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Abstract

Policy optimization is among the most popular and successful reinforcement learning algorithms,
and there is increasing interest in understanding its theoretical guarantees. In this work, we initi-
ate the study of policy optimization for the stochastic shortest path (SSP) problem, a goal-oriented
reinforcement learning model that strictly generalizes the finite-horizon model and better captures
many applications. We consider a wide range of settings, including stochastic and adversarial en-
vironments under full information or bandit feedback, and propose a policy optimization algorithm
for each setting that makes use of novel correction terms and/or variants of dilated bonuses (Luo
et al., 2021). For most settings, our algorithm is shown to achieve a near-optimal regret bound.

One key technical contribution of this work is a new approximation scheme to tackle SSP
problems that we call stacked discounted approximation and use in all our proposed algorithms.
Unlike the finite-horizon approximation that is heavily used in recent SSP algorithms, our new
approximation enables us to learn a near-stationary policy with only logarithmic changes during an
episode and could lead to an exponential improvement in space complexity.

1. Introduction

Stochastic Shortest Path (SSP) is a goal-oriented reinforcement learning setting, where a learner
tries to reach a goal state with minimum total cost. Compared to the heavily studied finite-horizon
setting, SSP is often a better model for capturing many real-world applications such as games, car
navigation, robotic manipulations, and others. We study the online learning problem in SSP, where
the learner interacts with an environment with unknown cost and transition function for multiple
episodes. In each episode, the learner starts from an initial state, sequentially takes an action, incurs
a cost, and transits to the next state until the goal state is reached. The goal of the learner is to
achieve low regret, defined as the difference between her total cost and the expected cost of the
optimal policy. A unique challenge of learning SSP is to trade off between two objectives: reaching
the goal state and minimizing the cost. Indeed, neither reaching the goal as fast as possible nor
minimizing the cost alone solves the problem.

Policy Optimization (PO) is among the most popular methods in reinforcement learning due
to its strong empirical performance and favorable theoretical properties. Unlike value-based ap-
proaches such as Q learning, PO-type methods directly optimize the policy in an incremental man-
ner. Many widely used practical algorithms fall into this category, such as REINFORCE (Williams,
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1992), NPG (Kakade, 2001), and TRPO (Schulman et al., 2015). They are also easy to implement
and computationally efficient compared to other methods such as those operating over the occu-
pancy measure space (e.g., (Zimin and Neu, 2013)). From a theoretical perspective, PO is a general
framework that works for different types of environments, including stochastic costs or even ad-
versarial costs (Shani et al., 2020), function approximation (Cai et al., 2020), and non-stationary
environments (Fei et al., 2020). Despite its popularity in applications, most theoretical works on PO
focus on simple models such as finite-horizon models (Cai et al., 2020; Shani et al., 2020; Luo et al.,
2021) and discounted models (Liu et al., 2019; Wang et al., 2020; Agarwal et al., 2021), which are
often oversimplifications of real-life applications. In particular, PO methods have not been applied
to regret minimization in SSP as far as we know.

Motivated by this gap, in this work, we systematically study policy optimization in SSP. We
consider a wide range of different settings and for each of them discuss how to design a policy
optimization algorithm with a strong regret bound. Specifically, our main results are as follows:

e In Section 3, we first propose an important technique used in all our algorithms: stacked dis-
counted approximation. It reduces any SSP instance to a special Markov Decision Process (MDP)
with a stack of O(In K) layers (K is the total number of episodes), each of which contains a
discounted MDP (hence the name) such that the learner stays in the same layer with a certain
probability « and proceeds to the next layer with probability 1 — . This approximation not only
resolves the difficulty of having dynamic and potentially unbounded episode lengths in the PO
analysis, but more importantly leads to a near-stationary policies with only O(In K') changes
within an episode. Compared to the commonly used finite-horizon approximation (Chen et al.,
2021d; Chen and Luo, 2021; Cohen et al., 2021) which changes the policy at every step of an
episode, our approach could lead to an exponential improvement in space complexity and is also
more natural since the optimal policy for SSP is indeed stationary.

e Building on the stacked discounted approximation, in Section 4, we design PO algorithms for two
types of stochastic environments considered in the literature. In the first type (called stochastic
costs), the cost for each visit of a state-action pair is an i.i.d. sample of an unknown distribution
and is revealed to the learner immediately after the visit. Our algorithm achieves @(B*S VAK)
regret in this case, close to the minimax bound O(B,v/SAK) (Cohen et al., 2021), where S
is the number of states, A is the number of actions, and Bj is the maximum expected cost of
the optimal policy starting from any states. In the second type (called stochastic adversary fol-
lowing (Chen and Luo, 2021)), the cost function for each episode is fixed and an i.i.d. sample
of an unknown distribution, and only at the end of the episode, the learner observes the entire
cost function (full-information feedback) or the costs for all visited state-action pairs (bandit
feedback). Our algorithm achieves @(\/DT*K + DSV AK) regret with full information and
O(vDT.SAK + DSV AK) regret with bandit feedback, where D is the diameter of the MDP
and T} is the expected hitting time of the optimal policy starting from the initial state. These
bounds match the best existing results from (Chen and Luo, 2021) (and exhibit a v/S gap in the
second term D.S \/E compared to their lower bounds).

e Finally, in Section 5, we further study SSP with adversarial costs and design PO algorithms
that achieve O(T,v/DK + /DT, S?AK) regret with full information and O(,/T3, S?AK)

max
regret with bandit feedback, where Tr,ax 1s the maximum expected hitting time of the optimal
policy over all states. The best existing bounds for these settings are O(VDT,S?AK) and
O(VDT,S53 A2 K) respectively (Chen and Luo, 2021).
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Table 1: Comparison of regret bound, time complexity, and space complexity of different SSP algorithms.
We consider five feedback types: SC (stochastic costs), SAF (Stochastic Adversary, Full infor-
mation), SAB (Stochastic Adversary, Bandit feedback), AF (Adversarial, Full information), and
AB (Adversarial, Bandit feedback). Operator (5() is hidden for simplicity. Time complexity of
poly(S, A, Tinax) is due to optimization in the occupancy measure space.

Regret Time Space Feedback
Cohen et al. (2021) B, VSAK S3A%T o S2 AT ax sC
Our work B, SVAK S2 AT ax K S2A
Chen and Luo (2021) | DT.K + DSVAK | poly(S, A, Tomax) - K | S2ATpmax
SAF
Our work VDT.K + DSVAK S2 AT ax K S2A
Chen and Luo (2021) | /SADT, K + DSV AK | poly(S, A, Tyax) - K | S? AT nax
SAB
Our work SADT,K + DSVAK S% AT ax K S2A
Chen and Luo (2021) VSZADT, K poly(S, A, Thax) - K S2 AT ax AF
Our work V(S2A + T,) DT K S? AT max K S2A
Chen and Luo (2021) VS3A2DT, K poly(S, A, Trax) - K | S%ATax AB
Our work VS2ATS K poly(S, A, Tmax) - K S2A

We also include Table 1 with a comprehensive comparison between SSP algorithms for a better
understanding of our contributions. While our regret bounds do not always match the state-of-the-
art, we emphasize again that our algorithms are more space-efficient due to the stacked discounted
approximation (S2A versus S?ATax in Table 1). It is also more time-efficient in some cases
(for feedback types SAF, SAB, and AF in Table 1). We also note that in the analysis of stacked
discounted approximation, a regret bound starting from any state (not just the initial state) is impor-
tant, and PO indeed provides such a guarantee while other methods based on occupancy measure do
not. In other words, PO is especially compatible with our stacked discounted approximation. More-
over, our results also significantly improve our theoretical understanding on PO, and pave the way
for future study on more challenging problems such as SSP with function approximation, where
in some cases PO is the only method known to be computationally and statistically efficient (Luo
etal., 2021).

Other Techniques To achieve our results for stochastic environments, we make two other tech-
nical contributions. First, in order to control the cost estimation error optimally, we derive a set of
novel correction terms fed to the PO algorithm, which resolves some technical difficulties brought
by PO due to its lack of optimism and also greatly simplifies the analysis. Second, due to the soft
policy updates, the standard PO analysis leads to an undesirable dominating term related to 77 or
even Tiyax in the regret, and we develop a refined analysis on the value difference between learner’s
policies and the optimal policy to reduce this to a lower order term.

To achieve our results for adversarial environments, we develop a tighter variance-aware bound
for the stability term in the PO analysis, which plays a key role in removing the 7}, dependency
in the dominating term of the regret bound in the full information setting. We further extend the
dilated bonuses of (Luo et al., 2021) (for the finite-horizon setting) to the stacked discounted MDPs,
which is essential for both the full information setting and the bandit feedback setting.
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Related Work Regret minimization in SSP has received much attention recently for both stochas-
tic environment (Tarbouriech et al., 2020; Cohen et al., 2020, 2021; Tarbouriech et al., 2021; Chen
etal., 2021a,b; Jafarnia-Jahromi et al., 2021) and adversarial environment (Rosenberg and Mansour,
2021; Chen et al., 2021d; Chen and Luo, 2021). All previous approaches are either value-based (e.g.
Q learning) or occupancy-measure-based, while we take the first step in studying the more practical
and versatile PO methods. Among numerous studies on PO, the closest to our work are the recent
ones by Shani et al. (2020) and Luo et al. (2021) for the special case of finite-horizon MDPs.

The use of variance information (Lattimore and Hutter, 2012; Azar et al., 2017; Zhou et al.,
2021; Zhang et al., 2021; Kim et al., 2021) and correction terms (Steinhardt and Liang, 2014; Wei
and Luo, 2018; Chen et al., 2021c¢) is crucial for achieving optimal and adaptive regret bound in
online learning. In this work we heavily make use of these ideas as mentioned.

2. Preliminaries

An SSP instance is defined by a Markov Decision Process (MDP) M = (S, sinit, 9, A, P). Here,
S is the state space, sipir € S is the initial state, g ¢ S is the goal state, A is the action space, and
P = {Psa}(sa)esxa With Ps o € Ag__ is the transition function, where S = S U {g} and Ag, is
the simplex over S...

The learning protocol is as follows: the learner interacts with the environment for K episodes.
In episode k, the learner starts in initial state si,;;, sequentially takes an action, incurs a cost (which
might not be observed immediately), and transits to the next state until the goal state g is reached.
Formally, at the i-th step of episode k, the learner observes state sf (with s’f = Sinit), takes action
a¥, suffers cost ¢, and transits to the next state s¥ ‘1~ Pgk k. Denote by Iy, the length of episode

k, such that s’}k 41 = g when Iy is finite. Note that the heavily studied finite-horizon setting is a
special case of SSP where I}, is always guaranteed to be some fixed number.

Proper Policies and Related Concepts At a high level, the learner’s goal is to reach the goal
state with minimum cost. Thus, we focus on proper policies: a stationary policy # : S — Ay
is a mapping that assigns to each state a distribution over actions, and it is proper if following
« from any initial state reaches the goal state with probability 1. Denote by II the set of proper
policies (assumed to be non-empty). Given a proper policy 7, a transition function P, and a cost
function ¢ : S x A — [0, 1], we define its value function and action-value function as follows:

vmbe(s) = E [Zz‘le c(siya;)| m P, sy = s} and Q™P¢(s,a) = c(s,a) + ESIN&Q[V”*P’C(S/)],

where the expectation in V™¢ is over the randomness of action a; ~ 7(-|s;), next state
Siy1 ~ Pk, 4, and the number of steps I before reaching g. Also define the advantage function
147r,P,c(s7 a) — Qﬂ’P’C(S, CL) _ Vﬂ-’P’C(S).

We consider two types of environments: stochastic environments and adversarial environments,
which differ in the way costs are generated (and revealed), discussed in detail below.

Stochastic Environments We start with the simpler environment with a fixed “ground truth” cost:
there exists an unknown mean cost function ¢ : S X A — [cmin, 1], and the costs incurred by the
learner are i.i.d samples from some distribution with support [cmin, 1] and mean c. Here, cpin €
[0, 1] is a global lower bound.! We consider the following three types of cost feedback.

1. Unlike many previous works for stochastic costs that require cmin > 0 in their analysis, our methods allow cpin = 0.
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1. Stochastic costs: whenever the learner visits state-action pair (s, a), she immediately ob-
serves (and incurs) an i.i.d cost sampled from some unknown distribution with mean c(s, a).

2. Stochastic adversary, full information: before learning starts, an adversary samples K i.i.d.
cost functions {ck}szl from some unknown distribution with mean c. At the i-th step of
episode k, the learner incurs cost ¢ = cx(s¥, a¥). Only at the end of this episode (after the
goal state is reached), the learner observes the entire cost function c.

3. Stochastic adversary, bandit feedback: this is the same as above, except that at the end of

episode k, the learner only observes the costs of all visited state-action pairs: {cy(s¥, a¥)} fil.

The learner’s objective is to minimize her regret, defined as the difference between her total incurred
cost and the total expected cost of the best proper policy: Rx = Zle Zfil cff — K -V™ P s,
where 7* is the optimal proper policy satisfying 7* € argmin, cr; V™5¢(s) forall s € S.

Adversarial Environments We also consider the more challenging environment that adapts to
learner’s behavior in a possibly malicious manner. Specifically, in episode k, the environment
decides an arbitrary cost function ¢ : S X A — [¢min, 1] which could depend on the learner’s
algorithm as well as her randomness before episode k. The learner then suffers cost cf = ck(sf, af)
at the ¢-th step of episode k. Similarly to the stochastic adversary case, the learner observes infor-
mation on ¢ only after she reaches the goal state in episode k, and she observes the entire ¢ in
the full-information setting or just the cost of visited state-action pairs {cx(s¥, a¥) Z-[i , in the bandit
setting. The objective is again to minimize her regret against the optimal proper policy in hindsight:

Ry = Zle (ZZIQ 1 cf — VP (sinit)> , where we overload the notation 7* to denote the overall

optimal proper policy such that 7* € argmin Ele V7P (s) forall s € S.

Key Parameters and Notations Let 77 (s) be one plus the expected number of steps to reach the
goal if one follows policy 7 starting from state s. Four parameters play a key role in our analysis and
regret bounds: B, = max, V™ 7*¢(s), the maximum expected cost of the optimal policy starting
from any state; T, = T™ (sinit), the hitting time of the optimal policy starting from the initial
state; Tinax = maxs 1™ (s), the maximum hitting time of the optimal policy starting from any
state; and D = max, min, 77 (s), the SSP-diameter. We also define the fast policy 7 such that
7y € argmin, T (s) for all state s. Similarly to previous works, in most discussions we assume the
knowledge of all four parameters and the fast policy, and defer to Appendix E what we can achieve
when some of these are unknown. We also assume B, > 1 for simplicity.

For n € N4, we define [n] = {1,...,n}. Eg[-] denotes the conditional expectation given
everything before episode k. The notation O(-) hides all logarithmic terms including In K and In 1
for some confidence level § € (0,1). For a distribution P € Ag . and a function V' : S, — R,

define PV =E__5[V(s)].

3. Stacked Discounted Approximation and Algorithm Template

Policy optimization algorithm have been naturally derived in many MDP models. In the finite-
horizon setting, one can update the policy at the end of each episode using the cost for this episode
that is always bounded. In the discounted setting or average reward setting with some ergodic
assumption, one can also update the policy after a certain fixed number of steps since the short-
term information is enough to predict the long-term behavior reasonably well. However, this is
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not possible in SSP: the hitting time of an arbitrary policy can be arbitrarily large in SSP, and only
looking at a fixed number of steps can not always provide accurate information.

A natural solution would be to approximate SSP by other MDP models, and then apply PO in
the reduced model. Approximating SSP instances by finite-horizon MDPs (Chen et al., 2021a,d;
Cohen et al., 2021) or discounted MDPs (Tarbouriech et al., 2021; Min et al., 2021) is a common
practice in the literature, but both have their pros and cons. Finite-horizon approximation shrinks the
estimation error exponentially fast and usually leads to optimal regret (Chen et al., 2021d; Cohen
et al., 2021). However, it greatly increases the space complexity of the algorithm as it needs to
store non-stationary policies with horizon of order O(Tjmax) or (9( =) (as shown in Table 1).
Discounted approximation, on the other hand, produces stationary pohcles but the estimation error
decreases only linearly in the effective horizon (1 — ~)~!, where + is the discounted factor. This
often leads to sub-optimal regret bounds and large time complexity (Tarbouriech et al., 2021). We
include a detailed discussion on limitations of existing approximation schemes in Appendix B.1.
These issues greatly limit the practical potential of these methods, and PO methods built on top of
them would be less interesting.

To address these issues and achieve optimal regret with small space complexity, we introduce a
new approximation scheme called Stacked Discounted Approximation, which is a hybrid of finite-
horizon and discounted approximations. The key idea is as follows: the finite-horizon approxima-
tion requires a horizon of order O(T . In K), but one can imagine that policies at nearby layers are
close to each other and can be approximated by one stationary policy. Thus, we propose to achieve
the best of both worlds by dividing the layers into O(In K) parts and performing discounted approx-
imation within each part with an effective horizon O(T},ax). Formally, we define the following.

Definition 1 For an SSP instance M = (S, Sinit, 9, A, P), we define, for number of layers H,
discounted factor vy, and terminal cost cy, another SSP instance M = (S, Sinir, 9, A, P) as follows:

1. S=8x [H 4+ 1], Sinit = (Sinit, 1), and the goal state g remains the same.

2. Transition from (s, h) to (s', 1) is only possible for h' € {h,h + 1}: for any h < H and
(s,a,5") € S x A xS, we have P, p) o(s',h) = vPs4(s") (stay in the same layer with
probability ), ﬁ(s’hm(s’, h+1) = (1—7)Ps (") (proceed to the next layer with probability
L — ), and P ) o(9) = Ps.a(g); for h = H + 1, we have P, pr11)4(9) = 1 for any (s, a)
( lmmedlately reach the goal lf at layer H + 1). For notatwnal convenience, we also write

Pionyal(s's 1) as P py a(8' 1) o Py g n(s', 1), and Prg 1y o(9) as Pis py.a(9) o Psap(9)-

3. For any cost function ¢ : S x A — [0, 1] in M, we define a cost function ¢ for M such that
¢((s,h),a) = c(s,a) for h € [H]| and ¢((s, H + 1), a) = ¢y (terminal cost). For notational
convenience, we also write ¢((s,h),a) as ¢((s,h),a) or c(s,a,h).

For any stationary policy 7 in M, we write 7(a|(s, h)) as m(als, k), and we often abuse the
notation Q™"¢ and V™ ¢ to represent the value functions with respect to policy 7, transition P,
and cost function ¢. We also often use (s, a, h) in place of ((s, h), a) for function input, that is, we
write f((s,h),a) as f(s,a,h).

Define 7* for M that mimics the behavior of 7*, in the sense that #*(-|s, h) = = ( |s). If we
set v = 1 — 57—, by the definition of T},,, it can be shown that the probability of 7* transiting
to the next layer before reaching g is upper bounded by 1/2. If we further set H = O(In K), then
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the probability of transiting to the (H + 1)-th layer before reaching g is at most 2% = O(1/K).
As a result, the estimation error decreases exponentially in the number of layers while the policy
only changes for O(In K') many times. More importantly, due to the discounted factor, the expected
hitting time of any policy is of order (’)(%) = O(Tmax In K), which controls the cost of explo-
ration and enables the learner to only update its policy at the end of an episode. We summarize the
intuition above in the following lemma.

Lemma 2 For any cost function ¢ : S x A — [0, 1] and terminal cost c¢, we have VPe(s h) <
H h+1 + ¢y forany h € [H],s € S, and policy w in M. Moreover, if y = 1 — ﬁ we further
have Q” Pe(s,a,h) < Q7 P(s,a) + s forany h € [H] and (s,a) € S x A.

Proof The first statement is because in expectation it takes any policy ﬁ steps to transit from one
layer to the next and each step incurs at most 1 cost (except for the terminal cost). For the second

statement, note that V™P¢(s, H + 1) = Q™P¢(s,a, H + 1) = ¢ for any (s,a) € S x A, and for
any h € [H], V™Pe(s,h) =3 o4 m(als, h)Q™(s, a, h) and

Q™ (s,a,h) = c(s,a) + YPs V™I h) + (1 — 7) Py o VTP ( 4 1),

where we abuse the notation and define V™"¢(g, h) = 0 for all h € [H + 1]. Now we prove the
second statement by induction for h = H + 1,...,1. The base case h = H + 1 is clearly true. For
h < H, we bound Q™"P¢(s,a,h) — Q™ (s, a) as follows:
YPoaVF P h) 4+ (1= ) PoaVT PO b4 1) = P gV o0
o % * &
< ’YPs,a(Vﬂ 7P7C('7 h) - VT ’P’c) + (1 - 7) 2Hf_h
(VT Pe(s b +1) — VTPe(s) < 2,3f_h by induction)

c 7*,P,c &
= VB gt [QF PGS 0 1) = QTP )|+ (1= )

By repeating the arguments above, we arrive at

I
7* Pc 7*,P,c — ¢
Q' P<(s,a,h) — Q7 (s,a>s1[«:[27t Y-y gil

t=1

7, P s1 = s,a1 :a] ,

where I is the (random) number of steps it takes for 7* to reach the goal in M starting from (s, a).

Bounding *~! by 1 and E[I] by Tjnax, We then obtain the upper bound (1_;*;1”;3"01” = s

which finishes the induction. [ |

Remark 3 Applying the first statement of Lemma 2 with c(s,a) = 1 and ¢y = 1, we have the
expected hitting time of any policy in M bounded by L T T 1 starting from any state in any layer.

Now we complete the approximation by showing how to solve the original problem via solving
its stacked discounted version. Given a policy 7 for M, define a non-stationary randomized policy
o(m) for M as follows: it maintains an internal counter A initialized as 1. In each time step before
reaching the goal, it first follows 7 (-|s, h) for one step, where s is the current state. Then, it samples
a Bernoulli random variable X with mean ~, and it increases h by 1 if X = 0. When h = H + 1,
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Algorithm 1 Template for Policy Optimization with Stacked Discounted Approximation

Initialize: Py, the set of all possible transition functions in M (Eq. (3)); » > 0, some learning rate.
fork=1,..., Kdo

Compute 7 (als, h) x exp (—17 Z?;ll(@j(s, a,h) — Bj(s,a, h)))

Execute o () for one episode (see the paragraph before Lemma 4).

Compute some optimistic action-value estimator (), and exploration bonus function Bj, using

‘P;. and observations from episode k.
Compute transition confidence set Py 1, as defined in Eq. (4).

it executes the fast policy 7 until reaching the goal state. Clearly, the trajectory of o(7) indeed
follows the same distribution of the trajectory of 7 in M. We show that as long as H is large enough
and cy is of order @(D), this reduction makes sure that the regret between these two problems are
similar. The proof is deferred to Appendix B.

Lemmad Lety =1— ﬁ H = [logy(csK)], ¢f = [ADIn2E] for some § € (0,1), and

71, .., Tk be policies for M. Then the regret of executing (1), ...,0(nk) in M satisfies R <
Ric+O(1) with probability at least 1 —3, where Ry = Zle (Z;]il cF+ é§k+1 — Vi Pe(sh 1))

for stochastic environments, and Ry = Zszl (Zjil ck + 5{}’k+1 — VA Pk gk 1)) for adversar-
ial environments. Here, Jy, is the number of time steps in episode k before the learner reaching g or
the counter of o(ry,) reaching H + 1, and E’}kH = Cf]I{slijrl # g}

Computing Fast Policy and Estimating Diameter For simplicity, we assume knowledge of the
diameter and the fast policy above. When these are unknown, one can follow the ideas in (Chen and
Luo, 2021) for estimating the fast policy with constant overhead and then adopt their template for
learning without knowing the diameter; see (Chen and Luo, 2021, Lemma 1, Appendix E).

Policy Optimization in Stacked Discounted MDPs Now we describe a template of performing
policy optimization with the stacked discounted approximation. The pseudocode is shown in Algo-
rithm 1. To handle unknown transition, we maintain standard Bernstein-style transition confidence
sets {Pk}szl whose definition is deferred to Appendix A.1. In episode k, the algorithm first com-
putes policy 7y in M following the multiplicative weights update with some learning rate > 0,
such that 7 (als, h) oc e Ejo1 Q) =Bi(s:0.h) for some optimistic action-value estimator Q;
and exploration bonus function B; (computed from past observations and confidence sets). Then,
it executes o (7y) for this episode. Finally, it computes confidence set Py1. All algorithms intro-
duced in this work follow this template and differ from each other in the definition of @k and By.
Ideally, Q & — By, should be the action-value function with respect to the true transition, the true cost
function, and policy 7, but since the transition and cost functions are unknown, the key challenge
lies in constructing accurate estimators that simultaneously encourage sufficient exploration.

Optimistic Transitions Our algorithms require using some optimistic transitions. Specifically, for
a policy m, a confidence set P, and a cost function ¢, let I'(7, P, ¢) be the corresponding optimistic
transition such that T'(7, P, ¢) € argmin pep V™1(s, h) for all state (s, h). The existence of such
an optimistic transition and how it can be efficiently approximated via Extended Value Iteration (in
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at most @(Tmax) iterations) are deferred to Appendix A.2. We abuse the notation and denote by
V7™P:¢ and Q™ P the value function Y™l P.e)e and action-value function Q”’F(”’P7C)’C.

Occupancy Measure Another important concept for subsequent discussions is occupancy mea-
sure. Given a policy  : S — A 4 and a transition function P = {Psza»h}(s,h)eé,ae,él with P, p, €
Ag, and Sy = SU{g}, define g p : Sx Ax S — R, such that ¢ p($,a,§) = E s =
$,a; = a, 8;41 = §'}m, P, $1 = Siny is the expected number of visits to (8, a, §") following policy
7 in a stacked discounted MDP with transition P. We also let ¢ p(s,a,h) = > s ¢z p((s,h),a, §)
be the expected number of visits to ((s, k), a) and ¢ p(s,h) = ), ¢r,p(s,a, h) be the number of
visits to (s, h). Note that if a function ¢ : & x A x S, — R, is an occupancy measure, then the
corresponding policy 7, satisfies 7, (als, h) o (s, a, h) and the corresponding transition function
P, satisfies Py sqn(s', h') o< q((s,h),a, (s',h')). Moreover, V™€ ($) = (¢r p, ¢) holds for any
policy m, transition function P and cost function c.

Other Notations In the rest of the paper, following Lemma 4 we set v = 1 — 2T,1nax’ H =

[logy(cr k)], and ¢y = [4D In 257 for some failure probability § € (0,1). Define x = 2H Tiyax +
cy as the value function upper bound in M (according to the first statement of Lemma 2). Also
define gy, = gr, P, ¢* = gi+ p, and L = [ In(2T5,0x K /6)].

4. Algorithms and Results for Stochastic Environments

In this section, we consider policy optimization in stochastic environments with three types of feed-
back introduced in Section 2. We show that a simple policy optimization framework can be used to
achieve near-optimal regret for all three settings. In contrast, previous works treat stochastic costs
and stochastic adversaries as different problems and solve them via different approaches. Below,
we start by describing the algorithm and its guarantees, followed by some explanation behind the
algorithm design and then some key ideas and novelty in the analysis.

Algorithm As mentioned, the only elements left to be specified in Algorithm 1 are ka and Bj.
For stochastic environments, we simply set By(s,a,h) = 0 for all (s, a, h) since exploration is
relatively easier in this case. We now discuss how to construct Q.

Pk 7~

e Action-value estimator ()}, is defined as Q™" for some corrected cost estimator ¢y,

Ek(sa a, h) = (1 + )\Q\k(87 a, h))/C\k(S, a, h’) =+ ek(sa a, h)7 (D

where )\ is some parameter, Q;, = Q™ P*C is another action-value estimator with respect to
some optimistic cost estimator ¢, and ey, is some correction term (all to be specified below).

e Optimistic cost estimator ¢}, is defined as

cr(s,a,h) =cp(s,a)l{h < H} 4+ c/I{h = H 4+ 1},

/C\k(S, a) = max {07 Ek(*sa a) -2 Ek(S, G,)Oék<S, a) - 7C¥]€(S, a)}a

where ¢ (s, a) is the average of all costs that are observed for (s,a) inepisode j = 1,...,k — 1
before o(7;) switches to the fast policy, and oy (s,a) is © = In(2SALK/6) divided by the
number of samples used in computing ¢(s, a), such that 24/¢x (s, a)ag(s,a) + Tag(s,a) is a
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standard Bernstein-style deviation term (thus making ¢ (s, a) an optimistic underestimator). We
note that naturally, the way to compute ¢ (s, a) is different for different types of feedback — for
stochastic costs, we might have multiple samples for (s, a) in one episode, while for stochastic
adversaries, we have exactly one sample in each episode in the full-information setting, and one
or zero samples in the bandit setting.

e Correction term ep(s,a,h) is defined as O for stochastic costs; (8ty/Ck(s:a.h)/k +
B'Qr(s,a, h))I{h < H} with 8/ = min{!/Tuax, |/VDT.K} for stochastic adversary with full
information; and 8Qy (s, a, h)I{h < HY} with 8 = min{!/Tmax, /S4/DT, K} for stochastic ad-
versary with bandit feedback.

o Parameter tuning: learning rate n (for the multiplicative weights update) is set to

MIN{ L/3Tmax (8t4+X/Tmax)?, 1/ \/ATE K }, and the parameter A is set t0 min{l/Timax, 1/S*A/02K}

where [ is B, for stochastic costs and D for stochastic adversaries.

We now state the regret guarantees of our algorithm for each of the three settings (proofs are
deferred to Appendix C.2.1 to Appendix C.2.3).

'IN‘heoremS For stochastic costs, Algorithm 1 with the instantiation above achieves Ry =
O(B,SVAK + T3, (S?AK)Y/* 4+ S*A%5T2 . ) with probability at least 1 — 326.

Ignoring lower-order terms, our bound almost matches the minimax bound @(B*\/ SAK)
of (Cohen et al., 2021), with a /S factor gap.

Theorem 6 For stochastic adversary with full information, Algorithm 1 with the instantiation
above achieves Ryc = O(y/ DT, K +DSVAK+T3, (S?A3K)'/448*A25T4 ) with probability
at least 1 — 500.

Theorem 7  For stochastic adversary with bandit feedback, Algorithm 1 with the instantiation
above achieves Ry = O(/SADT,K + DSVAK + T3, SAYA*K/4 4 S*A25T4 ) with prob-
ability at least 1 — 500.

Ignoring lower-order terms again, these bounds for stochastic adversary match the best known
results from (Chen and Luo, 2021), and they all exhibit a v/'S gap in the term DS+v/AK compared
to the best existing lower bounds (Chen and Luo, 2021).

We emphasize again that besides the simplicity of PO, one algorithmic advantage of our method
compared to those based on finite-horizon approximation is its low space complexity to store poli-
cies — the horizon H for our method is only O(In K'), while the horizon for other works (Chen
and Luo, 2021; Cohen et al., 2021) is @(Tmax) when Tp,ax 1S known or otherwise @(B*/cmm). Note
that when cp,;;, = 0, a common technique is to perturb the cost and deal with a modified problem
with ¢pin = 1poly(K), in which case our space complexity is exponentially better. In fact, even
for time complexity, although our method requires calculating optimistic transition and might need
@(T max ) rounds of Extended Value Iteration, this procedure could terminate much earlier, while the
finite-horizon approximation approaches always need at least (T ) time complexity since that
is the horizon of the MDP they are dealing with.

10
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Analysis highlights We start by explaining the design of the corrected cost estimator Eq. (1).
Roughly speaking, standard analysis of PO (spemﬁcally, by (Chen and Luo, 2021, Lemma 9) and
then Lemma 26) leads to a term of order \ E 1k, coO Qk) due to the transition estimation error,
which can be prohibitively large (for functions f and g with the same domain, we define (fog)(z) =
f(x)g(z)). Introducing the correction bias AQy (s, a, h)k (s, a, h) in Eq. (1), on the other hand, has
the effect of transforming this problematic term into its counterpart A Zf 1{g*, c o Q) in terms
of ¢* instead of g;. Bounding the latter term, however, requires a property that PO enjoys, that is,
a regret bound for any initial state-action pair: 3 j 1(Qk — Q7P (s,a,h) = O(VK) for any
(s,a,h). In contrast, approaches based on occupancy measure (Chen and Luo, 2021) only guar-
antee a regret bound starting from sjn;. This makes PO especially compatible with our stacked
discounted approximation. Based on this observation, we further have A Z,I::l(q*, co @k> ~
A Zszl <q*, co@Q™P ’C>, where the latter term is only about the behavior of the optimal policy and

is thus nicely bounded (see e.g. Lemma 20). To sum up, the correction term )\@k(s, a, h)cg(s,a,h)
in Eq. (1) together with a favorable property of PO helps us control the transition estimation error
in a near-optimal way.

For stochastic adversaries, an extra complication arises due to the cost estimation error
Zsz1 {qx, c — k), which results in the extra /DT K or /SADT,K term in the minimax re-
gret bound (depending on the feedback type). Obtaining this optimal cost estimation error requires
us to add yet another correction term ey, in Eq. (1). Specifically, we show that Zle (qr,c —C) ~
Zszl (qx, ex) for ey, defined as in our algorithm description. Then, the role of adding ey, in Eq. (1)
is again to turn the term above to its counterpart Zszl (q*,ex) in terms of the optimal policy’s
behavior, which can then be nicely bounded. As a side product, we note that this also provides a
much cleaner analysis on bounding the cost estimation error compared to (Chen and Luo, 2021),
where they require explicitly forcing the expected hitting time of the learner’s policy to be bounded.

Finally, we point out another novelty in our analysis. Compared to other approaches that act
according to the exact optimal policy of an estimated MDP, PO incurs an additional cost due to
only updating the policy incrementally in each episode. This cost is often of order @(\/I? ) and is
one of the dominating terms in the regret bound; see e.g. (Shani et al., 2020; Wu et al., 2021) for
the finite-horizon case. For SSP, this is undesirable because it also depends on T} or even Tj .
Reducing this cost has been studied from the optimization perspective — for example, an improved
@(1/K) convergence rate of PO has been established recently by (Agarwal et al., 2021). However,
adopting their analysis to regret minimization requires additional efforts. Specifically, we need to
carefully bound the bias from using an action-value estimator in the policy’s update, which can be
shown to be approximately bounded by Zle(@kﬂ — Q1) (s,a,h). In Lemma 25, we show that
this term is of lower order by carefully analyzing the drift (Q441 — Qy)(s, a, h) in each episode.

Remark 8 We remark that our algorithm can be applied to finite-horizon MDPs with inhomoge-
neous transition and gives a @(\/ S2AH3K) regret bound, improving over that of (Shani et al.,
2020) by a factor of vVH where H is the horizon. We omit the details but only mention that the
improvement comes from two sources: first, the aforementioned improved PO analysis turns a
@(H 2 \/E ) regret term into a lower order term; second, we use Bernstein-style transition confi-
dence set to obtain an improved @(\/ S2AH3K) transition estimation error.

11
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5. Algorithms and Results for Adversarial Environments

We move on to consider the more challenging environments with adversarial costs, where the extra
exploration bonus function Bj in Algorithm 1 now plays an important role. Even in the finite-
horizon setting, developing efficient PO methods in this case can be challenging, and Luo et al.
(2021) proposed the so-called “dilated bonuses” to guide better exploration, which we also adopt
and extend to SSP. Specifically, for a policy m, a transition confidence set P, and some bonus
function b : S x A x [H + 1] — R, we define the corresponding dilated bonus function B™%?
SxAx[H+1]— Ras: B"PY(s,a, H+ 1) = b(s,a, H + 1) and for h € [H],

1 .
B”’p’b(s, a,h) =b(s,a,h) + <1 + H’) max Ps o 1, (Z 7(d'|-, .)B”’P’b(-,a', )) , @

Pep "
where H' = B(H%I;(QK) is the dilated coefficient. Intuitively, B™7? is the dilated (by a factor
of 1 + 1/u’) and optimistic (by maximizing over P) version of the action-value function with re-
spect to w and b. In the finite-horizon setting (Luo et al., 2021), this can be computed directly via
dynamic programming, but how to compute it in a stacked discounted MDP (or even why it exists)
is less clear. Fortunately, we show that this can indeed be computed efficiently via a combination of
dynamic programming and Extended Value Iteration; see Appendix D.4.

Algorithm (full information) We now describe our algorithm for the agversarial full-information
case (where ¢, is revealed at the end of episode k). It suffices to specify QQ; and By in Algorithm 1.

e Action-value estimator @k is defined as ka = Q™ PrCk, where ¢(s,a,h) = (1 +
AQw (s, a, h))ex(s, a, h) for some parameter A and Qp = Q™ Pk:k,

e Dilated bonus By, is defined as B™ &% with by,(s,a,h) = 20>, 4 mx(als, h)Ai(s,a, h)?,
where A (s, a, h) = Qi(s,a, h) — Vi(s, h) (advantage function) and Vj, = V7 Pk:%,
e Parameter tuning: 7 = min{l/(64x2VHH"),1/vDK} and A = min{1/x, 48n + /S*4/p1,K}.

Our algorithm enjoys the following guarantee (whose proof can be found in Appendix D.1).

Theorem 9  For adversarial costs with full information, Algorithm 1 with the instantiation above
achieves Ry = O(T.v/DK + /S?ADT, K + S*A%T3, ) with probability at least 1 — 200.

max

The best existing bound is (5(\/ S2ADT,K) from (Chen and Luo, 2021). Ignoring the lower
order term, our result matches theirs when 7, < S2A (and is worse by a /T+/s2 A factor otherwise).
Our algorithm enjoys better time and space complexity though, similar to earlier discussions.

Analysis highlights For simplicity we assume that the true transition is known, in which case
our bound is only O(T,v/DK) (the other term \/S2ADT, K is only due to transition estimation
error). A naive way to implement PO would lead to a penalty term 7+/y plus a stability term
nszzl Esﬁ q*(s,h) Y, mr(als, h)Q™ T (s, a, h)2, which eventually leads to a bound of or-
der O(T, TinaxV'K) if one bounds Q™7 (s, a, h) by O(Tiax). Our improvement comes from the
following five steps: 1) first, through a careful shifting argument, we show that the stability term
can be improved to n Y1 37, ¢*(s,h) 32, mk(als, B) A™ P (s, a, h)? (recall that A is the ad-
vantage function); 2) second, sifnilarly to (Luo et al., 2021), the dilated bonus By, helps transform

12
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¢* to gy in the term above, leading to 7 > p_ {qr, (A™Pck)2): 3) third, in Lemma 26 we show
that the previous term is bounded by the variance of the learner’s cost, which in turn is at most
n Zszl {qk, ci, 0 Q™ ); 4) fourth, similarly to Section 4, the correction term Acy, o Qy, in the
definition of ¢ helps transform g, back to ¢*, resulting in n Ziil <q*, i 0 QTEP 7Ck>; 5) finally,
since PO guarantees a regret bound for any initial state (as mentioned in Section 4), the previous
term is close to n Zle <q*, i © QTkber >, which is now only related to the optimal policy and can
be shown to be at most O(n DT, K'). Combining this with the penalty term 7+/; and picking the best
7 then results in the claimed O(T,v/DK) regret bound.

Algorithm (Bandit Feedback) Finally, we describe our algorithm for the adversarial setting with
bandit feedback, starting with the instantiation of By, followed by that of Q).

o Dilated bonus B, is again defined as B™Pr:bebut with a different by, function similar to that

Ty (5,0’ ,h) — ',h)+46
of (Luo etal., 2021): bx(s,a, h) = L'I{h < H} 5, mx(a/|s, h) B —Lpisah)t
parameters L’ and 6. Here, T (s,a,h) and z(s, a, h) are respectively the largest and smallest
possible probability that ((s, h), a) is ever visited in episode k following policy 7 if the transition

lies in Py, and they can be computed efficiently as shown in Appendix D.5.

e Action-value estimator (), is defined as Qy (s, a, h) = %H{h < H}+cfl{h = H+1},

where G 5 4.1, is the learner’s total cost in M starting from the first visit to ((s, k), a) during the
first L + 1 steps of episode k. Recall the definition of L stated at the end of Section 3, which is a
high-probability upper bound on the number of steps any policy in M takes to reach the last layer
(so counting only the first L + 1 steps is simply to make sure that G, 5, is always bounded).

, for some

o

e Parameter tuning: = min {1/(300HH’TmaxL’), 1/Tr%aXSAK}, 6 =2nL',and L' = L + cy.

We note that this algorithm is in spirit very similar to that of (Luo et al., 2021) for the finite-
horizon case. Unfortunately, the correction terms we use throughout other algorithms in this work
do not work here for technical reasons, resulting in the following sub-optimal guarantee which still
has T,.x dependency in the dominating term (see Appendix D.2 for the proof). We remark that the
best existing bound is O(v/DT,S3A2K) from (Chen and Luo, 2021).

Theorem 10 For adversarial costs with bandit feedback, Algorithm 1 with the instantiation above

achieves R = O(+\/S2AT5, K + S5 A3ST5 ) with probability at least 1 — 285.

max max

6. Conclusion

Our work initiates the study of policy optimization for SSP and systematically develops a set of
novel algorithms suitable for different settings. Many questions remain open, such as closing the
gap between some of our results and the best known results achieved by other types of methods.
Moreover, as mentioned, one of the reasons to study PO for SSP is that PO usually works well
when combined with function approximation. Our stacked discounted approximation scheme also
does not make use of any modeling assumption and should be applicable in more general settings.
Although our work is only for the tabular setting, we believe that our results lay a solid foundation
for future studies on SSP with function approximation.

13
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Appendix A. Preliminary for Appendix

Extra Notations Define §¥ = (s¥ h¥) as the i-th step in M in episode k. Define ny(s,a, h)
as the number of visits to ((s, k), a) in M in episode k, and ny(s,a) = Y hep Mi(s,a,h) (ex-
cluding layer H + 1). Define J; = min{L, J;.}, ix(s,a) = min{L,nx(s,a)}, and ny(s,a,h) =
min{L,nk(s,a,h)}. For any sequence of scalars or functions {zx}x, define dz = zxy11 — 2.
By default we assume ), = Zthll For inner product (u, v), if u(s,a), u(s,a,h), v(s,a), and
v(s,a, h) are all defined, we let (u,v) = >, ., u(s,a,h)v(s,a,h). For functions f and g with
the same domain, define function (f o g)(z) = f (x)g(x). For any random variable X, define
conditional variance Var,[X] = E,[(X — E,[X])?].

For an occupancy measure g w.r.t policy 7 and transition P, define g(, ;) as the occupancy mea-
sure w.r.t policy T, transition P, and initial state (s, h), and q(, 4 ) as the occupancy measure w.r.t
policy m, transition P, initial state (s, ), and initial action a. Denote by (s, a, h) the probabil-
ity that ((s, h),a) is ever visited in episode k, xx(s,a) = Z{Ll xk(s,a, h) the probability that
(s,a) is ever visited before layer H + 1 in episode k, and yx (s, a, h) the probability of visiting
((s,h),a) again if the agent starts from ((s, k), a). For any occupancy measure ¢(s, a, h), we de-

fine q(s,a) = 3", <yr (s, a,h) (excluding layer H + 1). Note that gx(s,a, h) = % and
Yk (s, a, h) <. Thus, we have g (s, a,h) = O(Thaxzir(s,a,h)).
Define A as the set of possible transition functions of M:
AM = {P = {PS,avh}(s,h)ESD,aE.A7 Ps’avh E A(§+ : PS,a,H«I»l(g) = 17
> Poan(shih) <7, Poan(shh+1) <1—7,
s'eS s'eS
Pyan(s', W) = 0,V(s,0) € S x A h € [H], W' ¢ {h,h+1}}, 3)

where v - X = {yx : € X} for some set X'. By definition, the expected hitting time of any
stationary policy in an MDP with transition P € A, is upper bounded by (H + 1)(1 — ~)~*
starting from any state. Therefore, for any occupancy measure ¢ with P, € A4 (for example, g,
and ¢*), we have >, , q(s,a,h) < (H +1)(1 — 1)~ = O(Tax).

Finally define C, as the set of possible cost functions of M:
Cof = {c LS S Ry e(s,a,h) = O(1),¥h < H, and 3C = O(Tmax), c(s,a, H + 1) = cg,va} .

A.1. Transition Estimation

In this section, we present important lemmas regarding the transition confidence sets {Pk}szl. We
first prove an auxiliary lemma saying that the number of steps taken by the learner before reaching
g or switching to fast policy is well bounded with high probability.

Lemma 11 With probability at least 1 — §, we have Jj, = Jj, for all k € [K].

Proof We want to show that J;, < L = (% In(2Tmax K /0)] for all k € [K] with probability at
least 1 — 0. Let k € [K], it suffices to show that the expected hitting time of 7, is upper bounded
by % starting from any (s, h), because then we can apply Lemma 31 and take a union bound over
all K episodes.
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Note that the expected hitting time (w.r.t J) is simply the value function with respect to a cost
function that is 1 for all state-action pairs except for 0 cost in the goal state g and layer H + 1

(i.e., ¢y = 0). Thus, by Lemma 2, the expected hitting time starting from (s, k) is bounded by
H;h+1 < 1H m
-y — 1=

Definition of P;, We define Py, =, , h<p Pk.s,a,n, Where:

Pk,s,a,h - {P, € AM : ’pksa ,) - S/a,h(sl7h>/7’ < ek(s,a,s/),
}pk,s,a(sl)_ sah(s h+1)/(1_7)‘ < Ek(87a73/)7
|Prs.a(9) = Pian(9)] < enls,a,9),¥s' € S}, @)

where €k (s,a,s") = 4\/15/?,5@ (s")ad (s,a)+28a)(s,a), ai(s,a) = m Prsa(s) = %

is the empirical transition, N, (s, a) = max{1, Nj(s,a)}, Ni(s, a) is the number of visits to (s, a)
inepisode j = 1,...,k — 1 before o(m;) switches to the fast policy, and Nj(s, a, s") is the number
of visits to (s, a,s’) inepisode j = 1,...,k — 1 before o(m;) switches to the fast policy.

Lemma 12 Under the event of Lemma 11, we have P e Py, for any k € [K] with probability at
least 1 — 6.

Proof Clearly P € An. Moreover, for any (s,a) € § x A, € S; by Lemma 51 and
Nk +1(s,a) < LK under the event of Lemma 11, we have with probability at least 1 — 25%14,
|Psa(s") = Prsa(s)| < exls,a,s). %)

By a union bound, we have Eq. (5) holds for any (s,a) € S x A, s’ € S; with probability at least
1—¢. Then the statement is proved by Ps , (8", h) = YPs o(5'), Psan(s',h+1) = (1 =) P o(5),
and Ps o,1(9) = Psa(9)- =

Lemma 13 Under the event of Lemma 12, for any P’ € Py, we have for any s’ € S+

[PLan(¥) = Puan(®)] < 81/ Puan(¥)0f(s,a) + 1360 (s,a) £ ef(s,a,h, &),
For simplicity, we also write €} (s, a, h, (s', h')) as €(s,a, h,s', 1) for (s', 1) € S.

Proof Under the event of Lemma 12 and by Eq. (5), we have for all (s,a) € S x A, and s’ € Sy

Pisals') < Poals') + 44/ Prsa(s))o (5, 0) + 2804 (5, 0).

Applying 72 < ax +b = x < a+ Vbwitha =4,/a)(s,a) and b = P; ,(s') + 28c/ (s, a), we

have
\/ Prsals <4\/aksa —i—\/PSa ) +28a (s,a) < \/Psa +10\/a;€(s,a).
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Substituting this back to the definition of ¢, we have

ex(s,a,s) = 4\/15;{,5@(3’)04;(8, a) + 28a,(s,a) < 44/ Ps o(s")a, (s, a) 4+ 68, (s, a).

Now we start to prove the statement. The statement is clearly true for s’ = (s, h’) with b/ ¢
{h,h + 1} since the left-hand side equals to 0. Moreover, by the definition of Pj, Lemma 12, and
x < y/xforz € (0,1),

‘ sah s’ h sah( ’ < | sah s' h) - Vpk,s,a(sl)’ + |'7pk;,s,a(3/) - Ps,a,h(slah)’
< 2ver(s,a,8") < €(s,a,h, s h),

|PLon(s',h+1) = Pyon(s' s h+1)|
S’P;7a,h(5,7h+1)_(1_7)}316,8@ ““‘ 1_ Pksa( )_Ps,a,h(slah+1)’
<2(1 — Y)er(s,a,8") < €(s,a,h, s h),

/

‘Ps,a,h(g) sah | ‘ sah Pk%&a(g)’ + |Pk,87a(g) _PS,a,h(g)’
< QEk(S,CL,g) < 262(87(17 h7g)

This completes the proof. n

A.2. Approximation of Q™1 (7-P:c).c

We show that Q™! (™P:¢):¢ can be approximated efficiently by Extended Value Iteration similar to
(Jaksch et al., 2010). Note that finding F(7r P, c) is equivalent to computing the optimal policy in
an augmented MDP M with state space S and extended action space P, such that for any extended
action P € P, the cost at ((s,h), P) is >_, m(als, h)c(s, a, h), and the transition probability to
s e 5’+ is >° m(als, h)Psqn(8'). In this work, we have P € {P}_ |, and Pr. = N, , 1, Pr.s.ahs
where Py s ,.n is @ convex set that specifies constraints on ((s,h),a). In other wofdé, Py is a
product of constraints on each ((s, h),a) (note that Ay can also be decomposed into shared con-
straints on Ps , ;741 and independent constraints on each s,a,h < H). Thus, any policy in M
can be represented by an element P € P. We can now perform value iteration in M to approx-
imate Q™1 (mP:¢):c. The Bellman operator of M is Ty defined in Eq. (19) with min operator re-
placed by max operator. Also note that M is an SSP instance where all policies are proper. Thus,
yml(mPe)e is the unique fixed point of 7y (Bertsekas and Yu, 2013). It is straightforward to
show that Lemma 47 still holds with min operator replaced by max operator in Eq. (19) and let
VO(s, H + 1) = max, c(s,a, H + 1). Thus, we can approximate V™ (77:¢):¢ efficiently.

Now suppose after n iterations of modified Eq. (19), we obtain V"™ such that
HV" — V’“F(’“P’C)’CHOO < e. Then we can simply use Q(s,a,h) = c(s,a,h) + minpep Ps o, V"
to approximate Q™" ("P-0):  since

’Q(s, a,h) — QET(™Pee(s g, h)’ 9\ min P, o, V" — min Py oy VL (mP0)e
S

pPepP
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< max Ps,a,h(v B v (7, P,c) c

<e
pPeP

)

an YL Pe)e

o0

where (i) is by the definition of T'(7, P, ¢). In this work, setting ¢ = 1/K is enough for obtaining
the desired regret bounds. Lemma 47 (modified) then implies that (9( Tax) iterations of modified
Eq. (19) suffices.

Appendix B. Omitted Details for Section 3

In this section, we provide omitted discussions and proofs for Section 3.

B.1. Limitation of Existing Approximation Schemes

Finite-Horizon Approximation Thanks to Lemma 31, the approximation error under finite-
horizon approximation decreases exponentially. Specifically, we only need a horizon of order
O(Tmax In K) to have approximation error of order O(4-). This gives optimal regret bound un-
der both adversarial costs (Chen et al., 2021d) and stochastic costs (Chen et al., 2021a). However,
it also clearly brings an extra O( Tmax) dependency in the space complexity since we need to store
non-stationary policies changing in different layers. Chen et al. (2021a) proposes an implicit finite-
horizon approximation analysis that achieves optimal regret bound without storing non-stationary
policies. Unfortunately, their approach does not work for adversarial costs.

Discounted Approximation Approximating an SSP by a discounted MDP clearly produces sta-
tionary policies. However, the approximation error scales with 1 — +y (that is, inversely proportional
to the effective horizon (1 — ~)~1!) following similar arguments as in (Wei et al., 2020, Lemma 2),
where + is the discounted factor. This leads to a sub-optimal regret bound when the achieved regret
bound in the discounted MDP has polynomial dependency on the horizon even in the lower order
term (Wei et al., 2020). In Tarbouriech et al. (2021), they still achieve minimax optimal regret by
deriving a horizon-free regret bound (no polynom1a1 dependency on the horizon even in the lower
order term), and approximately set 1 —~ = (’)( ) to achieve small approximation error. The draw-
back, however, is that the time complexity of updating the learner’s policy scales linearly w.r.t the
effective horizon, which is of order @(K ); see (Tarbouriech et al., 2021, Remark 1).

B.2. Proof of Lemma 4

Proof We only prove the statement for adversarial environment, and the statement for stochastic
environment follows directly from setting ¢; = - - - cx = ¢. By Lemma 2, we have V7" ¢ (s,1) <
V7Per(s) + L forany k € [K]. Now by Lemma 31 and the fact that the expected hitting time of
fast policy is upper bounded by D, we have with probability at least 1 — 4, the learner reaches the
goal within Jj, + ¢y steps for each episode k. Thus by a union bound, we have with probability at

least 1 — &, S0 ST oF < ST <ZZ 1 G +Clk+1) Putting everything together, we get:

K Ik
Z (Zc V”*’P’Ck(s'f)> <> (Zcf N R A € 1)> +0(1)
k 1 J

This completes the proof. |
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Appendix C. Omitted Details for Section 4

In this section, we provide all proofs for Section 4. We first provide omitted details for cost estima-
tion under various feedback types. Then, we establish the main results in Appendix C.2. Finally,
we provide proofs of auxiliary lemmas in Appendix C.3.

Extra Notations Define optimistic transitions P, = (7, P, ¢x) and Py = I'(7g, P, Ck ), such
that Q;, = Q™ P and Q, = Q™ Pk Also define g = 4, p, and Qr = QP %k,

C.1. Cost Estimation

We provide more details on the definition of ¢, for the subsequent analysis. Recall that ¢ (s, a) =
Ck(sva)
mz(s,a)
the accumulated costs that are observed at (s, a) in episode j = 1, ...,k — 1 before o (7;) switches

to the fast policy, a(s,a) = m+(L ) (recall . = In(2SALK/5)), M (s,a) = max{1,Nk(s,a)},
L (sa

and 91 is the number of times the learner observes cost at (s,a) in episode j = 1,...,k — 1

before o (7;) switches to the fast policy. The definition of C}, and 9, depends on the type of cost

feedback. For stochastic costs, Cy (s, a) = Zf;ll S dIfs) = s,a] = a} and My = Ny (s, a).
k—1

For stochastic adversary, Cy(s,a) = > 7=1 m;(s,a)c;(s, a), where my(s,a) is the indicator of

whether ¢ (s, a) is observed in episode k before o () switches to the fast policy, and (s, a) =
s k—1
Mk($7 a) = Zj:l mj(S, a)'
Below we show a lemma quantifying the cost estimation error.

max{0, ¢x(s,a) — 2y/¢x(s,a)ai(s,a) — Tay(s,a)}. Here, ¢x(s,a) =

, where Ci(s,a) is

Lemma 14 Under the event of Lemma 11, we have with probability at least 1 — 6,
0< C(Sv (I) - /C\k’(‘g? a) <4 V /C\k(S, a)ozk(s, a) + 3404/6(57 Cl),
for all definitions of ¢k

Proof Only prove the stochastic cost case and the stochastic adversary case follows similarly. Note
that under the event of Lemma 11, Nj41(s,a) < LK. Applying Lemma 51 with X}, = c(s, a) for
each (s,a) € S x A and then by a union bound over all (s,a) € S x A, we have with probability
atleast 1 — 0, for all k € [K]:

ek (s,a) — c(s,a)|] < 2v/ag(s,a)ck(s,a) + Tag(s,a).

Hence, c(s,a) > (s, a) by the definition of ¢;. Applying 22 < ax +b —> =z < a + v/b with
x = 4/Ck(s, a) to the inequality above (ignoring the absolute value operator), we obtain

V(s a) < 2v/ag(s,a) + v/c(s,a) + Tag(s,a) < v/c(s,a) + 53/ ai(s, a),

Therefore, 21/ ay (s, a)ck(s, a) + Tag(s,a) < 2y/ax(s,a)c(s,a) + 17ag(s, a), and

c(s,a) —cx(s,a) = c(s,a) — (s, a) + cx(s,a) — cx(s,a)
ak(s,a)ci(s,a) + Tag(s,a)) < 4v/ag(s,a)c(s,a) + 3dag(s, a).

This completes the proof. |
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C.2. Main Results for Stochastic Costs and Stochastic Adversary

We first show a general regret bound agnostic to the feedback type (Theorem 15). Then, we present
the proofs of Theorem 5 to Theorem 7 (Appendix C.2.1 to Appendix C.2.3) using the general regret
bound.

Theorem 15 Assuming that there exists a constant G such that for any s, h:

K-1

>~ (meri(ls, k), dQuls, - b)) < G.

k=1

Then, Algorithm 1 in stochastic environments with X\ < min{1/Tyax, \/S?A/K} ensures with
probability at least 1 — 226,

K jk

- K & S2A
=0 ZZ(Cf _Ek 17 z Z dk, €k +Z q ek
k=1 k=1

k=1 i=1

K K
+0 | |S2A43 (g, e 0 QmeoPer) + SUAZPTE 4 AY <q*7 co Q%*,P,Ek.>
k=1 k=1

+O< rj7a"+TmaXG+AZ<q Q™ Pk>>

k=1

Proof For notational convenience, define w = S*A2°T3 . By (¢*, ) < (¢*,c) (Lemma 14) and
Lemma 11 (under which ng = 7x), we have with probability at least 1 — 26,

K Ji
_ k ok 7*,P,c k 7* P ( ok
= Z Zci +ch -V (s1) § Z e ~(s1)
k=1 i=1 =1

Jk

K
ZZC — (8 z? z))+

M=

(N — q*, k) -
1

i

For the second term, by the definition of ¢,

K K K K
(e — q%,Ck) = > (e — @i, C) + Y (G — oo k) + 3 (G — 0% C)
k=1 k=1 k:l k=1
K K K K R
= Aawen) + > (a" er) )\Z<kackoQk>+)\Z<q*7/c\koQk>
k=1 k=1 k=1 k=1
K K K
<Y (k= @ )+ D@k — Gro k) — A D (aks Bk © Qi)
k=1 k=1 k=1
&1
K K K ~
= awer) + > _(dten) FAY <Qk78k o (Qk — Qk)>
k=1 k=1 k=1

&2
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K K K
+/\Z<q coQ@" PC’“>+Z (G — q~, Ck) )\Z<q CO(Qk—QW*PCk»
k=1 k=1 k=1
&3

For &7, with probability at least 1 — 170:

K K K
(M = Qi @) + Y Gk — T @) = A (grs o Qi) <O (4| D
o k=1

M=

=
Il

<Qk7/c\k‘ © Qk> + SATmax
1

B
Il

1

K K
+Z<Qk_Qk> +AQr) Ock> > Qk—akaek>_)\Z<Qk,/C\koQk>
k=1 k=1

(Ex[7k(s,a,h)] < qr(s,a,h), Lemma 50, Lemma 26 and ng (s, a, h

K K i
-0 SQAZ<qk,EkoQk>+ SQAZ<Qka€kOQﬂk’P’ek>+w _)‘Z<q’f’8’foQk>
k=1 k=1

(Lemma 28 and (1 + AQx(s, a, h))ek(s, a, h) = O(C(s, a, h)))

- [ 524 -
=0 —~ +.1524 Z (qr, e 0 QmrPrer) 4w (AM-GM inequality)
k=1

For &, by Lemma 30 and Lemma 13, with probability at least 1 — 24,

Qk(S;C% h) Qk‘ 3 a h Z qk sah) 3 a h )( s/ (l’,h’ — Pk,s’,a’,h/)Vﬂ'k’Pk;c\k

s’,a’,h!
~ \/§Tmax STmaX
=0 Z dk,(s,a,h) (8/7 CL,) N* (s o ’ ©)
slya,’ N];‘F(S/, a/) k (S 7a )

By qi(s,a,h) = % and y(s,a,h) <y =1— z—, we have

Z Qk’(s) a, h)Qk,(s,a,h) (5,7 CL,) < 2Thax Z i’k(S, a, h)qkz,(s,a,h) (5/7 a/)
s,a,h<H s,a,h<H

< 2T‘max Z Qk(sla CL/) = 2TmaXSAHQk:(S,aa,)- (7)
s,a,h<H

Therefore, with probability at least 1 — ¢,
K
o= )\Z <Qk,5k o (Qk — ka)>

~ \/§Tmax STmaX
=01[A Qk s, a, h qk,(s,a,h) S CL) +
;g:h Z N,j(s’,a’) N]:F(S/,a’)
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o maxs3/2AZZ () | 2 SzAZ qk‘s “)

max ; (Eq. (7))
s',a' k= 1\/N+S CL) sa’kl )

=0 ()\TlflaXSWzA\/SAmeK +AS3A%TS ) =0 ().

max

(Lemma 32 and ) , qk(s,a) = O(Tmax))

For &3, first note that Hél H = @(Tmax) under all definitions of ¢, and by Lemma 30:

K K
D G —a ) =Y. > q*(s,h) > (milals, h) — 7*(als, b)) Qr(s. a, h)

k=1 s,h a

+ Z Z q*(s,a,h) (@k(s, a,h) —¢x(s,a,h) — Ps4 hvﬂ'kvpbck)

k=1 s,a,h

max

@<77 +T.G+T? >

(Lemma 24, the definition of P}, and Y sand(s,a,h) = O(T,) by Lemma 2)

Next, note that

K K
Z(@k(s,a, h) — Q" P (s, a,h)) Z Q’T’“P’“C’C (s,a,h) — Q™ % (s,a,h))
k=1 k=1 N
(Pr, P, € Pr)
K ~ o ~ K o P~
<Y (Q”k’Pk’ck(s, a,h) — QP (s, a, h)) +3 QT Ptk (s, a,h)  (definition of )
k=1 k=1
Also note that A K <q*,Q7°f*vP7A@k> = ONT3, K) = O(S?AT3, ) by A < /SPA/K.
Thus,
K ~ o o~
AN (g e0 (@ - Q7))
k=1
~ K K o
-0 (}\Z <q co Qk _ Qﬂ' Pck)> + )\Z <q*’Qﬂ'*’P’€k> 4 S2AT1§1ax> ]
k=1 k=1
Now by Lemma 30 and the definition of ﬁk:
K ~ o ~
> (@k(s,a,h) — QFP%(s,a,h)) ®)
k=1
K ~
< Z Z Py an(s",h") Z qz(su’h,,)(s’, W) (mi(d|s' 1) — 7% (d'|s', 1)) Qr(s',d', B)
// h// 5 7a]/,h//
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=0 < ‘;a" + TinaxG + Tr?lax> . (Lemma 24)

max )

Thus, by ANTnax < 1, we have )\Zle <q*, co (@k _ er*7P,Ek)> = (’N)(% + TmaxG + T2
Putting everything together completes the proof. |

C.2.1. PROOF OF THEOREM 5

Proof By Lemma 25 with ny, = ng, 9 = Ny, and ex (s, a, h) = 0, with probability at least 1 — 24:

K-1
Z <7Tk+1('|87h)7d©k(87'7h)> D maxzz Snk +)‘77 maxK
k=1 k=1s"a’

= O (S2ATS 1 + TﬁlaX(SzAK)l/“) .

(definition of A and 7, nk(s,a) = N (s, a) under the event of Lemma 11, and Lemma 32)

Thus, by Theorem 15, Lemma 16, definition of A, and replacing G by the bound above, we have
with probability at least 1 — 284,

. N K Jk 2A K R R
Rae =0 \[SADSck+ TR LT3 (AR 1+ S AT A Y (0 0 PR
\ k=1 i=1 =
) K Jy
=0 \ SA Z Z cf + B,SVAK + T3, (S?AK)Y* + §4A%5T4 | . (Lemma 20)
k=1 i=1

zlz

Now by R, = SI0 1Zz Lcb — K - vTPe(sh) and Lemma 48, we have S r 12
(B,SVAK + T3, (S?AK)Y/* + S*A?T4

O(B,K). Plugging this back, we get Rg = O
Applying Lemma 4 then completes the proof.

IVII

C.2.2. PROOF OF THEOREM 6

Proof First note that with probability at least 1 — 36,

h h)
Z|rdekul<2 > \/ o) f’“*,ﬁ;i?

k=1 s,a,h<H

—-0 (S?’AQTI%M i 51/2A3/4TmaxK1/4) 7

—l—ﬁz Z ‘kosah‘

k=1 s,a,h<H

where in the last inequality we apply

DI SRNCETIRNE

k=1 s,a,h<H
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Mw

1 1 VIek(s,a,h) — Cria(s,a,h)|
P SH(W ) 39>

k=1s k=1s,a,h<H VE+1
(add and subtract \/Ek(s, a,h)/(k+1),and |/a — vb| < \/M)
= 1 = my(s,a)
=0 (S4T30 > X X .| =064,
k=1 s,a,h<H k+1 k=1 s,a,h<H Mk: (87 a)

(Cauchy-Schwarz inequality, Lemma 25, and Lemma 32)
and by Lemma 11,

B’i Z ‘d@k(s,a,h)’

k=1 s,a,h<H
K Sny(s',a’) my(s’,a’)
A k(S k
=0\ A2 2 | Tow 2 N o) +TmaxZ 2y + 1T
k=1 s,a,h<H s’,a!

(Lemma 25)
(B S3A2T3 .+ B'nSATS .. K) = o <S3A2T§1ax + 51/2A3/4TmaxK1/4) . (Lemma 32)

Moreover, by Lemma 25 with ng = my, N = Mg, and A < ﬁ, we have with probability at
least 1 — ¢:

K-1
Z <7Tk:+1('|57h)7d@k(5a 7h)>
k=1
K
- maxzzS”” LY +Azﬁaxzz m” <) o Ml + T Y e
k=1s',a’ k=1s',a’ k=1
= O (SPAT Y + T2 (S2APK)) ©)

where the last step is by Lemma 32, the definition of 1 and A, and the bound on Zszl lldek||,
Moreover, by Lemma 17 and definition of e, we have with probability at least 1 — 16J:
K

Ji K
S5 (A a) - S o) = (g S (-0} + 3+ 53A3T3>

max
k=1
=0 (S3A2T§’1ax DT*K> ,

(Eq. (6), Eq. (7) similar to bounding &5, and the definition of 3)

EKII q"sex) (ZZCI 5,a) \/7+5 Z<q Qk>> (Lemma 14)

k=1 s,a

k=
95 (\/W+S3A2 max) ,

K
2AZ <ql€7 €k © Qﬂ-k’P’ek> = @ ( \% SQATélax) )
k=1
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K
*7 *Pe = r%iax\/> glax
A;@ 0 k> (AT K+ \3'T )

Il
(O]
—

\/STT?’),

max

where (i) is by

K K “(s.a
qu GO o[ X s a2 3L
k=1 s,a

=1 s,a k=1 s,a

-0 (VDL.K),

(Cauchy-Schwarz inequality)
definition of 3, and

K K K
B3 (" Qn) = 83 (0", Qu = Q7P ) + 83 (7, QP )
k=1 k=1

k=1

K _ .
=08 a(s,a.h) (QU4T (5,0, h) = Q7P (5,0, 1))

k=1 s,a,h

K
+O | B Z Zq*(s,a, h)Q™ PAQkter (s o h) + \/DT,K |,
s,a,h k=1

(Zs,a,h q*<37 a, h‘) - O(T*), and HQ%*’P’EIC Hoo = O(D>)
l
B (B B TG B T + (M BT + BT VE + m) :
n

(Eq. (8))
-0 (S3A2T§;ax DT*K) . (replace G by Eq. (9))

Thus, by Theorem 15, Lemma 21, and definition of 7, A, we have with probability at least 1 — 22,
Ri =0 (x/DT*K + DSVAK + T3 (S2A3K)M/* + 544> 5T§;ax) .

Applying Lemma 4 completes the proof. |

C.2.3. PROOF OF THEOREM 7

Proof By Lemma 25 with ng = my, M = My, and A < 7~—, we have with probability at least
1—24:
K-1 N
(1 (s, ), dQx(s, 1) ) (10)
k=1
Sny(s',a) 9 my (s, a’) K
= max Z Z + + >‘Tmax Z Z + + AT] maXK + TmaX Z Hdek‘h
N, (s',a’) M, (s',a")
k=1s',a’ k=1¢s",a’ k=1
-0 <S3A2TI§laX + T2 SAS/AKY 4) , (definition of 7 and Lemma 32)
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where in the last step we apply

aneknl —BZ > |aQu(sa.n)

k=1 s,a,h<H
-0 ﬂi Y (50 | gy ma(s,0) T3 (Lemma 25)
k=1 s,a,h<H - s',a’ N:(Sl’ a/) - Mlj_(s’ ) e
O (BSP AT, + BnSATS, K) = O (S3A2Tﬁlax + SA5/4TmaXK1/4) . (Lemma32)

By Lemma 18 and the definition of e, we have with probability at least 1 — 116:

K J

K
> (Cf - 5Jg(§f,af)) = aw,ex) (52 <Qk, Qk — Qk> + ﬂA + 53A3T3m>

k=1 i=1 k=1
=0 ( SADTK + S* 5A2T§m) ,
(Eq. (6), Eq. (7) similar to bounding &, and the definition of ()

S = A i B K - —~
Z q ek Z <q*v Qk - QW*’P’%> + B Z <q*’ Q”*7P70k>
k=1 —1

k=1

x

o (BZ > a7 (s,a,h) (QUPE5 (5,0, h) — Q7P (s, h)))

k=1 s,a,h

s,a,h k=1

K ~
+0 (5 Z Zq*(s, a, h)Q%*’P’AQ”ek (s,a,h) + \/m) ,
(5 0" (5.0, 1) = O(T,), and (@ F5]| _ = O(D)
(6 ;P maXG + /3 max T (AB + 52 maxK + m) (Eq. (8))

(S3A2 4 SADTJ() : (replace G by Eq. (10))

I
G

_
N

QAEK: (qk, ex 0 QmrPrer) = (\/WA—W> =0 <\/53AQ—TI%aX> ’
k=1

\ K <q*’QfT*,p,ek> _ (Aﬂ 3 K)= O (Ss/QATI:;,IaX> .

k=1

Thus, by Theorem 15, definition of n, A, and 3, and Lemma 21, with probability at least 1 — 226,

-0 (\/SADT*K + DSVAK + T3, SAYARVA 4 g4A257s ) .

max

Applying Lemma 4 completes the proof. |

28



PoLiCcY OPTIMIZATION FOR STOCHASTIC SHORTEST PATH

C.3. Extra Lemmas for Section 4

We give an outline of this section: Lemma 16 to Lemma 18 bound the term Z,Ile Z;] ko (ck —
ck( ¥ aF)) the under various feedback types. Lemma 20 and Lemma 21 bound the term
Z k1 <q ,coQ™ P ’C> under stochastic costs and stochastic adversaries respectively. Lemma 23
establishes stability of PO updates. Lemma 24 provide a refined analysis of PO. Lemma 25 bounds
the drift of various quantities (such as dcg and dQy,) across episodes. Lemma 26 provide bounds on
variance of learner’s costs. Lemma 28 gives a bound on the estimation error of value functions due

to transition estimation.

Lemma 16 Under stochastic costs, we have with probability at least 1 — 66

K Ji R K Ji
SOS (- ad ) = 0 [ (| SASDS ek o+ SAT
k=1 i=1 k=1 i=1
Proof First note that:
DD =) =)y (e — el af) + YD (elstay) — st ap)).
k=1 i=1 k=1 i=1 k=1 i=1

For the first term, by Lemma 50 and Lemma 52, we have with probability at least 1 — 24,

K Jg K J K J
DD —clst,af) =0 | | DD EUk?skaf] | =0 | (| D D elsh
k=1 i=1 k=1 i=1 k=11i=1
K Jy
2 DI
k=1 i=1

For the second term, with probability at least 1 — 49,

K Jy K Jy )
ZZ(C(S?,CL?)—&}(%, a; ZZ( N+zs, ZCL)+N+ 8

k=11i=1 k=11i=1 (R

CL

(Lemma 14 and ¢, (s,a) < c

= @ - = 0(37a> ﬁk(s,a)
> [ wlsia) N (5.q) - N (s, a)

k=1
3 K Jy
=0 | \|SAY D c(sk,al) + SATax (Lemma 32 and Jj, = J,)
k=1 i=1
) K Ji
=0 SA Z Z e+ SATmax | - (Lemma 52)
k=11=1
This completes the proof. |

29



CHEN LUO ROSENBERG

Lemma 17 Under stochastic adversary with full information, with probability at least 1 — 89,

K Ji
ZZ(Q?_E]?(17 a; _8[’ ZZQkSCL )/k
k=111=1 k=1 s,a

K
+ @ Z Z Qk(sa a, h)Qk(Sa a, h) + SBASTI%&X
k=1 s,a,h<H

Proof First note that by ¢ = ¢, (s, al):

'L ? l

K Ji K jk K jk
YD (e -al =D > (en(sfiaf) = clst,af)) + Y (elst,af) = (st af)).
k=1 i=1 k=1 i=1 k=1 i=1

For the first term, with probability at least 1 — &,

K K
ZZ C/C 17 z 7C(Sf7af)) :ZZﬁk(s,a)(ck(s,a)fc(s,a))
k=1 i=1 k=1 s,a
. K 2
LNG) \ > Ry (Z nk(s,a)ck(s,a)> + Thnax
k=1 s,a
~ K |
=0 ZE% Z Qk(s7a7h)Q7rk’P’ck ($7aah) + Thax
k=1 s,a,h<H ]
(Ex[-] = Eq, 5, [-], Lemma 26 and ¢ (s, a) < 1)
N K K
=0 Z Qk s, a, h)Qk’(57 a, h) + Z <Qk, Qﬂ—k’PC Qk’> Tinax 5
k=1 s,a,h<H k=1

Ck(s,a,H+1) =c(s,a, H 4+ 1))
where in (i) we apply Lemma 50, E;[-] = E,, »,[-], and
2 2
Eck (Z ﬁk(saa)(ck(‘g?a) - C(S,G))) ng | < Eck <Z ﬁk(S,G)Ck(S,&)) Nk

Now note that for h < H, by Lemma 30, Lemma 14, and ¢ (s, a, H+1) = ¢(s,a, H+ 1), we have
with probability at least 1 — 24:

Qﬂ-k’P’C(Sv a, h) - Qk(sa a, h) = Z Qk,(s,a,h) (3/7 CL/, h/)(C(S/, CL,, h/) - Ek(slv a’lv hl))

s',a’ W' <H
~ cr(s',a) 1
=0 s a +
,Z/ q’ﬁ(&%h)( ) ( ]\4’:—(3/7 a/) Mlj_(sl’ a/)
s'a
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Note that Qk<37 a, h)qk,(&a,h) (8/7 al) = @(Tmaxxk(sa a, h)Qk,(s,a,h) (sla a/)) = @(TmaXQk(5/7 a/))-
Therefore, we have with probability at least 1 — §:

= T c 2 < 1o C (S/,CLI) 1
kz:l<%?Q Mo Qe =0 Tmaxz Z qu(s %) ( Ml}(s/,a') - M (s',a’)

k=1 s,a,h<H s’,a’

K -~ / / 1
(;j SATmax l7 ! Ck!(s y 4 )
ZZQk(S a) ( M,j(s’,a’) + M]:F(S/’a/)

k=1s',a’
(gx(s', ', 1) = O(Tmaxwk(s',a', 1))

K
-0 SAT hax Z ]\% Zqusacksa —I—Z 4k (5", )

+
k=1s",a’ k=1¢s",a’ k’lsaM s’ a)
(Cauchy-Schwarz inequality)

K
=0 S3A3TS . Z Z ar(s',a)en(s',a') + S2ATE, .
k=1s',a’

(qr(s',a") < Taxr(s', a’) and Lemma 32)

=0 Z Z a(s', a')ep(s', a') + SPAPT o ) - (AM-GM inequality)
k=1s"a’

Substituting these back, we have

K Ji

Z Z(Ck(%ﬂ a¥) — c(s¥,af))

k=1 i=1

=0 Z Z ai(s,a, h)Qr(s,a,h) +/S3A3T3, | . (11)

k=1 s,a,h<H

For the second term, with probability at least 1 — 49,

i Je — P i{: Je Cr(sF, ak ) 341
(c(si,a;) —ex(s7,ar)) < 4 i A DA (Lemma 14)
e A v k=1 i=1 My (s, af) M (sf,af)
K cr(s,a) s 68qx(s,a)t
k\9, k\9; A
< Z Z 8- qx(s,a)t ? + Z Z — + O (Thax) (Lemma 52)
k=1 s,a k=1 s,a
K
<8 > aqu(s,a)\/C(s,a)/k + O (Tnax)
k=1 s,a
Putting everything together completes the proof. |
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Lemma 18 Under stochastic adversary with bandit feedback, with probability at least 1 — 89,

K Jx K H
ZZ(Cf — (¥, dN =0 SAZZqu(s,a,h)Qk(s,a, h) + /S3A3T3 .
k=1 i=1 k=1 s,a h=1
Proof First note that by ¥ = ¢;,(s¥, a¥):
K Jp K Jp K Ji
ZZ(Ckick Si» z chk Si» 2 (S?,(If))+ZZ(C(S?,G§)*C;€(S,’:,CL$))
k=1 i=1 k=1 i=1 k=1 i=1

For the first term, Eq. (11) holds by the same arguments as in Lemma 17 with probability at least
1 — 446. For the second term, we have with probability at least 1 — 44,

L2 k ko k (& ek (st af) 1
(c(s¥, ay) — (8, af)) = O oS
;; ;11:1 M+(Sl’al) M+( 7,7 f)
(Lemma 14)
(s v (5.0) | N~ (5.0)
=0 qr(s,a, h) AN A T Trax (Lemma 52)
<;;; Ml:_(sva) ;; M,j(s,a)
“o (| LE e [y B g
= mk<s’a’h M+ 8 a max
k=1 s,a h=1 k=1 s,a h=1
(Cauchy-Schwarz inequality, Lemma 32, and gy (s, a) = O (Timax2k (s, a)))
3 K H
=0 | \[SAY_ D> (s, a.W)Qx(s, a,h) + SATma
k=1 s,a h=1

(Lemma 32 and gz((zzz))ac(s, a) < Qx(s,a,h))

Lemma 19 Forh € [H + 1], we have ), , q*(s,a,h) < (3)" ' Tax.

Proof Denote by p(s) the probability that the learner starts at state s in layer h and eventually
reaches layer h + 1 following 7*. Clearly, p(g) = 0, and

I
> =yt

t=1

N =

Q)
p(S) <l—9+ fYPS,ﬂ'*(S)p <E

7, P, s = s] <

where (i) is by repeatedly applying the first inequality By a recursive argument we have the
probability of reaching layer h is upper bounded by ( )P=1. Then by 3 sa q , h)(s a,h) < Thax

for any s', we have ) , ¢*(s,a,h) < ()P 1 Tax. [
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Lemma 20 Under stochastic costs, <q*, co Q%*vpvc> <2B? + %

Proof By Lemma 2 and Lemma 19, we have:

<q*,coQ7ﬁT*’P’C> ZZq s,a, h)c sa)Q7r Pe(s a,n) —i—Zq s,H+1)c

h=1 s,a

" c ceT,
< ZZQ*(S,a,h)C(S,CL) (Qﬂ- 7P’C(sva’) + 2H—];H-1) + fQEaX

h=1 s,a

2 max CmeaX
<QB +22h 19H— h+1+ oH

(Zh:l q (37 0/7 h)C(S, a) S B* and Qﬂ*’P7c(57 a’) S 1 + B*)

CfTmax (H+ 1T,
<2B%+ (H +1) fQ;}“a < 2B 4
|
Lemma 21 For stochastic adversary, we have Zszl (¢*,co Q’or*vpvc> =0 (D?K).
Proof Y, (¢*,co Q™) = O (DK (¢*,¢)) = O (D?K). |

Lemma 22 17 H@kH < 1 under all definitions of cy.
o

Proof It suffices to bound H@kH . By Lemma 2, @k(s,a,h) < - T =
[e.e]

x-  Therefore, ep(s,a,h) < 8t + x/Tmax under all feedback types.  This gives

ck(s,a,h) < (1 + AQk(s,a,h)) + ex(s,a,h) < 3(8t + X/Tmax) for b < H and

ck(s,a, H + 1) < (1 + AQi(s,a,H + 1))cy < 3cgx/Tmax. Lemma 2 then gives

Qr(s,a,h) < % - 3(8t 4+ X/Tmax) + 3¢X/Tmax < 3Tmax(8t + X/Tmax)? and the state-

ment is proved by the definition of 7. |
Lemma 23 Under all definitions of ¢, we have |dmi(a|s,h)| = OnTmaxmi(als,h)) and
HdQ’rk’Pl’c/ = O(nT3,.,) for P' € Apgand ¢ € Cpy.

o

Proof Note that:
mi(als, h) exp(—nQx(s, a, h))
> o k(' |s, h) exp(—nQy (s, a’, h))

mi(als, h) ~ ) 3
= S ml@ls ) - — O (Tomaxmelals, )
S S (@], exp(max [nQx(s,a’, b)) = mx(als, h) = O (NTmaxmk(als, b))

Tpr1(als, h) — m(als, h) = — mi(als, h)

(Lemma 22 and |e* — 1| < 2|z| for z € [-1,1])
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The other direction can be proved similarly. Then by Lemma 30,

QT (5,0,h) = Q7 (s, a, )|

Z Ps,a,h(s/ly h//) Z qﬂk,P/,(s”,h“)(Sla h/) (dﬂ'k(al|$/, h/)) Qﬂk+1,P”c/(S/7 a/, h/)

// h// Sl7al,hl
= O (77 max) .

This completes the proof. |

Lemma 24 Suppose m(als, h) oc exp(3_; 4, @j(s, a, h)). Then,

Mx

Z (mr(als, h) — 7 (als, h))Qr(s, a, h)

k=1lacA

In A = 2)
< T + <7r1( s, h), Ql >+ <7Tk+1 ‘[, h) Qk+1( yh) — Q’f(s"’h)>'

k=1

Proof First note that:

7rk:+1("3’h) = argmin 77<7T('|5’h)7ék(3a'ah)> +KL(7T('|S7h))7rk("Sah))v (12)
w(-|s,h)EA(A)

where KL(p, q) = 3_,(p(a) In 24 — p(a) + g(a)). and

i1 (|8, k) oc w1 (als, h) 2 mp.(als, h) exp(—nQ(s, a, b)),

where 7, 41 is the solution of the unconstrained variant of Eq. (12) (that is, replacing
argming .|s p)ea(4) by argming .| p)er4). It is easy to verify that:

KL (e, h), g1 (15, 1) + KL(m 1 (s, h), 7 (1, 1))
= { m(-|s, mk (|5, h) T s nw
—< k ’ h )>+< k+1(‘ 7h>71 >

wkﬂ( s, h T (:|s, h)
s,k
(13, ) = Mg (s, ), I~ ) (Mt (s h) o 7 (s 1)
T (ls, )
- 7rk (15, h) — mpa (|5, h), 1On(s, h)> > 0. (13)

By the standard OMD analysis (Hazan et al., 2016) (note that KL is the Bregman divergence w.r.t
the negative entropy regularizer),

K

S (mulcls, ) = 7 Cls h), Quls, -, )

k=1
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K
= 717 D (RL(7* (|, B), mx(-]s, 7)) = KL(7* (|5, h), whpy (-], 7)) + KL(mx (-], ), Wy (-], 1))
k=1
K
= 717 Z (KL(W*("S? h)? ﬂ-k("sv h)) - KL(W*(“Sv h), 7Tk+1('|37 h)) + KL(T"k('|Sv h)v 7Tk+1('|37 h)))
k=1
*(-|s m1(-|s K ~
< ST RLIERD) 7 (o (o) = s (s ) G, 1) (Eq. (13)
mA = ~k:1 ~
== 7 > <7Tk+1('|3>h)an+l(57 h) — Qr(s, -,h)>
k=1
+ <7T1("8? h)a @1(37 K h)> - <7TK+1("37 h)? @K(Sa * h’)> .
This completes the proof. |

Lemma 25 Define ny(s,a) = Np11(s,a) — Nk (s, a). We have:

~ nk(saa’)L
d 9 = O PUETIEEEN
s, = 0 (S50 )
~ Sny(s', ng(s',a)
o 2 k(S k 3
‘ko(&avh)’ - O TmaXZ N+( +Tmaxz Tmax ’
|dgk(saa)|
(s, a) 9 Sni(s',a' ) ng(s',a")
—o 259 \r DU T | Nl S 280 T3+ [den(s,a,h)] |
mg(s CL) maxsz;l N;(S’,CL) sz;lmg(s/ ) n ‘ ek‘(S a )‘

~ Sny(s',a)e 2 ny(s',a’) 4
d ,a,h) =0 Triax§ ji ATmaXE T T+ Tax ||d
Qr(s,a,h) NF (s a) + 2 N (s, ) + + [dell;

s'a’ k

Proof First statement: Note that for all definitions of ¢, used in this paper, we have |[c;|| ., < 1.
Then by the definition of ¢ and | max{0, a} — max{0,b}| < |a — b|:

\/Ek(s,a)L _\/5k+1(8,a)b N
N (s, a) ‘ﬁzﬂ(s,a)

Cry1(s,a) B Ck(s,a)
‘ﬁgﬂ(s, a) N (s,a)

|5k+1(5a a) - Ek(sa @)|

L L
= O |eks1(s,a) — cx(s,a)| + — .
( * N (s,a) M (s,a)

Note that:

[Crr1(s, a) — ci(s,a)| =

C’H—l(sa a) — Ck(s’ CL)
mlj—&—l(sv a)

+ Ng(s,a) (Cr(s,a) <Ng(s,a))
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ni(s,a) MNi (s, a)ng(s,a) 20 (s, a)
< Y
B m—l:—l—l(‘s?a) ml—i—(sﬂa)mkz—l(sva) B WZ(S,G)

and by |/a — vb| < \/|a — b|, ni(s,a) € N:

ck(s,a) Crr1(s,a)
N (s, a) ‘ﬂz_ﬂ(s,a)
< Jler(s,a) —epa(s, a)le

1
< + ck+1 s, a
\/ ‘ﬂ;(s,a) \/m+ (s,a) \/‘ﬁzﬂ(s,a)
< 2n(s nk s, a)L>
_‘ﬁ+ \/‘ﬂ+ k+15a ‘ﬂ+sa) '

where in the last inequality we apply

1 1 ( 1 1 >
- - + +
V Ny (s,a) \/m My (s,0) mk“ \/sn+ s, a) \/ My (s, 0)
nk(37 a) nk(S, a’)
<A/ (s,a) - < : (14)
s Ny (s,a)M 1 (s,a) — M (s,a)
~ _ ng(5,a)L
Thus, (s,a)] =0 (‘ﬁﬁ(&a))'
Second statement: Define I (P’) = argminprep, | D s on ‘ Pl —Pian ‘ for any P’ €
Py By the definition of Py, we have (note that P, , , (s, h') = 0 for ' & {h,h + 1})
HHk(P/)s,a,h <2Z‘Pksa Pk+lsa /)‘+2Z‘6]€+1($,a,$,)—€k(8,a,8/)’.
S/

Denote by ny(s, a, s’) the number of visits to (s, a, s”) (before policy switch or goal state is reached)
in episode k. Note that:

Ni(s,a,8") +ng(s,a,8")  Ni(s,a,8")

‘Pk,s,a(sl) - PkJrl,s a ‘ = ‘

N (s,a) Ny (s,a)

1 1 ni(s,a,s)  2ng(s,a)
<N ,a, / et < bl )
_MMS%WEM N (oo J N () = Nf(5,0)

and by |v/a — VB < v/Ta — 0],

}eksas —epp1(s,a, s ‘— \/Pksa - Pkﬂsa( oL —I—d(_é>
N (s,a) N i(s,a) Nt (s,a)
Pksa Pk s,a Nl — —1 —
’ N+ +1, (s )} + /Pk—f—l,s,a(S/)Ld S — <]V+>
) N]j(sva) k (870‘)
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nk(‘S?a)L D _\ﬁ
=0 | 2V P sa(s)d | ——
Nlj»(s’ a) + k?-‘rl, ) (S )

N, (s,a)

Plugging these back, and by Cauchy-Schwarz inequality and Eq. (14) with 91, = N, we have

HHk(PI)S,a,h - P,

/ahH1 _ 0 Sng(s,a)t —V/Su _ 0 <Snk(57a)L>. (15)

+d
N, (s,q) N (s, a) N, (s,a)

Thus, for any policy 7’ and cost function ¢’ € Cxq with (s, a, h) € [0, 1] for h < H, by Lemma 30
and Eq. (15),

QU (5,0, k) — Q7 (5,0, 1)

Z QTr/,P’,(s,a,h)(Sl7 CL/, h/)(Hk(P/)S',a',h’ - P;’,a’,h’)vﬂ ()

s',a’ ,h'
Sny(s',a' )
=0 |13 o 7 16
maxz:/ N];‘F(SC a/) ( )
s a

Now define P; = II;(P;). We have

Qri1(s,a, h) - Qr(s,a,h) = Qe+ Perifiin (s, a, h) — Q™% (s,a, )
< Qﬂkﬂu b oChet-1 (5 . h) kaquvpkv,C\kal (S, a, h) + QWkH,Pk,EkH (S, a, h) _ Qﬁk,Pk,Ek (S, a, h)

/ /
ZM + (QretPefin (5 g, B) — QTP (s h))  (Eq. (16))

=0 | T2
N,:r(s’,a’)

max
s',a’

I (ka+1,Pk,6k (S, a, h) _ Qﬂ'k,Pk,Ek (s, a, h))

/ /
= O Tr%lax Z M + Tmax Z ‘/c\k+1(8/7a,) C S CL ‘ + 77 max

s ’a/ N];"'(S/7 a/) s’,a’
(Lemma 30 and Lemma 23)
:O T2 ank( —|—T anS a T3
maxs ~ Nk ( max m+ S a max

The other direction can be proved similarly.
Third statement: Note that |dc(s,a, H +1)| =0, and for h < H,

|Ek+1(57 a, h) - gk(‘s? a, h)’
< |déi(s,a)| + A [Chy1(s, @)Qryi(s, a, h) — Qr(s, a, )Tk (s, a)’ + |dek (s, a, h)]

< |dex(s, a)| + AQp41(5, a, h) |dCi(s, a)| + Aex(s, a) 1d@k(s, a, h)\ + |dek (s, a, )|
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nk‘(s7 a) >\T2

Sny (s, nk s’ a’)
m max Z + A hax Z + )\7’] max T ‘dek((s, a, h)‘

=0
Nk,(

s',a’

Fourth statement: Define ﬁ,g = IL(Py).
and A\ < 1/Tax, wWe have

o Sn(s,a)t
ksah Pk,s,a,hHl = O(N,j(s,ai) s

Qr1(5,a,h) — Qi(s,a,h) < Qe+ Fhist (5,0, h) — Q0P (s,a, 1)
_ (kaﬂ, k’ck+1(57 a,h) — Qﬂ'kJrLPk,Cchrl(S, a, h))

(@ Pt (s,a, ) — QUi Pt (s, a,h) ) + (Q PP (s, a, ) — Q7P (5, a,h)

0] Sny(s',a' ) - ~
<O Té&XZW + Z q7"k+17ﬁk,(5,a,h)(s/7a,ah/) ‘Ck.Jrl(S/’a/’h/) —Ck(S,’(l/’h/)‘

sa k S ,CL/) s',al W
Sny(s',a' ) n(s',a)
=0 | T2 Z W + T2, Z W + AT oy + Tax || dexl; |

s’ a’ s a’

where in (i) we apply Eq. (16), Lemma 30, and
Qﬂ'k+1aﬁk75k (s,a,h) — Qﬂk,ﬁkfk (s,a, h)
_ Z ﬁk,s,a,h(sﬂa h//) Z qﬂkﬂ Bs” h”)(sl’ h/) (dﬂ'k(a/‘sl, h/)) Qﬂkaﬁlmac (8/, a/) h/)

s h! sal b
(Lemma 30)
<0. (Eq. (13))
This completes the proof. |
Lemma 26 For any cost function ¢ in M such that ¢((s, h),a) > 0, we have:
Varg[(ng, &) = D ai(s, a, h)(A™P(s,a,h)? + V(P g, V)
s,a,h
< Ex[(nk, ¢)’] < 2{(qx,co Q™).
Proof Let Q = Q"¢ V = V7™ePe A = A™kP¢ and define ¢(g, a) = 0. Then,
Jk+1 2
Vary[(ny, ¢)] = Ej, (Z (8, aF) — V(§’f)>
i=1
Jp+1 2
= Ey, <Z c(8F,af) + Q(8F, af) — Py 4V — V(sl)> (Q(5,a) = c(5,a) + PsqV)
i=2
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Jp+1 2
i . ooy ) 2 .
QR [(Q(S'f,a’f) - V(S’f)) } + By (Z o(8F, af) — Ps"’f,a’fV)
=2
(i) 2 (s i 2
| (et - vish) | + B ( (8% ab) - v<§’5>> 5| (V6 - Py av)
=2
Jr+1
2 2
=E; Z [(Q(sf, ak) — V(sf)) + (V(éfﬂ) - Psu;;’a;;V) ] (recursive argument)
i=1
= ar(s,a,h) (A%(s,a,h) + V(P o, V) ,
s,a,h

where (i) is by Q(5%, a1) — V(8}) € o(s¥, a¥) (the o-algebra of events defined on (5%, a%)) and

Ji+1

ok K
Z C(Si 7ai) - P§’f,a’fv
=2

Ex

ok _k .
81,(11] = 0,

(i) is by V/(s5) — Py 4V € o (8% ak, sk) and

Jp+1
E, [ 3 (st ab) — V()

=2

sk k sk
Sl,a1,82] :0

Moreover, by (31 | a;)? < 2a;(3_%_; a;) forany n > 1 and P(J, = o) = 0,

2

Jp+1 Ji+1 Jip+1
Vary(ng, 3] < Bal{me 7] = v (z c<§f,a§>) <o, 3 et 3 <>]
i=1 i=1 V=i
o) Jp+1
= 2By | Y I{Jp+1>i}e(5,af) > c(§§/7a5)]
=1 /=i
' Je+1
0 g, [3° c<§f,a5>@<§f,a5>] algeoq).
i=1
where in (i) we apply Q(8F,aF) = E[Z;{’le c(8,ak)|sh, ak, ... 8 aF and {J, +1 > i} €
U(é'f,alf,...,§f,af). |

Lemma 27 For every k € [K] it holds that qi(s, a, h) < Eg[fig(s,a, h)] + O (1/K).
Proof By definition of ny(s, a, h), xi(s,a, h), and y(s, a, h) we have:

Pr (nk(s,a,h) > n) = Pr(nk(s,a,h) >n | ng(s,a,h) >n—1)Pr(ng(s,a,h) >n—1)
= Pr(return to (s, a, h)) Pr (ng(s,a,h) >n —1)
= yk(s,a, h) Pr(ng(s,a,h) >n—1)
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= =yi(s,a,h)Pr(ng(s,a,h) > 0) =y (s,a,h)zk(s,a,h).

Now, since g (s, a, h) is the expected number of visits to (s, a, h),

qr(s,a, h) = Eg[ng(s,a,h)] = ZPr (nk(s,a,h) >n) = xk(s,a,h) Zyﬁ(s,a, h)

n=0 n=0
L-1 o
= .’L’k(s, a, h) Z yg(sv a, h) + .’L’k(s, a, h) Z yltzl(& a, h)
n=0 n=L

To finish we bound each of the sums separately. By definition of 7y (s, a, h):

L-1 L-1 L—1
xi(s,a, h) Z yp(s,a,h) = Z Pr (nk(s,a,h) >n) = Z Pr (min{L, ng(s,a,h)} > n)
n=0 n=0 n=0

< ZPr (min{L, ng(s,a,h)} > n)

n=0
= Z Pr (ﬁk(s, a,h) > n) = Ek[ﬁk($7 a, h‘)]
n=0

In each step there’s a probability of at most +y to stay in layer h. So yx (s, a, h) < -, which implies:

o0 o0 L L In(2Tmax K/9) —8H In(2Tmax K/5)
fy ryl o e max
h I h) < n = < <
l‘k(S,CL, )ZLyk(S’av )—ZL’Y 1_7— 1_7 = 1_,7
n— n=
5 SIOgQ(CfK) ~
< 2Tmax <2TI(> =0 (1/K) )
max
1
where the second inequality uses Y77 < e~!. |

Lemma 28 Consider a sequence of cost functions {cy }_, and transition functions { Py }¥_, such
that cj, € Cyp and Py, € Py. Also define q, = G, p,. Then with probability at least 1 — 80,

K K
Dk = Gic) = O | ([S2AY " {gw, e 0 QmePer) + S2RALSTL
k=1 k=1

Proof Define vy 4 (8) = V™ber () — P, , V™ for &' € 6:.. Note that with probability
at least 1 — 44:

K K
D Hak = Terew)l =D 1D ar(s,a,h)(Psap — Pros,an) V™ (Lemma 30)
k=1 k=1 |s,a,h

K
= Z Z ar(s, a, h)(Ps,a,h - Pk,s,a,h)vﬂ-lwp’clc +0 (SQ.SAl.E)Tr?lax) :
k=1 |s,a,h
(Lemma 13 and Lemma 29)
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Below we bound the first term. We continue with:

K
= § § E Qk S, a, h sah Pk,s,a,h)vk:,s,a,h

(Ps,a,H-i-l = Pk,s,a,H+1)

k=11 s,a h=1
K P - K
~ Psah(S/)Uk h(s’) Qk(s CL)
=0|>. > Qk(s’a’h)\/ S STwax )L ) A
k=1s,a,h<H,¥ Nk (S,a) k=1 s,a Nk: (S,a)

(Lemma 13)

By Lemma 27, we have ¢ (s, a, h) < Ep[a(s, a, h)] + O(1/K). Therefore, we continue with

- n(sHv !
-0 Z > Eilii(s,a, h)]\/ — ](W) bsan(¥) + 52 AT oy (Lemma 32)
k=1 s,a,h<H,§ x (s,a)
K o 2 o/
- P, o n(8Hv S
=0 Z Z ng (s, a, h)\/ - ](VJF) ks (V) + S2AT? (Lemma 52)
k=1s,a,h<H.,§ k (s,a)
K o 2 o
~ P, on(sHv s
=0 Z nx(s,a,h) S (+) k0 (3)
k=1 s,a,h<H,& Nk+1(37 a)

+ S2AT?

K
. 1
+ 0 STI%&X E E - n max
sa k=1 \ \/N; (s,a) N/ (s,a)

K
=0 ZZN%M Do D M50 hPaan(3) 00 (3) + STATE,

k=1 s,a,8’ ]‘H‘l k=1 s,a,h<H,&

(Cauchy-Schwarz inequality)

k=1 s,a,h<H,s'
(Lemma 52)

K
S2AY " Varg[(ny, cx)] + S* AT}

max

I
G}

k=1

( S2A Z > k(5,0 ) Pan(3)03 ;0 (3) + SATS + SPATS,

(g Poan (807 g 0 n(3") = V(Psan, V™ Pek) and Lemma 26)

Il
o

K
S2AD " (i, cx 0 Qi Per) + S2 AT (Lemma 26)

max
k=1

Substituting these back completes the proof. |
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Lemma 29 Consider a sequence of cost functions {cy }<_, and transition functions { Py }X_ such
that ¢, € Caq and Py, € Py. Then, we have with probability at least 1 — 40:

Z Z qx(s,a, h)es(s,a,h, s’ h') ’V”‘“P’C’“ (s, h') — Ve Precr (g h')’ =0 (5’2 SALSTS )

max) *
k=1 s,a,h,s’ ,h’

Proof Below < is equivalent to O (). Also denote z = (s, a,h,s',h') and Z = (3, a,h, '§’JL’). By
Lemma 30 we have with probability at least 1 — 24:

‘Vﬂk,P,ck (S’, h/) _ Vﬂk,Pk,Ck (5’, h/)‘ S Z Qk,(s’,h’)(g, a, h) ‘Pgﬁﬁvﬂk,RCk _ Pk'§5 hvﬂk,Pck
5,a,h
S Tnax Z G (s ) (3, @, ) Hpg,aﬁ - Pk;g,a,ﬁHl
h
N max Z /h/ S (I h)ek‘( 5 hagl,h/)7

where the second inequality is by Lemma 2, and the third is by Lemma 13. Thus, using Lemma 13
and the Cauchy-Schwarz inequality, we get:

Z Z qx(s,a, h)er(s,a, h,s', h') ‘V’T’“’P’Ck(s’, By — Ve Beck (o h')}

k=1 s,a,h,s’ ,h’
TmaxZZQk s,a,h)er(s,a,h,s', ') Z% o ) (8,4, h)ex(3, @, h, 3, 1)
k=1 =z
K Psah(sah/)
NTmaXZZQk(Syaah) ];[;r(s a) ZQk(s’h’)(’ ’ )
k=1 =z kAT

qr(s;a, h) Py 5(5, 1) (st 1y (3, @, B
N (s,a)

Qk(s a h) sah( h)Qk (s, h’)(svavﬁ)
2 NG |

S Tmaxy | )

k,z,Z k,z,Z

Note that we ignore some lower order terms in the calculation above. To finish the proof we bound
each of the terms separately. For the first term we have with probability at least 1 — J:

D

k,z,Z

Z (>_n ak(s,a,h)) ngh/’g@ﬁ Qk,(s’,h’)(ga a, ?L) Zg/]y P’g’aﬁ(yvﬁl)
- Ny (s,a)

qr(s, a, h)P~~ (5, 1)q (s (5,a h)
N,/ (s, a)

k,s,a

(s, a) _ 2
S TaxS Y N (s.0) < T2 S%A,
k,s,a
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where the last inequality is by Lemma 32. For the second term we have with probability at least
1—o:

Z i (8, ay h) Py o (8" b )i (o0 ) (3, @, )
N (5,a)

qk(sa a, h) 25/7}7/ Ps,a,h(slv h/)Qk,(s’,h’)(gv aaﬁ)
_ N} (5,a)

2i(s,a, )0 0 Psan(ss B qu o (5., b
<75 Z k( )2 s n ,+,h£~ )k, (57 1) ( )
~ Nk (S,CL)

Qk(ga %) 2 qk (5, a) 3 422
< TmaXS T~ ~\ TmaXS A < S A Tmax’
k, Zh: Jh N+( a) lg:a Ny (S a) "~

where the second inequality follows by qx(s,a,h) < Twax¥i(s,a,h), the third by
(8,0, 0) 3¢ Psan(s's ) ar s ) (55 @, h) < (3, a, h) and the last one by Lemma 32.
|

Lemma 30 (Extended Value Difference) For any policies w, 7', transitions P, P', and cost func-
tions c,c in M, we have:

Q™P¢(s,a,h) — Q”/’P/’Cl(s a,h)
Z ean(s’h") Z Gt pr (s 0y (8T 1) Z (n(d|s', 1) — (|8, 1)) Q¢(s',a/, )

// h/l / h/ a/

+ Z G P (s,an) (8 a' 1) (Q”’P’C(s',a',h') —d(s',d' b)) = Py VT PC) :

s’,a’ b’
and
VmPe(s, h) — VT (s, h)
=D e pr sy (1) Z (m(a'ls', 1) = «'(d'|s', b)) QTP4(s", o, )

sk
+ Z qﬂ./P/ sh)(S (I h/)(Qﬂ-PC(S CL h)—C(S a h) /h/Vﬂ-PC).

s’,a’ b/
Proof We first prove the second statement, note that:

VTP (s h) = VTP (s h) = Y (w(d]s, h) — 7' (d|s, h)) QT P4(s, a, h)

G/l

+Z7r s, h)(Q™PC(s,a/, h) — Q7T (s, a/, )

—Z d'|s,h) —'(d|s, h)) Q7" (s,d’, h)
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+Z7r "Is,h) (Q™“(s,d',h) — (s,a’, h) — el h RV
—|—Z7‘(‘ "Is, h) sa/h(V”PC vy

Applying the equality above recursively and by the definition of g,/ p/ (5 ), We prove the second
statement. For the first statement, note that:

Qﬂ"P’C(S, a, h) . Qﬂ’,P’,c’(S’ a, h)
= (Q7F¢(s,a,h) = d(s,a,h) = Pl VIe) 4 Pl (VP — VTP,

Applying the second statement and the definition of g/ pr (s 4,5) completes the proof. |

Lemma 31 (Rosenberg and Mansour, 2021, Lemma 6) Let 7 be a policy with expected hitting time
at most T starting from any state. Then for any 6 € (0, 1), with probability at least 1 — 0, T takes
no more than 47 In % steps to reach the goal state.

Lemma 32 Forany zj, : S x A — [0, 1], with probability at least 1 —

Zznk s,a)\/m @ SATmaX+\/SAZansaZk8a

k=1 s,a N]:_(S,CL) k s,a

k s,a

=0 SATmax—i—\/SAZqusazksa)
quk (5,0) V/2k(5,0) =0 SATmaX—i-\/SAZansazksa)

=1 s,a N,:'(s,a) k s,a

k s,a

O SATmaX+\/SAZqu(s,a)zk(s,a) ,

K
)IPDELECNIEIVHEIN 3) PK <L NCIINRE

s N+sa s N:(s,a)

K K

SR 6 g4, ZZL;(S’“) =0(54).
pari M, (s,a) — M, (s,a)

K

k=1 N (s,a) k=1 NJ+1(8,G \/NJr (s,a) \/NJ+1(570)




PoLiCcY OPTIMIZATION FOR STOCHASTIC SHORTEST PATH

By Cauchy-Schwarz inequality this implies:

K _
Zznk(saa) Zk(sva):@ ZZ nksa) Zznksazk(s a) + SATax

s,a k=1 N;(S,CL) k=1 s,a k+15a k=1 s,a

=0 \/SAZZﬁk(s,a)zk(s,a) + SAT oy

k s,a

Finally, >, , > nk(s,a)2k(s,a) = @, (Zs,a Yok ar(s,a)zi(s,a) + SATmaX> with high proba-
bility by Lemma 52.
Second statement: By Lemma 27 we have:

qr(s,a)\/zk(s, a) < K Ek[ﬁk(s,a)]\/m 4O K zk(s,a)
< (1/K) VY
;sza: \/ N (s,a) ;; \/ N (s,a) ;sz,a:\/]\f,j(s,a)

K _
S ZZ Ek[nk(s,a)] zk(s,a) n @(SA)

k=1 s,a Nlj(s,a)

ZZ nk(s,a)\/ 2k (s, a) T SA

k=1 s,a N]:_(SCL)

)

where the last relation holds with high probability by Lemma 52. Now the statement follows by the
first statement.
Third and forth statements: Similarly to the first statement,

X ni(s,a) K (s a) 1
z:lN,j(s,a ZN,:FH( +ZL<N+ ,a) Nk++1( ))
S ik (5, 0)
< Z "k S’a7 +C~)(Tmax) @( max) .

vt max{1, >, ni(s,a)}

Summing over (s, a) proves the third statement. The forth statement is then proved similarly to the
second statement.
Fifth and sixth statements: Similarly to the third statement,

K

Z mg(s,a) <§: mg (s, a) +§:< 1 1 )
kle,:'(s,a)_ M (s,a) — M (s,a) M (s,a)

k+1 k+1

K

<y (s, a) +1=0().

T = max{1,>, ., mi(s,a)}

Summing over (s, a) proves the fifth statement. The sixth statement is again obtained with high
probability by Lemma 52. |
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Appendix D. Omitted Details for Section 5
Extra Notations Define ak = qwk B Qi = QmmP,Ck’ Vi = Vm,P,ck, and A, = ATk Pick

D.1. Proof of Theorem 9
In this part, define ﬁk = I'(mg, Pk, ¢x) and P, = I'(mg, Pk, c), such that @k = Q’rk’ﬁ’ff’“, ‘71@ =

V7Pt and Qp, = Q™ We first provide bounds on some important quantities.

Lemma 33 ¢, € Cu, 7 HAk — Bk:H <1, andn| By, < 2H’

Proof For the first statement, by P, € Axq, we have Qk(s, a,h) < 1 =

/\Qk(s a,h) < 1and ¢, € Cy. For the second statement by ¢i(s,a,h) < 2 for h < H, we
have |Ag(s,a,h)| < |Qk(s,a,h)| + |Vi(s, h)| < 4L = +c¢f) = 4x for h < H. Therefore,

10kl < 32nx2 and by Lemma 45, we have || By, < 15HHb§”°° < 960nH Taxx?. Thus by the
definition of 17, we have 1 || By||., < 5L and 5 Hﬁk - BkH <7 HAku FBl) <1, m
o0 oo

+ ¢y = x. Therefore,

We are now ready to prove Theorem 9. The proof decomposes the regret into several terms, each of
which is bounded by a lemma included after the proof.
Proof [Proof of Theorem 9] With probability at least 1 — 109, we decompose the regret as follows:

K K
. M -
Ri = (i —akrcr) + (g — ¢% cn) <O | 4| D {ars ck 0 Qk) + S ATimax
k=1 h=1
K K K R K R
+ > {ak — e k) + > (Gk — 0%, %) )\Z<Qk,CkOQk>+)\Z<q*ackoQk>
k=1 k=1 k=1 k=1

||._..

K K K
@( S2AN {ar ek 0 Qr) + SPPAYITE o |+ (@ — ) — A (gks ok 0 Qi)
k=1 k=1 k=1

+)\§:<qk,cko Qk—Qk >+)\Z<q ClcoQ7r Pck>+>\z<q cr o ( Qkf@7T Pck)>

k=1

where in (i) we apply Lemma 11 and Lemma 50 to have

K

M=

(e — i, k) = (Mg — g, cx) = O ZEk ik, k)] + S AT max

k=1

£
Il

1

Il
o

K
Z gk, Ck © Qk + SATmax 3 (Lemma 26)
k=1

and in (i1) we apply Lemma 28 and ¢z, € Cp4 for h < H to have

K

K
D gk —Gror) = O | (| SPAY  (gr, k0 QTP ) + S2PALSTS
k=1 k=1
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6 (|| AS (o @rera 4 52541578

max
k=1

(Ek)(su a, h) < 2ck(s7 a, h))

Define \' = 5;:41(. By Lemma 34, Lemma 35, Lemma 36, and definition of A, 7, with probability
at least 1 — 96:

Rk <O smz s Cie 0 Q1) + ; + S*A%TS

max
k=1

K

K K
+24772<Qk714k )\Z qk’ckoQk>+)\Z<q*,ckOQfT*7P’Ck>
k=1

k=1 k=1

24 a T,
= <S > Z qk, Ck © Qk + O < 7 + S4A2Tgax>
k=

K
+48nz Gk © Qr) — A D Gk, ok © Qi) + O (\DTLK)
k=1 k=1

(AM-GM inequality, Lemma 26, and Lemma 37)
-0 (T*\/DK +/SPADT, K + S§*A2T5 ) . (K = O(S2AT2,.) when \ < 487 + X))

max max

Applying Lemma 4 completes the proof. |

Lemma 34 With probability at least 1 — 60,
K

max

. . ~ (T,
(@ — q" k) = 240 (qr, A7) + O ( T StA2T3D > .
k=1

Proof Note that by Lemma 49 and Lemma 33:

K
Z Zq*(s, h) Z(Trk(a]s, h) —7*(als, h)) (gk(s, a,h) — By(s, a, h))

k=1 s,h acA
InA K ~ 2
<3 (s, h) (n +03°Y milals,h) (Ak(s,a, h) — By(s, a, h)) )
s,h k=1acA

IN

O <17;*> +2172q*(s h) (Zzﬂk als, h Ak (s,a,h)* + ZZWk(a|s,h)Bk(s,a,h)2>

k=1lacA k=1a€A

K
( )—FZ q*, bi) +—Zq (s,h) sz als,h)By(s,a,h). (Lemma 33)

k=1 k=1lacA
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Define g, = ¢y, py» Where P/ is the optimistic transition defined in Bj,. We have

K K
S (- an @) =3 a*(s.h) S (wxlals, k) — 7 (als, b)) (ﬁk(s, a,h) — By(s,a, h))

k=1 k=1 s,h acA

K
+3° 0" ¢ (s.a.h) (Qels.ah) = Els.a.h) = PranVi)

k=1 s,a,h
>3 ' (s,h) > (milals, h) — 7*(als, 1)) By(s, a, h)
k=1 s,h acA

(shifting argument and Lemma 30)

K
< ) <ﬂ> +3Z<a\;€,bk> + @(Tmax)

e K N K
—0 <> +60Y (a0 A7) +33 (@ — arbe)

k=1 k=1

where in (i) we apply Lemma 46, by,(s, a, h) = O(1), and the definition of P so that

K
Z Z q*(s,a,h) <@k(s, a,h) —¢x(s,a,h) — Ps’a7h‘~/k> <0.

k=1 s,a,h

For the second term, by (a + b + ¢)? < 2a% + 2(b + ¢)? < 2a? + 4b? + 42,

K K
n Z Z Qk(‘sv a, h)gk?(sa a, h)2 < 277 Z Z Qk‘(sa a, h)AﬂkVP’Ek (S, a, h)2

k=1 s,a,h k=1 s,a,h

K ~
+ 4/'7 Z Z qk<87 a? h) <Q7Tk7pk’ak (87 al) h/) - QTFI%P’Ek (87 0/7 h))2
k=1 s,a,h
K ~
+ 4n Z Z qk(s, h) (Vﬂk,Pk,Ek (8, h) . Vﬂk,P,Ek (87 h)>2
k=1 s,h
K

< 2172 Z ai(s, a, h) A™ % (s a, h)?

k=1 s,a,h
K ~ _ - 2
803 D ayls,a.h) (Q T (s, a,h) — QT (5,0, ) )
k=1 s,a,h

where in the last step we apply Cauchy-Schwarz inequality to obtain
2

(VP (s, h) — VP s, h)>2 = <Z mr(als, h)(Q™Fe (s, a, h) — Q7P (s, q, h)))
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5 . 2
<> melals, b) (Q7 P (s, a,h) = Q7% (s,0,1))
a
Note that with probability at least 1 — 24,

Qe Tk (5,0, h) — Q% (5,a, h)| (17)

VAN
= O | Thax Z qry,,P,(s,a,h) (S sa,h ) ‘
s'a' )W <H

Ps’,a’,h’ - Pk,s’,a’,h’ 1

(Lemma 30, Holder’s inequality, and Ve Prote — @(Tmax))

= O | Tas 3 Tl Paan (@) ) (Lemma 13)
sl N (s, a')

Therefore, with probability at least 1 — 9,

K 5 ~ ~
nz Z qx(s,a, h) (Q“’“P’“Ck(s, a,h) — Q™% (s a, h)>2

k=1 s,a,h

Gy, P(5,0,) (8 @) o
< T}Z Z ar(s,a, h)T3,. S? Z Tk N(j zs’)a’) (Cauchy-Schwarz inequality)
k‘ 1s ,ay h<H s a’ k ’

Q 3 qm,,P\S, Q) (s',a") () A 4 42
- maxSAZZ N+S a *O( maXSA)

k=1s',a’

where in (i) we apply gx(s,a,h) < 2Tpaxzk(s,a,h) and xk(s,a,h)qwk’p,(s’mh)(s’,a’) <
¢r,.p(s',a'), and in (ii) we apply Lemma 32. Plugging these back, we get:

nZqu (s,a,h Ak (s,a, h nz<qk, A”’“’Pc’“) >+O(n maxS4A2)

k=1 s,a,h k=1
K K R
<4n > {gr A7) + 4D <qk, (A”k’P’Q'f)2> + O (NT2,,.S*A?)  ((a+b)? < 242 + 2%
k=1 k=1

< 477 <Qk7Ak> + O (77 maXS4A2 + 77/\2 maxK) = 477 <Qk7 A2> + O (S4A2 max) .

For the third term, with probability at least 1 — 34,

K K
Z (@, — qr, br) < Z qr(s,a, h) HP’;S’a,h - Ps’a’hH1 Hvﬂk,P;Q,bk
k=1 k=1 s,a,h<H o
(Lemma 30 and Holder’s inequality)
. h) -
=0 STI‘Z’laXZ Z an(s,ah) (bi(s,a,h) = O(nT2,,) and Lemma 13)

k=1 s,a,h<H \/ N (s,a)
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=0 (nSTEMX\/SATmaXK + nSQATélaX> = O (S2AT33) . (Lemma 32)
Putting everything together completes the proof. |

Lemma 35 )\Zle <q*7 Ck © (Q\k - Q%*’P’Ck)> = O (S2AT1’?13.X)

Proof Define g, , ,(s',h') = > i Psan(s” h”)q(*s,, h,,)(s’, h'). We have for h < H:

N

K
/\Z (s,a,h) — QT P (s a,h)) Z Q”’“’P’“’c’f (s,a,h) — Q" P (s, a,h))

k=1 k=1

K

<AY (@ (5,0, h) — QTP (s,0,h) ) + N2 Z Q" P (s, a,h)
k=1 k=1
K ~

< )\Z <Q7rk,Pk,Ek (S, a, h) o Q%*’P’Ek (s,a, h)) + @ (/\QTnzqaxK)

e
Il
—

quah s',h') ZZ m(d'|s' ') — 7% (d'|s', 1)) (ﬁk(sl,a’,h’)—Bk(s',a',h')>
'

k=1 a'
K ~
tA Z q(sah s',a', ') Z(Qﬂk’Pk’ck (s',a', 1) —¢cp(s',a',h') — Ps,ﬂ,’h,vﬂk’Pkfk)
s’ a’ b/ k=1
K
A Goan(8 ) DD (mr(al | W) = 7 (| 1)) Bi(s o W) + O (N T K)
s'\h! k=1 a
(Lemma 30)
- @ )\Zq;,a,h<slvh/ <T* + ZZT% CL‘S h max) +)\77 maxK+>\2T§1axK
s'\h! k=1acA

(Hngoo = O(Tmax), definition of Py, and By (s, a, h) = O(nT3..))

2 ACrr%lax 22
=0 n + /\77 maxK + A TmaxK

Plugging this back and by the definition of A, 7:
A - (T3 -
A (01, Qu = Q) = O (FTI AT 4 N T ) = O (S AT
n
k=1
This completes the proof. n
Lemma 36 With probability at least 1 — 35, A1, <qk, e 0 (Qr — Qk)> O (S35A42T3,).
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Proof By similar arguments as in Eq. (17) with ﬁk replaced by Pj and ¢ replaced by ¢, with
probability at least 1 — 34:

)\Z <Qk,Qk — Qk> = )\TmaXSZ Z ai(s, a, h) Z qm,P,(s,a,h)(sl,a/)

k=1 s,a,h<H Nt (s a')

o ATéaXZZ a(5', @)
k=1s"a' \/ N (s, )
(Qk(s a, h) - O(Tmax$k(8 a, h)) and CBk(S a, h)‘]ﬂk P,(s,a,h) (8/7 a/) < Qk(s/7a,))
~0 (,\S2AT§W\/W +AS3AT, max) = O (S35A42T3,). (Lemma 32)

Lemma 37 Y1 (¢, c; 0 Q7"F%) = O (DTLK) + Tnax.

Proof By Lemma 2, forh < H, Zle cr(s,a,h)Q™ P (s, a,h) < Zle(Q”*’Pﬁck(s, a)+ecy) =
O(DK). Therefore,

K
Z <q*7 C 0 Q%*,P,ck>
k=1
K
_Z Z *(s,a,h)cp(s,a, h)Q™ T (s a,h) + ZZQ*(s,a,H—i-l)cf
k=1 s,a,h<H k=1 s,a

< O (DT K) 4 Tinax,

where the last step is by > . . < ¢*(s,a,h) = O(T%), Ziil Q™" Pk (s,a,h) = O(DK), and
Lemma 19. - u

D.2. Proof of Theorem 10

Here we denote by g, the occupancy measure w.r.t policy 7Tk and the optimistic transition defined
in By. Also define Qy(s,a,h) = Ek[Z?lT{J’“’L}H c(sF,af, hE)|my, P, s¥ = s,af = a,hk = h),

k R R RA)
such that E; (G, s o] = 21(s,a, h)Qk(s, a, h). We again decompose the regret into several terms,
each of which is bounded by a lemma included after the proof.

Proof With probability at least 1 — 24, we decompose the regret as follows:

K K K
R = (ngp—q"ce) =Y (M —aqryck) + > {ae — 0" cn) (Lemma 11)
k=1 k=1 k=1
~ K
=0 (Tmax\/ﬁ + SATmax) + Z Z q*(sa h) Z(Wk(a|87 h‘) - 7OT*(CL|S, h))Qk(87 a, h)
k=1 s,h acA

(Lemma 50 and Lemma 30)

51



CHEN LUO ROSENBERG

K
=0 (Tmax\/E + SATmaX) + Z q*(s,h) Z(ﬂ'k(a|s, h) — 7*(als, h))Qr(s, a, h)

k=1 s,h acA

REG
K
+3 N (s, h) > milals, h)(Qils, a, h) — Qu(s,a, b))

k=1 s,h acA

BiASy
K

£33 ¢ (s, 1) S #*(als, ) (Quls,a.h) — Qu(s,a, h)).

k=1 s,h acA

~
BiASy

Therefore, by Lemma 40, we have Ry = O(y/S2ATD. K + S35 A35T3 ) with probability at
least 1 — 259. Applying Lemma 4 completes the proof. |

billo < 5L,

Lemma 38 HékH <1/, Billoe < 150H Tonax L', and 1 H@k - BkH <1

Proof The first statement is by the definition of @k and Gisan < L'.  For the
second statement, by < 5L’ by definition. = For the third statement, by Lemma 45,

we have ||Bil, < % < 150HTwaxL'. For the fourth statement, we have

" H@k — BkH < n(H@kH +[1Belloy) < 1/2 + 150 H Tmax L' < 1. -
oo o0

Lemma 39 Qy(s,a,h) — Qx(s,a,h) = O (1/K).

Proof Note that:

Jp+1
Qk(s,a,h) — Qr(s,a,h) = Ej Z c(sk af n)| 7, Psh = s,a8 =a,hf = h
i=Jp+2
~ Tinax ~
:O<TmaxK> =0(1/K). (Lemma 31)

Lemma 40 With probability at least 1 — 256,
REG + BIAS; 4 Biasy = O (x/SQATr?laXK + 55'5A3'5Tgax> .

Proof Define &5 = YK, 3, ey ¢*(5.1) e a(melals, i) — #*(als, 1)) Bu(s,a,h). By
Lemma 38 and Lemma 49, with probability at least 1 — 9,

K
REG =" 3 ¢(s,h) 3 (mulals, ) — 7 (als, ) (Qu(s,0,h) = Bi(s,a,h)) +€p

k=1s,h<H acA
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K
—|— Z ZZWk(a\s,h) (@k(s,a, h)—Bk(s,a,h)>2+§B
s,h<H k=1acA
K ~
—|—277 Z Zﬂ'k(a|s,h)Q%(s,a, h)
s,h<H k::l acA

K
+ E q (S,h) ﬂ—k(a|sah)Bk(saaah) +§B
k=1lacA

s,h<H
((a+b)? <242 +2b% and n || Bg| oo < 77)
201/

<@(€*>+Z shzzma\sh Y

s,h<H k=1acA

N % Z q*(s,h)zZﬂk(a|s,h)Bk(s,a,h) + &5,

s,h<H k=1a€cA

where in the last inequality we apply:

K

2n Z q*(s,h)zZwk(a\s,h)@%(s,a,h)

s,h<H k=1a€cA
a2

=27 Z q*(s,h ZZ”’C (als, ) xk(s zsha)h-l- 0)?

s,h<H k=1acA

Ori(als,h)  mg(s,a,h)

SL/Z Shzzxksah+9wk(sah)+9

s,h<H k=1a€A
@2n = Q/L/ and G 5 0.5 < L'myg(s, a, h))
K
<L Z 222 Ome(als. ) +0 ! (Lemma 52 and —2:(:20)_ < 1)
B s h<H e 1a€Akaah —1—9 0 Ty (s,a,h)+0

K
20L mri(als,h)  ~ (T L'

< * e .

- Z q(s’h)zsz(s,a,h)+9+0 0

Therefore, by Lemma 42, Lemma 43, and Lemma 46, with probability at least 1 — 244,

REG + BIAS| + Biasy < O <77; > +3Z (s br) + O (T

(0 = 2nL' and ||bg ||, = O(Tmax) by Lemma 38)
K
~ [ T, L' (z(s,a,h) — zi(s,a,h)) + 6L 9
<0 =4 s,a,h — = + Tax
n E:Ua —~ % ) Ty (s, a,h) + 0

53



CHEN LUO ROSENBERG

K
[T
<O|—+L Z (Ti(s,a,h) — z,(s,a, h))q, (s (8@, 1) + 0T max L 'SAK + T2,
il k=1 s,a,h<H
(a/( S, 7h) S:L'k(s,a, h) k(sah)(svaa h) and%(«‘f,aah) :@(Tmaxfk(saaa h)))
=0 (\/ S2ATS. K + S°5A4% 5T§1ax) . (Lemma 41 and definition of 7, §)
This completes the proof. |

Lemma 41 With probability at least 1 — 229,

Z Z (Tk(s,a,h) — 23,(8,a, 1))y, (5,0 (85 a5 1) O(\/S2AT3, K + S>5A35T2 ).

k=1 s,a,h<H

Proof For any 2 € S x A x [H], denote by gj / g the occupancy measure w.r.t the policy
and transition defined in Ty (z) / z4(z) (transition at (s,a,h) can be randomly pick as long as
Pgz, Pyz € Pr). For a fixed tuple z = (s,a,h),
Tk (s, a, h)qk,(s,mh)(s, a,h) =Gi(s,a,h) +T(s,a, h)(@;ﬁ’(svmh)(s, a,h) = Qi (5.0, (8,0, 1))
< Gi(s,a,h) + 2TK(s,a,h) Z ﬁz’(&a,h)(s’,a/,h/) Z eZ(s’,a’,h’,s”,h/’)%7(s,,7h/,)(s,a, h)
s',al b/ s R

(Lemma 30 and Lemma 13)
< Gi(s,a,h)+2 Z Gi(s',a'  n) Z 62(3',a’,h’,s”,h”)(’]”,g7(s,/7h,,)(s,a,h)

s',a’ W s/ b
@5, 0, WG gy o (5 1) S TS 1)
=qi(s,a,h) +2 Z ACHIN S Z ei(s' a0 " W@ (g oy (5, a5 h)
s',a' b’ s R

+2 Z (G5 (s',a' b)) — qi(s',d’ b)) Z ei(s’,a’,h’,s”,h”)f]vk’(s,/’hu)(s,a,h).

S/,a/,h/ S”,h”
Therefore, with probability at least 1 — 74,
(i) &

K
Z Z fk(sva’ﬂh)qk,(sah)(s a, h SZ ai(sva’?h)

k=1 s,a,h<H =1 s,a,h<H

K
+0 Tmaxz Z Qk(Sl,a/,h/) Z eZ(s',a',h' " h//) + 55 5A3 5Tr%1ax
k=1 s/,a’,h/ 8”,h”

K
<Y Y Glsah) + O (VALK + S AT, )

where in (i) we apply >, , j<u G (5" h,/)(s,a, h) = O(Tmax) and (z = (s,a, h) iterates over
S x A x [H]):
Z Z (Gi(s',a ') — qi(s',d’, h))) Z eZ(s’,a’,h',s”,h")’q\;ﬂy(su’h”)(z)

k,z s',a’,h' CN
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< Z Z Z qk S a h ek h‘ h )qk (3, h/)(8/7 a/7 h/)62(3/7 a/7 hly 3//, h//)zj;c,(s”,h”) (Z)
k,z 54, 78 al b

~/ h/ sll h//
(Lemma 30 and Lemma 13)
<D0 D> a3 a WG @0 gy gy (8 (s d B R g (2)

k.z s'.a' 0 5a,h
//h// ~/ ,
Jh

L 0| s25ar STg’iaxZ Z T
h/
// h// .
(s, d i, ", h//)a;ﬁ(s,,’h,,)( 2) = O(Tmax) and Lemma 29)
— @ (SS 5A3 5T4

max) .

and in (ii) we apply:
K
T3S 3 e ) Y 4l 00
k=1s',a’,h’ s h
~ P. /h’(S” h//) 1
- O T 8 a h s,a, ) +
kz:ls a%’:<H ;h:” ( N];F(Sl,a/) N,j(s',a’)

(definition of €})

2 qr(s',a’) qr(s’,a’)
:O T ax\ﬁzz +TmaxSZ _|_
k= lsa\/N—i_S a) k= lsaN s' CL)

=0 (\/m + S2AT§1aX) . (Lemma 32)

By similar arguments, we also have with probability at least 1 — 76,

K
_Z Z lk(‘S?a?h)zj;c,(s,a,h)(&avh)

k=1 s,a,h<H
K
<=3 Y ¢sah)+0 (\/S2AT§’1&X K + S§55 A% 5T§m).
k=1 s,a,h<H

Therefore, with probability at least 1 — 74,

K
Z Z (Ek(57a7h)_ik(&aah))zj;c,(s,a,h)(svayh)

k=1s,a,h<H

=0 Z ST @ (s, a,h) — ¢ (s, a, b)) + /SPATS L K + SO0 APST

max max
k=1 s,a,h<H
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max

:@( S2AT3. K + S>3 A5 )

where in the last inequality we apply (similarly for % pe1(qr(s,a,h) — q(s o h)( s,a,h))):

1k
K
>N @ (s.a.h) — ailsa.h)
k=
<

1s,a,h<H
Z Z qr(s’,a' 1) Z ex(s',d 1, s" h')g (s(a,,h;b,,)(s,a, h)
k,s,a,h<H s’,a’ h' s'h!

(Lemma 30 and Lemma 13)

< Z Z Qk(sl>a/7h/) Z 62(3/7a/>hly8//7h//)Qk,(s”,h”)(S>a7h) + @ Z 52 5A1 5Tr?1ax
k,s,a,h<H s’,a’ ,h' s h!' s,a,h
(Lemma 29)
A Py ar e (8", 1) 1 3.5 42.53
=0 | Tmax qr(s’,a' 1) = + + SPCATTY
k,s’,%’SH szh Ny (s',d) N, (s',d) !

(definition of €})

max

=0 ( S2AT3, K + S35A%5T3 ) . (Cauchy-Schwarz inequality and Lemma 32)

This completes the proof. n

Lemma 42 With probability at least 1 — 6,

K
h h 20 . (T.L
BIASlgz Z q*(s,h) Zﬂ'k (als, h) L'(@k(s,a,h) — 24(s,0, b)) + —l—O( >

k=1s,h<H acA (Svavh) +06 0
Proof Note that:

K
Bias; = > Y q*(s,h) Y milals, h)(Qx(s,a, h) — Bx[Qx(s,a, h)])

k=1sh<H acA

+Z > (s.h) Y mrlals, h)(Bi[@k(s, a, h)] — Qx(s,a, h)).

k=1s,h<H acA

For the first term,

K
Z Z q*(svh)Zwk(a|57h)(Qk(Sva’h)*Ek[ék(saa’h)b

k=1sh<H acA

- xp(s,a,h)
< * ) 1— kS SH A (T,
<3 3 sen E i nutne (1- 500 ) -0

(Lemma 39 and Ex (G 5 o.n] = 21 (s, a, R)Qx(s,a,h))
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K (Tx(s,a,h s,a,h)+6 -
kz Z<: Sh;ﬂ'k a|8h Tk :ck(.s),a,h)(+9 ) +9) +0(T1y).

For the second term, first note that G, 5 o p, < L'my (s, a, h) and
~ ~ 2
Vark |:<7Tk("87h)7Qk(87'7h)>:| SE]C |:<7Tk("$,h),Qk(S,',h)> :|

< h Ek’[stah h 2
GEZAMQLS (xk(sah+92_z7rka|s sah)—i—@

(Cauchy-Schwarz inequality and Ex[G 5 o) < L'zi(s, a, h))

Therefore, by Lemma 50, with probability at least 1 — ¢,

K
YD a(s,h) Y mrlals, h)(Ba[Qk(s, a,h)] — Qk(s, a, b))
k=1s,h<H acA
~ L’
=0 Zq(s,h) ZZWkaLsh sah) 9—1—;
s,h<H k=1acA
< > ¢ (s.h Z > milals, h)= +0 LL (AM-GM inequality)
= 7 b (5,a h) 1o g ) quattty
s,h<H k=1acA

Summing these two terms, we have:

K /(= / /
— h 20L ~ (T L
Bias; < E E q*(s,h) E ﬂk(a]s,h)L (xk(s,aLh) 2i(s,a,h)) + +0 < > .

k=1 s,h<H acA Ti(s,a,h) +0 0

This completes the proof. n

Lemma 43 With probability at least 1 — 6, BIASy = O (T, L' /6).

Proof By Lemma 44 with Zy(s,a,h) = Gk s.an/L and Ex[Gr san] = i(s,a, h)Qk(s, a, h), we
have with probability at least 1 — 4:

K
Z@k(saa’ h) - Qk(S,a, h) = @ (L,/Q) )
k=1

for any (s,a) € S x A, h < H. Therefore,

K
Biasy =Y Y ¢(s,h) Y _ 7*(als, h)(Qx(s,a,h) — Qu(s, a,h)) = O (T.L'/6) .

k=1sh<H acA
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Lemma 44 For any random variable Zy(s,a, h) depending on interaction before episode k such
that Zy(s,a,h) € [0,1], Ex[Zk(s,a,h)] = zk(s,a,h) < zi(s,a, h), we have with probability at
least 1 — 6:

§:< Zi(s,a, h) zk(s,a,h)> _Inj

— Tip(s,a,h)+0  Tp(s,a,h)) = 20

Proof The statement is clearly true when xy(s,a,h) = 0. When zx(s,a,h) > 0, we also have
Tk(s,a,h) > 0. By TZZ/Q <In(1+ z) for z > 0, we have:
20Zy(s,a,h) < 20Zy(s,a,h) _ 20Zy(s,a,h)/Ty(s,a,h)
Ek(sa a, h) +6 = Ek(sa a, h) + GZk(‘S? a, h’) 1 + GZk(S, a, h)/fk(sv a, h)
<In(1+420Z(s,a,h)/Tr(s,a,h)).

This gives
207y (s,a,h) 207Zy(s,a,h) 20z (s,a, h)
E _ <E |1+ —| =14+ ———+=
g [GXP <xk(s,a,h)+9>] = |: " jk(37a7h) * fk(sva'a h)
< exp(20zx (s, a, h)/Tk(s,a,h)). (142 <¢€?

Therefore, by Markov inequality,

K
207y (s,a,h)  20zk(s,a,h) 1
P E — In -
(k:l Zp(s,a,h) +6  Tp(s,a,h) R

K
<5.E [exp <Z 20Zy(s,a,h)  20z(s,a, h))] <.

prt Te(s,a,h) +0  Ti(s,a,h)

Zk(svavh) zk(svavh) < ln% .

Thus, with probability at least 1 — 9, ZkK:1 FGalis ~ Fsal) < o0

D.3. Dilated Bonus in SDA

Below we present lemmas related to dilated bonus in M. We first show that a form of dilated value
function is well-defined.

Lemma 45 For some policy 7 in M, transition P € A M, and bonus function b : § x A X
[H] — [0, p] for some p > 0, define B(s,a,h) = b(s,a,h) + (1 + %) P 1B, B(s,h) =

Y .7(als,h)B(s,a,h) and B(g) = B(s,a, H + 1) = 0. Then, max, , B(s,a,h) < %}hﬂ).

1
Proof Define v/ = (1 + %)7 and recall that H' = %1;(21{)' Now note that ﬁ < % by
simple algebra. Finally, define b(s,a,h) = (1 + ) (Psan(-,h + 1), B(-,h + 1)) for h < H, and
P;,a,h(sl) =1+ #)PS,a,h(SG h).
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We prove that B is well defined and the statement holds by inductionon h = H +1,...,1. The
base case is true by definition B(s,a, H + 1) = 0. For h < H we have:

(5.0, = 0.0, + (14 45 ) (PR BCR) + (P 1, B0+ 1)
=b(s,a,h) +b(s,a,h) + P, , ,B(-, h).

Therefore, B(-, -, h) can be treated as the action-value function in an SSP with cost (b + b)(-, -, h)
and transition function P’ (thus well defined). By > Py, (s",h) < 7', we have the expected
h1tt1ng time of any policy starting from any state in an SSP with transition P’ is upper bounded by

L < 1+H . Let R(h) = max, , B(s, a, h) and note that R(H + 1) = 0. Since b(s, a, h) < p and
b( h)§(1+ )(1— Y)R(h+1)by > Psan(s’sh+1) <1—+~, we have:

p+ (1+4) (1 —7)R(h+1) P 1 1
R(h) < Hl—’y’ §1_7,+<1+H,> <1+H>R(h+1)

W+<1+;p> <1+I;>R(h+1),

IN

1
where the two last inequalities follow because 1—17’ < 1;;’ . The proof is now finished by solving

the recursion and obtaining:
H—h i i+1
p 1 1
7 E 14+ — 14+ =
-7 = ( " H /) < " H > ’

which implies that R(h) < %}h”) since (14 %)7H1(1 + 4)H < 2¢2 < 15. |

H

Lemma 46 Let 7 be a policy in Mandbbea non-negative cost function in M such that b(s,a, H+
1) = 0and b(s,a,h) < p. Moreover, let P € A be an optimistic transition so that

1 ~ 1
B(S> a, h‘) = b(S, a, h) + <1 + H—,) Ps,a,hB > b(S, a, h) + <1 + H—,> Ps7a,hB>

where B(s,h) =Y c 47m(a|s,h)B(s,a,h) and B(g) = B(s, H + 1) = 0. Then,
Zq (s,h) > (w(als,h) — 7*(als, h))B(s,a, h) + %Zq*(s,h)B(s,h)

acA s,h

+ Z q*(s,a,h)b(s,a,h) < gy (sinit, 1) + O <K(11T{f7)> :

s,a,h

Proof By the optimism property of P, we have:

Zq s,h) > (w(als,h) — #*(als, h)) B(s,a, h)

acA
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Zq (s,h) Z (als,h)B(s,a,h) + Z q*(s,a, h)b(s,a,h)

acA s,a,h
( )Zq (5,1) S w(als, ) B(s,a, 1)+ 3 ¢*(5, 0, h)b(s, a, h)
acA s,a,h

1
— Z q*(s,a,h) | b(s,a,h) + <1 + H’> Z Py on(s',h)B(s', 1)

/ ’
s,a,h s’ h

1 * *
= <1 + H’> Z (s h) — Z q*(s,a,h)Psopn(s' 1) | B(s', 1)

s’ k' s,a,h
1
= [ 1+ 77 ) Blsinii, 1). (18)

The last relation is by ¢*(s,h) — > o o ¢* (', a' M) Py a1 (5, 1) = I{(s,h) = (Sinit, 1)} (see
(Rosenberg and Mansour, 2021, Appendix B.1)).
Let J be the number of steps until the goal state g is reached in M, and n = 8H ln(2K ). Now

note that for any policy, the expected hitting time in an SSP w1th transition P is upper bounded by

75 +1by P € Ap. Therefore, by Lemma 31, P(J >n) < &,and
J 1\ ! R
B(Sa h’) =K Z <1 + E) b(stu at, ht) ﬂ',P’ (317 hl) = (87 h)]
t=1
n 1 t—1 1\" .
=E|)_ (1 + H’) b(se, ar, he) + <1 + H’) B(st41, hgr)| 7, P, (s1,h1) = (s, )
t=1
L\ B ~( Hp
Plugging this back into Eq. (18) and by (1 + 1/H")" < e < 3, we get the desired result. [ |

D.4. Computation of By,

We study an operator on value function, from which By can be computed as a fixed point. For any
policy 7, cost function c, transition confidence set P C A x4, and interest factor p > 0, we define the
dilated Bellman operator 7, that maps any value function V' : S+ — R to another value function
T,V : 84 — Ry, such that:

(T,V)(s,h) =Y _m(als, h) <c(s, a,h) + (1 + p) max Pw,hV) ,

a

(TaV)(9) =0, (T,V)(s, H + 1) = max c(s, 0, H +1). (19)

In this work, we have P € {Pk}szl, and P, = (\, o5 Ph.s.a.h» Where Py s 4 1, is a convex set that
specifies constraints on ((s, k), a). In other words, Py is a product of constraints on each ((s, h), a)
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(note that A can also be decomposed into shared constraints on P , ;741 and independent con-
straints on each s,a,h < H). Thus, there exists P’ € P that satisfies P’ = argmaxpcp Ps oV
in Eq. (19) for all ((s, h), a) simultaneously. Moreover, finding such P’ can be done by linear pro-
gramming for each ((s, k), a) independently. Now we show that iteratively applying 7, to some
initial value function converges to a fixed point sufficiently fast.

Lemma 47 Define value function V° : S, — Ry such that V°(s,h) = V°(g) = 0 for any
(s,h) € Sx [H]and V°(s, H+1) = max, c(s,a, H+1). Then for any p > 0 such thaVy (1+

p)y < 1, the limit V,, = lim;,_, T”VO exists. Moreover, when n > Hl with | = fl -] for some

H-1 .
e > 0, we have H’E,”VO — VpHoo < (%) K€, where Kk = Zszol((Hlplg, ) ) qc_”;?

Proof Define a sequence of value functions {V?}2° such that V1 = TV, We first show that

HV’ HOO < ZH h((Hp 7 )) Hchf fori > 0 and h < H. We prove this by induction on 3.
Note that this is clearly true when ¢ = 0. For ¢ > 0, by P C A and Eq. (19), we have:

Vis,h) = (T,V ) (s, h) < el + 4 [V R+ (L o) =2 [V R+ 1)
y ! 1+p1—v>1uwm A+ ) )
< el ;( )LW+;(PV)M

H—h
Z 1+P —7) 7 el oo
—7 1—9"

Jj=

Therefore, ‘ViHoo < K. We now show that {V*}; converges to a fixed point. Specifically,
we show that for some ¢ > 0 and any 4,5 € N, when n > (H — h + 1)I, we have

[TV ) = (TPVI) (R < (H = h+ 1) (U Hhie (note that U= > ),
Therefore, when n > Hl, we have HTp"VZ - 7;"VjH < H(W)H Lke. Settlng e — 0,

the statement above implies that for any § € S, {Vi(8)}22, is a Cauchy sequence and thus con-

verges. Moreover, letting j — oo implies that {V*}; converges to V, with the rate shown above. We
prove the statement above by induction on h = H, ..., 1. First note that for any s € S, h € [H]:

(T,V")(s,h) = (T,V7)(s,h)] = (1+ p)

E h P ‘/ — P ‘/
((Z|S ) (maX sah maX sah )‘
< (1+p) E 7[(a|$,h) maX‘Rs7a7h(Li— {/])‘

a

<A VIR = VIR + A+ p) A=) VIR + D) = VIER+ D], Qo)

where the last inequality is by > . Psan(s,h) < 7, > o Psan(s,h+1) < 1 —~, and
Pson(s' ') = 0 for 0 §E {h,h + 1}, for any P € Apnq. Now for the base case h = H,
Eq. (20) implies |(7,V*)(-,H) — 7;,VJ H)||, < ||V, H)=VI(,H)| . Thus for
(T7VH(, H) - T"VJ H < 7"+ k < ke. For the induction step h < H, if
n > (H — h + 1), then Eq. (20) 1mphes

(T V) (s, k) = (T V) (s, )|
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H—h -1
< 1+p)(1—7)>

T Vs — (v |+ - (2L > (H ~ hyne
=0

(by the induction assumption)

<1+p><1—fy>>H‘hm
11— ’

g(H—thl)(

This completes the proof of the statement above. |

Now note that By, is a fixed point of 7, with 7 = m, P = Py, ¢ = by, and p = 1/H’. Thus, By,
can be approximated efficiently.

D.5. Computation of 7, and z;,

Note that Ty, (s, a, h) can be computed by solving the following linear program (it is straightforward
to verify that the constraints on 7, and F; are linear):

max Z q(s,a,h,s")

SxAx[H]xS 4

9€R5, §eSy
s.t. E q(s',d' ,n, &)
a’eA,s'eSy

— > q(s",a" n",(s' 1)) = T{(s', I') = (init, 1)}, V(s', 1)
(s",h'")eS,a" €A

ﬂ-q = 7Tk, Pq € ﬂ /Pk’slva/’h/7 PQrS:aah(g) = 1
(s',a!, W) E(SX AX[H])\{(s,a,h)}

That is, we try to compute the occupancy measure that maximizes the number of visits to (s, a, k) in
an augmented MDP, where the transition lies in Py except that taking action a at state (s, h) directly
transits to the goal state (so that the number of visits to (s, a, h) is at most 1 and the occupancy
measure at (s, a, h) is the probability of visiting (s, a, h)). The computation of z; (s, a, h) is similar.
Thus, both 7}, and z;, can be computed efficiently (in a weakly polynomial time).

Appendix E. Learning without Some Parameters

In this section, we discuss the achievable regret guarantee without knowing some of the parameters
assumed to be known. For simplicity, we only describe the high level ideas. We first describe the
general ideas of dealing with each parameter being unknown, which are applicable under all types
of feedback.

e Unknown D and unknown fast policy: we can simply follow the ideas in (Chen and Luo,
2021) to estimate D and fast policy. For unknown fast policy, we maintain an instance of
Bernstein-SSP (Cohen et al., 2020) By. When we need to switch to the fast policy, we simply
involve By as if this is a new episode for this algorithm, follow its decision until reaching
g, and always feed cost 1 for all state-action pairs. Following the arguments in (Chen and
Luo, 2021, Lemma 1), the scheme above only incurs constant extra regret. For unknown D,
we maintain an estimate of it and update the algorithm’s parameters whenever the estimate
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is updated. Specifically, we separate the state space into known states and unknown states.
A state 1s known if the number of visits to it is more than some threshold, and it is unknown
otherwise. Whenever the learner visits an unknown state, it involves a Bernstein-SSP instance
to approximate the behavior of fast policy until reaching g. When an unknown state s becomes
known, we update the diameter estimate by incorporating an estimate of T (s), and then
updates the algorithm’s parameters with respect to the new estimate. In terms of regret, this
approach does not affect the transition estimation error, but brings an extra v/S factor in the
regret from policy optimization due to at most S updates to the algorithm’s parameters.

e Unknown B,: We can estimate B, following the procedure in (Cohen et al., 2021, Appendix
C). The main idea is pretty similar to the unknown D case: we again maintain an estimate
of B, and separate states into known states and unknown states based on how many times a
state has been visited. The learner updates algorithm’s parameters whenever the estimate of
B, is updated. Similarly, this approach brings an extra v/S factor in the regret from policy
optimization.

e Unknown 7,: We can replace T} in parameters by B, /cmin in stochastic costs setting and
D /cmin in other settings since T, < B,/ cmin (0r Ty < D/cmin). How to estimate D or B, is
discussed above.

e Unknown T},,,: Similar to (Chen and Luo, 2021), we simply replace T},,x in parameters by
K? for some p € (0, 1).

Next, we describe under each setting, what regret guarantee we can achieve with each parameter
being unknown by applying the corresponding method above.

Stochastic Costs In this setting, we need the knowledge of D, By and Ty ax.

e Unknown D: Since the regret from policy optimization is a lower order term, the dominating
term of the final regret remains to be O(B,Sv AK).

e Unknown B,: Since the regret from policy optimization is a lower order term, the dominating
term of the final regret remains to be O(B,SV AK).

o Unknown Tia,: We replace Tinax in parameters by K 12 qp g1/12 < .. then
clearly the regret is of order O(LK) = O(T, 13 ). Otherwise, by Theorem 5 we have
Ri = O(B,SVAK + S*A?5K1/3),

Stochastic Adversary In this setting, we need the knowledge of D, T}, and T},,x. We consider
the following cases:

e Unknown D: Since the regret from policy optimization is a lower order term, the dominating
term of the final regret remains to be O(v/ DT, K + DSV AK) in the full information setting,
and O(v/DT,SAK + DS+ AK) in the bandit feedback setting.

e Unknown T.: Ignoring the lower order terms, we have Rx = O(D/K/cmin + DSVAK)
in the full information setting by Theorem 6, and R = O(D+/SAK/cmin + DSV AK) in
the bandit feedback setting by Theorem 7.
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e Unknown T},,: We replace Tiax in parameters by K1/13. If K1/13 < T, .. then Ry
is of order O(LK) = O(T} ). Otherwise, we have Ry = O(vDT, K + DSVAK +
(S2A3)V/AK25/52 4 G4 A25 [K4/13) in the full information setting by Theorem 6, and Rx =
O(VSADT.K + DS\/E + SAS/AK?5/52 1 G4 A25 [(4/13) in the bandit feedback setting
by Theorem 7.

Adversarial Costs, Full Information In this setting, we need the knowledge of D, T, and Ti,a.
We consider the following cases:

e Unknown D: With an extra /S factor in the policy optimization term, we have Rx =
O(T.WSDK + \/S?2ADT,K) ignoring the lower order terms.

e Unknown 7,: Ignoring the lower order terms, we have Rrx = (CD 10\/> +
D\/SQAK/Cmin).

e Unknown Ti,.: We replace Tmax in parameters by K i oqp g1i/1 < Tiax, then
clearly the regret is of order O(LK) = O(T!2.). Otherwise, by Theorem 9 we have

max

Ryx = O(T\WDK + /S?ADT, K + S*A2K5/M),

Adpversarial Costs, Bandit Feedback In this setting, we need the knowledge of D and T;,,,x. We
consider the following cases:

e Unknown D: Tracing the proof of Theorem 10, the regret from policy optimization is of
order O(/SAT 5, /). With an extra /S factor in the policy optimization term, we still
have Ry = O(y/S2AT5,, K ) ignoring the lower order terms.

e Unknown T},,x: We replace Tiax in parameters by K? for any p € (0, %) If KP < Tyax,

then clearly the regret is of order O(LK) = @(Té;ri /P ). Otherwise, by Theorem 10 we have
— O(VSTAK T 4 §55 A3 o0,

Appendix F. Auxiliary Lemma
Lemmad8 Ifz < (a\/z + b)In”(cz) for some a,b,c > 0 and absolute constant p > 0, then
x = O(a® +b). Specifically, © < a\/z + b implies x < (a + Vb)? < 2a® + 2b.
Lemma 49 (Luo et al., 2021, Lemma A4) Let n > 0, m, € A(A), and {}, € RA satisfy the
following for all k € [K] and a € A:
1
m(a) = 7. mri(a) < ma) exp(=nbi(a)),  [nlr(a)l < 1.

Then for any 7 € A(A), Zszl (mp — 7%, 0g) < % +n Zszl Y oacd Wk(a)ﬁz(a).

Lemma 50 (Chen et al., 2021b, Lemma 38) Let {X;}3°, be a martingale difference sequence
adapted to the filtration {F;}32, and | X;| < B for some B > 0. Then with probability at least
1 =46, for all n > 1 simultaneously,

B2 3 4B?n?
" 4 9BIn

<3 ZEXQ]}"Z !
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Lemma 51 (Cohen et al., 2020, Theorem D.3) Let {X,,}°° | be a sequence of i.i.d random vari-
ables with expectation p and X,, € [0, B] almost surely. Then with probability at least 1 — 9, for

anyn > 1:
2n 2n "~ 2n
< min { 24/ Bpunln 5 + Bln 6’2 B;:len 5

Lemma 52 (Cohen et al., 2020, Lemma D.4) and (Cohen et al., 2021, Lemma C.2) Let { X;}5°, be
a sequence of random variables w.r.t to the filtration {F;}°, and X; € [0, B] almost surely. Then
with probability at least 1 — 9§, for all n > 1 simultaneously:

n

> (X —n)

=1

2
+7Bln§

n

> E[X|Fiq] <2 Zn: X; +4BIn

4n
Ek
i=1 =1

n n 4
3 X <2) E[Xi|Fi1] +8BIn .
=1 i=1 0
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