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Abstract
We examine the necessity of interpolation in overparameterized models, that is, when achieving
optimal predictive risk in machine learning problems requires (nearly) interpolating the training
data. In particular, we consider simple overparameterized linear regression y = Xθ + w with
random design X ∈ Rn×d under the proportional asymptotics d/n → γ ∈ (1,∞). We precisely
characterize how prediction (test) error necessarily scales with training error in this setting. An
implication of this characterization is that as the label noise variance σ2 → 0, any estimator that
incurs at least cσ4 training error for some constant c is necessarily suboptimal and will suffer growth
in excess prediction error at least linear in the training error. Thus, optimal performance requires
fitting training data to substantially higher accuracy than the inherent noise floor of the problem.

1. Introduction

Conventional machine learning wisdom (e.g. Vapnik and Chervonenkis, 1971) posits that the size of
a model’s training data must be large relative to its effective capacity—for which parameter count
often serves as a proxy—in order for the model to have good generalization. Yet despite the fact
that many common families of modern machine learning models (e.g., deep neural networks) are
overparameterized in the sense that they are demonstrably able to interpolate arbitrary relabelings
of their training data, they tend to generalize remarkably well in practice even after optimizing the
empirical risk to zero (Zhang et al., 2017).

This benign overfitting phenomenon has spurred considerable recent interest and effort within
the learning theory community toward understanding learning in the overparameterized regime,
where the empirical risk minimizer is underdetermined (Belkin et al., 2018a,b, 2019; Hastie et al.,
2019; Muthukumar et al., 2019; Bartlett et al., 2020; Belkin et al., 2020; Liang and Rakhlin, 2020;
Mei and Montanari, 2021). Yet while overparameterized interpolating models evidently generalize
well, both in theory and practice, there nonetheless remains at least some reason to be skeptical of
the notion that interpolation is necessarily “benign.” Indeed, numerous desiderata beyond prediction
risk—for example, privacy and security concerns—motivate an explicit preference for models that
do not interpolate, or in particular, memorize, their training data. An alternative and perhaps less
auspicious explanation for benign overfitting is that many of the crowdsourced benchmarks the
machine learning community uses to evaluate models, such as ImageNet (Deng et al., 2009), have
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limited label uncertainty: examples with high annotator disagreement are in many cases explicitly
withheld (Deng et al., 2009; Recht et al., 2019), mitigating the danger of overfitting to label noise.

Thus, while interpolation may suffice to learn models with strong generalization, it is natural
to wonder whether interpolation—or more evocatively, memorization—is necessary for learning in
the overparameterized regime. Here we take a phenomenological approach, developing a simple
model to explicate and predict behavior of statistical learning procedures, and motivated by the
question of the necessity of memorization, we precisely characterize how prediction risk must scale
with empirical risk. Considering a simple linear model y = x⊤θ + w, we define memorization in
terms of the empirical risk, and formulate the cost of not fitting the training data as an optimization
problem over a class of estimators H,

minimize
θ̂∈H

Pred
(
θ̂
)
:= E

[
(x⊤θ̂ − y)2 | X

]
subject to Train

(
θ̂
)
:=

1

n
E
[∥∥Xθ̂ − Y

∥∥2
2
| X
]
≥ ϵ2 ,

(1)

where the expectations in Pred and Train are taken conditional on the over the training data Y
defining θ̂ conditional on X , as well as the future data point (x, y), so that Pred (·) and Train (·)
denote the expected prediction and training error given a prior over the true model parameter θ
(respectively).

We take as inspiration the recent line of work (Feldman, 2020; Brown et al., 2021), which gives
scenarios in which certain formal notions of memorization are necessary for a model to generalize
well. We build on this by studying the extent to which memorization remains necessary even in the
simplest settings: random design linear regression with independent noise. For our initial analysis,
we assume the estimator θ̂ is linear in y, which includes least-norm interpolants and ridge regression
as special cases. Here, we obtain a tight asymptotic characterization of the optimal solution to the
problem (1) (see Theorems 1 and 3). Key to our analysis is to show that, even though problem (1)
is non-convex, strong duality obtains, and then leverage tools from random matrix theory to obtain
analytic formulae for the optimal prediction risk by integrating over the spectrum of the empirical
data covariance. We find that memorization of label noise is in fact necessary for generalization
even in the simple case of linear regression; in particular, the threshold ϵ2 above which the optimal
prediction risk is no longer achievable tends to zero asymptotically faster than the variance of the
label noise—so we must fit linear regression models to (training) accuracy substantially better than
the intrinsic noise floor of the problem. Beyond this threshold the excess prediction risk grows
linearly with the empirical risk. Finally, assuming Gaussian noise w and a Gaussian prior over θ
in problem (1), we extend our analysis to hold not only for linear estimators, but for general H
comprised of all square-integrable estimators (see Theorem 4), meaning that our characterization
holds for (essentially) any estimator.

1.1. Related work

Neither interpolation nor memorization of training data is a new phenomenon in machine learning.
Classical algorithms, such as k-nearest neighbors and (kernel) support vector machines, explicitly
encode the training data into the learned model. Some explicitly interpolate training data and
still enjoy performance guarantees; for example, the 1-nearest neighbor algorithm interpolates its
training data and has classification risk at most twice the Bayes’ error (Cover and Hart, 1967).
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Nonetheless, the success of deep learning has spurred renewed interest in interpolating models.
Recent work has sought to develop an understanding of “implicit regularization”: whereas most
minimizers of the empirical risk may generalize poorly, standard learning algorithms used in practice
such as (stochastic) gradient descent tend to converge to solutions that do generalize well, even
in the absence of explicit regularization terms in the training objective (Gunasekar et al., 2017;
Soudry et al., 2018; Gunasekar et al., 2018; Arora et al., 2019a,b; Ji and Telgarsky, 2019). In
the particular case of overparameterized linear regression, gradient descent initialized at the origin
trivially recovers the ordinary least-squares (OLS) estimator, which in overparameterized settings
is the minimum norm interpolant. Most relevant to our work, Hastie et al. (2019) give formulae
for the asymptotic error of ridge-type estimators, including the minimum norm interpolant, as
the number of features d and training observations n tend to infinity in the proportional regime
where d/n → γ > 1 for both isotropic and anisotropic features. Muthukumar et al. (2019) give
corresponding non-asymptotic lower bounds, with matching upper bounds for certain particular
feature distributions, on the minimal error achievable among all interpolating solutions. Bartlett
et al. (2020) consider regression over general Hilbert spaces, showing that the minimum norm
interpolant achieves optimal error assuming certain conditions on the effective rank of the feature
covariance. Our results complement this line of work: not only can overparameterized interpolating
models generalize well, but in fact interpolation is necessary to achieve good generalization.

Our work pursues a line of inquiry Feldman (2020) originates, which studies memorization in
the setting of multi-class classification, where the data distribution is a heavy-tailed mixture over
a finite set of subpopulations. He defines memorization in terms of the sensitivity of a model’s
predictions to the inclusion or exclusion of a particular observation in its training data, and under
the assumption that the class labelings of distinct subpopulations are essentially independent—i.e.,
an observation drawn from one subpopulation yields limited to no information about the labels of
the other subpopulations—proves that memorization is necessary to achieve optimal generalization.
Brown et al. (2021) extend these results, which are specific to label memorization, to incorporate an
information-theoretic notion of memorizing the input observations in carefully constructed combinatorial
settings, including next-symbol prediction and clustering on the hypercube. In contrast, we attempt
a simpler tack: ordinary linear regression with standard distributional assumptions, construing
memorization strictly in terms of training error.

2. Problem formulation

Given a design matrix X = Rn×d (d ≥ n), an unknown signal θ ∈ Rd and a noise vector w such
that E[w] = 0 and Var(w) = σ2In, consider the standard linear model

y = Xθ + w.

We assume that X has i.i.d. mean zero rows x⊤1 , · · · , x⊤n with covariance Σ ∈ Rd×d. The training
error of an estimator θ̂ = θ̂(X, y), a function of X and the responses y whose dependence on
both we typically leave implicit, is TrainX,θ(θ̂) = 1

nEw[∥Xθ̂ − y∥22 | X, θ], while the prediction
(generalization) error is PredX,θ(θ̂) = Ex,w[(x

⊤θ− x⊤θ̂)2 | X, θ], where x is an independent copy
from the input distribution. We consider a Bayesian formulation where the ground truth θ has a
prior distribution independent of the data and the noise, and the posterior training and generalization
errors are TrainX(θ̂) = Eθ[TrainX,θ(θ̂)] and PredX(θ̂) = Eθ[PredX,θ(θ̂)].
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Given a constraint on the training error ϵ ∈ [0,∞), we can then formalize the cost of not fitting
the training data via the following optimization problem over a hypothesis class of estimators H.

minimize
θ̂∈H

PredX

(
θ̂
)

subject to TrainX

(
θ̂
)
≥ ϵ2

(2)

Here, the constraint is on the average training error (over y); any estimator that on each input y has
prescribed error ϵ2 immediately satisfies the constraints (2). We mainly study the cost of not fitting

CostX(ϵ) := min
θ̂∈H(ϵ)

PredX

(
θ̂
)
− min

θ̂∈H(0)
PredX

(
θ̂
)
, (3)

where for a given H we define the set H(ϵ) := {θ̂ ∈ H | TrainX(θ̂) ≥ ϵ2} ⊂ H.
Noting that H(t) is a decreasing set in t, we always have CostX(ϵ) ≥ 0. Of course, the

best estimator need not necessarily memorize the entire dataset—as we shall see, some amount
of regularization can help—and so we also specifically consider the cost of not interpolating with
respect to the minimum norm interpolating solution θ̂ols := X⊤(XX⊤)−1y, defining

CostX(ϵ) := min
θ̂∈H(ϵ)

PredX

(
θ̂
)
− PredX

(
θ̂ols

)
. (4)

We study problem (2), in particular through the lens of the quantities (3) and (4), under the
following assumptions.

Assumption A1 (Proportional asymptotics and spherical prior) The dimension d := d(n) satisfies
d/n → γ ∈ (1,∞). The data matrix X = [x1 x2 · · · xn]

⊤ ∈ Rn×d, where X := X(n) =
(xij(n))i∈[n],j∈[d] forms a triangular array of random variables with independent rows. There is
a deterministic sequence of symmetric positive definite matrices Σ := Σ(n) ∈ Rd×d such that
X = ZΣ

1
2 , where Z = (zij)i∈[n],j∈[d] and zij are i.i.d. random variables with distribution

independent of n such that E[zij ] = 0, Var(zij) = 1, and E[z4ij ] ≤ M for a universal constant
M . In addition, we assume θ has prior independent of the data X, y, with zero mean and variance
Var(θ) = Id/d.

Under Assumption A1, for each n, x1(n), · · · , xn(n) are i.i.d. random vectors such that

E[xi(n)] = 0, Var (xi(n)) = Σ(n).

Meanwhile, examples of priors satisfying the assumption include the uniform prior on the unit
sphere Sd−1 and the Gaussian prior N(0, Id/d), where note that E[∥θ∥22] = 1. We assume γ > 1,
and hence, as the model is overparameterized, zero training error is attainable.

While at first blush appearing restrictive, our main results characterize the cost of not fitting for
linear estimators.

Assumption A2 (Linear estimators) The hypothesis class consists of all linear estimators, i.e.,

H =
{
θ̂(X, y) = Ay ,A := A(X) ∈ Rd×n

}
,

where A may depend on the features X but not the labels y.
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Notably, the hypothesis class of linear estimators contains the popular ridge estimator θ̂λ := (X⊤X+
λI)−1X⊤y and minimum norm interpolant θ̂ols := (X⊤X)†X⊤y. Because we seek exact optimality
results for more general estimators, we follow standard practice in minimax and asymptotic statistics
to choose a prior on the “true” parameter θ. In classical linear regression, the prior of choice
is a Gaussian, so that Anderson’s theorem (1955) guarantees the posterior mean is minimax for
any symmetric loss, and so the optimal estimator is linear. In our case, a similar result holds,
though it is more subtle because of the nonconvex constraint (2) on training error; Theorem 4
to come guarantees that when the prior and noise are both Gaussian, the optimal estimator solving
problem (2) belongs to the collection of linear estimators. Thus, our main results extend immediately
to the general class of all square integrable estimators:

Assumption A2′ (Estimators with Gaussian prior) The parameter θ ∼ N(0, Id/d) and the noise
w ∼ N(0, σ2In). The hypothesis class consists of measurable, square integrable θ̂ : Rn×d+n → Rd,
i.e.,

H =
{
θ̂ = θ̂(X, y) | Ey[∥θ̂(X, y)∥22 | X] < ∞

}
.

We return to more discussion in Section 3.3.

3. Main results

3.1. The isotropic case

We first consider the isotropic setting where Σ = I for all n, and thus xij are i.i.d. random variables
with zero mean and unit variance. Before stating the main theorem regarding the quantity CostX(ϵ),
we first characterize the optimal solution to the cost of not fitting problem (2) via strong duality,
illustrating the role random matrix theory plays in computing the optimal solution value. We
postpone most of the technical details to Section 4.

When H consists of linear estimators θ̂ = Ay, we define the shorthand P(A) := PredX(θ̂) and
T (A) := TrainX(θ̂), with which we express the cost of not fitting problem (2) as

minimize
A∈Rd×n

P(A) =
1

d
∥AX − I∥2F + σ2 ∥A∥2F

subject to T (A) =
1

nd
∥XAX −X∥2F +

σ2

n
∥XA− I∥2F ≥ ϵ2 .

(5)

The problem—while nonconvex—has quadratic objective and a single quadratic constraint. Thus
we may leverage strong duality (Boyd and Vandenberghe, 2004, Appendix B.1), writing a Lagrangian
and solving, to conclude that for some ρn := ρn(ϵ) such that I − ρn

d X⊤X ≻ 0, the optimal A for
the problem (2) is

A(ρn) =

(
I − ρnσ

2
(
I − ρn

d
X⊤X

)−1
)
(X⊤X + dσ2I)−1X⊤,

where ρn is the dual optimal value of the Lagrange multiplier associated with the constraint T (A) ≥
ϵ2. When ρn = 0, the constraint is inactive, so A(0) is the global minimizer of the unconstrained
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problem and evidently corresponds to a ridge regression estimate; we have CostX(ϵ) = P(A(ρn))−
P(A(0)) and T (A(ρn)) = ϵ2. Substituting A = A(ρ) into P(A) and T (A), we obtain

P(A(ρ))− P(A(0)) =
ρ2σ4

d
Tr

((
I − ρ

d
X⊤X

)−2 X⊤X

d

(
X⊤X

d
+ σ2I

)−1
)

,

T (A(ρ)) =
σ4

n
Tr

((
I − ρ

d
X⊤X

)−2
(
X⊤X

d
+ σ2I

)−1
)

.

We may now leverage high-dimensional random matrix theory and asymptotics. Let X have
singular values λ1 ≥ λ2 ≥ · · · ≥ λn. Denoting the empirical spectral distribution of 1

dXX⊤ via its
c.d.f. Hn(s) :=

1
n

∑n
i=1 1λ2

i /d≤s, we equivalently have

P(A(ρ))− P(A(0)) =
ρ2n

d

∫
σ4s

(1− ρs)2(s+ σ2)
dHn(s) ,

T (A(ρ)) =

∫
σ4

(1− ρs)2 (s+ σ2)
dHn(s) .

By standard results in random matrix theory (see Lemma 11), Hn converges weakly to the Marchenko-
Pastur c.d.f. H , which has support [λ−, λ+] ro λ± :=

(
1± 1/

√
γ
)2, and density

dH(s) =
γ

2π

√
(λ+ − s)(s− λ−)

s
1s∈[λ−,λ+]ds . (6)

Therefore for any fixed 0 ≤ ρ < 1
1+

√
γ ,

lim
n→∞

(P(A(ρ))− P(A(0))) =
ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s) ,

lim
n→∞

T (A(ρ)) =

∫
σ4

(1− ρs)2 (s+ σ2)
dH(s) .

Setting ρ = 0 corresponds to making the constraint (5) inactive, so we therefore define the memorization
threshold

ϵ2σ :=

∫
σ4

s+ σ2
dH(s), (7)

and observe that for any ϵ2 ≥ ϵ2σ, there exists a ρ ≥ 0 such that limn→∞ T (A(ρ)) = ϵ2. Given that
T (A(ρn)) = ϵ2, we expect that limn→∞ ρn = ρ and therefore should have

lim
n→∞

CostX(ϵ) = lim
n→∞

(P(A(ρ))− P(A(0))) =
ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s).

We can make each of these steps rigorous (see Section 4), yielding the following theorem.

Theorem 1 Let Assumption A1 and either Assumption A2 or A2′ hold. Then as n → ∞,

(i) (threshold value) for ϵσ defined in Eq. (7), ϵ2σ = σ4

σ2+1−1/γ
+ o(σ4).
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(ii) (no cost below threshold) if ϵ < ϵσ, then with probability one limn→∞ CostX(ϵ) = 0. In
addition, for the ridge estimator θ̂dσ2 = (X⊤X + dσ2I)−1X⊤y, we have

lim
n→∞

(
min

θ̂∈H(ϵ)
PredX

(
θ̂
)
− PredX

(
θ̂dσ2

))
= 0 .

(iii) (cost of not fitting) if ϵ ≥ ϵσ, there exists a scalar ρ := ρ(ϵ) ∈
[
0, λ−1

+

)
that uniquely solves∫

σ4

(1− ρs)2 (s+ σ2)
dH(s) = ϵ2, (8)

and with probability one

lim
n→∞

CostX(ϵ) =
ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s). (9)

For the constants c := 2
λ2
−+σ2 and C := (1−1/

√
2)2λ−

λ2
+γ

, we have limn→∞ CostX(ϵ) ≥ Cϵ2

whenever ϵ2 ≥ cσ4.

Part (i) of Theorem 1 characterizes the threshold for the constraint on training error above which
no linear estimator can achieve optimal generalization; from part (ii), so long as the constraint
is below this threshold, optimal generalization remains attainable. Together, parts (i) and (iii)
of the theorem imply that for an estimator to achieve optimal generalization, the estimator must
incur O(σ4) training error as the label noise variance σ2 tends to zero. When σ2 is small, this
is quadratically smaller than the inherent noise floor in the problem. Moreover, part (iii) implies
eventually for sufficiently large ϵ that CostX(ϵ) grows linearly in terms of the constraint on training
error TrainX(θ̂) = ϵ2—by not memorizing, we are essentially paying the same additional amount
of error in generalization in terms of training error up to a constant factor. We conclude that
memorization for high dimensional linear regression—training to accuracy quadratically smaller
than the inherent noise floor in the problem—is necessary, and with the “necessity” increasing as
the signal-to-noise ratio grows.

We now turn to look specifically at the cost of exact interpolation; instead of comparing against
the best linear estimator, we characterize CostX(ϵ) (see Eq. (4)), the prediction error of θ̂ ∈ H(ϵ)
to the minimum norm interpolant θ̂ols. We provide a proof of the following theorem in Appendix C.

Theorem 2 Let Assumption A1 and either Assumption A2 or A2′ hold. Then

(i) (interpolation cost) for any ϵ ≥ 0, CostX(ϵ) − CostX(ϵ) = PredX(θ̂ols) − PredX(θ̂(0)), and
with probability one

lim
n→∞

(
PredX(θ̂ols)− PredX(θ̂(0))

)
=

σ4

γ

∫
1

s(s+ σ2)
dH(s) =

σ4

γ (1− 1/γ)3
+ o(σ4).

(ii) (interpolation threshold) for any σ > 0, there exists a ρ = ρols ∈ (0, λ−1
+ ) that uniquely solves

ρ2
∫

s

(1− ρs)2 (s+ σ2)
dH(s) =

∫
1

s(s+ σ2)
dH(s), (10)
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where for the threshold ϵ2σ,ols :=
∫

σ4

(1−ρolss)2(s+σ2)
dH(s) we have

lim
n→∞

CostX(ϵ)


< 0 if ϵ < ϵσ,ols

= 0 if ϵ = ϵσ,ols

> 0 if ϵ > ϵσ,ols.

In comparison to the threshold ϵσ in Eq. (7) and Theorem 1, we have ϵσ < ϵσ,ols ≤ 2λ+

λ−
ϵσ.

Part (i) shows that the minimum norm interpolant is nearly optimal, at least as σ2 → 0: its
prediction error over the best (linear) estimator scales asymptotically as O(σ4/γ), and as the aspect
ratio γ increases it becomes closer and closer to optimal. Part (ii) complements this result, showing
that if the constraint ϵ on the training error of an estimator is at most ϵ2 ≤ ϵ2σ,ols = O(σ4), there
are better estimators than the minimum norm interpolant; one concrete example here is the optimal
ridge estimator θ̂dσ2 , which has asymptotic training error, as we see from Theorem 1.

3.2. Features with general covariance

In this section, we develop analogous results to those for the identity covariance in Sec. 3.1, showing
that the results are not merely some fragile and magical consequences of isotropy. Here, we make
the following assumption about the covariance matrix Σ.

Assumption A3 The population covariance Σ has eigenvalues t1 ≥ t2 ≥ · · · ≥ td ≥ 0, where
t1 = 1 and there exists κ < ∞ such that td ≥ 1/κ. The empirical spectral distribution Tn(s) :=
1
d

∑d
i=1 1ti≤s of Σ converges weakly to a c.d.f. T .

Under this assumption, the empirical distribution for the eigenvalues of 1
dXX⊤ converges weakly to

a distribution with deformed Marchenko-Pastur c.d.f. G. (See Lemma 13 for the precise definition.)
With the limit G and recalling the Marchenko-Pastur c.d.f. H , we may characterize CostX(ϵ) for
general covariances Σ. The result is analogous to Theorem 1, modulo the condition number κ and
the alternative limit G. To that end, define the deformed threshold

ϵ2σ,def :=

∫
σ4

s+ σ2
dG(s), (11)

comparing to the definition (7) of ϵσ =
∫

σ4

s+σ2dH(s). We then have the following theorem, whose
proof we provide in Appendix D.

Theorem 3 Let Assumptions A1 and A3 hold, σ > 0, and let G be the deformed Marchenko-Pastur
c.d.f. in Lemma 13. If either Assumption A2 or A2′ holds, then as n → ∞,

(i) (threshold value) for ϵσ,def defined in Eq. (11), ϵ2σ,def ≤ ϵ2√
κσ
/κ = κσ4

κσ2+1−1/γ
+ o(σ4).

(ii) (no cost below threshold) if ϵ < ϵσ,def, then with probability one limn→∞ CostX(ϵ) = 0. In
addition, define the ridge estimator θ̂dσ2 = (X⊤X + dσ2I)−1X⊤y, we have

lim
n→∞

(
min

θ̂∈H(ϵ)
PredX

(
θ̂
)
− PredX

(
θ̂dσ2

))
= 0.
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(iii) (cost of not fitting) If ϵ ≥ ϵσ,def, there exists ρdef = ρdef(ϵ) ∈ [0, 1/λ+) that uniquely solves

κσ4 ·
(∫

1

(1− ρs)2 (s+ κσ2)
dH(s)−

∫
1

s+ κσ2
dH(s)

)
= ϵ2 − ϵ2σ,def, (12)

where H is the Marchenko-Pastur c.d.f. (6). Further, with probability one

lim inf
n→∞

CostX(ϵ) ≥
ρ2def
γ

∫
σ4s

(1− ρdefs)2(s+ σ2)
dH(s).

For the constants c := 2κ
λ−+κσ2 and C = λ−(1−1/

√
2)2

κλ2
+γ

, we have lim infn→∞ CostX(ϵ) ≥ Cϵ2

whenever ϵ2 ≥ cσ4.

3.3. Optimality of general estimators in Gaussian case

While, as we discuss before Assumption A2′, the lower bounds in Theorems 1, 2, and 3 apply over
the class of linear estimators, which allows our exact predictive risk characterizations, these results
hold for all estimators satisfying mild regularity conditions under a Gaussianity assumption on the
data distribution. Our main insight here is that when the prior and noise distributions are Gaussian,
for all ϵ ≥ 0, the linear estimator class contains the optimal estimator among the broader class of all
square integrable estimators with training error at least ϵ2. Of course, this is trivial when ϵ = 0, as
given (X, y) in such a model, the posterior on θ is Gaussian. That the result holds for ϵ > 0 is a bit
more subtle. Specifically, we have the following theorem, whose proof we provide in Appendix E.

Theorem 4 Let Assumptions A1 and A2′ hold. Let Hlin and Hsq denote the classes of linear
and square integrable estimators in Assumptions A2 and A2′, respectively. Then for all ϵ ≥ 0,
inf

θ̂∈Hsq(ϵ)
PredX(θ̂) = min

θ̂∈Hlin(ϵ)
PredX(θ̂).

Observing in the Gaussian case that the posterior over θ | y is has mean linear in y and
covariance independent of y, the main idea underlying the proof is to factor the prediction and
training error over the marginal distribution of y, as

PredX

(
θ̂
)
= Ey

[
Eθ|y

[∥∥∥Σ 1
2

(
θ̂(X, y)− θ

)∥∥∥2
2

∣∣∣ y] ∣∣∣X]
TrainX

(
θ̂
)
= Ey

[∥∥∥Xθ̂(X, y)− y
∥∥∥2
2

∣∣∣X] .

Thus the cost of not fitting problem (2) is a functional (infinite-dimensional) optimization
problem over Hsq, with a quadratic objective and a single quadratic constraint, for which we show
that strong duality still obtains. Applying the appropriate Karush-Kuhn-Tucker conditions, we can
then recover that the optimal estimator is linear, and in particular is

θ̂(X, y) =

(
I − ρ(ϵ)σ2

(
Σ− ρ(ϵ)

d
X⊤X

)−1
)
(X⊤X + dσ2I)−1X⊤y.

Here ρ(ϵ) is the dual optimal value of the Lagrange multiplier for the constraint on training error,
and it is identical to that in Theorems 1 and 3. See Section 4.1 for the details.

9
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4. Proof of Theorem 1

4.1. Reduction by strong duality

We first provide some technical lemmas to reduce the nonconvex problem (2). The lemmas will be
useful in both the isotropic case and the general covariance case, and in particular the key ingredient
that allows for this reduction is strong duality in quadratic optimization.

The first lemma gives an equivalent formulation of the cost of not fitting problem (2) using the
closed forms of PredX(θ̂) and TrainX(θ̂). We defer the proof to Appendix B.1.

Lemma 5 Let Assumption A2 hold and assume X = ZΣ
1
2 . Then for any θ̂ ∈ H the following is

an equivalent formulation of problem (2):

minimize
A∈Rd×n

P(A; Σ) :=
1

d

∥∥∥Σ 1
2 (AX − I)

∥∥∥2
F
+ σ2

∥∥∥Σ 1
2A
∥∥∥2
F

subject to T (A; Σ) :=
1

nd
∥XAX −X∥2F +

σ2

n
∥XA− I∥2F ≥ ϵ2.

(13)

As strong duality holds for this problem (cf. Boyd and Vandenberghe, 2004, Appendix B.1), we
derive in Lemma 6 the optimality criteria via studying the dual. We postpone the proof details to
Appendix B.2.

Lemma 6 There exists a ρn := ρn(ϵ,Σ) ≥ 0 such that Σ− ρn
d X⊤X ≻ 0 and the optimal solution

of problem (13) is An := A(ρn,Σ), where

A(ρ,Σ) =

(
I − ρσ2

(
Σ− ρ

d
X⊤X

)−1
)
X⊤(XX⊤ + dσ2I)−1 (14a)

=

(
I − ρσ2

(
Σ− ρ

d
X⊤X

)−1
)
(X⊤X + dσ2I)−1X⊤. (14b)

A(ρ,Σ) is defined for ρ ∈ D, where D is the interval for all ρ ≥ 0 such that Σ− ρ
dX

⊤X ≻ 0.

We suppress the dependence of A, ρ on the data matrix X for simplicity.
In the next lemma we derive the exact forms of the constraint T (A(ρ,Σ);Σ) and the growth of

the objective P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ). We defer the proof to Appendix B.3.

Lemma 7 Let the conditions of Lemma 6 hold, and assume XX⊤ is non-singular. Then for any
ρ ∈ D we have

P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ)

=
ρ2σ4

d
Tr

((
Σ− ρ

d
X⊤X

)−1
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−1
)
,

and

T (A(ρ,Σ);Σ)

=
dσ4

n
Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
Σ− ρ

d
X⊤X

)−1
Σ
(
X⊤X

)† (
X⊤X + dσ2I

)−1
)
.

10
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4.2. Main proof of Theorem 1

By Theorem 4, we only need to prove under Assumption A2 with the linear hypothesis class H =
{θ̂ : θ̂ = A(X)y}.

Part I: Memorization threshold. From Eq. (7), we can directly write out

ϵ2σ =

∫
σ4

s+ σ2
dH(s) = σ4 · lim

y→0+
mH(−σ2 + iy) , (15)

where mH : C+ → C+ is the Stieltjes transform (cf. (18)) of the Marchenko-Pastur law.

Lemma 8 For any σ2 > 0,

lim
y→0+

mH(−σ2 + iy) =
σ2 + o(σ2)

σ2 · (1− 1/γ + σ2)
.

We defer the proof to Appendix B.4. We conclude the proof of (i) by applying Lemma 8 to Eq. (15),

ϵ2σ = σ4 · σ2 + o(σ2)

σ2 · (1− 1/γ + σ2)
=

σ4

σ2 + 1− 1/γ
+ o(σ4) .

Part II: No cost below threshold. Invoke Lemma 6 and set ρ = 0 (when the constraint is not
active) to obtain the global minimizer for the unconstrained problem

A(0, I) = X⊤(XX⊤ + dσ2I)−1 = (X⊤X + dσ2I)−1X⊤,

so the ridge estimator θ̂dσ2 is optimal in H(0). Thus we must prove that θ̂dσ2 ∈ H(ϵ) eventually,
for which it suffices to show

lim inf
n→∞

TrainX

(
θ̂dσ2

)
= lim inf

n→∞
T (A(0, I); I) > ϵ2 ,

where T (A; Σ) is defined in Eq. (13). When Σ = I , we can compute the exact limits in Lemma 7
when n → ∞.

Lemma 9 Fix 0 ≤ ρ < λ−1
+ . Then with probability one

lim
n→∞

(P(A(ρ, I); I)− P(A(0, I); I)) =
ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s),

lim
n→∞

T (A(ρ, I); I) =

∫
σ4

(1− ρs)2(s+ σ2)
dH(s).

Invoke Lemma 9 above for ρ = 0 to conclude that with probability one

lim
n→∞

T (A(0, I); I) = lim
n→∞

∫
σ4

s+ σ2
dHn(s) =

∫
σ4

s+ σ2
dH(s) = ϵ2σ > ϵ2.

11
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Part III: Cost of not-fitting above threshold. First we show for any ϵ ≥ ϵσ there exists a unique
ρ = ρ(ϵ) ∈

[
0, λ−1

+

)
that solves the fixed point (8), i.e.∫

σ4

(1− ρs)2 (s+ σ2)
dH(s) = ϵ2.

As the left hand side is increasing in ρ and when ρ ↓ 0, the integral approaches ϵ2σ =
∫

σ4

s+σ2dH(s).
On the other hand, by substituting in the exact formula of dH(s) in Eq. (6), we see as s ↑ λ+,

σ4

(1− λ−1
+ s)2 (s+ σ2)

dH(s) = (1 + o(1))
γλ+σ

4
√

λ+ − λ−
2π (λ+ + σ2)

· (λ+ − s)−
3
2 ds, (16)

so that the improper integral diverges when ρ = λ−1
+ . Monotone convergence then implies that the

integral approaches ∞ as ρ ↑ λ−1
+ .

It remains to show the limiting statement (9) in part (iii) of the theorem and the growth lower
bounds. To do so, we leverage the duality calculations in Lemma 6 to transfer between the training
error ϵ and the Lagrange multiplier ρ, using that to construct upper and lower bounds on CostX(ϵ).
By Lemma 6, the estimator

θ̂(ρ) := A(ρ, I)y

is the optimal solution to problem (13) when ϵ2 = T (A(ρ, I); I), that is, A(ρ, I) solves

minimize
A∈Rd×n

P(A; I) subject to T (A; I) ≥ T (A(ρ, I); I).

Thus, whenever T (A(ρ, I); I) < ϵ2 it holds that

CostX(ϵ) ≥ P(A(ρ, I); I)− P(A(0, I); I) (17a)

while when T (A(ρ, I); I) > ϵ2, it holds that

CostX(ϵ) ≤ P(A(ρ, I); I)− P(A(0, I); I). (17b)

We will give matching upper and lower bounds to the quantities (17) to show the limit (9).
Let ρ(ϵ) ∈ (0, λ−1

+ ) be the ρ satisfying the fixed point (8), where ρ(ϵ) > 0 as ϵ2 > ϵσ by
assumption (as otherwise limn CostX(ϵ) = 0 by part (ii) of the theorem). For any ρ ∈

[
0, λ−1

+

)
,

Lemma 9 implies

lim
n→∞

T (A(ρ, I); I) =

∫
σ4

(1− ρs)2(s+ σ2)
dH(s).

Then ρ > ρ(ϵ) implies that limn T (A(ρ, I); I) > ϵ2, while ρ < ρ(ϵ) implies that limn T (A(ρ, I); I) <
ϵ2. In particular, the inequalities (17) and these limits on T combine to give that

lim sup
n→∞

CostX(ϵ) ≤ lim inf
n→∞

[P(A(ρ, I); I)− P(A(0, I); I)]

whenever ρ > ρ(ϵ), while if ρ < ρ(ϵ) we have

lim inf
n→∞

CostX(ϵ) ≥ lim sup
n→∞

[P(A(ρ, I); I)− P(A(0, I); I)] .

12
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We can now apply the limiting expansion of P(A(ρ))−P(A(0)) in Lemma 9, which yields that for
any 0 ≤ ρ0 < ρ(ϵ) < ρ1 < λ−1

+ , we have

ρ20
γ

∫
σ4s

(1− ρ0s)2(s+ σ2)
dH(s) = lim

n→∞
[P(A(ρ0, I); I)− P(A(0, I); I)]

≤ lim inf
n→∞

CostX(ϵ) ≤ lim sup
n→∞

CostX(ϵ)

≤ lim
n→∞

[P(A(ρ1, I); I)− P(A(0, I); I)] =
ρ21
γ

∫
σ4s

(1− ρ1s)2(s+ σ2)
dH(s)

Take ρ1 ↓ ρ(ϵ) and ρ0 ↑ ρ(ϵ) to obtain the limit (9).
We complete the proof of part (iii) of the theorem via the following final lemma, which provides

a linear lower bound for limn→∞ CostX(ϵ).

Lemma 10 Let c = 2
λ2
−+σ2 . If ϵ2 ≥ cσ4, then

lim
n→∞

CostX(ϵ) ≥ (1− 1/
√
2)2

λ2
+

λ−
γ

· ϵ2.

Proof Taking ρ to solve the fixed point (8), the limit (9) yields

lim
n

CostX(ϵ)
(9)
=

ρ2σ4

γ

∫
s

(1− ρs)2(s+ σ2)
dH(s) ≥ ρ2λ−

γ

∫
σ4

(1− ρs)2(s+ σ2)
dH(s)

(8)
=

ρ2λ−
γ

ϵ2,

Thus it suffices to show that ρ ≥ 1
λ+

(1−1/
√
2). To see this, we leverage the following inequalities:

1

(1− ρλ+)2
≥
∫

1

(1− ρs)2
dH(s) ≥

∫
λ− + σ2

(1− ρs)2(s+ σ2)
dH(s) =

λ− + σ2

σ4
ϵ2 ≥ 2,

the last inequality holding for ϵ2 ≥ 2σ4

σ2+λ−
. Rearranging (1−ρλ+)

2 ≤ 1
2 yields ρ ≥ 1

λ+
(1−1/

√
2),

which implies the claimed result.

5. Discussion

By characterizing the excess prediction error in linear regression models as a function of constraints
on training error, this paper gives insights into the necessity—in achieving optimal prediction
risk—of memorization for learning. Our results support the natural conclusion that interpolation
is particularly beneficial in settings with low label noise, which as we note earlier, may include
some of the most widely-used existing benchmarks for deep learning. Even more, they suggest
that—at least when the noise is low—memorization may simply be necessary, so that a deeper
understanding of the generalization of modern machine learning algorithms may require a careful
look at more precise noise properties of the prediction problems at hand.

In the anisotropic setting, our lower bounds on prediction error depend on the condition number
of the data covariance, and thus our bounds not apply, i.e., are vacuous, in settings such as sparse
covariance or kernel regression. Extending our results to these settings is an interesting direction
for future work. Furthermore, our analysis relies heavily on the fact that both the prediction
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and empirical risk are quadratic in the case of least-squares regression, and thus strong duality
obtains. Proving similar results in settings such as linear binary classification, where the optimal
unconstrained estimator, i.e., margin maximizing solution, is nonlinear and the risk no longer
quadratic, is an exciting open problem.
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Appendix A. Asymptotics of random matrices

In this appendix, we review the classical results regarding singular values of random matrices we
require. Consider a triangular array of independent and identically distributed random variables
(zij(n))i∈[n],j∈[d] for n = 1, 2, · · · and d := d(n). We write Z := Z(n) = (zij(n)) ∈ Rn×d.
Throughout we assume the proportional asymptotics d/n → γ ∈ (1,∞), so the matrices Z have
rank at most n. We assume throughout that the entries zij satisfy E[zij ] = 0 and E[z2ij ] = 1. We
have the following standard Marchenko-Pastur and Bai-Yin laws.

Lemma 11 (Marchenko-Pastur law, Bai and Silverstein (2010), Thm. 3.4) Let Z have singular
values λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and let 1

dZZ⊤ have spectral distribution with c.d.f.

Hn(s) :=
1

n

n∑
i=1

1λ2
i /d≤s.

Then with probability one Hn converges weakly to the c.d.f. H supported on [λ−, λ+], with

λ+ :=

(
1 +

1
√
γ

)2

and λ− :=

(
1− 1

√
γ

)2

,

and H has density

dH(s) =
γ

2π

√
(λ+ − s)(s− λ−)

s
1s∈[λ−,λ+]ds.

Lemma 12 (Bai-Yin law, Bai and Silverstein (2010), Thm. 5.10) Let the conditions of Lemma 11
hold, and assume additionally that supij E[z4ij ] < ∞. Then the largest and smallest singular values
λ1 = λ1(Z) and λn = λn(Z) of Z satisfy

λ2
1

d

a.s.→ λ+ =

(
1 +

1
√
γ

)2

,
λ2
n

d

a.s.→ λ− =

(
1− 1

√
γ

)2

.

We also consider random matrices whose rows have non-identity covariance. In these cases, we
assume a deterministic sequence of symmetric positive definite matrices Σ := Σ(n) ∈ Rd×d. We
let t1 ≥ t2 ≥ · · · ≥ td > 0 denote the eigenvalues of Σ and let Tn denote the associated c.d.f.

Tn(s) :=
1

d

d∑
i=1

1ti≤s,

assuming that Tn converges weakly to some c.d.f. T on R+. With this, we can state a limiting law
for the spectral distribution of 1

dZΣZ⊤. In the statement of the lemma, we require the Stieltjes
transform of a measure. Letting C+ := {z ∈ C | Im(z) > 0} be those elements of C with
positive imaginary part, recall that for a measure on R with c.d.f. F , the Stieltjes transform of
mF : C+ → C+ of F is

mF (z) :=

∫
1

s− z
dF (s). (18)

Then we have the following
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Lemma 13 (Deformed Marchenko-Pastur law, Silverstein (1995)) Let the conditions of Lemma 11
and those on the spectral distribution Tn of Σ above hold. Let 1

dZΣZ⊤ have spectral distribution
with c.d.f.

Gn(s) :=
1

n

n∑
i=1

1λ2
i /d≤s.

Then with probability one, Gn converges weakly to the c.d.f. G whose Stieltjes transform mG

satisfies the fixed point equation

mG(z) = −
(
z −

∫
τ

1 + τmG(z)/γ
dT (τ)

)−1

.

Lemma 13 is slightly different from the result of Silverstein (1995, Thm. 1.1), whose original
theorem holds for the empirical spectral distributions of 1

nZΣZ⊤. Lemma 13 follows from the
change of variables n = d

γ (1 + o(1)).

Appendix B. Proofs of identities in Theorem 1

B.1. Proof of Lemma 5

This is essentially trivial: by definition, we can write

PredX(θ̂) = Eθ

[
PredX,θ(θ̂)

]
= Eθ,w

[
∥(AX − I)θ +Aw∥2Σ | X

]
= Tr

(
Eθ,w

[
((AX − I)θ +Aw)⊤Σ ((AX − I)θ +Aw) | X

])
= Tr

(
Eθ

[
Σ(AX − I)θθ⊤(AX − I)⊤ | X

])
+ σ2Tr

(
A⊤ΣA

)
=

1

d

∥∥∥Σ 1
2 (AX − I)

∥∥∥2
F
+ σ2

∥∥∥Σ 1
2A
∥∥∥2
F
,

where in the last line we use E[θθ⊤] = Id/d. Similarly

TrainX(θ̂) = Eθ

[
TrainX,θ(θ̂)

]
=

1

n
Eθ,w

[
∥(XA− I) (Xθ + w)∥22 | X

]
=

1

n
Tr
(
Eθ,w

[
(Xθ + w)⊤ (XA− I)⊤ (XA− I) (Xθ + w) | X

])
=

1

n
Tr
(
(XA− I)Xθθ⊤X⊤(XA− I)⊤

)
+

σ2

n
Tr
(
(XA− I)(XA− I)⊤

)
=

1

nd
∥XAX −X∥2F +

σ2

n
∥XA− I∥2F .

B.2. Proof of Lemma 6

While problem (13) is non-convex, it consists of a quadratic objective and quadratic constraint, and
taking A → ∞ shows that there certainly exist feasible points in the interior of the set of A satisfying
T (A; Σ) ≥ ϵ2. Thus, strong duality holds (Boyd and Vandenberghe, 2004, Appendix B.1). We
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therefore consider the Lagrangian dual problem, introducing the dual multplier λ ≥ 0 for the
constraint and writing the Lagrangian

L(A, λ) = P(A; Σ) + λ(ϵ2 − T (A; Σ))

=
1

d

∥∥∥Σ 1
2 (AX − I)

∥∥∥2
F
+ σ2

∥∥∥Σ 1
2A
∥∥∥2
F
− λ

(
1

nd
∥XAX −X∥2F +

σ2

n
∥XA− I∥2F

)
+ λϵ2.

Using L, we begin by demonstrating the first claim of the lemma, that is, that if Σ− λ
nX

TX ̸≻ 0,
then we have infA L(A, λ) = −∞. To see this, first let V ∈ Rd×r be an orthogonal basis for X’s
row space and V ⊥ its orthogonal complement. Then XV ⊥ = 0 and Σ − λ

nX
⊤X failing to be

positive definite is equivalent to

[
V V ⊥]⊤(Σ− λ

n
X⊤X

)[
V V ⊥] = [V ⊤ (Σ− λ

nX
⊤X
)
V 0

0 (V ⊥)⊤ΣV ⊥

]
failing to be positive definite. Then as (V ⊥)⊤ΣV ⊥ ≻ 0 by assumption that Σ ≻ 0, it must thus be
the case that V ⊤(Σ − λ

nX
⊤X)V ̸≻ 0. We leverage this indefiniteness to observe that, as V spans

the row space of X , there exists a unit vector ν ∈ Rd, ∥ν∥ = 1, and vector µ ∈ Rn satisfying
ν = X⊤µ ∈ Rd and

α := ν⊤
(
Σ− λ

n
X⊤X

)
ν ≤ 0. (19)

To show that the non-positivity (19) entails infA L(A, λ) = −∞ requires a few additional steps.
We detour by taking the gradient of the Lagrangian with respect to A (this will be useful later),

∂

∂A
L(A, λ)

=
1

d

(
ΣAXX⊤ − ΣX⊤

)
+ σ2ΣA− λ

n

{
1

d

(
X⊤XAXX⊤ −X⊤XX⊤

)
+ σ2

(
X⊤XA−X⊤

)}
=

1

d

(
Σ− λ

n
X⊤X

)
AXX⊤ + σ2

(
Σ− λ

n
X⊤X

)
A− 1

d

(
Σ− λ

n
X⊤X − λdσ2

n
I

)
X⊤

=
1

d

(
Σ− λ

n
X⊤X

)
A
(
XX⊤ + dσ2I

)
− 1

d

(
Σ− λ

n
X⊤X − λdσ2

n
I

)
X⊤. (20)

Using the µ defining ν = X⊤µ in Eq. (19), let t ∈ R be unspecified and take A = tνµ⊤. Define
the function L(t) = L(tνµ⊤, λ), for which we have

d

dt
L(t) = Tr

(
∂

∂A
L(tνµ⊤, λ)(νµ⊤)⊤

)
=

t

d
ν⊤
(
Σ− λ

n
X⊤X

)
νµ⊤

(
XX⊤ + dσ2I

)
µ− 1

d
ν⊤
(
Σ− λ

n
X⊤X − λdσ2

n
I

)
X⊤µ

(i)
=

t

d
α · (∥ν∥22 + dσ2 ∥µ∥22)−

1

d
ν⊤
(
Σ− λ

n
X⊤X − λdσ2

n
I

)
ν

(ii)
=

tα

d
·
(
1 + dσ2 ∥µ∥22

)
− α

d
+

λσ2

n

18
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where step (i) substitutes the definition (19) of α and that X⊤µ = ν, while step (ii) similarly uses
the definition of α and that ∥ν∥2 = 1 by assumption. We consider two cases: if α < 0, then taking
t → ∞ yields L′(t) → −∞, so that L(t) → −∞ and infA L(A, λ) = −∞. If α = 0, then
L′(t) = λσ2

n > 0, and so taking t → −∞ yields L(A, λ) → −∞ as well. As such, the optimal
λ ≥ 0 must satisfy Σ− λ

nX
⊤X ≻ 0, as we desired to show.

Having verified that Σ − λ
nX

⊤X ≻ 0, we can use the derivative (20) and solve for the A

satisfying the stationary condition ∂
∂AL(A, λ) = 0, obtaining

1

d

(
Σ− λ

n
X⊤X

)
A
(
XX⊤ + dσ2I

)
− 1

d

(
Σ− λ

n
X⊤X − λdσ2

n
I

)
X⊤ = 0.

Solving this equation yields

A =

(
Σ− λ

n
X⊤X

)−1(
Σ− λ

n
X⊤X − λdσ2

n
I

)
X⊤

(
XX⊤ + dσ2I

)−1

=

(
I − λdσ2

n

(
Σ− λ

n
X⊤X

)−1
)
X⊤(XX⊤ + dσ2I)−1

=

(
I − λdσ2

n

(
Σ− λ

n
X⊤X

)−1
)
(X⊤X + dσ2I)−1X⊤ .

In the last equation we use the matrix identity X⊤(XX⊤ + dσ2I)−1 = (X⊤X + dσ2I)−1X⊤,
which follows directly via the SVD of X . We complete the proof by identifying ρn := λn

d .

B.3. Proof of Lemma 7

The proof is essentially pure calculations. For reference, we divide the proof into three parts.

I. We compute formulas for A(ρ; Σ)X − I and XA(ρ; Σ)− I .

II. Derive the expansion for P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ).

III. Derive the expansion for for T (A(ρ,Σ);Σ).

Throughout we write A(ρ) = A(ρ; Σ) for simplicity.

Part I: Computing A(ρ)X − I and XA(ρ) − I . We first substitute expression (14a) for A(ρ)
into the difference A(ρ)X − I to obtain

A(ρ)X − I

=

(
I − ρσ2

(
Σ− ρ

d
X⊤X

)−1
)
(X⊤X + dσ2I)−1X⊤X − I

= −ρσ2
(
Σ− ρ

d
X⊤X

)−1
(X⊤X + dσ2I)−1X⊤X + (X⊤X + dσ2I)−1

(
X⊤X −X⊤X − dσ2I

)
(i)
= −ρσ2

(
Σ− ρ

d
X⊤X

)−1
X⊤X(X⊤X + dσ2I)−1 − dσ2(X⊤X + dσ2I)−1

=

{
−ρσ2

(
Σ− ρ

d
X⊤X

)−1
X⊤X − dσ2

(
Σ− ρ

d
X⊤X

)−1 (
Σ− ρ

d
X⊤X

)}
(X⊤X + dσ2I)−1
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= −σ2
(
Σ− ρ

d
X⊤X

)−1 {
ρX⊤X + d

(
Σ− ρ

d
X⊤X

)}
(X⊤X + dσ2I)−1

= −dσ2
(
Σ− ρ

d
X⊤X

)−1
Σ(X⊤X + dσ2I)−1 , (21)

where in step (i) we use that X⊤X and (X⊤X + dσ2I)−1 commute. Similarly, we can compute
XA(ρ)− I by using the alternative formulation (14b) for A(ρ), substituting to obtain

XA(ρ)− I

= X

(
I − ρσ2

(
Σ− ρ

d
X⊤X

)−1
)
X⊤(XX⊤ + dσ2I)−1 − I

= −ρσ2X
(
Σ− ρ

d
X⊤X

)−1
X⊤(XX⊤ + dσ2I)−1 +

(
XX⊤ −XX⊤ − dσ2I

)
(XX⊤ + dσ2I)−1

= −ρσ2X
(
Σ− ρ

d
X⊤X

)−1
X⊤(XX⊤ + dσ2I)−1 − dσ2(XX⊤ + dσ2I)−1

= −dσ2

{
ρ

d
X
(
Σ− ρ

d
X⊤X

)−1
X⊤ + I

}(
XX⊤ + dσ2I

)−1
.

As X is wide and XX⊤ is non-singular by assumption, limλ↓0X(X⊤X + λI)−1X⊤ = I and
therefore

XA(ρ)− I

= −dσ2

{
ρ

d
X
(
Σ− ρ

d
X⊤X

)−1
X⊤ + lim

λ↓0
X(X⊤X + λI)−1X⊤

}(
XX⊤ + dσ2I

)−1

= − lim
λ↓0

dσ2X

{(
d

ρ
Σ−X⊤X

)−1

+
(
X⊤X + λI

)−1
}

·X⊤
(
XX⊤ + dσ2I

)−1

= − lim
λ↓0

dσ2X ·

{(
d

ρ
Σ−X⊤X

)−1(
λI +

d

ρ
Σ

)(
X⊤X + λI

)−1
}
X⊤ ·

(
XX⊤ + dσ2I

)−1

(i)
= − lim

λ↓0
dσ2X ·

{(
d

ρ
Σ−X⊤X

)−1(
λI +

d

ρ
Σ

)
X⊤

(
XX⊤ + λI

)−1
}

·
(
XX⊤ + dσ2I

)−1

= −dσ2X
(
Σ− ρ

d
X⊤X

)−1
ΣX⊤

(
XX⊤

)−1 (
XX⊤ + dσ2I

)−1
, (22)

where in step (i) we use that
(
X⊤X + λI

)−1
X⊤ = X⊤ (XX⊤ + λI

)−1.

Part II: Computing P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ). As

P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ) (23)

=
1

d

∥∥∥Σ 1
2 (A(ρ)X − I)

∥∥∥2
F
+ σ2

∥∥∥Σ 1
2A(ρ)

∥∥∥2
F
− 1

d

∥∥∥Σ 1
2 (A(0)X − I)

∥∥∥2
F
− σ2

∥∥∥Σ 1
2A(0)

∥∥∥2
F

=
1

d

(∥∥∥Σ 1
2 (A(ρ)X − I)

∥∥∥2
F
−
∥∥∥Σ 1

2 (A(0)X − I)
∥∥∥2
F

)
︸ ︷︷ ︸

(I)

+σ2

(∥∥∥Σ 1
2A(ρ)

∥∥∥2
F
−
∥∥∥Σ 1

2A(0)
∥∥∥2
F

)
︸ ︷︷ ︸

(II)

,
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we compute terms (I) and (II) separately. For (I) we substitute in the explicit form (21) of A(ρ)X−I
to obtain

(I) = dσ4Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
Σ
(
X⊤X + dσ2I

)−2
Σ
(
Σ− ρ

d
X⊤X

)−1
)
− dσ4Tr

(
Σ
(
X⊤X + dσ2I

)−2
)
.

We then use the identity(
Σ− ρ

d
X⊤X

)−1
Σ = I +

(
Σ− ρ

d
X⊤X

)−1
· ρ
d
X⊤X

to obtain further that

(I) = dσ4Tr

(
Σ

(
I +

(
Σ− ρ

d
X⊤X

)−1
· ρ
d
X⊤X

)(
X⊤X + dσ2I

)−2
(
I +

ρ

d
X⊤X ·

(
Σ− ρ

d
X⊤X

)−1
))

− dσ4Tr

(
Σ
(
X⊤X + dσ2I

)−2
)

= dσ4Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
· ρ
d
X⊤X

(
X⊤X + dσ2I

)−2
)

+ dσ4Tr

(
Σ
(
X⊤X + dσ2I

)−2 ρ

d
X⊤X ·

(
Σ− ρ

d
X⊤X

)−1
)

+ dσ4Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
· ρ
d
X⊤X

(
X⊤X + dσ2I

)−2 ρ

d
X⊤X ·

(
Σ− ρ

d
X⊤X

)−1
)

= ρσ4Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−2
)

(24)

+ ρσ4Tr

(
Σ
(
X⊤X + dσ2I

)−2
X⊤X

(
Σ− ρ

d
X⊤X

)−1
)

+
ρ2σ4

d
Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−2
X⊤X

(
Σ− ρ

d
X⊤X

)−1
)
.

For term (II), we substitute in formula (14b) for A(ρ) and use that X⊤X and (X⊤X + dσ2I)−1

commute, yielding that

(II) = σ2Tr

(
Σ

(
I − ρσ2

(
Σ− ρ

d
X⊤X

)−1
)
X⊤X(X⊤X + dσ2I)−2

(
I − ρσ2

(
Σ− ρ

d
X⊤X

)−1
))

− σ2Tr
(
ΣX⊤X(X⊤X + dσ2I)−2

)
= −ρσ4Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−2
)

− ρσ4Tr

(
Σ
(
X⊤X + dσ2I

)−2
X⊤X

(
Σ− ρ

d
X⊤X

)−1
)

+ ρ2σ6Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−2 (
Σ− ρ

d
X⊤X

)−1
)
.

Substituting the equality (24) for term (I) and the above identity for term (II) back into the expansion (23)
of P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ), we get our desired expansion:

P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ)
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=
ρ2σ4

d
Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−2
X⊤X

(
Σ− ρ

d
X⊤X

)−1
)

+ ρ2σ6Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−2 (
Σ− ρ

d
X⊤X

)−1
)

=
ρ2σ4

d
Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−2 (
X⊤X + dσ2I

)(
Σ− ρ

d
X⊤X

)−1
)

=
ρ2σ4

d
Tr

((
Σ− ρ

d
X⊤X

)−1
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
X⊤X + dσ2I

)−1
)

.

Part III: Computing T (A(ρ,Σ);Σ). Leveraging the expansion

T (A(ρ,Σ);Σ) =
1

nd
∥XA(ρ)X −X∥2F +

σ2

n
∥XA(ρ)− I∥2F

=
1

nd
Tr
(
(XA(ρ)− I)XX⊤(XA(ρ)− I)⊤

)
+

σ2

n
Tr
(
(XA(ρ)− I)(XA(ρ)− I)⊤

)
=

1

nd
Tr
(
(XA(ρ)− I)

(
XX⊤ + dσ2I

)
(XA(ρ)− I)⊤

)
,

we can substitute the expression (22) for XA(ρ)− I to obtain

T (A(ρ,Σ);Σ) =

dσ4

n
Tr

(
X
(
Σ− ρ

d
X⊤X

)−1
ΣX⊤

(
XX⊤

)−1 (
XX⊤ + dσ2I

)−1 (
XX⊤

)−1
XΣ

(
Σ− ρ

d
X⊤X

)−1
X⊤
)
.

Leveraging the identity X⊤(XX⊤ + dσ2I)−1 = (X⊤X + dσ2I)−1X⊤ and that (XX⊤)−1 and
(XX⊤ + λI)−1 commute, we have

X⊤(XX⊤)−1(XX⊤ + dσ2I)−1(XX⊤)−1X = X⊤(XX⊤)−2X(X⊤X + dσ2I)−1

= (X⊤X)†(X⊤X + dσ2I)−1.

Substituting this into the preceding display gives

T (A(ρ,Σ);Σ)

=
dσ4

n
Tr

(
X
(
Σ− ρ

d
X⊤X

)−1
Σ(X⊤X)†(X⊤X + dσ2I)−1Σ

(
Σ− ρ

d
X⊤X

)−1
X⊤
)

=
dσ4

n
Tr

(
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
Σ− ρ

d
X⊤X

)−1
Σ
(
X⊤X

)† (
X⊤X + dσ2I

)−1
)

by the cyclic property of the trace, as desired.

B.4. Proof of Lemma 8

By Bai and Silverstein (2010, Lemma 3.11) we can exactly compute

lim
y→0+

mH(−σ2 + iy) =
1− 1/γ + σ2 −

√
(1 + 1/γ + σ2)2 − 4/γ

−2σ2/γ
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=

√
(1− 1/γ + σ2)2 + 4σ2/γ −

(
1− 1/γ + σ2

)
2σ2/γ

=
2σ2/γ + o(σ2/γ)

2σ2/γ · (1− 1/γ + σ2)
,

completing the proof.

B.5. Proof of Lemma 9

As the Bai-Yin law (Lemma 12) guarantees the convergence of the smallest eigenvalue of 1
nXX⊤

and XX⊤ is eventually non-singular, we can invoke the identities on the prediction and training
error in Lemma 7. Therefore

P(A(ρ, I); I)− P(A(0, I); I) =
ρ2σ4

d
Tr

((
I − ρ

d
X⊤X

)−2
X⊤X

(
X⊤X + dσ2I

)−1
)

=
ρ2σ4

d/n
· 1
n

n∑
i=1

1(
1− ρλ2

i /d
)2 · λ

2
i

d
· 1

λ2
i /d+ σ2

=
ρ2

d/n

∫
σ4s

(1− ρs)2(s+ σ2)
dHn(s).

By the assumption that ρ < λ−1
+ , the Bai-Yin law (Lemma 12) guarantees that I − ρ

dXX⊤ is
eventually positive definite and with probability one λ2

1/d → λ+. The function s 7→ σ4s
(1−ρs)2(s+σ2)

is thus eventually bounded on the support of Hn. Applying the Marchenko-Pastur law, we deduce

lim
n→∞

(P(A(ρ, I); I)− P(A(0, I); I)) =
ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s).

For the second limit in Lemma 9, we can again leverage Σ = I in Lemma 7 to compute

T (A(ρ, I); I) =
dσ4

n
Tr

((
I − ρ

d
X⊤X

)−1
X⊤X

(
I − ρ

d
X⊤X

)−1 (
X⊤X

)† (
X⊤X + dσ2I

)−1
)

=
σ4

n
Tr

((
I − ρ

d
X⊤X

)−1 X⊤X

d

(
I − ρ

d
X⊤X

)−1
(
X⊤X

d

)†(
X⊤X

d
+ σ2I

)−1
)

= σ4 · 1
n

n∑
i=1

1

1− ρλ2
i /d

· λ
2
i

d
· 1

1− ρλ2
i /d

· 1

λ2
i /d

· 1

λ2
i /d+ σ2

=

∫
σ4

(1− ρs)2(s+ σ2)
dHn(s).

Applying the Marchenko-Pastur law gives the desired limit.

Appendix C. Proof of Theorem 2

We only need to prove under Assumption A2 thanks to Theorem 4. First, we recall our standard
notation that X has singular values λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and empirical spectral c.d.f.

23



CHENG DUCHI KUDITIPUDI

Hn(s) = 1
n

∑n
i=1 1λ2

i /d≤s. We first prove (most of) part (i) of the theorem, which we state as a
lemma. It is immediate by the definitions (3) and (4) of Cost and Cost that CostX(ϵ)−CostX(ϵ) =
PredX(θ̂ols)− PredX(θ̂(0)), so we focus on the latter quantity.

Lemma 14 With probability 1

lim
n→∞

(
PredX

(
θ̂ols

)
− PredX

(
θ̂(0)

))
=

σ2

γ

(∫
1

s
dH(s)−

∫
1

s+ σ2
dH(s)

)
.

Proof By the Bai-Yin law (Lemma 12) we may assume that XX⊤ ≻ 0, as this eventually holds
with probability 1. Let θ̂(0) = A(0, I)y for A(0, I) = (X⊤X + dσ2I)−1X⊤ be the optimal
unconstrained estimator (recall Lemma 6) and θ̂ols = Aolsy for Aols = X⊤(XX⊤)−1 = X†. Then

PredX

(
θ̂OLS

)
− PredX

(
θ̂(0)

)
= P(Aols; I)− P(A(0, I); I). (25)

We expand each of the prediction errors above in turn.
For the first, we have the identity

P(Aols; I) =
1

d
∥AolsX − I∥2F + σ2 ∥Aols∥2F

=
1

d
Tr

((
X⊤(XX⊤)−1X − Id

)2)
+ σ2Tr

(
X⊤(XX⊤)−2X

)
=

d− n

d
+ σ2Tr

(
(XX⊤)−1

)
,

where we have used that X⊤(XX⊤)−1X − Id is a projection matrix of rank d−n. For the second,

P(A(0, I); I) =
1

d
∥A(0, I)X − I∥2F + σ2 ∥A(0, I)∥2F

=
1

d
Tr

((
X⊤(XX⊤ + dσ2I)−1X − I

)2)
+ σ2Tr

(
X⊤

(
XX⊤ + dσ2I

)−2
X

)
(i)
= 1 +

1

d
Tr
(
(XX⊤)2(XX⊤ + dσ2I)−2 − 2XX⊤(XX⊤ + dσ2I)−1

)
+ σ2Tr

(
XX⊤(XX⊤ + dσ2I)−2

)
= 1 +

1

d
Tr

(
XX⊤

(
XX⊤ − 2(XX⊤ + dσ2I) + dσ2I

)(
XX⊤ + dσ2I

)−2
)

= 1 +
1

d
Tr

(
XX⊤

(
XX⊤ + dσ2I

)−1
)
,

where in step (i) we use that XX⊤ and (XX⊤ + dσ2I)−1 commute and the cyclic property of the
trace. Substituting these equalities into expression (25) yields

PredX

(
θ̂OLS

)
−PredX

(
θ̂(0)

)
= −n

d
+σ2Tr

(
(XX⊤)−1

)
+
1

d
Tr

(
XX⊤

(
XX⊤ + dσ2I

)−1
)
.

From this point, we expand the traces in terms of the empirical spectral distributions Hn, so
multiplying and dividing XX⊤ by d and normalizing the traces by n, we obtain

PredX

(
θ̂OLS

)
− PredX

(
θ̂(0)

)
= −n

d
+

σ2n

d

∫
1

s
dHn(s) +

n

d

∫
s

s+ σ2
dHn(s).
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We may apply the Bai-Yin law (Lemma 12) and the Marchenko-Pastur law (Lemma 11), so λmin(XX⊤/d)
converges with probability 1, and thus almost surely

lim
n→∞

(
PredX

(
θ̂OLS

)
− PredX

(
θ̂(0)

))
= −1

γ
+

σ2

γ

∫
1

s
dH(s) +

1

γ

∫
s

s+ σ2
dH(s).

An algebraic manipulation gives the lemma.

Noting that 1
s − 1

s+σ2 = σ2

s(s+σ2)
gives the first equality of part (i) of the theorem. We divide

the remainder of the proof into two parts. In the first, we perform an asymptotic expansion of the
integral in Lemma 14 to finalize part (i). In the second, we prove part (ii), including the existence
of the threshold ρ and the limiting values of CostX(ϵ).

Finalizing Theorem 2 (i): The cost of minimum norm interpolation. As in our derivation of
Eq. (15), we can apply Bai and Silverstein (2010, Lemma 3.11) to the integral form of Lemma 14.
Recalling Bai and Silverstein’s result, we have

∫
1

s+ σ2
dH(s) =

1− 1/γ + σ2 −
√

(1− 1/γ + σ2)2 + 4σ2/γ

−2σ2/γ
. (26)

As(1− 1

γ
+ σ2

)
−

√(
1− 1

γ
+ σ2

)2

+
4σ2

γ

(1− 1

γ
+ σ2

)
+

√(
1− 1

γ
+ σ2

)2

+
4σ2

γ

 =
4σ2

γ
,

we then use that H has support bounded away from zero to immediately obtain

∫
1

s
dH(s) = lim

σ↓0

1− 1/γ + σ2 −
√
(1− 1/γ + σ2)2 + 4σ2/γ

−2σ2/γ

= lim
σ↓0

2√
(1− 1/γ + σ2)2 + 4σ2/γ + (1− 1/γ + σ2)

=
1

1− 1/γ
.

As σ2

s(s+σ2)
= 1

s −
1

s+σ2 , we then again use identity (26) and Lemma 14 to see that

σ2

γ
·
(∫

1

s
dH(s)−

∫
1

s+ σ2
dH(s)

)

=
σ2

γ
·

 1

1− 1/γ
− 2√

(1− 1/γ + σ2)2 + 4σ2/γ + (1− 1/γ + σ2)


=

σ2

γ
·

 1

1− 1/γ
− 2

(1− 1/γ + σ2) + 4σ2/γ
2(1−1/γ+σ2)

+ (1− 1/γ + σ2) + o(σ2)


=

σ2

γ
·

(
1

1− 1/γ
− 1

1− 1/γ + σ2

1−1/γ + o(σ2)

)
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=
σ4

γ (1− 1/γ)3
+ o(σ4) ,

where we use the Taylor expansions
√
x2 + t = x + t

2x + o(t2) and 1
x+t =

1
x − t

x2 + o(t2), valid
for any fixed x > 0.

Proving Theorem 2 (ii): interpolation threshold. To obtain the threshold value ρols, we derive
the limit limn→∞ CostX(ϵ) for any ϵ > 0. As Lemma 14 shows,

lim
n→∞

(
CostX(ϵ)− CostX(ϵ)

)
=

σ4

γ

∫
1

s(s+ σ2)
dH(s).

Applying Theorem 1 for the limiting value of CostX(ϵ), we recall the definition (7) of ϵ2σ =∫
σ4

s+σ2dH(s). Choose ρ = ρ(ϵ) to be ρ(ϵ) = 0 if ϵ < ϵσ and to satisfy ϵ2 =
∫

σ4

(1−ρs)2(s+σ2)
dH(s)

when ϵ ≥ ϵσ, as in Eq. (8) in Theorem 1, which decreases continuously to ρ(ϵσ) = 0. The theorem
then implies

lim
n→∞

CostX(ϵ) =
ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s).

Adding and subtracting CostX(ϵ), we therefore have with probability 1 that

lim
n→∞

CostX(ϵ) = lim
n→∞

CostX(ϵ)− lim
n→∞

(
CostX(ϵ)− CostX(ϵ)

)
=

ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s)− σ4

γ

∫
1

s(s+ σ2)
dH(s) (27)

(compare with Eq. (10)). Notably, ρ = ρ(ϵ) satisfies ρ = 0 whenever ϵ < ϵσ, so that

lim
n→∞

CostX(ϵ) = −σ4

γ

∫
1

s(s+ σ2)
dH(s) < 0

for ϵ < ϵσ.
Now, consider the ρols solving identity (10) and the associated value ϵσ,ols, where it is evident

that ρols > 0. Then the preceding calculations yield immediately that

lim
n→∞

CostX(ϵσ,ols) =
σ4

γ
·
(
ρ2ols

∫
s

(1− ρolss)2 (s+ σ2)
dH(s)−

∫
1

s(s+ σ2)
dH(s)

)
= 0.

Because the value ρ = ρ(ϵ) solving the identity (8) is increasing in ϵ ≥ ϵσ, we conclude that
ρ(ϵ) > ρols for ϵ > ϵσ,ols and ϵσ,ols > ϵσ. Combining everything to this point and the limit (27), we
see that

lim
n→∞

CostX(ϵ)

{
> 0 if ϵ > ϵσ,ols

< 0 if ϵ < ϵσ,ols.

Lastly, we provide the concrete claimed bounds on ϵσ,ols in terms of ϵσ. We have already seen
that ϵσ,ols > ϵσ, and so the claimed upper bound revolves around lower bounding ρols so that we
may provide an upper bound on ϵσ,ols =

∫
σ4

(1−ρolss)2(s+σ2)
dH(s). To that end, note that identity (10)

gives a lower bound for ρols: as∫ (
ρ2olss

2

(1− ρolss)2
− 1

)
· 1

s (s+ σ2)
dH(s) = 0 ,
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we must have

sup
s∈[λ−,λ+]

ρ2olss
2

(1− ρolss)2
− 1 ≥ 0, so ρols ≥

1

2λ+
.

Invoking the lower bound ρols · 2λ+ ≥ 1 and that s/λ− ≥ 1 on the support of H , we have

ϵ2σ,ols =

∫
σ4

(1− ρolss)2 (s+ σ2)
dH(s)

≤
4λ2

+

λ−
· σ4 · ρ2ols

∫
s

(1− ρolss)2 (s+ σ2)
dH(s) =

4λ2
+σ

4

λ−

∫
1

s(s+ σ2)
dH(s),

where we used the identity (10). Noting that 1
s ≤ 1

λ−
and using the definition (7) of ϵσ =∫

σ4

s+σ2dH(s) gives the final bound that ϵ2σ,ols ≤
4λ2

+

λ2
−
ϵ2σ, as desired.

Appendix D. Proof of Theorem 3

The proof follows a similar approach to that we use in the proof of Theorem 1 in Section 4: we
compute formulae for the training and prediction errors conditional on the data matrices X , then
use these to provide the bounds on the memorization threshold and costs for fitting to accuracy worse
than that threshold. While in the proof of Theorem 1, we could develop explicit spectral limits for
the error measures of interest, here exact forms are difficult, but we can obtain tight enough bounds
(mitigated by the condition number κ of the covariance Σ of the data vectors x) to give the desired
results. With that in mind, we note that Lemmas 5, 6, and 7 all continue to hold, so that the reduction
via strong duality applies. In particular, the optimal linear estimator A in the form θ̂ = Ay continues
to take the form A(ρ,Σ) in (14).

Throughout the proof, we let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the singular values of X and
µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 those of Z, and so the empirical spectral c.d.f.s of 1

dXX⊤ and 1
dZZ⊤

are (respectively)

Gn(s) :=
1

n

n∑
i=1

1λ2
i /d≤s and Hn(s) :=

1

n

n∑
i=1

1µ2
i /d≤s.

By the Marchenko-Pastur and deformed Marchenko-Pastur laws (Lemmas 11 and 13), Gn and Hn

converge weakly (almost surely) to c.d.f.s G and H , respectively. Again, we only need to prove
under Assumption A2 by applying Theorem 4.

Part I: Memorization threshold. We begin with the expansion of ϵσ,def and the bound ϵ2σ,def ≤
ϵ2√

κσ
/κ. Rewriting ϵσ and ϵσ,def in terms of the limits arising from their respective Marchenko-

Pastur laws, we have

ϵ2σ,def =

∫
σ4

s+ σ2
dG(s) = lim

n→∞

∫
σ4

s+ σ2
dGn(s) = lim

n→∞

dσ4

n
Tr
(
(XX⊤ + dσ2I)−1

)
,

ϵ2√κσ/κ =

∫
κσ4

s+ κσ2
dH(s) = lim

n→∞

∫
κσ4

s+ κσ2
dHn(s) = lim

n→∞

dσ4

n
Tr
(
(ZZ⊤/κ+ dσ2I)−1

)
.

As XX⊤ = ZΣZ⊤ ⪰ ZZ⊤/κ, we have Tr(ZZ⊤/κ+ dσ2I)−1 ≥ Tr(XX⊤ + dσ2I)−1 and thus
ϵ2σ,def ≤ ϵ2√

κσ
/κ.
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Part II: No cost below threshold. It is immediate via Lemma 6 that the global minimizer for the
unconstrained problem (2) (with ϵ = 0) is A(0,Σ), that is, ρ = 0 as the constraint is inactive and

A(0,Σ) = X⊤(XX⊤ + dσ2I)−1 = (X⊤X + dσ2I)−1X⊤.

Then as usual inf
θ̂∈H(0)

PredX(θ̂) = PredX(θ̂dσ2), where we recall θ̂dσ2 is the ridge estimator. To

prove that limn→∞ CostX(ϵ) = 0 when ϵ < ϵσ,def, it is thus sufficient to show that θ̂dσ2 is contained
in H(ϵ) eventually, which amounts to proving

lim inf
n→∞

TrainX

(
θ̂dσ2

)
= lim inf

n→∞
T (A(0,Σ);Σ) > ϵ2.

Invoking the expansion of T (A(ρ,Σ);Σ) in Lemma 7 and setting ρ = 0, we obtain

T (A(0,Σ);Σ) =
dσ4

n
Tr

(
X⊤X

(
X⊤X

)† (
X⊤X + dσ2I

)−1
)

=

∫
σ4

s+ σ2
dGn(s).

By weak convergence,

lim
n→∞

T (A(0,Σ);Σ) = lim
n→∞

∫
σ4

s+ σ2
dGn(s) =

∫
σ4

s+ σ2
dG(s) = ϵ2σ,def > ϵ2,

so indeed we have θ̂dσ2 ∈ H(ϵ) as desired.

Part III: Cost of not-fitting above threshold. Our starting point is to demonstrate the existence
and uniqueness of ρdef ∈

[
0, λ−1

+

)
solving the identity (12). For this, we note that the difference

∆H(ρ) :=

∫ [
1

(1− ρs)2(s+ κσ2)
− 1

s+ σ2

]
dH(s)

is monotone increasing in ρ, and ∆H(0) = 0. That ∆H(ρ) → ∞ as ρ ↑ λ−1
+ is then an immediate

consequence of the expansion (16) of the left integrand above.
We turn to the second claim in part (iii): the lower bound on CostX(ϵ). We (roughly) reduce

the general covariance case to the isotropic case, then apply our previous results and techniques. To
do so, we require the following lemma, which upper-bounds the training error growth and lower-
bounds the prediction error growth. The proof is essentially tedious algebraic manipulations, so we
defer it to Appendix D.1.

Lemma 15 Let the same conditions of Lemma 7 hold and assume ρλ2
1/d < 1. Then

P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ) ≥ ρ2σ4

d
Tr

((
I − ρ

d
ZZ⊤

)−2 ZZ⊤

d
·
(
ZZ⊤

d
+ σ2I

)−1
)
,

T (A(ρ,Σ);Σ)− T (A(0,Σ);Σ) ≤ κσ4

n
Tr

[((
I − ρ

d
ZZ⊤

)−2
− I

)(
1

d
ZZ⊤ + κσ2I

)−1
]
.

We use the upper and lower bounds in Lemma 15, coupled with the strong duality guarantees
in Lemma 6 (and the identities (14)), to prove the desired growth of the CostX(ϵ). Consider any
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0 ≤ ρ < ρdef, where ρdef satisfies the identity (12). By construction and duality, A(ρ,Σ) is the
optimal solution to the problem

minimize
A∈Rd×n

P(A; Σ)

subject to T (A(ρ,Σ);Σ)− T (A; Σ) ≤ 0.

Thus, whenever T (A(ρ,Σ);Σ) < ϵ2 it holds that

CostX(ϵ) ≥ P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ). (28)

Therefore, to prove that CostX(ϵ) grows it is sufficient to show that eventually T (A(ρ,Σ);Σ) < ϵ
for our chosen ρ and provide lower bounds on the difference P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ).

To that end, let us take limits of T . Applying the upper bound in Lemma 15, we have

lim sup
n→∞

T (A(ρ,Σ);Σ)

≤ lim sup
n→∞

T (A(0,Σ);Σ) + lim sup
n→∞

κσ4

n
Tr

[((
I − ρ

d
ZZ⊤

)−2
− I

)(
1

d
ZZ⊤ + κσ2I

)−1
]

= ϵ2σ,def + lim sup
n→∞

κσ4

∫
ρs(2− ρs)

(1− ρs)2 (s+ κσ2)
dHn(s)

with probability 1. As ρ < ρdef < λ−1
+ , the quantity s(2−ρs)

(1−ρs)2(s+κσ2)
is eventually bounded on the

support [λ−, λ+] + o(1) of Hn by the Bai-Yin law (Lemma 12), and so with probability one

κσ4

∫
ρs(2− ρs)

(1− ρs)2 (s+ κσ2)
dHn(s) → κσ4

∫
ρs(2− ρs)

(1− ρs)2 (s+ κσ2)
dH(s)

= κσ4

∫ (
1

(1− ρs)2 (s+ κσ2)
− 1

s+ κσ2

)
dH(s)

< κσ4

∫ (
1

(1− ρdefs)2 (s+ κσ2)
− 1

s+ κσ2

)
dH(s)

= ϵ2 − ϵ2σ,def,

where the last line follows from the definition (12) of ρdef. In particular, with probability 1 we have

lim sup
n→∞

T (A(ρ,Σ);Σ) < ϵ2σ,def + ϵ2 − ϵ2σ,def = ϵ2,

and therefore inequality (28) implies that with probability 1,

lim inf
n→∞

CostX(ϵ) ≥ lim inf
n→∞

[P(A(ρ,Σ);Σ)− P(A(0,Σ);Σ)] .

We now apply Lemma 15 again, invoking the lower bound on the prediction errors to obtain

lim inf
n→∞

CostX(ϵ) ≥ lim
n→∞

ρ2σ4

d
Tr

((
I − ρ

d
ZZ⊤

)−2 ZZ⊤

d
·
(
ZZ⊤

d
+ σ2I

)−1
)

= lim
n→∞

ρ2σ4 · n
d
·
∫

s

(1− ρs)2 (s+ σ2)
dHn(s)
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=
ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s) .

Taking ρ ↑ ρdef yields the second claim of part (iii).
Our last step is to prove a concrete lower bound showing that CostX(ϵ) grows linearly in ϵ2

provided that ϵ2 ≥ 2κσ4

λ−+κσ2 , in parallel to the result in Lemma 10. We state a small integral
inequality:

Lemma 16 Let ρ = ρdef solve the fixed point (12). Then∫
κσ4

(1− ρs)2(s+ κσ2)
dH(s) ≥ ϵ2.

Proof The identity (12) shows that the integral in the statement of the lemma equals
∫

κσ4

s+κσ2dH(s)+

ϵ2 − ϵ2σ,def. Recall that by part (i) of Theorem 3, we have ϵ2σ,def ≤ ϵ2√
κσ
/κ =

∫
κσ4

s+κσ2dH(s).

Taking ρ = ρdef to solve the fixed point (12), we apply the second claim in part (iii) to see that

lim inf
n→∞

CostX(ϵ) ≥ ρ2

γ

∫
σ4s

(1− ρs)2(s+ σ2)
dH(s) ≥ ρ2λ−

γ

∫
σ4

(1− ρs)2(s+ σ2)
dH(s)

≥ ρ2λ−
κγ

∫
κσ4

(1− ρs)2(s+ κσ2)
dH(s) ≥ ρ2λ−

κγ
ϵ2 (29)

by Lemma 16. It remains to lower bound ρ = ρdef < λ−1
+ . For this, we observe that

1

(1− ρλ+)2
≥
∫

1

(1− ρs)2
dH(s) ≥ λ− + κσ2

κσ4

∫
κσ4

(1− ρs)2(s+ κσ2)
dH(s) ≥ λ− + κσ2

κσ4
· ϵ2,

again applying Lemma 16. In particular, whenever λ++κσ2

κσ4 ϵ2 ≥ 2, we obtain (1− ρλ+)
−2 ≥ 2, or

ρdef ≥ 1
λ+

(1− 1/
√
2). Substituting in inequality (29) gives the lower bound on lim infn CostX(ϵ).

D.1. Proof of Lemma 15

We prove each claim of the lemma in turn. For the first, we use the shorthand ∆P(ρ) := P(A(ρ,Σ);Σ)−
P(A(0,Σ);Σ). Then applying Lemma 7, we have

∆P(ρ) =
ρ2σ4

d
Tr

((
Σ− ρ

d
X⊤X

)−1
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤

(
XX⊤ + dσ2I

)−1
X

)
,

and making the substitution X = ZΣ
1
2 immediately yields

∆P(ρ)

=
ρ2σ4

d
Tr

((
Σ− ρ

d
Σ

1
2Z⊤ZΣ

1
2

)−1
Σ
(
Σ− ρ

d
Σ

1
2Z⊤ZΣ

1
2

)−1
Σ

1
2Z⊤

(
ZΣZ⊤ + dσ2I

)−1
ZΣ

1
2

)
=

ρ2σ4

d
Tr

(
Z
(
I − ρ

d
Z⊤Z

)−2
Z⊤ ·

(
ZΣZ⊤ + dσ2I

)−1
)
.
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As Z(I − ρ
dZ

⊤Z)−2Z⊤ ⪰ 0 and ZΣZ⊤ + dσ2I ⪯ ZZ⊤ + dσ2I as Σ ⪯ I by assumption, we
can leverage that the mapping A 7→ Tr(AC) is increasing in the positive definite order for C ⪰ 0
to obtain that

∆P(ρ) ≥
ρ2σ4

d
Tr

(
Z
(
I − ρ

d
Z⊤Z

)−2
Z⊤ ·

(
ZZ⊤ + dσ2I

)−1
)

=
ρ2σ4

d
Tr

((
I − ρ

d
ZZ⊤

)−2 ZZ⊤

d
·
(
ZZ⊤

d
+ σ2I

)−1
)
,

where in the last line we used the identity Z(I − ρ
dZ

⊤Z)−1 = (I − ρ
dZZ⊤)−1Z. This gives the

first claim of Lemma 15.
We turn to the upper bound on the training error, for which we use the shorthand ∆T (ρ) :=

T (A(ρ,Σ);Σ)− T (A(0,Σ);Σ). Beginning from the expansion of T in Lemma 7, we have

n

dσ4
∆T (ρ) = Tr

[
Σ
(
Σ− ρ

d
X⊤X

)−1
X⊤X

(
Σ− ρ

d
X⊤X

)−1
Σ
(
X⊤X

)† (
X⊤X + dσ2I

)−1
]

− Tr
[
X⊤X(X⊤X)†(X⊤X + dσ2I)−1

]
. (30)

Leveraging the identities X = ZΣ
1
2 and that

(X⊤X)†(X⊤X + dσ2I)−1 = X⊤(XX⊤)−2(XX⊤ + dσ2I)−1X

= Σ
1
2Z⊤(ZΣZ⊤)−2(ZΣZ⊤ + dσ2I)−1ZΣ

1
2 ,

the right hand side of the expansion (30) becomes

Tr

[(
Σ

1
2

(
I − ρ

d
Z⊤Z

)−1
Z⊤Z

(
I − ρ

d
Z⊤Z

)−1
Σ

1
2 − Σ

1
2Z⊤ZΣ

1
2

)
X⊤(XX⊤)−2(XX⊤ + dσ2I)−1X

]
= Tr

[
Σ

1
2

((
I − ρ

d
Z⊤Z

)−1
Z⊤Z

(
I − ρ

d
Z⊤Z

)−1
− Z⊤Z

)
ΣZ⊤(ZΣZ⊤)−2(ZΣZ⊤ + dσ2I)−1ZΣ

1
2

]
= Tr

[
Σ

1
2

((
I − ρ

d
Z⊤Z

)−2
− I

)
Z⊤(ZΣZ⊤)−1

(
ZΣZ⊤ + dσ2I

)−1
ZΣ

1
2

]
,

where we have used that (I − ρ
dZ

⊤Z)−1 and Z⊤Z commute and eliminated one inverse of ZΣZ⊤.
The singular value decomposition gives the equality (I− ρ

dZ
⊤Z)−2Z⊤ = Z⊤(I− ρ

dZZ⊤)−2, where
I is an identity matrix of appropriate size. The cyclic property of the trace and that (ZΣZ⊤)−1 and
(ZΣZ⊤ + dσ2I)−1 comute then allows us to substitute into the identity (30) to obtain

∆T (ρ) =
dσ4

n
Tr

[((
I − ρ

d
ZZ⊤

)−2
− I

)(
ZΣZ⊤ + dσ2I

)−1
]
.

Lastly, we again use the monotonicity of A 7→ Tr(AC) for C ⪰ 0 and that ZΣZ⊤ + dσ2I ⪰
ZZ⊤/κ+ dσ2I to get claimed upper bound in the lemma.
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Appendix E. Proof of Theorem 4

We provide the proof conditional on X , implicitly conditioning throughout. As Hlin(ϵ) ⊂ Hsq(ϵ),
we only need to show

inf
θ̂∈Hsq(ϵ)

PredX

(
θ̂
)
≥ min

θ̂∈Hlin(ϵ)
PredX

(
θ̂
)
.

First we note that in the Gaussian setting that θ ∼ N(0, 1dI), we have y = Xθ + ε ∼ N(0, XX⊤

d +
σ2I). By a standard calculation, the conditional distribution of θ given y is

θ | y ∼ N

((
X⊤X + dσ2I

)−1
X⊤y, σ2

(
X⊤X + dσ2I

)−1
)
,

and therefore for any θ̂(X, y) ∈ Hsq,

PredX

(
θ̂
)
= Ey

[
Eθ|y

[∥∥∥Σ 1
2

(
θ̂ − θ

)∥∥∥2
2
| y
]]

= Ey

[∥∥∥∥Σ 1
2

(
θ̂ −

(
X⊤X + dσ2I

)−1
X⊤y

)∥∥∥∥2
2

+ σ2Tr

(
Σ
(
X⊤X + dσ2I

)−1
)]

.

Notably, the posterior mean E[θ | y] always minimizes the prediction risk. By Lemma 6 we know
there is a ρ such that θ̂(ρ) := A(ρ,Σ)y is optimal for problem (2) where

A(ρ,Σ) =

(
I − ρσ2

(
Σ− ρ

d
X⊤X

)−1
)
(X⊤X + dσ2I)−1X⊤.

We consider two cases, depending on whether the value of the dual variable ρ = 0 or ρ > 0.

Case I: ρ = 0. In this case θ̂(0) =
(
X⊤X + dσ2I

)−1
X⊤y ∈ Hlin(ϵ) ⊂ Hsq(ϵ). But this is the

posterior mean, that is, θ̂(0) = E[θ | y], which is thus optimal.

Case II: ρ > 0. As PredX(θ̂(ρ)) is continuous in ρ, if we can prove for any θ̂ ∈ Hsq(ϵ) and any
0 ≤ ρ < ρ that

PredX

(
θ̂
)
≥ PredX

(
θ̂(ρ)

)
, (31)

taking ρ ↑ ρ completes the proof. (Note that ρ is the optimal dual variable for problem (2), and so
θ̂(ρ) ∈ F(ϵ).)

To show claim (31), let µ = N(0, 1dXX⊤ + σ2I) be the marginal distribution over y. We

construct a sequence of random measures µ1, µ2, · · · , by sampling yi
iid∼ µ and constructing the

empirical measure

µm =
1

m

m∑
i=1

δyi .
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In this case the optimization problem

minimize
θ̂(X,yi)∈Rd,1≤i≤m

∫ ∥∥∥∥Σ 1
2

(
θ̂ −

(
X⊤X + dσ2I

)−1
X⊤y

)∥∥∥∥2
2

dµm

subject to
∫ ∥∥∥Xθ̂ − y

∥∥∥2
2
dµm ≥

∫ ∥∥∥Xθ̂(ρ)− y
∥∥∥2
2
dµm

is a finite dimensional optimization problem with (strongly convex) quadratic objective and a single
quadratic constraint. Then strong duality obtains (Boyd and Vandenberghe, 2004, Appendix B.1),
so we can write the stationary condition that for some λ ≥ 0,

Σ

(
θ̂(X, yi)−

(
X⊤X + dσ2I

)−1
X⊤yi

)
− λX⊤(Xθ̂(X, yi)− yi) = 0

simultaneously for i = 1, . . . ,m. Rewriting gives(
Σ− λX⊤X

)
θ̂(X, yi) =

(
Σ
(
X⊤X + dσ2I

)−1
− λI

)
X⊤yi, for i = 1, . . . ,m.

By an identical argument to that we use to prove Lemma 6 in Appendix B.2, it must be the case that
Σ− λX⊤X ≻ 0 and thus for each i = 1, . . . ,m,

θ̂(X, yi) =
(
Σ− λX⊤X

)−1 (
Σ− λX⊤X − λdσ2I

)(
X⊤X + dσ2I

)−1
X⊤yi

=

(
I − λdσ2

(
Σ− λX⊤X

)−1
)(

X⊤X + dσ2I
)−1

X⊤yi.

By inspection, this estimator is linear in y, and for the choice λ = ρ
d takes identical values at

y1, . . . , ym as θ̂(ρ). The constraints of the problem (32) are satisfied and the KKT conditions hold,
so (an) optimal solution is θ̂(ρ).

For any θ̂ ∈ Hsq(ϵ), whenever the training errors satisfy∫ ∥∥∥Xθ̂ − y
∥∥∥2
2
dµm ≥

∫ ∥∥∥Xθ̂(ρ)− y
∥∥∥2
2
dµm,

we must have ∫ ∥∥∥Σ 1
2

(
θ̂ − E[θ | y]

)∥∥∥2
2
dµm ≥

∫ ∥∥∥Σ 1
2

(
θ̂(ρ)− E[θ | y]

)∥∥∥2
2
dµm. (32)

By the law of large numbers, if θ̂ is square integrable, then with probability one

lim
m→∞

∫ ∥∥∥Xθ̂ − y
∥∥∥2
2
dµm =

∫ ∥∥∥Xθ̂ − y
∥∥∥2
2
dµ ≥ ϵ2

(⋆)
>

∫ ∥∥∥Xθ̂(ρ)− y
∥∥∥2
2
dµ = lim

m→∞

∫ ∥∥∥Xθ̂ − y
∥∥∥2
2
dµm,

where inequality (⋆) holds by the assumption that ρ < ρ = ρ(ϵ), yielding the difference in training
errors. Thus Eq. (32) holds eventually for all large m. Again applying the law of large numbers and
taking m → ∞, we establish the desired prediction error gap (31).
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