [n],

E[f̂i] ≤ c1fi, E[f̂−1
i ] ≤ c2

fi
, and E[f̂−2

i ] ≤ c3

f2
i

.

Proof We use the following two concentration bounds, which provide exponential tail bounds on
our estimates f̂i of the of fi’s. The proofs of those two claims are quite technical, and rely on a
careful case distinction along with standard concentration properties of Poisson random variables.
We provide them in Section B.3.

Lemma 16 There exists c > 0 such that, for every m, n, t > 3, and i ∈ [n], Pr[f̂i > tfi] ≤ e−ct.
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Lemma 17 There exists c′ > 0 such that, for every m, n, t > 2, and i ∈ [n], Pr[f̂i <
fi
t ] ≤ e−c′t.

Given the above two results, the proof is straightforward: indeed, for every i ∈ [n] we have,
using Lemma 16,

E[f̂i] =

∫ ∞
0

Pr[f̂i > u]du = fi

∫ ∞
0

Pr[f̂i > tfi]dt ≤ fi
(∫ 3

0
dt+

∫ ∞
3

e−ctdt

)
= fi

(
3 +

e−3c

c

)
while, from Lemma 17,

E[f̂−1
i ] =

∫ ∞
0

Pr[f̂−1
i > u]du =

1

fi

∫ ∞
0

Pr[f̂i < fi/t]dt ≤
1

fi

(
2 +

∫ ∞
2

e−c
′tdt

)
=

1

fi

(
2 +

e−2c′

c′

)
and, similarly,

E[f̂−2
i ] =

∫ ∞
0

Pr[f̂−2
i > u]du =

2

f2
i

∫ ∞
0

Pr[f̂i < fi/t]t dt ≤
2

f2
i

(
2 +

∫ ∞
2

te−c
′tdt

)
=

2

f2
i

(
2 +

(2c′ + 1)e−2c′

c′2

)
which, given that c, c′ are just positive constants, is what we set out to prove.

We also require the following simple inequality.

Fact 18 For any real (ai)
n
i=1 and positive (bi)

n
i=1,

n∑
i=1

a2
i

bi
≥

(
∑n

i=1 |ai|)2∑n
i=1 bi

.

Proof The result follows from applying Cauchy–Schwarz to
∑n

i=1 |ai| =
∑n

i=1

√
bi|ai|/

√
bi.

From the above fact and (9), it follows that

E
[
Z
∣∣∣ f̂i for i ∈ [n]

]
=

n∑
i=1

E[Zi]

f̂i
=

n∑
i=1

m2(pi − qi)2

f̂i
≥
m2(

∑n
i=1 |pi − qi|)2∑n
i=1 f̂i

=
m2‖p− q‖21∑n

i=1 f̂i
.

Moreover, by definition the random variables f̂i are non-negative, and thus, applying the Markov
inequality we get that

n∑
i=1

f̂i ≤ 30
n∑
i=1

E[f̂i]

with probability at least 1 − 1/30. Combined with Lemma 15, this means that, with probability at
least 1− 1/30,

E
[
Z
∣∣∣ f̂i for i ∈ [n]

]
≥ m2‖p− q‖21

30c1
∑n

i=1 fi
. (15)

Next, applying the Markov’s inequality for the non-negative random variable E
[
Z
∣∣∣ f̂i for i ∈ [n]

]
,

we get that, with probability at least 1− 1/30,

E
[
Z
∣∣∣ f̂i for i ∈ [n]

]
≤ 30E

[
E
[
Z
∣∣∣ f̂i for i ∈ [n]

]]
= 30E

[
n∑
i=1

E[Zi]

f̂i

]
≤ 30c2

n∑
i=1

m2(pi − qi)2

fi
.

(16)
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Finally, considering the non-negative random variable Var
[
Z
∣∣∣ f̂i for i ∈ [n]

]
, we again get that,

with probability at least 1− 1/30,

Var
[
Z
∣∣∣ f̂i for i ∈ [n]

]
≤ 30E

[
Var
[
Z
∣∣∣ f̂i for i ∈ [n]

]]
= 30E

[
n∑
i=1

Var(Zi)

f̂2
i

]
≤ 30c3

n∑
i=1

Var(Zi)

f2
i

.

(17)
By a union bound, we get that the guarantees of (15), (16), and (17) simultaneously hold with
probability at least 1 − 3 · 1

30 = 9
10 . Importantly, the RHS in all three bounds only depend on the

deterministic quantities fi’s, instead of the random variables f̂i’s. We bound each of these RHS in
the next two lemmas, for m ≥ n and m ≤ n, respectively.

Lemma 19 For anym ≥ n and distributions p and q over [n] the following holds: (1)
∑n

i=1
Var(Zi)
f2i

≤
10m2

n , (2)
∑n

i=1
m2(pi−qi)2

fi
≤ m3/2‖p−q‖1

n1/2 , and (3) m2‖p−q‖21∑n
i=1 fi

≥ min
(
m3/2‖p−q‖1

2n1/2 , m
2‖p−q‖12

6n

)
.

Proof First, we upper bound
∑n

i=1
Var(Zi)
f2i

: from (10), we get

n∑
i=1

Var(Zi)

f2
i

=

n∑
i=1

4m3(pi − qi)2(pi + qi) + 2m2(pi + qi)
2

f2
i

=

n∑
i=1

4m3(pi − qi)2(pi + qi) + 2m2(pi + qi)
2(

max{
√
mn · |pi − qi|, n · (pi + qi), 1}

)2

≤
n∑
i=1

4m3(pi + qi)

mn
+

n∑
i=1

2m2

n2
=

8m2

n
+

2m2

n
=

10m2

n
.

Next, we prove the second inequality:

n∑
i=1

m2(pi − qi)2

fi
=

n∑
i=1

m2|pi − qi|2

max{
√
mn · |pi − qi|, n · (pi + qi), 1}

≤
n∑
i=1

m3/2|pi − qi|
n1/2

=
m3/2‖p− q‖1

n1/2
.

Finally, we prove the last inequality:

m2‖p− q‖21∑n
i=1 fi

=
m2‖p− q‖21∑n

i=1 max{
√
mn · |pi − qi|, n · (pi + qi), 1}

≥ m2‖p− q‖21∑n
i=1(
√
mn · |pi − qi|+ n · (pi + qi) + 1)

=
m2‖p− q‖21√

mn · ‖p− q‖1 + 2n+ n

≥ min
(m3/2‖p− q‖1

2n1/2
,
m2‖p− q‖12

6n

)
.
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Lemma 20 For any m ≤ n and distributions p and q over [n] the following holds:
∑n

i=1
Var(Zi)
f2i

≤

24m, (2)
∑n

i=1
m2(pi−qi)2

fi
≤ m‖p− q‖1, and (3) m2‖p−q‖21∑n

i=1 fi
≥ m2‖p−q‖21

3n .

Proof As before, we first upper bound
∑n

i=1
Var(Zi)
f2i

:

n∑
i=1

Var(Zi)

f2
i

=
n∑
i=1

4m3(pi − qi)2(pi + qi) + 2m2(pi + qi)
2

f2
i

=

n∑
i=1

4m3(pi − qi)2(pi + qi) + 2m2(pi + qi)
2(

max{m · (pi + qi), 1}
)2

≤
n∑
i=1

4m3(pi − qi)2(pi + qi) + 4m2(pi − qi)2 + 8m2q2
i

max{m2 · (pi + qi)2, 1}
(as (a+ b)2 ≤ 2(a− b)2 + 4b2)

≤
n∑
i=1

4m3(pi − qi)2(pi + qi)

m2 · (pi + qi)2
+

n∑
i=1

4m2(pi − qi)2

m · (pi + qi)
+

n∑
i=1

8m2q2
i

max{m2(pi + qi)2, 1}

≤ 4m
n∑
i=1

|pi − qi|+ 4m
n∑
i=1

|pi − qi|+
n∑
i=1

8m2q2
i

max{m(pi + qi), 1}
(max{x2, 1} ≥ max{x, 1})

≤ 8m‖p− q‖1 +
n∑
i=1

8mqi

≤ 16m+ 8m = 24m.

Next, we prove the second inequality:

n∑
i=1

m2(pi − qi)2

fi
=

n∑
i=1

m2|pi − qi|2

max{m · (pi + qi), 1}
≤

n∑
i=1

m|pi − qi| = m‖p− q‖1.

Finally, we prove the last inequality:

m2‖p− q‖21∑n
i=1 fi

=
m2‖p− q‖21∑n

i=1 max{m · (pi + qi), 1}
≥ m2‖p− q‖21∑n

i=1(m · (pi + qi) + 1)
=
m2‖p− q‖21

2m+ n
≥ m2‖p− q‖21

3n
.
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It only remains to establish the last part of Lemma 14, which we do next.

Var
[
Z
∣∣∣ f̂i for i ∈ [n]

]
=

n∑
i=1

Var(Zi)

f̂2
i

=
n∑
i=1

4m3(pi − qi)2(pi + qi) + 2m2(pi + qi)
2

f̂2
i

(a)

≤ 4m3

(
n∑
i=1

(pi − qi)4

f̂2
i

)1/2( n∑
i=1

(pi + qi)
2

f̂2
i

)1/2

+
n∑
i=1

2m2(pi + qi)
2

f̂2
i

(b)

≤ 4m3

(
n∑
i=1

(pi − qi)2

f̂i

)(
n∑
i=1

(pi + qi)
2

f̂2
i

)1/2

+
n∑
i=1

2m2(pi + qi)
2

f̂2
i

= 4

(
m2

n∑
i=1

(pi − qi)2

f̂i

)(
m2

n∑
i=1

(pi + qi)
2

f̂2
i

)1/2

+
n∑
i=1

2m2(pi + qi)
2

f̂2
i

where step (a) is the Cauchy–Schwarz inequality, and (b) is monotonicity of `p norms: for any
vector u, ‖u‖2 ≤ ‖u‖1. We can then continue as follows, making the expectation appear:

Var
[
Z
∣∣∣ f̂i for i ∈ [n]

]
= 4
(
E
[
Z
∣∣∣ f̂i for i ∈ [n]

])( n∑
i=1

m2(pi + qi)
2

f̂2
i

)1/2

+
n∑
i=1

2m2(pi + qi)
2

f̂2
i

(c)

≤ 1

40

(
E
[
Z
∣∣∣ f̂i for i ∈ [n]

])2
+ (160 + 2)

n∑
i=1

m2(pi + qi)
2

f̂2
i

(d)

≤ 1

40

(
E
[
Z
∣∣∣ f̂i for i ∈ [n]

])2
+ 162

n∑
i=1

2m2(pi − qi)2

f̂2
i

+ 162

n∑
i=1

4m2q2
i

f̂2
i

(e)

≤ 1

40

(
E
[
Z
∣∣∣ f̂i for i ∈ [n]

])2
+ 324

n∑
i=1

m2(pi − qi)2

f̂i
+ 648

n∑
i=1

m2q2
i

=
1

40

(
E
[
Z
∣∣∣ f̂i for i ∈ [n]

])2
+ 324E

[
Z
∣∣∣ f̂i for i ∈ [n]

]
+ 648m2‖q‖22,

where (c) uses 2ab ≤ a2 + b2, (d) uses (a+ b)2 ≤ 2(a− b)2 + 4b2, and finally (e) uses f̂i ≥ 1. �

B.3. Proofs of Lemmas 16 and 17

The following standard bound on the concentration of Poisson random variables will be useful:

Theorem 21 Let X ∼ Poi(λ) be a Poisson random variable for some λ > 0. Then for any x > 0,

Pr
[
|X − λ| ≥ x

]
≤ exp

(
− Ω
(

min
{
x,
x2

λ

}))
.

Next, we prove Lemma 16.
Proof of Lemma 16 First we prove the lemma for the simpler of the two cases when m < n and
then later for m ≥ n.
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Proof for the regime m < n:

Pr
[
f̂i > tfi

] (a)
= Pr

[
max{Xi + Yi, 1} > tmax{m(pi + qi), 1}

]
= Pr

[
Xi + Yi > tmax{m(pi + qi), 1}

]
= Pr

[
Xi + Yi −m(pi + qi) > tmax{m(pi + qi), 1} −m(pi + qi)

]
= Pr

[
Xi + Yi −m(pi + qi) > (t− 1) max{m(pi + qi), 1}

]
(b)

≤ exp

(
−Ω

(
min

{
(t− 1) max{m(pi + qi), 1},

(t− 1)2 max{m(pi + qi)
2, 1}

max{m(pi + qi), 1}

}))
≤ exp

(
−Ω
(
min

{
(t− 1), (t− 1)2

}))
(c)
= exp(−Ω(t)),

here (a) uses definition of fi, (b) uses the fact that X̃ + Ỹ ∼ Poi(mpi + mqi) and the Poisson
concentration bound in Theorem 21, and (c) uses t > 1.

Next we prove the lemma for the other case when m ≥ n.

Proof for the regime m ≥ n: We first bound Pr
[
f̂i > tfi

]
by sum of three different terms, and

then later we bound each term one by one.

Pr
[
f̂i > tfi

]
= Pr

[
max

{
|X̃i − Ỹi|√

m/n
,
X̃i + Ỹi
m/n

, 1

}
> tfi

]
(a)

≤ Pr

[
|X̃i − Ỹi|√

m/n
> tfi

]
+ Pr

[
X̃i + Ỹi
m/n

> tfi

]
(b)

≤ Pr

[
|X̃i −mpi|+ |Ỹi −mqi|+ |mpi −mqi|√

m/n
> tfi

]
+ Pr

[
X̃i + Ỹi
m/n

> tfi

]
= Pr

[
|X̃i −mpi|+ |Ỹi −mqi| > tfi

√
m/n−m|pi − qi|

]
+ Pr

[
X̃i + Ỹi > tfi

m

n

]
≤ Pr

[
max{|X̃i −mpi|, |Ỹi −mqi|} >

tfi
√
m/n−m|pi − qi|

2

]
+ Pr

[
X̃i + Ỹi > tfi

m

n

]
(c)

≤ Pr
[
|X̃i −mpi| >

tfi
√
m/n−m|pi − qi|

2

]
+ Pr

[
|Ỹi −mqi| >

tfi
√
m/n+−m|pi − qi|

2

]
+ Pr

[
X̃i + Ỹi > tfi

m

n

]
, (18)

where inequalities (a) and (c) use union bound and (b) uses triangle inequality.
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To obtain an upper bound we bound each term in the above equation. Next, we bound the first term.

Pr
[
|X̃i −mpi| >

t

2
fi
√
m/n− m|pi − qi|

2

]
(a)
= Pr

[
|X̃i −mpi| >

t

2
max{m|pi − qi|,

√
mn(pi + qi),

√
m/n} − m|pi − qi|

2

]
(b)

≤ Pr
[
|X̃i −mpi| >

tm|pi − qi|+ t
√
mn(pi + qi) + t

√
m/n

6
− m|pi − qi|

2

]
= Pr

[
|X̃i −mpi| >

(t− 3)m|pi − qi|+ t
√
mn(pi + qi) + t

√
m/n

6

]
(c)

≤ Pr
[
|X̃i −mpi| >

t
√
mn(pi + qi) + t

√
m/n

6

]
(d)

≤ 2 exp

(
− Ω

(
min

{
t
√
mn(pi + qi) + t

√
m/n

6
,
(t
√
mn(pi + qi) + t

√
m/n)2

36mpi

}))

≤ 2 exp

(
− Ω

(
min

{
t
√
m/n

6
,
t2mn(pi + qi)

2 + t2 · (m/n)

36mpi

}))

≤ 2 exp

(
− Ω

(
min

{
t
√
m/n

6
,
t2npi

36
+

t2

36npi

}))
(e)

≤ exp(−Ω(t)),

where (a) uses the definition of fi, (b) follows from the fact that a+b+c
3 ≤ max{a, b, c}, inequality

(c) uses t ≥ 3, inequality (d) uses the fact that X̃ ∼ Poi(mpi) and the Poisson concentration bound
in Theorem 21, and finally (e) uses m ≥ n and the fact that x+ 1/x ≥ 2 for any x ≥ 0.

Note that because of the symmetry the above bound will also apply on the second term, namely

Pr
[
|X̃i −mqi| >

t

2
fi
√
m/n− m|pi − qi|

2

]
≤ exp(−Ω(t)).
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Next we bound the last term in Equation (18) to complete the proof of the first concentration in-
equality.

Pr
[
X̃i + Ỹi > tfi

m

n

]
(a)
= Pr

[
X̃i + Ỹi > tmax

{m3/2

n1/2
|pi − qi|,m(pi + qi),

m

n

}]
≤ Pr

[
X̃i + Ỹi > tmax

{
m(pi + qi),

m

n

}]
(b)

≤ Pr
[
X̃i + Ỹi −m(pi + qi) >

tm(pi + qi) + tmn
2

−m(pi + qi)
]

= Pr
[
X̃i + Ỹi −m(pi + qi) >

(t− 2)m(pi + qi) + tmn
2

]
(c)

≤ 2 exp

(
− Ω

(
min

{
(t− 2)m(pi + qi) + tmn

2
,
((t− 2)m(pi + qi) + tmn )2

4m(pi, qi)

}))
(d)

≤ 2 exp

(
− Ω

(
min

{
t
m

2n
,
((t− 2)m(pi + qi) + (t− 2)mn )2

4m(pi + qi)

}))
(e)

≤ 2 exp

(
− Ω

(
min

{
t
m

2n
,
(t− 2)2m(pi + qi)

4
+

(t− 2)2

4m(pi + qi)

}))
(f)

≤ 2 exp

(
− Ω

(
min

{
t

2
,
(t− 2)2

2

}))
≤ exp(−Ω(t)),

where (a) uses the definition of fi, (b) uses the fact that a+b
2 ≤ max{a, b}, inequality (c) uses the

fact that X̃+ Ỹ ∼ Poi(mpi+mqi) and the Poisson concentration bound in Theorem 21, inequality
(d) uses t ≥ 3, inequality (e) uses the fact that for a, b > 0, (a+ b)2 ≤ a2 + b2, and finally (f) uses
m ≥ n and the fact that x+ 1/x ≥ 2 for any x ≥ 0.

Combining the bounds on all three terms in Equation (18) proves the Lemma.

Finally, we prove Lemma 17.
Proof of Lemma 17 First we prove the lemma for the simpler of the two cases when m < n and
then later for m ≥ n.

Proof for the regime m < n: Based on the value of fi, we further divide in two cases, and for
both cases we show one by one that the concentration inequality holds.

1. Case 1: fi = 1 ≥ m(pi + qi).
Since f̂i ≥ 1 then f̂i ≥ fi, hence for any t > 1 we have Pr

[
f̂i <

1
t fi
]

= 0.

2. Case 2: fi = m(pi + qi) ≥ 1.
Note for t ≥ fi the inequality Pr

[
f̂i <

fi
t

]
= 0 trivially holds as f̂i ≥ 1.
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For t < fi

Pr

[
f̂i <

fi
t
fi

]
(a)
= Pr

[
max{Xi + Yi, 1} <

fi
t

]
≤ Pr

[
Xi + Yi <

fi
t

]
= Pr

[
m(pi + qi)−Xi + Yi < m(pi + qi)−

fi
t

]
(b)
= Pr

[
m(pi + qi)−Xi + Yi <

(
1− 1

t

)
fi

]
(c)
= Pr

[
m(pi + qi)−Xi + Yi <

fi
2

]
(d)

≤ exp

(
−Ω

(
min

{
fi
2
,

f2
i

4(m(pi + qi)

}))
(e)
= exp

(
−Ω

(
min

{
fi
2
,
f2
i

4

}))
(f)
= exp(−Ω(t))

where (a) uses the definition of f̂i, (b) uses the fact that fi = m(pi + qi), inequality (c)
uses t ≥ 2, inequality (d) uses the fact that X̃ + Ỹ ∼ Poi(mpi + mqi) and the Poisson
concentration bound in Theorem 21, inequality (e) uses fi = m(pi + qi), and finally (f) uses
fi ≥ t and t > 1.

Next we prove the lemma for the other case when m ≥ n.

Proof for the regime m ≥ n: Based on the value of fi, we further divide in three cases, and for
each of the three cases we show one by one that the concentration inequality holds.

1. Case 1: fi = 1 ≥ max{n · (pi + qi),
√
mn · |pi − qi|]}.

In this case pi + qi ≤ 1
n and |pi − qi| ≤ 1√

mn
.

Since f̂i ≥ 1, then

Pr
[
f̂i <

fi
t

]
≤ Pr

[
f̂i < fi

]
= 0.

2. Case 2: fi = n · (pi + qi) ≥ max{1,
√
mn · |pi − qi|]}.

In this case pi + qi = fi
n and |pi − qi| ≤ f1√

mn
.
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Note for t ≥ fi the inequality Pr
[
f̂i <

fi
t

]
= 0 trivially holds as f̂i ≥ 1. For t < fi

Pr
[
f̂i <

fi
t

] (a)

≤ Pr
[ n
m

(Xi + Yi) ≤
fi
t

]
= Pr

[
(Xi + Yi) ≤

mfi
nt

]
= Pr

[
m(pi + qi)− (Xi + Yi) ≥ m(pi + qi)−

mfi
nt

]
(b)
= Pr

[
m(pi + qi)− (Xi + Yi) ≥

mfi
n

(
1− 1

t

)]
(c)

≤ Pr
[
m(pi + qi)− (Xi + Yi) ≥

mfi
2n

]
(d)

≤ 2 exp

(
− Ω

(
min

{
mfi
2n

,
m2f2

i

4n2 ·m(pi + qi)

}))
(e)

≤ 2 exp

(
− Ω

(
min

{
mfi
2n

,
m2fin(pi + qi)

4n2 ·m(pi + qi)

}))

≤ 2 exp

(
− Ω

(
mfi
4n

))
(f)

≤ exp
(
− Ω(t)

)
,

where (a) uses the definition of f̂i, (b) uses the fact that pi + qi = fi/n for Case 2, inequality
(c) uses t ≥ 2, inequality (d) uses the fact that X̃ + Ỹ ∼ Poi(mpi + mqi) and the Poisson
concentration bound in Theorem 21, inequality (e) uses fi = n(pi + qi), and finally (f) uses
m ≥ n and fi > t.

3. Case 3: fi =
√
mn · |pi − qi| ≥ max{1, n · (pi + qi)}.

In this case |pi − qi| = fi/
√
mn and (pi + qi) ≤ fi/n.
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Note for t ≥ fi the inequality Pr
[
f̂i <

fi
t

]
= 0 trivially holds as f̂i ≥ 1. For t < fi

Pr
[
f̂i <

fi
t

] (a)

≤ Pr
[ |X̃i − Ỹi|√

m/n
≤ fi

t

]
(b)

≤ Pr
[ |mpi −mqi| − |X̃i −mpi − Ỹi +mqi|√

m/n
≤ fi

t

]
= Pr

[ |X̃i −mpi − Ỹi +mqi|√
m/n

≥
√
mn|pi − qi| −

fi
t

]
(c)
= Pr

[ |X̃i −mpi − Ỹi +mqi|√
m/n

≥ fi
(
1− 1

t

)]
(d)

≤ Pr
[
|X̃i −mpi − Ỹi +mqi| ≥

√
m

n
· fi

2

]
(e)

≤ Pr
[

max{|X̃i −mpi|, |Ỹi −mqi|} ≥
√
m

n
· fi

4

]
(f)

≤ Pr
[
|X̃i −mpi| ≥

√
m

n
· fi

4

]
+ Pr

[
|Ỹi −mqi| ≥

√
m

n
· fi

4

]
(g)

≤ 2 exp

(
− Ω

(
min

{√
m

n
· fi

4
,

mf2
i

16n ·mpi

}))

+ 2 exp

(
− Ω

(
min

{√
m

n
· fi

4
,

mf2
i

16n ·mqi

}))
(h)

≤ exp
(
− Ω(t)

)
,

where (a) uses the definition of f̂i, inequality (b) follows from the triangle inequality, inequal-
ity (c) uses the fact that

√
mn|pi − qi| = fi for Case 3, inequality (d) uses t ≥ 2, inequality

(e) uses the fact that |x − y| ≤ 2 max{|x|, |y|}, inequality (f) uses union bound, inequal-
ity (g) uses the Poisson concentration bound in Theorem 21, and finally (h) uses m ≥ n,
fi > n(pi + qi) and fi > t.
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Appendix C. Lower bound proofs

C.1. Proof of Theorem 7

Theorem 12 implies that for any ε2 smaller than L(ε1, n,m,M, κ, L), there exist random variables
U = V

n and U ′ = V ′

n such that

E |U ′ − 1/n| ≥ ε2/n and

E |U − 1/n| ≤ ε1/n and

EU = EU ′ = 1/n, and

EU i = EU ′i, i = 2, . . . , L, and

U,U ′ ∈
[(κ−M)

m
,
(κ+M)

m

]
.

Next, we choose the values of parameters L, κ and M so that L(ε1, n,m,M, κ, L) is maximized
while (5) hold, which by Lemma 11 will imply TV(EPoi(mU), EPoi(mU ′)) ≤ 1

20n . The choice
of the parameters differs for different regimes of m.

• First we consider the regimem < 1
4n log n. Consider any suchm and ε1 ≤ 1/8. Choose κ =

M = log n and L = 4e2 log n. One can check that the desired bound on TV distance in (5) is
satisfied for these choices of the parameters. Further, we have A = 2n logn

m −1−ε1 ≥ n logn
m ,

where we used n logn
m > 4 > 1 + ε1 in the above parameter range; and B = 1 − ε1 ≥ 1/2.

Finally, ε1 < 1/8 we have that ε1 ≤ min
{
B
4 ,

A
4

}
. Then, invoking Theorem 10 we get that

for any
ε2 ≤ L(ε1, n,m,M = log n, κ = log n,L = 4e2 log n)

and ε2
2 ≥ 1000Mm = 1000 logn

m , one cannot distinguish between 25ε1-close and ε2/2-far using
m/2 samples.

Equivalently, by rescaling the parameters, for any m < c0n log n,

ε2 ≤
1

2
L
( ε1

25
, n, 2m,M = log n, κ = log n,L = 4e2 log n

)
, (19)

and ε22
22
≥ 1000 logn

m , we can not distinguish between ε1-close and ε2-far using m samples.

Next, we show that the above statement holds even without the constrain ε22
22
≥ 1000 logn

m .

We do so by showing that even when ε22
22

< 1000 logn
m or equivalently m < 4000 logn

ε22
, we

can not distinguish between ε1-close and ε2-far using m samples, even for ε1 = 0. From
the known uniformity testing lower bound for non tolerant case, we know that there is an
absolute constant c3 > 0 such that m ≥ c3

√
n
ε22

samples are needed to distinguish correctly
between p = Unifn and ‖p− Unifn‖1 ≥ ε2 with probability ≥ 4/5. Since for n larger than
an absolute constant c4, we have c3

√
n
ε22

> 4000 logn
ε22

> m, hence m samples are insufficient
and the claim follows.

From Theorem 12 we get:

1

2
L
( ε1

25
, n, 2m,M = log n, κ = log n,L = 4e2 log n

)
≥ max

{
c1

√
ε1n

m log n
, c2

√
ε1
√
n√

m log n

}
,
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where c1 and c2 are some absolute positive constants.

From (19) and the above lower bound on L it follows that for any n > c4, for any m <
(n log n)/4 and ε1 < 1/8, such that

m < max

{
c2

1

n

log n

(ε1

ε2
2

)
, c3

2

n

log n

(ε1

ε2
2

)2
}
,

then using m samples from p one can not distinguish correctly with probability ≥ 4/5 be-
tween ‖p−Unifn‖1 ≤ ε1 and ‖p−Unifn‖1 ≥ ε2.

Observe given c1 and c2, there exist an universal constant c5 such that for any
(
ε1
ε22

)
≤

c5 log n, we have

max

{
c2

1

n

log n

(ε1

ε2
2

)
, c3

2

n

log n

(ε1

ε2
2

)2
}
≤ n log n

4
.

Therefore, for any ε1 ≤ 1
8 , n > c4 and

(
ε1
ε22

)
≤ c5 log n, then using max

{
c2

1
n

logn

(
ε1
ε22

)
, c3

2
n

logn

(
ε1
ε22

)2
}

=

Ω

(
n

logn

(
ε1
ε22

)
+ n

logn

(
ε1
ε22

)2
)

samples from p one can not distinguish correctly with proba-

bility ≥ 4/5 between ‖p−Unifn‖1 ≤ ε1 and ‖p−Unifn‖1 ≥ ε2.

• Next, we choose the parameters for the regime m > 4n log n. Note that since the theorem
statement makes no claim for the setting where m ≥ n

ε22 logn
, we can restrict our attention

to the case where m ≤ n
ε22 logn

. Furthermore, because n
ε22 logn

� n logn
64ε21

(using the fact that

ε1 ≤ ε2), we only need to consider m ≤ n logn
64ε21

. This condition on m implies that ε1 ≤
1
8

√
n logn
m . Consider any such m. Choose κ = m

n and M =
√

m logn
n and L = 4e2 log n.

Observe that for this choice M < m
n = κ, hence κ −M > 0. Then A = B = nM

m − ε1 =√
n logn
m − ε1. Since ε1 ≤ 1

8

√
n logn
m , observe that A,B ≥ 1

2

√
n logn
m and ε1 ≤ min

{
B
4 ,

A
4

}
.

Then, invoking Theorem 10 and rescaling the parameters as for the previous case, we get

ε2 ≤
1

2
L

(
ε1

25
, n, 2m,M =

√
m log n

n
, κ =

m

n
,L = 4e2 log n

)
,

and ε22
22
≥ 1000Mm = 1000

√
logn
mn , we can not distinguish between ε1−close vs ε2−far using

m samples. From Theorem (12) we get:

L

(
ε1, n,m,M =

√
m log n

n
, κ =

m

n
,L = 4e2 log n

)
≥ c6

√
ε1 ·
√
n log n√
m log n

,

where c6 is some absolute constant.

Following the similar steps as before it can be shown that for any ε1 ≤ 1
8 , n > c8 and(

ε1
ε22

)
≥ c7 log n, then using c4

6
n

logn

(
ε1
ε22

)2
samples from p one can not distinguish correctly
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with probability ≥ 4/5 between ‖p − Unifn‖1 ≤ ε1 and ‖p − Unifn‖1 ≥ ε2. Using(
ε1
ε22

)
≥ c7 log n, we get c4

6
n

logn

(
ε1
ε22

)2
= Ω

(
n

logn

(
ε1
ε22

)
+ n

logn

(
ε1
ε22

)2
)

bound on the sample

complexity.

We have so far shown the target lower bound on the sample complexity for both regimes
ε1
ε22

< c5 log n and ε1
ε22

> c7 log n for some absolute positive constants c5 and c7. To conclude
for the intermediate cases, observe that the sample complexity is an increasing function of ε1 (more
tolerance makes the problem harder) and a decreasing function of ε2. Thus, by monotonicity, the
lower bound for ε1

ε22
= c5 log n still applies to c5 log n ≤ ε1

ε22
≤ c7 log n, by relaxing the problem

to ε′1 = c5ε1
c7

. This only affects the resulting lower bound by a constant factor, and allows us to
conclude with the desired

Ω
( n

log n

(ε1

ε2
2

)2
+

n

log n

(ε1

ε2
2

))
sample complexity lower bound for the full range of parameters.

C.2. Proof of Theorem 12

We break the proof of Theorem 12 into two parts. First, we convert the primal form of the problem
into a more convenient representation via a few helpful transformations, and then take the dual
(Section C.2.1). We then lower bound the value of the dual using tools from approximation theory
(Section C.2.2).

C.2.1. TRANSFORMING THE PRIMAL

First, to simplify the optimization problem (6), notice that moment matching of all degree-L or less
moments is unaffected by translation. So if one introduces the random variables X = V − 1 and
X ′ = V ′ − 1, we see that these are supposed to be mean zero random variables over [n(κ−M)

m −
1, n(κ+M)

m −1] with matching L-th and below moments, and that distance to uniformity corresponds
to E |X| and E |X ′|.

max E |X ′| s.t. E |X| ≤ ε1 and

EX = EX ′ = 0

EXi = EX ′i, i = 2, . . . , L, and

X,X ′ ∈
[n(κ−M)

m
− 1,

n(κ+M)

m
− 1
]
. (20)

It will be useful to remove the constraint that E[X] = E[X ′] = 0. To do so, we propose the
following optimization problem without this constraint.

max E |Y ′| s.t. E |Y | ≤ ε1

2
and

EY i = EY ′i, i = 1, . . . , L, and

Y, Y ′ ∈ [−B,A] , (21)

where A = n(κ+M)
m − 1 − ε1 and B = −

(
n(κ−M)

m − 1 + ε1

)
, first defined in Equation (7). We

show the following claim.
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Lemma 22 The value of the solution of (20) is at least half the value of the solution of (21).

Proof Let Y and Y ′ be the random variables that achieve the maximum in (21). To prove the claim,
first we show that random variablesX = Y −EY andX ′ = Y ′−EY satisfy the constrains in (20).

First note that E |X| = E |Y − EY | ≤ 2E |Y | ≤ ε1. Next, using EY = EY ′, we get
EX = E[Y − EY ] = 0 and EX ′ = E[Y ′ − EY ] = 0. Since the moment matching of all
degree-L or less moments is unaffected by translation, all L moments of X and X ′ will match.
Finally, |E[Y ]| ≤ E[|Y |] ≤ ε1

2 , and Y, Y ′ ∈ [n(κ−M)
m − 1 + ε1,

n(κ+M)
m − 1− ε1] ensures X,X ′ ∈

[n(κ−M)
m − 1, n(κ+M)

m − 1].
Now to complete the proof we show that the solution of the optimization problem (20) is at least

≥ E |Y ′|
2 .

If E |Y ′| ≤ ε1, then this is obviously true as the maximum in (20) is at least ε1. If E |Y ′| ≥ ε1 then
E |X ′| = E |Y ′ − EY | ≥ E |Y ′| − E |Y | ≥ E |Y ′| − ε1

2 > E |Y ′|
2 , where we used E |Y ′| ≥ ε1 in the

last step.

Mechanically taking the dual of (21), we obtain that the dual is:

min
ε1

2
α+ z1 + z2 s.t. z1 +

L∑
i=1

cix
i ≥ |x| for all x ∈ [−B,A],

α |x| ≥
L∑
i=1

cix
i − z2 for all x ∈ [−B,A], and

α ≥ 0 . (22)

By weak duality, we know that the value of the optimal solution to (21) is upper bounded by the
value of the optimal solution to (22). However, since we seek to prove a lower bound on the value
of the optimal solution to (21), this is insufficient for our purposes. However, we show that in this
case, strong duality still holds:

Lemma 23 The value of the optimal solution to (21) is equal to the value of the optimal solution
to (22).

This follows from the classical theory of convex duality Rockafellar (1974), however, for complete-
ness we also give a self-contained proof of this fact in Section C.5.

We now make a couple of final simplifications before we lower bound the value of (22). Let
PL denote the collection of all degree-L polynomials. We reparametrize the above dual by letting
ε2 := αε1, p(x) := ε1

ε2

∑L
i=1 cix

i − z2 and z := z1 + z2.

min
ε2

2
+ z s.t. for some p(x) ∈ PL,

p(x) ≥ ε1

ε2
|x| − ε1

ε2
z for all x ∈ [−B,A], and

|x| ≥ p(x) for all x ∈ [−B,A], and

ε2 ≥ 0. (23)
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Imposing the additional constraint that z = ε2, we get the following program:

min ε2 s.t. for some p(x) ∈ PL,

p(x) ≥ ε1

ε2
|x| − ε1 for all x ∈ [−B,A], and

|x| ≥ p(x) for all x ∈ [−B,A], and

ε2 ≥ 0. (24)

Suppose ε2 = a and z = b achieve the optimal solution of (23), which is therefore a/2+b. It is easy
to verify that for z < 0 the optimization problem (23) is infeasible, hence b ≥ 0. Further, observe
that z = ε2 = max{a, b} is also a feasible solution of (23), and z + ε2/2 = max{3a/2, 3b/2},
which is at most 3 times the optimal solution of (23). Since (24) scales it down by 2/3, it follows
that the solution of the new dual (24) is at most twice the solution of the previous dual (23).

Lemma 24 The value of the solution of (6) is at least 1/4 times the value of the solution of (24).

Proof From the preceding discussion, the value of the solution of (6) is equal to the value of the
solution of (20). From Lemma 22, this value is at least is at least 1/2 times the value of the solution
of (21). From Lemma 23 the values of the solutions of (21) and (22) are equal. Furthermore, the
value of the solution of (22) is equal to the value of the solution of (23). Finally, the value of the
solution of (23) is at least 1/2 times the value of the solution of (24). Hence, the value of the solution
of (6) is at least 1/4 times the value of the solution of (24).

C.2.2. LOWER BOUNDING THE DUAL

We now establish a lower bound on the solution of the dual (Equation (24)). We assume that
parameters A,B are such that ε1 � A,B. First note that when ε2 ≤ ε1

2 , then the two conditions
are contradictory and can not be met simultaneously. Therefore, we get the lower bound:

ε2 ≥
ε1

2
. (25)

This implies that ∀x ∈ [−B,A]

p(x) ≥ 2|x| − ε1.

Combining this with constraints in the dual imply that for all x ∈ [−B,A]

|p(x)| ≤ 2|x|+ ε1.

From the above equation, for x = 0, we get |p0| ≤ ε1. Then ∀x ∈ [−B,A],

|p(x)− p0| ≤ |p(x)|+ |p0|
≤ 2|x|+ ε1 + ε1

= 2|x|+ 2ε1.

Let p(x) ∈ PL be any polynomial satisfying the constrains of the dual. Let p0 = p(0), p1 be the
coefficients of x in p(x), and p̃(x) = p(x)− p0 − p1x.
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Using the above equation,

|p̃(x)| ≤ |p(x)− p0|+ |p1x| ≤ (2 + |p1|)|x|+ 2ε1. (26)

The constraints in the dual also imply p0 ≤ 0 and p(3ε2) ≥ 2ε1. Combining these,

p(2ε2)− p0 ≥ 2ε1.

Using p̃(x) = p(x)− p1x− p0 for x = 3ε2 in the above equation

p̃(3ε2) ≥ 2ε1 − p13ε2.

Similarly, one can get
p̃(−3ε2) ≥ 2ε1 + p13ε2.

Combining the two equations we get

max{p̃(3ε2), p̃(−3ε2)} ≥ 2ε1 + |p1|3ε2. (27)

Our lower bound on the dual is the consequence of the following key lemma, which we prove in
Section C.3.

Lemma 25 Let g be a degree-L polynomial such that g(0) = g′(0) = 0. For some a < 0 < b,
γ ≥ 1 and 0 ≤ δ ≤ min

{
− a

4 ,
b
4

}
suppose |g(x)| ≤ γ|x|+ δ for all x ∈ [a, b] then

min{|x| : g(x) ≥ (γ − 1)|x|+ δ} ≥


√
δ · b−a

32L2 if δ < (b−a)
32L2√

δ ·
√
|ab|

16L if δ <
√
|ab|

16L .

The next theorem that establishes the lower bound on the dual follows by combining Equa-
tion (27), Equation (26) and Lemma 25.

Theorem 26 (Lower bound on the solution to the dual) For anyA,B > 0 and 0 < ε1 ≤ min
{
B
4 ,

A
4

}
,

the value of optimal solution of (24) is lower bounded by

ε2 ≥ max

{
1

3

√
ε1 ·

A+B

32L2
,
1

3

√
ε1 ·
√
AB

16L
,
ε1

2

}

Proof Applying Lemma 25 for g = p̃/2, γ = 1 + |p1|/2, δ = ε1, b = A, and a = −B gives

3ε2 ≥


√
ε1 · A+B

32L2 if ε1 <
(A+B)
32L2√

ε1 ·
√
AB

16L if ε1 <
√
AB

16L .

Combining the above bound with the upper bound ε2 ≥ ε1
2 in (25), and using the observations that

if ε1 ≥ (A+B)
32L2 then

√
ε1 · A+B

32L2 ≤ ε1, and if ε1 ≥
√
AB

16L then
√
ε1 ·

√
AB

16L ≤ ε1, completes the
proof.

Combining Lemma 24 and Theorem 26 proves Theorem 12.
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C.3. Proof of Lemma 25

First, we recall some useful results from approximation theory, which we then leverage to derive a
few auxiliary lemmas. Finally, using these lemmas we establish Lemma 25.

We will use the two following results, both of which bound the absolute value of derivatives
of bounded polynomials. The first is the Markov Brothers’ inequality, which gives a bound on all
derivatives of bounded polynomials.

Theorem 27 (Markov Brothers’ inequality Markoff (1892)) For any real polynomial g of degree-
L, k ≥ 0, and real numbers a and b s.t. −∞ < a < b <∞, the kth derivative of g satisfies

max
x∈[a,b]

|g(k)(x)| ≤ 2k ·
maxx∈[a,b] |g(x)|

(b− a)k
·
k−1∏
i=0

(L2 − i2)

2i+ 1
.

We next need Bernstein’s inequality, which provides a bound on the first derivative, which for some
values of x is stronger than the Markov Brothers’ inequality.

Theorem 28 (Bernstein’s inequality Bernstein (1912)) For any real polynomial g of degree-L
and real numbers −∞ < a < x < b <∞, we have

|g′(x)| ≤
L ·maxx∈[a,b] |g(x)|√

(x− b)(a− x)
.

Using Bernstein’s inequality above we can obtain the following bounds on the first and the second
derivatives, which for some range of parameters improve upon Markov Brothers’ inequality. Note
that in the following lemma we have assumed a < 0 < b.

Lemma 29 For any real polynomial g of degree-L, and real numbers a and b s.t. −∞ < a < 0 <
b <∞, the following hold

max
x∈[a/2,b/2]

|g′(x)| ≤
L ·maxx∈[a,b] |g(x)|√

|ba|/2
,

and

max
x∈[a/4,b/4]

|g′′(x)| ≤
4L(L− 1) ·maxx∈[a,b] |g(x)|

|ab|
.

Proof From Bernstein’s inequality we get

max
x∈[a/2,b/2]

|g′(x)| ≤
L ·maxx∈[a,b] |g(x)|√

|ba|/2
,

where we used (x− b)(a− x) ≥ |ab|/2 if a < 0 < b and x ∈ [a/2, b/2].
Replacing g → g′, a→ a/2 and b→ b/2 in the above equation, we get

max
x∈[a/4,b/4]

|g′′(x)| ≤
(L− 1) ·maxx∈[a/2,b/2] |g′(x)|√

|ba|/8
.

Combining the two equations proves the lemma.

Using the bounds on the derivative of the bounded functions in Theorem 27 and Lemma 29, and
a Taylor expansion, we derive the following lemma.
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Lemma 30 Let g be a degree-L polynomial such that g(0) = g′(0) = 0. Suppose that, for some
a < 0 < b, we have |g(x)| ≤ |x| for all x ∈ [a, b]. Then the following bounds hold:

|g(x)| ≤


8L2

(b−a)x
2 if x ∈ [a/4, b/4] and |x| ≤ 3(b−a)

L2

4L√
|ab|
x2 if x ∈ [a/4, b/4] and |x| ≤

√
|ab|

4L .

Proof By Taylor’s theorem, we know that

g(x) = g(0) + g′(0)x+
g′′(c)

2
x2,

where c is some number between 0 and x.
Then using g(0) = g′(0) = 0, we obtain

|g(x)| ≤ x2 ·max
z≤|x|

∣∣∣g′′(z)
2

∣∣∣. (28)

Next, let h(x) = g(x)/x. Note that h(x) is a degree-(L − 1) polynomial and max[a,b] |h(x)| ≤ 1.
From Theorem 27 and Lemma 29 it follows

max
x∈[a/2,b/2]

|h′(x)| ≤ min
{ 2L2

b− a
,

√
2 · L√
|ab|

}
,

and

max
x∈[a/4,b/4]

|h′′(x)| ≤ min
{ 4L4

3(b− a)2
,
4L2

|ab|

}
.

The following relation between the second derivative of g and the derivatives of h can be obtained
by differentiation x · h(x) twice using the chain rule:

g′′(x) = 2h′(x) + xh′′(x).

Using the bounds on the derivatives of h, for any x ∈ [a/4, b/4],

|g′′(x)| ≤ min
{ 4L2

(b− a)
+ |x| 4L4

3(b− a)2
,
2
√

2 · L√
|ab|

+ |x|4L
2

|ab|

}
.

Note that for any x ∈ [a/4, b/4] s.t. |x| ≤ 3(b−a)
L2 ,

|g′′(x)| ≤ 8L2

(b− a)
,

and similarly for any x ∈ [a/4, b/4] s.t. |x| ≤
√
|ab|

4L ,

|g′′(x)| ≤ 4L√
|ab|

.

Combining the above bounds with Equation (28) proves the lemma.

Using this, we derive the following lemma.
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Lemma 31 Let g be a degree-L polynomial such that g(0) = g′(0) = 0. Supoose that for some
a < 0 < b, γ ≥ 1 and 0 < δ ≤ min

{
− a

4 ,
b
4

}
such that

δ < max

{
(b− a)

16L2
,

√
|ab|

8L

}
,

we have |g(x)| ≤ γ|x|+ δ for all x ∈ [a, b]. Then g(x) ≤ 2γ|x| for all x ∈ [a, b].

Proof Note that |g(x)| ≤ γ|x| + δ implies that |g(x)| ≤ 2γ|x| for |x| ≥ δ
γ . We proceed by

contradiction. For contradiction, assume

max
|x|≤ δ

γ

|g(x)|
|x|

= r ≥ 1.

Consider the polynomial g̃(x) := g(x)/r. Then from the definition of r, for any x such that |x| ≤ δ
γ

it follows that
|g̃(x)| = |g(x)|/r ≤ |x|, (29)

and
|g̃(x)| = |x| (30)

for at least one x such that |x| ≤ δ
γ . To show the contradiction, in the reminder of the proof, we

show that this is impossible. For x ∈ [a, b] \ [− δ
γ ,

δ
γ ],

|g̃(x)| = |g(x)|
r
≤ |g(x)| ≤ γ|x|+ δ ≤ 2γ|x|,

where the last inequality uses the fact that for |x| ≥ δ
γ we get δ ≤ |x|. Combining with Equa-

tion (29), we get |g̃(x)| ≤ 2γ|x| for all x ∈ [a, b].
Applying Lemma 30 on g̃(x)

2γ , we get

|g̃(x)| ≤

2γ 8L2

(b−a)x
2 if x ∈ [a/4, b/4] and |x| ≤ 3(b−a)

L2

2γ 4L√
|ab|
x2 if x ∈ [a/4, b/4] and |x| ≤

√
|ab|

4L .

Recall 0 ≤ δ ≤ min
{
− a

4 ,
b
4

}
and γ ≥ 1. First we show a contradiction when δ < b−a

16L2 . In this
case, δγ ≤ δ ≤

b−a
16L2 <

3(b−a)
L2 , hence for any x such that |x| ≤ δ

γ the above equation implies that

|g̃(x)| ≤ 2γ
8L2

(b− a)
|x|2 ≤ γ 16L2

(b− a)
· |x| ·max |x| ≤ γ 16L2

(b− a)
· δ
γ

=
16L2

(b− a)
· |x| · δ < |x|,

where the last inequality uses δ < b−a
16L2 . This contradicts Equation (30).

Next we show a contradiction when δ <
√
|ab|

8L by using similar steps. In this case, δ
γ ≤ δ ≤√

|ab|
8L <

√
|ab|

4L , hence for any x such that |x| ≤ δ
γ we get

|g̃(x)| ≤ 2γ
4L√
|ab|
|x|2 ≤ γ 8L√

|ab|
· |x| ·max |x| ≤ γ 8L√

|ab|
· δ
γ

= γ
4L√
|ab|
· |x| · δ < |x|,
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where the last inequality uses δ <
√
|ab|

8L . This contradicts Equation (30).

Finally, we use Lemmas 30 and 31 to derive Lemma 25.

Proof of Lemma 25. First consider the case δ < (b−a)
16L2 . Then Lemma 31 implies g(x) ≤ 2γ|x|.

Applying Lemma 30 gives

|g(x)| ≤ 2γ
8L2

(b− a)
x2.

To prove the first bound in the lemma we show that if |x| <
√
δ · b−a

32L2 then g(x) < (γ − 1)|x|+ δ.

First we show it when γ ≤ 2. In this case, for all x such that |x| <
√
δ · b−a

32L2 ,

|g(x)| ≤ 2γ
8L2

(b− a)
x2 <

γ

2
δ < δ.

Then, we turn to the case γ ≥ 2. In this case, for all x such that |x| <
√
δ · b−a

32L2 ,

|g(x)| ≤ 2γ
8L2

b− a
x2 <

γ

2
|x| < (γ − 1)|x|,

where step the second inequality uses |x| < b−a
32L2 , which follows since |x| <

√
δ b−a

32L2 and δ < b−a
32L2 ,

and the last inequality uses γ
2 < (γ − 1), since γ ≥ 2. This completes the proof of the first upper

bound in the lemma. The second upper bound in the lemma can be shown using similar steps. �

C.4. Proof of Theorem 10

Let P(1) be the joint distribution of n independent copies of U and P(2) be the joint distribution of
n independent copies of U ′, respectively. For j = 1, 2, let (U

(j)
1 , . . . , U

(j)
n ) ∼ P(j). Define random

vectors D(j) as the `1-normalizations of these vectors:

D(j) :=

(
U

(j)
1∑n

i=1 U
(j)
i

, . . . ,
U

(j)
n∑n

i=1 U
(j)
i

)
.

Since U (j)
i ≥ 0, the vectors D(j) are distributions.

LetN (j) ∼ Poi(m
∑

i U
(j)
i ). Let (C

(j)
1 , . . . , C

(j)
n ) be the collection of random variables, whose

joint distribution conditioned on (U
(j)
1 , . . . , U

(j)
n ) and N (j) is the following multinomial distribu-

tion,

(C
(j)
1 , . . . , C(j)

n )
∣∣∣((U (j)

1 , . . . , U (j)
n

)
, N (j)

)
∼ Mult

((
U

(j)
1∑
U

(j)
i

, . . . ,
U

(j)
n∑
U

(j)
i

)
, N (j)

)
≡ Mult

(
D(j), N (j)

)
.

It follows that we can use (C
(j)
1 , . . . , C

(j)
n ) to generate up to N (j) samples from D(j). Observe

that for i ∈ [n], conditioned on the U (j)
i ’s, C(j)

i ∼ Poi(mU
(j)
i ) are independent Poisson random

variables.
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Define the events

E(1) =

{∣∣∣∣∣
n∑
i=1

U
(1)
i − 1

∣∣∣∣∣ ≤ 1

10

} ⋂{
n∑
i=1

∣∣∣∣U (1)
i −

1

n

∣∣∣∣ ≤ 10ε1

}
,

and

E(2) =

{∣∣∣∣∣
n∑
i=1

U
(2)
i − 1

∣∣∣∣∣ ≤ ε2

10

} ⋂{
n∑
i=1

∣∣∣∣U (2)
i −

1

n

∣∣∣∣ ≥ 9ε2

10

}
.

We bound the probability of the complement events E(1) and E(2). The following general lemma
will be useful, which we prove using Chebyshev’s inequality.

Lemma 32 Let X1, . . . , Xn be n i.i.d. random variables over [a, b] for some 0 ≤ a < b and
E[Xi] = µ. Then

Pr

[∣∣∣∣∣∑
i

Xi − nµ

∣∣∣∣∣ ≥√10nµ(b− a)

]
≤ 1

10

Proof The following bound on the variance of a random variable will be useful. This bound has
been proved in many previous works including Bhatia and Davis (2000). We provide the proof for
completeness.

Theorem 33 Let X be any random variable over [a, b], then Var(X) ≤ (b− E[X])(E[X]− a).

Proof Let Y = X−a
b−a . Note Y ∈ [0, 1]. Then

Var(Y ) = E[Y 2]− (E[Y ])2 ≤ E[Y ]− (E[Y ])2 = E[Y ](1− E[Y ]),

where we used the fact Y 2 ≤ Y , since Y ∈ [0, 1]. Then using the relations Var(Y ) = Var(X)
(b−a)2

and

E[Y ] = E[X]−a
b−a completes the proof.

From Theorem 33
Var(Xi) ≤ (b− µ)(µ− a) ≤ (b− a)µ,

where we used 0 ≤ a ≤ µ ≤ b. Then Var(
∑
Xi) ≤ nµ(b− a). From Chebyshev’s inequality

Pr

[∣∣∣∣∣∑
i

Xi −
∑
i

E[Xi]

∣∣∣∣∣ ≥√10nµ(b− a)

]
≤ 1

10
.

First we bound the probability of E(1). Using the union bound

Pr[E(1)] ≤ Pr

[∣∣∣∣∣
n∑
i=1

U
(1)
i −

1

n

∣∣∣∣∣ ≥ 1

10

]
+ Pr

[
n∑
i=1

∣∣∣∣U (1)
i −

1

n

∣∣∣∣ ≥ 10ε1

]
.
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We next upper bound both these terms, starting with the former. Note that U (1)
i ∈ [a, b] and

E
[
U

(1)
i

]
= 1

n . Applying Lemma 32, we obtain

Pr

[∣∣∣∣∣∑
i

U
(1)
i − 1

∣∣∣∣∣ ≥√10(b− a)

]
≤ 1

10
,

which, since 10(b− a) ≤ ε22
100 ≤

1
100 , upper bounds the first term in the expression.

We now bound the second term using linearity of expectations and Markov’s inequality,

Pr

[
n∑
i=1

∣∣∣∣U (1)
i −

1

n

∣∣∣∣ ≥ 10ε1

]
≤

∑
i E
[∣∣∣U (1)

i −
1
n

∣∣∣]
10ε1

=
nE
[∣∣U − 1

n

∣∣]
10ε1

≤ 1

10
.

Combining the bounds on both terms we get:

Pr[E(1)] ≤ 2

10
.

Next, we bound the probability of E(2).

Pr[E(2)] ≤ Pr

[∣∣∣∣∣
n∑
i=1

U
(2)
i − 1

∣∣∣∣∣ ≥ ε2

10

]
+ Pr

[
n∑
i=1

∣∣∣∣U (2)
i −

1

n

∣∣∣∣ ≤ 9ε2

10

]
.

Again, note that U (2)
i ∈ [a, b] and E

[
U

(2)
i

]
= 1

n . Applying Lemma 32, we obtain

Pr

[∣∣∣∣∣∑
i

U
(2)
i − 1

∣∣∣∣∣ ≥√10(b− a)

]
≤ 1

10
,

which, since 10(b− a) ≤ ε22
100 , upper bounds the first term in the expression.

Next, we bound the second term. Recall that random variables U (2)
i are independent copies of

U ′. Since U ′ ∈ [a, b] and a ≤ 1
n ≤ b, then 0 ≤

∣∣U ′ − 1
n

∣∣ ≤ (b − a). Applying Lemma 32, we
obtain

Pr

[∑
i

∣∣∣∣U (2)
i −

1

n

∣∣∣∣ ≤ nE[∣∣∣∣U ′ − 1

n

∣∣∣∣]−
√

10n(b− a)E
[∣∣∣∣U ′ − 1

n

∣∣∣∣]
]
≤ 1

10
.

Since 10(b− a) ≤ ε22
100 ≤

ε2
100 and E

[∣∣U ′ − 1
n

∣∣] ≥ ε2
n , then

nE
[∣∣∣∣U ′ − 1

n

∣∣∣∣]−
√

10n(b− a)E
[∣∣∣∣U ′ − 1

n

∣∣∣∣] ≥ nE[∣∣∣∣U ′ − 1

n

∣∣∣∣]− nE
[∣∣U ′ − 1

n

∣∣]
10

≥ 9ε2

10
.

Combining the above two equations we get

Pr

[∑
i

∣∣∣∣U (2)
i −

1

n

∣∣∣∣ ≤ 9ε2

10

]
≤ 1

10
.
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Combining the bounds on both terms:

Pr[E(2)] ≤ 2

10
.

Note that the event E(1) implies that

‖D(1) −Unifn‖1 =
n∑
i=1

∣∣∣∣∣ U
(1)
i∑
i U

(1)
i

− 1

n

∣∣∣∣∣
≤

n∑
i=1

(∣∣∣∣∣ U
(1)
i∑
i U

(1)
i

− 1

n
∑

i U
(1)
i

∣∣∣∣∣+

∣∣∣∣∣ 1n − 1

n
∑

i U
(1)
i

∣∣∣∣∣
)

=

∑
i |U

(1)
i − 1/n|∑
i U

(1)
i

+

∣∣∣∣∣1− 1∑
i U

(1)
i

∣∣∣∣∣
=

∑
i |U

(1)
i − 1/n|∑
i U

(1)
i

+

∣∣∣∑i U
(1)
i − 1

∣∣∣∑
i U

(1)
i

≤ 2 ·
∑

i |U
(1)
i − 1/n|∑
i U

(1)
i

≤ 2 · 10ε1

1− 1/10
≤ 200ε1

9
≤ 25ε1. (31)

Similarly, event E(2) implies that

‖D(2) −Unifn‖1 =

n∑
i=1

∣∣∣∣∣ U
(2)
i∑
i U

(2)
i

− 1

n

∣∣∣∣∣
≥

n∑
i=1

(∣∣∣∣∣ U
(2)
i∑
i U

(2)
i

− 1

n
∑

i U
(2)
i

∣∣∣∣∣−
∣∣∣∣∣ 1n − 1

n
∑

i U
(2)
i

∣∣∣∣∣
)

=

∑
i |U

(2)
i − 1/n|∑
i U

(2)
i

−

∣∣∣∣∣1− 1∑
i U

(2)
i

∣∣∣∣∣
=

∑
i |U

(2)
i − 1/n|∑
i U

(2)
i

−

∣∣∣∑i U
(2)
i − 1

∣∣∣∑
i U

(2)
i

≥ (9ε2/10)− (ε2/10)

1 + ε2/10
≥ 8ε2

11
≥ ε2/2, (32)

where we used the triangle inequality and ε2 ≤ 1.
For j = 1, 2, let C(j) denote the distribution of (C

(j)
1 . . . C

(j)
n ), and let P(j)

|E(j) , D
(j)

|E(j) and C(j)

|E(j)

denote the distributions of (U
(j)
1 . . . U

(j)
n ),D(j), and (C

(j)
1 . . . C

(j)
n ), respectively conditioned on the

event E(j).
In light of Equations (31) and (32), to prove the lemma it suffices to show no tester using m/2

samples from p correctly identifies whether p = D(1)

|E(1) or p = D(2)

|E(2) with probability ≥ 4/5. To
prove by contradiction, suppose there is such a tester T .
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Event E(j) implies that
∑
U

(j)
i ≥ 9

10 . Hence, for any given (U
(j)
1 . . . U

(j)
n ) ∼ P(j)

|E(j) , we have

Pr(N (j) ≥ m/2) = Pr[Poi(m
∑

U
(j)
i ) ≥ m/2] ≥ Pr[Poi(0.9m) ≥ m/2],

which is at least 0.95 for m larger than some absolute constant c.
If N (j) ≥ m/2, then we can simulate m/2 samples from D(j) using (C

(j)
1 . . . C

(j)
n ) and use

the tester T on these m/2 samples. Hence, using this tester we can correctly identify whether
(C1 . . . Cn) ∼ C(1)

|E(1) or (C1 . . . Cn) ∼ C(2)

|E(2) with probability ≥ 0.95
(

4
5

)
= 0.76.

Next, we show that the TV distance between the distributions C(1)

|E(2) and C(2)

|E(2) is small.

TV
(
C(1)

|E(1) , C
(2)

|E(2)

)
≤ Pr[E(1)] + TV

(
C(1), C(2)

)
+ Pr[E(2)]

= TV

(
E
P(1)

(
Poi(mU

(1)
1 ), . . . ,Poi(mU (1)

n )
)
, E
P(2)

(
Poi(mU

(1)
1 ), . . . ,Poi(mU (1)

n )
))

+ Pr[E(1)] + Pr[E(2)]

≤ nTV
(
EPoi(mU), EPoi(mU ′)

)
+ Pr[E(1)] + Pr[E(2)]

≤ n · 1

20n
+ Pr[E(1)] + Pr[E(2)] ≤ 9

20
.

This implies that for any tester the probability of correctly distinguishing C(1)

|E(1) and C(2)

|E(2) is at most
1+9/20

2 = 29/40 = 0.725, which is a contradiction since 0.725 < 0.76.

C.5. Proof of Lemma 23

For any finite subset S of ⊂ [−B,A], consider the optimization problem

max E |U ′| s.t. E |U | ≤ ε1

2
and

EU i = EU ′i, i = 1, . . . , L, and

U,U ′ ∈ S , (33)

and its dual

min
ε1

2
α+ z1 + z2 s.t. z1 +

L∑
i=1

cipi(x) ≥ |x| for all x ∈ S,

α |x| ≥
L∑
i=1

cipi(x)− z2 for all x ∈ S, and

α ≥ 0 . (34)

For a given S , let PS and DS be the optimal solution to the primal and dual, respectively. Since
S is finite, the distribution of both U U ′ is a finite vector of size S, then from the strong duality for
linear programming we have PS = DS .

Let P and D denote the value of optimal solution of (21) and (22), respectively. From the weak
duality we have P ≤ D.

For any S, the corresponding optimization problem (33) can be obtained by imposing the con-
straints Pr[U ∈ [−B,A] \ S] = Pr[U ′ ∈ [−B,A] \ S] = 0 in (21). Since upon imposing the
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additional constrains, the value of the optimal solution in (21) would only decrease, hence PS ≤ P .
This implies for all finite subset S of ⊂ [−B,A], the following holds P ≥ PS = DS .

Let Sδ = {x : x = −B + kδ for k ∈ {0, 1, . . . , bA+B
δ c}}. Observe that for all δ > 0, Sδ is a

finite subset of [−B,A]. Taking the supremum over Sδ as δ → 0 ,

P ≥ sup
δ>0

DSδ .

Using the continuity of functions xi and |x| and elementary real analysis it can be verified that

sup
δ>0

DSδ = D.

Hence, we get P ≥ D. Combining this with P ≤ D proves the lemma. �

Appendix D. Instance-optimal tolerant testing

In this appendix, we establish our “instance-optimal” tolerant identity bounds (Theorem 3); that
is, sample complexity bounds parameterized by the reference distribution q itself, instead of the
domain size n. We do so by establishing separately the lower bound (Theorem 38) and upper bound
(Theorem 39) parts of the statement, in subsection D.1 and subsection D.2.3

In order to formally state our results, a few definitions will be useful. For any distribution q
over a set [n] and any subset S ⊆ [n], let ‖qS‖∞ := maxi∈S qi, and ρq,S :=

⌊
q(S)

2‖qS‖∞

⌋
, where as

usual q(S) =
∑

i∈S qi. Moreover, for any x ≥ 0, let q−x denote the vector obtained by iteratively
removing the smallest entries from q and stopping just before the sum of the removed elements
exceed x. Finally, recall that for any integer t ≥ 1, Unift denotes the uniform distribution over [t].

D.1. Lower bound

Given a reference distribution q, 0 ≤ ε1 < ε2 ≤ 1 and δ > 0, let SC(q, ε1, ε2, δ) denote the mini-
mum number of samples (in the Poissonized sampling model) any tester requires from an unknown
distribution p to correctly distinguish between ‖p− q‖1 ≤ ε1 and ‖p− q‖1 ≥ ε2 with probability at
least 1− δ.

Our main tool will be the following theorem relating the lower bound of testing uniform distri-
butions to the lower bound of testing for general q.

Theorem 34 For any distribution q over [n], subset S ⊆ [n] such that ρq,S ≥ 1, 0 ≤ ε1 < ε2 and
δ > 0,

SC(q, ε1, ε2, δ) ≥
4

q(S)
· SC(Unifρq,S ,

4ε1
q(S) ,

4ε2
q(S) , δ).

Proof For any S ⊆ [n] and any distribution p over [ρq,S ], we derive a distribution pnew over [n]

such that ‖pnew − q‖1 = q(S)
4 ‖p − Unifρq,S‖1 and, for any m > 0, Poi(m) samples from p can

be used to generate Poi (4m/q(S)) samples from pnew, with the knowledge of just q and not of p
and pnew. Then the statement of the theorem follows, since to distinguish ‖p − Unifρq,S‖1 ≤

4ε1
q(S)

3. As mentioned earlier, we slightly abuse the Õ and Ω̃ notation in those two statements to also hide logarithmic factors
in n, not just in the argument.
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and ‖p − Unifρq,S‖1 ≤
4ε2
q(S) one can use samples from p to generate samples from pnew and test

‖pnew − q‖1 ≤ ε1 vs ‖pnew − q‖1 ≥ ε2 instead.

The rest of the proof focuses on obtaining such a distribution pnew.
Fix any S is a subset of [n] such that ρq,S ≥ 1, and let ‖qS‖∞ = maxi∈S qi. Consider a partition

of S into S1, S2, . . . , S` (for some ` ≥ 1) such that q(Sj) ∈ [‖qS‖∞, 2‖qS‖∞) for every j ∈ [`].
Such partition exists, and can be obtained by a greedy construction. Since the mass of each Sj is
less than 2‖qS‖∞, we also have that ` > q(S)

2‖qS‖∞ ≥ ρq,S .
Given a distribution p on [ρq,S ], we define pnew as follows. For every 1 ≤ j ≤ ρq,S (i.e., the first

ρq,S subsets), each element i ∈ Sj is given the probability

pnew
i = qi + qi ·

q(S)

4q(Sj)

(
pj −

1

ρq,S

)
(35)

while every i ∈
⋃
j>ρq,S

Sj is assigned the probability pnew
i = qi. Next we show that pnew is indeed

a distribution, and can be sampled given samples from p and knowledge of q only.

• For i /∈
⋃
j≤ρq,S Sj , since pnew

i = qi, we have pnew
i ≥ 0. Moreover, the count Poi(mqi) can

clearly be generated with the knowledge of q,m only.

• For j ≤ ρq,S and any element i ∈ Sj , note that

pnew
i = qi+qi

q(S)

4q(Sj)

(
pj −

1

ρq,S

)
≥ qi−qi

q(S)

4q(Sj)
· 1

ρq,S
≥ qi−qi

q(S)

4‖qS‖∞
· 1

ρq,S
≥ qi−qi

ρq,S + 1

2ρq,S
≥ 0.

Using the standard properties of Poisson processes it is easy to see that for any j ≤ ρq,S , a
sample from Poi(mpj) and the knowledge of q suffice to generate Poi( 4m

q(S)p
new
i ) samples for

each i ∈ Sj .

• Finally,

∑
i∈[n]

pnew
i =

∑
i∈[n]

qi +
∑
j≤ρq,S

q(Sj)
q(S)

4q(Sj)

(
pj −

1

ρq,S

)
= 1 +

q(S)

4

 ∑
j≤ρq,S

pj − 1

 = 1.

This shows that pnew is indeed a distribution.

To complete the proof, it only remains to relate the `1 distances, which we do now.∑
i∈[n]

|pnew
i −qi| =

∑
j≤ρq,S

∑
i∈Sj

qi
q(S)

4q(Sj)

∣∣∣∣pj − 1

ρq,S

∣∣∣∣ =
q(S)

4

∑
j≤ρq,S

∣∣∣∣pj − 1

ρq,S

∣∣∣∣ =
q(S)

4
‖p−Unifρq,S‖1 ,

as claimed.

The lower bound from Theorem 7 implies that for any subset S such that ρq,S ≥ 2 and 0 ≤ 4ε1
q(S) <

4ε2
q(S) ≤ c (for some universal constant c > 0),

SC(Unifρq,S ,
4ε1

q(S)
,

4ε2

q(S)
, 4/5) = Ω

(
q(S) · ρq,S

log n

(ε1

ε2
2

)
+
q(S)2ρq,S

log n

(ε1

ε2
2

)2
)
.

Combining this bound with the above theorem and using the observation that if ρq,S ≤ 2 then
ρq,S − 2 ≤ 0 and ρq,S · q(S) ≤ 0, we get:
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Corollary 35 For any distribution q over [n], 0 ≤ ε1 < ε2 < 1, and some universal constant
c > 0,

SC(q, ε1, ε2, 4/5) ≥ Ω

(
max

S⊆[n]:q(S)≥4ε2/c,

(
(ρq,S − 2) · 1

log n

(ε1

ε2
2

)
+ (ρq,S − 2) · 1

log n

(ε1

ε2
2

)2
))

.

We would like to relate this bound, which involves a maximum over subsets S and the quantity ρq,S ,
to a more interpretable expression involving the 0- and 1/2-quasinorms of q, as stated in Theorem 3.
Our next two lemmas will allow us to do so.

Lemma 36 For any x ∈ (0, 1) such that ‖q−x‖0 > 1, there exists some i∗ ∈ [n] such that for A :=

{j : qj ≤ q∗i } the following holds: (i) maxj∈A qj = qi∗ , (ii) q(A) ≥ x and (iii) q(A)
qi∗
≥ ‖q−x‖0−1

ln(1/x) .

Proof Without loss of generality, we can assume that the distribution q = (q1, q2, ..., qn) is non-
increasing, that is that q1 ≥ q2 ≥ .... ≥ qn. This in particular implies that ‖q−x‖0 = max{i :∑

j≥i qj ≥ x}.
Note that for any i∗ ∈ [n] property (i) holds trivially, and property (ii) holds for any i∗ ≤ ‖q−x‖0,

as q(A) =
∑

j∈A qj =
∑

j:qj≤qi∗ qj ≥
∑

j:j≥i∗ qj ≥
∑

j:j≥‖q−x‖0 qj ≥ x.
To complete the proof, it thus suffices to establish (iii) for some i∗ ≤ ‖q−x‖0; that is, to find

i∗ ≤ ‖q−x‖0 such that ∑
j∈A qj

qi∗
≥
∑

j≥i∗ qj

qi∗
≥ ‖q−x‖0 − 1

ln(1/x)
.

Since if ‖q−x‖0−1
ln(1/x) ≤ 1 this trivially holds for every i∗ ≤ ‖q−x‖0, in what follows we assume

‖q−x‖0−1
ln(1/x) > 1.

Suppose by contradiction that for every i ≤ ‖q−x‖0, we have
∑
j≥i qj
qi

≤ ‖q−x‖0−1
ln(1/x) ; equivalently,

that qi ≥ (
∑

j≥i qj)
ln(1/x)
‖q−x‖0−1 . Hence,

∑
j≥i+1 qj = (

∑
j≥i qj) − qi ≤ (

∑
j≥i qj)

(
1− ln(1/x)

‖q−x‖0−1

)
.

By induction, this gives

∑
j≥‖q−x‖0

qj ≤

∑
j≥1

qj

(1− ln(1/x)

‖q−x‖0 − 1

)‖q−x‖0−1

=

(
1− ln(1/x)

‖q−x‖0 − 1

)‖q−x‖0−1

< e− ln(1/x) = x ,

where we used that 0 ≤ 1− u < e−u for u ∈ (0, 1). But, by definition
∑

j≥‖q−x‖0 qj ≥ x: this is a
contradiction, concluding the proof.

Lemma 37 For any distribution q over [n] and x ∈ (0, 1), maxS⊆[n]:q(S)≥x ρq,S ≥
‖q−x‖1/2

(log(n/x)+1)2
−

4.

Proof Let D = max{S : q(S) ≤ x} be a largest subset that has mass ≤ x under q. From the
definition of D it is not hard to see that we can choose D such that mini∈[n]\D qi ≥ maxi∈D qi, and

x <
∑
i∈D

qi + min
i∈[n]\D

qi ≤ (D + 1) min
i∈[n]\D

qi ≤ n min
i∈[n]\D

qi,

therefore, mini∈[n]\D qi >
x
n .
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Next, we perform a “bucketing” of the remaining elements; that is, we partition [n]\D in subsets
so that the probability assigned by q to any two elements in the same subset differ by at most a factor
2. Let ` = blog(nx )c+ 1 and for j ∈ [`], let

Dj :=

{
i ∈ [n] \D : qi ∈

(
1

2j
,

1

2j−1

]}
.

We can write

‖q−x‖1/2 =

∑
j∈[`]

∑
i∈Dj

q
1/2
i

2

≤ `2 max
j∈[`]

∑
i∈Dj

q
1/2
i

2

≤ `2 max
j∈[`]
|Dj | · q(Dj), (36)

the last inequality being Cauchy–Schwarz. Let j∗ ∈ [`] be the index maximizing the term on the
left, and choose S = Dj∗∪D. SinceDj∗ is non-empty, from the definition ofD, we have q(S) ≥ x.
Further,

ρq,S =

⌊
q(S)

2‖qS‖∞

⌋
=

⌊ ∑
i∈Dj∗∪D qi

2 maxi∈Dj∗∪D qi

⌋
≥

⌊ ∑
i∈Dj∗ qi

2 maxi∈Dj∗ qi

⌋
≥
⌊
|Dj∗ | · 2−j

∗

2 · 2−j∗+1

⌋
≥ |Dj∗ |

4
− 1.

(37)
Putting together (36) and (37), we get

‖q−x‖1/2
`2

≤ |Dj∗ | · q(Dj∗) ≤ |Dj∗ | · q(S) ≤ (ρq,S + 4)(q(S)) ≤ ρq,S · q(S) + 4

which concludes the proof.

Combining Corollary 35 and the above two lemmas for x = 4ε2/c, for some universal constant
c > 0, any distribution q over [n], 0 ≤ ε1 < ε2 < c/4,

SC(q, ε1, ε2, 4/5) ≥ Ω

((‖q−4ε2/c‖0
ln(c/4ε2)

− 3

)
· 1

log n

(ε1

ε2
2

)
+

( ||q−4ε2/c||1/2
log2(nc/4ε2)

− 6

)
· 1

log n

(ε1

ε2
2

)2
)
.

By combining the above lower bound with previously known lower bound Ω(
||q−c′ε2 ||2/3−1

ε22
) for

non-tolerant identity testing from Valiant and Valiant (2014), where c′ > 0 is an absolute constant,
we obtain:

Theorem 38 For any distribution q over [n], 0 ≤ ε1 < ε2 < c/4, for some universal constant
c > 0,

SC(q, ε1, ε2, 4/5) ≥ Ω̃

(
‖q−4ε2/c‖0

(ε1

ε2
2

)
+ ||q−4ε2/c||1/2

(ε1

ε2
2

)2
+
||q−4ε2/c||2/3

ε2
2

)
−O

(
1

ε2
2

)
.

This establishes the lower bound part of Theorem 3.
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D.2. Upper bound

The proof of our instance-optimal upper bound follows the same outline as (Diakonikolas and Kane,
2016, Proposition 2.12), yet the extension to tolerant testing requires a significantly more detailed
argument.

Theorem 39 (Identity testing) Let q be a known reference distribution and p be an . There is a
computationally efficient algorithm with the following guarantee. Given a known reference distri-
bution q over [n], as well as parameters ε1, ε2 such that 0 ≤ ε2 ≤ 1 and 0 ≤ ε1 ≤ c ε2

log(n/ε2) (where
c > 0 is an absolute constant), the algorithm takes

Õ

(
‖q−ε2/20‖ 1

2

(ε1

ε2
2

)2
+ ‖q−ε2/20‖0

(ε1

ε2
2

)
+
‖q−ε2/20‖ 2

3

ε2
2

)
.

samples from an unknown distribution p over [n] and distinguishes between ‖p − q‖1 ≤ ε1 and
‖p− q‖1 ≥ ε2 with probability at least 4/5.

Proof Let D = argmax{S :
∑

i∈S qi ≤ ε2/20} be a largest subset that has mass ≤ ε2/20. From
the definition of D it is easy to see that we can choose D such that mini∈[n]\D qi ≥ maxi∈D qi, and
thus

ε2

20
<
∑
i∈D

qi + min
i∈[n]\D

qi ≤ (D + 1) min
i∈[n]\D

qi ≤ n min
i∈[n]\D

qi,

which implies that mini∈[n]\D qi >
ε2

20n . Moreover, given the full description of q, this set D can
be efficiently computed. We then (as in the lower bound section) “bucket” the remaining elements
[n] \ D into disjoint subsets so that the probability assigned by q to any two elements in the same
subset differ by at most a factor 2. That is, for ` := blog(20n

ε2
)c+ 1 and j ∈ [`], we let

Dj :=

{
i ∈ [n] \D : qi ∈

(
1

2j
,

1

2j−1

]}
. (38)

We denote by pj and qj the conditional distributions on Dj induced by p and q, respectively. With
this in hand, we get the following:

Claim 40 If ‖p− q‖1 ≤ ε1, then all three conditions below hold simultaneously:

1. p(D) ≤ ε1 + ε2
20 and

2. for every j ∈ [`], |p(Dj)− q(Dj)| ≤ ε1, and

3. for every j ∈ [`] , ‖pj − qj‖1 ≤ 2ε1
q(Dj)

.

Proof We prove the claim by showing that if any of the three conditions fails to hold then we must
have ‖p− q‖1 ≥ ε1. Note that, by the triangle inequality,

‖p− q‖1 =
∑
i∈D
|pi − qi|+

∑̀
j=1

∑
i∈Dj

|pi − qi| ≥ |p(D)− q(D)|+
∑̀
j=1

|p(Dj)− q(Dj)|.
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Recalling that q(D) ≤ ε2
20 , it is easy to see that if either of the first two conditions fails to hold, the

above inequality implies that ‖p− q‖1 ≥ ε1. Turning to the third condition, we can write

‖pj − qj‖1 =
∑
i∈Dj

∣∣∣∣ pi
p(Dj)

− qi
q(Dj)

∣∣∣∣ ≤ ∑
i∈Dj

∣∣∣∣ pi
q(Dj)

− qi
q(Dj)

∣∣∣∣+
∑
i∈Dj

∣∣∣∣ pi
p(Dj)

− pi
q(Dj)

∣∣∣∣
=

∑
i∈Dj |pi − qi|+ |p(Dj)− q(Dj)|

q(Dj)
≤

2
∑

i∈Dj |pi − qi|
q(Dj)

≤ 2‖p− q‖1
q(Dj)

,

which shows that if the third item fails to hold for some j, then ‖p− q‖1 > ε1.

The next claim then provides a qualitatively converse statement.

Claim 41 Suppose that p satisfies all three conditions below:

1. p(D) ≤ ε2
5 ,

2. for every j ∈ [`], |p(Dj)− q(Dj)| ≤ ε2
10` , and

3. for every j ∈ [`] such that q(Dj) ≥ ε2
5` , ‖pj − qj‖1 ≤ ε2

5`q(Dj)
.

Then, we have ‖p− q‖1 ≤ ε2.

Proof Suppose that the three conditions hold. By the triangle inequality, we have

‖p− q‖1 =
∑
i∈D
|pi − qi|+

∑̀
j=1

∑
i∈Dj

|pi − qi|

≤ p(D) + q(D) +
∑̀
j=1

∑
i∈Dj

q(Dj)

∣∣∣∣ pi
q(Dj)

− qi
q(Dj)

∣∣∣∣
≤ p(D) +

ε2

20
+
∑̀
j=1

∑
i∈Dj

q(Dj)

∣∣∣∣ pi
p(Dj)

− qi
q(Dj)

∣∣∣∣+
∑̀
j=1

∑
i∈Dj

q(Dj)

∣∣∣∣ pi
p(Dj)

− pi
q(Dj)

∣∣∣∣
≤ p(D) +

ε2

20
+
∑̀
j=1

q(Dj)‖pj − qj‖1 +
∑̀
j=1

|p(Dj)− q(Dj)|

≤ ε2

5
+
ε2

20
+

` · ε2

5`
· 2 +

∑̀
j=1

q(Dj) ·
ε2

5`q(Dj)

+ ` · ε2

10`
< ε2 ,

where we used the three conditions for the second-to-last inequality.

Given the above claims, we can describe our testing algorithm. First, the algorithm computes
the setD, the value `, and the bucketing of [n]\D intoD1, . . . , D`. Then, it runs a total of (at most)
2`+ 1 sub-tests, which we will detail momentarily:

(1) Distinguish p(D) < ε2
20 + ε1 (accept) from p(D) ≥ ε2

5 (reject),
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(2) For every j ∈ [`], distinguish |p(Dj) − q(Dj)| ≤ ε1 (accept) from |p(Dj) − q(Dj)| ≥ ε2
10`

(reject), and

(3) For every j ∈ [`] such that q(Dj) ≥ ε2
5` , distinguish ‖pj − qj‖1 ≤ 2ε1

`q(Dj)
(accept) from

‖pj − qj‖1 ≥ ε2
5`q(Dj)

(reject).

If all the above testers accept, the overall tester accepts (i.e., outputs ‖p − q‖1 ≤ ε1); otherwise, it
rejects (i.e., outputs ‖p− q‖1 ≥ ε2).

From Claims 40 and 41, it is not hard to see that if ε1 ≤ ε2/(40`) and all the above testers give
correct outputs with probability at least 1− 1

5(2`+1) each, then we correctly distinguish ‖p−q‖1 ≤ ε1

and ‖p− q‖1 ≥ ε2 with probability at least 1− 1/5 = 4/5 (by a union bound). We now proceed to
describe how those tests are implemented.

• Using O
(

log(1/`)
(ε2/`)2

)
= O

(
`2log(1/`)

ε22

)
samples from p one can estimate p(D) and p(Dj) for

every j ∈ [`] to an additive ε2/(20`) with probability at least 1 − 1
5(2`+1) each, which gives

us the testers for (1) and (2).

• Theorem 5 provides a tester that, for any fixed j, distinguishes between ‖pj − qj‖1 ≤ 2ε1
`q(Dj)

and ‖pj − qj‖1 ≥ ε2
5`q(Dj)

with probability of success ≥ 4/5 and uses

O

(
|Dj |

(ε1(` · q(Dj))

ε2
2

)2
+ |Dj |

(ε1(`q(Dj)

ε2
2

)
+

(` · q(Dj))
2
√
|Dj |

ε2
2

)

samples from pj . By standard amplification arguments one can achieve a probability of suc-
cess of 1− 1

10(2`+1) at the cost of a multiplicativeO(log(1/`)) factor in the sample complexity.

To use this in order to obtain the tests required for (3), note that for any j ∈ [`] such that
q(Dj) ≥ ε2

5` if |p(Dj) − q(Dj)| ≥ ε2
10` then the corresponding test from (2) already outputs

reject with high probability; so we can assume that p(Dj) ≥ q(Dj) − ε2
10` ≥ q(Dj)/2.

In this case for any m > 0, using m samples from p, we can get Ω(mp(Dj)/ log `) =
Ω(mq(Dj)/ log `) samples from pj with probability at least 1 − 1/(10`2). Note that we can
use the same overall set of m samples from p to obtain our mj = Ω(mq(Dj)/ log `) samples
from every pj , j ∈ [`].

This gives us the testing algorithms for (3).

Combining these bounds, we get the following upper bound on the sample complexity:

O
(
`2 log `

ε2
2

)
+ max

j∈`

log `

q(Dj)
· O

(
|Dj |

(ε1(` · q(Dj))

ε2
2

)2
+ |Dj |

(ε1(` · q(Dj))

ε2
2

)
+

(` · q(Dj))
2
√
|Dj |

ε2
2

)

= Õ
(

1

ε2
2

)
) + max

j∈`
Õ

(
|Dj |q(Dj)

(ε1

ε2
2

)2
+ |Dj |

(ε1

ε2
2

)
+
q(Dj)

√
|Dj |

ε2
2

)

= Õ
(

1

ε2
2

)
) + max

j∈`
Õ

(
|Dj |22−j

(ε1

ε2
2

)2
+ |Dj |

(ε1

ε2
2

)
+

2−j(|Dj |)3/2

ε2
2

)
,
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where the last line uses the definition of Dj in (38) (the “bucketing”) to relate q(Dj) to |Dj |.
To conclude, we observe that

‖q−ε2/20‖0 = n− |D| ≥ max
j∈[`]
|Dj |

‖q−ε2/20‖ 1
2

=
(∑
j∈[`]

∑
i∈Dj

q
1/2
i

)2 ≥ max
j∈[`]

(|Dj |2−j/2)2.

‖q−ε2/20‖ 2
3

=
(∑
j∈[`]

∑
i∈Dj

q
2/3
i

)3/2 ≥ max
j∈[`]

(|Dj |2−2j/3)3/2.

Combining the above four equations, and using ‖q−ε2/20‖ 2
3

= Ω(1), we get the following upper
bound on the sample complexity:

Õ

(
‖q−ε2/20‖ 1

2

(ε1

ε2
2

)2
+ ‖q−ε2/20‖0

(ε1

ε2
2

)
+
‖q−ε2/20‖ 2

3

ε2
2

)
.

This concludes the proof of the theorem.
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