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Abstract
Policy optimization is among the most popular and successful reinforcement learning algorithms,
and there is increasing interest in understanding its theoretical guarantees. In this work, we initi-
ate the study of policy optimization for the stochastic shortest path (SSP) problem, a goal-oriented
reinforcement learning model that strictly generalizes the finite-horizon model and better captures
many applications. We consider a wide range of settings, including stochastic and adversarial en-
vironments under full information or bandit feedback, and propose a policy optimization algorithm
for each setting that makes use of novel correction terms and/or variants of dilated bonuses (Luo
et al., 2021). For most settings, our algorithm is shown to achieve a near-optimal regret bound.

One key technical contribution of this work is a new approximation scheme to tackle SSP
problems that we call stacked discounted approximation and use in all our proposed algorithms.
Unlike the finite-horizon approximation that is heavily used in recent SSP algorithms, our new
approximation enables us to learn a near-stationary policy with only logarithmic changes during an
episode and could lead to an exponential improvement in space complexity.

1. Introduction

Stochastic Shortest Path (SSP) is a goal-oriented reinforcement learning setting, where a learner
tries to reach a goal state with minimum total cost. Compared to the heavily studied finite-horizon
setting, SSP is often a better model for capturing many real-world applications such as games, car
navigation, robotic manipulations, and others. We study the online learning problem in SSP, where
the learner interacts with an environment with unknown cost and transition function for multiple
episodes. In each episode, the learner starts from an initial state, sequentially takes an action, incurs
a cost, and transits to the next state until the goal state is reached. The goal of the learner is to
achieve low regret, defined as the difference between her total cost and the expected cost of the
optimal policy. A unique challenge of learning SSP is to trade off between two objectives: reaching
the goal state and minimizing the cost. Indeed, neither reaching the goal as fast as possible nor
minimizing the cost alone solves the problem.

Policy Optimization (PO) is among the most popular methods in reinforcement learning due
to its strong empirical performance and favorable theoretical properties. Unlike value-based ap-
proaches such as Q learning, PO-type methods directly optimize the policy in an incremental man-
ner. Many widely used practical algorithms fall into this category, such as REINFORCE (Williams,
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1992), NPG (Kakade, 2001), and TRPO (Schulman et al., 2015). They are also easy to implement
and computationally efficient compared to other methods such as those operating over the occu-
pancy measure space (e.g., (Zimin and Neu, 2013)). From a theoretical perspective, PO is a general
framework that works for different types of environments, including stochastic costs or even ad-
versarial costs (Shani et al., 2020), function approximation (Cai et al., 2020), and non-stationary
environments (Fei et al., 2020). Despite its popularity in applications, most theoretical works on PO
focus on simple models such as finite-horizon models (Cai et al., 2020; Shani et al., 2020; Luo et al.,
2021) and discounted models (Liu et al., 2019; Wang et al., 2020; Agarwal et al., 2021), which are
often oversimplifications of real-life applications. In particular, PO methods have not been applied
to regret minimization in SSP as far as we know.

Motivated by this gap, in this work, we systematically study policy optimization in SSP. We
consider a wide range of different settings and for each of them discuss how to design a policy
optimization algorithm with a strong regret bound. Specifically, our main results are as follows:

• In Section 3, we first propose an important technique used in all our algorithms: stacked dis-
counted approximation. It reduces any SSP instance to a special Markov Decision Process (MDP)
with a stack of O(lnK) layers (K is the total number of episodes), each of which contains a
discounted MDP (hence the name) such that the learner stays in the same layer with a certain
probability γ and proceeds to the next layer with probability 1− γ. This approximation not only
resolves the difficulty of having dynamic and potentially unbounded episode lengths in the PO
analysis, but more importantly leads to a near-stationary policies with only O(lnK) changes
within an episode. Compared to the commonly used finite-horizon approximation (Chen et al.,
2021d; Chen and Luo, 2021; Cohen et al., 2021) which changes the policy at every step of an
episode, our approach could lead to an exponential improvement in space complexity and is also
more natural since the optimal policy for SSP is indeed stationary.

• Building on the stacked discounted approximation, in Section 4, we design PO algorithms for two
types of stochastic environments considered in the literature. In the first type (called stochastic
costs), the cost for each visit of a state-action pair is an i.i.d. sample of an unknown distribution
and is revealed to the learner immediately after the visit. Our algorithm achieves Õ(B?S

√
AK)

regret in this case, close to the minimax bound Õ(B?
√
SAK) (Cohen et al., 2021), where S

is the number of states, A is the number of actions, and B? is the maximum expected cost of
the optimal policy starting from any states. In the second type (called stochastic adversary fol-
lowing (Chen and Luo, 2021)), the cost function for each episode is fixed and an i.i.d. sample
of an unknown distribution, and only at the end of the episode, the learner observes the entire
cost function (full-information feedback) or the costs for all visited state-action pairs (bandit
feedback). Our algorithm achieves Õ(

√
DT?K + DS

√
AK) regret with full information and

Õ(
√
DT?SAK + DS

√
AK) regret with bandit feedback, where D is the diameter of the MDP

and T? is the expected hitting time of the optimal policy starting from the initial state. These
bounds match the best existing results from (Chen and Luo, 2021) (and exhibit a

√
S gap in the

second term DS
√
AK compared to their lower bounds).

• Finally, in Section 5, we further study SSP with adversarial costs and design PO algorithms
that achieve Õ(T?

√
DK +

√
DT?S2AK) regret with full information and Õ(

√
T 5

maxS
2AK)

regret with bandit feedback, where Tmax is the maximum expected hitting time of the optimal
policy over all states. The best existing bounds for these settings are Õ(

√
DT?S2AK) and

Õ(
√
DT?S3A2K) respectively (Chen and Luo, 2021).
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Table 1: Comparison of regret bound, time complexity, and space complexity of different SSP algorithms.
We consider five feedback types: SC (stochastic costs), SAF (Stochastic Adversary, Full infor-
mation), SAB (Stochastic Adversary, Bandit feedback), AF (Adversarial, Full information), and
AB (Adversarial, Bandit feedback). Operator Õ(·) is hidden for simplicity. Time complexity of
poly(S,A, Tmax) is due to optimization in the occupancy measure space.

Regret Time Space Feedback

Cohen et al. (2021) B?
√
SAK S3A2Tmax S2ATmax SC

Our work B?S
√
AK S2ATmaxK S2A

Chen and Luo (2021)
√
DT?K +DS

√
AK poly(S,A, Tmax) ·K S2ATmax SAF

Our work
√
DT?K +DS

√
AK S2ATmaxK S2A

Chen and Luo (2021)
√
SADT?K +DS

√
AK poly(S,A, Tmax) ·K S2ATmax SAB

Our work
√
SADT?K +DS

√
AK S2ATmaxK S2A

Chen and Luo (2021)
√
S2ADT?K poly(S,A, Tmax) ·K S2ATmax AF

Our work
√

(S2A+ T?)DT?K S2ATmaxK S2A

Chen and Luo (2021)
√
S3A2DT?K poly(S,A, Tmax) ·K S2ATmax AB

Our work
√
S2AT 5

maxK poly(S,A, Tmax) ·K S2A

We also include Table 1 with a comprehensive comparison between SSP algorithms for a better
understanding of our contributions. While our regret bounds do not always match the state-of-the-
art, we emphasize again that our algorithms are more space-efficient due to the stacked discounted
approximation (S2A versus S2ATmax in Table 1). It is also more time-efficient in some cases
(for feedback types SAF, SAB, and AF in Table 1). We also note that in the analysis of stacked
discounted approximation, a regret bound starting from any state (not just the initial state) is impor-
tant, and PO indeed provides such a guarantee while other methods based on occupancy measure do
not. In other words, PO is especially compatible with our stacked discounted approximation. More-
over, our results also significantly improve our theoretical understanding on PO, and pave the way
for future study on more challenging problems such as SSP with function approximation, where
in some cases PO is the only method known to be computationally and statistically efficient (Luo
et al., 2021).

Other Techniques To achieve our results for stochastic environments, we make two other tech-
nical contributions. First, in order to control the cost estimation error optimally, we derive a set of
novel correction terms fed to the PO algorithm, which resolves some technical difficulties brought
by PO due to its lack of optimism and also greatly simplifies the analysis. Second, due to the soft
policy updates, the standard PO analysis leads to an undesirable dominating term related to T? or
even Tmax in the regret, and we develop a refined analysis on the value difference between learner’s
policies and the optimal policy to reduce this to a lower order term.

To achieve our results for adversarial environments, we develop a tighter variance-aware bound
for the stability term in the PO analysis, which plays a key role in removing the Tmax dependency
in the dominating term of the regret bound in the full information setting. We further extend the
dilated bonuses of (Luo et al., 2021) (for the finite-horizon setting) to the stacked discounted MDPs,
which is essential for both the full information setting and the bandit feedback setting.
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Related Work Regret minimization in SSP has received much attention recently for both stochas-
tic environment (Tarbouriech et al., 2020; Cohen et al., 2020, 2021; Tarbouriech et al., 2021; Chen
et al., 2021a,b; Jafarnia-Jahromi et al., 2021) and adversarial environment (Rosenberg and Mansour,
2021; Chen et al., 2021d; Chen and Luo, 2021). All previous approaches are either value-based (e.g.
Q learning) or occupancy-measure-based, while we take the first step in studying the more practical
and versatile PO methods. Among numerous studies on PO, the closest to our work are the recent
ones by Shani et al. (2020) and Luo et al. (2021) for the special case of finite-horizon MDPs.

The use of variance information (Lattimore and Hutter, 2012; Azar et al., 2017; Zhou et al.,
2021; Zhang et al., 2021; Kim et al., 2021) and correction terms (Steinhardt and Liang, 2014; Wei
and Luo, 2018; Chen et al., 2021c) is crucial for achieving optimal and adaptive regret bound in
online learning. In this work we heavily make use of these ideas as mentioned.

2. Preliminaries

An SSP instance is defined by a Markov Decision Process (MDP)M = (S, sinit, g,A, P ). Here,
S is the state space, sinit ∈ S is the initial state, g /∈ S is the goal state, A is the action space, and
P = {Ps,a}(s,a)∈S×A with Ps,a ∈ ∆S+ is the transition function, where S+ = S ∪ {g} and ∆S+ is
the simplex over S+.

The learning protocol is as follows: the learner interacts with the environment for K episodes.
In episode k, the learner starts in initial state sinit, sequentially takes an action, incurs a cost (which
might not be observed immediately), and transits to the next state until the goal state g is reached.
Formally, at the i-th step of episode k, the learner observes state ski (with sk1 = sinit), takes action
aki , suffers cost cki , and transits to the next state ski+1 ∼ Pski ,aki

. Denote by Ik the length of episode
k, such that skIk+1 = g when Ik is finite. Note that the heavily studied finite-horizon setting is a
special case of SSP where Ik is always guaranteed to be some fixed number.

Proper Policies and Related Concepts At a high level, the learner’s goal is to reach the goal
state with minimum cost. Thus, we focus on proper policies: a stationary policy π : S → ∆A
is a mapping that assigns to each state a distribution over actions, and it is proper if following
π from any initial state reaches the goal state with probability 1. Denote by Π the set of proper
policies (assumed to be non-empty). Given a proper policy π, a transition function P , and a cost
function c : S × A → [0, 1], we define its value function and action-value function as follows:
V π,P,c(s) = E

[∑I
i=1 c(si, ai)

∣∣∣π, P, s1 = s
]

and Qπ,P,c(s, a) = c(s, a) + Es′∼Ps,a [V π,P,c(s′)],

where the expectation in V π,P,c is over the randomness of action ai ∼ π(·|si), next state
si+1 ∼ Psi,ai , and the number of steps I before reaching g. Also define the advantage function
Aπ,P,c(s, a) = Qπ,P,c(s, a)− V π,P,c(s).

We consider two types of environments: stochastic environments and adversarial environments,
which differ in the way costs are generated (and revealed), discussed in detail below.

Stochastic Environments We start with the simpler environment with a fixed “ground truth” cost:
there exists an unknown mean cost function c : S × A → [cmin, 1], and the costs incurred by the
learner are i.i.d samples from some distribution with support [cmin, 1] and mean c. Here, cmin ∈
[0, 1] is a global lower bound.1 We consider the following three types of cost feedback.

1. Unlike many previous works for stochastic costs that require cmin > 0 in their analysis, our methods allow cmin = 0.
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1. Stochastic costs: whenever the learner visits state-action pair (s, a), she immediately ob-
serves (and incurs) an i.i.d cost sampled from some unknown distribution with mean c(s, a).

2. Stochastic adversary, full information: before learning starts, an adversary samplesK i.i.d.
cost functions {ck}Kk=1 from some unknown distribution with mean c. At the i-th step of
episode k, the learner incurs cost cki = ck(s

k
i , a

k
i ). Only at the end of this episode (after the

goal state is reached), the learner observes the entire cost function ck.

3. Stochastic adversary, bandit feedback: this is the same as above, except that at the end of
episode k, the learner only observes the costs of all visited state-action pairs: {ck(ski , aki )}

Ik
i=1.

The learner’s objective is to minimize her regret, defined as the difference between her total incurred
cost and the total expected cost of the best proper policy: RK =

∑K
k=1

∑Ik
i=1 c

k
i −K ·V π?,P,c(sinit),

where π? is the optimal proper policy satisfying π? ∈ argminπ∈Π V
π,P,c(s) for all s ∈ S.

Adversarial Environments We also consider the more challenging environment that adapts to
learner’s behavior in a possibly malicious manner. Specifically, in episode k, the environment
decides an arbitrary cost function ck : S × A → [cmin, 1] which could depend on the learner’s
algorithm as well as her randomness before episode k. The learner then suffers cost cki = ck(s

k
i , a

k
i )

at the i-th step of episode k. Similarly to the stochastic adversary case, the learner observes infor-
mation on ck only after she reaches the goal state in episode k, and she observes the entire ck in
the full-information setting or just the cost of visited state-action pairs {ck(ski , aki )}

Ik
i=1 in the bandit

setting. The objective is again to minimize her regret against the optimal proper policy in hindsight:
RK =

∑K
k=1

(∑Ik
i=1 c

k
i − V π?,P,ck(sinit)

)
,where we overload the notation π? to denote the overall

optimal proper policy such that π? ∈ argminπ∈Π

∑K
k=1 V

π,P,ck(s) for all s ∈ S.

Key Parameters and Notations Let T π(s) be one plus the expected number of steps to reach the
goal if one follows policy π starting from state s. Four parameters play a key role in our analysis and
regret bounds: B? = maxs V

π?,P,c(s), the maximum expected cost of the optimal policy starting
from any state; T? = T π

?
(sinit), the hitting time of the optimal policy starting from the initial

state; Tmax = maxs T
π?(s), the maximum hitting time of the optimal policy starting from any

state; and D = maxs minπ T
π(s), the SSP-diameter. We also define the fast policy πf such that

πf ∈ argminπ T
π(s) for all state s. Similarly to previous works, in most discussions we assume the

knowledge of all four parameters and the fast policy, and defer to Appendix E what we can achieve
when some of these are unknown. We also assume B? ≥ 1 for simplicity.

For n ∈ N+, we define [n] = {1, . . . , n}. Ek[·] denotes the conditional expectation given
everything before episode k. The notation Õ(·) hides all logarithmic terms including lnK and ln 1

δ

for some confidence level δ ∈ (0, 1). For a distribution P̃ ∈ ∆S+ and a function V : S+ → R,
define P̃ V = E

s∼P̃ [V (s)].

3. Stacked Discounted Approximation and Algorithm Template

Policy optimization algorithm have been naturally derived in many MDP models. In the finite-
horizon setting, one can update the policy at the end of each episode using the cost for this episode
that is always bounded. In the discounted setting or average reward setting with some ergodic
assumption, one can also update the policy after a certain fixed number of steps since the short-
term information is enough to predict the long-term behavior reasonably well. However, this is
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not possible in SSP: the hitting time of an arbitrary policy can be arbitrarily large in SSP, and only
looking at a fixed number of steps can not always provide accurate information.

A natural solution would be to approximate SSP by other MDP models, and then apply PO in
the reduced model. Approximating SSP instances by finite-horizon MDPs (Chen et al., 2021a,d;
Cohen et al., 2021) or discounted MDPs (Tarbouriech et al., 2021; Min et al., 2021) is a common
practice in the literature, but both have their pros and cons. Finite-horizon approximation shrinks the
estimation error exponentially fast and usually leads to optimal regret (Chen et al., 2021d; Cohen
et al., 2021). However, it greatly increases the space complexity of the algorithm as it needs to
store non-stationary policies with horizon of order Õ(Tmax) or Õ( B?

cmin
) (as shown in Table 1).

Discounted approximation, on the other hand, produces stationary policies, but the estimation error
decreases only linearly in the effective horizon (1 − γ)−1, where γ is the discounted factor. This
often leads to sub-optimal regret bounds and large time complexity (Tarbouriech et al., 2021). We
include a detailed discussion on limitations of existing approximation schemes in Appendix B.1.
These issues greatly limit the practical potential of these methods, and PO methods built on top of
them would be less interesting.

To address these issues and achieve optimal regret with small space complexity, we introduce a
new approximation scheme called Stacked Discounted Approximation, which is a hybrid of finite-
horizon and discounted approximations. The key idea is as follows: the finite-horizon approxima-
tion requires a horizon of orderO(Tmax lnK), but one can imagine that policies at nearby layers are
close to each other and can be approximated by one stationary policy. Thus, we propose to achieve
the best of both worlds by dividing the layers intoO(lnK) parts and performing discounted approx-
imation within each part with an effective horizon O(Tmax). Formally, we define the following.

Definition 1 For an SSP instance M = (S, sinit, g,A, P ), we define, for number of layers H ,
discounted factor γ, and terminal cost cf , another SSP instance M̊ = (S̊, s̊init, g,A, P̊ ) as follows:

1. S̊ = S × [H + 1], s̊init = (sinit, 1), and the goal state g remains the same.

2. Transition from (s, h) to (s′, h′) is only possible for h′ ∈ {h, h + 1}: for any h ≤ H and
(s, a, s′) ∈ S × A × S , we have P̊(s,h),a(s

′, h) = γPs,a(s
′) (stay in the same layer with

probability γ), P̊(s,h),a(s
′, h+1) = (1−γ)Ps,a(s

′) (proceed to the next layer with probability
1− γ), and P̊(s,h),a(g) = Ps,a(g); for h = H + 1, we have P̊(s,H+1),a(g) = 1 for any (s, a)
(immediately reach the goal if at layer H + 1). For notational convenience, we also write
P̊(s,h),a(s

′, h′) as P(s,h),a(s
′, h′) or Ps,a,h(s′, h′), and P̊(s,h),a(g) as P(s,h),a(g) or Ps,a,h(g).

3. For any cost function c : S × A → [0, 1] inM, we define a cost function c̊ for M̊ such that
c̊((s, h), a) = c(s, a) for h ∈ [H] and c̊((s,H + 1), a) = cf (terminal cost). For notational
convenience, we also write c̊((s, h), a) as c((s, h), a) or c(s, a, h).

For any stationary policy π in M̊, we write π(a|(s, h)) as π(a|s, h), and we often abuse the
notation Qπ,P,c and V π,P,c to represent the value functions with respect to policy π, transition P̊ ,
and cost function c̊. We also often use (s, a, h) in place of ((s, h), a) for function input, that is, we
write f((s, h), a) as f(s, a, h).

Define π̊? for M̊ that mimics the behavior of π?, in the sense that π̊?(·|s, h) = π?(·|s). If we
set γ = 1 − 1

2Tmax
, by the definition of Tmax, it can be shown that the probability of π̊? transiting

to the next layer before reaching g is upper bounded by 1/2. If we further set H = O(lnK), then
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the probability of transiting to the (H + 1)-th layer before reaching g is at most 1
2H

= Õ(1/K).
As a result, the estimation error decreases exponentially in the number of layers while the policy
only changes forO(lnK) many times. More importantly, due to the discounted factor, the expected
hitting time of any policy is of order O( H

1−γ ) = O(Tmax lnK), which controls the cost of explo-
ration and enables the learner to only update its policy at the end of an episode. We summarize the
intuition above in the following lemma.

Lemma 2 For any cost function c : S × A → [0, 1] and terminal cost cf , we have V π,P,c(s, h) ≤
H−h+1

1−γ + cf for any h ∈ [H], s ∈ S, and policy π in M̊. Moreover, if γ = 1 − 1
2Tmax

, we further
have Qπ̊

?,P,c(s, a, h) ≤ Qπ?,P,c(s, a) +
cf

2H−h+1 for any h ∈ [H] and (s, a) ∈ S ×A.

Proof The first statement is because in expectation it takes any policy 1
1−γ steps to transit from one

layer to the next and each step incurs at most 1 cost (except for the terminal cost). For the second
statement, note that V π,P,c(s,H + 1) = Qπ,P,c(s, a,H + 1) = cf for any (s, a) ∈ S × A, and for
any h ∈ [H], V π,P,c(s, h) =

∑
a∈A π(a|s, h)Qπ,P,c(s, a, h) and

Qπ,P,c(s, a, h) = c(s, a) + γPs,aV
π,P,c(·, h) + (1− γ)Ps,aV

π,P,c(·, h+ 1),

where we abuse the notation and define V π,P,c(g, h) = 0 for all h ∈ [H + 1]. Now we prove the
second statement by induction for h = H + 1, . . . , 1. The base case h = H + 1 is clearly true. For
h ≤ H , we bound Qπ̊

?,P,c(s, a, h)−Qπ?,P,c(s, a) as follows:

γPs,aV
π̊?,P,c(·, h) + (1− γ)Ps,aV

π̊?,P,c(·, h+ 1)− Ps,aV π?,P,c

≤ γPs,a(V π̊?,P,c(·, h)− V π?,P,c) + (1− γ)
cf

2H−h

(V π̊?,P,c(s, h+ 1)− V π?,P,c(s) ≤ cf
2H−h

by induction)

= γEs′∼Ps,a,a′∼π?(s′)

[
Qπ̊

?,P,c(s′, a′, h)−Qπ?,P,c(s′, a′)
]

+ (1− γ)
cf

2H−h
.

By repeating the arguments above, we arrive at

Qπ̊
?,P,c(s, a, h)−Qπ?,P,c(s, a) ≤ E

[
I∑
t=1

γt−1(1− γ)
cf

2H−h

∣∣∣∣∣π?, P, s1 = s, a1 = a

]
,

where I is the (random) number of steps it takes for π? to reach the goal inM starting from (s, a).
Bounding γt−1 by 1 and E[I] by Tmax, we then obtain the upper bound (1−γ)Tmaxcf

2H−h
=

cf
2H−h+1 ,

which finishes the induction.

Remark 3 Applying the first statement of Lemma 2 with c(s, a) = 1 and cf = 1, we have the
expected hitting time of any policy in M̊ bounded by H

1−γ + 1 starting from any state in any layer.

Now we complete the approximation by showing how to solve the original problem via solving
its stacked discounted version. Given a policy π for M̊, define a non-stationary randomized policy
σ(π) forM as follows: it maintains an internal counter h initialized as 1. In each time step before
reaching the goal, it first follows π(·|s, h) for one step, where s is the current state. Then, it samples
a Bernoulli random variable X with mean γ, and it increases h by 1 if X = 0. When h = H + 1,
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Algorithm 1 Template for Policy Optimization with Stacked Discounted Approximation

Initialize: P1, the set of all possible transition functions in M̊ (Eq. (3)); η > 0, some learning rate.
for k = 1, . . . ,K do

Compute πk(a|s, h) ∝ exp
(
−η
∑k−1

j=1(Q̃j(s, a, h)−Bj(s, a, h))
)

.
Execute σ(πk) for one episode (see the paragraph before Lemma 4).
Compute some optimistic action-value estimator Q̃k and exploration bonus function Bk using
Pk and observations from episode k.
Compute transition confidence set Pk+1, as defined in Eq. (4).

it executes the fast policy πf until reaching the goal state. Clearly, the trajectory of σ(π) indeed
follows the same distribution of the trajectory of π in M̊. We show that as long asH is large enough
and cf is of order Õ(D), this reduction makes sure that the regret between these two problems are
similar. The proof is deferred to Appendix B.

Lemma 4 Let γ = 1 − 1
2Tmax

, H = dlog2(cfK)e, cf = d4D ln 2K
δ e for some δ ∈ (0, 1), and

π1, . . . , πK be policies for M̊. Then the regret of executing σ(π1), . . . , σ(πK) inM satisfiesRK ≤
R̊K+Õ(1) with probability at least 1−δ, where R̊K =

∑K
k=1

(∑Jk
i=1 c

k
i + c̊kJk+1 − V π̊?,P,c(sk1, 1)

)
for stochastic environments, and R̊K =

∑K
k=1

(∑Jk
i=1 c

k
i + c̊kJk+1 − V π̊?,P,ck(sk1, 1)

)
for adversar-

ial environments. Here, Jk is the number of time steps in episode k before the learner reaching g or
the counter of σ(πk) reaching H + 1, and c̊kJk+1 = cf I{skJk+1 6= g}.

Computing Fast Policy and Estimating Diameter For simplicity, we assume knowledge of the
diameter and the fast policy above. When these are unknown, one can follow the ideas in (Chen and
Luo, 2021) for estimating the fast policy with constant overhead and then adopt their template for
learning without knowing the diameter; see (Chen and Luo, 2021, Lemma 1, Appendix E).

Policy Optimization in Stacked Discounted MDPs Now we describe a template of performing
policy optimization with the stacked discounted approximation. The pseudocode is shown in Algo-
rithm 1. To handle unknown transition, we maintain standard Bernstein-style transition confidence
sets {Pk}Kk=1 whose definition is deferred to Appendix A.1. In episode k, the algorithm first com-
putes policy πk in M̊ following the multiplicative weights update with some learning rate η > 0,
such that πk(a|s, h) ∝ e−η

∑k−1
j=1 (Q̃j(s,a,h)−Bj(s,a,h)) for some optimistic action-value estimator Q̃j

and exploration bonus function Bj (computed from past observations and confidence sets). Then,
it executes σ(πk) for this episode. Finally, it computes confidence set Pk+1. All algorithms intro-
duced in this work follow this template and differ from each other in the definition of Q̃k and Bk.
Ideally, Q̃k−Bk should be the action-value function with respect to the true transition, the true cost
function, and policy πk, but since the transition and cost functions are unknown, the key challenge
lies in constructing accurate estimators that simultaneously encourage sufficient exploration.

Optimistic Transitions Our algorithms require using some optimistic transitions. Specifically, for
a policy π, a confidence set P , and a cost function c, let Γ(π,P, c) be the corresponding optimistic
transition such that Γ(π,P, c) ∈ argminP∈P V

π,P,c(s, h) for all state (s, h). The existence of such
an optimistic transition and how it can be efficiently approximated via Extended Value Iteration (in
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at most Õ(Tmax) iterations) are deferred to Appendix A.2. We abuse the notation and denote by
V π,P,c and Qπ,P,c the value function V π,Γ(π,P,c),c and action-value function Qπ,Γ(π,P,c),c.

Occupancy Measure Another important concept for subsequent discussions is occupancy mea-
sure. Given a policy π : S̊ → ∆A and a transition function P = {Ps,a,h}(s,h)∈S̊,a∈A with Ps,a,h ∈
∆S̊+

and S̊+ = S̊ ∪{g}, define qπ,P : S̊ ×A×S̊+ → R+ such that qπ,P (̊s, a, s̊′) = E[
∑I

i=1 I{si =

s̊, ai = a, si+1 = s̊′}|π, P, s1 = s̊init] is the expected number of visits to (̊s, a, s̊′) following policy
π in a stacked discounted MDP with transition P . We also let qπ,P (s, a, h) =

∑
s̊′ qπ,P ((s, h), a, s̊′)

be the expected number of visits to ((s, h), a) and qπ,P (s, h) =
∑

a qπ,P (s, a, h) be the number of
visits to (s, h). Note that if a function q : S̊ × A × S̊+ → R+ is an occupancy measure, then the
corresponding policy πq satisfies πq(a|s, h) ∝ q(s, a, h) and the corresponding transition function
Pq satisfies Pq,s,a,h(s′, h′) ∝ q((s, h), a, (s′, h′)). Moreover, V π,P,c(̊sinit) = 〈qπ,P , c〉 holds for any
policy π, transition function P and cost function c.

Other Notations In the rest of the paper, following Lemma 4 we set γ = 1 − 1
2Tmax

, H =

dlog2(cfK)e, and cf = d4D ln 2K
δ e for some failure probability δ ∈ (0, 1). Define χ = 2HTmax +

cf as the value function upper bound in M̊ (according to the first statement of Lemma 2). Also
define qk = qπk,P , q? = qπ̊?,P , and L = d 8H

1−γ ln(2TmaxK/δ)e.

4. Algorithms and Results for Stochastic Environments

In this section, we consider policy optimization in stochastic environments with three types of feed-
back introduced in Section 2. We show that a simple policy optimization framework can be used to
achieve near-optimal regret for all three settings. In contrast, previous works treat stochastic costs
and stochastic adversaries as different problems and solve them via different approaches. Below,
we start by describing the algorithm and its guarantees, followed by some explanation behind the
algorithm design and then some key ideas and novelty in the analysis.

Algorithm As mentioned, the only elements left to be specified in Algorithm 1 are Q̃k and Bk.
For stochastic environments, we simply set Bk(s, a, h) = 0 for all (s, a, h) since exploration is
relatively easier in this case. We now discuss how to construct Q̃k.

• Action-value estimator Q̃k is defined as Qπk,Pk,c̃k for some corrected cost estimator c̃k:

c̃k(s, a, h) = (1 + λQ̂k(s, a, h))ĉk(s, a, h) + ek(s, a, h), (1)

where λ is some parameter, Q̂k = Qπk,Pk,ĉk is another action-value estimator with respect to
some optimistic cost estimator ĉk, and ek is some correction term (all to be specified below).

• Optimistic cost estimator ĉk is defined as

ĉk(s, a, h) = ĉk(s, a)I{h ≤ H}+ cf I{h = H + 1},

ĉk(s, a) = max
{

0, c̄k(s, a)− 2
√
c̄k(s, a)αk(s, a)− 7αk(s, a)

}
,

where c̄k(s, a) is the average of all costs that are observed for (s, a) in episode j = 1, . . . , k − 1
before σ(πj) switches to the fast policy, and αk(s, a) is ι = ln(2SALK/δ) divided by the
number of samples used in computing c̄k(s, a), such that 2

√
c̄k(s, a)αk(s, a) + 7αk(s, a) is a

9
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standard Bernstein-style deviation term (thus making ĉk(s, a) an optimistic underestimator). We
note that naturally, the way to compute c̄k(s, a) is different for different types of feedback — for
stochastic costs, we might have multiple samples for (s, a) in one episode, while for stochastic
adversaries, we have exactly one sample in each episode in the full-information setting, and one
or zero samples in the bandit setting.

• Correction term ek(s, a, h) is defined as 0 for stochastic costs; (8ι
√
ĉk(s,a,h)/k +

β′Q̂k(s, a, h))I{h ≤ H} with β′ = min{1/Tmax, 1/
√
DT?K} for stochastic adversary with full

information; and βQ̂k(s, a, h)I{h ≤ H} with β = min{1/Tmax,
√
SA/DT?K} for stochastic ad-

versary with bandit feedback.

• Parameter tuning: learning rate η (for the multiplicative weights update) is set to
min{1/3Tmax(8ι+χ/Tmax)2, 1/

√
λT 4

maxK}, and the parameter λ is set to min{1/Tmax,
√
S2A/�2K}

where � is B? for stochastic costs and D for stochastic adversaries.

We now state the regret guarantees of our algorithm for each of the three settings (proofs are
deferred to Appendix C.2.1 to Appendix C.2.3).

Theorem 5 For stochastic costs, Algorithm 1 with the instantiation above achieves RK =
Õ(B?S

√
AK + T 3

max(S2AK)1/4 + S4A2.5T 4
max) with probability at least 1− 32δ.

Ignoring lower-order terms, our bound almost matches the minimax bound Õ(B?
√
SAK)

of (Cohen et al., 2021), with a
√
S factor gap.

Theorem 6 For stochastic adversary with full information, Algorithm 1 with the instantiation
above achievesRK = Õ(

√
DT?K+DS

√
AK+T 3

max(S2A3K)1/4+S4A2.5T 4
max) with probability

at least 1− 50δ.

Theorem 7 For stochastic adversary with bandit feedback, Algorithm 1 with the instantiation
above achieves RK = Õ(

√
SADT?K +DS

√
AK + T 3

maxSA
5/4K1/4 + S4A2.5T 4

max) with prob-
ability at least 1− 50δ.

Ignoring lower-order terms again, these bounds for stochastic adversary match the best known
results from (Chen and Luo, 2021), and they all exhibit a

√
S gap in the term DS

√
AK compared

to the best existing lower bounds (Chen and Luo, 2021).
We emphasize again that besides the simplicity of PO, one algorithmic advantage of our method

compared to those based on finite-horizon approximation is its low space complexity to store poli-
cies — the horizon H for our method is only O(lnK), while the horizon for other works (Chen
and Luo, 2021; Cohen et al., 2021) is Õ(Tmax) when Tmax is known or otherwise Õ(B?/cmin). Note
that when cmin = 0, a common technique is to perturb the cost and deal with a modified problem
with cmin = 1/poly(K), in which case our space complexity is exponentially better. In fact, even
for time complexity, although our method requires calculating optimistic transition and might need
Õ(Tmax) rounds of Extended Value Iteration, this procedure could terminate much earlier, while the
finite-horizon approximation approaches always need at least Ω(Tmax) time complexity since that
is the horizon of the MDP they are dealing with.

10
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Analysis highlights We start by explaining the design of the corrected cost estimator Eq. (1).
Roughly speaking, standard analysis of PO (specifically, by (Chen and Luo, 2021, Lemma 9) and
then Lemma 26) leads to a term of order λ

∑K
k=1〈qk, c ◦ Q̂k〉 due to the transition estimation error,

which can be prohibitively large (for functions f and g with the same domain, we define (f◦g)(x) =
f(x)g(x)). Introducing the correction bias λQ̂k(s, a, h)ĉk(s, a, h) in Eq. (1), on the other hand, has
the effect of transforming this problematic term into its counterpart λ

∑K
k=1〈q?, c ◦ Q̂k〉 in terms

of q? instead of qk. Bounding the latter term, however, requires a property that PO enjoys, that is,
a regret bound for any initial state-action pair:

∑K
k=1(Q̂k − Qπ̊

?,P,c)(s, a, h) = Õ(
√
K) for any

(s, a, h). In contrast, approaches based on occupancy measure (Chen and Luo, 2021) only guar-
antee a regret bound starting from sinit. This makes PO especially compatible with our stacked
discounted approximation. Based on this observation, we further have λ

∑K
k=1〈q?, c ◦ Q̂k〉 ≈

λ
∑K

k=1

〈
q?, c ◦Qπ̊?,P,c

〉
, where the latter term is only about the behavior of the optimal policy and

is thus nicely bounded (see e.g. Lemma 20). To sum up, the correction term λQ̂k(s, a, h)ĉk(s, a, h)
in Eq. (1) together with a favorable property of PO helps us control the transition estimation error
in a near-optimal way.

For stochastic adversaries, an extra complication arises due to the cost estimation error∑K
k=1 〈qk, c− ĉk〉, which results in the extra

√
DT?K or

√
SADT?K term in the minimax re-

gret bound (depending on the feedback type). Obtaining this optimal cost estimation error requires
us to add yet another correction term ek in Eq. (1). Specifically, we show that

∑K
k=1 〈qk, c− ĉk〉 ≈∑K

k=1 〈qk, ek〉 for ek defined as in our algorithm description. Then, the role of adding ek in Eq. (1)
is again to turn the term above to its counterpart

∑K
k=1 〈q?, ek〉 in terms of the optimal policy’s

behavior, which can then be nicely bounded. As a side product, we note that this also provides a
much cleaner analysis on bounding the cost estimation error compared to (Chen and Luo, 2021),
where they require explicitly forcing the expected hitting time of the learner’s policy to be bounded.

Finally, we point out another novelty in our analysis. Compared to other approaches that act
according to the exact optimal policy of an estimated MDP, PO incurs an additional cost due to
only updating the policy incrementally in each episode. This cost is often of order Õ(

√
K) and is

one of the dominating terms in the regret bound; see e.g. (Shani et al., 2020; Wu et al., 2021) for
the finite-horizon case. For SSP, this is undesirable because it also depends on T? or even Tmax.
Reducing this cost has been studied from the optimization perspective — for example, an improved
Õ(1/K) convergence rate of PO has been established recently by (Agarwal et al., 2021). However,
adopting their analysis to regret minimization requires additional efforts. Specifically, we need to
carefully bound the bias from using an action-value estimator in the policy’s update, which can be
shown to be approximately bounded by

∑K
k=1(Q̃k+1 − Q̃k)(s, a, h). In Lemma 25, we show that

this term is of lower order by carefully analyzing the drift (Q̃k+1 − Q̃k)(s, a, h) in each episode.

Remark 8 We remark that our algorithm can be applied to finite-horizon MDPs with inhomoge-
neous transition and gives a Õ(

√
S2AH3K) regret bound, improving over that of (Shani et al.,

2020) by a factor of
√
H where H is the horizon. We omit the details but only mention that the

improvement comes from two sources: first, the aforementioned improved PO analysis turns a
Õ(H2

√
K) regret term into a lower order term; second, we use Bernstein-style transition confi-

dence set to obtain an improved Õ(
√
S2AH3K) transition estimation error.
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5. Algorithms and Results for Adversarial Environments

We move on to consider the more challenging environments with adversarial costs, where the extra
exploration bonus function Bk in Algorithm 1 now plays an important role. Even in the finite-
horizon setting, developing efficient PO methods in this case can be challenging, and Luo et al.
(2021) proposed the so-called “dilated bonuses” to guide better exploration, which we also adopt
and extend to SSP. Specifically, for a policy π, a transition confidence set P , and some bonus
function b : S × A × [H + 1] → R, we define the corresponding dilated bonus function Bπ,P,b :
S ×A× [H + 1]→ R as: Bπ,P,b(s, a,H + 1) = b(s, a,H + 1) and for h ∈ [H],

Bπ,P,b(s, a, h) = b(s, a, h) +

(
1 +

1

H ′

)
max
P̂∈P

P̂s,a,h

(∑
a′

π(a′|·, ·)Bπ,P,b(·, a′, ·)

)
, (2)

where H ′ = 8(H+1) ln(2K)
1−γ is the dilated coefficient. Intuitively, Bπ,P,b is the dilated (by a factor

of 1 + 1/H′) and optimistic (by maximizing over P) version of the action-value function with re-
spect to π and b. In the finite-horizon setting (Luo et al., 2021), this can be computed directly via
dynamic programming, but how to compute it in a stacked discounted MDP (or even why it exists)
is less clear. Fortunately, we show that this can indeed be computed efficiently via a combination of
dynamic programming and Extended Value Iteration; see Appendix D.4.

Algorithm (full information) We now describe our algorithm for the adversarial full-information
case (where ck is revealed at the end of episode k). It suffices to specify Q̃k and Bk in Algorithm 1.

• Action-value estimator Q̃k is defined as Q̃k = Qπk,Pk,c̃k , where c̃k(s, a, h) = (1 +
λQ̂k(s, a, h))ck(s, a, h) for some parameter λ and Q̂k = Qπk,Pk,ck .

• Dilated bonus Bk is defined as Bπk,Pk,bk with bk(s, a, h) = 2η
∑

a∈A πk(a|s, h)Ãk(s, a, h)2,
where Ãk(s, a, h) = Q̃k(s, a, h)− Ṽk(s, h) (advantage function) and Ṽk = V πk,Pk,c̃k .

• Parameter tuning: η = min{1/(64χ2
√
HH′), 1/

√
DK} and λ = min{1/χ, 48η +

√
S2A/DT?K}.

Our algorithm enjoys the following guarantee (whose proof can be found in Appendix D.1).

Theorem 9 For adversarial costs with full information, Algorithm 1 with the instantiation above
achieves RK = Õ(T?

√
DK +

√
S2ADT?K + S4A2T 5

max) with probability at least 1− 20δ.

The best existing bound is Õ(
√
S2ADT?K) from (Chen and Luo, 2021). Ignoring the lower

order term, our result matches theirs when T? ≤ S2A (and is worse by a
√
T?/S2A factor otherwise).

Our algorithm enjoys better time and space complexity though, similar to earlier discussions.

Analysis highlights For simplicity we assume that the true transition is known, in which case
our bound is only Õ(T?

√
DK) (the other term

√
S2ADT?K is only due to transition estimation

error). A naive way to implement PO would lead to a penalty term T?/η plus a stability term
η
∑K

k=1

∑
s,h q

?(s, h)
∑

a πk(a|s, h)Qπk,P,ck(s, a, h)2, which eventually leads to a bound of or-
der Õ(T?Tmax

√
K) if one bounds Qπk,P,ck(s, a, h) by Õ(Tmax). Our improvement comes from the

following five steps: 1) first, through a careful shifting argument, we show that the stability term
can be improved to η

∑K
k=1

∑
s,h q

?(s, h)
∑

a πk(a|s, h)Aπk,P,ck(s, a, h)2 (recall that A is the ad-
vantage function); 2) second, similarly to (Luo et al., 2021), the dilated bonus Bk helps transform

12
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q? to qk in the term above, leading to η
∑K

k=1

〈
qk, (A

πk,P,ck)2
〉
; 3) third, in Lemma 26 we show

that the previous term is bounded by the variance of the learner’s cost, which in turn is at most
η
∑K

k=1

〈
qk, ck ◦Qπk,P,ck

〉
; 4) fourth, similarly to Section 4, the correction term λck ◦ Q̂k in the

definition of c̃k helps transform qk back to q?, resulting in η
∑K

k=1

〈
q?, ck ◦Qπk,P,ck

〉
; 5) finally,

since PO guarantees a regret bound for any initial state (as mentioned in Section 4), the previous
term is close to η

∑K
k=1

〈
q?, ck ◦Qπ̊

?
k,P,ck

〉
, which is now only related to the optimal policy and can

be shown to be at most Õ(ηDT?K). Combining this with the penalty term T?/η and picking the best
η then results in the claimed Õ(T?

√
DK) regret bound.

Algorithm (Bandit Feedback) Finally, we describe our algorithm for the adversarial setting with
bandit feedback, starting with the instantiation of Bk followed by that of Q̃k.

• Dilated bonus Bk is again defined as Bπk,Pk,bk , but with a different bk function similar to that
of (Luo et al., 2021): bk(s, a, h) = L′I{h ≤ H}

∑
a′ πk(a

′|s, h)
xk(s,a′,h)−xk(s,a′,h)+4θ

xk(s,a′,h)+θ , for some
parameters L′ and θ. Here, xk(s, a, h) and xk(s, a, h) are respectively the largest and smallest
possible probability that ((s, h), a) is ever visited in episode k following policy πk if the transition
lies in Pk, and they can be computed efficiently as shown in Appendix D.5.

• Action-value estimator Q̃k is defined as Q̃k(s, a, h) =
Gk,s,a,h

xk(s,a,h)+θ I{h ≤ H}+cf I{h = H+1},
where Gk,s,a,h is the learner’s total cost in M̊ starting from the first visit to ((s, h), a) during the
first L+ 1 steps of episode k. Recall the definition of L stated at the end of Section 3, which is a
high-probability upper bound on the number of steps any policy in M̊ takes to reach the last layer
(so counting only the first L+ 1 steps is simply to make sure that Gk,s,a,h is always bounded).

• Parameter tuning: η = min
{

1/(300HH′TmaxL′),
√

1/T 2
maxSAK

}
, θ = 2ηL′, and L′ = L+ cf .

We note that this algorithm is in spirit very similar to that of (Luo et al., 2021) for the finite-
horizon case. Unfortunately, the correction terms we use throughout other algorithms in this work
do not work here for technical reasons, resulting in the following sub-optimal guarantee which still
has Tmax dependency in the dominating term (see Appendix D.2 for the proof). We remark that the
best existing bound is Õ(

√
DT?S3A2K) from (Chen and Luo, 2021).

Theorem 10 For adversarial costs with bandit feedback, Algorithm 1 with the instantiation above
achieves RK = Õ(

√
S2AT 5

maxK + S5.5A3.5T 5
max) with probability at least 1− 28δ.

6. Conclusion

Our work initiates the study of policy optimization for SSP and systematically develops a set of
novel algorithms suitable for different settings. Many questions remain open, such as closing the
gap between some of our results and the best known results achieved by other types of methods.
Moreover, as mentioned, one of the reasons to study PO for SSP is that PO usually works well
when combined with function approximation. Our stacked discounted approximation scheme also
does not make use of any modeling assumption and should be applicable in more general settings.
Although our work is only for the tabular setting, we believe that our results lay a solid foundation
for future studies on SSP with function approximation.
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Appendix A. Preliminary for Appendix

Extra Notations Define s̊ki = (ski , h
k
i ) as the i-th step in M̊ in episode k. Define nk(s, a, h)

as the number of visits to ((s, h), a) in M̊ in episode k, and nk(s, a) =
∑

h≤H nk(s, a, h) (ex-
cluding layer H + 1). Define J̄k = min{L, Jk}, n̄k(s, a) = min{L, nk(s, a)}, and n̄k(s, a, h) =
min{L, nk(s, a, h)}. For any sequence of scalars or functions {zk}k, define dzk = zk+1 − zk.
By default we assume

∑
h =

∑H+1
h=1 . For inner product 〈u, v〉, if u(s, a), u(s, a, h), v(s, a), and

v(s, a, h) are all defined, we let 〈u, v〉 =
∑

s,a,h u(s, a, h)v(s, a, h). For functions f and g with
the same domain, define function (f ◦ g)(x) = f(x)g(x). For any random variable X , define
conditional variance Vark[X] = Ek[(X − Ek[X])2].

For an occupancy measure q w.r.t policy π and transition P , define q(s,h) as the occupancy mea-
sure w.r.t policy π, transition P , and initial state (s, h), and q(s,a,h) as the occupancy measure w.r.t
policy π, transition P , initial state (s, h), and initial action a. Denote by xk(s, a, h) the probabil-
ity that ((s, h), a) is ever visited in episode k, xk(s, a) =

∑H
h=1 xk(s, a, h) the probability that

(s, a) is ever visited before layer H + 1 in episode k, and yk(s, a, h) the probability of visiting
((s, h), a) again if the agent starts from ((s, h), a). For any occupancy measure q(s, a, h), we de-
fine q(s, a) =

∑
h≤H q(s, a, h) (excluding layer H + 1). Note that qk(s, a, h) = xk(s,a,h)

1−yk(s,a,h) and
yk(s, a, h) ≤ γ. Thus, we have qk(s, a, h) = O(Tmaxxk(s, a, h)).

Define ΛM as the set of possible transition functions of M̊:

ΛM =
{
P = {Ps,a,h}(s,h)∈S̊,a∈A, Ps,a,h ∈ ∆S̊+

: Ps,a,H+1(g) = 1,∑
s′∈S

Ps,a,h(s′, h) ≤ γ,
∑
s′∈S

Ps,a,h(s′, h+ 1) ≤ 1− γ,

Ps,a,h(s′, h′) = 0,∀(s, a) ∈ S ×A, h ∈ [H], h′ /∈ {h, h+ 1}
}
, (3)

where γ · X = {γx : x ∈ X} for some set X . By definition, the expected hitting time of any
stationary policy in an MDP with transition P ∈ ΛM is upper bounded by (H + 1)(1 − γ)−1

starting from any state. Therefore, for any occupancy measure q with Pq ∈ ΛM (for example, qk
and q?), we have

∑
s,a,h q(s, a, h) ≤ (H + 1)(1− γ)−1 = Õ(Tmax).

Finally define CM as the set of possible cost functions of M̊:

CM =
{
c : S̊ → R+ : c(s, a, h) = Õ(1), ∀h ≤ H, and ∃C0 = Õ(Tmax), c(s, a,H + 1) = C0, ∀a

}
.

A.1. Transition Estimation

In this section, we present important lemmas regarding the transition confidence sets {Pk}Kk=1. We
first prove an auxiliary lemma saying that the number of steps taken by the learner before reaching
g or switching to fast policy is well bounded with high probability.

Lemma 11 With probability at least 1− δ, we have Jk = J̄k for all k ∈ [K].

Proof We want to show that Jk ≤ L = d 8H
1−γ ln(2TmaxK/δ)e for all k ∈ [K] with probability at

least 1 − δ. Let k ∈ [K], it suffices to show that the expected hitting time of πk is upper bounded
by H

1−γ starting from any (s, h), because then we can apply Lemma 31 and take a union bound over
all K episodes.
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Note that the expected hitting time (w.r.t Jk) is simply the value function with respect to a cost
function that is 1 for all state-action pairs except for 0 cost in the goal state g and layer H + 1
(i.e., cf = 0). Thus, by Lemma 2, the expected hitting time starting from (s, h) is bounded by
H−h+1

1−γ ≤ H
1−γ .

Definition of Pk We define Pk =
⋂
s,a,h≤H Pk,s,a,h, where:

Pk,s,a,h =
{
P ′ ∈ ΛM :

∣∣P̄k,s,a(s′)− P ′s,a,h(s′, h)/γ
∣∣ ≤ εk(s, a, s′),∣∣P̄k,s,a(s′)− P ′s,a,h(s′, h+ 1)/(1− γ)

∣∣ ≤ εk(s, a, s′),∣∣P̄k,s,a(g)− P ′s,a,h(g)
∣∣ ≤ εk(s, a, g),∀s′ ∈ S

}
, (4)

where εk(s, a, s′) = 4
√
P̄k,s,a(s′)α

′
k(s, a)+28α′k(s, a), α′k(s, a) = ι

N+
k (s,a)

, P̄k,s,a(s′) = Nk(s,a,s′)

N+
k (s,a)

is the empirical transition, N+
k (s, a) = max{1, Nk(s, a)}, Nk(s, a) is the number of visits to (s, a)

in episode j = 1, . . . , k − 1 before σ(πj) switches to the fast policy, and Nk(s, a, s
′) is the number

of visits to (s, a, s′) in episode j = 1, . . . , k − 1 before σ(πj) switches to the fast policy.

Lemma 12 Under the event of Lemma 11, we have P̊ ∈ Pk for any k ∈ [K] with probability at
least 1− δ.

Proof Clearly P̊ ∈ ΛM. Moreover, for any (s, a) ∈ S × A, s′ ∈ S+ by Lemma 51 and
NK+1(s, a) ≤ LK under the event of Lemma 11, we have with probability at least 1− δ

2S2A
,∣∣Ps,a(s′)− P̄k,s,a(s′)∣∣ ≤ εk(s, a, s′). (5)

By a union bound, we have Eq. (5) holds for any (s, a) ∈ S × A, s′ ∈ S+ with probability at least
1−δ. Then the statement is proved by P̊s,a,h(s′, h) = γPs,a(s

′), P̊s,a,h(s′, h+1) = (1−γ)Ps,a(s
′),

and P̊s,a,h(g) = Ps,a(g).

Lemma 13 Under the event of Lemma 12, for any P ′ ∈ Pk, we have for any s̊′ ∈ S̊+:∣∣P ′s,a,h(̊s′)− Ps,a,h(̊s′)
∣∣ ≤ 8

√
Ps,a,h(̊s′)α′k(s, a) + 136α′k(s, a) , ε?k(s, a, h, s̊

′).

For simplicity, we also write ε?k(s, a, h, (s
′, h′)) as ε?k(s, a, h, s

′, h′) for (s′, h′) ∈ S̊ .

Proof Under the event of Lemma 12 and by Eq. (5), we have for all (s, a) ∈ S ×A, and s′ ∈ S+:

P̄k,s,a(s
′) ≤ Ps,a(s′) + 4

√
P̄k,s,a(s′)α

′
k(s, a) + 28α′k(s, a).

Applying x2 ≤ ax+ b =⇒ x ≤ a+
√
b with a = 4

√
α′k(s, a) and b = Ps,a(s

′) + 28α′k(s, a), we
have √

P̄k,s,a(s′) ≤ 4
√
α′k(s, a) +

√
Ps,a(s′) + 28α′k(s, a) ≤

√
Ps,a(s′) + 10

√
α′k(s, a).
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Substituting this back to the definition of εk, we have

εk(s, a, s
′) = 4

√
P̄k,s,a(s′)α

′
k(s, a) + 28α′k(s, a) ≤ 4

√
Ps,a(s′)α′k(s, a) + 68α′k(s, a).

Now we start to prove the statement. The statement is clearly true for s̊′ = (s′, h′) with h′ /∈
{h, h + 1} since the left-hand side equals to 0. Moreover, by the definition of Pk, Lemma 12, and
x ≤
√
x for x ∈ (0, 1),∣∣P ′s,a,h(s′, h)− Ps,a,h(s′, h)

∣∣ ≤ ∣∣P ′s,a,h(s′, h)− γP̄k,s,a(s′)
∣∣+
∣∣γP̄k,s,a(s′)− Ps,a,h(s′, h)

∣∣
≤ 2γεk(s, a, s

′) ≤ ε?k(s, a, h, s′, h),

∣∣P ′s,a,h(s′, h+ 1)− Ps,a,h(s′, h+ 1)
∣∣

≤
∣∣P ′s,a,h(s′, h+ 1)− (1− γ)P̄k,s,a(s

′)
∣∣+
∣∣(1− γ)P̄k,s,a(s

′)− Ps,a,h(s′, h+ 1)
∣∣

≤ 2(1− γ)εk(s, a, s
′) ≤ ε?k(s, a, h, s′, h),

∣∣P ′s,a,h(g)− Ps,a,h(g)
∣∣ ≤ ∣∣P ′s,a,h(g)− P̄k,s,a(g)

∣∣+
∣∣P̄k,s,a(g)− Ps,a,h(g)

∣∣
≤ 2εk(s, a, g) ≤ 2ε?k(s, a, h, g).

This completes the proof.

A.2. Approximation of Qπ,Γ(π,P,c),c

We show that Qπ,Γ(π,P,c),c can be approximated efficiently by Extended Value Iteration similar to
(Jaksch et al., 2010). Note that finding Γ(π,P, c) is equivalent to computing the optimal policy in
an augmented MDP M̊ with state space S̊ and extended action space P , such that for any extended
action P ∈ P , the cost at ((s, h), P ) is

∑
a π(a|s, h)c(s, a, h), and the transition probability to

s̊′ ∈ S̊+ is
∑

a π(a|s, h)Ps,a,h(̊s′). In this work, we have P ∈ {Pk}Kk=1, and Pk =
⋂
s,a,h Pk,s,a,h,

where Pk,s,a,h is a convex set that specifies constraints on ((s, h), a). In other words, Pk is a
product of constraints on each ((s, h), a) (note that ΛM can also be decomposed into shared con-
straints on Ps,a,H+1 and independent constraints on each s, a, h ≤ H). Thus, any policy in M̊
can be represented by an element P ∈ P . We can now perform value iteration in M̊ to approx-
imate Qπ,Γ(π,P,c),c. The Bellman operator of M̊ is T0 defined in Eq. (19) with min operator re-
placed by max operator. Also note that M̊ is an SSP instance where all policies are proper. Thus,
V π,Γ(π,P,c),c is the unique fixed point of T0 (Bertsekas and Yu, 2013). It is straightforward to
show that Lemma 47 still holds with min operator replaced by max operator in Eq. (19) and let
V 0(s,H + 1) = maxa c(s, a,H + 1). Thus, we can approximate V π,Γ(π,P,c),c efficiently.

Now suppose after n iterations of modified Eq. (19), we obtain V n such that∥∥V n − V π,Γ(π,P,c),c∥∥
∞ ≤ ε. Then we can simply use Q(s, a, h) = c(s, a, h) + minP∈P Ps,a,hV

n

to approximate Qπ,Γ(π,P,c),c, since∣∣∣Q(s, a, h)−Qπ,Γ(π,P,c),c(s, a, h)
∣∣∣ (i)

=

∣∣∣∣min
P∈P

Ps,a,hV
n −min

P∈P
Ps,a,hV

π,Γ(π,P,c),c
∣∣∣∣
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≤ max
P∈P

∣∣∣Ps,a,h(V n − V π,Γ(π,P,c),c)
∣∣∣ ≤ ∥∥∥V n − V π,Γ(π,P,c),c

∥∥∥
∞
≤ ε,

where (i) is by the definition of Γ(π,P, c). In this work, setting ε = 1/K is enough for obtaining
the desired regret bounds. Lemma 47 (modified) then implies that Õ(Tmax) iterations of modified
Eq. (19) suffices.

Appendix B. Omitted Details for Section 3

In this section, we provide omitted discussions and proofs for Section 3.

B.1. Limitation of Existing Approximation Schemes

Finite-Horizon Approximation Thanks to Lemma 31, the approximation error under finite-
horizon approximation decreases exponentially. Specifically, we only need a horizon of order
O(Tmax lnK) to have approximation error of order O( 1

K ). This gives optimal regret bound un-
der both adversarial costs (Chen et al., 2021d) and stochastic costs (Chen et al., 2021a). However,
it also clearly brings an extra Õ(Tmax) dependency in the space complexity since we need to store
non-stationary policies changing in different layers. Chen et al. (2021a) proposes an implicit finite-
horizon approximation analysis that achieves optimal regret bound without storing non-stationary
policies. Unfortunately, their approach does not work for adversarial costs.

Discounted Approximation Approximating an SSP by a discounted MDP clearly produces sta-
tionary policies. However, the approximation error scales with 1− γ (that is, inversely proportional
to the effective horizon (1 − γ)−1) following similar arguments as in (Wei et al., 2020, Lemma 2),
where γ is the discounted factor. This leads to a sub-optimal regret bound when the achieved regret
bound in the discounted MDP has polynomial dependency on the horizon even in the lower order
term (Wei et al., 2020). In Tarbouriech et al. (2021), they still achieve minimax optimal regret by
deriving a horizon-free regret bound (no polynomial dependency on the horizon even in the lower
order term), and approximately set 1− γ = Õ( 1

K ) to achieve small approximation error. The draw-
back, however, is that the time complexity of updating the learner’s policy scales linearly w.r.t the
effective horizon, which is of order Õ(K); see (Tarbouriech et al., 2021, Remark 1).

B.2. Proof of Lemma 4

Proof We only prove the statement for adversarial environment, and the statement for stochastic
environment follows directly from setting c1 = · · · cK = c. By Lemma 2, we have V π̊?,P,ck(s, 1) ≤
V π?,P,ck(s) + 1

K for any k ∈ [K]. Now by Lemma 31 and the fact that the expected hitting time of
fast policy is upper bounded by D, we have with probability at least 1 − δ, the learner reaches the
goal within Jk + cf steps for each episode k. Thus by a union bound, we have with probability at

least 1− δ,
∑K

k=1

∑Ik
i=1 c

k
i ≤

∑K
k=1

(∑Jk
i=1 c

k
i + c̊kJk+1

)
. Putting everything together, we get:

RK =

K∑
k=1

(
Ik∑
i=1

cki − V π?,P,ck(sk1)

)
≤

K∑
k=1

(
Jk∑
i=1

cki + c̊kJk+1 − V π̊?,P,ck(sk1, 1)

)
+ Õ (1)

= R̊K + Õ (1) .

This completes the proof.
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Appendix C. Omitted Details for Section 4

In this section, we provide all proofs for Section 4. We first provide omitted details for cost estima-
tion under various feedback types. Then, we establish the main results in Appendix C.2. Finally,
we provide proofs of auxiliary lemmas in Appendix C.3.

Extra Notations Define optimistic transitions P̃k = Γ(πk,Pk, c̃k) and Pk = Γ(πk,Pk, ĉk), such
that Q̃k = Qπk,P̃k,c̃k and Q̂k = Qπk,Pk,ĉk . Also define q̃k = q

πk,P̃k
and Qk = Qπk,P,ĉk .

C.1. Cost Estimation

We provide more details on the definition of ĉk for the subsequent analysis. Recall that ĉk(s, a) =

max{0, c̄k(s, a) − 2
√
c̄k(s, a)αk(s, a) − 7αk(s, a)}. Here, c̄k(s, a) = Ck(s,a)

N+
k (s,a)

, where Ck(s, a) is

the accumulated costs that are observed at (s, a) in episode j = 1, . . . , k− 1 before σ(πj) switches
to the fast policy, αk(s, a) = ι

N+
k (s,a)

(recall ι = ln(2SALK/δ)), N+
k (s, a) = max{1,Nk(s, a)},

and Nk is the number of times the learner observes cost at (s, a) in episode j = 1, . . . , k − 1
before σ(πj) switches to the fast policy. The definition of Ck and Nk depends on the type of cost
feedback. For stochastic costs, Ck(s, a) =

∑k−1
j=1

∑Jk
i=1 c

j
i I{s

j
i = s, aji = a} and Nk = Nk(s, a).

For stochastic adversary, Ck(s, a) =
∑k−1

j=1 mj(s, a)cj(s, a), where mk(s, a) is the indicator of
whether ck(s, a) is observed in episode k before σ(πk) switches to the fast policy, and Nk(s, a) =
Mk(s, a) ,

∑k−1
j=1 mj(s, a).

Below we show a lemma quantifying the cost estimation error.

Lemma 14 Under the event of Lemma 11, we have with probability at least 1− δ,

0 ≤ c(s, a)− ĉk(s, a) ≤ 4
√
ĉk(s, a)αk(s, a) + 34αk(s, a),

for all definitions of ĉk.

Proof Only prove the stochastic cost case and the stochastic adversary case follows similarly. Note
that under the event of Lemma 11, Nk+1(s, a) ≤ LK. Applying Lemma 51 with Xk = ck(s, a) for
each (s, a) ∈ S × A and then by a union bound over all (s, a) ∈ S × A, we have with probability
at least 1− δ, for all k ∈ [K]:

|c̄k(s, a)− c(s, a)| ≤ 2
√
αk(s, a)c̄k(s, a) + 7αk(s, a).

Hence, c(s, a) ≥ ĉk(s, a) by the definition of ĉk. Applying x2 ≤ ax + b =⇒ x ≤ a +
√
b with

x =
√
c̄k(s, a) to the inequality above (ignoring the absolute value operator), we obtain√

c̄k(s, a) ≤ 2
√
αk(s, a) +

√
c(s, a) + 7αk(s, a) ≤

√
c(s, a) + 5

√
αk(s, a),

Therefore, 2
√
αk(s, a)c̄k(s, a) + 7αk(s, a) ≤ 2

√
αk(s, a)c(s, a) + 17αk(s, a), and

c(s, a)− ĉk(s, a) = c(s, a)− c̄k(s, a) + c̄k(s, a)− ĉk(s, a)

≤ 2 · (2
√
αk(s, a)c̄k(s, a) + 7αk(s, a)) ≤ 4

√
αk(s, a)c(s, a) + 34αk(s, a).

This completes the proof.
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C.2. Main Results for Stochastic Costs and Stochastic Adversary

We first show a general regret bound agnostic to the feedback type (Theorem 15). Then, we present
the proofs of Theorem 5 to Theorem 7 (Appendix C.2.1 to Appendix C.2.3) using the general regret
bound.

Theorem 15 Assuming that there exists a constant G such that for any s, h:

K−1∑
k=1

〈
πk+1(·|s, h), dQ̃k(s, ·, h)

〉
≤ G.

Then, Algorithm 1 in stochastic environments with λ ≤ min{1/Tmax,
√
S2A/K} ensures with

probability at least 1− 22δ,

R̊K = Õ

 K∑
k=1

J̄k∑
i=1

(cki − ĉk (̊ski , aki ))−
K∑
k=1

〈qk, ek〉+

K∑
k=1

〈q?, ek〉+
S2A

λ


+ Õ


√√√√S2A

K∑
k=1

〈qk, ek ◦Qπk,P,ek〉+ S4A2.5T 3
max + λ

K∑
k=1

〈
q?, c ◦Qπ̊?,P,ĉk

〉
+ Õ

(
Tmax

η
+ TmaxG+ λ

K∑
k=1

〈
q?, Qπ̊

?,P,ek
〉)

.

Proof For notational convenience, define ω = S4A2.5T 3
max. By 〈q?, ĉk〉 ≤ 〈q?, c〉 (Lemma 14) and

Lemma 11 (under which nk = n̄k), we have with probability at least 1− 2δ,

R̊K =
K∑
k=1

 J̄k∑
i=1

cki + c̊kJk+1 − V π̊?,P,c(̊sk1)

 ≤ K∑
k=1

 J̄k∑
i=1

cki + c̊kJk+1 − V π̊?,P,ĉk (̊sk1)


≤

K∑
k=1

J̄k∑
i=1

(cki − ĉk (̊ski , aki )) +
K∑
k=1

〈n̄k − q?, ĉk〉 .

For the second term, by the definition of c̃k,

K∑
k=1

〈n̄k − q?, ĉk〉 =
K∑
k=1

〈n̄k − qk, ĉk〉+
K∑
k=1

〈qk − q̃k, c̃k〉+
K∑
k=1

〈q̃k − q?, c̃k〉

−
K∑
k=1

〈qk, ek〉+

K∑
k=1

〈q?, ek〉 − λ
K∑
k=1

〈
qk, ĉk ◦ Q̂k

〉
+ λ

K∑
k=1

〈
q?, ĉk ◦ Q̂k

〉
≤

K∑
k=1

〈n̄k − qk, ĉk〉+

K∑
k=1

〈qk − q̃k, c̃k〉 − λ
K∑
k=1

〈qk, ĉk ◦Qk〉︸ ︷︷ ︸
ξ1

−
K∑
k=1

〈qk, ek〉+
K∑
k=1

〈q?, ek〉+ λ
K∑
k=1

〈
qk, ĉk ◦ (Qk − Q̂k)

〉
︸ ︷︷ ︸

ξ2
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+ λ
K∑
k=1

〈
q?, c ◦Qπ̊?,P,ĉk

〉
+

K∑
k=1

〈q̃k − q?, c̃k〉+ λ
K∑
k=1

〈
q?, c ◦ (Q̂k −Qπ̊

?,P,ĉk)
〉

︸ ︷︷ ︸
ξ3

.

(ĉk(s, a, h) ≤ c(s, a, h))

For ξ1, with probability at least 1− 17δ:

K∑
k=1

〈n̄k − qk, ĉk〉+
K∑
k=1

〈qk − q̃k, c̃k〉 − λ
K∑
k=1

〈qk, ĉk ◦Qk〉 ≤ Õ


√√√√ K∑

k=1

〈qk, ĉk ◦Qk〉+ SATmax


+

K∑
k=1

〈
qk − q̃k, (1 + λQ̂k) ◦ ĉk

〉
+

K∑
k=1

〈qk − q̃k, ek〉 − λ
K∑
k=1

〈qk, ĉk ◦Qk〉

(Ek[n̄k(s, a, h)] ≤ qk(s, a, h), Lemma 50, Lemma 26, and n̄k(s, a, h) ≤ L = Õ(Tmax))

= Õ


√√√√S2A

K∑
k=1

〈qk, ĉk ◦Qk〉+

√√√√S2A

K∑
k=1

〈qk, ek ◦Qπk,P,ek〉+ ω

− λ K∑
k=1

〈qk, ĉk ◦Qk〉

(Lemma 28 and (1 + λQ̂k(s, a, h))ĉk(s, a, h) = Õ(ĉk(s, a, h)))

= Õ

S2A

λ
+

√√√√S2A

K∑
k=1

〈qk, ek ◦Qπk,P,ek〉+ ω

 . (AM-GM inequality)

For ξ2, by Lemma 30 and Lemma 13, with probability at least 1− 2δ,

Qk(s, a, h)− Q̂k(s, a, h) =
∑
s′,a′,h′

qk,(s,a,h)(s
′, a′, h′)(Ps′,a′,h′ − Pk,s′,a′,h′)V πk,Pk,ĉk

= Õ

∑
s′,a′

qk,(s,a,h)(s
′, a′)

 √
STmax√

N+
k (s′, a′)

+
STmax

N+
k (s′, a′)

 . (6)

By qk(s, a, h) = xk(s,a,h)
1−yk(s,a,h) and yk(s, a, h) ≤ γ = 1− 1

2Tmax
, we have∑

s,a,h≤H
qk(s, a, h)qk,(s,a,h)(s

′, a′) ≤ 2Tmax

∑
s,a,h≤H

xk(s, a, h)qk,(s,a,h)(s
′, a′)

≤ 2Tmax

∑
s,a,h≤H

qk(s
′, a′) = 2TmaxSAHqk(s

′, a′). (7)

Therefore, with probability at least 1− δ,

ξ2 = λ
K∑
k=1

〈
qk, ĉk ◦ (Qk − Q̂k)

〉

= Õ

λ K∑
k=1

∑
s,a,h

qk(s, a, h)
∑
s′,a′

qk,(s,a,h)(s
′, a′)

 √
STmax√

N+
k (s′, a′)

+
STmax

N+
k (s′, a′)


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= Õ

λT 2
maxS

3/2A
∑
s′,a′

K∑
k=1

qk(s
′, a′)√

N+
k (s′, a′)

+ λT 2
maxS

2A
∑
s′,a′

K∑
k=1

qk(s
′, a′)

N+
k (s′, a′)

 (Eq. (7))

= Õ
(
λT 2

maxS
3/2A

√
SATmaxK + λS3A2T 3

max

)
= Õ (ω) .

(Lemma 32 and
∑

s,a qk(s, a) = Õ(Tmax))

For ξ3, first note that
∥∥∥Q̃1

∥∥∥
∞

= Õ(Tmax) under all definitions of c̃k, and by Lemma 30:

K∑
k=1

〈q̃k − q?, c̃k〉 =
K∑
k=1

∑
s,h

q?(s, h)
∑
a

(πk(a|s, h)− π?(a|s, h)) Q̃k(s, a, h)

+

K∑
k=1

∑
s,a,h

q?(s, a, h)
(
Q̃k(s, a, h)− c̃k(s, a, h)− Ps,a,hV πk,P̃k,c̃k

)
= Õ

(
T?
η

+ T?G+ T 2
max

)
.

(Lemma 24, the definition of P̃k and
∑

s,a,h q
?(s, a, h) = Õ(T?) by Lemma 2)

Next, note that

K∑
k=1

(Q̂k(s, a, h)−Qπ̊?,P,ĉk(s, a, h)) ≤
K∑
k=1

(Qπk,P̃k,ĉk(s, a, h)−Qπ̊?,P,ĉk(s, a, h))

(Pk, P̃k ∈ Pk)

≤
K∑
k=1

(
Qπk,P̃k,c̃k(s, a, h)−Qπ̊?,P,c̃k(s, a, h)

)
+

K∑
k=1

Qπ̊
?,P,λQ̂k+ek(s, a, h) (definition of c̃k)

Also note that λ
∑K

k=1

〈
q?, Qπ̊

?,P,λQ̂k
〉

= Õ(λ2T 3
maxK) = Õ(S2AT 3

max) by λ ≤
√
S2A/K.

Thus,

λ
K∑
k=1

〈
q?, c ◦ (Q̂k −Qπ̊

?,P,ĉk)
〉

= Õ

(
λ

K∑
k=1

〈
q?, c ◦ (Q̃k −Qπ̊

?,P,c̃k)
〉

+ λ

K∑
k=1

〈
q?, Qπ̊

?,P,ek
〉

+ S2AT 3
max

)
.

Now by Lemma 30 and the definition of P̃k:

K∑
k=1

(Q̃k(s, a, h)−Qπ̊?,P,c̃k(s, a, h)) (8)

≤
K∑
k=1

∑
s′′,h′′

Ps,a,h(s′′, h′′)
∑
s′,a′,h′

q?(s′′,h′′)(s
′, h′)

(
πk(a

′|s′, h′)− π̊?(a′|s′, h′)
)
Q̃k(s

′, a′, h′)
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= Õ
(
Tmax

η
+ TmaxG+ T 2

max

)
. (Lemma 24)

Thus, by λTmax ≤ 1, we have λ
∑K

k=1

〈
q?, c ◦ (Q̃k −Qπ̊

?,P,c̃k)
〉

= Õ(Tmax
η + TmaxG + T 2

max).
Putting everything together completes the proof.

C.2.1. PROOF OF THEOREM 5

Proof By Lemma 25 with nk = nk, Nk = Nk, and ek(s, a, h) = 0, with probability at least 1−2δ:

K−1∑
k=1

〈
πk+1(·|s, h), dQ̃k(s, ·, h)

〉
= Õ

T 2
max

K∑
k=1

∑
s′,a′

Snk(s
′, a′)

N+
k (s′, a′)

+ ληT 4
maxK


= Õ

(
S2AT 3

max + T 2
max(S2AK)1/4

)
.

(definition of λ and η, nk(s, a) = n̄k(s, a) under the event of Lemma 11, and Lemma 32)

Thus, by Theorem 15, Lemma 16, definition of λ, and replacing G by the bound above, we have
with probability at least 1− 28δ,

R̊K = Õ


√√√√SA

K∑
k=1

Jk∑
i=1

cki +
S2A

λ
+ T 3

max(S2AK)1/4 + S4A2.5T 4
max + λ

K∑
k=1

〈
q?, c ◦Qπ̊?,P,ĉk

〉
= Õ


√√√√SA

K∑
k=1

Jk∑
i=1

cki +B?S
√
AK + T 3

max(S2AK)1/4 + S4A2.5T 4
max

 . (Lemma 20)

Now by R̊k =
∑K

k=1

∑Jk
i=1 c

k
i − K · V π̊?,P,c(̊sk1) and Lemma 48, we have

∑K
k=1

∑Jk
i=1 c

k
i =

Õ(B?K). Plugging this back, we get R̊K = Õ(B?S
√
AK + T 3

max(S2AK)1/4 + S4A2T 4
max).

Applying Lemma 4 then completes the proof.

C.2.2. PROOF OF THEOREM 6

Proof First note that with probability at least 1− 3δ,

K∑
k=1

‖dek‖1 ≤
K∑
k=1

∑
s,a,h≤H

∣∣∣∣∣
√
ĉk(s, a, h)

k
−
√
ĉk+1(s, a, h)

k + 1

∣∣∣∣∣+ β′
K∑
k=1

∑
s,a,h≤H

∣∣∣dQ̂k(s, a, h)
∣∣∣

= Õ
(
S3A2T 2

max + S1/2A3/4TmaxK
1/4
)
,

where in the last inequality we apply

K∑
k=1

∑
s,a,h≤H

∣∣∣∣∣
√
ĉk(s, a, h)

k
−
√
ĉk+1(s, a, h)

k + 1

∣∣∣∣∣
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≤
K∑
k=1

∑
s,a,h≤H

(
1√
k
− 1√

k + 1

)
+

K∑
k=1

∑
s,a,h≤H

√
|ĉk(s, a, h)− ĉk+1(s, a, h)|√

k + 1

(add and subtract
√
ĉk(s, a, h)/(k + 1), and |

√
a−
√
b| ≤

√
|a− b|)

= Õ

SA+

√√√√ K∑
k=1

∑
s,a,h≤H

1

k + 1

√√√√ K∑
k=1

∑
s,a,h≤H

mk(s, a)

M+
k (s, a)

 = Õ (SA) ,

(Cauchy-Schwarz inequality, Lemma 25, and Lemma 32)

and by Lemma 11,

β′
K∑
k=1

∑
s,a,h≤H

∣∣∣dQ̂k(s, a, h)
∣∣∣

= Õ

β′ K∑
k=1

∑
s,a,h≤H

T 2
max

∑
s′,a′

Snk(s
′, a′)

N+
k (s′, a′)

+ Tmax

∑
s′,a′

mk(s
′, a′)

M+
k (s′, a′)

+ ηT 3
max


(Lemma 25)

= Õ
(
β′S3A2T 3

max + β′ηSAT 3
maxK

)
= Õ

(
S3A2T 2

max + S1/2A3/4TmaxK
1/4
)
. (Lemma 32)

Moreover, by Lemma 25 with nk = mk, Nk = Mk, and λ ≤ 1
Tmax

, we have with probability at
least 1− δ:
K−1∑
k=1

〈
πk+1(·|s, h), dQ̃k(s, ·, h)

〉

= Õ

T 2
max

K∑
k=1

∑
s′,a′

Snk(s
′, a′)

N+
k (s′, a′)

+ λT 2
max

K∑
k=1

∑
s′,a′

mk(s
′, a′)

M+
k (s′, a′)

+ ληT 4
maxK + Tmax

K∑
k=1

‖dek‖1


= Õ

(
S3A2T 3

max + T 2
max(S2A3K)1/4

)
, (9)

where the last step is by Lemma 32, the definition of η and λ, and the bound on
∑K

k=1 ‖dek‖1.
Moreover, by Lemma 17 and definition of ek, we have with probability at least 1− 16δ:

K∑
k=1

J̄k∑
i=1

(
cki − ĉk (̊ski , aki )

)
−

K∑
k=1

〈qk, ek〉 = Õ

(
β′

K∑
k=1

〈
qk, Qk − Q̂k

〉
+

1

β′
+
√
S3A3T 3

max

)
= Õ

(
S3A2T 3

max +
√
DT?K

)
,

(Eq. (6), Eq. (7) similar to bounding ξ2, and the definition of β′)
K∑
k=1

〈q?, ek〉 = Õ

(
K∑
k=1

∑
s,a

q?(s, a)

√
c(s, a)

k
+ β′

K∑
k=1

〈
q?, Q̂k

〉)
(Lemma 14)

(i)
= Õ

(√
DT?K + S3A2T 4

max

)
,√√√√S2A

K∑
k=1

〈qk, ek ◦Qπk,P,ek〉 = Õ
(√

S2AT 4
max

)
,
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λ
K∑
k=1

〈
q?, Qπ̊

?,P,ek
〉

= Õ
(
λT 2

max

√
K + λβ′T 3

maxK
)

= Õ
(√

S2AT 3
max

)
,

where (i) is by

K∑
k=1

∑
s,a

q?(s, a)

√
c(s, a)

k
= Õ


√√√√ K∑

k=1

∑
s,a

q?(s, a)c(s, a)

√√√√ K∑
k=1

∑
s,a

q?(s, a)

k

 = Õ
(√

DT?K
)
,

(Cauchy-Schwarz inequality)

definition of β′, and

β′
K∑
k=1

〈
q?, Q̂k

〉
= β′

K∑
k=1

〈
q?, Q̂k −Qπ̊

?,P,ĉk
〉

+ β′
K∑
k=1

〈
q?, Qπ̊

?,P,ĉk
〉

= Õ

β′ K∑
k=1

∑
s,a,h

q?(s, a, h)
(
Qπk,P̃k,c̃k(s, a, h)−Qπ̊?,P,c̃k(s, a, h)

)
+ Õ

β′∑
s,a,h

K∑
k=1

q?(s, a, h)Qπ̊
?,P,λQ̂k+ek(s, a, h) +

√
DT?K

 ,

(
∑

s,a,h q
?(s, a, h) = O(T?), and

∥∥Qπ̊?,P,ĉk∥∥∞ = O(D))

= Õ
(
β′T 2

max

η
+ β′T 2

maxG+ β′T 3
max + (λβ′ + β′

2
)T 3

maxK + β′T 2
max

√
K +

√
DT?K

)
,

(Eq. (8))

= Õ
(
S3A2T 4

max +
√
DT?K

)
. (replace G by Eq. (9))

Thus, by Theorem 15, Lemma 21, and definition of η, λ, we have with probability at least 1− 22δ,

R̊K = Õ
(√

DT?K +DS
√
AK + T 3

max(S2A3K)1/4 + S4A2.5T 4
max

)
.

Applying Lemma 4 completes the proof.

C.2.3. PROOF OF THEOREM 7

Proof By Lemma 25 with nk = mk, Nk = Mk, and λ ≤ 1
Tmax

, we have with probability at least
1− 2δ:

K−1∑
k=1

〈
πk+1(·|s, h), dQ̃k(s, ·, h)

〉
(10)

= Õ

T 2
max

K∑
k=1

∑
s′,a′

Snk(s
′, a′)

N+
k (s′, a′)

+ λT 2
max

K∑
k=1

∑
s′,a′

mk(s
′, a′)

M+
k (s′, a′)

+ ληT 4
maxK + Tmax

K∑
k=1

‖dek‖1


= Õ

(
S3A2T 3

max + T 2
maxSA

5/4K1/4
)
, (definition of η and Lemma 32)
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where in the last step we apply

K∑
k=1

‖dek‖1 = β
K∑
k=1

∑
s,a,h≤H

∣∣∣dQ̂k(s, a, h)
∣∣∣

= Õ

β K∑
k=1

∑
s,a,h≤H

T 2
max

∑
s′,a′

Snk(s
′, a′)

N+
k (s′, a′)

+ SATmax
mk(s, a)

M+
k (s, a)

+ ηT 3
max

 (Lemma 25)

= Õ
(
βS3A2T 3

max + βηSAT 3
maxK

)
= Õ

(
S3A2T 2

max + SA5/4TmaxK
1/4
)
. (Lemma 32)

By Lemma 18 and the definition of ek, we have with probability at least 1− 11δ:

K∑
k=1

J̄k∑
i=1

(
cki − ĉk (̊ski , aki )

)
−

K∑
k=1

〈qk, ek〉 = Õ

(
β

K∑
k=1

〈
qk, Qk − Q̂k

〉
+
SA

β
+
√
S3A3T 3

max

)
= Õ

(√
SADT?K + S2.5A2T 3

max

)
,

(Eq. (6), Eq. (7) similar to bounding ξ2, and the definition of β)
K∑
k=1

〈q?, ek〉 ≤ β
K∑
k=1

〈
q?, Q̂k −Qπ̊

?,P,ĉk
〉

+ β
K∑
k=1

〈
q?, Qπ̊

?,P,ĉk
〉

= Õ

β K∑
k=1

∑
s,a,h

q?(s, a, h)
(
Qπk,P̃k,c̃k(s, a, h)−Qπ̊?,P,c̃k(s, a, h)

)
+ Õ

β∑
s,a,h

K∑
k=1

q?(s, a, h)Qπ̊
?,P,λQ̂k+ek(s, a, h) +

√
SADT?K

 ,

(
∑

s,a,h q
?(s, a, h) = O(T?), and

∥∥Qπ̊?,P,ĉk∥∥∞ = O(D))

= Õ
(
βT 2

max

η
+ βT 2

maxG+ βT 3
max + (λβ + β2)T 3

maxK +
√
SADT?K

)
, (Eq. (8))

= Õ
(
S3A2T 4

max +
√
SADT?K

)
, (replace G by Eq. (10))√√√√S2A

K∑
k=1

〈qk, ek ◦Qπk,P,ek〉 = Õ
(√

β2S2AT 4
maxK

)
= Õ

(√
S3A2T 4

max

)
,

λ
K∑
k=1

〈
q?, Qπ̊

?,P,ek
〉

= Õ
(
λβT 3

maxK
)

= Õ
(
S3/2AT 3

max

)
.

Thus, by Theorem 15, definition of η, λ, and β, and Lemma 21, with probability at least 1− 22δ,

R̊K = Õ
(√

SADT?K +DS
√
AK + T 3

maxSA
5/4K1/4 + S4A2.5T 4

max

)
.

Applying Lemma 4 completes the proof.

28



POLICY OPTIMIZATION FOR STOCHASTIC SHORTEST PATH

C.3. Extra Lemmas for Section 4

We give an outline of this section: Lemma 16 to Lemma 18 bound the term
∑K

k=1

∑J̄k
i=1(cki −

ĉk (̊s
k
i , a

k
i )) the under various feedback types. Lemma 20 and Lemma 21 bound the term∑K

k=1

〈
q?, c ◦Qπ̊?,P,c

〉
under stochastic costs and stochastic adversaries respectively. Lemma 23

establishes stability of PO updates. Lemma 24 provide a refined analysis of PO. Lemma 25 bounds
the drift of various quantities (such as dĉk and dQ̃k) across episodes. Lemma 26 provide bounds on
variance of learner’s costs. Lemma 28 gives a bound on the estimation error of value functions due
to transition estimation.

Lemma 16 Under stochastic costs, we have with probability at least 1− 6δ:

K∑
k=1

J̄k∑
i=1

(cki − ĉk (̊ski , aki )) = Õ


√√√√SA

K∑
k=1

Jk∑
i=1

cki + SATmax

 .

Proof First note that:
K∑
k=1

J̄k∑
i=1

(cki − ĉk (̊ski , aki )) =

K∑
k=1

J̄k∑
i=1

(cki − c(ski , aki )) +

K∑
k=1

J̄k∑
i=1

(c(ski , a
k
i )− ĉk(ski , aki )).

For the first term, by Lemma 50 and Lemma 52, we have with probability at least 1− 2δ,

K∑
k=1

J̄k∑
i=1

(cki − c(ski , aki )) = Õ


√√√√ K∑

k=1

J̄k∑
i=1

E[(cki )
2|ski , aki ]

 = Õ


√√√√ K∑

k=1

J̄k∑
i=1

c(ski , a
k
i )


= Õ


√√√√ K∑

k=1

Jk∑
i=1

cki

 .

For the second term, with probability at least 1− 4δ,

K∑
k=1

J̄k∑
i=1

(c(ski , a
k
i )− ĉk (̊ski , aki )) = Õ

 K∑
k=1

J̄k∑
i=1

(√
c(ski , a

k
i )

N+
k (ski , a

k
i )

+
1

N+
k (ski , a

k
i )

)
(Lemma 14 and ĉk(s, a) ≤ c(s, a))

= Õ

(∑
s,a

K∑
k=1

(
n̄k(s, a)

√
c(s, a)

N+
k (s, a)

+
n̄k(s, a)

N+
k (s, a)

))

= Õ


√√√√SA

K∑
k=1

J̄k∑
i=1

c(ski , a
k
i ) + SATmax

 (Lemma 32 and Jk = J̄k)

= Õ


√√√√SA

K∑
k=1

J̄k∑
i=1

cki + SATmax

 . (Lemma 52)

This completes the proof.

29



CHEN LUO ROSENBERG

Lemma 17 Under stochastic adversary with full information, with probability at least 1− 8δ,

K∑
k=1

J̄k∑
i=1

(cki − ĉk (̊ski , aki )) = 8ι ·
K∑
k=1

∑
s,a

qk(s, a)
√
ĉk(s, a)/k

+ Õ

√√√√ K∑
k=1

∑
s,a,h≤H

qk(s, a, h)Qk(s, a, h) +
√
S3A3T 3

max

 .

Proof First note that by cki = ck(s
k
i , a

k
i ):

K∑
k=1

J̄k∑
i=1

(cki − ĉk (̊ski , aki )) =
K∑
k=1

J̄k∑
i=1

(ck(s
k
i , a

k
i )− c(ski , aki )) +

K∑
k=1

J̄k∑
i=1

(c(ski , a
k
i )− ĉk(ski , aki )).

For the first term, with probability at least 1− δ,

K∑
k=1

J̄k∑
i=1

(ck(s
k
i , a

k
i )− c(ski , aki )) =

K∑
k=1

∑
s,a

n̄k(s, a)(ck(s, a)− c(s, a))

(i)
= Õ


√√√√√ K∑

k=1

Ek

(∑
s,a

n̄k(s, a)ck(s, a)

)2
+ Tmax


= Õ


√√√√√ K∑

k=1

Eck

 ∑
s,a,h≤H

qk(s, a, h)Qπk,P,ck(s, a, h)

+ Tmax


(Ek[·] = Eck,n̄k [·], Lemma 26 and ck(s, a) ≤ 1)

= Õ

√√√√ K∑
k=1

∑
s,a,h≤H

qk(s, a, h)Qk(s, a, h) +
K∑
k=1

〈qk, Qπk,P,c −Qk〉+ Tmax

 ,

(ĉk(s, a,H + 1) = c(s, a,H + 1))

where in (i) we apply Lemma 50, Ek[·] = Eck,n̄k [·], and

Eck

(∑
s,a

n̄k(s, a)(ck(s, a)− c(s, a))

)2
∣∣∣∣∣∣ n̄k
 ≤ Eck

(∑
s,a

n̄k(s, a)ck(s, a)

)2
∣∣∣∣∣∣ n̄k
 .

Now note that for h ≤ H , by Lemma 30, Lemma 14, and ĉk(s, a,H+1) = c(s, a,H+1), we have
with probability at least 1− 2δ:

Qπk,P,c(s, a, h)−Qk(s, a, h) =
∑

s′,a′,h′≤H
qk,(s,a,h)(s

′, a′, h′)(c(s′, a′, h′)− ĉk(s′, a′, h′))

= Õ

∑
s′,a′

qk,(s,a,h)(s
′, a′)

(√
ĉk(s′, a′)

M+
k (s′, a′)

+
1

M+
k (s′, a′)

) .
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Note that qk(s, a, h)qk,(s,a,h)(s
′, a′) = Õ(Tmaxxk(s, a, h)qk,(s,a,h)(s

′, a′)) = Õ(Tmaxqk(s
′, a′)).

Therefore, we have with probability at least 1− δ:

K∑
k=1

〈
qk, Q

πk,P,c −Qk
〉

= Õ

Tmax

K∑
k=1

∑
s,a,h≤H

∑
s′,a′

qk(s
′, a′)

(√
ĉk(s′, a′)

M+
k (s′, a′)

+
1

M+
k (s′, a′)

)
= Õ

SATmax

K∑
k=1

∑
s′,a′

qk(s
′, a′)

(√
ĉk(s′, a′)

M+
k (s′, a′)

+
1

M+
k (s′, a′)

)
(qk(s′, a′, h′) = O(Tmaxxk(s

′, a′, h′)))

= Õ

SATmax

√√√√ K∑
k=1

∑
s′,a′

qk(s′, a′)

M+
k (s′, a′)

√√√√ K∑
k=1

∑
s′,a′

qk(s′, a′)ĉk(s′, a′) +
K∑
k=1

∑
s′,a′

qk(s
′, a′)

M+
k (s′, a′)


(Cauchy-Schwarz inequality)

= Õ

√√√√S3A3T 3
max

K∑
k=1

∑
s′,a′

qk(s′, a′)ĉk(s′, a′) + S2A2T 2
max

 .

(qk(s′, a′) ≤ Tmaxxk(s
′, a′) and Lemma 32)

= Õ

 K∑
k=1

∑
s′,a′

qk(s
′, a′)ĉk(s

′, a′) + S3A3T 3
max

 . (AM-GM inequality)

Substituting these back, we have

K∑
k=1

J̄k∑
i=1

(ck(s
k
i , a

k
i )− c(ski , aki ))

= Õ

√√√√ K∑
k=1

∑
s,a,h≤H

qk(s, a, h)Qk(s, a, h) +
√
S3A3T 3

max

 . (11)

For the second term, with probability at least 1− 4δ,

K∑
k=1

J̄k∑
i=1

(c(ski , a
k
i )− ĉk (̊ski , aki )) ≤

K∑
k=1

J̄k∑
i=1

(
4

√
ĉk(s

k
i , a

k
i )ι

M+
k (ski , a

k
i )

+
34ι

M+
k (ski , a

k
i )

)
(Lemma 14)

≤
K∑
k=1

∑
s,a

8 · qk(s, a)ι

√
ĉk(s, a)

k
+

K∑
k=1

∑
s,a

68qk(s, a)ι

k
+ Õ (Tmax) (Lemma 52)

≤ 8ι ·
K∑
k=1

∑
s,a

qk(s, a)
√
ĉk(s, a)/k + Õ (Tmax) .

Putting everything together completes the proof.
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Lemma 18 Under stochastic adversary with bandit feedback, with probability at least 1− 8δ,

K∑
k=1

J̄k∑
i=1

(cki − ĉk (̊ski , aki )) = Õ


√√√√SA

K∑
k=1

∑
s,a

H∑
h=1

qk(s, a, h)Qk(s, a, h) +
√
S3A3T 3

max

 .

Proof First note that by cki = ck(s
k
i , a

k
i ):

K∑
k=1

J̄k∑
i=1

(cki − ĉk (̊ski , aki )) =
K∑
k=1

J̄k∑
i=1

(ck(s
k
i , a

k
i )− c(ski , aki )) +

K∑
k=1

J̄k∑
i=1

(c(ski , a
k
i )− ĉk(ski , aki )).

For the first term, Eq. (11) holds by the same arguments as in Lemma 17 with probability at least
1− 4δ. For the second term, we have with probability at least 1− 4δ,

K∑
k=1

J̄k∑
i=1

(c(ski , a
k
i )− ĉk (̊ski , aki )) = Õ

 K∑
k=1

J̄k∑
i=1

(√
ĉk(s

k
i , a

k
i )

M+
k (ski , a

k
i )

+
1

M+
k (ski , a

k
i )

)
(Lemma 14)

= Õ

(
K∑
k=1

∑
s,a

H∑
h=1

qk(s, a, h)

√
ĉk(s, a)

M+
k (s, a)

+
K∑
k=1

∑
s,a

qk(s, a)

M+
k (s, a)

+ Tmax

)
(Lemma 52)

= Õ


√√√√ K∑

k=1

∑
s,a

H∑
h=1

q2
k(s, a, h)

xk(s, a, h)
ĉk(s, a)

√√√√ K∑
k=1

∑
s,a

H∑
h=1

xk(s, a, h)

M+
k (s, a)

+ SATmax


(Cauchy-Schwarz inequality, Lemma 32, and qk(s, a) = Õ (Tmaxxk(s, a)))

= Õ


√√√√SA

K∑
k=1

∑
s,a

H∑
h=1

qk(s, a, h)Qk(s, a, h) + SATmax

 .

(Lemma 32 and qk(s,a,h)
xk(s,a,h) ĉk(s, a) ≤ Qk(s, a, h))

Lemma 19 For h ∈ [H + 1], we have
∑

s,a q
?(s, a, h) ≤ (1

2)h−1Tmax.

Proof Denote by p(s) the probability that the learner starts at state s in layer h and eventually
reaches layer h+ 1 following π̊?. Clearly, p(g) = 0, and

p(s) ≤ 1− γ + γPs,π?(s)p
(i)
≤ E

[
I∑
t=1

(1− γ)γt−1

∣∣∣∣∣π?, P, s1 = s

]
≤ 1

2
,

where (i) is by repeatedly applying the first inequality. By a recursive argument, we have the
probability of reaching layer h is upper bounded by (1

2)h−1. Then by
∑

s,a q
?
(s′,h)(s, a, h) ≤ Tmax

for any s′, we have
∑

s,a q
?(s, a, h) ≤ (1

2)h−1Tmax.
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Lemma 20 Under stochastic costs,
〈
q?, c ◦Qπ̊?,P,c

〉
≤ 2B2

? + (H+1)Tmax

K .

Proof By Lemma 2 and Lemma 19, we have:

〈
q?, c ◦Qπ̊?,P,c

〉
=

H∑
h=1

∑
s,a

q?(s, a, h)c(s, a)Qπ̊
?,P,c(s, a, h) +

∑
s

q?(s,H + 1)cf

≤
H∑
h=1

∑
s,a

q?(s, a, h)c(s, a)
(
Qπ

?,P,c(s, a) +
cf

2H−h+1

)
+
cfTmax

2H

≤ 2B2
? +

H∑
h=1

Tmax

2h−1

cf
2H−h+1

+
cfTmax

2H

(
∑H

h=1 q
?(s, a, h)c(s, a) ≤ B? and Qπ

?,P,c(s, a) ≤ 1 +B?)

≤ 2B2
? + (H + 1)

cfTmax

2H
≤ 2B2

? +
(H + 1)Tmax

K
.

Lemma 21 For stochastic adversary, we have
∑K

k=1

〈
q?, c ◦Qπ̊?,P,c

〉
= Õ

(
D2K

)
.

Proof
∑K

k=1

〈
q?, c ◦Qπ̊?,P,c

〉
= Õ (DK 〈q?, c〉) = Õ

(
D2K

)
.

Lemma 22 η
∥∥∥Q̃k∥∥∥

∞
≤ 1 under all definitions of c̃k.

Proof It suffices to bound
∥∥∥Q̃k∥∥∥

∞
. By Lemma 2, Q̂k(s, a, h) ≤ H

1−γ + cf =

χ. Therefore, ek(s, a, h) ≤ 8ι + χ/Tmax under all feedback types. This gives
c̃k(s, a, h) ≤ (1 + λQ̂k(s, a, h)) + ek(s, a, h) ≤ 3(8ι + χ/Tmax) for h ≤ H and
c̃k(s, a,H + 1) ≤ (1 + λQ̂k(s, a,H + 1))cf ≤ 3cfχ/Tmax. Lemma 2 then gives
Q̃k(s, a, h) ≤ H

1−γ · 3(8ι + χ/Tmax) + 3cfχ/Tmax ≤ 3Tmax(8ι + χ/Tmax)2, and the state-
ment is proved by the definition of η.

Lemma 23 Under all definitions of c̃k, we have |dπk(a|s, h)| = Õ(ηTmaxπk(a|s, h)) and∥∥∥dQπk,P ′,c′∥∥∥
∞

= Õ(ηT 3
max) for P ′ ∈ ΛM and c′ ∈ CM.

Proof Note that:

πk+1(a|s, h)− πk(a|s, h) =
πk(a|s, h) exp(−ηQ̃k(s, a, h))∑
a′ πk(a

′|s, h) exp(−ηQ̃k(s, a′, h))
− πk(a|s, h)

≤ πk(a|s, h)∑
a′ πk(a

′|s, h)
exp(max

a′
|ηQ̃k(s, a′, h)|)− πk(a|s, h) = Õ (ηTmaxπk(a|s, h)) .

(Lemma 22 and |ex − 1| ≤ 2|x| for x ∈ [−1, 1])
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The other direction can be proved similarly. Then by Lemma 30,∣∣∣Qπk+1,P
′,c′(s, a, h)−Qπk,P ′,c′(s, a, h)

∣∣∣
=

∣∣∣∣∣∣
∑
s′′,h′′

Ps,a,h(s′′, h′′)
∑
s′,a′,h′

qπk,P ′,(s′′,h′′)(s
′, h′)

(
dπk(a

′|s′, h′)
)
Qπk+1,P

′,c′(s′, a′, h′)

∣∣∣∣∣∣
= Õ

(
ηT 3

max

)
.

This completes the proof.

Lemma 24 Suppose πk(a|s, h) ∝ exp(
∑

j<k Q̃j(s, a, h)). Then,

K∑
k=1

∑
a∈A

(πk(a|s, h)− π?(a|s, h))Q̃k(s, a, h)

≤ lnA

η
+
〈
π1(·|s, h), Q̃1(s, ·, h)

〉
+

K−1∑
k=1

〈
πk+1(·|s, h), Q̃k+1(s, ·, h)− Q̃k(s, ·, h)

〉
.

Proof First note that:

πk+1(·|s, h) = argmin
π(·|s,h)∈∆(A)

η
〈
π(·|s, h), Q̃k(s, ·, h)

〉
+ KL(π(·|s, h), πk(·|s, h)), (12)

where KL(p, q) =
∑

a(p(a) ln p(a)
q(a) − p(a) + q(a)), and

πk+1(·|s, h) ∝ π′k+1(a|s, h) , πk(a|s, h) exp(−ηQ̃k(s, a, h)),

where π′k+1 is the solution of the unconstrained variant of Eq. (12) (that is, replacing
argminπ(·|s,h)∈∆(A) by argminπ(·|s,h)∈RA). It is easy to verify that:

KL(πk(·|s, h), πk+1(·|s, h)) + KL(πk+1(·|s, h), πk(·|s, h))

=

〈
πk(·|s, h), ln

πk(·|s, h)

πk+1(·|s, h)

〉
+

〈
πk+1(·|s, h), ln

πk+1(·|s, h)

πk(·|s, h)

〉
=

〈
πk(·|s, h)− πk+1(·|s, h), ln

πk(·|s, h)

π′k+1(·|s, h)

〉
(πk+1(·|s, h) ∝ π′k+1(·|s, h))

=
〈
πk(·|s, h)− πk+1(·|s, h), ηQ̃k(s, ·, h)

〉
≥ 0. (13)

By the standard OMD analysis (Hazan et al., 2016) (note that KL is the Bregman divergence w.r.t
the negative entropy regularizer),

K∑
k=1

〈
πk(·|s, h)− π?(·|s, h), Q̃k(s, ·, h)

〉
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=
1

η

K∑
k=1

(
KL(π?(·|s, h), πk(·|s, h))− KL(π?(·|s, h), π′k+1(·|s, h)) + KL(πk(·|s, h), π′k+1(·|s, h))

)
=

1

η

K∑
k=1

(KL(π?(·|s, h), πk(·|s, h))− KL(π?(·|s, h), πk+1(·|s, h)) + KL(πk(·|s, h), πk+1(·|s, h)))

≤ KL(π?(·|s, h), π1(·|s, h))

η
+

K∑
k=1

〈
πk(·|s, h)− πk+1(·|s, h), Q̃k(s, ·, h)

〉
(Eq. (13))

≤ lnA

η
+
K−1∑
k=1

〈
πk+1(·|s, h), Q̃k+1(s, ·, h)− Q̃k(s, ·, h)

〉
+
〈
π1(·|s, h), Q̃1(s, ·, h)

〉
−
〈
πK+1(·|s, h), Q̃K(s, ·, h)

〉
.

This completes the proof.

Lemma 25 Define nk(s, a) = Nk+1(s, a)−Nk(s, a). We have:

|dĉk(s, a)| = O
(
nk(s, a)ι

N+
k (s, a)

)
,

∣∣∣dQ̂k(s, a, h)
∣∣∣ = O

T 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+ Tmax

∑
s′,a′

nk(s
′, a′)ι

N+
k (s′, a′)

+ ηT 3
max

 ,

|dc̃k(s, a)|

= O

 nk(s, a)ι

N+
k (s, a)

+ λT 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+ λTmax

∑
s′,a′

nk(s
′, a′)

N+
k (s′, a′)

+ ληT 3
max + |dek(s, a, h)|

 ,

dQ̃k(s, a, h) = O

T 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+ λT 2
max

∑
s′,a′

nk(s
′, a′)

N+
k (s′, a′)

+ ληT 4
max + Tmax ‖dek‖1

 .

Proof First statement: Note that for all definitions of ĉk used in this paper, we have ‖ĉk‖∞ ≤ 1.
Then by the definition of ĉk and |max{0, a} −max{0, b}| ≤ |a− b|:

|ĉk+1(s, a)− ĉk(s, a)|

= O

(
|c̄k+1(s, a)− c̄k(s, a)|+

∣∣∣∣∣
√
c̄k(s, a)ι

N+
k (s, a)

−
√
c̄k+1(s, a)ι

N+
k+1(s, a)

∣∣∣∣∣+
ι

N+
k (s, a)

− ι

N+
k+1(s, a)

)
.

Note that:

|c̄k+1(s, a)− c̄k(s, a)| =

∣∣∣∣∣Ck+1(s, a)

N+
k+1(s, a)

− Ck(s, a)

N+
k (s, a)

∣∣∣∣∣
≤

∣∣∣∣∣Ck+1(s, a)− Ck(s, a)

N+
k+1(s, a)

∣∣∣∣∣+ Nk(s, a)

∣∣∣∣∣ 1

N+
k (s, a)

− 1

N+
k+1(s, a)

∣∣∣∣∣ (Ck(s, a) ≤ Nk(s, a))
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≤ nk(s, a)

N+
k+1(s, a)

+
Nk(s, a)nk(s, a)

N+
k (s, a)N+

k+1(s, a)
≤ 2nk(s, a)

N+
k (s, a)

,

and by |
√
a−
√
b| ≤

√
|a− b|, nk(s, a) ∈ N:∣∣∣∣∣

√
c̄k(s, a)ι

N+
k (s, a)

−
√
c̄k+1(s, a)ι

N+
k+1(s, a)

∣∣∣∣∣
≤

√
|c̄k(s, a)− c̄k+1(s, a)|ι

N+
k (s, a)

+
√
c̄k+1(s, a)ι

 1√
N+
k (s, a)

− 1√
N+
k+1(s, a)


≤ 2nk(s, a)ι

N+
k (s, a)

+

√ ι

N+
k (s, a)

−
√

ι

N+
k+1(s, a)

 = O
(
nk(s, a)ι

N+
k (s, a)

)
,

where in the last inequality we apply

1√
N+
k (s, a)

− 1√
N+
k+1(s, a)

=

(
1

N+
k (s, a)

− 1

N+
k+1(s, a)

)
/

 1√
N+
k (s, a)

+
1√

N+
k+1(s, a)


≤
√

N+
k+1(s, a) · nk(s, a)

N+
k (s, a)N+

k+1(s, a)
≤ nk(s, a)

N+
k (s, a)

. (14)

Thus, |dĉk(s, a)| = O
(

nk(s,a)ι

N+
k (s,a)

)
.

Second statement: Define Πk(P
′) = argminP ′′∈Pk+1

∑
s,a,h

∥∥∥P ′′s,a,h − P ′s,a,h∥∥∥
1

for any P ′ ∈
Pk. By the definition of Pk, we have (note that P ′s,a,h(s′, h′) = 0 for h′ /∈ {h, h+ 1}):∥∥Πk(P

′)s,a,h − P ′s,a,h
∥∥

1
≤ 2

∑
s′

∣∣P̄k,s,a(s′)− P̄k+1,s,a(s
′)
∣∣+ 2

∑
s′

∣∣εk+1(s, a, s′)− εk(s, a, s′)
∣∣ .

Denote by nk(s, a, s′) the number of visits to (s, a, s′) (before policy switch or goal state is reached)
in episode k. Note that:

∣∣P̄k,s,a(s′)− P̄k+1,s,a(s
′)
∣∣ =

∣∣∣∣∣Nk(s, a, s
′) + nk(s, a, s

′)

N+
k+1(s, a)

− Nk(s, a, s
′)

N+
k (s, a)

∣∣∣∣∣
≤ Nk(s, a, s

′)

(
1

N+
k (s, a)

− 1

N+
k+1(s, a)

)
+
nk(s, a, s

′)

N+
k+1(s, a)

≤ 2nk(s, a)

N+
k (s, a)

.

and by |
√
a−
√
b| ≤

√
|a− b|,

∣∣εk(s, a, s′)− εk+1(s, a, s′)
∣∣ = O

(∣∣∣∣∣
√
P̄k,s,a(s′)ι

N+
k (s, a)

−

√
P̄k+1,s,a(s′)ι

N+
k+1(s, a)

∣∣∣∣∣+ d

(
−ι

N+
k (s, a)

))

= O

√∣∣P̄k,s,a(s′)− P̄k+1,s,a(s′)
∣∣ ι

N+
k (s, a)

+
√
P̄k+1,s,a(s′)ιd

 −1√
N+
k (s, a)

+ d

(
−ι

N+
k (s, a)

)
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= O

nk(s, a)ι

N+
k (s, a)

+
√
P̄k+1,s,a(s′)d

 −
√
ι√

N+
k (s, a)

 .

Plugging these back, and by Cauchy-Schwarz inequality and Eq. (14) with Nk = Nk, we have

∥∥Πk(P
′)s,a,h − P ′s,a,h

∥∥
1

= O

Snk(s, a)ι

N+
k (s, a)

+ d

 −
√
Sι√

N+
k (s, a)

 = O
(
Snk(s, a)ι

N+
k (s, a)

)
. (15)

Thus, for any policy π′ and cost function c′ ∈ CM with c′(s, a, h) ∈ [0, 1] for h ≤ H , by Lemma 30
and Eq. (15), ∣∣∣Qπ′,Πk(P ′),c′(s, a, h)−Qπ′,P ′,c′(s, a, h)

∣∣∣
=

∣∣∣∣∣∣
∑
s′,a′,h′

qπ′,P ′,(s,a,h)(s
′, a′, h′)(Πk(P

′)s′,a′,h′ − P ′s′,a′,h′)V π′,Πk(P ′),c′

∣∣∣∣∣∣
= O

T 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

 . (16)

Now define P ′k = Πk(Pk). We have

Q̂k+1(s, a, h)− Q̂k(s, a, h) = Qπk+1,Pk+1,ĉk+1(s, a, h)−Qπk,Pk,ĉk(s, a, h)

≤ Qπk+1,P
′
k,ĉk+1(s, a, h)−Qπk+1,Pk,ĉk+1(s, a, h) +Qπk+1,Pk,ĉk+1(s, a, h)−Qπk,Pk,ĉk(s, a, h)

= O

T 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+ (Qπk+1,Pk,ĉk+1(s, a, h)−Qπk+1,Pk,ĉk(s, a, h)) (Eq. (16))

+ (Qπk+1,Pk,ĉk(s, a, h)−Qπk,Pk,ĉk(s, a, h))

= O

T 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+ Tmax

∑
s′,a′

∣∣ĉk+1(s′, a′)− ĉk(s′, a′)
∣∣+ ηT 3

max


(Lemma 30 and Lemma 23)

= O

T 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+ Tmax

∑
s′,a′

nk(s
′, a′)ι

N+
k (s′, a′)

+ ηT 3
max

 .

The other direction can be proved similarly.
Third statement: Note that |dc̃k(s, a,H + 1)| = 0, and for h ≤ H ,

|c̃k+1(s, a, h)− c̃k(s, a, h)|

≤ |dĉk(s, a)|+ λ
∣∣∣ĉk+1(s, a)Q̂k+1(s, a, h)− Q̂k(s, a, h)ĉk(s, a)

∣∣∣+ |dek(s, a, h)|

≤ |dĉk(s, a)|+ λQ̂k+1(s, a, h) |dĉk(s, a)|+ λĉk(s, a)
∣∣∣dQ̂k(s, a, h)

∣∣∣+ |dek(s, a, h)|
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= O

 nk(s, a)ι

N+
k (s, a)

+ λT 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+ λTmax

∑
s′,a′

nk(s
′, a′)

N+
k (s′, a′)

+ ληT 3
max + |dek(s, a, h)|

 .

Fourth statement: Define P̃ ′k = Πk(P̃k). By Eq. (15),
∥∥∥P̃ ′k,s,a,h − P̃k,s,a,h∥∥∥

1
= O

(
Snk(s,a)ι

N+
k (s,a)

)
,

and λ ≤ 1/Tmax, we have

Q̃k+1(s, a, h)− Q̃k(s, a, h) ≤ Qπk+1,P̃
′
k,c̃k+1(s, a, h)−Qπk,P̃k,c̃k(s, a, h)

=
(
Qπk+1,P̃

′
k,c̃k+1(s, a, h)−Qπk+1,P̃k,c̃k+1(s, a, h)

)
+
(
Qπk+1,P̃k,c̃k+1(s, a, h)−Qπk+1,P̃k,c̃k(s, a, h)

)
+
(
Qπk+1,P̃k,c̃k(s, a, h)−Qπk,P̃k,c̃k(s, a, h)

)
(i)
≤ O

T 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+
∑
s′,a′,h′

q
πk+1,P̃k,(s,a,h)

(s′, a′, h′)
∣∣c̃k+1(s′, a′, h′)− c̃k(s′, a′, h′)

∣∣
= O

T 2
max

∑
s′,a′

Snk(s
′, a′)ι

N+
k (s′, a′)

+ λT 2
max

∑
s′,a′

nk(s
′, a′)

N+
k (s′, a′)

+ ληT 4
max + Tmax ‖dek‖1

 ,

where in (i) we apply Eq. (16), Lemma 30, and

Qπk+1,P̃k,c̃k(s, a, h)−Qπk,P̃k,c̃k(s, a, h)

=
∑
s′′,h′′

P̃k,s,a,h(s′′, h′′)
∑
s′,a′,h′

q
πk+1,P̃k,(s′′,h′′)

(s′, h′)
(
dπk(a

′|s′, h′)
)
Qπk,P̃k,c̃k(s′, a′, h′)

(Lemma 30)

≤ 0. (Eq. (13))

This completes the proof.

Lemma 26 For any cost function c in M̊ such that c((s, h), a) ≥ 0, we have:

Vark[〈nk, c〉] =
∑
s,a,h

qk(s, a, h)(Aπk,P,c(s, a, h)2 + V(Ps,a,h, V
πk,P,c))

≤ Ek[〈nk, c〉2] ≤ 2
〈
qk, c ◦Qπk,P,c

〉
.

Proof Let Q = Qπk,P,c, V = V πk,P,c, A = Aπk,P,c and define c(g, a) = 0. Then,

Vark[〈nk, c〉] = Ek

(Jk+1∑
i=1

c(̊ski , a
k
i )− V (̊sk1)

)2


= Ek

(Jk+1∑
i=2

c(̊ski , a
k
i ) +Q(̊sk1, a

k
1)− Ps̊k1 ,ak1V − V (̊sk1)

)2
 (Q(̊s, a) = c(̊s, a) + Ps̊,aV )
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(i)
= Ek

[(
Q(̊sk1, a

k
1)− V (̊sk1)

)2
]

+ Ek

(Jk+1∑
i=2

c(̊ski , a
k
i )− Ps̊k1 ,ak1V

)2


(ii)
= Ek

[(
Q(̊sk1, a

k
1)− V (̊sk1)

)2
]

+ Ek

(Jk+1∑
i=2

c(̊ski , a
k
i )− V (̊sk2)

)2
+ Ek

[(
V (̊sk2)− Ps̊k1 ,ak1V

)2
]

= Ek

[
Jk+1∑
i=1

[(
Q(̊ski , a

k
i )− V (̊ski )

)2
+
(
V (̊ski+1)− Ps̊ki ,aki V

)2
]]

(recursive argument)

=
∑
s,a,h

qk(s, a, h)
(
A2(s, a, h) + V(Ps,a,h, V )

)
,

where (i) is by Q(̊sk1, a1)− V (̊sk1) ∈ σ(̊sk1, a
k
1) (the σ-algebra of events defined on (̊sk1, a

k
1)) and

Ek

[
Jk+1∑
i=2

c(̊ski , a
k
i )− Ps̊k1 ,ak1V

∣∣∣∣∣ s̊k1, ak1
]

= 0;

(ii) is by V (̊sk2)− Ps̊k1 ,ak1V ∈ σ(̊sk1, a
k
1, s̊

k
2) and

Ek

[
Jk+1∑
i=2

c(̊ski , a
k
i )− V (̊sk2)

∣∣∣∣∣ s̊k1, ak1, s̊k2
]

= 0.

Moreover, by (
∑n

i=1 ai)
2 ≤ 2ai(

∑n
i′=i ai′) for any n ≥ 1 and P (Jk =∞) = 0,

Vark[〈nk, c〉] ≤ Ek[〈nk, c〉2] = Ek

(Jk+1∑
i=1

c(̊ski , a
k
i )

)2
 ≤ 2Ek

[
Jk+1∑
i=1

c(̊ski , a
k
i )

Jk+1∑
i′=i

c(̊ski′ , a
k
i′)

]

= 2Ek

[ ∞∑
i=1

I{Jk + 1 ≥ i}c(̊ski , aki )
Jk+1∑
i′=i

c(̊ski′ , a
k
i′)

]

(i)
= 2Ek

[
Jk+1∑
i=1

c(̊ski , a
k
i )Q(̊ski , a

k
i )

]
= 2 〈qk, c ◦Q〉 ,

where in (i) we apply Q(̊ski , a
k
i ) = E[

∑Jk+1
i′=i c(̊s

k
i′ , a

k
i′)|̊sk1, ak1, . . . , s̊ki , aki ] and {Jk + 1 ≥ i} ∈

σ(̊sk1, a
k
1, . . . , s̊

k
i , a

k
i ).

Lemma 27 For every k ∈ [K] it holds that qk(s, a, h) ≤ Ek[n̄k(s, a, h)] + Õ (1/K).

Proof By definition of nk(s, a, h), xk(s, a, h), and yk(s, a, h) we have:

Pr (nk(s, a, h) > n) = Pr (nk(s, a, h) > n | nk(s, a, h) > n− 1) Pr (nk(s, a, h) > n− 1)

= Pr (return to (s, a, h)) Pr (nk(s, a, h) > n− 1)

= yk(s, a, h) Pr (nk(s, a, h) > n− 1)
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= · · · = ynk (s, a, h) Pr (nk(s, a, h) > 0) = ynk (s, a, h)xk(s, a, h).

Now, since qk(s, a, h) is the expected number of visits to (s, a, h),

qk(s, a, h) = Ek[nk(s, a, h)] =

∞∑
n=0

Pr (nk(s, a, h) > n) = xk(s, a, h)

∞∑
n=0

ynk (s, a, h)

= xk(s, a, h)

L−1∑
n=0

ynk (s, a, h) + xk(s, a, h)

∞∑
n=L

ynk (s, a, h).

To finish we bound each of the sums separately. By definition of n̄k(s, a, h):

xk(s, a, h)
L−1∑
n=0

ynk (s, a, h) =
L−1∑
n=0

Pr (nk(s, a, h) > n) =
L−1∑
n=0

Pr (min{L, nk(s, a, h)} > n)

≤
∞∑
n=0

Pr (min{L, nk(s, a, h)} > n)

=
∞∑
n=0

Pr (n̄k(s, a, h) > n) = Ek[n̄k(s, a, h)].

In each step there’s a probability of at most γ to stay in layer h. So yk(s, a, h) ≤ γ, which implies:

xk(s, a, h)

∞∑
n=L

ynk (s, a, h) ≤
∞∑
n=L

γn =
γL

1− γ
≤ γ

8H
1−γ ln(2TmaxK/δ)

1− γ
≤ e−8H ln(2TmaxK/δ)

1− γ

≤ 2Tmax

(
δ

2TmaxK

)8 log2(cfK)

= Õ (1/K) ,

where the second inequality uses γ
1

1−γ ≤ e−1.

Lemma 28 Consider a sequence of cost functions {ck}Kk=1 and transition functions {Pk}Kk=1 such
that ck ∈ CM and Pk ∈ Pk. Also define q̂k = qπk,Pk . Then with probability at least 1− 8δ,

K∑
k=1

|〈qk − q̂k, ck〉| = Õ


√√√√S2A

K∑
k=1

〈qk, ck ◦Qπk,P,ck〉+ S2.5A1.5T 3
max

 .

Proof Define vk,s,a,h(̊s′) = V πk,P,ck (̊s′) − Ps,a,hV πk,P,ck for s̊′ ∈ S̊+. Note that with probability
at least 1− 4δ:

K∑
k=1

|〈qk − q̂k, ck〉| =
K∑
k=1

∣∣∣∣∣∣
∑
s,a,h

qk(s, a, h)(Ps,a,h − Pk,s,a,h)V πk,Pk,ck

∣∣∣∣∣∣ (Lemma 30)

=

K∑
k=1

∣∣∣∣∣∣
∑
s,a,h

qk(s, a, h)(Ps,a,h − Pk,s,a,h)V πk,P,ck

∣∣∣∣∣∣+ Õ
(
S2.5A1.5T 3

max

)
.

(Lemma 13 and Lemma 29)
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Below we bound the first term. We continue with:

=
K∑
k=1

∣∣∣∣∣∑
s,a

H∑
h=1

qk(s, a, h)(Ps,a,h − Pk,s,a,h)vk,s,a,h

∣∣∣∣∣ (Ps,a,H+1 = Pk,s,a,H+1)

= Õ

 K∑
k=1

∑
s,a,h≤H,̊s′

qk(s, a, h)

√
Ps,a,h(̊s′)v2

k,s,a,h(̊s′)

N+
k (s, a)

+ STmax

K∑
k=1

∑
s,a

qk(s, a)

N+
k (s, a)

 .

(Lemma 13)

By Lemma 27, we have qk(s, a, h) ≤ Ek[n̄k(s, a, h)] + Õ(1/K). Therefore, we continue with

= Õ

 K∑
k=1

∑
s,a,h≤H,̊s′

Ek[n̄k(s, a, h)]

√
Ps,a,h(̊s′)v2

k,s,a,h(̊s′)

N+
k (s, a)

+ S2ATmax

 (Lemma 32)

= Õ

 K∑
k=1

∑
s,a,h≤H,̊s′

n̄k(s, a, h)

√
Ps,a,h(̊s′)v2

k,s,a,h(̊s′)

N+
k (s, a)

+ S2AT 2
max

 (Lemma 52)

= Õ

 K∑
k=1

∑
s,a,h≤H,̊s′

n̄k(s, a, h)

√√√√Ps,a,h(̊s′)v2
k,s,a,h(̊s′)

N+
k+1(s, a)


+ Õ

ST 2
max

∑
s,a

K∑
k=1

 1√
N+
k (s, a)

− 1√
N+
k+1(s, a)

+ S2AT 2
max


= Õ

√√√√ K∑
k=1

∑
s,a,̊s′

n̄k(s, a)

N+
k+1(s, a)

√√√√ K∑
k=1

∑
s,a,h≤H,̊s′

n̄k(s, a, h)Ps,a,h(̊s′)v2
k,s,a,h(̊s′) + S2AT 2

max


(Cauchy-Schwarz inequality)

= Õ

√S2A

√√√√ K∑
k=1

∑
s,a,h≤H,̊s′

qk(s, a, h)Ps,a,h(̊s′)v2
k,s,a,h(̊s′) + SAT 3

max + S2AT 2
max


(Lemma 52)

= Õ


√√√√S2A

K∑
k=1

Vark[〈nk, ck〉] + S2AT 2
max


(
∑

s̊′ Ps,a,h(̊s′)v2
k,s,a,h(̊s′) = V(Ps,a,h, V

πk,P,ck) and Lemma 26)

= Õ


√√√√S2A

K∑
k=1

〈qk, ck ◦Qπk,P,ck〉+ S2AT 2
max

 . (Lemma 26)

Substituting these back completes the proof.
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Lemma 29 Consider a sequence of cost functions {ck}Kk=1 and transition functions {Pk}Kk=1 such
that ck ∈ CM and Pk ∈ Pk. Then, we have with probability at least 1− 4δ:

K∑
k=1

∑
s,a,h,s′,h′

qk(s, a, h)ε?k(s, a, h, s
′, h′)

∣∣V πk,P,ck(s′, h′)− V πk,Pk,ck(s′, h′)
∣∣ = Õ

(
S2.5A1.5T 3

max

)
.

Proof Below . is equivalent to Õ (·). Also denote z = (s, a, h, s′, h′) and z̃ = (s̃, ã, h̃, s̃′, h̃′). By
Lemma 30 we have with probability at least 1− 2δ:∣∣V πk,P,ck(s′, h′)− V πk,Pk,ck(s′, h′)

∣∣ .∑
s̃,ã,h̃

qk,(s′,h′)(s̃, ã, h̃)
∣∣∣Ps̃,ã,h̃V πk,P,ck − P

k,s̃,ã,h̃
V πk,P,ck

∣∣∣
. Tmax

∑
s̃,ã,h̃

qk,(s′,h′)(s̃, ã, h̃)
∥∥∥Ps̃,ã,h̃ − Pk,s̃,ã,h̃∥∥∥1

. Tmax

∑
s̃,ã,h̃,s̃′,h̃′

qk,(s′,h′)(s̃, ã, h̃)ε?k(s̃, ã, h̃, s̃
′, h̃′),

where the second inequality is by Lemma 2, and the third is by Lemma 13. Thus, using Lemma 13
and the Cauchy-Schwarz inequality, we get:

K∑
k=1

∑
s,a,h,s′,h′

qk(s, a, h)ε?k(s, a, h, s
′, h′)

∣∣V πk,P,ck(s′, h′)− V πk,Pk,ck(s′, h′)
∣∣

. Tmax

K∑
k=1

∑
z

qk(s, a, h)ε?k(s, a, h, s
′, h′)

∑
z̃

qk,(s′,h′)(s̃, ã, h̃)ε?k(s̃, ã, h̃, s̃
′, h̃′)

. Tmax

K∑
k=1

∑
z

qk(s, a, h)

√
Ps,a,h(s′, h′)

N+
k (s, a)

∑
z̃

qk,(s′,h′)(s̃, ã, h̃)

√√√√P
s̃,ã,h̃

(s̃′, h̃′)

N+
k (s̃, ã)

. Tmax

√√√√∑
k,z,z̃

qk(s, a, h)P
s̃,ã,h̃

(s̃′, h̃′)qk,(s′,h′)(s̃, ã, h̃)

N+
k (s, a)

√√√√∑
k,z,z̃

qk(s, a, h)Ps,a,h(s′, h′)qk,(s′,h′)(s̃, ã, h̃)

N+
k (s̃, ã)

.

Note that we ignore some lower order terms in the calculation above. To finish the proof we bound
each of the terms separately. For the first term we have with probability at least 1− δ:

∑
k,z,z̃

qk(s, a, h)P
s̃,ã,h̃

(s̃′, h̃′)qk,(s′,h′)(s̃, ã, h̃)

N+
k (s, a)

=
∑
k,s,a

(
∑

h qk(s, a, h))
∑

s′,h′,s̃,ã,h̃
qk,(s′,h′)(s̃, ã, h̃)

∑
s̃′,h̃′

P
s̃,ã,h̃

(s̃′, h̃′)

N+
k (s, a)

. TmaxS
∑
k,s,a

qk(s, a)

N+
k (s, a)

. T 2
maxS

2A,
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where the last inequality is by Lemma 32. For the second term we have with probability at least
1− δ:

∑
k,z,z̃

qk(s, a, h)Ps,a,h(s′, h′)qk,(s′,h′)(s̃, ã, h̃)

N+
k (s̃, ã)

. S
∑

k,s,a,h,s̃,ã,h̃

qk(s, a, h)
∑

s′,h′ Ps,a,h(s′, h′)qk,(s′,h′)(s̃, ã, h̃)

N+
k (s̃, ã)

. TmaxS
∑

k,s,a,h,s̃,ã,h̃

xk(s, a, h)
∑

s′,h′ Ps,a,h(s′, h′)qk,(s′,h′)(s̃, ã, h̃)

N+
k (s̃, ã)

. TmaxS
∑

k,s,a,h,s̃,ã,h̃

qk(s̃, ã, h̃)

N+
k (s̃, ã)

. TmaxS
2A
∑
k,s̃,ã

qk(s̃, ã)

N+
k (s̃, ã)

. S3A2T 2
max,

where the second inequality follows by qk(s, a, h) . Tmaxxk(s, a, h), the third by
xk(s, a, h)

∑
s′,h′ Ps,a,h(s′, h′)qk,(s′,h′)(s̃, ã, h̃) ≤ qk(s̃, ã, h̃), and the last one by Lemma 32.

Lemma 30 (Extended Value Difference) For any policies π, π′, transitions P, P ′, and cost func-
tions c, c′ in M̊, we have:

Qπ,P,c(s, a, h)−Qπ′,P ′,c′(s, a, h)

=
∑
s′′,h′′

P ′s,a,h(s′′, h′′)
∑
s′,h′

qπ′,P ′,(s′′,h′′)(s
′, h′)

∑
a′

(
π(a′|s′, h′)− π′(a′|s′, h′)

)
Qπ,P,c(s′, a′, h′)

+
∑
s′,a′,h′

qπ′,P ′,(s,a,h)(s
′, a′, h′)

(
Qπ,P,c(s′, a′, h′)− c′(s′, a′, h′)− P ′s′,a′,h′V π,P,c

)
.

and

V π,P,c(s, h)− V π′,P ′,c′(s, h)

=
∑
s′,h′

qπ′,P ′,(s,h)(s
′, h′)

∑
a′

(
π(a′|s′, h′)− π′(a′|s′, h′)

)
Qπ,P,c(s′, a′, h′)

+
∑
s′,a′,h′

qπ′,P ′,(s,h)(s
′, a′, h′)

(
Qπ,P,c(s′, a′, h′)− c′(s′, a′, h′)− P ′s′,a′,h′V π,P,c

)
.

Proof We first prove the second statement, note that:

V π,P,c(s, h)− V π′,P ′,c′(s, h) =
∑
a′

(
π(a′|s, h)− π′(a′|s, h)

)
Qπ,P,c(s, a′, h)

+
∑
a′

π′(a′|s, h)(Qπ,P,c(s, a′, h)−Qπ′,P ′,c′(s, a′, h))

=
∑
a′

(
π(a′|s, h)− π′(a′|s, h)

)
Qπ,P,c(s, a′, h)
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+
∑
a′

π′(a′|s, h)
(
Qπ,P,c(s, a′, h)− c′(s, a′, h)− P ′s,a′,hV π,P,c

)
+
∑
a′

π′(a′|s, h)P ′s,a′,h(V π,P,c − V π′,P ′,c′).

Applying the equality above recursively and by the definition of qπ′,P ′,(s,h), we prove the second
statement. For the first statement, note that:

Qπ,P,c(s, a, h)−Qπ′,P ′,c′(s, a, h)

=
(
Qπ,P,c(s, a, h)− c′(s, a, h)− P ′s,a,hV π,P,c

)
+ P ′s,a,h(V π,P,c − V π′,P ′,c′).

Applying the second statement and the definition of qπ′,P ′,(s,a,h) completes the proof.

Lemma 31 (Rosenberg and Mansour, 2021, Lemma 6) Let π be a policy with expected hitting time
at most τ starting from any state. Then for any δ ∈ (0, 1), with probability at least 1 − δ, π takes
no more than 4τ ln 2

δ steps to reach the goal state.

Lemma 32 For any zk : S ×A → [0, 1], with probability at least 1− δ,

K∑
k=1

∑
s,a

n̄k(s, a)
√
zk(s, a)√

N+
k (s, a)

= Õ

SATmax +

√
SA

∑
k

∑
s,a

n̄k(s, a)zk(s, a)


= Õ

SATmax +

√
SA

∑
k

∑
s,a

qk(s, a)zk(s, a)

 ,

K∑
k=1

∑
s,a

qk(s, a)
√
zk(s, a)√

N+
k (s, a)

= Õ

SATmax +

√
SA

∑
k

∑
s,a

n̄k(s, a)zk(s, a)


= Õ

SATmax +

√
SA

∑
k

∑
s,a

qk(s, a)zk(s, a)

 ,

K∑
k=1

∑
s,a

n̄k(s, a)

N+
k (s, a)

= Õ (SATmax) ,
K∑
k=1

∑
s,a

qk(s, a)

N+
k (s, a)

= Õ (SATmax) ,

K∑
k=1

∑
s,a

mk(s, a)

M+
k (s, a)

= Õ (SA) ,

K∑
k=1

∑
s,a

xk(s, a)

M+
k (s, a)

= Õ (SA) .

Proof First statement: Since zk(s, a) ≤ 1 and n̄k(s, a) ≤ L = Õ (Tmax) we have:

K∑
k=1

n̄k(s, a)
√
zk(s, a)√

N+
k (s, a)

≤
K∑
k=1

n̄k(s, a)
√
zk(s, a)√

N+
k+1(s, a)

+

K∑
k=1

L

 1√
N+
k (s, a)

− 1√
N+
k+1(s, a)


≤

K∑
k=1

n̄k(s, a)
√
zk(s, a)√

N+
k+1(s, a)

+ Õ (Tmax) .
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By Cauchy-Schwarz inequality this implies:

∑
s,a

K∑
k=1

n̄k(s, a)
√
zk(s, a)√

N+
k (s, a)

= Õ


√√√√ K∑

k=1

∑
s,a

n̄k(s, a)

N+
k+1(s, a)

√√√√ K∑
k=1

∑
s,a

n̄k(s, a)zk(s, a) + SATmax


= Õ

√SA∑
k

∑
s,a

n̄k(s, a)zk(s, a) + SATmax

 .

Finally,
∑

s,a

∑
k n̄k(s, a)zk(s, a) = Õ

(∑
s,a

∑
k qk(s, a)zk(s, a) + SATmax

)
with high proba-

bility by Lemma 52.
Second statement: By Lemma 27 we have:

K∑
k=1

∑
s,a

qk(s, a)
√
zk(s, a)√

N+
k (s, a)

≤
K∑
k=1

∑
s,a

Ek[n̄k(s, a)]
√
zk(s, a)√

N+
k (s, a)

+ Õ (1/K)
K∑
k=1

∑
s,a

√
zk(s, a)√
N+
k (s, a)

≤
K∑
k=1

∑
s,a

Ek[n̄k(s, a)]
√
zk(s, a)√

N+
k (s, a)

+ Õ (SA)

= Õ

 K∑
k=1

∑
s,a

n̄k(s, a)
√
zk(s, a)√

N+
k (s, a)

+ TmaxSA

 ,

where the last relation holds with high probability by Lemma 52. Now the statement follows by the
first statement.

Third and forth statements: Similarly to the first statement,

K∑
k=1

n̄k(s, a)

N+
k (s, a)

≤
K∑
k=1

n̄k(s, a)

N+
k+1(s, a)

+

K∑
k=1

L

(
1

N+
k (s, a)

− 1

N+
k+1(s, a)

)

≤
K∑
k=1

n̄k(s, a)

max{1,
∑

i≤k n̄i(s, a)}
+ Õ (Tmax) = Õ (Tmax) .

Summing over (s, a) proves the third statement. The forth statement is then proved similarly to the
second statement.

Fifth and sixth statements: Similarly to the third statement,

K∑
k=1

mk(s, a)

M+
k (s, a)

≤
K∑
k=1

mk(s, a)

M+
k+1(s, a)

+

K∑
k=1

(
1

M+
k (s, a)

− 1

M+
k+1(s, a)

)

≤
K∑
k=1

mk(s, a)

max{1,
∑

i≤kmi(s, a)}
+ 1 = Õ (1) .

Summing over (s, a) proves the fifth statement. The sixth statement is again obtained with high
probability by Lemma 52.
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Appendix D. Omitted Details for Section 5

Extra Notations Define q̃k = q
πk,P̃k

, Qk = Qπk,P,ck , Vk = V πk,P,ck , and Ak = Aπk,P,ck .

D.1. Proof of Theorem 9

In this part, define P̃k = Γ(πk,Pk, c̃k) and Pk = Γ(πk,Pk, ck), such that Q̃k = Qπk,P̃k,c̃k , Ṽk =

V πk,P̃k,c̃k , and Q̂k = Qπk,Pk,ck . We first provide bounds on some important quantities.

Lemma 33 c̃k ∈ CM, η
∥∥∥Ãk −Bk∥∥∥

∞
≤ 1, and η ‖Bk‖∞ ≤

1
2H′ .

Proof For the first statement, by Pk ∈ ΛM, we have Q̂k(s, a, h) ≤ H
1−γ + cf = χ. Therefore,

λQ̂k(s, a, h) ≤ 1 and c̃k ∈ CM. For the second statement, by c̃k(s, a, h) ≤ 2 for h ≤ H , we
have |Ãk(s, a, h)| ≤ |Q̃k(s, a, h)| + |Ṽk(s, h)| ≤ 4( H

1−γ + cf ) = 4χ for h ≤ H . Therefore,

‖bk‖∞ ≤ 32ηχ2, and by Lemma 45, we have ‖Bk‖∞ ≤
15H‖bk‖∞

1−γ ≤ 960ηHTmaxχ
2. Thus by the

definition of η, we have η ‖Bk‖∞ ≤
1

2H′ and η
∥∥∥Ãk −Bk∥∥∥

∞
≤ η(

∥∥∥Ãk∥∥∥
∞

+ ‖Bk‖∞) ≤ 1.

We are now ready to prove Theorem 9. The proof decomposes the regret into several terms, each of
which is bounded by a lemma included after the proof.
Proof [Proof of Theorem 9] With probability at least 1− 10δ, we decompose the regret as follows:

R̊K =
K∑
k=1

〈nk − qk, ck〉+ 〈qk − q?, ck〉
(i)
≤ Õ


√√√√ K∑

k=1

〈qk, ck ◦Qk〉+ SATmax


+

K∑
k=1

〈qk − q̃k, c̃k〉+

K∑
k=1

〈q̃k − q?, c̃k〉 − λ
K∑
k=1

〈
qk, ck ◦ Q̂k

〉
+ λ

K∑
k=1

〈
q?, ck ◦ Q̂k

〉
(ii)
= Õ


√√√√S2A

K∑
k=1

〈qk, ck ◦Qk〉+ S2.5A1.5T 3
max

+
K∑
k=1

〈q̃k − q?, c̃k〉 − λ
K∑
k=1

〈qk, ck ◦Qk〉

+ λ

K∑
k=1

〈
qk, ck ◦ (Qk − Q̂k)

〉
+ λ

K∑
k=1

〈
q?, ck ◦Qπ̊

?,P,ck
〉

+ λ
K∑
k=1

〈
q?, ck ◦ (Q̂k −Qπ̊

?,P,ck)
〉
,

where in (i) we apply Lemma 11 and Lemma 50 to have

K∑
k=1

〈nk − qk, ck〉 =

K∑
k=1

〈n̄k − qk, ck〉 = Õ


√√√√ K∑

k=1

Ek[〈n̄k, ck〉2] + SATmax


= Õ


√√√√ K∑

k=1

〈qk, ck ◦Qk〉+ SATmax

 , (Lemma 26)

and in (ii) we apply Lemma 28 and c̃k ∈ CM for h ≤ H to have

K∑
k=1

〈qk − q̃k, c̃k〉 = Õ


√√√√S2A

K∑
k=1

〈
qk, c̃k ◦Qπk,P,c̃k

〉
+ S2.5A1.5T 3

max


46
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= Õ


√√√√S2A

K∑
k=1

〈qk, ck ◦Qπk,P,ck〉+ S2.5A1.5T 3
max

 .

(c̃k(s, a, h) ≤ 2ck(s, a, h))

Define λ′ =
√

S2A
DT?K

. By Lemma 34, Lemma 35, Lemma 36, and definition of λ, η, with probability
at least 1− 9δ:

R̊K ≤ Õ


√√√√S2A

K∑
k=1

〈qk, ck ◦Qk〉+
T?
η

+ S4A2T 5
max


+ 24η

K∑
k=1

〈
qk, A

2
k

〉
− λ

K∑
k=1

〈qk, ck ◦Qk〉+ λ
K∑
k=1

〈
q?, ck ◦Qπ̊

?,P,ck
〉

= Õ
(
S2A

λ′

)
+ λ′

K∑
k=1

〈qk, ck ◦Qk〉+ Õ
(
T?
η

+ S4A2T 5
max

)

+ 48η
K∑
k=1

〈qk, ck ◦Qk〉 − λ
K∑
k=1

〈qk, ck ◦Qk〉+O (λDT?K)

(AM-GM inequality, Lemma 26, and Lemma 37)

= Õ
(
T?
√
DK +

√
S2ADT?K + S4A2T 5

max

)
. (K = Õ(S2AT 2

max) when λ < 48η + λ′)

Applying Lemma 4 completes the proof.

Lemma 34 With probability at least 1− 6δ,

K∑
k=1

〈q̃k − q?, c̃k〉 = 24η
〈
qk, A

2
k

〉
+ Õ

(
T?
η

+ S4A2T 3.5
max

)
.

Proof Note that by Lemma 49 and Lemma 33:

K∑
k=1

∑
s,h

q?(s, h)
∑
a∈A

(πk(a|s, h)− π̊?(a|s, h))
(
Ãk(s, a, h)−Bk(s, a, h)

)

≤
∑
s,h

q?(s, h)

(
lnA

η
+ η

K∑
k=1

∑
a∈A

πk(a|s, h)
(
Ãk(s, a, h)−Bk(s, a, h)

)2
)

≤ Õ
(
T?
η

)
+ 2η

∑
s,h

q?(s, h)

(
K∑
k=1

∑
a∈A

πk(a|s, h)Ãk(s, a, h)2 +

K∑
k=1

∑
a∈A

πk(a|s, h)Bk(s, a, h)2

)

= Õ
(
T?
η

)
+

K∑
k=1

〈q?, bk〉+
1

H ′

∑
s,h

q?(s, h)
K∑
k=1

∑
a∈A

πk(a|s, h)Bk(s, a, h). (Lemma 33)
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Define q̂′k = qπk,P ′k , where P ′k is the optimistic transition defined in Bk. We have

K∑
k=1

〈q̃k − q?, c̃k〉 =
K∑
k=1

∑
s,h

q?(s, h)
∑
a∈A

(πk(a|s, h)− π̊?(a|s, h))
(
Ãk(s, a, h)−Bk(s, a, h)

)

+

K∑
k=1

∑
s,a,h

q?(s, a, h)
(
Q̃k(s, a, h)− c̃k(s, a, h)− Ps,a,hṼk

)

+
K∑
k=1

∑
s,h

q?(s, h)
∑
a∈A

(πk(a|s, h)− π̊?(a|s, h))Bk(s, a, h)

(shifting argument and Lemma 30)

(i)
≤ Õ

(
T?
η

)
+ 3

K∑
k=1

〈
q̂′k, bk

〉
+ Õ (Tmax)

= Õ
(
T?
η

)
+ 6η

K∑
k=1

〈
qk, Ã

2
k

〉
+ 3

K∑
k=1

〈
q̂′k − qk, bk

〉
,

where in (i) we apply Lemma 46, bk(s, a, h) = Õ(1), and the definition of P̃k so that

K∑
k=1

∑
s,a,h

q?(s, a, h)
(
Q̃k(s, a, h)− c̃k(s, a, h)− Ps,a,hṼk

)
≤ 0.

For the second term, by (a+ b+ c)2 ≤ 2a2 + 2(b+ c)2 ≤ 2a2 + 4b2 + 4c2,

η

K∑
k=1

∑
s,a,h

qk(s, a, h)Ãk(s, a, h)2 ≤ 2η

K∑
k=1

∑
s,a,h

qk(s, a, h)Aπk,P,c̃k(s, a, h)2

+ 4η
K∑
k=1

∑
s,a,h

qk(s, a, h)
(
Qπk,P̃k,c̃k(s, a, h)−Qπk,P,c̃k(s, a, h)

)2

+ 4η
K∑
k=1

∑
s,h

qk(s, h)
(
V πk,P̃k,c̃k(s, h)− V πk,P,c̃k(s, h)

)2

≤ 2η

K∑
k=1

∑
s,a,h

qk(s, a, h)Aπk,P,c̃k(s, a, h)2

+ 8η
K∑
k=1

∑
s,a,h

qk(s, a, h)
(
Qπk,P̃k,c̃k(s, a, h)−Qπk,P,c̃k(s, a, h)

)2
,

where in the last step we apply Cauchy-Schwarz inequality to obtain

(
V πk,P̃k,c̃k(s, h)− V πk,P,c̃k(s, h)

)2
=

(∑
a

πk(a|s, h)(Qπk,P̃k,c̃k(s, a, h)−Qπk,P,c̃k(s, a, h))

)2
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≤
∑
a

πk(a|s, h)
(
Qπk,P̃k,c̃k(s, a, h)−Qπk,P,c̃k(s, a, h)

)2
.

Note that with probability at least 1− 2δ,∣∣∣Qπk,P̃k,c̃k(s, a, h)−Qπk,P,c̃k(s, a, h)
∣∣∣ (17)

= Õ

Tmax

∑
s′,a′,h′≤H

qπk,P,(s,a,h)(s
′, a′, h′)

∥∥∥Ps′,a′,h′ − P̃k,s′,a′,h′∥∥∥
1


(Lemma 30, Hölder’s inequality, and V πk,P̃k,c̃k = Õ(Tmax))

= Õ

TmaxS
∑
s′,a′

qπk,P,(s,a,h)(s
′, a′)√

N+
k (s′, a′)

 . (Lemma 13)

Therefore, with probability at least 1− δ,

η
K∑
k=1

∑
s,a,h

qk(s, a, h)
(
Qπk,P̃k,c̃k(s, a, h)−Qπk,P,c̃k(s, a, h)

)2

≤ η
K∑
k=1

∑
s,a,h≤H

qk(s, a, h)T 3
maxS

2
∑
s′,a′

qπk,P,(s,a,h)(s
′, a′)

N+
k (s′, a′)

(Cauchy-Schwarz inequality)

(i)
= Õ

ηT 4
maxS

3A

K∑
k=1

∑
s′,a′

qπk,P (s′, a′)

N+
k (s′, a′)

 (ii)
= Õ

(
ηT 5

maxS
4A2

)
,

where in (i) we apply qk(s, a, h) ≤ 2Tmaxxk(s, a, h) and xk(s, a, h)qπk,P,(s,a,h)(s
′, a′) ≤

qπk,P (s′, a′), and in (ii) we apply Lemma 32. Plugging these back, we get:

η
K∑
k=1

∑
s,a,h

qk(s, a, h)Ãk(s, a, h)2 ≤ 2η
K∑
k=1

〈
qk, (A

πk,P,c̃k)2
〉

+ Õ
(
ηT 5

maxS
4A2

)
≤ 4η

K∑
k=1

〈
qk, A

2
k

〉
+ 4ηλ2

K∑
k=1

〈
qk, (A

πk,P,Q̂k)2
〉

+ Õ
(
ηT 5

maxS
4A2

)
((a+ b)2 ≤ 2a2 + 2b2)

≤ 4η
〈
qk, A

2
k

〉
+ Õ

(
ηT 5

maxS
4A2 + ηλ2T 5

maxK
)

= 4η
〈
qk, A

2
k

〉
+ Õ

(
S4A2T 3

max

)
.

For the third term, with probability at least 1− 3δ,

K∑
k=1

〈
q̂′k − qk, bk

〉
≤

K∑
k=1

∑
s,a,h≤H

qk(s, a, h)
∥∥∥P̂ ′k,s,a,h − Ps,a,h∥∥∥

1

∥∥∥V πk,P̂
′
k,bk
∥∥∥
∞

(Lemma 30 and Hölder’s inequality)

= Õ

ηST 3
max

K∑
k=1

∑
s,a,h≤H

qk(s, a, h)√
N+
k (s, a)

 (bk(s, a, h) = Õ(ηT 2
max) and Lemma 13)
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= Õ
(
ηST 3

max

√
SATmaxK + ηS2AT 4

max

)
= Õ

(
S2AT 3.5

max

)
. (Lemma 32)

Putting everything together completes the proof.

Lemma 35 λ
∑K

k=1

〈
q?, ck ◦ (Q̂k −Qπ̊

?,P,ck)
〉

= Õ
(
S2AT 5

max

)
.

Proof Define q′s,a,h(s′, h′) =
∑

s′′,h′′ Ps,a,h(s′′, h′′)q?(s′′,h′′)(s
′, h′). We have for h ≤ H:

λ
K∑
k=1

(Q̂k(s, a, h)−Qπ̊?,P,ck(s, a, h)) ≤ λ
K∑
k=1

(Qπk,P̃k,ck(s, a, h)−Qπ̊?,P,ck(s, a, h))

≤ λ
K∑
k=1

(
Qπk,P̃k,c̃k(s, a, h)−Qπ̊?,P,c̃k(s, a, h)

)
+ λ2

K∑
k=1

Qπ̊
?,P,Q̂k(s, a, h)

≤ λ
K∑
k=1

(
Qπk,P̃k,c̃k(s, a, h)−Qπ̊?,P,c̃k(s, a, h)

)
+ Õ

(
λ2T 2

maxK
)

≤ λ
∑
s′,h′

q′s,a,h(s′, h′)
K∑
k=1

∑
a′

(
πk(a

′|s′, h′)− π̊?(a′|s′, h′)
) (
Ãk(s

′, a′, h′)−Bk(s′, a′, h′)
)

+ λ
∑
s′,a′,h′

q?(s,a,h)(s
′, a′, h′)

K∑
k=1

(
Qπk,P̃k,c̃k(s′, a′, h′)− c̃k(s′, a′, h′)− Ps′,a′,h′V πk,P̃k,c̃k

)

+ λ
∑
s′,h′

q′s,a,h(s′, h′)
K∑
k=1

∑
a′

(
πk(a

′|s′, h′)− π̊?(a′|s′, h′)
)
Bk(s

′, a′, h′) + Õ
(
λ2T 2

maxK
)

(Lemma 30)

= Õ

λ∑
s′,h′

q′s,a,h(s′, h′)

(
T?
η

+ η

K∑
k=1

∑
a∈A

πk(a|s, h)T 2
max

)
+ ληT 4

maxK + λ2T 2
maxK


(
∥∥∥Ãk∥∥∥

∞
= Õ(Tmax), definition of P̃k, and Bk(s, a, h) = Õ(ηT 3

max))

= Õ
(
λT 2

max

η
+ ληT 4

maxK + λ2T 2
maxK

)
.

Plugging this back and by the definition of λ, η:

λ

K∑
k=1

〈
q?, Q̂k −Qπ̊

?,P,ck
〉

= Õ
(
λT 3

max

η
+ ληT 5

maxK + λ2T 3
maxK

)
= Õ

(
S2AT 5

max

)
.

This completes the proof.

Lemma 36 With probability at least 1− 3δ, λ
∑K

k=1

〈
qk, ck ◦ (Qk − Q̂k)

〉
= Õ

(
S3.5A2T 3

max

)
.
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Proof By similar arguments as in Eq. (17) with P̃k replaced by Pk and c̃k replaced by ck, with
probability at least 1− 3δ:

λ
K∑
k=1

〈
qk, Qk − Q̂k

〉
= λTmaxS

K∑
k=1

∑
s,a,h≤H

qk(s, a, h)
∑
s′,a′

qπk,P,(s,a,h)(s
′, a′)√

N+
k (s′, a′)

= Õ

λS2AT 2
max

K∑
k=1

∑
s′,a′

qk(s
′, a′)√

N+
k (s′, a′)


(qk(s, a, h) = O(Tmaxxk(s, a, h)) and xk(s, a, h)qπk,P,(s,a,h)(s

′, a′) ≤ qk(s′, a′))

= Õ
(
λS2AT 2

max

√
SATmaxK + λS3A2T 3

max

)
= Õ

(
S3.5A2T 3

max

)
. (Lemma 32)

Lemma 37
∑K

k=1

〈
q?, ck ◦Qπ̊

?,P,ck
〉

= Õ (DT?K) + Tmax.

Proof By Lemma 2, for h ≤ H ,
∑K

k=1 ck(s, a, h)Qπ̊
?,P,ck(s, a, h) ≤

∑K
k=1(Qπ

?,P,ck(s, a)+cf ) =
Õ(DK). Therefore,

K∑
k=1

〈
q?, ck ◦Qπ̊

?,P,ck
〉

=
K∑
k=1

∑
s,a,h≤H

q?(s, a, h)ck(s, a, h)Qπ̊
?,P,ck(s, a, h) +

K∑
k=1

∑
s,a

q?(s, a,H + 1)cf

≤ Õ (DT?K) + Tmax,

where the last step is by
∑

s,a,h≤H q
?(s, a, h) = O(T?),

∑K
k=1Q

π̊?,P,ck(s, a, h) = O(DK), and
Lemma 19.

D.2. Proof of Theorem 10

Here we denote by q̂′k the occupancy measure w.r.t policy πk and the optimistic transition defined
in Bk. Also define Q̄k(s, a, h) = Ek[

∑min{Jk,L}+1
i=1 c(ski , a

k
i , h

k
i )|πk, P, sk1 = s, ak1 = a, hk1 = h],

such that Ek[Gk,s,a,h] = xk(s, a, h)Q̄k(s, a, h). We again decompose the regret into several terms,
each of which is bounded by a lemma included after the proof.
Proof With probability at least 1− 2δ, we decompose the regret as follows:

R̊K =

K∑
k=1

〈nk − q?, ck〉 =

K∑
k=1

〈n̄k − qk, ck〉+

K∑
k=1

〈qk − q?, ck〉 (Lemma 11)

= Õ
(
Tmax

√
K + SATmax

)
+

K∑
k=1

∑
s,h

q?(s, h)
∑
a∈A

(πk(a|s, h)− π̊?(a|s, h))Qk(s, a, h)

(Lemma 50 and Lemma 30)
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= Õ
(
Tmax

√
K + SATmax

)
+

K∑
k=1

∑
s,h

q?(s, h)
∑
a∈A

(πk(a|s, h)− π̊?(a|s, h))Q̃k(s, a, h)

︸ ︷︷ ︸
REG

+

K∑
k=1

∑
s,h

q?(s, h)
∑
a∈A

πk(a|s, h)(Qk(s, a, h)− Q̃k(s, a, h))

︸ ︷︷ ︸
BIAS1

+
K∑
k=1

∑
s,h

q?(s, h)
∑
a∈A

π̊?(a|s, h)(Q̃k(s, a, h)−Qk(s, a, h))

︸ ︷︷ ︸
BIAS2

.

Therefore, by Lemma 40, we have R̊K = Õ(
√
S2AT 5

maxK + S5.5A3.5T 5
max) with probability at

least 1− 25δ. Applying Lemma 4 completes the proof.

Lemma 38
∥∥∥Q̃k∥∥∥

∞
≤ L′/θ, ‖bk‖∞ ≤ 5L′, ‖Bk‖∞ ≤ 150HTmaxL

′, and η
∥∥∥Q̃k −Bk∥∥∥

∞
≤ 1.

Proof The first statement is by the definition of Q̃k and Gk,s,a,h ≤ L′. For the
second statement, bk ≤ 5L′ by definition. For the third statement, by Lemma 45,
we have ‖Bk‖∞ ≤ 15H‖bk‖∞

1−γ ≤ 150HTmaxL
′. For the fourth statement, we have

η
∥∥∥Q̃k −Bk∥∥∥

∞
≤ η(

∥∥∥Q̃k∥∥∥
∞

+ ‖Bk‖∞) ≤ 1/2 + η150HTmaxL
′ ≤ 1.

Lemma 39 Qk(s, a, h)− Q̄k(s, a, h) = Õ (1/K).

Proof Note that:

Qk(s, a, h)− Q̄k(s, a, h) = Ek

 Jk+1∑
i=J̄k+2

c(ski , a
k
i , h

k
i )

∣∣∣∣∣∣πk, P, sk1 = s, ak1 = a, hk1 = h


= Õ

(
Tmax

TmaxK

)
= Õ (1/K) . (Lemma 31)

Lemma 40 With probability at least 1− 25δ,

REG + BIAS1 + BIAS2 = Õ
(√

S2AT 5
maxK + S5.5A3.5T 5

max

)
.

Proof Define ξB =
∑K

k=1

∑
s,h≤H q

?(s, h)
∑

a∈A(πk(a|s, h) − π̊?(a|s, h))Bk(s, a, h). By
Lemma 38 and Lemma 49, with probability at least 1− δ,

REG =

K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

(πk(a|s, h)− π̊?(a|s, h))
(
Q̃k(s, a, h)−Bk(s, a, h)

)
+ ξB
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≤ T? lnA

η
+ η

∑
s,h≤H

q?(s, h)
K∑
k=1

∑
a∈A

πk(a|s, h)
(
Q̃k(s, a, h)−Bk(s, a, h)

)2
+ ξB

≤ T? lnA

η
+ 2η

∑
s,h≤H

q?(s, h)

K∑
k=1

∑
a∈A

πk(a|s, h)Q̃2
k(s, a, h)

+
1

H ′

∑
s,h≤H

q?(s, h)
K∑
k=1

∑
a∈A

πk(a|s, h)Bk(s, a, h) + ξB

((a+ b)2 ≤ 2a2 + 2b2 and η ‖Bk‖∞ ≤
1
H′ )

≤ Õ
(
T?
η

)
+
∑
s,h≤H

q?(s, h)

K∑
k=1

∑
a∈A

πk(a|s, h)
2θL′

xk(s, a, h) + θ

+
1

H ′

∑
s,h≤H

q?(s, h)
K∑
k=1

∑
a∈A

πk(a|s, h)Bk(s, a, h) + ξB,

where in the last inequality we apply:

2η
∑
s,h≤H

q?(s, h)

K∑
k=1

∑
a∈A

πk(a|s, h)Q̃2
k(s, a, h)

= 2η
∑
s,h≤H

q?(s, h)
K∑
k=1

∑
a∈A

πk(a|s, h)
G2
k,s,a,h

(xk(s, a, h) + θ)2

≤ L′
∑
s,h≤H

q?(s, h)
K∑
k=1

∑
a∈A

θπk(a|s, h)

xk(s, a, h) + θ

mk(s, a, h)

xk(s, a, h) + θ

(2η = θ/L′ and Gk,s,a,h ≤ L′mk(s, a, h))

≤ L′
∑
s,h≤H

q?(s, h)

(
2

K∑
k=1

∑
a∈A

θπk(a|s, h)

xk(s, a, h) + θ
+ Õ

(
1

θ

))
(Lemma 52 and xk(s,a,h)

xk(s,a,h)+θ ≤ 1)

≤
∑
s,h≤H

q?(s, h)
K∑
k=1

∑
a∈A

2θL′πk(a|s, h)

xk(s, a, h) + θ
+ Õ

(
T?L

′

θ

)
.

Therefore, by Lemma 42, Lemma 43, and Lemma 46, with probability at least 1− 24δ,

REG + BIAS1 + BIAS2 ≤ Õ
(
T?
η

)
+ 3

K∑
k=1

〈
q̂′k, bk

〉
+ Õ

(
T 2

max

)
(θ = 2ηL′ and ‖bk‖∞ = Õ(Tmax) by Lemma 38)

≤ Õ

T?
η

+

K∑
k=1

∑
s,a,h≤H

q̂′k(s, a, h)
L′(xk(s, a, h)− xk(s, a, h)) + θL′

xk(s, a, h) + θ
+ T 2

max


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≤ Õ

T?
η

+ L′
K∑
k=1

∑
s,a,h≤H

(xk(s, a, h)− xk(s, a, h))q̂′k,(s,a,h)(s, a, h) + θTmaxL
′SAK + T 2

max

 .

(q̂′k(s, a, h) ≤ xk(s, a, h)q̂′k,(s,a,h)(s, a, h) and q̂′k(s, a, h) = Õ(Tmaxxk(s, a, h)))

= Õ
(√

S2AT 5
maxK + S5.5A3.5T 5

max

)
. (Lemma 41 and definition of η, θ)

This completes the proof.

Lemma 41 With probability at least 1− 22δ,
K∑
k=1

∑
s,a,h≤H

(xk(s, a, h)− xk(s, a, h))q̂′k,(s,a,h)(s, a, h) = Õ(
√
S2AT 3

maxK + S5.5A3.5T 4
max).

Proof For any z ∈ S × A × [H], denote by qzk / qz
k

the occupancy measure w.r.t the policy
and transition defined in xk(z) / xk(z) (transition at (s, a, h) can be randomly pick as long as
Pqzk , Pqzk

∈ Pk). For a fixed tuple z = (s, a, h),

xk(s, a, h)q̂′k,(s,a,h)(s, a, h) = qzk(s, a, h) + xk(s, a, h)(q̂′k,(s,a,h)(s, a, h)− qzk,(s,a,h)(s, a, h))

≤ qzk(s, a, h) + 2xk(s, a, h)
∑
s′,a′,h′

qzk,(s,a,h)(s
′, a′, h′)

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′)q̂′k,(s′′,h′′)(s, a, h)

(Lemma 30 and Lemma 13)

≤ qzk(s, a, h) + 2
∑
s′,a′,h′

qzk(s
′, a′, h′)

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′)q̂′k,(s′′,h′′)(s, a, h)

(xk(s, a, h)qzk,(s,a,h)(s
′, a′, h′) ≤ qzk(s′, a′, h′))

= qzk(s, a, h) + 2
∑
s′,a′,h′

qk(s
′, a′, h′)

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′)q̂′k,(s′′,h′′)(s, a, h)

+ 2
∑
s′,a′,h′

(qzk(s
′, a′, h′)− qk(s′, a′, h′))

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′)q̂′k,(s′′,h′′)(s, a, h).

Therefore, with probability at least 1− 7δ,
K∑
k=1

∑
s,a,h≤H

xk(s, a, h)q̂′k,(s,a,h)(s, a, h)
(i)
≤

K∑
k=1

∑
s,a,h≤H

qzk(s, a, h)

+ Õ

Tmax

K∑
k=1

∑
s′,a′,h′

qk(s
′, a′, h′)

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′) + S5.5A3.5T 4

max


(ii)
≤

K∑
k=1

∑
s,a,h≤H

qzk(s, a, h) + Õ
(√

S2AT 3
maxK + S5.5A3.5T 4

max

)
,

where in (i) we apply
∑

s,a,h≤H q̂
′
k,(s′′,h′′)(s, a, h) = Õ(Tmax) and (z = (s, a, h) iterates over

S ×A× [H]):∑
k,z

∑
s′,a′,h′

(qzk(s
′, a′, h′)− qk(s′, a′, h′))

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′)q̂′k,(s′′,h′′)(z)
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≤
∑
k,z

∑
s̃,ã,h̃

s̃′,h̃′

∑
s′,a′,h′

s′′,h′′

qk(s̃, ã, h̃)ε?k(s̃, ã, h̃, s̃
′, h̃′)qz

k,(s̃′,h̃′)
(s′, a′, h′)ε?k(s

′, a′, h′, s′′, h′′)q̂′k,(s′′,h′′)(z)

(Lemma 30 and Lemma 13)

≤
∑
k,z

∑
s′,a′,h′

s′′,h′′

∑
s̃,ã,h̃

s̃′,h̃′

qk(s̃, ã, h̃)ε?k(s̃, ã, h̃, s̃
′, h̃′)q

k,(s̃′,h̃′)
(s′, a′, h′)ε?k(s

′, a′, h′, s′′, h′′)q̂′k,(s′′,h′′)(z)

+ Õ

S2.5A1.5T 3
max

∑
z

∑
s′,a′,h′

s′′,h′′

Tmax


(ε?k(s

′, a′, h′, s′′, h′′)q̂′k,(s′′,h′′)(z) = Õ(Tmax) and Lemma 29)

= Õ
(
S5.5A3.5T 4

max

)
.

and in (ii) we apply:

Tmax

K∑
k=1

∑
s′,a′,h′

qk(s
′, a′, h′)

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′)

= Õ

Tmax

K∑
k=1

∑
s′,a′,h′≤H

qk(s
′, a′, h′)

∑
s′′,h′′

(√
Ps′,a′,h′(s′′, h′′)

N+
k (s′, a′)

+
1

N+
k (s′, a′)

)
(definition of ε?k)

= Õ

Tmax

√
S

K∑
k=1

∑
s′,a′

qk(s
′, a′)√

N+
k (s′, a′)

+ TmaxS

K∑
k=1

∑
s′,a′

qk(s
′, a′)

N+
k (s′, a′)


= Õ

(√
S2AT 3

maxK + S2AT 2
max

)
. (Lemma 32)

By similar arguments, we also have with probability at least 1− 7δ,

−
K∑
k=1

∑
s,a,h≤H

xk(s, a, h)q̂′k,(s,a,h)(s, a, h)

≤ −
K∑
k=1

∑
s,a,h≤H

qz
k
(s, a, h) + Õ

(√
S2AT 3

maxK + S5.5A3.5T 4
max

)
.

Therefore, with probability at least 1− 7δ,

K∑
k=1

∑
s,a,h≤H

(xk(s, a, h)− xk(s, a, h))q̂′k,(s,a,h)(s, a, h)

= Õ

 K∑
k=1

∑
s,a,h≤H

(q
(s,a,h)
k (s, a, h)− q(s,a,h)

k
(s, a, h)) +

√
S2AT 3

maxK + S5.5A3.5T 4
max


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= Õ
(√

S2AT 3
maxK + S5.5A3.5T 4

max

)
,

where in the last inequality we apply (similarly for
∑K

k=1(qk(s, a, h)− q(s,a,h)
k (s, a, h))):

K∑
k=1

∑
s,a,h≤H

(q
(s,a,h)
k (s, a, h)− qk(s, a, h))

≤
∑

k,s,a,h≤H

∑
s′,a′,h′

qk(s
′, a′, h′)

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′)q

(s,a,h)
k,(s′′,h′′)(s, a, h)

(Lemma 30 and Lemma 13)

≤
∑

k,s,a,h≤H

∑
s′,a′,h′

qk(s
′, a′, h′)

∑
s′′,h′′

ε?k(s
′, a′, h′, s′′, h′′)qk,(s′′,h′′)(s, a, h) + Õ

∑
s,a,h

S2.5A1.5T 3
max


(Lemma 29)

= Õ

Tmax

∑
k,s′,a′,h′≤H

qk(s
′, a′, h′)

∑
s′′,h′′

(√
Ps′,a′,h′(s′′, h′′)

N+
k (s′, a′)

+
1

N+
k (s′, a′)

)
+ S3.5A2.5T 3

max


(definition of ε?k)

= Õ
(√

S2AT 3
maxK + S3.5A2.5T 3

max

)
. (Cauchy-Schwarz inequality and Lemma 32)

This completes the proof.

Lemma 42 With probability at least 1− δ,

BIAS1 ≤
K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

πk(a|s, h)
L′(xk(s, a, h)− xk(s, a, h)) + 2θL′

xk(s, a, h) + θ
+ Õ

(
T?L

′

θ

)
.

Proof Note that:

BIAS1 =
K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

πk(a|s, h)(Qk(s, a, h)− Ek[Q̃k(s, a, h)])

+

K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

πk(a|s, h)(Ek[Q̃k(s, a, h)]− Q̃k(s, a, h)).

For the first term,

K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

πk(a|s, h)(Qk(s, a, h)− Ek[Q̃k(s, a, h)])

≤
K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

πk(a|s, h)Q̄k(s, a, h)

(
1− xk(s, a, h)

xk(s, a, h) + θ

)
+ Õ (T?)

(Lemma 39 and Ek[Gk,s,a,h] = xk(s, a, h)Q̄k(s, a, h))
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≤
K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

πk(a|s, h)
L′(xk(s, a, h)− xk(s, a, h) + θ)

xk(s, a, h) + θ
+ Õ (T?) .

For the second term, first note that Gk,s,a,h ≤ L′mk(s, a, h) and

Vark
[〈
πk(·|s, h), Q̃k(s, ·, h)

〉]
≤ Ek

[〈
πk(·|s, h), Q̃k(s, ·, h)

〉2
]

≤
∑
a∈A

πk(a|s, h)
Ek[G2

k,s,a,h]

(xk(s, a, h) + θ)2
≤
∑
a∈A

πk(a|s, h)
L′2

xk(s, a, h) + θ
.

(Cauchy-Schwarz inequality and Ek[Gk,s,a,h] ≤ L′xk(s, a, h))

Therefore, by Lemma 50, with probability at least 1− δ,

K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

πk(a|s, h)(Ek[Q̃k(s, a, h)]− Q̃k(s, a, h))

= Õ

 ∑
s,h≤H

q?(s, h)


√√√√ K∑

k=1

∑
a∈A

πk(a|s, h)
L′2

xk(s, a, h) + θ
+
L′

θ


≤
∑
s,h≤H

q?(s, h)
K∑
k=1

∑
a∈A

πk(a|s, h)
θL′

xk(s, a, h) + θ
+ Õ

(
T?L

′

θ

)
. (AM-GM inequality)

Summing these two terms, we have:

BIAS1 ≤
K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

πk(a|s, h)
L′(xk(s, a, h)− xk(s, a, h)) + 2θL′

xk(s, a, h) + θ
+ Õ

(
T?L

′

θ

)
.

This completes the proof.

Lemma 43 With probability at least 1− δ, BIAS2 = Õ (T?L
′/θ).

Proof By Lemma 44 with Zk(s, a, h) = Gk,s,a,h/L
′ and Ek[Gk,s,a,h] = xk(s, a, h)Q̄k(s, a, h), we

have with probability at least 1− δ:

K∑
k=1

Q̃k(s, a, h)− Q̄k(s, a, h) = Õ
(
L′/θ

)
,

for any (s, a) ∈ S ×A, h ≤ H . Therefore,

BIAS2 =
K∑
k=1

∑
s,h≤H

q?(s, h)
∑
a∈A

π?(a|s, h)(Q̃k(s, a, h)−Qk(s, a, h)) = Õ
(
T?L

′/θ
)
.
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Lemma 44 For any random variable Zk(s, a, h) depending on interaction before episode k such
that Zk(s, a, h) ∈ [0, 1], Ek[Zk(s, a, h)] = zk(s, a, h) ≤ xk(s, a, h), we have with probability at
least 1− δ:

K∑
k=1

(
Zk(s, a, h)

xk(s, a, h) + θ
− zk(s, a, h)

xk(s, a, h)

)
≤

ln 1
δ

2θ
.

Proof The statement is clearly true when xk(s, a, h) = 0. When xk(s, a, h) > 0, we also have
xk(s, a, h) > 0. By z

1+z/2 ≤ ln(1 + z) for z ≥ 0, we have:

2θZk(s, a, h)

xk(s, a, h) + θ
≤ 2θZk(s, a, h)

xk(s, a, h) + θZk(s, a, h)
=

2θZk(s, a, h)/xk(s, a, h)

1 + θZk(s, a, h)/xk(s, a, h)

≤ ln (1 + 2θZk(s, a, h)/xk(s, a, h)) .

This gives

Ek
[
exp

(
2θZk(s, a, h)

xk(s, a, h) + θ

)]
≤ Ek

[
1 +

2θZk(s, a, h)

xk(s, a, h)

]
= 1 +

2θzk(s, a, h)

xk(s, a, h)

≤ exp(2θzk(s, a, h)/xk(s, a, h)). (1 + z ≤ ez)

Therefore, by Markov inequality,

P

(
K∑
k=1

2θZk(s, a, h)

xk(s, a, h) + θ
− 2θzk(s, a, h)

xk(s, a, h)
> ln

1

δ

)

≤ δ · E

[
exp

(
K∑
k=1

2θZk(s, a, h)

xk(s, a, h) + θ
− 2θzk(s, a, h)

xk(s, a, h)

)]
≤ δ.

Thus, with probability at least 1− δ,
∑K

k=1
Zk(s,a,h)
xk(s,a,h)+θ −

zk(s,a,h)
xk(s,a,h) ≤

ln 1
δ

2θ .

D.3. Dilated Bonus in SDA

Below we present lemmas related to dilated bonus in M̊. We first show that a form of dilated value
function is well-defined.

Lemma 45 For some policy π in M̊, transition P ∈ ΛM, and bonus function b : S × A ×
[H] → [0, ρ] for some ρ > 0, define B(s, a, h) = b(s, a, h) +

(
1 + 1

H′

)
Ps,a,hB, B(s, h) =∑

a π(a|s, h)B(s, a, h) and B(g) = B(s, a,H + 1) = 0. Then, maxs,aB(s, a, h) ≤ 15ρ(H−h+1)
1−γ .

Proof Define γ′ = (1 + 1
H′ )γ and recall that H ′ = 8(H+1) ln(2K)

1−γ . Now note that 1
1−γ′ ≤

1+ 1
H

1−γ by
simple algebra. Finally, define b̄(s, a, h) =

(
1 + 1

H′

)
〈Ps,a,h(·, h+ 1), B(·, h+ 1)〉 for h ≤ H , and

P ′s,a,h(s′) = (1 + 1
H′ )Ps,a,h(s′, h).
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We prove that B is well defined and the statement holds by induction on h = H+ 1, . . . , 1. The
base case is true by definition B(s, a,H + 1) = 0. For h ≤ H we have:

B(s, a, h) = b(s, a, h) +

(
1 +

1

H ′

)
(〈Ps,a,h(·, h), B(·, h)〉+ 〈Ps,a,h(·, h+ 1), B(·, h+ 1)〉)

= b(s, a, h) + b̄(s, a, h) + P ′s,a,hB(·, h).

Therefore, B(·, ·, h) can be treated as the action-value function in an SSP with cost (b + b̄)(·, ·, h)
and transition function P ′ (thus well defined). By

∑
s′ P

′
s,a,h(s′, h) ≤ γ′, we have the expected

hitting time of any policy starting from any state in an SSP with transition P ′ is upper bounded by
1

1−γ′ ≤
1+ 1

H
1−γ . Let R(h) = maxs,aB(s, a, h) and note that R(H + 1) = 0. Since b(s, a, h) ≤ ρ and

b̄(s, a, h) ≤
(
1 + 1

H′

)
(1− γ)R(h+ 1) by

∑
s′ Ps,a,h(s′, h+ 1) ≤ 1− γ, we have:

R(h) ≤
ρ+

(
1 + 1

H′

)
(1− γ)R(h+ 1)

1− γ′
≤ ρ

1− γ′
+

(
1 +

1

H ′

)(
1 +

1

H

)
R(h+ 1)

≤
ρ
(
1 + 1

H

)
1− γ

+

(
1 +

1

H ′

)(
1 +

1

H

)
R(h+ 1),

where the two last inequalities follow because 1
1−γ′ ≤

1+ 1
H

1−γ . The proof is now finished by solving
the recursion and obtaining:

R(h) ≤ ρ

1− γ

H−h∑
i=0

(
1 +

1

H ′

)i(
1 +

1

H

)i+1

,

which implies that R(h) ≤ 15ρ(H−h+1)
1−γ since (1 + 1

H )H+1(1 + 1
H′ )

H ≤ 2e2 ≤ 15.

Lemma 46 Let π be a policy in M̊ and b be a non-negative cost function in M̊ such that b(s, a,H+
1) = 0 and b(s, a, h) ≤ ρ. Moreover, let P̂ ∈ ΛM be an optimistic transition so that

B(s, a, h) = b(s, a, h) +

(
1 +

1

H ′

)
P̂s,a,hB ≥ b(s, a, h) +

(
1 +

1

H ′

)
Ps,a,hB,

where B(s, h) =
∑

a∈A π(a|s, h)B(s, a, h) and B(g) = B(s,H + 1) = 0. Then,∑
s,h

q?(s, h)
∑
a∈A

(π(a|s, h)− π̊?(a|s, h))B(s, a, h) +
1

H ′

∑
s,h

q?(s, h)B(s, h)

+
∑
s,a,h

q?(s, a, h)b(s, a, h) ≤ 3V π,P̂ ,b(sinit, 1) + Õ
(

Hρ

K(1− γ)

)
.

Proof By the optimism property of P̂ , we have:∑
s,h

q?(s, h)
∑
a∈A

(π(a|s, h)− π̊?(a|s, h))B(s, a, h)
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+
1

H ′

∑
s,h

q?(s, h)
∑
a∈A

π(a|s, h)B(s, a, h) +
∑
s,a,h

q?(s, a, h)b(s, a, h)

≤
(

1 +
1

H ′

)∑
s,h

q?(s, h)
∑
a∈A

π(a|s, h)B(s, a, h) +
∑
s,a,h

q?(s, a, h)b(s, a, h)

−
∑
s,a,h

q?(s, a, h)

b(s, a, h) +

(
1 +

1

H ′

)∑
s′,h′

Ps,a,h(s′, h′)B(s′, h′)


=

(
1 +

1

H ′

)∑
s′,h′

q?(s′, h′)−∑
s,a,h

q?(s, a, h)Ps,a,h(s′, h′)

B(s′, h′)

=

(
1 +

1

H ′

)
B(sinit, 1). (18)

The last relation is by q?(s, h) −
∑

s′,a′,h′ q
?(s′, a′, h′)Ps′,a′,h′(s, h) = I{(s, h) = (sinit, 1)} (see

(Rosenberg and Mansour, 2021, Appendix B.1)).
Let J be the number of steps until the goal state g is reached in M̊, and n = 8H

1−γ ln(2K). Now

note that for any policy, the expected hitting time in an SSP with transition P̂ is upper bounded by
H

1−γ + 1 by P̂ ∈ ΛM. Therefore, by Lemma 31, P (J ≥ n) ≤ 1
K , and

B(s, h) = E

[
J∑
t=1

(
1 +

1

H ′

)t−1

b(st, at, ht)

∣∣∣∣∣π, P̂ , (s1, h1) = (s, h)

]

= E

[
n∑
t=1

(
1 +

1

H ′

)t−1

b(st, at, ht) +

(
1 +

1

H ′

)n
B(st+1, ht+1)

∣∣∣∣∣π, P̂ , (s1, h1) = (s, h)

]

≤
(

1 +
1

H ′

)n−1

V π,P̂ ,b(s, h) + Õ
(

Hρ

K(1− γ)

)
. (Lemma 45)

Plugging this back into Eq. (18) and by (1 + 1/H ′)n ≤ e < 3, we get the desired result.

D.4. Computation of Bk
We study an operator on value function, from which Bk can be computed as a fixed point. For any
policy π, cost function c, transition confidence set P ⊆ ΛM, and interest factor ρ ≥ 0, we define the
dilated Bellman operator Tρ that maps any value function V : S̊+ → R+ to another value function
TρV : S̊+ → R+, such that:

(TρV )(s, h) =
∑
a

π(a|s, h)

(
c(s, a, h) + (1 + ρ) max

P∈P
Ps,a,hV

)
,

(TρV )(g) = 0, (TρV )(s,H + 1) = max
a

c(s, a,H + 1). (19)

In this work, we have P ∈ {Pk}Kk=1, and Pk =
⋂
s,a,h Pk,s,a,h, where Pk,s,a,h is a convex set that

specifies constraints on ((s, h), a). In other words, Pk is a product of constraints on each ((s, h), a)
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(note that ΛM can also be decomposed into shared constraints on Ps,a,H+1 and independent con-
straints on each s, a, h ≤ H). Thus, there exists P ′ ∈ P that satisfies P ′ = argmaxP∈P Ps,a,hV
in Eq. (19) for all ((s, h), a) simultaneously. Moreover, finding such P ′ can be done by linear pro-
gramming for each ((s, h), a) independently. Now we show that iteratively applying Tρ to some
initial value function converges to a fixed point sufficiently fast.

Lemma 47 Define value function V 0 : S̊+ → R+ such that V 0(s, h) = V 0(g) = 0 for any
(s, h) ∈ S× [H] and V 0(s,H+1) = maxa c(s, a,H+1). Then for any ρ ≥ 0 such that γ′ = (1+

ρ)γ < 1, the limit Vρ = limn→∞ T nρ V 0 exists. Moreover, when n ≥ Hl with l = d ln 1
ε

1−γ′ e for some

ε > 0, we have
∥∥T nρ V 0 − Vρ

∥∥
∞ ≤ H

(
(1+ρ)(1−γ)

1−γ′
)H−1

κε, where κ =
∑H−1

j=0 ( (1+ρ)(1−γ)
1−γ′ )j

‖c‖∞
1−γ′ .

Proof Define a sequence of value functions {V i}∞i=0 such that V i+1 = TρV i. We first show that∥∥V i(·, h)
∥∥
∞ ≤

∑H−h
j=0 ( (1+ρ)(1−γ)

1−γ′ )j
‖c‖∞
1−γ′ for i ≥ 0 and h ≤ H . We prove this by induction on i.

Note that this is clearly true when i = 0. For i > 0, by P ⊆ ΛM and Eq. (19), we have:

V i(s, h) = (TρV i−1)(s, h) ≤ ‖c‖∞ + γ′
∥∥V i−1(·, h)

∥∥
∞ + (1 + ρ)(1− γ)

∥∥V i−1(·, h+ 1)
∥∥
∞

≤ ‖c‖∞ + γ′
H−h∑
j=0

(
(1 + ρ)(1− γ)

1− γ′

)j ‖c‖∞
1− γ′

+
H−h∑
j=1

(
(1 + ρ)(1− γ)

1− γ′

)j
‖c‖∞

≤
H−h∑
j=0

(
(1 + ρ)(1− γ)

1− γ′

)j ‖c‖∞
1− γ′

.

Therefore,
∥∥V i

∥∥
∞ ≤ κ. We now show that {V i}i converges to a fixed point. Specifically,

we show that for some ε > 0 and any i, j ∈ N, when n ≥ (H − h + 1)l, we have∥∥(T nρ V i)(·, h)− (T nρ V j)(·, h)
∥∥
∞ ≤ (H − h + 1)( (1+ρ)(1−γ)

1−γ′ )H−hκε (note that (1+ρ)(1−γ)
1−γ′ > 1).

Therefore, when n ≥ Hl, we have
∥∥T nρ V i − T nρ V j

∥∥
∞ ≤ H( (1+ρ)(1−γ)

1−γ′ )H−1κε. Setting ε → 0,

the statement above implies that for any s̊ ∈ S̊, {V i(̊s)}∞i=1 is a Cauchy sequence and thus con-
verges. Moreover, letting j →∞ implies that {V i}i converges to Vρ with the rate shown above. We
prove the statement above by induction on h = H, . . . , 1. First note that for any s ∈ S, h ∈ [H]:

∣∣(TρV i)(s, h)− (TρV j)(s, h)
∣∣ = (1 + ρ)

∣∣∣∣∣∑
a

π(a|s, h)

(
max
P∈P

Ps,a,hV
i −max

P∈P
Ps,a,hV

j

)∣∣∣∣∣
≤ (1 + ρ)

∑
a

π(a|s, h) max
P∈P

∣∣Ps,a,h(V i − V j)
∣∣

≤ γ′
∥∥V i(·, h)− V j(·, h)

∥∥
∞ + (1 + ρ)(1− γ)

∥∥V i(·, h+ 1)− V j(·, h+ 1)
∥∥
∞ , (20)

where the last inequality is by
∑

s′ Ps,a,h(s′, h) ≤ γ,
∑

s′ Ps,a,h(s′, h + 1) ≤ 1 − γ, and
Ps,a,h(s′, h′) = 0 for h′ /∈ {h, h + 1}, for any P ∈ ΛM. Now for the base case h = H ,
Eq. (20) implies

∥∥(TρV i)(·, H)− (TρV j)(·, H)
∥∥
∞ ≤ γ′

∥∥V i(·, H)− V j(·, H)
∥∥
∞. Thus for

n ≥ l,
∥∥(T nρ V i)(·, H)− (T nρ V j)(·, H)

∥∥
∞ ≤ γ′n · κ ≤ κε. For the induction step h < H , if

n ≥ (H − h+ 1)l, then Eq. (20) implies:∣∣(T nρ V i)(s, h)− (T nρ V j)(s, h)
∣∣
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≤ γ′l
∥∥∥(T n−lρ V i)(s, h)− (T n−lρ V j)(s, h)

∥∥∥
∞

+ (1− γ′)
(

(1 + ρ)(1− γ)

1− γ′

)H−h l−1∑
i=0

γ′
i
(H − h)κε

(by the induction assumption)

≤ (H − h+ 1)

(
(1 + ρ)(1− γ)

1− γ′

)H−h
κε.

This completes the proof of the statement above.

Now note that Bk is a fixed point of Tρ with π = πk, P = Pk, c = bk, and ρ = 1/H ′. Thus, Bk
can be approximated efficiently.

D.5. Computation of xk and xk
Note that xk(s, a, h) can be computed by solving the following linear program (it is straightforward
to verify that the constraints on πq and Pq are linear):

max
q∈RS×A×[H]×S̊+

≥0

∑
s̊′∈S̊+

q(s, a, h, s̊′)

s.t.
∑

a′∈A,̊s′∈S+

q(s′, a′, h′, s̊′)

−
∑

(s′′,h′′)∈S̊,a′′∈A

q(s′′, a′′, h′′, (s′, h′)) = I{(s′, h′) = (sinit, 1)}, ∀(s′, h′)

πq = πk, Pq ∈
⋂

(s′,a′,h′)∈(S×A×[H])\{(s,a,h)}

Pk,s′,a′,h′ , Pq,s,a,h(g) = 1

That is, we try to compute the occupancy measure that maximizes the number of visits to (s, a, h) in
an augmented MDP, where the transition lies in Pk except that taking action a at state (s, h) directly
transits to the goal state (so that the number of visits to (s, a, h) is at most 1 and the occupancy
measure at (s, a, h) is the probability of visiting (s, a, h)). The computation of xk(s, a, h) is similar.
Thus, both xk and xk can be computed efficiently (in a weakly polynomial time).

Appendix E. Learning without Some Parameters

In this section, we discuss the achievable regret guarantee without knowing some of the parameters
assumed to be known. For simplicity, we only describe the high level ideas. We first describe the
general ideas of dealing with each parameter being unknown, which are applicable under all types
of feedback.

• Unknown D and unknown fast policy: we can simply follow the ideas in (Chen and Luo,
2021) to estimate D and fast policy. For unknown fast policy, we maintain an instance of
Bernstein-SSP (Cohen et al., 2020) Bf . When we need to switch to the fast policy, we simply
involve Bf as if this is a new episode for this algorithm, follow its decision until reaching
g, and always feed cost 1 for all state-action pairs. Following the arguments in (Chen and
Luo, 2021, Lemma 1), the scheme above only incurs constant extra regret. For unknown D,
we maintain an estimate of it and update the algorithm’s parameters whenever the estimate
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is updated. Specifically, we separate the state space into known states and unknown states.
A state is known if the number of visits to it is more than some threshold, and it is unknown
otherwise. Whenever the learner visits an unknown state, it involves a Bernstein-SSP instance
to approximate the behavior of fast policy until reaching g. When an unknown state s becomes
known, we update the diameter estimate by incorporating an estimate of T π

f
(s), and then

updates the algorithm’s parameters with respect to the new estimate. In terms of regret, this
approach does not affect the transition estimation error, but brings an extra

√
S factor in the

regret from policy optimization due to at most S updates to the algorithm’s parameters.

• Unknown B?: We can estimate B? following the procedure in (Cohen et al., 2021, Appendix
C). The main idea is pretty similar to the unknown D case: we again maintain an estimate
of B? and separate states into known states and unknown states based on how many times a
state has been visited. The learner updates algorithm’s parameters whenever the estimate of
B? is updated. Similarly, this approach brings an extra

√
S factor in the regret from policy

optimization.

• Unknown T?: We can replace T? in parameters by B?/cmin in stochastic costs setting and
D/cmin in other settings since T? ≤ B?/cmin (or T? ≤ D/cmin). How to estimate D or B? is
discussed above.

• Unknown Tmax: Similar to (Chen and Luo, 2021), we simply replace Tmax in parameters by
Kp for some p ∈ (0, 1

2).

Next, we describe under each setting, what regret guarantee we can achieve with each parameter
being unknown by applying the corresponding method above.

Stochastic Costs In this setting, we need the knowledge of D, B? and Tmax.

• UnknownD: Since the regret from policy optimization is a lower order term, the dominating
term of the final regret remains to be Õ(B?S

√
AK).

• UnknownB?: Since the regret from policy optimization is a lower order term, the dominating
term of the final regret remains to be Õ(B?S

√
AK).

• Unknown Tmax: We replace Tmax in parameters by K1/12. If K1/12 ≤ Tmax, then
clearly the regret is of order Õ(LK) = Õ(T 13

max). Otherwise, by Theorem 5 we have
RK = Õ(B?S

√
AK + S4A2.5K1/3).

Stochastic Adversary In this setting, we need the knowledge of D, T?, and Tmax. We consider
the following cases:

• UnknownD: Since the regret from policy optimization is a lower order term, the dominating
term of the final regret remains to be Õ(

√
DT?K+DS

√
AK) in the full information setting,

and Õ(
√
DT?SAK +DS

√
AK) in the bandit feedback setting.

• Unknown T?: Ignoring the lower order terms, we have RK = Õ(D
√
K/cmin +DS

√
AK)

in the full information setting by Theorem 6, and RK = Õ(D
√
SAK/cmin +DS

√
AK) in

the bandit feedback setting by Theorem 7.
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• Unknown Tmax: We replace Tmax in parameters by K1/13. If K1/13 ≤ Tmax, then RK
is of order Õ(LK) = Õ(T 14

max). Otherwise, we have RK = Õ(
√
DT?K + DS

√
AK +

(S2A3)1/4K25/52 + S4A2.5K4/13) in the full information setting by Theorem 6, and RK =
Õ(
√
SADT?K +DS

√
AK + SA5/4K25/52 + S4A2.5K4/13) in the bandit feedback setting

by Theorem 7.

Adversarial Costs, Full Information In this setting, we need the knowledge of D, T?, and Tmax.
We consider the following cases:

• Unknown D: With an extra
√
S factor in the policy optimization term, we have RK =

Õ(T?
√
SDK +

√
S2ADT?K) ignoring the lower order terms.

• Unknown T?: Ignoring the lower order terms, we have RK = Õ(D
1.5

cmin

√
K +

D
√
S2AK/cmin).

• Unknown Tmax: We replace Tmax in parameters by K1/11. If K1/11 ≤ Tmax, then
clearly the regret is of order Õ(LK) = Õ(T 12

max). Otherwise, by Theorem 9 we have
RK = Õ(T?

√
DK +

√
S2ADT?K + S4A2K5/11).

Adversarial Costs, Bandit Feedback In this setting, we need the knowledge of D and Tmax. We
consider the following cases:

• Unknown D: Tracing the proof of Theorem 10, the regret from policy optimization is of
order Õ(

√
SAT 4

maxK). With an extra
√
S factor in the policy optimization term, we still

have RK = Õ(
√
S2AT 5

maxK) ignoring the lower order terms.

• Unknown Tmax: We replace Tmax in parameters by Kp for any p ∈ (0, 1
5). If Kp ≤ Tmax,

then clearly the regret is of order Õ(LK) = Õ(T
1+1/p
max ). Otherwise, by Theorem 10 we have

RK = Õ(
√
S2AK1+5p + S5.5A3.5K5p).

Appendix F. Auxiliary Lemma

Lemma 48 If x ≤ (a
√
x + b) lnp(cx) for some a, b, c > 0 and absolute constant p ≥ 0, then

x = Õ(a2 + b). Specifically, x ≤ a
√
x+ b implies x ≤ (a+

√
b)2 ≤ 2a2 + 2b.

Lemma 49 (Luo et al., 2021, Lemma A.4) Let η > 0, πk ∈ ∆(A), and `k ∈ RA satisfy the
following for all k ∈ [K] and a ∈ A:

π1(a) =
1

A
, πk+1(a) ∝ πk(a) exp(−η`k(a)), |η`k(a)| ≤ 1.

Then for any π? ∈ ∆(A),
∑K

k=1 〈πk − π?, `k〉 ≤
lnA
η + η

∑K
k=1

∑
a∈A πk(a)`2k(a).

Lemma 50 (Chen et al., 2021b, Lemma 38) Let {Xi}∞i=1 be a martingale difference sequence
adapted to the filtration {Fi}∞i=0 and |Xi| ≤ B for some B > 0. Then with probability at least
1− δ, for all n ≥ 1 simultaneously,∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 3

√√√√ n∑
i=1

E[X2
i |Fi−1] ln

4B2n3

δ
+ 2B ln

4B2n3

δ
.
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Lemma 51 (Cohen et al., 2020, Theorem D.3) Let {Xn}∞n=1 be a sequence of i.i.d random vari-
ables with expectation µ and Xn ∈ [0, B] almost surely. Then with probability at least 1 − δ, for
any n ≥ 1:∣∣∣∣∣

n∑
i=1

(Xi − µ)

∣∣∣∣∣ ≤ min

2

√
Bµn ln

2n

δ
+B ln

2n

δ
, 2

√√√√B

n∑
i=1

Xi ln
2n

δ
+ 7B ln

2n

δ

 .

Lemma 52 (Cohen et al., 2020, Lemma D.4) and (Cohen et al., 2021, Lemma C.2) Let {Xi}∞i=1 be
a sequence of random variables w.r.t to the filtration {Fi}∞i=0 and Xi ∈ [0, B] almost surely. Then
with probability at least 1− δ, for all n ≥ 1 simultaneously:

n∑
i=1

E[Xi|Fi−1] ≤ 2

n∑
i=1

Xi + 4B ln
4n

δ
,

n∑
i=1

Xi ≤ 2

n∑
i=1

E[Xi|Fi−1] + 8B ln
4n

δ
.
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