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Abstract
We consider the robust linear regression model y = Xβ∗ + η, where an adversary oblivious
to the design X ∈ Rn×d may choose η to corrupt all but a (possibly vanishing) fraction of the
observations y in an arbitrary way. Recent work d’Orsi et al. (2021a,b) has introduced efficient
algorithms for consistent recovery of the parameter vector. These algorithms crucially rely on the
design matrix being well-spread (a matrix is well-spread if its column span is far from any sparse
vector).

In this paper, we show that there exists a family of design matrices lacking well-spreadness
such that consistent recovery of the parameter vector in the above robust linear regression model is
information-theoretically impossible.

We further investigate the average-case time complexity of certifying well-spreadness of ran-
dom matrices. We show that it is possible to efficiently certify whether a given n-by-d Gaussian
matrix is well-spread if the number of observations is quadratic in the ambient dimension. We
complement this result by showing rigorous evidence —in the form of a lower bound against low-
degree polynomials— of the computational hardness of this same certification problem when the
number of observations is o(d2).
Keywords: spread subspaces, robust optimization, oblivious outliers, regression, information-
theoretic bounds, average-case analysis

1. Introduction

For a subspace V ⊆ Rn, the well-spreadness property describes how close sparse vectors are to it.

Definition 1 (Well-spreadness) A subspace V ⊆ Rn is m-spread if for any v ∈ V and any
S ⊆ [n] of size |S| > n−m, we have

‖vS‖2 > Ω (1) · ‖v‖2 ,

where vs denotes the projection of v onto the coordinates in S. We say that a matrix is m-spread if
its column span is.

Due to its connection to distortion Guruswami et al. (2010), Euclidean section properties Bara-
niuk et al. (2008) and restricted isometry properties (RIP) Allen-Zhu et al. (2016); Guruswami
et al. (2021), well-spread subspaces have been studied in the context of error-correction over the
reals Candes and Tao (2005); Guruswami et al. (2008), compressed sensing matrices for low com-
pression factors Kashin and Temlyakov (2007); Donoho (2006) convex geometry Gluskin (1984);
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Kashin and Temlyakov (2007) and metric embeddings Indyk (2007). Recently, an unforeseen con-
nection between well-spreadness and oblivious adversarial regression models has emerged d’Orsi
et al. (2021a,b).

While relations between properties of the design matrix and algorithmic guarantees are not new
—restricted eigenvalue condition, restricted isometry property (RIP) and distortion are all known to
be sufficient to design efficient algorithms for recovering the encoded sparse vector (see Kashin and
Temlyakov (2007); Zhang et al. (2014))— the connection between well-spreadness and oblivious
regression appears intriguing as: (i) there is currently no significant evidence of the necessity of
this property for recovery, and (ii) there is no indication of a gap between exponential time and
polynomial time algorithms depending on the well-spreadness of the design. Investigating this
relation is the main focus of this paper.

Oblivious regression Oblivious adversarial models offer a convenient framework to find the
weakest assumptions under which one can efficiently recover structured signal from noisy data with
vanishing error.1 Once the observations are sampled, an adversary is allowed to add arbitrary noise
without accessing the data and with the additional constraint that for an α fraction of the observa-
tions (possibly vanishing small) the noise must have small magnitude. In the context of regression
this idea can be formalized into the following problem.

Problem 2 (Oblivious linear regression) Given observations2 (X1,y1), . . . , (Xn,yn) following
the linear model yi = 〈Xi, β

∗〉 + ηi, where Xi ∈ Rd, β∗ ∈ Rd, and ηi is a symmetrically dis-
tributed random variable with mini∈[n] P {|ηi| 6 1} = α, the goal is to to find an estimator β̂ for
β∗ achieving small squared parameter error ‖β̂ − β∗‖22.3

We may conveniently think of the (possibly vanishingly small) α fraction of entries of y with
small noise as the uncorrupted observations. Moreover, as moments are not required to exist, this
noise model captures heavy-tailed distributions.

A flurry of works Tsakonas et al. (2014); Bhatia et al. (2017); Suggala et al. (2019); Pesme
and Flammarion (2020); d’Orsi et al. (2021a,b) has led to the design of efficient and consistent4

algorithms that achieve provably optimal error guarantees and sample complexity for oblivious
regression. The guarantees of these algorithms are rather surprising. For classical regression with
Gaussian noiseN

(
0, σ2

)
, it is known that the optimal error convergence isO(σ2 ·d/n) Wainwright

(2019). For oblivious regression, efficient algorithms obtain squared parameter error bounded by
O(d/(α2 ·n)) and thus are consistent for n > ω

(
d/α2

)
. 5 As Gaussian distributionsN

(
0, σ2

)
can

be modeled as noise in Problem 2 with α = O(1/σ), these error convergence rates are the same up
to constant factors. In other words, even though Problem 2 allows for a large variety of complicated

1. Adaptive adversarial models, where the adversary has access to the data, are not suitable to study these questions as
part of the signal may be removed and hence impossible to reconstruct.

2. We use bold face to denote random variables.
3. We remark that we may analogously ask for small squared prediction error 1

n
‖X(β̂−β∗)‖22, at the coarseness of this

discussion the two may be considered equivalent. We also remark that for small values of α, symmetry of the noise
is necessary d’Orsi et al. (2021b).

4. An estimator is said to be consistent if its error tends to zero as the number of observations grows.
5. More generally, we may assume in Problem 2 that mini∈[n] P {|ηi| 6 τ} = α by introducing another parame-

ter τ > 0. In this case, the error bound becomesO(τ2d/(α2 ·n)) while the analysis of the error bound is essentially
the same. In this paper, we set τ = 1 for simplicity.
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noise distributions, it is possible to achieve error guarantees similar to those one would be able to
achieve under the special case of Gaussian noise.

It turns out that the catch is in the design matrixX ∈ Rn×d. Algorithms for oblivious regression
require the column span cspan(X) of X to be well-spread. If cspan(X) is Ω

(
d/α2

)
-spread, then

the above guarantees can be achieved efficiently. On the other hand, no algorithm is known to obtain
non-trivial error guarantees as soon as the design matrix is only o(d/α2)-spread, even in exponential
time. This picture raises an important question concerning the relation between oblivious regression
and well-spreadness:

Is the well-spreadness requirement a fundamental limitation of current algorithms or is there
a sharp phase transition in the landscape of the problem? Is this phase transition a computa-
tional or statistical phenomenon?

In this paper we provide, to a large extent, answers to these and related questions.

1.1. Results

Information-theoretic lower bounds regarding well-spreadness Our first result is the non-
existence of algorithms with non-trivial error guarantees for oblivious regression with design matri-
ces lacking well-spreadness.

Theorem 3 Let α = α(n) ∈ (0, 1). For arbitrary γ = γ(n) > 0, there exist:

1. a matrix X ∈ Rn×d with max
{

Ω
(

log d
α2

)
,Ω
(
d
α

)}
-spreadness and X>X = n · Id,

2. a distribution Dβ over d-dimensional vectors, and

3. a distribution Dη —independent of Dβ— over n-dimensional vectors with independent, sym-
metrically distributed entries satisfying mini∈[n] Pη∼Dη (|ηi| 6 1) = α,

such that for every estimator β̂ : Rn → Rd, given as input X and y = Xβ∗ + η with β∗ ∼ Dβ
and η ∼ Dη sampled independently, one has

E
∥∥∥β̂(y)− β∗

∥∥∥2

2
> γ .

A more precise version of Theorem 3 is given by Theorem 7. It states that there exists a natural
distribution DX over Rn×d such that with high probability (i) X ∼ DX is max{Ω( log d

α2 ) ,Ω( dα)}-
spread, and (ii) given a matrixX sampled fromDX with max{Ω( log d

α2 ) ,Ω( dα)}-spreadness as input
for Problem 2, no estimator can obtain bounded error guarantees, for any number of observations.
We remark that, in our construction we utilize the conditionXTX = n · Id only to make the squared
parameter error ‖β̂−β∗‖22 and squared prediction error 1

n‖X(β̂−β∗)‖22 equivalent. Thus, Theorem 3
immediately yields a lower bound for the prediction error as well. This shows there is a fundamental
difference between the statistical hardness of oblivious regression and its classical counterpart (with
sub-gaussian noise): a statistical price to pay for robustness against oblivious adversaries.

It is fascinating to notice that, on one hand, current algorithms d’Orsi et al. (2021a) obtain non-
trivial error guarantees only for Ω(d/α2)-spread design matrices; on the other hand, although those
hard oblivious regression instances constructed in Theorem 3 defy any non-trivial error guarantees,
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they do not rule out the existence of consistent estimators for other families of o(d/α2)-spread
design matrices. Thus, there remains a family of design matrices for which it is not known whether
consistent oblivious regression can be achieved, and if so whether it can be done efficiently. This
remains a pressing open question.

Certifying well-spreadness As the well-spreadness of design matrices can guarantee efficient
recovery in oblivious regression, it is natural to ask whether one can efficiently certify the well-
spreadness of a matrix. Similar questions have indeed been investigated for RIP, due to its appli-
cation in compressed sensing Bandeira et al. (2013); Tillmann and Pfetsch (2014); Natarajan and
Wu (2014); Koiran and Zouzias (2014); Wang et al. (2016); Weed (2018); Ding et al. (2021). Un-
surprisingly, certifying well-spreadness turns out to be NP-hard in the worst case (see Theorem 29
for a proof). On the other hand, in the context of average-case analysis, there exists a regime where
efficient algorithms can certify well-spreadness.

Theorem 4 (Algorithms for certifying well-spreadness) Fix arbitrary constants δ ∈ (0, 1) and
C > 0. Let X ∼ N (0, 1)n×d with n > Cd2. There exist a polynomial-time algorithm and a
constant C ′ = C ′(C, δ) ∈ (0, 1) such that

1. X is (C ′n, δ)-spread with probability 1− o(1);

2. ifX is not (C ′n, δ)-spread, the algorithm outputs NO;

3. ifX is (C ′n, δ)-spread, the algorithm outputs YES with probability 1− o(1).

We want to emphasize that, under the assumptions of Theorem 4, (i) an n-by-dGaussian random
matrix is Ω (n)-spread with high probability; (ii) if the sampled matrix is indeed Ω (n)-spread, the
algorithm can efficiently certify this fact with high probability; (iii) the algorithm never outputs
false positives and thus guarantees the serviceability of the sampled matrix as a design matrix for
oblivious regression. Theorem 4 also directly implies that, in the regime n > ω

(
d/α2

)
where there

exist efficient algorithms for consistent oblivious regression, we may certify the well-spreadness of
random design matrices, given Ω

(
d2
)

samples.
It is tempting to ask whether a similar verification algorithm can be designed with fewer obser-

vations n 6 o(d2) . However, we provide evidence of the computational hardness of this problem
in the form of a lower bound against low degree polynomials. This computational model captures
state-of-the-art algorithms for many average-case problems such as sparse PCA, tensor PCA or
community detection (e.g. see Hopkins and Steurer (2017); Hopkins (2018); Kunisky et al. (2019);
Ding et al. (2019); d’Orsi et al. (2020); Choo and d’Orsi (2021)).

Theorem 5 (Lower bounds against low-degree polynomials) Let t 6 O(log n)C for some arbi-
trary constant C > 1. Let α = α(n) ∈ (0, 1). For6 any α � d−1/2 and d/α2 � n � (d/α)4/3,
there exist two distributions over n-by-d matrices, D0 and D1, such that

1. D0 is the standard Gaussian distribution;

2. X ∼ D0 is Ω
(
d/α2

)
-spread with probability 1− o(1);

6. We use the notation a � b for inequalities of the form a 6 O(b/ polylog(b)). The assumption α � d−1/2 derives
from d/α2 � (d/α)4/3.
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3. X ∼ D1 is not Ω
(
d/α2

)
-spread with probability 1− o(1);

4. the two distributions are indistinguishable with respect to all polynomials p : Rn×d → R of
degree at most t in the sense that:

ED0 p(X)− ED1 p(X)√
VD0 p(X)

6 O(1) .

In other words, Theorem 5 shows that low-degree polynomials cannot be used to distinguish
between D0 and D1 as typical values of such polynomials look the same (up to a small difference)
under both distributions.7 An immediate consequence of this result is that there exists a family of
Ω
(
d/α2

)
-spread matrices X ∈ Rn×d with d/α2 � n � (d/α)4/3, for which consistent oblivi-

ous regression is possible, but verifying whether the design matrix satisfy the required well-spread
condition is hard.

We remark that there is no gap between the algorithmic result in Theorem 4 and the lower
bound in Theorem 5, since Theorem 5 is a corollary of Theorem 39 wihch provides evidence of
computational hardness for the entire regime n� d2.

1.2. Organization

The rest of the paper is organized as follows. We present the high level ideas behind our results
in Section 2. We prove Theorem 3 in Section 3. We obtain Theorem 4 and Theorem 5 in Ap-
pendix D. We show NP-hardness of well-spreadness certification in Appendix C. Finally, necessary
background notions can be found in Appendix A.

2. Techniques

We present here the main ideas behind our results.

2.1. Statistical lower bounds for regression

Recall the linear model in Problem 2,

y = Xβ∗ + η,

where we observe (a realization of) the random vector y, the matrix X ∈ Rn×d is a known fixed
design, the vector β∗ ∈ Rd is the unknown parameter of interest, and the noise vector η has in-
dependent, symmetrically distributed coordinates with mini∈[n] P {|ηi| 6 1} = α. We will restrict
our discussion to matrices satisfying XTX = n · Id, so that —up to scaling— there is no difference
between prediction and parameter error.

To obtain an information-theoretic lower bound, we cast the problem as a distinguishing prob-
lem among ` hypotheses of the form:

Hi : y = Xβi + η , (2.1)

where we ought to make the vectors β1, . . . , β` ∈ Rd as far as possible from each other. It is
remarkably easy to see that a small degree of spreadness is necessary to obtain any error guarantee

7. See Appendix A.4 for a more in-depth discussion concerning the low-degree likelihood ratio.
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in oblivious regression d’Orsi et al. (2021b). Let X ∈ Rn×d be o(1/α)-spread, then there exists a
vector β ∈ Rd and a set S of cardinality n − O(1/α) such that ‖XSβ‖2 6 o(1) · ‖Xβ‖2.8 The
problem with such a design matrix is that with probability Ω(1) all nonzero entries in (X −XS)β
will be corrupted by (possibly unbounded) noise. As a result no estimator can provide guarantees of
the form E‖β̂(y)−β∗‖22 6 γ for any γ > 0. In other words, approximate recovery of the parameter
vector is impossible.

Going beyond this o(1/α) barrier, however, turns out to be non-trivial. One issue with the above
reasoning is that even if we knew the uncorrupted entries, we would not be able to recover the hidden
vector (with any bounded error), as no such entry contains information over β∗. In contrast, for any
X that is m-spread, with m > Ω(1/α), if we knew the uncorrupted entries, after filtering out the
corrupted ones, the classical least squares estimator would yield error guarantees

E
∥∥∥β̂(y)− β∗

∥∥∥2

2
6 O

(
d

mα

)
.

That is, knowing the uncorrupted entries one could achieve constant error for Ω (d/α)-spread de-
sign matrices. Notice Theorem 3 implies that, there exist oblivious regression instances where no
estimator can achieve these guarantees.

We overcome this barrier with a construction consisting of two main ingredients:

1. An m-spread matrix X and a set of vectors β in Rd such that

‖XSβ‖2 6 o(1) · ‖Xβ‖2 (2.2)

for some S ⊆ [n] with |S| > n − m, and the subspace spanned by these vectors is high
dimensional. That is, a matrix whose column span contains many nearly orthogonal sparse
vectors.

2. A distribution Dη over R, for the entries of η, satisfying the constraints in Problem 2, and
with the additional properties:

• Low shift-sensitivity: the distribution looks approximately the same after an additive
shift in the following sense. If Dη(k) is the distribution shifted by k, then the Kullback-
Leibler divergence DKL (Dη‖Dη(k)) is small.
• Insensitivity to scaling: the Kullback-Leibler divergence does not change significantly

upon scaling in the sense that DKL (Dη‖Dη(k)) ≈ DKL (ρ ·Dη‖ρ ·Dη(k)), for any
ρ > 0.

Sparsity of the noiseless observation vectorsXβi as in Eq. (2.2), combined with low shift-sensitivity
of the noise distribution will allow us to make the different hypotheses indistinguishable. Then
insensitivity to scaling will make the prediction error arbitrarily large.

Noise distributions with low sensitivity It turns out that constructing a distribution with low
sensitivity is straightforward. We consider the symmetric geometric distribution G (c, λ) with prob-
ability mass function

p(k) =

{
α, k = c
1−α

2 · λ(1− λ)|k|−1, k = c± 1, c± 2, c± 3, ...

8. XS ∈ Rn×d is the matrix obtained from X by zeroing rows with index in [n] \ S.
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Clearly, ρ · G (0, λ) is symmetric and satisfies Pz∼ρ·G(0,λ) (|z| 6 1) = α for any ρ > 1 and any
λ ∈ (0, 1). Moreover, as DKL (G (0, λ) ‖G (c, λ)) = DKL (ρ · G (0, λ) ‖ρ · G (c, λ)), we have the
desired insensitivity to scaling. Finally, for small enough values of λ low shift-sensitivity holds for
integer-valued shifts, as the distribution is discrete in nature. (See Lemma 11 for a formal statement.)

Matrices spanning sparse subspaces To construct the aforementioned design matrix, we wish
to find two rectangular matrices A ∈ Rm×d and B ∈ R(n−m)×d such that A is Ω(m)-spread and
the row spans of A and B are orthogonal to each other. Let X ∈ Rn×d be the matrix obtained by
stacking A onto B. Then for any vector β in the row span of A, i.e. β ∈ rspan(A), we have

‖Xβ‖22 =

∥∥∥∥[AB
]
β

∥∥∥∥2

2

= ‖Aβ‖22 + ‖Bβ‖22 = ‖Aβ‖22 ,

and thus X also has the required m-spreadness. To find two such matrices A and B, the following
observation turns out to be crucial:9

An m-by-d Rademacher matrix is Ω(m)-spread with high probability.

With this ingredient we are now ready to construct the design matrix X . LetR denote Rademacher
distribution. Let A∗ ∼ Rm×d and B∗ ∼ R(n−m)×d be independently sampled, and let V ⊆ Rd be
an Ω(d)-dimensional subspace. We construct

X =

[
A
B

]
=

[
A∗ΠV

B∗ΠV ⊥

]
,

where ΠV denotes the projector onto the subspace V . Then the row spans ofA ,B are orthogonal.

Putting things together The ideas presented above allow us to construct hypotheses as in
Eq. (2.1) that are indistinguishable from each other even though the corresponding parameter vec-
tors are far from each other. Let β , β′ ∈ Rd be distinct vectors in the row span of A with integer
coordinates satisfying ‖β − β′‖2 > Ω

(√
d
)

and ‖β‖2 , ‖β′‖2 6 O
(√

d
)

. By construction, Xβ

and Xβ′ are both n-dimensional vectors with Ω(m) nonzero entries, each integer-valued. So, by
low shift-sensitivity of the noise distribution,

H : y = Xβ + η ,

H ′ : y = Xβ′ + η

are stastistically indistinguishable. Finally, expanding on these ideas Theorem 3 will follow.
Furthermore, by insensitivity to scaling of Dη we can now blow up the error by scaling up
σ · y = X(σ · β) + σ · η and σ · y′ = X(σ · β′) + σ · η, for any σ > 0, without making the
distinguishing problem easier.

9. We remark that a similar observation holds for other distributions (e.g. Gaussian). See Theorem 26 for a formal
proof. The value of integer values will become evident in the interplay between the design matrix and the noise
distribution.
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2.2. Differences between well-spreadness and RIP, RE properties

In the context of compressed sensing we are given n 6 d observations of the form yi = 〈Mi, β〉+ηi
with Mi, β ∈ Rd and η being additive noise. In order to guarantee recovery of the compressed
vector β, RIP Candes and Tao (2005); Donoho (2006); Candes et al. (2006); Kashin and Temlyakov
(2007) is arguably the most popular condition to enforce on the sensing matrix:

Definition 6 (Restricted isometry property) We say a matrix M ∈ Rn×d satisfies the (k, δ)-
restricted isometry property (RIP) if

(1− δ)‖v‖22 6 ‖Mv‖22 6 (1 + δ)‖v‖22

for every vector v with at most k nonzero entries.

We argue here that the relation between well-spreadness and oblivious regression fundamentally
differs from that of RIP and compressed sensing in two ways.

First, while state-of-the-art algorithms for compressed sensing rely on RIP in order to filter out
the noise in the observations and recover the hidden vector, it is known that small prediction error
can be achieved in exponential time without any constraint on the sensing matrix Bunea et al. (2007).
In contrast, Theorem 3 shows that in the context of oblivious regression, no algorithm can achieve
even small prediction error for a family of design matrices that are not sufficiently well-spread.

Second, RIP is not purely a condition of the column span of the sensing matrix. In particular,
if M satisfies (k, δ)-RIP, then the kernel of M must be Ω(k)-spread Guruswami et al. (2021).10

Conversely, it is easy to construct matrices with well-spread column span and kernel containing
sparse vectors.

As the following examples show, it is easy to construct matrices that satisfy RIP but are not
well-spread and vice versa.

Example 1 (RIP but not even 1-spread) Let W ∼ N (0, 1)(n−1)×(d−1) and consider the follow-
ing n-by-d matrix (we do not fix the relation between n and d),

M =

[
1 0
0 1√

n−1
W

]
.

If n & δ−2k log d, then with high probability, M satisfies (k, δ)-RIP. However, M is not even
1-spread, since its column span contains the canonical basis vector e1 ∈ Rn.

Example 2 (Well-spread but not satisfying RIP) LetW ∼ N (0, 1)n×(d−1) and consider the fol-
lowing n-by-d matrix,

M =
[
v 1√

n
W
]
,

where v ∈ Rn is a unit vector parallel or highly correlated to the first column of W . Then M
cannot satisfy RIP or RE. However, if n > Cd for some sufficiently large absolute constant C, then
it is easy to verify that,M is Ω (n)-spread with high probability.

10. The careful reader may have noticed that δ seems to play no role in this implication. In fact, the relation is more
general than what we consider here. See Guruswami et al. (2021).
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3. Information-theoretic bounds for oblivious regression

We state and prove the more precise and technical version of Theorem 3 that shows, there exists
a family of max

{
Ω
(

log d
α2

)
,Ω
(
d
α

)}
-spread design matrices such that, consistent estimation is

information-theoretically impossible in oblivious linear regression.

Theorem 7 Let α = α(n) ∈ (0, 1). For arbitrary γ = γ(n) > 0, there exist:

1. a distribution DX over n× d matrices X with X>X = n · Id,

2. a distribution Dβ over d-dimensional vectors, and

3. a distribution Dη —independent of DX and Dβ— over n-dimensional vectors with indepen-
dent, symmetrically distributed entries satisfying mini∈[n] Pη∼Dη (|ηi| 6 1) = α,

such that,

1. X ∼ DX is max
{

Ω
(

log d
α2

)
,Ω
(
d
α

)}
-spread with high probability; and

2. for every estimator β̂ : Rn → Rd, given as input X and y = Xβ∗ + η with X ∼ DX ,
η ∼ Dη, and β∗ ∼ Dβ sampled independently, one has

E
∥∥∥β̂(y)− β∗

∥∥∥2

2
> γ ,

conditioning onX being max
{

Ω
(

log d
α2

)
,Ω
(
d
α

)}
-spread.

To prove Theorem 7, we provide the following two lemmas which we will prove in Section 3.1
and Section 3.2 respectively.

Lemma 8 shows that, there exists a family of Ω
(
d
α

)
-spread design matrices such that, consistent

estimation is information-theoretically impossible in oblivious linear regression.

Lemma 8 Let α = α(n) 6 O(1). For arbitrary γ = γ(n) > 0, there exist:

1. a distribution DX over n× d matrices X with X>X = n · Id,

2. a distribution Dβ over d-dimensional vectors, and

3. a distribution Dη —independent of DX and Dβ— over n-dimensional vectors with indepen-
dent, symmetrically distributed entries satisfying mini∈[n] Pη∼Dη (|ηi| 6 1) = α,

such that,

1. X ∼ DX is Ω
(
d
α

)
-spread with high probability; and

2. for every estimator β̂ : Rn → Rd, given as input X and y = Xβ∗ + η with X ∼ DX ,
η ∼ Dη, and β∗ ∼ Dβ sampled independently, one has

E
∥∥∥β̂(y)− β∗

∥∥∥2

2
> γ ,

conditioning onX being Ω
(
d
α

)
-spread.
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Lemma 9 shows that, there exists a family of Ω
(

log d
α2

)
-spread design matrices such that, con-

sistent estimation is information-theoretically impossible in oblivious linear regression.

Lemma 9 Let α = α(n) 6 O(1). For arbitrary γ = γ(n) > 0, there exist:

1. a distribution DX over n× d matrices X with Ω
(

log d
α2

)
-spreadness and X>X = n · Id,

2. a distribution Dβ over d-dimensional vectors, and

3. a distribution Dη —independent of DX and Dβ— over n-dimensional vectors with indepen-
dent, symmetrically distributed entries satisfying mini∈[n] Pη∼Dη (|ηi| 6 1) = α,

such that for every estimator β̂ : Rn → Rd, given as input X and y = Xβ∗ + η with X ∼ DX ,
η ∼ Dη, and β∗ ∼ Dβ sampled independently, one has

E
∥∥∥β̂(y)− β∗

∥∥∥2

2
> γ .

Theorem 7 follows directly from the above two lemmas.
Proof By Lemma 8 and Lemma 9.

We introduce here the noise distribution (i.e. Dη) which will play a crucial role in our proof of
Lemma 8 and Lemma 9.

Definition 10 (Symmetric geometric distribution) The symmetric geometric distribution with lo-
cation parameter c ∈ Z and scale parameter λ ∈ (0, 1), denoted by G (c, λ), is a discrete distribu-
tion supported on Z. Its probability mass function is defined as

p(k) =

{
α, k = c,
1−α

2 · λ(1− λ)|k|−1, k = c± 1, c± 2, c± 3, · · · ,
(3.1)

where α is the same α in Problem 2. Let G(λ) = G(0, λ) by default.

We collect several useful facts about symmetric geometric distributions in the following lemma.

Lemma 11 Let G (c, λ) be the symmetric geometric distribution with parameters c and λ, as de-
fined in Definition 10.

1. For any σ > 0, c ∈ Z, and λ ∈ (0, 1), we have

DKL (σ · G(λ) ‖ σ · G(c, λ)) = DKL (G(λ) ‖ G(c, λ)) .

2. Suppose α 6 1/4. Let λ = 2α. Then,

DKL (G(λ) ‖ G(1, λ)) 6 4α2.

3. Suppose d > 4 and α 6 1/2. Let λ = 2αd−5. Then for any ∆ ∈ [d4], we have

DKL (G(λ) ‖ G(∆, λ)) 6 8α · log d.

10
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Proof Given λ ∈ (0, 1) and ∆ ∈ Z, let p and q be the probability mass functions of G(λ) and
G(∆, λ) respectively. By definition,

DKL (G(λ) ‖ G(∆, λ)) =

∞∑
k=−∞

p(k) log
p(k)

q(k)
=
∑
k 6=0,∆

p(k) log
p(k)

q(k)︸ ︷︷ ︸
=:D(λ,∆)

+
∑
k=0,∆

p(k) log
p(k)

q(k)︸ ︷︷ ︸
=:D′(λ,∆)

.

After some direct computations, we have

D(λ,∆) =
1− α

2
· 1

λ
· log

1

1− λ
·
[
2λ∆ + 2(1− λ)∆ − 2 + λ2∆(1− λ)∆−1

]
, and

D′(λ,∆) = α ·
(

1− (1− α)λ(1− λ)∆−1

2α

)
· log

2α

(1− α)λ(1− λ)∆−1
. (3.2)

We remark that both D(λ,∆) and D′(λ,∆) can be viewed as the Kullback-Leibler divergence
between two probabilistic distributions up to a positive scaling factor. Thus, D(λ,∆) and D′(λ,∆)
are always non-negative regardless of λ and ∆.

1. By definition.

2. Substituting λ by 2α and ∆ by 1 in Eq. (3.2), we have

DKL (G(2α) ‖ G(1, 2α)) = α2 · log
1

1− 2α
.

Using the assumption α 6 1/4 and the fact log 1
1−x 6 2x for 0 6 x 6 1/2, we have

DKL (G(λ) ‖ G(1, λ)) 6 4α2.

3. Fix an arbitrary ∆ ∈ [d4]. By the assumption d > 4 and α 6 1/2, one has λ∆ 6 2αd−1 6
1/4 and hence

(1− λ)∆ =
∆∑
i=0

(
∆

i

)
(−λ)i 6 1− λ∆ + (λ∆)2.

Then, it is not difficult to show

D(λ,∆) 6 λ2∆

(
2∆ +

1

1− λ

)
6 4λ2∆2 6 4α2d−2, and

D′(λ,∆) 6 α (2α+ 5 log d+ 2λ∆) 6 7α · log d.

Therefore, we have

DKL (G(λ) ‖ G(∆, λ)) = D(λ,∆) +D′(λ,∆) 6 8α · log d.

11
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3.1. Proof of Lemma 8

To prove Lemma 8, we apply Fano’s method as introduced in Appendix A.2. We first construct an
Ω
(
d
α

)
-spread design matrix X ∈ Rn×d and a set B ⊂ Rd of Ω

(
dd
)

parameter vectors. We set
m = d/(50α) throughout Section 3.1.

Design matrix Let R be an m× d Rademacher matrix. By Theorem 26, there exists an absolute
constant c ∈ (0, 1) such that R is Ω

(
d
α

)
-spread with high probability for α 6 c. Suppose α 6 c.

Thus, “most” m× d {±1}-matrices are Ω
(
d
α

)
-spread. Let Y be such a matrix, i.e. Y ∈ {±1}m×d

and Y is Ω
(
d
α

)
-spread.

LetX1 be an arbitrary orthonormal basis matrix of subspace cspan (Y ). Then scaleX1 ∈ Rm×d
properly such that X>1 X1 = n · Id. Let X> =

[
X>1 X>2

]
where X2 is a zero matrix. Then the

design matrix X is Ω
(
d
α

)
-spread and satisfies X>X = n · Id.

Hard-to-distinguish parameter vectors The set of parameter vectors is constructed by reverse
engineering. Let `X1 : Rd → Rm be a linear mapping defined by `X1(v) := X1v. We first construct
a set U ⊂ cspan (Y ) with several desired properties and then let B be a scaled preimage of U under
the injective linear mapping `X1 . Let U =

{
Y v | v ∈ [d]d

}
. Note that for any u ∈ U , we have

u ∈ Zm and ‖u‖∞ 6 d2. Choose the set of parameter vectors to be

B = σ · `−1
X1

(U) = σ ·
{
X−1

1 u | u ∈ U
}
, (3.3)

where σ > 0 is a scaling factor. Clearly, σ controls the separateness of set B. Then for any two
distinct vectors β, β′ ∈ B, we have

X(β − β′) ∈ σ ·
{
−2d2,−2d2 + 1, ..., 2d2

}m × {0}n−m. (3.4)

We remark that, although the design matrix X we constructed above is rather sparse, it is not
necessarily this case and we can easily make X non-sparse via the following trick. Let R ∈ Rd×d
be a dense orthogonal matrix, e.g. a uniformly random one. Now Let X ′ = XR be the design
matrix and B′ =

{
R>β : β ∈ B

}
be the set of parameter vectors. Clearly, the spreadness of X ′ is

identical to the spreadness of X , since cspan (X ′) = cspan (X). Also, (X ′)>(X ′) = n · Id and
Eq. (3.4) is preserved as well.

Putting things together Now we are ready to prove Lemma 8.
Proof Consider the following hypothesis testing problem. Let Dβ be the uniform distribution over
set B in Eq. (3.3) and β∗ ∼ Dβ . Let X be the Ω

(
d
α

)
-spread design matrix as constructed above.

Set λ = 2αd−5 and use the same σ in Eq. (3.3). Let the noise vector be η = (ηi)
n
i=1 where

η1, ...,ηn ∼ σ · G(λ) are independent symmetric geometric random variables as defined in Defini-
tion 10. Observing y = Xβ∗+η, the goal is to distinguish dd hypotheses {y = Xβ + η : β ∈ B}.
Now we apply Fano’s method by reducing this hypothesis testing problem to oblivious linear re-
gression.

Given two distinct vectors β, β′ ∈ B, let ∆i := σ−1|(Xβ)i − (Xβ′)i| for i ∈ [n]. By Eq. (3.4),
we have ∆i ∈

{
−2d2,−2d2 + 1, ..., 2d2

}
. By independence of random variables {ηi}ni=1 and the

chain rule of Kullback-Leibler divergence, we have

DKL

(
Xβ + η ‖ Xβ′ + η

)
=

n∑
i=1

DKL

(
(Xβ)i + ηi ‖ (Xβ′)i + ηi

)
12
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=

m∑
i=1

DKL (σ · G(λ) ‖ σ · G(∆i, λ))

=

m∑
i=1

DKL (G(λ) ‖ G(∆i, λ))

6 m · 8α log d = 0.16d log d, (3.5)

where the second equality uses Eq. (3.4), the third equality and the inequality is due to Lemma 11.
Let β̂ : Rn → Rd be an arbitrary estimator for oblivious linear regression and γ > 0 be an

arbitrary given error bound. Note B is σ
√
m/n-separated and |B| = dd. Combining Eq. (A.1) with

Eq. (3.5), and setting σ2 = 8γn/m = 400γnα/d, we have

E
∥∥∥β̂(y)− β∗

∥∥∥2

2
> γ, (3.6)

for any d > 3.

Some remarks To show any estimator is inconsistent, it is enough to set σ2 = nα/d in the above
proof. In this case11, the set B is Ω(1)-separated and the error lower bound is Ω(1), which does not
vanish as n goes to infinity. Moreover, since the lower bound Eq. (3.6) holds for any γ > 0, we
have actually showed that no estimator can obtain bounded estimation error.

Eq. (3.4) is crucial in the above proof. In fact, to prove Lemma 8, it is enough to construct an
Ω
(
d
α

)
-spread design matrix X ∈ Rn×d and a set B ⊂ Rd of parameter vectors such that, for any

β, β′ ∈ B, one has (i) Xβ ∈ Zn, (ii) ‖X(β − β′)‖∞ 6 poly(d), and (iii) ‖X(β − β′)‖0 . log |B|.

3.2. Proof of Lemma 9

To prove Lemma 9, we apply Fano’s method as introduced in Appendix A.2. We first construct an
Ω
(

log d
α2

)
-spread design matrix X ∈ Rn×d and a set B ⊂ Rd of Ω (d) parameter vectors. We set

k = log(d)/(200α2) throughout Section 3.2.

Design matrix Pick a random orthogonal matrixQ ∈ Rd×d. Let Y > =
[
Q> Q>

]
. It is straight-

forward to see Y is 1-spread. Let X>1 =
[
Y >1 · · · Y >k

]
where Yi = Y for i ∈ [k]. Then X1 is

Ω
(

log d
α2

)
-spread. Then scaleX1 properly such thatX>1 X1 = n · Id. Obviously, scaling a matrix by

a nonzero factor does not change its spreadness. Let X> =
[
X>1 X>2

]
where X2 is a zero matrix.

Note this requires n > k · 2d = d log(d)/(100α2). Then the design matrix X is Ω
(

log d
α2

)
-spread

and satisfies X>X = n · Id.

Hard-to-distinguish parameter vectors Let {q1, ...qd} ⊂ Rd be the columns of Q. Let

B = σ

√
k

n
· {q1, ..., qd} (3.7)

11. Note that σ2 is proportional to the variance of the noise distribution. Setting σ2 = nα/d, then the signal-to-noise
ratio does not grow with n, which provides one evidence why consistent estimation is impossible.

13
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be the set of parameter vectors to be distinguish where σ > 0 is a scaling factor. The
√
k/n term

in Eq. (3.7) is just to make the subsequent notations cleaner. It is worth noting that for each β ∈ B,
Xβ is the “least-spread” vector in cspan (X). For any two distinct vectors β, β′ ∈ B, we have

X(β − β′) ∈ {0, σ}n ,
∥∥X(β − β′)

∥∥
0

= 2k. (3.8)

In other words, Xβ and Xβ′ differ on exactly 2k coordinates and all the differences are equal to σ.

Putting things together Now we are ready to prove Lemma 9.
Proof Consider the following hypothesis testing problem. Let Dβ be the uniform distribution over

set B in Eq. (3.7) and β∗ ∼ Dβ . Let X be the Ω
(

log d
α2

)
-spread design matrix as constructed above.

Let the noise vector be η = (ηi)
n
i=1 where η1, ...,ηn ∼ σ · G(2α) are independent symmetric geo-

metric random variables as defined in Definition 10. Here the scaling factor σ > 0 is the same σ in
Eq. (3.7). Observing y = Xβ∗+η, the goal is to distinguish d hypotheses {y = Xβ + η : β ∈ B}.
Now we apply Fano’s method by reducing this hypothesis testing problem to oblivious linear regres-
sion.

For any two distinct vectors β, β′ ∈ B, by independence of random variables {ηi}ni=1 and the
chain rule of Kullback-Leibler divergence, we have

DKL

(
Xβ + η ‖ Xβ′ + η

)
=

n∑
i=1

DKL

(
(Xβ)i + ηi ‖ (Xβ′)i + ηi

)
= 2k ·DKL (σ · G(2α) ‖ σ · G(1, 2α))

= 2k ·DKL (G(2α) ‖ G(1, 2α))

6 2k · 4α2 = 0.04 log d, (3.9)

where the second equality uses Eq. (3.8), the third equality and the inequality is due to Lemma 11.
Let β̂ : Rn → Rd be an arbitrary estimator for oblivious linear regression and γ > 0 be an

arbitrary given error bound. Note B is σ
√

2k/n-separated and |B| = d. Combining Eq. (A.1) with
Eq. (3.9), and setting σ2 = 4γn/k = 800γnα2/ log d, we have

E
∥∥∥β̂(y)− β∗

∥∥∥2

2
> γ, (3.10)

for any d > 5.

Some remarks To show inconsistency, it is enough to set σ2 = nα2/ log d in the above proof. The
error lower bound Eq. (3.10) can get arbitrarily large. To prove Lemma 9, it suffices to construct an
Ω
(

log d
α2

)
-spread design matrixX ∈ Rn×d and a set B ⊂ Rd of parameter vectors such that, for any

β, β′ ∈ B, one has (i) Xβ ∈ Zn, (ii) ‖X(β − β′)‖∞ 6 O(1), and (iii) ‖X(β − β′)‖0 . log |B|.
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Appendix A. Background

A.1. Basic notation

We use the convention N = {0, 1, 2, 3, ...}. For a positive integer n, let [n] := {1, 2, ..., n}. For
α ∈ Nn, define |α| :=

∑n
i=1 αi. For a vector v ∈ Rn, let supp(v) := {i ∈ [n] : vi 6= 0} be its

support, ‖v‖p := (
∑n

i=1 |vi|p)
1/p be its `p-norm (p > 1), and ‖v‖0 := |supp(v)|. Given a vector

v ∈ Rn and a subset S ⊆ [n], let vS ∈ R|S| denote the projection of v onto the coordinates in S. For
a matrix X , let cspan (X) denote its column span, rspan(A) denote its row span, and ker (X) de-
note its kernel or null space. Let σmin(X) and σmax(X) denote its minimum and maximum singular
values respectively. We use standard asymptotic notations Ω (·) , O (·) ,.,& to hide absolute multi-
plicative constants. Throughout this paper, we write random variables in boldface. We say an event
happens with high probability if it happens with probability 1− o(1). Given two distributions ν and
µ, let DKL (ν ‖ µ) denote their Kullback-Leibler divergence. For two random variables X and Y ,
we write DKL (X ‖ Y ) to denote the Kullback-Leibler divergence between their distributions. By
saying Gaussian (or Rademacher) matrix, we mean a matrix whose entries are independent standard
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Gaussian (or Rademacher) random variables. Unless explicitly stated, the base of logarithm is the
natural number e.

A.2. Fano’s method

Fano’s method is a classical approach to proving lower bounds for statistical estimation problems,
which we apply to prove the information-theoretic lower bounds in Section 3.

Suppose we are given an δ-separated set B ⊂ Rd. That is, ‖β − β′‖2 > δ for any distinct
β, β′ ∈ B. Let Dβ be the uniform distribution over B and β∗ ∼ Dβ . Let X ∈ Rn×d be a known
design matrix and η be the noise vector. Observing y = Xβ∗ + η, the hypothesis testing problem
is to distinguish |B| distributions {Xβ + η : β ∈ B}. Let β̂ : Rn → Rd be an arbitrary estimator
for the linear regression problem. By a reduction from the hypothesis testing problem and applying
Fano’s inequality (Lemma 12) combined with the convexity of the Kullback-Leibler divergence,
one has12

E
∥∥∥β̂(y)− β∗

∥∥∥2

2
>
δ2

4

1−
max
β,β′∈B

DKL (Xβ + η ‖ Xβ′ + η) + log 2

log |B|

 . (A.1)

Lemma 12 (Fano’s inequality) Let Σ be a finite set and J be a random variable uniformly dis-
tributed over Σ. Suppose J → Z → Ĵ is a Markov chain. Then,

P
(
J 6= Ĵ

)
> 1− I(J ;Z) + log 2

log |Σ|
,

where I(J ;Z) denotes the mutual information between J and Z.

A.3. Spreadness and distortion

Definition 13 (`p-spreadness) Let p > 1, δ ∈ [0, 1], n ∈ N, and m 6 n. A vector v ∈ Rn is said
to be (m, δ)-`p-spread if for every subset S ⊆ [n] with |S| 6 m, we have

‖vS‖p 6 δ · ‖v‖p .

A subspace V ⊆ Rn is said to be (m, δ)-`p-spread if every vector v ∈ V is (m, δ)-`p-spread. A
matrix is said to be (m, δ)-`p-spread if its column span cspan (X) is (m, δ)-`p-spread.

When the ambient dimension n is clear from the context, there are three parameters, i.e. p,m, δ,
to be specified in Definition 13. If the value of p is not specified, set p = 2 by default. That
is, (m, δ)-spreadness means (m, δ)-`2-spreadness. In certain cases (e.g. oblivious linear regres-
sion), we are more interested in capturing the dependence of m than the dependence of δ on other
paramters (e.g. the ambient dimension n). Then it is more convenient to hide δ as long as it is
Ω (1). Concretly, we say a vector, or a subspace, or a matrix ism-`p-spread if there exists a absolute
constant c ∈ (0, 1) such that it is (m, c)-`p-spread.

We introduce the following definition that is closely related to spreadness and has important
algorithmic implications in Appendix D.1.

12. We refer interested readers to Scarlett and Cevher (2019) for a proof of Eq. (A.1) as well as more applications of
Fano’s method.
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Definition 14 (`p-vs-`q distortion) Given 1 6 p < q, the `p-vs-`q distortion of a nonzero vector
v ∈ Rn is defined by

∆p,q(v) :=
‖v‖q
‖v‖p

· n
1
p
− 1
q .

The `p-vs-`q distortion of a subspace V ⊆ Rn is defined by

∆p,q(V ) := max
v∈V,v 6=0

∆p,q(v).

The `p-vs-`q distortion of a matrix X is defined by

∆p,q(X) := ∆p,q(cspan (X)).

By Hölder’s inequality and monotonicity of `p norm, it is easy to check 1 6 ∆p,q(v) 6 n
1
p
− 1
q

for any nonzero vector v ∈ Rn. Note that for a nonzero vector v ∈ Rn, ∆p,q(v) = 1 if and only

if |v1| = · · · = |vn|; ∆p,q(v) = n
1
p
− 1
q if and only if ‖v‖0 = 1. Intuitively, low distortion implies

well-spreadness, which is formalized in the following proposition.

Proposition 15 Let 1 6 p < q and V be a subspace of Rn.

1. If ∆p,q(V ) 6 ∆, then V is (m, δp)-`p-spread with

δp = (m/n)
1
p
− 1
q∆.

2. If V is not (m, δ)-`p-spread, then

∆p,q(V ) > δ(n/m)
1
p
− 1
q .

3. If ∆p,q(V ) 6 ∆, then V is (m, δq)-`q-spread with

δqq = 1−
(
∆−p − (m/n)p

) q
p .

Proof

1. By Hölder’s inequality, for any nonzero vector x,

|suppx|
1
q
− 1
p 6
‖x‖q
‖x‖p

6 1.

For any nonzero vector x ∈ V and any subset S ⊆ [n] with |S| 6 m, we have

‖xS‖p 6 |S|
1
p
− 1
q · ‖xS‖q 6 |S|

1
p
− 1
q · ‖x‖q 6 ∆(m/n)

1
p
− 1
q ‖x‖p .

2. Since V is not (m, δ)-`p-spread, then by definition there exist x ∈ V with ‖x‖p = 1 and
S ⊂ [n] with |S| 6 m such that

‖xS‖p > δ ‖x‖p = δ.
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Applying Hölder’s inequality,

‖x‖q > ‖xS‖q > |S|
1
q
− 1
p ‖xS‖p > δ|S|

1
q
− 1
p .

Then,

∆p,q(V ) > ∆p,q(x) = n
1
p
− 1
q
‖x‖q
‖x‖p

> δ(n/m)
1
p
− 1
q .

3. Fix an arbitrary vector x ∈ V with ‖x‖q = 1. Then for any subset S ⊆ [n] with |S| 6 m, we
have

‖xS‖p 6 |S|
1
p
− 1
q · ‖xS‖q 6 m

1
p
− 1
q .

As ‖x‖p > ∆−1n
1
p
− 1
q , then

‖xS̄‖p =
(
‖x‖pp − ‖xS‖

p
p

) 1
p
>
(
∆−p − (m/n)p

) 1
p n

1
p
− 1
q .

Applying Hölder’s inequality again,

‖xS̄‖q > |S̄|
1
q
− 1
p ‖xS̄‖p >

(
∆−p − (m/n)p

) 1
p .

Thus,

‖xS‖qq = ‖x‖qq − ‖xS̄‖
q
q 6 1−

(
∆−p − (m/n)p

) q
p .

In particular, given 1 6 p < q and a subspace V ⊆ Rn, if ∆p,q(V ) 6 O (1), then V is
both Ω (n)-`p-spread and Ω (n)-`q-spread. On the other hand, if V is not Ω (n)-`p-spread, then
∆p,q(V ) > ω (1).

A.4. Low-degree likelihood ratio

To better understand the hardness result in Appendix D.2, we briefly introduce the low-degree poly-
nomial method Hopkins (2018) that is developed for studying computational complexity of high-
dimensional statistical inference problems. For further details about the low-degree polynomial
method, we refer interested readers to Kunisky et al. (2019).

Consider in an asymptotic regime (N → ∞) the hypothesis testing problem of distinguishing
two sequences of hypotheses µ = {µN}N∈N and ν = {νN}N∈N, where µN and νN are probability
distributions over RN . We are interested in the case where ν, the null distribution, contains pure
noise (e.g. νN = N (0, 1)N ), and µ, the planted distribution, contains planted signal. A sequence
of test functions f = {fN}N∈N with fN : RN → {0, 1} is said to strongly distinguish µ and ν if

lim
N→∞

P
µ

(fN (X) = 1) = 1 and lim
N→∞

P
ν

(fN (X) = 0) = 1. (A.2)

In other words, strong distinguishability means both type I and type II errors go to 0 asN →∞.
We only consider the case where µ is absolutely continuous with respect to ν. The likelihood ratio
defined by

L(X) :=
dµ

d ν
(X)

is an optimal test function in the following sense.
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Proposition 16 Suppose µ is absolutely continuous with respect to ν. The unique solution of the
optimization problem

maxE
µ

[f(X)] subject to E
ν

[
f(X)2

]
= 1

is L(X)/
√
Eν [L(X)2] and the value of the optimization problem is

√
Eν [L(X)2].

Furthermore, classical decision theory tells us Eν
[
L(X)2

]
characterizes strong distinguishabil-

ity in the following way.

Proposition 17 If Eν
[
L(X)2

]
remains bounded as N → ∞, then µ and ν is not strongly distin-

guishable in the sense of Eq. (A.2).

One limitation of the above classical decision theory is that no computational-complexity con-
siderations are involved. With the goal of studying whether a hypothesis testing problem is strongly
distinguishable computation-efficiently, the low-degree polynomial method uses low-degree mul-
tivariate polynomials in the entries of X sampled from either µ or ν as a proxy for efficiently-
computable functions.

Definition 18 (Low-degree likelihood ratio) The degree-D likelihood ratio, denoted by L6D, is
the orthogonal projection13 of the likelihood ratio L = dµ/d ν onto the subspace of polynomials
of degree at most D.

We have the following low-degree analogue of Proposition 16.

Proposition 19 Suppose µ is absolutely continuous with respect to ν. The unique solution of the
optimization problem

max
f∈R[X]6D

E
µ

[f(X)] subject to E
ν

[
f(X)2

]
= 1

is L6D(X)/
√
Eν [L6D(X)2] and the value of the optimization problem is

√
Eν [L6D(X)2].

The following informal conjecture (Kunisky et al., 2019, Conjecture 1.16), which itself is based
on (Hopkins, 2018, Conjecture 2.2.4), can be thought of as an computational analogue of Proposi-
tion 17.

Conjecture 20 (Informal) For “sufficiently nice” sequences of probability distributions µ and ν,
if there exists ε > 0 and D = D(N) > (logN)1+ε for which Eν

[
L6D(X)2

]
remains bounded as

N →∞, then there is no polynomial-time algorithm that strongly distinguishes µ and ν.

Appendix B. Concentration bounds

Theorem 21 (Chernoff bound) Let X1, ...,Xn be independent Bernoulli ranodm variables with
parameter p. Then for any t ∈ [0, np],

P

(∣∣∣∣∣
n∑
i=1

Xi − np

∣∣∣∣∣ > t

)
6 2 exp

(
− t2

3np

)
.

13. We consider the Hilbert space endowed with inner product 〈f, g〉 := Eν [f(X)g(X)].
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Theorem 22 Let v ∼ N (0, Idn). Then for any t > 0, one has

P
(
‖v‖2 >

√
n+ t

)
6 exp(−t2/2).

Theorem 23 LetA ∼ N (0, 1)n×d. Then for any t > 0, with probability at least 1−2 exp(−t2/2),

√
n−
√
d− t 6 σmin(A) 6 σmax(A) 6

√
n+
√
d+ t.

Definition 24 (Sub-Gaussian norm) The sub-Gaussian norm of a d-dimensional random vector
x is defined by

‖x‖ψ2
:= sup

v∈Rd
‖v‖2=1

inf

{
t > 0 : E exp

(
〈x, v〉2

t2

)
6 2

}
.

Theorem 25 (Vershynin (2018), Theorem 4.6.1) Let A be an n × d random matrix with in-
dependent rows A1, ...,An. Suppose Ai’s have zero mean, identity covariance matrix, and
K := maxi∈[n] ‖Ai‖ψ2

< ∞ (see Definition 24). Then for any t > 0, with probability at least
1− 2 exp(−t2),

√
n− CK2

(√
d+ t

)
6 σmin(A) 6 σmax(A) 6

√
n+ CK2

(√
d+ t

)
,

where C > 0 is an absolute constant.

Theorem 26 (Well-spreadness of sub-Gaussian matrices) Let A be an n × d random matrix
with independent rows A1, ...,An. Suppose Ai’s have zero mean, identity covariance, and K :=
maxi∈[n] ‖Ai‖ψ2

6 O(1) (see Definition 24). Then there exist absolute constants c1, c1, c3 ∈ (0, 1)
such thatA is (c1n, c2)-spread with probability at least 1− exp (−Ω (n)) for d 6 c3n.

Proof In the following, c1, c2, c3, c4, c5 ∈ (0, 1) are sufficiently small constants that only depend
on K and the absolute constant C in Theorem 25. Suppose d 6 c3n and let k = c1n. We will
show that, with high probability, for any nonzero v ∈ Rd and any S ⊂ [n] with |S| = k, one has
‖ASv‖2 6 c2 ‖Av‖2, whereAS is a |S| × d submatrix ofA with rows indexed by S.

Fix a set S ⊂ [n] with |S| = k. By Theorem 25, with probability at least 1− 2 exp (−c4n),

σmax(AS) 6
√
k + C ′

(√
d+
√
c4n
)
6
(√
c1 + C ′ (

√
c3 +

√
c4)
)√

n,

where C ′ = CK2 is a constant. Using
(
n
k

)
6
(
en
k

)k and applying union bound, we have with
probability at least 1− 2 exp {(−c4 + c1(1− log c1))n} that,

σmax(AS) 6
(√
c1 + C ′ (

√
c3 +

√
c4)
)√

n

for any S ⊂ [n] with |S| = k. Using Theorem 25 again, we have

σmin(A) >
√
n− C ′

(√
d+
√
c5n
)
>
(
1− C ′ (

√
c3 +

√
c5)
)√

n

with probability at least 1− 2 exp (−c5n).
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Given any constantC ′ > 0, we can always choose sufficiently small constants c1, c2, c3, c4, c5 ∈
(0, 1) such that (i)

√
c1+C′(

√
c3+
√
c4)

1−C′(√c3+
√
c5) 6 c2 and (ii) −c4 + c1(1− log c1) < 0. Then with probability

at least 1− exp (−Ω (n)), one has for any nonzero v ∈ Rd and any S ⊂ [n] with |S| = k that,

‖ASv‖2
‖Av‖2

6
σmax(AS)

σmin(A)
6 c2.

Remark 27 For a random matrix with i.i.d. standard Gaussian or Rademacher random variables,
it is easy to check K 6 O(1).

Appendix C. NP-hardness of deciding well-spreadness

We prove Theorem 29 that shows deciding whether a matrix satisfies a given well-spreadness con-
dition is NP-hard. To cope with computational complexity issues with numbers, we will assume
all input numbers to be rational. For a rational number r ∈ Q, let 〈r〉 denote its encoding length,
i.e. the length of its representation. For a rational matrix A ∈ Qn×d, let 〈A〉 :=

∑n
i=1

∑d
j=1 〈Aij〉

denote its encoding length.

Problem 28 Given as input A ∈ Qn×d, m ∈ [n], and δ ∈ Q, decide whether A is (m, δ)-spread.

Theorem 29 Problem 28 is NP-hard.

To prove Theorem 29, we will show the following problem is NP-hard and there exists a
polynomial-time reduction from this problem to Problem 28.

Problem 30 Given as input A ∈ Qp×n, m ∈ [n], and δ ∈ Q, decide whether ker (A) is (m, δ)-
spread.

Following Bandeira et al. (2013); Tillmann and Pfetsch (2014), our proof of the NP-hardness of
Problem 30 is based on a reduction from the problem of deciding matrix spark (Problem 32).

Definition 31 (Matrix spark) The spark of a matrix A is the smallest number k such that there
exists a set of k columns of A that are linearly dependent. Equivalently,

spark (A) := min {‖x‖0 : Ax = 0, x 6= 0} .

Problem 32 Given as input A ∈ Qp×n and m ∈ N, decide whether spark (A) > m.

By a reduction from the NP-complete k-clique problem, i.e. deciding whether a given simple
graph has a clique of size k, Problem 32 is proven to be NP-hard in Tillmann and Pfetsch (2014).
Moreover, the matrices in the hard instances of Problem 32 are integer matrices whose entry-wise
encoding length is bounded by a polynomial in p and n.

Theorem 33 Problem 30 is NP-hard.
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Proof Let (A,m) be a hard instance of Problem 32 given by Tillmann and Pfetsch (2014). Let
P = ‖A‖∞. It is known that 〈P 〉 is bounded by some polynomial in p and n. Our strategy is to
choose an appropriate rational number δ ∈ (0, 1) with 〈δ〉 bounded by some polynomial in p and
n such that the following is true. When we give the instance (A,m, δ) to an oracle of Problem 30,
if the answer is YES, then spark (A) > m; if the answer is NO, then spark (A) 6 m. If such a δ
exists, then we have a polynomial-time reduction from Problem 32 to Problem 30, and as a result,
Problem 30 is NP-hard.

In the following, we show how to construct such a δ ∈ (0, 1). For the case when the oracle
answers YES, it is straightforward to see spark (A) > m for any δ ∈ (0, 1). For the case when the
oracle answers NO, we consider the contrapositive. Assume spark (A) > m. We want a δ ∈ (0, 1)
such that ‖vS‖2 6 δ ‖v‖2 for any nonzero v ∈ ker (A) and any S ⊆ [n] with |S| 6 m.

Take an arbitrary nonzero vector x ∈ ker (A). Without loss of generality, assume |x1| > |x2| >
· · · > |xn|. Let S = [m] and S̄ = [n] \ S. Then it suffices to upper bound ‖xS‖2 / ‖x‖2 by δ.
Let AS be the m × k submatrix of A with columns indexed by S and define AS̄ likewise. Since
x ∈ ker (A), we have

Ax = 0 ⇐⇒ ASxS +AS̄xS̄ = 0

=⇒ ‖ASxS‖2 = ‖AS̄xS̄‖2

=⇒
‖xS‖2
‖xS̄‖2

6
σmax (AS̄)

σmin (AS)
.

It is easy to see
σmax (AS̄) 6 ‖AS̄‖F 6 ‖A‖F 6

√
pn · P.

From the proof of (Bandeira et al., 2013, Theorem 4), we know

σmin (AS)2 >
(
pmP 2

)1−m
>
(
pnP 2

)1−p
.

Therefore,

‖xS‖2
‖x‖2

6

√
1

1 + σmin (AS)2 /σmax (AS̄)2 6

√
1

1 + (pnP 2)−p
6 1− 1

2 ((pnP 2)p + 1)
.

Set δ = 1 − 1
2((pnP 2)p+1)

. Then ker (A) is (m, δ)-spread. Moreover, 〈δ〉 6 f(p, n) for some
polynomial f .

Now we are ready to prove Theorem 29.
Proof Given Theorem 33, it only remains to show there exists a polynomial-time reduction from
Problem 30 to Problem 28. It is well-known that, given as input a matrix X ∈ Qp×n, Gaussian
elimination is able to produce in polynomial time a matrix Y ∈ Qn×(n−p) such that ker (X) =
cspan (Y ) and 〈Y 〉 is polynomial in 〈X〉.

Theorem 29 establishes the NP-hardness of deciding whether a given matrix is (m, δ)-
spreadness when m and δ are also inputs. Nevertheless, this result has a major limitation in the
conext of oblivious regression. That is, the parameter δ ∈ (0, 1) used in the above proof is 1− o(1)
that this result reveals almost nothing about the hardness of the more interesting case when δ is a
constant.
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Appendix D. Computational aspects of certifying well-spreadness

In this section we prove Theorem 4 and Theorem 5. Concretly, in Appendix D.1, we provide an
efficient algorithm, based on known sum-of-squares algorithms, that can certify an n× d Gaussian
matrices is Ω(n)-spread when n & d2. On the other hand, in Appendix D.2, we provide strong evi-
dence, based on the low-degree polynomial method, which suggests no polynomial-time algorithm
is able to certify an n× d Gaussian matrix is Ω(n)-spread when n� d2.

D.1. Algorithms for certifiying well-spreadness

We prove Theorem 34 that shows we can efficiently certify an n×dGaussian matrix is Ω (n)-spread
with high probability whenever n & d2. We consider the regime where d is growing.

Theorem 34 Let δ ∈ (0, 1) and C > 0 be arbitrary constants. Let A ∼ N (0, 1)n×d with
n > Cd2. There exists a polynomial-time algorithm based on sum-of-squares relaxation and a
constant C ′ = C ′(C) such that

1. ifA is not
(
(δ/C ′)4n, δ

)
-spread, the algotithm outputs NO;

2. with high probability,A is
(
(δ/C ′)4n, δ

)
-spread and the algotithm outputs YES.

Theorem 4 is a direct application of Theorem 34 to oblivious linear regression with Gaussian
design.

To prove Theorem 34, we make use of the following result which shows that, with high proba-
bility, the 2-to-4 norm14 of an n×d Gaussian matrix can be efficiently upper bounded by O

(
n1/4

)
,

given n & d2.

Theorem 35 (Barak et al. (2012), Theorem 7.1) Let A ∼ N (0, 1)n×d. There exists a
polynomial-time algorithm based on sum-of-squares relaxation that outputs an upper bound U of
the 2-to-4 norm ofA, i.e. max‖u‖2=1 ‖Au‖4, which satisfies

U 6 n1/4

(
3 + c ·max

(
d√
n
,
d2

n

))1/4

with high probability. Here, c > 0 is an absolute constant.

Then it is straightforward to show that, with high probability the `2-vs-`4 distortion of an n× d
Gaussian matrix can be efficiently upper bounded by O(1) given n & d2, which we formalize in the
following corollary.

Corollary 36 Let C > 0 be an arbitrary constant. Let A ∼ N (0, 1)n×d with n > Cd2. There
exists a polynomial-time algorithm based on sum-of-squares relaxation that outputs an upper bound
U′ of the `2-vs-`4 distortion of A, i.e. max

{
n1/4 · ‖v‖4 / ‖v‖2 : v ∈ cspan (A) , v 6= 0

}
, which

satisfies U′ 6 C ′ with high probability. Here C ′ > 1 is a constant only depending on C.

14. The p-to-q norm of a matrix X is defined by ‖X‖p→q := maxu6=0 ‖Xu‖q / ‖u‖p.
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Proof For any non-singular matrix X ∈ Rn×d, one has

∆2,4(X) = n
1
4 max
u6=0

‖Xu‖4
‖Xu‖2

= n
1
4 max
u6=0

‖Xu‖4 / ‖u‖2
‖Xu‖2 / ‖u‖2

6 n
1
4

maxu6=0 ‖Xu‖4 / ‖u‖2
minu6=0 ‖Xu‖2 / ‖u‖2

=
n

1
4

σmin(X)
· max
‖u‖2=1

‖Xu‖4 .

Now consider A ∼ N (0, 1)n×d which is non-singular almost surely as long as n > d. By The-
orem 23, for any n � d, one has σmin(A) = (1− o(1))

√
n with high probability. And singular

values can be efficiently computed. By Theorem 35, there is an efficiently-computable upper bound
U of max‖u‖2=1 ‖Au‖4 that satisfies U 6 C ′′n1/4 with high probability. Here C ′′ only depends on
C.

Therefore, there exist a constant C ′ only depending on C and an efficiently-computable upper
bound U′ of ∆2,4(A) such that U′ 6 C ′ with high probability.

Now, we combine Corollary 36 and Proposition 15 to prove Theorem 34.
Proof We first describe the algorithm A. Given an input A ∼ N (0, 1)n×d, we use the efficient
algorithm given by Corollary 36 to compute an upper bound U′ of the `2-vs-`4 distortion ∆2,4(A).
Let C ′ = C ′(C) be the constant given by Corollary 36. If U′ 6 C ′, algorithm A outputs YES.
Otherwise, algorithm A outputs NO.

Then we show algorithm A satisfies the two requirements. Instantiate Proposition 15 with
p = 2, q = 4 and let ∆ = ∆2,4(A). Then A is

(
δ4∆−4n, δ

)
-spread for any δ ∈ (0, 1). By

contrapositivity, if A is not
(
(δ/C ′)4n, δ

)
-spread, then U′ > C ′ and algorithm A will output NO.

By Corollary 36, U′ 6 C ′ with high probability. Thus, with high probability, A is
(
(δ/C ′)4n, δ

)
-

spread and algorithm A outputs YES.

D.2. Hardness of certifiying well-spreadness

We provide here formal evidence suggesting the computational hardness of certifiying well-
spreadness in average case. We consider the regime where d is growing and n & d.

To state our hardness result, we first introduce the noisy Bernoulli-Rademacher distribution
(over R) and a distinguishing problem.

Definition 37 (Noisy Bernoulli-Rademacher distribution) A random variable x following noisy
Bernoulli-Rademacher distribution with parameter ρ ∈ (0, 1) and σ ∈ [0, 1/

√
1− ρ), denoted by

x ∼ nBR (ρ, σ), is defined by

x =


N
(
0, σ2

)
, with probability1− ρ,

+ 1√
ρ′
, with probabilityρ2 ,

− 1√
ρ′
, with probabilityρ2 ,

where ρ′ = ρ
1−(1−ρ)σ2 .
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We remark that the particular choice of ρ′ in the above definition is to make Ex2 = 1 for
x ∼ nBR (ρ, σ).

Problem 38 (Distinguishing) Let n, d ∈ N, ρ ∈ (0, 1), and σ ∈ [0, 1/
√

1− ρ).

• Under the null distribution ν, observeA ∼ N (0, 1)n×d.

• Under the planted distribution µ, first sample a hidden vector v whose entries are i.i.d. noisy
Bernoulli-Rademacher random variables with parameter (ρ, σ). Let Y be an n × d matrix
of which the first column is v and the rest entries are independent N (0, 1). Then sample a
random orthogonal matrixQ and observeA = Y Q.

Given a sampleA from either ν or µ, decide from which distributionA is sampled.

Now we state our computational hardness result.

Theorem 39 Let ν and µ be the null an planted distributions defined in Problem 38 respectively.
Let C > 1 be an arbitrary constant. There exist absolute constants c1, c2, c3 ∈ (0, 1) and C4 > 1

such that the following holds. For any ρ� 1
n , σ2 6 1

2 (log n)−C , d ∈
(
C4ρ

−1√n (log n)2C , c3n
)

,

m ∈ (1.5ρn, c1n), constant δ ∈ (c2, 1), and D 6 (log n)C , one has

1. A ∼ ν is (m, δ)-spread with high probability;

2. A ∼ µ is not (m, δ)-spread with high probability;

3. Eν
[
L6D(A)2

]
6 O(1) where L6D is the degree-D likelihood ratio defined in Definition 18.

Proof By Lemma 40 and Lemma 41.

Implications of Theorem 39 Before proving Theorem 39, we discuss some of its implications.
First we set C = 2, ρ = 1/ log n, and m = 2n/ log n in Theorem 39. It follows that, in the
regime where

√
n � d . n, we have (i) A ∼ ν, i.e. A ∼ N (0, 1)n×d, is Ω (n)-spread with

high probability; (ii) A ∼ µ is o(n)-spread with high probability; and (iii) it is very likely that no
polynomial-time algorithm can distinguish ν and µ, based on the discussion of low-degree polyno-
mial method in Appendix A.4.

Then we apply Theorem 39 to oblivious linear regression with Gaussian design matrix and thus
prove Theorem 5. By (d’Orsi et al., 2021b, Theorem 1.2), the sufficent conditions for consistent
oblivious regression are (i) n � d

α2 and (ii) the design matrix is Ω
(
d
α2

)
-spread. In the following,

we will characterize a regime over (n, d, α) where (i) n � d
α2 ; (ii) A ∼ N (0, 1)n×d is Ω

(
d
α2

)
-

spread with high probability; and (iii) there exists strong evidence suggesting certifiying Ω
(
d
α2

)
-

spreadness ofA is computationally difficult. To this end, let n� d
α2 and fix two arbitrary constants

C > 0 and δ ∈ (0, 1). Let ν and µ be the null and planted distributions considered in Theorem 39.
It is not difficult to see from the proof of Theorem 26 that A ∼ ν is

(
C d
α2 , δ

)
-spread with high

probability given n � d
α2 . From the proof of Lemma 40 we know, if ρ � 1

n , σ = o(1), and
ρn . d

α2 , then A ∼ µ is not
(
C d
α2 , δ

)
-spread with high probability. Set C = 2 in Lemma 41 and
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we have the following: if σ2 6 1
2 (log n)−2, ρ−1n1/2 (log n)4 . d, then Eν

[
L6D(A)2

]
6 O(1)

for any D 6 (log n)2. Therefore, such a regime over (n, d, α) can be characterized by{
(n, d, α) : ∃ρ such that n� d

α2
, ρ� 1

n
, ρn .

d

α2
, ρ−1n1/2 polylog(n) . d

}
,

or equivalently, {
(n, d, α) : n3/4 polylog(n)α . d� nα2

}
.

Finally, we remark that the “noiseless” Bernoulli-Rademacher distribution (i.e. σ = 0) already
appeared in the literaure (e.g. d’Orsi et al. (2020); Mao and Wein (2021)). In the “noiseless” setting,
Problem 38 can be efficiently solved even when n is only linear in d Zadik et al. (2021). Although
the algorithm proposed in Zadik et al. (2021) surpasses the lower bound for low-degree polynomial
method, their algorithm relies heavily on the extact and brittle structure of the hidden vector. If we
add a little noise to the hidden vector, like what we did here, then their algorithm is likely to fail.

Proof of Theorem 39 The following two lemmas together directly imply Theorem 39.

Lemma 40 Let ν and µ be the null and planted distributions defined in Problem 38 respectively.
There exist absolute constants c1, c2, c3 ∈ (0, 1) such that the following holds. For any ρ � 1

n ,
σ = o(1), d 6 c3n, m ∈ (1.5ρn, c1n), and constant δ ∈ (c2, 1), one has

1. A ∼ ν is (m, δ)-spread with high probability;

2. A ∼ µ is not (m, δ)-spread with high probability.

Proof The existence of absolute constants c1, c2, c3 is guaranteed by Theorem 26. That is, if
A ∼ N (0, 1)n×d and d 6 c3n, then A is (c1n, c2)-spread with high probability. Observe that
(m1, δ1)-spreadness implies (m2, δ2)-spreadness for any m2 6 m1 and δ2 > δ1. Thus for any
m 6 c1n and δ > c2,A ∼ ν is (m, δ)-spread with high probability.

Now consider A ∼ µ and let v be the hidden vector of µ. Clearly, v ∈ cspan (A). We
decompose v into two parts with disjoint supports, v = b+ε, where b is the Bernoulli-Rademacher
part and ε is the Gaussian part. Let S = supp b. Then,

‖vS‖2
‖v‖2

=
‖b‖2

‖b‖2 + ‖ε‖2
.

By Theorem 21,
P (0.5ρn 6 ‖b‖0 6 1.5ρn) > 1− 2 exp

(
−ρn

12

)
.

By Theorem 22,
P
(
‖ε‖2 > 2σ

√
n
)
6 exp

(
−n

2

)
.

If ρ� 1/n and σ = o(1), then with high probability, we have |S| 6 1.5ρn and

‖vS‖2
‖v‖2

>
1

1 + 4σ
= 1− o(1).

Thus for any m > 1.5ρn and any constant δ < 1,A is not (m, δ)-spread with high probability.
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Lemma 41 Let ν and µ be the null and planted distributions defined in Problem 38 respec-
tively. Let C > 1 be an arbitrary constant. For any D 6 (log n)C , σ2 6 1

2 (log n)−C , and
d > C4ρ

−1√n (log n)2C , one has

E
ν

[
L6D(A)2

]
6 O(1),

where C4 > 1 is an absolute constant and L6D is the degree-D likelihood ratio defined in Defini-
tion 18.

The proof of Lemma 41 is an adaptation of the proof of (Mao and Wein, 2021, Theorem 3.4)15

which we include here for completeness. The proof relies on the following three lemmas.

Lemma 42 (Mao and Wein (2021), Lemma 4.23) Let ν and µ be the null and planted distribu-
tions defined in Problem 38 respectively. Let u,u′ be independent uniformly random vectors on the
unit sphere in Rd and x ∼ nBR (ρ, σ). Then,

E
ν

[
L6D(A)2

]
=

D∑
k=0

E
〈
u,u′

〉k ∑
α∈Nn
|α|=k

n∏
i=1

(Ehαi(x))2 ,

where hk : R → R is the k-th normalized Hermite polynomial and where L6D is the degree-D
likelihood ratio defined in Definition 18.

Lemma 43 (Mao and Wein (2021), Lemma 4.25) Let u and u′ be independent uniformly ran-
dom vectors on the unit sphere in Rd. For odd k ∈ N, E 〈u,u′〉k = 0. For even k ∈ N,

E
〈
u,u′

〉k
6 (k/d)k/2.

Lemma 44 (Adapted from Mao and Wein (2021), Lemma 4.26) For a noisy Bernoulli-
Rademacher random variable x ∼ nBR (ρ, σ), we have

1. Ehk(x) = 0 for odd k ∈ N;

2. Eh0(x) = 1;

3. Eh2(x) = 0;

4. (Ehk(x))2 6 8kρ2−k for k > 4 and σ2 6 1
k−1 .

Proof Since the noisy Bernoulli-Rademacher distribution is symmetric and odd-degree Hermite
polynomials are odd functions, one has Ehk(x) = 0 for odd k ∈ N. It is straightforward to check
by definition that

Eh0(x) = 1, Eh2(x) =
1√
2
E
[
x2 − 1

]
= 0.

Fix an even integer k > 4 and let σ2 6 1
k−1 . Then for any even integer r ∈ [k],

Exr = (1− ρ)σr(r − 1)!! + ρ(ρ′)−r/2 6 σr(r − 1)!! + ρ1−r/2 6 σ2 + ρ1−k/2 6 2ρ1−k/2.

15. A related result was previously shown in (d’Orsi et al., 2020, Theorem 6.7).
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Also, Ex0 = 1 6 2ρ1−k/2. Let cr be the coefficient of zr in the polynomial
√
k! · hk(z). Then,

|Ehk(x)| = 1√
k!

∣∣∣∣∣
k∑
r=0

cr Exr
∣∣∣∣∣ 6 2ρ1−k/2

√
k!

k∑
r=0

|cr| .

Define T (k) :=
∑k

r=0 |cr|. Note that T (k) is the k-th telephone number which satisfies the follow-
ing recurrence,

T (n) = T (n− 1) + (n− 1) · T (n− 2) ∀n > 2,

and T (0) = T (1) = 1. It is easy to show by induction that,

T (n) 6 Cnnn/2, ∀n > 1, ∀C >
1 +
√

5

2
.

Now fix some C > 1+
√

5
2 . Using Stirling’s approximation, n! >

√
2πn(n/e)n for any n > 1, we

have

(Ehk(x))2 6 4ρ2−k · T (k)2

k!
6

4√
2πk

(
C2e

)k
ρ2−k.

Therefore, for k > 4 and σ2 6 1
k−1 , we have

(Ehk(x))2 6 8kρ2−k.

Now we are ready to prove Lemma 41.
Proof Let x ∼ nBR (ρ, σ) be a noisy Bernoulli-Rademacher random variable. Given α ∈ Nn, if
there exists i ∈ [n] such that αi is odd or αi = 2, then Ehαi(x) = 0 by Lemma 44. Thus, we define
the following set

S(k,m) := {α ∈ Nn : |α| = k, ‖α‖0 = m,αi ∈ {0} ∪ {4, 6, 8, ...} for all i ∈ [n]} .

As σ2 6 1
2 (log n)−C andD 6 (log n)C , we have σ2 6 1/(k−1) for any k 6 D. Using Lemma 44,

for α ∈ S(k,m), we have

n∏
i=1

(Ehαi(x))2 6
∏
αi 6=0

8αiρ2−αi 6 8kρ2m−k.

Note that S(k,m) is empty if m > bk/4c. And it is easy to see

|S(k,m)| 6
(
n

m

)
mk/2 6 nm (k/4)k/2 .

Then, for k > 4, we have

∑
α∈Nn
|α|=k

n∏
i=1

(Ehαi(x))2 =

bk/4c∑
m=1

∑
α∈S(k,m)

n∏
i=1

(Ehαi(x))2 6
bk/4c∑
m=1

nm (k/4)k/2 8kρ2m−k
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= (k/4)k/2 8kρ−k
(
nρ2
)bk/4c+1 − nρ2

nρ2 − 1
6 (k/4)k/2 8kρ−k

(
nρ2
)k/4+1

nρ2/2

6 2 · kk/2nk/4ρ−k/24k.

Let u and u′ be independent uniformly random vectors on the unit sphere in Rd. Using Lemma 43,
for k > 4, we have

E
〈
u,u′

〉k ∑
α∈Nn
|α|=k

n∏
i=1

(Ehαi(x))2 6 (k/d)k/2 · 2 · kk/2nk/4ρ−k/24k =

(
512k4n

d2ρ2

)k/4
.

Finally, by Lemma 42, we have

E
ν

[
L6D(A)2

]
=

D∑
k=0

E
〈
u,u′

〉k ∑
α∈Nn
|α|=k

n∏
i=1

(Ehαi(x))2 = 1 +

D∑
k>4

E
〈
u,u′

〉k ∑
α∈Nn
|α|=k

n∏
i=1

(Ehαi(x))2

6 1 +
D∑
k>4

(
512k4n

d2ρ2

)k/4
6 1 +

∞∑
k>4

(
512n (log n)4C

d2ρ2

)k/4
.

If there exists a constant c ∈ (0, 1) such that 512n(logn)4C

d2ρ2
6 c, i.e. d >

√
512/c

√
n (log n)2C , then

we have
E
ν

[
L6D(A)2

]
6 O(1).
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