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Abstract

We consider the problem of controlling an unknown linear dynamical system under a stochastic
convex cost and full feedback of both the state and cost function. We present a computationally
efficient algorithm that attains an optimal VT regret-rate compared to the best stabilizing linear
controller in hindsight. In contrast to previous work, our algorithm is based on the Optimism in the
Face of Uncertainty paradigm. This results in a substantially improved computational complexity
and a simpler analysis.

1. Introduction

Adaptive control, the task of regulating an unknown linear dynamical system, is a classic control-
theoretic problem that has been studied extensively since the 1950s (e.g., Bertsekas, 1995). Classic
results on adaptive control typically pertain to the asymptotic stability and convergence to the optimal
controller while contemporary research focuses on regret minimization and finite-time guarantees.

In linear control, both the state and action are vectors in Euclidean spaces. At each time step, the
controller views the current state of the system, chooses an action, and the system transitions to the
next state. The latter is chosen via a linear mapping from the current state and action and is perturbed
by zero-mean i.i.d. noise. The controller also incurs a cost as a function of the instantaneous state
and action. In classic models, such as the Linear-Quadratic Regulator (LQR), the cost function is
quadratic. A fundamental result on LQR states that, when the model parameters are known, the
policy that minimizes the steady-state cost takes a simple linear form; namely, that of a fixed linear
transformation of the current state (see Bertsekas, 1995). In more modern formulations, the cost can
be any convex Lipschitz function of the state-action pair, and the controller has a no-regret guarantee
against the best fixed linear policy (e.g., Agarwal et al., 2019a,b; Simchowitz et al., 2020; Cassel
and Koren, 2020).

In this paper we study linear control in a challenging setting of unknown dynamics and unknown
stochastic (i.i.d.) convex costs. For the analogous scenario in tabular reinforcement learning, efficient
and rate-optimal regret minimization algorithms are well-known (e.g., Auer et al., 2008). However,
similar results for adaptive linear control seem significantly more difficult to obtain. Prior work
in this context has established efficient VT-regret algorithms that are able to adapt to adversarially
varying convex costs (Agarwal et al., 2019a), but assumed known dynamics. Simchowitz et al.
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(2020) extended this to achieve a T?/3-regret for unknown dynamics by using a simple explore-then-
exploit strategy: in the exploration phase, the controller learns the transitions by injecting the system
with random actions; in the exploitation phase, the controller runs the original algorithm using the
estimated transitions. We remark that Simchowitz et al. (2020) also showed that their explore-then-
exploit strategy achieves a VT regret bound in this setting for strongly convex (adversarial) costs; thus
demonstrating that the stringent strong convexity assumption is crucial in allowing one to circumvent
the challenge of balancing exploration and exploitation.

Recently, Plevrakis and Hazan (2020) made progress in this direction. They observed that the
problem of learning both stochastic transitions and stochastic convex costs under bandit feedback
is reducible to an instance of stochastic bandit convex optimization for which complex, yet generic
polynomial-time algorithms exist (Agarwal et al., 2011). In their case, the bandit feedback assump-
tion requires a brute-force reduction that loses much of the structure of the problem (that would
have been preserved under full-feedback access to the costs). This consequently results in a highly
complicated algorithm whose running time is a high-degree polynomial in the dimension of the
problem (specifically, n'%). Plevrakis and Hazan (2020) also give a more efficient algorithm that
avoids a reduction to bandit optimization, but on the other hand assumes the cost function is known
and fixed, and that the disturbances in the dynamics come from an isotropic Gaussian distribu-
tion.! Moreover, this algorithm still relies on computationally intensive procedures (for computing
barycentric spanners) that involve running the ellipsoid method.

In this work we present a new computationally-efficient algorithm with a VT regret guarantee for
linear control with unknown dynamics and unknown stochastic convex costs under full-information
feedback. Our algorithm is simple and intuitive, easily implementable, and works with any sub-
Gaussian noise distribution. Itis based on the “optimism in the face of uncertainty” (OFU) principle,
thought previously to be computationally-infeasible to implement for general convex cost func-
tions (see Plevrakis and Hazan, 2020). The OFU approach enables seamless integration between
exploration and exploitation, simplifies both algorithm and analysis significantly, and allows for a
faster running time by avoiding explicit exploration (e.g, using spanners) in high-dimensional space.

Our OFU implementation is inspired by the well-known UCB algorithm for multi-armed bandits
(Auer et al., 2002). That is, we minimize a lower confidence bound that is constructed as the
difference between the (convex) empirical loss and an exploration bonus term whose purpose is to
draw the policy towards underexplored state-action pairs. However, since the exploration term is also
convex, minimizing the lower confidence bound unfortunately results in a nonconvex optimization
problem which, at first glance, can be seen as computationally-hard to solve. Using a trick borrowed
from stochastic linear bandits (Dani et al., 2008), we nevertheless are able to relax the objective in
such a way that allows for a polynomial-time solution, rendering our algorithm computationally-
efficient overall.

Related work. The problem of adaptive LQR control with known fixed costs and unknown dynam-
ics has had a long history. Abbasi-Yadkori and Szepesvari (2011) were the first to study this problem
in a regret minimization framework. Their algorithm is also based on OFU, and while inefficient,
guarantees rate-optimal VT regret albeit with exponential dependencies on the dimensionality of the
system. Since then, many works have tried improving the regret guarantee, Ibrahimi et al. (2012);

1. Plevrakis and Hazan (2020) describe how to extend their results to more general noise distributions; however, these
distributions would still need to be near-spherical since the algorithm needs to be initialized using a “warmup” period
in which the dynamics are estimated uniformly.
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Faradonbeh et al. (2017); Dean et al. (2018) to name a few. The latter work also presented a poly-time
algorithm at a price of a T?/3-type regret bound. Cohen et al. (2019); Mania et al. (2019) improve on
this by showing how to preserve the VT regret rate with computational efficiency. The optimality of
the VT rate was proved concurrently by Cassel et al. (2020); Simchowitz and Foster (2020). Dean
et al. (2018) were the first to assume access to a stabilizing controller in order to obtain regret that
is polynomial in the problem dimensions. This was later shown to be necessary by Chen and Hazan
(2021).

Past work has also considered adaptive LQG control, namely LQR under partial observability of
the state (for example, Simchowitz et al., 2020). However, it turned out that (in the stochastic setting)
learning the optimal partial-observation linear controller is easier than learning the full-observation
controller, and, in fact, it is possible to obtain poly log T regret for adaptive LQG (Lale et al., 2020).

Another line of work, initiated by Cohen et al. (2018), deals with adversarial LQR in which the
transitions are fixed and known, but the cost function changes adversarially. Agarwal et al. (2019a)
extended this setting to adversarial noise as well as arbitrary convex Lipschitz costs. Subsequently
Agarwal et al. (2019b); Foster and Simchowitz (2020); Simchowitz (2020) provided a poly log T
regret guarantee for strongly-convex costs with the latter also handling fully adversarial disturbances.
Cassel and Koren (2020); Gradu et al. (2020) show a \NT regret bound for bandit feedback over the
cost function. Lastly, works such as Goel and Wierman (2019) bound the competitive ratio of the
learning algorithm rather than its regret.

In a recent follow-up work (Cassel et al., 2022b), we provide an analogous VT regret algorithm
for the more challenging case of adversarial cost functions (and unknown dynamics). The result
builds on the OFU approach introduced here and combines it with a novel and efficient online
algorithm, which minimizes regret with respect to the non-convex optimistic loss functions. In
both the stochastic and adversarial cases, the results strongly depend on the stochastic nature of the
disturbances; this is in contrast with Simchowitz et al. (2020); Simchowitz (2020), which consider
adversarial costs and disturbances. The first shows a 7%/3 regret algorithm for general convex costs,
and the second gives a VT regret algorithm for strongly-convex costs. It thus remains open whether
VT regret can be achieved for adversarial disturbances and general convex costs.

2. Problem Setup

We consider controlling an unknown linear dynamical system under stochastic convex costs and full
state and cost observation. Our goal is to minimize the total control cost in the following online
setting where at round ¢:

(1) The player observes state x;;

(2) The player chooses control u;;

(3) The player observes the cost function c¢; : R4 x R% — R, and incurs cost ¢; (x;, Ur);

(4) The system transitions to x;41 = Ayx; + Byu; + w;, where A, € R4*dx B e R%>*du_ and

w, € R,

Our goal is to minimize regret with respect to any policy 7 in a benchmark policy class II. To that
end, denote by x7, u7 the state and action sequence resulting when following a policy 7 € II. Then
the regret is defined as

T
regretr () = th(xz, ur) = ¢ (x7,up),

t=1
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and we seek to bound this quantity with high probability for all = € II.
To define the policy class I1, we use the following notion of stability due to Cohen et al. (2018),
which is essentially a quantitative version of classic stability notions in linear control.

Definition 1 (Strong stability). A controller K for the system (A, Bx) is (k,y)—strongly stable
(k > 1,0 < y < 1) if there exist matrices Q, L such that A, + B,K = QLQ"', ||L|| < 1-y, and
IKIL Qe < «.

We consider the benchmark policy class of linear policies that choose u; = Kx;. i.e.,
Mjip = {K € R4 . K is (x,y)- strongly stable}.

We make the following assumptions on our learning problem:
* Bounded stochastic costs: The cost functions are such that ¢, (x, u) := c(x,u; ;) where ({ t)thl
is a sequence of i.i.d. random variables. Moreover, for all x, u, |c(x,u;{) — Egc(x,u;{’)| < 0¢;
* Lipschitz costs: For any (x, u), (x’,u’) we have

ler(x,u) — e (X, u)] < Nl (x = X" u = u')l,

* Bounded i.i.d. noise: (w,)tT: | is a sequence of i.i.d. random variables such that ||w,|| < W;
+ Lower-bounded covariance: There exists some unknown o > 0 such that Ew,w! > o?1;
* Stabilizing controller: A, is (k,y)—strongly stable, and ||B4|| < Rp.

Note the assumption that A, is strongly stable is without loss of generality. Otherwise, given
access to a stabilizing controller K, Cassel et al. (2022b) show a general reduction, which essentially
adds Kx; to our actions. This will replace A, in the analysis with A, + B, K, which is (k, y)—strongly
stable, as desired. However, this will also add the burden of adding Kx; to our actions throughout
the paper, only making for a more taxing and tiresome reading.

We also remark that the bounded noise assumption can be alleviated to sub-Gaussian noise
instead, and that (sub-)Quadratic costs can also be accommodated by appropriately rescaling them.
This is essentially since both sub-Gaussian noise and the state and action sequences are bounded
with high probability (see Cassel and Koren, 2020; Cassel et al., 2022b for more details on these
techniques).

3. Algorithm and main result

We now present our result for the general linear control problem (i.e., A, # 0). We begin by giving
necessary preliminaries on Disturbance Action Policies, then we provide our algorithm and give a
brief sketch of its regret analysis. The full details of the analysis are deferred to the full version of
the paper (Cassel et al., 2022a).

3.1. Preliminaries: Disturbance Action Policies (DAP)

Following recent literature, we use the class of Disturbance Action Policies first proposed by Agarwal
et al. (2019a). This class is parameterized by a sequence of matrices {M "] ¢ Rd“XdX}Z]:l. For
brevity of notation, these are concatenated into a single matrix M € R%>*Hdx defined as

M = (M[l]-“M[H]),
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A Disturbance Action Policy mys chooses actions

H
Ur = ZM[h]Wz—h,
h=1

where recall that the w; are system disturbances. Consider the benchmark policy class
Mpap ={mm : IMllF < Rw}-

We note that there are several ways to define this class with the most common considering
Zthl |M"| instead of ||M||r. We chose the Frobenius norm for simplicity of the analysis and
implementation, but replacing it would not change the analysis significantly.

The importance of this policy class is two-fold. First, as shown in Lemma 5.2 of Agarwal et al.
(2019a),if H € Q()/‘1 logT) and Ry € Q(x*+/d, ] 7Y) then Ipap is a good approximation for Iy, in
the sense that a regret guarantee with respect to IIpap gives the same guarantee with respect to Iy,
up to a constant additive factor. Second, its parameterization preserves the convex structure of the
problem, making it amenable to various online convex optimization methods. In light of the above,
our regret guarantee will be given with respect to IIpap.

While the benefits of [Ipap are clear, notice that it cannot be implemented under our assumptions.
This is since we do not have access to the system disturbances w, nor can we accurately recover
them due to the uncertainty in the transition model. Similarly to previous works, our algorithm thus
uses estimated disturbances W, to compute its actions.

Finite memory representation. Asis common in recent literature, we will approximate the various
problem parameters with bounded memory representations. To see this, recurse over the transition
model to get that

H
H i—1 i—1 H ~
X =AY Xy + g (Al* Byt + Ay Wt—i) =AY X-H +WYapro1 + Wi, (D
i=1
_ H-1 H-1 = T T .. T T 7T
where Wo = [AY 7 By, ..., AxBy, B, AL T, AL and fr = [uy_gys ooyt wy s oow, 1

Now, since A, is strongly stable, the term A x, p quickly becomes negligible. Combining this
with the DAP policy parameterization, we define the following bounded memory representations.
For an arbitrary sequence of disturbances w = {w, },- define

u(M;w) = Zthl M[h]Wt—h;

MIH]  pgH-1] M1l
MIUHD  pgH-T] Ml
P(M) = MWL pE-1 o [ )
1
1
pe(M;w) = (urs1-u(M; W)T, coour (M W)T’ Wtl-H> - - - » Wt—l)T = P(M)W12m:4-1;

X (M; ¥, w) =Yp,_ 1 (M;w) +w,_.
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Algorithm 1 Stochastic Linear Control Algorithm
1: input: memory length H, optimism parameter a, regularization parameters Ay, A,, .
2seti=j=1,7111=1Vi=A¢l,M; =0and w; =0,u, =0forall ¢t < 1.
3: forr=1,2,...,T do
4: play u, = Zle M,[h]wt_h where M; = My, ,

5 observe x,.; and cost function c;.
6: calculate
: X
. 2 2
(A B)=  argmin ) [[(AB)zy —xeall’ + Ay ll(A B)ll}.,  where z, = ( )
(A B)ngxX(dx+du) o1 us
_ T — (T T AT AT T
7: set Vier =Vi+ 0, for pp = (U _pys v sl Wo oy _gpsee s Wy ()
estimate noise W, = I1g,(w)[X/41 — Arx; — Bruq].
: if det(V;41) > 2det(V7, ,) then
10: start new epoch: i =i+ 1,7 =27,y =t+ 1,7, =7;1 +2H,M;, |, = M;,, =0.
11: estimate system parameters
1
- 2 2
W= argmin 3 [ Woy - xe P+ AwlWIP
W eRdxx(Hdu+(H-Ddx) | T=5
12: ift+1-1;1>2(7;;—71;1) then
13: start new sub-epoch: j = j+1,7;; =1+1.
14: solve optimistic cost minimization (W = {W,},.)

Ti’j—l

=argmin ) ey (v (M3 W o 0), s (M 9))) = W[V 2P(M) o |
MeM

S=Ti,j-1

M

Ti,j

Notice that u,, ps, x; do not depend on the entire sequence w, but only w;_g.;—1, Wer1-2H:1—1, and
wy_op1—1 respectively. Importantly, this means that we can compute these functions with knowledge
of only the last (at most) 2H disturbances. While our notation does not reveal this fact explicitly, it
helps with both brevity and clarity.

3.2. Algorithm

Here we present Algorithm 1 for general linear systems (A, # 0). Notice that the system’s memory
as well as the use of DAP policies with the estimated noise terms (W;) can cause for cyclical
probabilistic dependencies between the estimate of the model transitions, the estimate of the loss,
and the estimated noise terms. To alleviate these dependencies our algorithm seldom changes its
chosen policy (~ log? T many times), and constructs its estimates using only observations from
previous non-overlapping time intervals.

The algorithm proceeds in epochs, each starting with a least squares estimation of the unrolled
model using all past observations (Line 11), and the estimate is then kept fixed throughout the epoch.
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The epoch ends when the determinant of V; is doubled (Line 9); intuitively, when the confidence of
the unrolled model increases substantially.? An epoch is divided into subepochs of exponentially
growing lengths in which the policy is kept fixed (Line 12). Each subepoch starts by minimizing an
optimistic estimate of the loss (Line 14) that balances between exploration. The algorithm plays the
resulting optimistic policy throughout the subepoch (Line 4). To that end we follow the technique
presented in Plevrakis and Hazan (2020) to estimate the noise terms {w;},; on-the-fly (Line 8).
Note that, for this purpose, the algorithm estimates the matrix (A, By) in each time step (Line 6)
even though it can be derived from the estimated unrolled model. This is done to simplify our
analysis, and only incurs a small price on the runtime of the algorithm.
We have the following guarantee for our algorithm:

Theorem 2. Let 6 € (0, 1) and suppose that we run Algorithm 1 with parameters Ry, Rg > 1 and
for proper choices of H, A, Ag, a. If T > 64R§W then with probability at least 1 — 6, simultaneously
for all & € IIpap,

regrety () < poly(x,y~', 07!, 0¢, Rp, R, d, dy, 10g(T /8))NT .

Efficient computation. The main hurdle towards computational efficiency is the calculation of the
optimistic cost minimization step (Line 14). We compute this in polynomial-time by borrowing
a trick from Dani et al. (2008): the algorithm solves 2m convex optimization problems with
m = dy(2H — 1)(dx(H — 1) + d,H), and takes the minimum between them. To see why this
is valid, observe that ||x||,, = maxye(—1,1) MaXge[m] X - Xk. We can therefore write the optimistic
cost minimization as

Ti,5—1
: : . A - -1/2
yel-t 1) kelm] Aﬂnéa%ts:;_l[CS(XS(M’\P”’l’w)’”S(M’W))) —aWy: (Vftl P(M))k]’
where k is a linear index. This indeed suggests to solve for M € M for each value of k and y, then
take the minimum between them. Moreover, when k and y are fixed, the objective becomes convex
in M. Consequently, As there are 2m such values of k and y, this amounts to solving 2m convex
optimization problems. We note that it suffices to solve each convex optimization problem up to an
accuracy of ~ T~!/2, which can be done using O(T) gradient oracle calls.

Comparison with Plevrakis and Hazan (2020). The following compares the computational
complexity of Algorithm 1 with those of Plevrakis and Hazan (2020) under a first order (value and
gradient) oracle assumption on the cost functions c¢;. To simplify the discussion, we denote both
state and action dimensions as d = max{dy, d,}, and omit logarithmic terms and O(-) notations
from all bounds.

We show that the overall computational complexity of our algorithm is d*7T. By updating the
least squares procedure in Lines 6 and 11 recursively at each time step their overall complexity is
d’T. As previously explained, in Line 4, we solve d” convex optimization problems, each to an
accuracy of ~ T~1/2. Since the objective is a sum of convex functions, we can do this using Stochastic
Gradient Descent (SGD) with T oracle calls (in expectation). Overall, we make d*T gradient oracle
calls. For each oracle call, we further use matrix addition, and matrix vector multiplications on
M, which take an additional d> computations. The remaining computations of the algorithm are
negligible.

2. More concretely, the volume of the confidence ellipsoid around the unrolled model decreases by a constant factor.
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Now, we show that the equivalent complexity for Algorithm 2 of Plevrakis and Hazan (2020) is
d'>T. The crux of their computation is finding a 2—Barycentric spanner for their confidence set. The
inherent dimension there is that of M, which is d>. To compute the barycentric spanner, the authors
explain that d* calls to a linear optimization oracle are required. These can in turn be implemented
using the elipsoid method, whose overall computation is d®T.

Plevrakis and Hazan (2020) also give Algorithm 5, which works with bandit feedback and uses
SBCO as a black-box. Compared with their Algorithm 2 the computational complexity is higher,
and the regret guarantee depends on d>° instead of d°>.

4. Analysis

In this section we give a (nearly) complete proof of Theorem 2 in a simplified setup, inspired by
Plevrakis and Hazan (2020), where A, = 0. At the end of the section, we give an overview of the
analysis for the general control setting (with A, # 0). The complete details in the general case are
significantly more technical and thus deferred from this extended abstract (see the full version of the
paper (Cassel et al., 2022a) for full details).

Concretely, following Plevrakis and Hazan (2020), suppose that A, = 0, and thus x;4; =
Byu; + w;. Next, assume that ¢;(x,u) = c;(x), i.e., the costs do not depend on u. Finally, assume
that we minimize the pseudo regret, i.e.,

T

max Z[](B*ut) = J(Byu)],

: <R
willull <R, £

where J(Byu) = E¢ wec(Byu + w;{). This setting falls under the umbrella of stochastic bandit
convex optimization, making generic algorithms applicable. However, it has additional structure
that we leverage to create a much simpler and more efficient algorithm. In what follows, we formally
define this setting with clean notation as to avoid confusion with our general setting.

4.1. The A, = 0 case: Stochastic Convex Optimization with a Hidden Linear Transform

Consider the following setting of online convex optimization. Let 8 C R% be a convex decision
set. At round ¢ the learner
(1) predicts a; € 8;
(2) observes cost function ¢, : R%» — R and state Veal = Oxa; + wy;
(3) incurs cost £,;(Qxa;).
We have that w, € R% are i.i.d. noise terms, Oy € R%*da jg an unknown linear transform, and
y; € R% are noisy observations.
The cost functions are stochastic in the following sense. There exists a sequence (1, (>, ... of
i.i.d. random variables, and a function ¢ : R%> x R — R such that ¢,(g) = ¢(g;{,). Define the
expected cost p(g) = E¢¢(q; (). We consider minimizing the pseudo-regret, defined as

T

regrety = max ) [j(Qxar) — p(Qua)].

t=1

Minimizing the pseudo-regret instead of the actual regret will maintain the main hardness of the
problem, but will better highlight our main contributions.
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Assumptions. Our assumptions in the simplified case are the following:

* ¢(q;() is convex and 1-Lipschitz in its first parameter;

» Forall {,{’, and any ¢ we have |£(q;{) — ¢(q;{’)| < 0gy;

* There exists some known W, Rp > 0 such that [|w,|| < W, and ||Q4|| < Rp.
* The diameter of 8 is R, = max, g eslla —a’|| < .

4.2. The simplified algorithm

Algorithm 2 SCO with hidden linear transform

1: input: optimism parameter a, regularizer A
set: V| = M,Ql =0.
cfort=1,2,...,T do
play optimistic cost minimizer: a, € arg min, g Z;]l [és(éla) - alth_l/za lloo]-
observe y;,; = Qxa; + w; and cost function ¢;, and set V;,; = V; + ataf.
estimate system parameters

AN A S o

t

Orvi = argmin ) [10a; - vyl + QI

QeRyXda

Our algorithm is depicted as Algorithm 2. The algorithm maintains an estimate Qt of Ox. At
each time step ¢, the algorithm plays action a;, chosen such that it minimizes our optimistic cost
function. That is, a; is a minimizer of a lower bound on the total loss up to time ¢: ZZ;} ls(Qya) ~
(t = Du(Qxa). This fuses together exploration and exploitation by either choosing under-explored
actions, or exploiting low expected cost for already sufficiently-explored actions. We remark that the
optimistic cost minimization procedure solves a non-convex optimization problem, but nevertheless
show that it can be solved in polynomial-time in the sequel. Lastly, our algorithm observes y;.; and
uses it improve its estimate of O, by solving a least-squares problem.

The main hurdle in understanding why the algorithm is computationally-efficient is the calcu-
lation of the optimistic cost minimization step. Following the computational method presented in
Algorithm 1, we do this by first solving 2d, convex objectives and then taking their minimizer.

4.3. Analysis

We now present the main theorem for this section that bounds the regret of Algorithm 2 with high
probability.

Theorem 3. Let 6 € (0, 1) and suppose that we run Algorithm 2 with parameters
A= Rczl, a=+dg (WdNSlog %T + \/ERuRQ).

If T > max{o,, 64D(21} where D, = 3RoR, + Wd, /8 log % then with probability at least 1 — 6,

3T 2T
O+ /dy log ﬂ +d,(Wdy + R,Rp) log 5

VT.

regrety <13
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At its core, the proof of Theorem 3 employs the Optimism in the Face of Uncertainty (OFU)
approach. To that end, define the optimistic cost functions

fir(a) = p(Qra) — allV;allw,
where Q,, V; are defined as in Algorithm 2. The following lemma shows that our optimistic loss

lower bounds the true loss, and bounds the error between the two.

Lemma 4. Suppose that \d, ||Q, = Q«lly, < a. Then we have that

fir(a) < p(Qua) < fir(a) +2a+/a"V; a.

Proof. We first use the Lipschitz assumption to get

|(Qa) — u(Qra)] < (Qx - Q1)all
< (10« = Oclly, IV, 2l

a -1/2
—||v, ||

Vd.

-1/2
allV,al|,

IA

IA

where the second and third transitions also used the estimation error and that ||a|| < Vd,||al|.. We
thus have on one hand,

1(Qa) = w(Qra) — allV; Pall, = (a),

and on the other hand we also have

w(Qua) < w(Qsa) + allV; Pall, = fiu(a) +2allV; all, < fi(a) +2a/a"V; a,
where the last step also used ||a||., < ||a]|. [ |

We are now ready to prove Theorem 3. The proof focuses on the main ideas, deferring some
details to Section 4.4.

Proof of Theorem 3. First, notice that [u(Qxa;) — u(Qxa)| < [|Q«lllla; —all < 2RoR,. Using
this bound for ¢ = 1, we can decompose the regret as

T T T
regret(a) < 2RoRa+ ) p(Quar) = fir(an)+ ) fiula) = @)+ ) fu(a) = p(Qsa) .
t=2 =2 =2

R, Ry R;3

We begin by bounding R; and R3, which relate the true loss to its optimistic variant. To that end, we
use a standard least squares estimation bound (Lemma 5) to get that Lemma 4 holds with probability
at least 1 — §/2. Conditioned on this event, we immediately get R3; < 0. Moreover, we get

T T
R, < 2a+/alVila, < 2a4|T alVla, <2a+/5Td,logT,
iVt t Ve g

=2 t=1

10
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where the second inequality is due to Jensen’s inequality, and the third is a standard algebraic
argument (Lemma 6).

Next, we bound R, which is the sum of excess risk of a, with respect to the optimistic cost. To
that end, we first bound ||é, ||, using the least squares error bound (Lemma 5) and V; > Al = R%1 to
get that

wd 4T
2./8 log —.
Rq

~ ~ 1~
1O/ < 1Q«ll +11Q: — Ol < Ro + I 10: — O«lly, <3Rp +
a

We thus have for all a € 8,

~ ~ 4T
1Qeall < [1Q:llllall < 3RoRa + Wd, 810g(§) =Dy.

Now, for all 1 < ¢ < T we use a standard uniform convergence argument (Lemma 7) with R = D,
and 6/2T to get that with probability at least 1 — §/2 simultaneously forall 1 <¢ < T

fu(a) = fir (@) = play) = (@) - a(1V; Parlle = 1V, Pall)

1 -1 - —~ L 12 dyIOggfé
s—t_lZl(és(Qtaz)—fs(Q,a))—a(||vt il = 1V al) + 20\ ——
s=
d. log 872
<2 y Og 0’[5
L 20 \|—————,
r—1

where the last inequality is by definition of a; as the optimistic cost minimizer. Finally, notice that
Y (t—=1)"12 < 2T to get that

L dy og 6T2
RZ—ZHz(az)_Hz(a) < Zzal <6U€ﬂTd 10g

Finally, taking a union bound on both events and substituting for the chosen value of a@ completes
the proof. |

4.4. Deferred details

Here we complete the deferred details in the proof of Theorem 3. We start with the following
high-probability error bound for least squares estimation, that bounds the error of our estimates Q;
of O, and as such also satisfies the condition of Lemma 4.

Lemma 5 (Abbasi-Yadkori and Szepesvari, 2011). Let A, = Q4 — Qt, and suppose that lla:|I* <
A= RZ, T > d,. With probability at least 1 — 8, we have for all t > 1

T 2 12 2p “2
1A, < Tr(aTva,) < sW?d2 log = 5+ 2RRG < -

Next, is a well-known bound on harmonic sums (see, e.g., Cohen et al., 2019). This is used to
show that the optimistic and true losses are close on the realized predictions (proof in the full version
of the paper (Cassel et al., 2022a)).

11
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Lemma 6. Let a; € R% be a sequence such that lla:|1> < A, and define V; = A1 + Ztg;% asal. Then
Yo alVila, <5d,logT.

Finally, a standard uniform convergence result, which is used in bounding R, (proof in the full
version of the paper (Cassel et al., 2022a)).

Lemma 7. Let R > 0 and suppose that T > max{c,,64R?}. Then for any 5 € (0, 1) we have that

with probability at least 1 — 6
3T
< 0¢4 dey log—, VgeR% st gl <R.
045

4.5. Extension to the general control setting

T
i (q) — u(q)

t=1

Using the assumption that A, is strongly stable, we show it takes 2H time steps for one of our DAP
policies to sufficiently approximate its steady-state. As a result the system may behave arbitrarily
during the first 2H steps of each subepoch, and we bound the instantaneous regret in each of these
time steps by a worst-case constant. As mentioned, though, we show that the total number of
subepochs is at most 4(dy + d,,)H log? T, making the cumulative regret during changes of policy
negligible for reasonably large 7'

Concretely, let Rmax > mMaXgenpspumy,.r <7 Max{||(x7, uf) ||, || (xz, us) ||} be a bound on the state
action magnitude. Combining with the Lipschitz assumption, we get that

|Ct(xz, u) — Ct(x?, M?)' < 2Rmax.
Since the first two sub epochs are always at most 2H long, the regret decomposes as

N N; Tij+i—1
Regret, () < 16Rmax H? (dy + d) log2 T+ Z Z Z cr(xpup) — e (x7,ul),
i=1 _]=3 l:Ti,j+H
where N is the number of epochs and A; is the number of subepochs in epoch i.
We proceed by decomposing the remaining term, analyzing the regret within each subepoch.
For this purpose, define an expected surrogate cost and its optimistic version

fiM; ¥, w,0) = c;(x;(M; ¥, w), u; (M;w), ()
F(M;¥) =E¢ wfi (M;¥,w,{)
F(M)=F(M;¥y)

F, (M) = F(M; ¥, ) —aW|V;'2 P(M)||,

i(t),l) Ti(t),1

where i(7) = max{i : 7; <t} is the index of the epoch to which 7 belongs, and |||, is the entry-
wise matrix infinity norm. Letting M, € M be the DAP approximation of 7 € ITj;,, we have the
following decomposition of the instantaneous regret:

ci(xeyur) — (X7, up) = ¢ (xp,up) — F(My) (R - Truncation + Concentration)
+F(M;) - F;(M;) (R, - Optimism)
+ Fi(M;) — Fy (M) (R - Excess Risk)
+ F (M) — F(M,) (R4 - Optimism)
+ F(My) — ¢ (x7,uy). (R5 - Truncation + Concentration)

12
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The proof is completed by bounding each of the terms above with high probability and combin-
ing them with a union bound. Terms R, R3, R4 are similar to the ones appearing in the proof
Theorem 3, while terms Ri, Rs are new and relate the cost to that of the unrolled transition
model. The latter two terms are bounded in two steps. We start by relating ¢, (x;, u;), ¢, (x}, u}) to
[i(My; Vs, w, (), [t (Mg, Py, w, (), which, similarly to Agarwal et al. (2019a), uses the assumption
that A, is strongly stable, but then, also accounts for the discrepancies between w; and W, as was
done in Plevrakis and Hazan (2020). We then conclude with a concentration argument that relates
f:(M) to F(M), which is its expectation with respect to w, (.

To bound the optimism-related terms Rj, R4, we first show a least-squares confidence bound
similar to Lemma 5. Notice that the least squares bound has to handle the fact that we use the
estimated noises W, to predict the parameters of the unrolled model. Denoting A; = ¥, — ¥;, we
specifically show that:

T -1
I8, < Tr(aTvia, ) < 16W2d3 1og(5) F AWl +2) e,

s=1

a comparable bound to that of Lemma 5 except for the addition of error terms e,. Since W, converge
to the true noises w;, we can prove that Zszl lle.|I? < logT, ie., the additional error terms are
of a similar order to the standard estimation error and thus do not increase it significantly. Next,
assuming that the above estimation error holds, we show an analogous result to Lemma 4 stating

0 < F(M) - F,(M) <2aW|V.'/?

Ti(t),1

P(M)]|F,

which yields that R4 < 0. To Bound R,, we further relate ||VT_I_(1[/)21P(M)||F to ||Vt_1/2p,_1 (M;w)|l,
which is the equivalent of the harmonic term in the right hand side of Lemma 4. To that end, define
the noise covariance X = Ew;_» H:t—ZWI_z 11— and notice that our minimum eigenvalue assumption

implies that || Z~1/2|| < o~!. We thus have that

Vo2 PO < Ve PODE IR =Te(ve! PODZP(M))

Ti(t),1 Ti(t),1

=Te(V,  PODEDW, a1z 2w]_ypy, o P(M)T)

Ti(1),1
_ [EWTr(VT_i(lt)’l pt_l(M;w)pt_l(M;w)T) (Eq. (2))
= Ew IV, 2 pecr (M w) |1

Summing over ¢ and applying several technical concentration and noise estimation arguments yields
the desired term and the O (VT) bound on R;.

Last, we deal with R3, which is analogous the excess risk term in the proof of Theorem 3. We first
show a uniform convergence property akin to Lemma 7. Here, however, the uniform convergence
is done with respect to both the randomness in the loss function {; and the noise terms w;. This
allows us to use observations gathered in previous subepochs to estimate the expected performance
of a DAP policy in the current subepoch. Here, we once again tackle the technical difficulty that our
DAP policy is defined with respect to the noise estimates w,. This adds an additional error term,
proportional to the error in the noise estimates, and accumulates to ~ VT regret overall.

13
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