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Abstract
We consider the problem of recovering communities in a random directed graph with planted

communities. To model real-world directed graphs such as the Twitter or Instagram graphs that
exhibit very heterogeneous degree sequences, we introduce the Degree-Heterogeneous Stochastic
Block Model (DHSBM ), a generalization of the classic Stochastic Block Model (SBM ), where the
vertex set is partitioned into communities and each vertex u has two (unknown) associated proba-
bilities, pu and qu, pu > qu. An arc from u to v is generated with probability pu if u and v are in
the same community and with probability qu otherwise. Given a graph generated from this model,
the goal is to retrieve the communities.

The DHSBM allows to generate graphs with planted communities while allowing heterogeneous
degree distributions, a quite important feature of real-world networks.

In the case where there are two communities, we present an iterative greedy linear-time algo-
rithm that recovers them whenever minu

pu−qu√
pu
≥ C

√
log(n)/n), for some absolute constant C.

We also show that, up to a constant, this condition is necessary. Our results also extend to the stan-
dard (undirected) SBM , where pu = p and qu = q for all nodes u. Our algorithm presents the first
linear-time algorithm that recovers exactly the communities at the asymptotic information-theoretic
threshold, improving over previous near-linear time spectral approaches.
Keywords: Community Detection; Stochastic Block Model; Degree-Heterogeneous Stochastic
Block Model.

1. Introduction

Graph clustering is a central tool for understanding complex networks and extracting useful infor-
mation from them. As such, graph clustering is used in a wide range of applications including:
recommendation systems Gandomi and Haider (2015), link prediction Liben-Nowell and Kleinberg
(2007), biological networks Girvan and Newman (2002) (e.g., protein-protein interaction networks),
natural language processing Manning et al. (1999), or social networks Mishra et al. (2007). One of
the most common test-beds for designing graph clustering algorithms is the Stochastic Block Model
(SBM ).

The SBM allows the sampling of random graphs having an intrinsic cluster structure with high
densities of edges within clusters and low densities across clusters. In its most basic setting, a graph
generated from the SBM consists of two hidden ground-truth clusters V1 and V2 each of size n;
then for each pair of nodes, an edge is added to the graph with probability p if both nodes are from
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the same cluster and with probability q otherwise. The SBM is used to analyze graph clustering
algorithms in a beyond-worst-case scenario: a good clustering algorithm should be able to recover
the ground-truth partition (V1, V2). However, a limitation of the model is that a graph sampled from
the SBM is very likely to be almost-regular, i.e., all nodes have a degree that is concentrated around
np + nq. Although unrealistic, that property is crucial to the proof of recovery of most known
algorithms for graph clustering in SBM , which may fail when the degree distribution is not tightly
concentrated (see the discussion below).

Of course, in the real-world, most interesting (directed) graphs such as Twitter, the Instagram
graphs of followers or the Facebook friendship (undirected) graph are irregular and influential peo-
ple are much more connected than the average user. For example, in the Twitter graph, influential
people have a larger “incoming” degree: a larger number of people connected to them (following
them). Thus, the degrees in real-word graphs are often highly heterogeneous. We therefore put
forth a new more realistic model, which we call the Degree-Heterogeneous Stochastic Block Model
(DHSBM ) that would enable cluster structure and heterogeneous degrees. Here, for each node u
there are two parameters pu and qu, and we think of pu as the probability that vertex v in the same
community as u “follows” u (or is connected towards u), while qu is the probability of vertex v in
a different community to follow u (or to be connected towards u). We can thus generate a directed
graph according to the probability distributions defined by the pus and qus. We believe that this
graph is a great model of directed network with cluster structure such as the Twitter or Instagram
graphs where we expect influential people to have a large number of followers but not necessarily
to follow much more people than the average. This can be easily reflected in our model by setting a
high value for pu for the most influential persons. Since pu, qu can take arbitrary values, this allows
for a highly heterogeneous network representing the various levels of popularity of the nodes.

Then, the question is whether one can design efficient algorithms for identifying the ground-
truth cluster structure in this model (i.e.: recovering the underlying communities). In fact, a more
basic natural question is what is the information-theoretic threshold for exact recovery in this graph
model? Is it the same as the SBM , harder, easier or are they incomparable?

1.1. Our Results

We answer the above questions as follows. Our positive results (Theorem 1 and Theorem 2), show
that there exists a linear-time algorithm able to recover the ground-truth partition of the DHSBM
w.p. 2/3, assuming sufficient separation between pu and qu. Note here that there are two sources of
randomness: the randomness coming from the model itself, which we call the graph randomness,
and the random bits used by the algorithm.

Theorem 1 Consider the DHSBM with two communities andN nodes, with probability vectors p =
{pu | u ∈ V } and p = {qu | u ∈ V }, and minimum community size N/f with f = O(log logN).

Let γ = minu
pu−qu√

pu
. Then, there exists a constant C such that if γ ≥ Cf5/2

√
logN
N , then there

exists an algorithm that recovers the communities, w.p. 1− o(1) on the graph’s randomness, and at
least 2/3 on the algorithm’s randomness. Moreover, the algorithm runs in linear time.

Theorem 2 Consider the SBM with two communities and N nodes, with probabilities p and q, and
a minimum community sizeN/f with f = O(log logN). Let γ = p−q√

p . Then, there exists a constant

C such that if γ ≥ Cf5/2
√

logN
N , then there exists an algorithm that recovers the communities, w.p.
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1 − o(1) on the graph’s randomness, and at least 2/3 on the algorithm’s randomness. Moreover,
the algorithm runs in linear time.

In the SBM , it is known that γ >
√

2
√

logn
n is necessary for recovery (see Abbe et al. (2015)

and Mossel et al. (2015)). Our algorithm has almost the same threshold – up to a constant. We
complement our upper bounds by showing that in the DHSBM , there exists some setting of pu, qu
where our bound is indeed tight up to a constant factor, and so the information-theoretic threshold
for exact recovery matches the SBM ’s one up to constant factors.

Theorem 3 Fix any cp < 1/80. Consider the DHSBM in which for all nodes u, pu = cp log n/n.
Assume that qu is such that (pu − qu)/

√
pu ≤ cp

20

√
log n/n. Then, no algorithm recovers the

community with a success probability of more than 1/2 on the graph randomness.

Note that the lower bounds in the SBM do not translate to lower bounds in the DHSBM due to
the directedness of the edges. The direction of the edges provides more information: just because
a node has more edges from the ”wrong” cluster than from its own does not mean it is impossible
to recover its cluster: the structure of the outgoing edges may contain enough information as the
following example illustrates. Consider a graph where n−1 nodes violate the γ threshold by having
pu, qu = 1/2 and one single node satisfies the threshold γ with p1 = 1, q1 = 0. In this contrived
example, exact recovery is trivial.

1.2. Technical Contributions

Challenges The state-of-the-art algorithms for community detection, both in terms of running
time and recovery threshold, are spectral algorithms. These algorithms crucially rely on the fol-
lowing property of the standard SBM : the expected adjacency matrix consists of only 2 different
columns (and rows). In the DHSBM , however, it is not clear how spectral methods could be helpful.
At first glance, this might be surprising since the expected adjacency matrix is of rank 2. However,
what makes the recovery challenging is that nodes of the same community can have vastly different
pu. As a consequence, the homogeneity of the graph breaks, and approaches such as McSherry
(2001); Chin et al. (2015) that rely on bounding the Frobenius norm do not work. Furthermore,
algorithms that rely on gaps between the eigenvalues (e.g., Wang et al. (2020); Abbe (2018); Abbe
and Sandon (2015)) cannot be used as the top-k eigenvalues can be modified almost arbitrarily by
tuning the pu. In contrast, SDP based algorithms are robust to some adversarial perturbation of the
SBM (Moitra et al. (2016)), but are desperately slow with a large polynomial running time. There-
fore, we need to move away from those spectral and SDP algorithms in order to design efficient
algorithms for DHSBM .

Contribution Our algorithm relies on the following principle: given a partition, moving a vertex
from one part to the part where it has most neighbors should somewhat improve the quality of
the partition. Based on this idea, we design an algorithm that allows to formalize this notion of
improvement.

For simplicity, suppose first that the current partition splits the vertices into two parts of equal
size. Our main technical contribution is a precise understanding of the probability that a given vertex
has more edges toward one side of the partition than the other, given how the two communities
are split by the partition. We characterize this probability optimally, up to constant factors in the
second-order term.
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That probability depends on a key quantity, dubbed the discrepancy: in the case where the two
communities C1 and C2 have the same size, the discrepancy of the partition S1, S2 is ∆ = |C1 ∩
S1|−|C2∩S1|. This naturally impacts the probability of having more edges toward one side than the
other, as that probability depends on the repartition of the communities. More precisely, we show
that for a vertex u, the probability that it has more edges towards S1 than S2 is 1/2 + ∆(pu−qu)/√pu,
where ∆ is the current discrepancy.

To prove that probability bound, we analyze a natural coupling between binomial variables that
count the number of edges towards each community. The standard way to achieve was to go through
Gaussians, but it falls short of achieving optimal bound – missing in particular the 1/√pu factor,
crucial to work in sparse graphs. Leaving Gaussians behind, we are able to bound the binomials
directly. To do so, we characterize the binomial distributions BIN(n, p) around np±√np, and show
that, to our purpose, BIN(n, p) is approximately uniform on that interval. Perhaps surprisingly, this
approximation yields much stronger bounds than the Gaussian approach, in particular when np is
small. We believe our analysis sheds a new light on the behavior of the family of algorithms that
greedily improve a partition, based on that idea.

This allows us to show a lower bound on the probability to have more edges to one part of the
partition than to the other, based on the discrepancy of the partition. Informally, the bound suggests
that the higher the discrepancy is, the more likely a vertex will be moved to the right side of the
partition, namely the side that has most vertices from the same community. In other words, the
higher the discrepancy is, the faster it increases. Our algorithm is designed to exploit this fact, and
works in rounds, each round designed to increase exponentially the discrepancy.

Working in rounds allows us allows us to crucially bypass dependency issues: if we only were to
update a partition of the whole vertex set vertex by vertex, each step would be very dependent from
previous ones (and the revealed randomness of the edges), and the previous probability statement
would break. Instead, our algorithm works as follows: it breaks the vertices into several groups, and
for each part it finds a partition using a partition of the previous group, by placing each vertex in the
part towards which it has most edges. This ensures that decisions taking in a round are based only
on edges from one group to the previous one: those decisions are therefore all independent, since
each edge will be considered for at most one decision.

In the ideas presented above, we have swept one challenge under the rug: at some point of
the algorithm, it may be that the two sides of the partition do not have the same exact size – for
instance, when the two communities are not perfectly balanced. Say the partition S1, S2 of S is
such that |S1| > |S2|. In that case, the previous argument needs to be changed: now it is more
likely that any vertex has more edges towards S1, regardless of the distribution of nodes. To cope
with that issue, we introduce a subsampling procedure in our algorithm. Instead of comparing the
edges towards the two sides, we sample randomly |S2| vertices from S1, and compare the number
of edges toward this sample.

While quite natural, this idea introduces a new layer of technicality: the discrepancy as defined
previously becomes a random variable depending on the sampling’s randomness. We manage to re-
late its expected value to the proportion of each community in part S1, and show it is tightly enough
concentrated around that expectation. Therefore, instead of tracking directly the discrepancy, our
proofs tracks the proportion of vertices of each community.

We complement our algorithm by providing a lower bound for the case where we have pu−qu√
pu
≤

c
√

log n/n, for some constant c, by showing that is not possible to recover the two communities.
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The general idea is that, with high probability, two nodes u, v have exactly the same degree from
and toward each community. Hence, the graph has the same chances of being drawn from a DHSBM
where u ∈ C1, v ∈ C2 or from a DHSBM where u ∈ C2, v ∈ C1. Therefore, an algorithm that
only observes the graph must fail to recover u and v’s community on at least half of the graphs.
More precisely, the graph generated has one chance out of two of fooling the algorithm. This idea
is formalized in section C.

1.3. Related Work

The related work on the Stochastic Block Model is too vast to be covered entirely in this paper and
we refer the interested reader to the survey of Abbe (2018). The precise understanding of what can
be recovered as a function of p and q in the Stochastic Block Model is due to Abbe et al. (2015) and
Mossel et al. (2015). They prove that, when p and q are in Θ(log n/n), exact recovery is possible if
and only if p−q/√p >

√
2 logn/n. Classic results include the fundamental result of McSherry (2001),

the augmentation algorithm of Condon and Karp (2001). Iterative methods Gao et al. (2017); Zhang
and Zhou (2020), Semi-Definite Programming (SDP) Hajek et al. (2016); Abbe et al. (2016); Fei
and Chen (2020) and spectral algorithms Wang et al. (2020); Abbe (2018) have also been proven to
be successful to recover the communities of the SBM in various settings.

However, besides SDPs, all those works crucially rely on the degree homogeneneity of the SBM ,
and on the fact that all nodes are structurally similar (e.g.: of same degree). SDP algorithms are
robust to some forms of variations, but they have prohibitive time complexity. The fastest algorithm
recovering communities up to the optimal ratio (p− q)/√p in the SBM is nearly-linear, from Wang
et al. (2020).

Several combinatorial algorithms run in linear time, as Cohen-Addad et al. (2020); Condon and
Karp (2001); Carson and Impagliazzo (2001), but they require (p−q)/√p to be polynomially larger
than the optimal threshold or require knowledge of p, q.

Hence, for the SBM we obtain the first linear-time algorithm that works up to the asymptotic
optimal ratio (p− q)/√p.

Degree Heterogeneous Models There are a few extension of the SBM that allow for some variety
in the degrees. Most notably, the Degree Corrected Block Model (DCBM ), the Inhomogeneous
Model (IM ) and the Heterogeneous SBM (HeSBM ). On the algorithmic side, it is worth noting that
many of the spectral algorithms that work well in the SBM fail in such models due to the massive
changes in the eigenvalues induced by the heterogeneous degrees, as shown in Chung et al. (2003);
Mihail and Papadimitriou (2002); Gulikers et al. (2017b) We first mention the work on the Degree
Corrected Stochastic Block Model, as defined in Karrer and Newman (2011). In this model, every
node u is assigned to a community and has a weight θu. There is an edge between two vertices u,
v with probability θuθv · p if they are in the same community, with probability θuθv · q otherwise.
θu controls therefore the degree of node u, and allows heterogeneity in the degree distribution.
However, all the algorithms for this model that we are aware of have strong restrictions on the
values of θ: the average degree may be assumed polynomial in n as in Chaudhuri et al. (2012),
or the θu be within a constant factor, as in Qin and Rohe (2013); Gulikers et al. (2017a); θu are
sometimes i.i.d distributed from a distribution that has constant variance, see Dall’Amico et al.
(2019). A comprehensive study of the limitations of standard spectral algorithms for that model can
be found in Gulikers et al. (2017b). Their paper provides an algorithm working on more general
degree distribution, but still require the lowest and highest degree to be somewhat close to the
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average.1 Hence, in the DCBM , even though the vertices do not have exactly the same expected
degree, they are required to be concentrated and cannot be arbitrary as in our results.

In the Inhomogeneous Model Bollobás et al. (2007), the probability for each edge pi,j of being
present can be freely chosen. In some sense, DHSBM is a specialization of the Inhomogeneous
Model to enforce ground-truth communities. Without this restriction, there is no community to
recover, hence the problems considered in this model are very different from community detection.

The Heterogeneous SBM (HeSBM ) Jalali et al. (2016) is the closest to our DHSBM . The HeSBM
allows a different pu for each community. However, there are three major differences. First, in the
HeSBM the interconnectivity density pu is the same for all nodes of the same community. Second,
the interconnectivity density is the same for all communities q (and so all nodes). In comparison,
the DHSBM allows different pu, qu for each node. On other hand, the HeSBM has no restriction
on the sizes of communities. The authors of Jalali et al. (2016) give a semidefinite program (SDP)
in which regime they can recover the communities. Their requirements are too involved to state
here, but for the equi-sized two community setting with all pu being the same, they show that their
algorithm works for a ratio (p−q)/√p similar to ours. Note that the SDP has a polynomial runtime,
whereas our algorithm only requires linear time.

1.4. Model and Notation

We now define the Degree-Heterogeneous Stochastic Block Model.

Definition 4 (DHSBM ) Given integer N , a real f ≥ 2 and probability vectors p = {pu | u ∈ [N ]}
and p = {qu | u ∈ [N ]} a random graph G on N nodes is generated from the DHSBM as follows.

1. The nodes are partitioned into 2 communities C1, C2, with |Ci| > N/f .

2. For every pair of nodes u, v ∈ V such that either both u and v are in Ci for some i, an arc
(u, v) is created w.p. pu.

3. For every pair of nodes u, v ∈ V such that u ∈ Ci and v /∈ Ci, an arc (u, v) is created w.p.
qu.2

We refer to the above model as DHSBM(N, f,p,q).

We refer to Ci as the communities or ground-truth partition. Let B(p) denote the Bernoulli
distribution with parameter p. We use BIN(n, p) to denote the binomial distribution with parameters
n and p. For a random variable X and a probability distribution D, X ∼ D means that D is the
probability distribution ofX . We use the symbol =d to say that two random variables have the same
distribution, e.g., for X ∼ B(p) and Y ∼ B(p), we have X =d Y .

1. More precisely, their constraint (2.2) enforces high-degree vertices to be close to average, while (2.8) restricts the
lowest degree.

2. The meaning of pu and qu is switched compared to the introduction, where pu was the probability v is connected to
u. This was easier for explaining the Twitter example, while this definition makes the notations easier. The two are
equivalent up to reorienting each edge.
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S1

S1,1 S1,2

S2

S2,1 S2,2

S3

S3,1 S3,2

Figure 1: Illustration of algorithm Update

2. Description of the Algorithm

We present in this section the algorithm recovering the communities. To unify the directed and undi-
rected model, all (undirected) edges are simply replaced by two arcs going in opposite directions.

The crux of algorithm ExactRecovery is the procedure Update, that takes as input a partitioned
subset of vertices, and uses it to partition better another subset of vertices. We henceforth start by
describing Update.

Algorithm Update takes as an input two subsets of vertices Si, Sj , with Si partitioned into(
Si1, S

i
2

)
. Its goal is to produce a partition

(
Sj1, S

j
2

)
of Sj , that is closer to the ground-truth than

the partition of Si. For that, the general idea is to classify nodes of Sj according to the number of
neighbors they have in Si1 and Si2, as described in Section 1.2. See Figure 1 for an illustration where
i = 1 and j = 2.

For that comparison to be meaningful, it is necessary to proceed first to a normalization. This is
the first step of Algorithm Update: find subsets of Si1 and Si2 that have equal size. For ` = 1, 2, let

S̃i` be a random subset of Si` such that
∣∣∣S̃i1∣∣∣ =

∣∣∣S̃i2∣∣∣ = min`
∣∣Si`∣∣. Then, each node u ∈ Sj is then

assigned to Sj1 or Sj2 according to the number of edges it has to S̃i1, S̃
i
2: if u has more edges towards

S̃i`, it is assigned to Sj` .
We show in Lemma 5 that this procedure ensures that many more nodes of Sj are correctly

classified in the partition (Sj1, S
j
2) than in the partition of Si: each call to update thus improves

substantially the partition, see Figure 1.
Let us now describe our main algorithm, ExactRecovery. It has two phases: one that finds an

almost correct partition, and another one that turns an almost correct partition into a correct one.
More precisely, the algorithm splits the nodes randomly into two equal sized sets S and S′. The
first phase computes an almost correct partition of S and S′ looking only at edges within each sets,
while the second uses the almost correct partition of S′ (resp. S) to correctly classify S (resp. S′).

The first phase works as described previously: the algorithm partitions vertices into parts S1, ..., Sb
of equal size n = N/b , and at each time t finds a set Sit+1 such that Sit+1 has not been compared
yet to Sit . Using the procedure Update, the algorithm partitions Sit+1 using the partition of Sit .

At the end of the first phase, the algorithm has a partition of each S and S′, found by merging
the partitions of all Si. Note that the edges between S and S′ have not been considered by the
algorithm, and thus those partitions are independent: this is the reason why we partition into two
halves, allowing us to save some independence and boost the success probabilities.

In phase 2, the algorithm simply classifies all nodes of S according to their edges to S′, and
vice-versa. This cleans up the partition found by the first phase, and ensures all nodes are correctly
classified. The output is the union of those two partitions.
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Algorithm 1 Update(Si, Sj)
—Input: Two sets Si, Sj , where Si is partitioned into two subsets Si,1 and Si,2
—Output: A partition of Sj into two subsets of Sj,1, Sj,2, where Sj,1 is associated with Si,1 and
Sj,2 associated with Si,2.

1: Initialize Sj,1 = Sj,2 = ∅.
2: If |Si,1| > |Si,2|: Let S̃i,1 be a subset of Si,1 of size |Si,2| chosen uniformly at random, and
S̃i,2 = Si,2

3: Else: Let S̃i,1 = Si,1, and S̃i,2 be a subset of Si,2 of size |Si,1| chosen uniformly at random.
4: For every v ∈ Sj do the following:
5: If v has strictly more arcs to S̃i,1 than S̃i,2, assign v to Sj,1
6: If v has strictly more arcs to S̃i,2 than S̃i,1, assign v to Sj,2
7: Else, assign v randomly
8: Output (Sj,1, Sj,2)

Algorithm 2 Phase1 (G)
— Input: Graph G
—Output: Partition S∗

1: Set b =

{
d
√

logNe if d
√

logNe is odd
d
√

logNe+ 1 otherwise
2: Divide the nodes of S u.a.r. into subsets S1, S2, . . . , Sb of equal size
3: For all i ≤ b: Split Si into two halves Si,1 and Si,2
4: Let h = 1
5: while there exist i such that neither Update(Sh, Si) nor Update(Si, Sh) has been called do
6: Update(Sh, Si)
7: h← i
8: end while
9: Return partition (S∗1 , S

∗
2) with S∗1 = ∪i≤bSi,1 and S∗2 = ∪i≤bSi,2

Algorithm 3 Phase2 (G,U, (S1, S2))
—Input: Graph G, set U and a partition (S1, S2)
—Output: Partition P of U using (S1, S2)

1: Initialise P1, P2 = ∅
2: If |S1| > |S2|: Let S̃1 be a subset of S1 of size |S2|, and S̃2 = S2.
3: Else: Let S̃2 be a subset of S2 of size |S1|, and S̃1 = S1.
4: In parallel, for every node u ∈ U
5: If u has strictly more arcs to S̃2 than S̃1, assign u to P2

6: Else, if u has strictly more arcs to S̃1 than S̃2, assign u to P1

7: Else, assign u randomly
8: Return partition P ′ = (P1, P2)

8
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Algorithm 4 ExactRecovery(G)
—Input: Graph G on N nodes
—Output: Partition P

1: Partition the nodes randomly into two sets S and S′ of equal size.
2: Let GS be the subgraph induced by S and GS′ be the subgraph induced by S′

3: (S1, S2)← Phase1 (GS)
4: (S′1, S

′
2)← Phase1 (GS′)

5: (S∗1 , S
∗
2)← Phase2 (G,S, (S′1, S

′
2))

6: (S′∗1 , S
′∗
2 )← Phase2 (G,S′, (S1, S2))

7: Return merged partition (S∗1 ∪ S′∗1 , S∗2 ∪ S′∗2 ) of S′∗ and S′∗

3. Analysis of ExactRecovery

We start by giving an overview followed by the analysis of the algorithm Update. Then, in Sec-
tion 3.2 we analyze algorithm Phase1, showing how the calls to Update increase progressively the
quality of the partition. Then, in Section 3.3, we analyze algorithm Phase2, showing that the parti-
tion obtained in the first phase is precise enough to allow for an exact recovery.

3.1. Notations and Overview of the Proof

We start by introducing some notation. We let S(t), S(t+1) be the input of the t-th call to Update,
with (S

(t)
1 , S

(t)
2 ) being the partition of S(t). We denote C(t)

i = S
(t)
i ∩ S(t) the part of community i

that is in the set S(t). For i, j ∈ {1, 2}, denote S(t)
i,j = S

(t)
i ∩Cj and let s(t)

i,j := |S(t)
i,j |. We also define

α(t) and β(t) such that |C1 ∩S(t)
1 | = |C

(t)
1 |
(
1/2 + α(t)

)
and that |C2 ∩S(t)

2 | = |C
(t)
2 |
(
1/2 + β(t)

)
.

The algorithm subsamples the largest part. Recall the notations from the algorithm: in the case
where |S(t)

1 | > |S
(t)
2 |, let S̃(t)

1 ⊆ S
(t)
1 be a set of size |S(t)

2 | drawn uniformly at random from S
(t)
1 ,

and S̃(t)
2 = S

(t)
2 . In the case where |S(t)

1 | > |S
(t)
2 |, S̃

(t)
1 and S̃(t)

2 are defined symmetrically. We also
extend the notations to S̃(t)

i,j and s̃(t)
i,j . We also write PA [·] to emphasize that the probability is over

the random choices made by the algorithm. Similarly, define PG [·] for randomness that stems from
the graph. Lastly, the graph is drawn either from DHSBM(N, f,p,q) or SBM(N,C1, C2, p, q), with

minu
pu−qu√

pu
≥ Cf5/2

√
logN
N , and n is defined to be N/b, where b is defined in algorithm 2.

The general idea behind our analysis is to track the values of α(t) and β(t) throughout different
stages, to show that they increase drastically.

In that goal, a key quantity is the discrepancy of the partition of S(t) – namely, the number of
correctly classified vertices minus the number of misclassified ones, in the subsampled partition:
∆(t) = s̃

(t)
1,1 − s̃

(t)
2,1. We can relate the probability that a node u ∈ C(t+1)

1 is placed into S(t+1)
1 –i.e.,

the probability of making a good choice – to the discrepancy of the partition of S(t):

Lemma 5 There exists an absolute constant c such that the following holds. Consider a graph
drawn either from G ∼ DHSBM(N, f,p,q) or G ∼ SBM(N,C1, C2, p, q). Let ∆(t) = s̃

(t)
1,1 − s̃

(t)
2,1.

Then, for any vertex of u ∈ C(t+1)
1 , the probability on the graph randomness that u is assigned to

S
(t+1)
1 by the algorithm is at least 1/2 + cmin

(
1, ∆(t)(pu−qu)√

npu

)
.

9
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The idea of the proof is to establish a coupling between the random variables X and X ′ that
govern the number of arcs a node of C(t+1)

1 has to S(t)
1 and to S(t)

2 , respectively. We have X ∼
BIN

(
s̃

(t)
1,1, p

)
+ BIN

(
s̃

(t)
1,2, q

)
and X ′ ∼ BIN

(
s̃

(t)
2,1, p

)
+ BIN

(
s̃

(t)
2,2, q

)
, and the goal is to show

PG [X > X ′] ≥ 1/2 + δ.
The following lemma is key to that. It allows us to decompose X into three binomials Y1, Y2

and Y3, such that X = Y1 + Y2 + Y3 and X ′ follows the same law as Y1 + Y2.

Lemma 6 Fix a step t. Consider the three independent random variables X,Y1, Y2, with distribu-
tions

X ∼ BIN
(
s̃

(t)
1,1, p

)
+ BIN

(
s̃

(t)
1,2, q

)
, Y1 ∼ BIN

(
s̃

(t)
2,1, p

)
+ BIN

(
s̃

(t)
1,2, q

)
, Y2 ∼ BIN

(
s̃

(t)
2,2 − s̃

(t)
1,2, q

)
Consider also the variable Y3, independent from X and Y1, with distribution conditioned on Y2

Y3 ∼ BIN
(
s̃

(t)
1,1 − s̃

(t)
2,1 − Y2,

p−q
1−q

)
.

Those variables are well-defined, and X follows the same law as Y1 + Y2 + Y3. In symbols,

X =d Y1 + Y2 + Y3 (1)

Since X ′ =d Y1 + Y2, we get P[Y1 + Y2 ≥ X ′] = 1/2. The additional δ is then obtained by
bounding P[Y3 > X ′ − X|X ′ > Y1 + Y2]. Note that Y1, Y2 and Y3 are in contrast to X simple
binomials and therefore obtaining bounds for them is much easier than obtaining bounds for the sum
of binomialsX . Our proof uses that each binomial involved can be approximated by a variable with
a simple probability distribution: when σ is the standard deviation of the binomial, we approximate
the distribution with one equal to 1/σ on an interval of length Ω(σ). This essentially allows us to
”decouple” the variable Y3 from Y1 and Y2, and express Y3 > X ′ −X knowing X ′ > Y1 + Y2 into
simpler events with probability easier to compute.

Lemma 5 relates the probability of improving the partition to the discrepancy: it is therefore
necessary to control that quantity precisely. Note that it is computed after the subsampling in order
to compensate for potential size imbalance between the parts of a group: otherwise, its value would
be too impacted by the size of each part. ∆(t) is therefore a random variable. We can show that
the expectation of ∆(t) is crucially related to α(t) and β(t): this will be helpful, as the growth of
α and β ensured by Lemma 5 will enforce the growth of ∆ as well. Furthermore, ∆(t) is tightly
concentrated around that expectation.

Lemma 7 Let ∆(t) := s̃
(t)
2,2 − s̃

(t)
1,2. Then, ∆(t) = s̃

(t)
1,1 − s̃

(t)
2,1, and, for any x > 0,

PA

[
∆(t) ≥ |C(t)

1 | · |C
(t)
2 |

max(|S(t)
1 |, |S

(t)
2 |)

(α(t) + β(t))− x

]
≥ 1− exp

− 2x2

min
(
|S(t)

1 |, |S
(t)
2 |
)
 .

3.2. Analysis of Algorithm Phase1

Phase1 repeatedly calls Update to improve the partition. Using Lemma 5, we show by induction
that Algorithm Phase1 produces a partition that is mostly correct. All those lemmas apply to a
graph drawn from DHSBM(N, f,p,q). For that, we first show the effect of our initializations steps.
The following lemma shows that each community is fairly well represented in each of the subsets
S1, ..., Sb, and provides a lower bound on the initial discrepancy:

10
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Lemma 8 With high probability (w.r.t. to the randomness of the algorithm), the communities are
almost evenly distributed in the subsets: for i ∈ {1, 2}, it holds that

PA
[
∀` ∈ [1,

√
logN ], |Ci ∩ S`| ≥

|Ci|
2
√

logN

]
≥ 1− 1/N.

Furthermore, there exist a constant κ such that

PA
[
|α(0)| ≥ 1

8f3/2
√

2n

]
≥ 1− 1

8f
− 8κ

√
f√
n
.

Without loss of generality, we will assume α(0) ≥ 0 in the following. This implies β(0) > 0, as
by design the sets S(0)

1 and S(0)
2 have equal size (see Fact 3 in Appendix). Assuming we have a good

initialization (Lemma 8), we can use our bounds one the probability of assigning nodes correctly
(Lemma 5) to argue that α(t), β(t) follows geometric series.

Lemma 9 Assume that γ ≥ Cf5/2
√

logN
N . Let c be the constant from Lemma 5.

It holds that, after t iterations of the algorithm, α(t), β(t) > min(c/2, log(N)t/4/
√

8n) with

probability 1− 1
8f −

∑t
i=1 exp

(
O
(
− log(N)t/2

f3

))
on the algorithm’s randomness, and probability

1−
∑t

i=0 max
(

exp
(
− log(N)(i+1)/2

4f

)
, exp

(
− c2N

16
√

logN

))
on the graph.

The proof of Lemma 9 relies on Lemma 5, Chernoff bound and the relationship between the
discrepancy ∆ and the value of α, β. One key part here is the independence between calls of
Update, ensured by the design of our algorithm: no edge will be looked at twice, and therefore the
probabilities from Lemma 5 are all independent.

To conclude the analysis of Phase1, it only remains to argue that there are enough calls. Con-
cretely, we show that the algorithm calls Update

(
b
2

)
times by relating the calls of Update to Euler

paths.

Lemma 10 The algorithm ExactRecovery performs
(
b
2

)
updates.

The following corollary summarizes the outcome of phase one.

Corollary 11 Let c > 0 be the constant from Lemma 5. At the end of the first phase, we have that
obtained partition P ∗ = (S∗1 , S

∗
2) satisfies either |C1 ∩ S∗1 | ≥ |C1|(1/2 + c/2) or |C1 ∩ S∗2 | ≥

|C1|(1/2 + c/2) w.p. at least 1− 9/(80f) over the algorithm’s randomness and w.p. 1− o(1) over
the randomness of the graph.

Proof Lemma 9 shows that the algorithm quickly increases the value of α, β. Lemma 10 shows that
tmax ≥

(√
logN
2

)
comparison will be done, resulting in values of α, β at least c/2 for the final sets,

where c is the constant from Lemma 5.
More precisely, α(t) is at least c/2 when t ≥ 4 log(n/c)/ log logN : hence, the set considered in

at least half of the time steps will have α > c/2. Those time steps must involve at least
√

logN/2
many sets, as an Eulerian walk on fewer sets visits at most logN/4 of them. Hence, the merged
partition ensures that P ∗ = (S∗1 , S

∗
2) satisfies either |C1 ∩ S∗1 | ≥ |C1|(1/2 + c/2) or |C1 ∩ S∗2 | ≥

|C1|(1/2 + c/2).

11
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3.3. Analysis of Algorithm Phase2

Using results from the previous section, we now analyze the algorithm Phase2, and show it leads to
an exact recovery in DHSBM. Our reduction of SBM to DHSBM allows to extend directly the result to
the SBM.

Lemma 12 Let S, S′ be two equal-size subsets of the vertices of G. Fix a partition PS′ = (P1, P2)
of S′, with |Ci ∩ Pi| ≥ |Ci ∩ S′|(1/2 + c/2) for the constant c given in Lemma 5. The following
holds with probability at least 1 − 2 exp(−100 logN) on the graph and 1 − exp

(
−Nκ2

2f

)
on the

algorithm. For any vertex v ∈ S ∩ Ci, v has more edges to S̃i than to the other part (S̃1 or S̃2),
where S̃i are subsamples of Si as done in algorithm Phase2.

The proof of that lemma relies on concentration bounds on the number of edges a vertex has
to each side of the cut. A direct corollary of that lemma is that Phase2 of ExactRecovery identifies
correctly the two communities:

Corollary 13 Under the assumptions of Lemma 12, Phase2 leads to an exact recovery with prob-
ability 1− exp(−Nc2/f3) on the algorithm and 1− 1/N3 on the graph.

Combining Corollary 11 and Corollary 13 concludes the proof Theorem 1 and Theorem 2.
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Salil Vadhan, editors, Randomization and Approximation Techniques in Computer Science, pages
254–262, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-45726-8.

Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E Tarjan. Clustering social networks.
In International Workshop on Algorithms and Models for the Web-Graph, pages 56–67. Springer,
2007.

Ankur Moitra, William Perry, and Alexander S. Wein. How robust are reconstruction thresholds
for community detection? In Daniel Wichs and Yishay Mansour, editors, Proceedings of the

14

http://drops.dagstuhl.de/opus/volltexte/2017/8179
https://proceedings.neurips.cc/paper/2016/file/57bafb2c2dfeefba931bb03a835b1fa9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/57bafb2c2dfeefba931bb03a835b1fa9-Paper.pdf


COMMUNITY RECOVERY IN THE DEGREE-HETEROGENEOUS SBM

48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 828–841. ACM, 2016. doi: 10.1145/2897518.2897573. URL
https://doi.org/10.1145/2897518.2897573.

Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for the planted bisection
model. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-
17, 2015, pages 69–75. ACM, 2015. doi: 10.1145/2746539.2746603. URL https://doi.
org/10.1145/2746539.2746603.

Tai Qin and Karl Rohe. Regularized spectral clustering under the degree-corrected stochastic block-
model. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 26, pages 3120–3128. Curran As-
sociates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
0ed9422357395a0d4879191c66f4faa2-Paper.pdf.

Peng Wang, Zirui Zhou, and Anthony Man-Cho So. A nearly-linear time algorithm for exact
community recovery in stochastic block model. In Hal Daumé III and Aarti Singh, editors,
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Appendix A. Auxiliary Claims

Theorem 14 (Gavinsky et al. (2015)) We say a family Y1, ..., Yr of indicator variables is read-k
if there there exists a sequence X1, ..., Xm of independent variables and a sequence S1, ..., Sr of
subsets of {1, ...,m} such that

• Yi is a function of {Xj , j ∈ Si}

• no element of {1, ...,m} appears in more than k of the Si’s

For any sequence of read-k variables we have that P [Y1 + ...+ Yr > E [Y1 + ...+ Yr ] + γr ] and
P [Y1 + ...+ Yr < E [Y1 + ...+ Yr ]− γr ] are bounded by exp(−2γ2r/k).

Lemma 15 Let τ = 1 +1/
√

2π. There exists a constant ` such that, for any binomially distributed
random variable X with variance σ2, expectation µ, and for all i ∈ [µ− τ

8σ, µ+ τ
8σ],

P [X = i ] ≥ 1

8σ
.

Furthermore, for all integers i, P [X = i ] ≤ τ
σ .

Proof We start by showing the upper bound: that is,

∀i,P [X = i ] ≤ τ

σ
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We use for this Esseen’s inequality (Theorem 16). The binomial distribution is the sum of n i.i.d
Bernoulli random variables

∑
iXi such that µ3(X1)/µ2(X1) = p(1−p)(1−2p+2p2)

p(1−p) ≤ 1. So, using
Theorem 16, for any i:

P [X = i ] = P [X ≤ i ]− P [X ≤ i− 1 ]

≤ P [N(µ, σ) ∈ [−∞, i] ]− P [N(µ, σ) ∈ [−∞, i− 1] ] + 2 · 0.4748

σ

≤ P [N(µ, σ) ∈ [i− 1, i] ] +
1

σ

≤ 1

σ
√

2π

∫ i

i−1
P [N(µ, σ) = t ] dt+

1

σ

≤ 1

σ
√

2π
+

1

σ
=
τ

σ
,

since τ = 1√
2π

+ 1. Define ` = τ/8. Let m be the mode of X , i.e., argmaxP [X = i ]. The prob-
ability density function of D is monotonically increasing for k < m and monotonically decreasing
for k > m. Consider the interval I = [µ− 2σ, µ+ 2σ]. By the Chebyshev’s inequality, the interval
I has a probability mass of at least 3

4 .
Now, if there are more than 2`σ integers i such that P [X = i ] ≥ 1

8σ , then the lemma follows.
Assume therefore it is not the case.

Since the maximal probability is τ/σ, for all x ∈ [µ− `σ, µ+ `σ] then P [X = i ] ≤ τ/σ. For
all x ∈ I \ [µ− `σ, µ+ `σ], our assumptions implies that P [X = i ] ≤ 1

8σ .
Hence, the probability mass in I is at most

c

σ
2`σ +

1

8σ
(4− 2`)σ <

1

4
+

1

8
4 =

3

4
,

a contradiction.

The following is a slightly weaker version of Theorem 1 in Berry (1941).

Theorem 16 (Esseen inequality Berry (1941)) Let µk(X) denote the kth absolute central mo-
ment µk =

∫
|x − E [X ] |kP [X = x ] dx. Let X1, . . . , Xn be a collection of n random variables,

with µ2(Xi) > 0 for all i. Let X =
∑

iXi. Let µ = E [X ] and σ2 =
∑

i Var [Xi ]. Let F (·) be
the cumulative density function of X and let G(·) be the cdf of N (µ, σ2). Then,

sup
−∞<x<∞

|F (x)−G(x))| ≤ 0.4748

σ
max
i

µ3(Xi)

µ2(Xi)
.

Theorem 17 (Concentration of hypergeometric distribution, see Hoeffding (1994)) Let X be
a random variable such that P [X = k ] is the probability of drawing k red balls in n draws, without
replacement, from a set of N balls that contains exactly K red ones. Then, for any x ∈ (1, nK/N ]
it holds that

P [X ≤ nK/N − nx ] ≤ exp (−2x2n)

P [X ≥ nK/N + nx ] ≤ exp (−2x2n).

17
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Appendix B. Proofs of the Upper Boud

B.1. Proof of Section 3.1

Lemma 7 Let ∆(t) := s̃
(t)
2,2 − s̃

(t)
1,2. Then, ∆(t) = s̃

(t)
1,1 − s̃

(t)
2,1, and, for any x > 0,

PA

[
∆(t) ≥ |C(t)

1 | · |C
(t)
2 |

max(|S(t)
1 |, |S

(t)
2 |)

(α(t) + β(t))− x

]
≥ 1− exp

− 2x2

min
(
|S(t)

1 |, |S
(t)
2 |
)
 .

Proof Since there is no ambiguity, we drop the superscript (t) for simplicity. We also let ci = |C(t)
i |

First note that s̃2,2− s̃1,2 = s̃1,1− s̃2,1 since the subsampling ensures that s̃1,1 + s̃1,2 = s̃2,1 + s̃2,2.
For the other part, we fist assume that |S1| > |S2|. Hence, s̃2,2 = s2,2 = c2(1/2 + β) and in
expectation s̃1,2 = |S2|

|S1| · c2(1/2 − β). The random variable s̃1,2 follows a hypergeometric law,

therefore by Theorem 17 PA[s̃1,2 ≤ |S2|
|S1| · c2(1/2− β) + x] ≥ 1− exp(−2x2/|S2|)

Hence, the value of ∆ is with that probability:

∆ ≥ c2(1/2 + β)− |S2|
|S1|
· c2(1/2− β)− x

≥ c2

|S1|
(|S1|(1/2 + β)− |S2|(1/2− β))− x

≥ c2

|S1|
((c1(1/2 + α) + c2(1/2− β)) · (1/2 + β)− (c1(1/2− α) + c2(1/2 + β)) · (1/2− β))− x

≥ c2

|S1|
(c1(1/4 + α/2 + β/2 + αβ − 1/4− β/2 + α/2− αβ)

+ c2(1/4 + β/2− β/2− β2 − 1/4− β/2 + β/2 + β2)− x

≥ c1c2

|S1|
(α+ β)− x.

When |S1| ≤ |S2|, we use instead EA [s̃2,2] = |S1|
|S2|s2,2 and s̃1,2 = s1,2, so that the second line

is c2
|S2| (|S1|(1/2 + β)− |S2|(1/2− β)). What follows is exactly the same.

Lemma 6 Fix a step t. Consider the three independent random variables X,Y1, Y2, with distribu-
tions

X ∼ BIN
(
s̃

(t)
1,1, p

)
+ BIN

(
s̃

(t)
1,2, q

)
, Y1 ∼ BIN

(
s̃

(t)
2,1, p

)
+ BIN

(
s̃

(t)
1,2, q

)
, Y2 ∼ BIN

(
s̃

(t)
2,2 − s̃

(t)
1,2, q

)
Consider also the variable Y3, independent from X and Y1, with distribution conditioned on Y2

Y3 ∼ BIN
(
s̃

(t)
1,1 − s̃

(t)
2,1 − Y2,

p−q
1−q

)
.

Those variables are well-defined, and X follows the same law as Y1 + Y2 + Y3. In symbols,

X =d Y1 + Y2 + Y3 (1)

Proof Since t is fixed, we write s̃i,j = s̃
(t)
i,j for all i, j ∈ {1, 2} and we write ∆ = ∆(t).

18
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We first show that Y2 is well-defined, i.e., that s̃2,2 − s̃1,2 > 0: in the case where s̃2,2 = s2,2,
this is because s̃1,2 ≤ s1,2 ≤ s2,2. For the other case, we use s̃2,2 − s̃1,2 = ∆ = s̃1,1 − s̃2,1 and
s̃1,1 = s1,1.

We now show Equation 1. Let B(x) denote the Bernoulli distribution with parameter x. To
prove Equation 1, we consider the following process, that allows decomposing B1 ∼ B(p) into
B2 + B3 where B2 ∼ B(q) and B3 = B4 − B2 with B4 ∼ B((p− q)/(1− q)). We claim that
B1 =d B2 +B3. To see this, consider the following generating process which yields a coupling.

• Step 1: Draw a random variable R u.a.r. from [0, 1].

• Step 2: If R ≤ q set B2 = 1. Set B3 = 0.

• Step 3: If R ≥ q, set B2 = 0 and if R ≤ p set B3 = 1. Otherwise set B3 = 0.

Note that B3 depends on B2 and B2 + B3 ∈ {0, 1}. First note that P [R ≤ p | R > q ] = (p −
q)/(1− q). Thus,

P [B2 +B3 = 1 ] = P [R ≤ q ] + P [R ≤ p | R > q ]P [R > q ]

= P [R ≤ q ] + P [R ∈ (p, q] ] = p = P [B1 = 1 ] .

Using this composition we can construct a coupling that ensures Equation 1: BothX andX ′ have as
a component BIN

(
s
2 −∆, p

)
+ BIN

(
s
2 −∆, q

)
. Clearly, we can can couple these Bernoulli random

variables. It remains thatX has 2∆ Bernoulli random variables with parameter p andX ′ has instead
2∆ Bernoulli random variables with parameter (p− q)/(1− q). For those random variables we can
use the above process to couple them. This corresponds to the term Y3. It follows that that the
coupling ensures BIN(2∆, p) = Y2 + Y3. This completes the proof.

Lemma 5 There exists an absolute constant c such that the following holds. Consider a graph
drawn either from G ∼ DHSBM(N, f,p,q) or G ∼ SBM(N,C1, C2, p, q). Let ∆(t) = s̃

(t)
1,1 − s̃

(t)
2,1.

Then, for any vertex of u ∈ C(t+1)
1 , the probability on the graph randomness that u is assigned to

S
(t+1)
1 by the algorithm is at least 1/2 + cmin

(
1, ∆(t)(pu−qu)√

npu

)
.

Proof We use the variables described in Lemma 6. We also write ∆ = ∆(t), p = pu and q = qu.
First, note that X ′ and Y1 + Y2 follow the same law

X ′ =d Y1 + Y2 (2)

Due to symmetry, PG [Y1 + Y2 = max{Y1 + Y2, X
′}] = 1/2. Hence, since X =d Y1 + Y2 + Y3,

we get

PG
[
X ≥ X ′ ∧ Y1 + Y2 = max{Y1 + Y2, X

′}
]
≥ PG

[
Y1 + Y2 = max{Y1 + Y2, X

′}
]
≥ 1/2

Let σ =
√

Var [Y1,2 ] =
√

Var [X ′ ], and µ = EG [X ′] = EG [Y1 + Y2].
We want to find a lower bound of

PG
[
Y1 + Y2 + Y3 > X ′ | Y1 + Y2 < X ′

]
+

PG [Y1 + Y2 + Y3 = X ′ | Y1 + Y2 < X ′]

2
,
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which is the probability of moving the vertex to the right cluster. The first idea is the following: with
constant probability, X ′ will be in the interval EG [X ′] ± `σ(X ′) given by Theorem 15. Moreover,
the probability that X ′ takes any value in that interval is at least 1

8σ(X′) . Formally:

PG
[
Y1 + Y2 + Y3 > X ′ | Y1 + Y2 < X ′

]
+

PG [Y1 + Y2 + Y3 = X ′ | Y1 + Y2 < X ′]

2

≥ 1

2
· PG

[
Y1 + Y2 + Y3 ≥ X ′ | Y1 + Y2 < X ′

]
≥ 1

2

b`σ(X′)c∑
r=d−`σ(X′)e

PG
[
Y1 + Y2 + Y3 ≥ X ′ | Y1 + Y2 < X ′ ∧X ′ = µ+ r

]
· PG

[
X ′ = µ+ r

]

≥ 1

16σ(X ′)

b`σ(X′)c∑
r=d−`σ(X′)e

PG [Y1 + Y2 + Y3 ≥ µ+ r | Y1 + Y2 < µ+ r] .

We let Ir = [µ+r−∆(p−q), µ+r) when ∆(p−q) ≥ 1, and Ir = [µ+r−1, µ+r) otherwise.
We also restrict the probability to the event that Y1 +Y2 ∈ Ir. In that case, Y1 +Y2 +Y3 ≥ µ+ r is
equivalent to Y3 ≥ max (1, b∆(p− q)c), since the variables are integers. Informally speaking, this
is helpful since EG [Y3] = 2∆(p− q), so PG [Y3 ≥ ∆(p− q)] will holds with constant probability .
We continue the above inequalities:

≥ 1

16σ(X ′)

b`σ(X′)c∑
r=d−`σ(X′)e

PG [Y3 ≥ max (1, b∆(p− q)c) | Y1 + Y2 ∈ Ir] · PG [Y1 + Y2 ∈ Ir]

≥ 1

16σ(X ′)

b`σ(X′)c∑
r=d−`σ(X′)e

PG [Y3 ≥ max (1, b∆(p− q)c) , Y1 + Y2 ∈ Ir]

We now decouple Y1 and Y2, and use Theorem 15 on Y2, as we did for Y1. We write Ir − i =
{x− i,∀i ∈ Ir}.

≥ 1

16σ(X ′)

b`σ(X′)c∑
r=d−`σ(X′)e

∑
i∈2∆q±`σ(Y2)

PG [Y3 ≥ max (1, b∆(p− q)c) | Y2 = i]PG [Y1 ∈ Ir − i]PG [Y2 = i]

≥ 1

16σ(X ′)

b`σ(X′)c∑
r=d−`σ(X′)e

1

8σ(Y2)

∑
i∈2∆q±`σ(Y2)

PG [Y3 ≥ max (1, b∆(p− q)c) | Y2 = i]PG [Y1 ∈ Ir − i]

≥ 1

16σ(X ′)

b`σ(X′)c∑
r=d−`σ(X′)e

1

8σ(Y2)

∑
i∈2∆q±`σ(Y2)

PG [Y3 ≥ max (1, b∆(p− q)c) | Y2 = i]PG [Y1 ∈ Ir − i] .

Our goal is now to show that, for all i ∈ 2∆q ± `σ(Y2),

PG [Y3 ≥ max (1, b∆(p− q)c) | Y2 = i]PG [Y1 ∈ Ir − i] = min

(
Ω(1),

∆(p− q)
σ

)
.

Fact 1 When ∆(p− q) ≤ 1, then

PG [Y3 ≥ 1 | Y2 = i]PG [Y1 ∈ Ir − i] ≥
∆(p− q)

24σ.
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Proof For such i ∈ 2∆q ± `σ(Y2), we start by showing that we have:

PG [Y1 ∈ Ir − i] ≥
1

16σ
. (3)

To see this, write i = 2∆q + r′, and Ir − i = {EG [Y1] + r − r′ − 1}. Since ∆ ≤ s
3 , it holds that

σ(X ′) + σ(Y2) ≤ 2σ(Y1). Thus, for all r ∈ ± `σ(X′)
2 and r′ ∈ ± `σ(Y2)

2 , it holds that |r − r′| ≤
`σ(Y1). Theorem 15 concludes.

Now, we turn to the other term, namely PG [Y3 ≥ ∆(p− q) | Y2 = i]. We first observe that

PG [Y3 ≥ ∆(p− q) | Y2 = i] ≥ P
[

BIN

(
2∆− 2∆q − σ(Y2),

p− q
1− q

)
> 0

]
,

and

E
[

BIN

(
2∆− 2∆q − σ(Y2),

p− q
1− q

)]
= 2∆(p−q)−

√
2∆q(1− q)p− q

1− q
∈ [∆(p−q), 2∆(p−q)].

(4)
We now use the following generic fact about binomials: let m ∈ N and x ∈ R+ such that

mx ≤ 2. Then:

P [ BIN(m,x) > 0 ] = 1− (1− x)m ≥ 1− exp(−mx)

≥ 1− 1

1 +mx
=

mx

1 +mx
≥ mx

3
.

Hence, when ∆(p−q) ≤ 1, P
[

BIN
(

2∆− 2∆q − σ(Y2), p−q1−q

)
≥ ∆(p− q)

]
≥ ∆(p−q)

3 , since the
expectation of that binomial is at most 2 (Equation 4).

Using Equation 3, we thus get

PG [Y3 ≥ ∆(p− q) | Y2 = i]PG [Y1 ∈ Ir − i] ≥
∆(p− q)

24σ
.

Fact 2 When ∆(p− q) > 1, then

PG [Y3 > ∆(p− q) | Y2 = i]PG [Y1 ∈ Ir − i] ≥
1

32
min

(
1,

∆(p− q)
σ

)
.

Proof For such i ∈ 2∆q ± `σ(Y2), we start by showing that we have:

PG [Y1 ∈ Ir − i] ≥
1

16
min

(
1,

∆(p− q)
σ

)
. (5)

To see this, write i = 2∆q + r′,

Ir − i = [EG [Y1] + r − r′ −∆(p− q),EG [Y1] + r − r′),
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and as before |r − r′| ≤ `σ(Y1). Either ∆(p − q) ≤ `σ(Y1) and we apply Theorem 15, or
∆(p − q) > `σ(Y1) and PG [Y1 ∈ Ir − i] is at least the weight of the interval EG [Y1] ± `σ(Y1),
which from Theorem 15 is 1/8 .

Now, we turn to the other term, namely PG [Y3 ≥ b∆(p− q)c | Y2 = i]. As in the case ∆(p −
q) ≤ 1, we observe that

PG [Y3 ≥ b∆(p− q)c | Y2 = i] ≥ P
[

BIN

(
2∆− 2∆q − σ(Y2),

p− q
1− q

)
≥ b∆(p− q)c

]
,

and

E
[

BIN

(
2∆− 2∆q − σ(Y2),

p− q
1− q

)]
≥ ∆(p− q). (6)

Since the median of a binomial X is at least bE [X ]c, Equation 6 ensures that the median of
BIN

(
2∆− 2∆q − σ(Y2), p−q1−q

)
is at least b∆(p − q)c, and so PG [Y3 ≥ b∆(p− q)c | Y2 = i] ≥

1/2. Combining with Equation 3, we get

PG [Y3 > ∆(p− q) | Y2 = i]PG [Y1 ∈ Ir − i] ≥
1

32
min

(
1,

∆(p− q)
σ

)
.

Therefore, those two facts give that:

PG
[
Y1 + Y2 + Y3 > X ′ | Y1 + Y2 < X ′

]
≥ 1

32σ(X ′)

b`σ(X′)c∑
r=d−`σ(X′)e

1

σ(Y2)

∑
i∈2∆q±`σ(Y2)

1

32
min

(
1,

∆(p− q)
σ

)

≥ cmin

(
1,

∆(p− q)
σ

)
,

with c = `/256. Putting everything together,

PG
[
X ≥ X ′

]
≥

≥ PG
[
X ≥ X ′ ∧ Y1 + Y2 = max{Y1 + Y2, X

′}
]

+ PG
[
X ≥ X ′ ∧ Y1 + Y2 6= max{Y1 + Y2, X

′}
]

= 1/2 + PG
[
Y1 + Y2 + Y3 > X ′ | Y1 + Y2 < X ′

]
≥ 1/2 + cmin

(
1,

∆(p− q)
σ

)
.

B.2. Proof of Section 3.2

Fact 3 If α(0) ≥ 0, then β(0) ≥ 0.
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Proof By design of our algorithm, |S(0)
1 | = |S

(0)
2 |. The definitions of α(0) and β(0) ensure therefore

that:

|S(0)
1 | =

|C(0)
1 |+ |C

(0)
2 |

2
+ α(0)|C(0)

1 | − β
(0)|C(0)

2 |

|S(0)
2 | =

|C(0)
1 |+ |C

(0)
2 |

2
− α(0)|C(0)

1 |+ β(0)|C(0)
2 |

which implies β(0)|C(0)
2 | = α(0)|C(0)

1 |, and in particular α(0) and β(0) have same sign.

Lemma 8 With high probability (w.r.t. to the randomness of the algorithm), the communities are
almost evenly distributed in the subsets: for i ∈ {1, 2}, it holds that

PA
[
∀` ∈ [1,

√
logN ], |Ci ∩ S`| ≥

|Ci|
2
√

logN

]
≥ 1− 1/N.

Furthermore, there exist a constant κ such that

PA
[
|α(0)| ≥ 1

8f3/2
√

2n

]
≥ 1− 1

8f
− 8κ

√
f√
n
.

Proof We start by showing the first statement of the lemma. For that, we actually show by induction
the following stronger property: for any `, it holds with probability 1− `/N2 that, for i ∈ {1, 2},

|Ci \ ∪`′<`S`′ | ∈ |Ci|(1− n(`− 1)/N)± x`, with x` =
√
N · (6 logN)`. (7)

This would show the first part of the lemma, by noting that x` ≤ |Ci|
2
√

logN
.

The base case (` = 1) trivially holds. Consider ` ∈ [1,
√

logN − 2], and i ∈ {1, 2}, and assume
that the statement holds for up to `. Let C ′i = Ci \`′≤` Ci ∩ S`′ . S` is computed by drawing n
points from C ′1∪C ′2. Hence, |Ci∩S`++1| follows an hypergeometric distribution: we draw without
replacement n = N/

√
logN balls from a set of |C ′1∪C ′2| balls, and |C ′i| is the number of successful

draws. We can therefore use concentration of hypergeometric distribution (Theorem 17):

∀x < |C ′i| · n
|C ′1 ∪ C ′2|

, PA
[
|Ci ∩ S`+1| <

|C ′i| · n
|C ′1 ∪ C ′2|

− x
]
≤ exp

(
−x

2

N

)
.

We want to apply this concentration inequality with x =
|C′

i|·n
|C′

1∪C′
2|
− |Ci|√

logN
+ x`+1. For that, we

first note that applying this inequality is possible, since x`+1 ≤
√
N · (6 logN)

√
logN < |Ci|√

logN
and

so x ≤ |C′
i|·n

|C′
1∪C′

2|
.

To show the induction, we start by bounding |C′
i|·n

|C′
1∪C′

2|
. By induction hypothesis, we know that

|C ′i| ∈ |Ci|(1− n(`− 1)/N)± x` holds with probability 1− `/N2. Hence,

|C ′i| · n
|C ′1 ∪ C ′2|

≥ n · |Ci|(1− n(`− 1)/N)− x`
N(1− n(`− 1)/N) + 2x`

≥ |Ci|√
logN + 2x`

n(1−n(`−1)/N)

− x`
√

logN − `+ 1 + 2xt
√

logN
N

, using n = N/
√

logN

≥ |Ci|√
logN

− 2|Ci|x`
n(1− n(`− 1)/N)

− xt
√

logN − `+ 1 + 2x`
√

logN
N

,
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where the last inequality uses 1
1+θ ≥ 1 − θ. Now, we use that ` ≤

√
logN − 2 and the fact that

θ → − 1
1−θ is decreasing to get:

|C ′i| · n
|C ′1 ∪ C ′2|

≥ |Ci|√
logN

− 2|Ci|x`
N/
√

logN(1−
√

logN/
√

logN)
− x`

1 + 2x`
√

logN
N

≥ |Ci|√
logN

− 4|Ci|x` logN

N
− 2x` ≥

|Ci|√
logN

− 3x` logN.

In that case, we have that

x =
|C ′i| · n
|C ′1 ∪ C ′2|

− |Ci|√
logN

+ x`+1 ≥
|Ci|√
logN

− 3x` logN − |Ci|√
logN

+ x`+1 ≥ x` logN.

Since |C′
i|·n

|C′
1∪C′

2|
− x = |Ci|√

logN
− x`+1, and x2 ≥ 2N logN , we get

PA
[
|Ci ∩ S`+1| <

|Ci|√
logN

− x`+1

]
≤ exp (−2 logN) .

Similarly, we can show that

PA
[
|Ci ∩ S`+1| >

|Ci|√
logN

+ x`+1

]
≤ exp (−2 logN) .

Hence given that |C ′i| ∈ |Ci|(1 − n(` − 1)/N) ± xt, we have with probability 1 − 2/N2 that
|Ci ∩ S`+1| ∈ |Ci|√

logN
± x`+1. This shows the statement’s lemma for ` + 1. We can also conclude

the induction principle:

|Ci \ ∪`′<`+1S`′ | = |Ci \ ∪`′<`S`′ | − |C ′i ∩ S`+1|

∈ |Ci|(1− n`/N)± x` −
|Ci|√
logN

± x`+1

∈ |Ci|(1− n(`+ 1)/N)± x`+1,

hence, the proposition is inductive and holds for any ` ≤
√

logN − 2.
Doing a union-bound on all steps ` = 1, ...,

√
logN − 1, we get:

PA
[
∀`, |Ci ∩ S`| =

|Ci|√
logN

± x`
]
≥ 1− 1/N.

The statement for all ` ≤
√

logN−1 implies it for ` =
√

logN , which concludes the first statement
of the lemma.

We now prove the second part. Consider a random variable X with hypergeometric law given
by the parameters NX ,KX , nX , corresponding to the number of red balls drawn during nX draws
with replacement out of an urn with NX balls, KX of them being red. Let pX = KX/NX be
the probability of drawing a red ball, and fX = nX/NX be the proportion of balls drawn. The
Berry-Esseen theorem for hypegeometric laws (theorem 2.2 in Lahiri and Chatterjee (2007)) says
that when σ2

X := NXpX(1− pX)fX(1− fX)→∞, then

sup
x∈R

∣∣∣∣P [ X − nXpXσX
≤ x

]
−G(x)

∣∣∣∣ ≤ κ

σX
, (8)

24



COMMUNITY RECOVERY IN THE DEGREE-HETEROGENEOUS SBM

where G(x) is the cumulative density function of N (0, 1).
We use X to denote |C(0)

1 ∩ S(0)
1,1 |. This variable follows indeed a hypergeometric law, with

parameters nX = n/2, NX = n, and KX = |C(0)
1 | ≥ n

2f . Hence, pX ≥ 1
2f and fX = 1/2,

so it indeed holds that σX →N→∞ ∞. Note furthermore that nXpX = |C(0)
1 |/2, and that σ2

X ≥
|C(0)

1 |
4 ·(1− 1

f ) ≥ |C
(0)
1 |
8 . A simple Chernoff concentration bound gives furthermore that |C(0)

1 | ≥ n
2f :

hence, σ2
X ≥

n
16f . Similarly, σ2

X ≤
∣∣∣C(0)

1

∣∣∣
4f .

Our goal is to bound the probability that |α(0)| ≥ 1
8f3/2

√
2n

. First, note that α(0) = X

|C(0)
1 |
− 1/2,

and so X−nXpX
8σ2

X
≤ α(0) ≤ X−nXpX

4fσ2
X

. We first lower bound α(0): using Equation 8, we get that

PA
[
α(0) ≥ 1

8f3/2
√

2n

]
≥ PA

[
X − nXpX

σX
≥ 1

8f3/2
√

2n
8σ

]
≥ P

[
N (0, 1) ≥ 1

8f3/2
√

2n

√
2n

f

]
− κ

σ

= P
[
N (0, 1) ≥ 1

8f2

]
− κ

σ

We can similarly upper bound α(0):

PA
[
α(0) ≤ − 1

8f3/2
√

2n

]
≥ PA

[
X − nXpX

σX
≤ − 1

8f3/2
√

2n
4fσ

]
≥ P

[
N (0, 1) ≤ − 1

8f3/2
√

2n

√
fn

2

]
− κ

σ

= P
[
N (0, 1) ≤ − 1

16f

]
− κ

σ

We now conclude, using that P
[
N (0, 1) ∈

[
− 1

16f ,
1

8f2

] ]
≤ 1

8f :

PA
[
|α(0)| ≥ 1

16
√

2fn

]
≥ 1− 1

8f
− 16

κ
√
f√
n
.

Lemma 9 Assume that γ ≥ Cf5/2
√

logN
N . Let c be the constant from Lemma 5.

It holds that, after t iterations of the algorithm, α(t), β(t) > min(c/2, log(N)t/4/
√

8n) with

probability 1− 1
8f −

∑t
i=1 exp

(
O
(
− log(N)t/2

f3

))
on the algorithm’s randomness, and probability

1−
∑t

i=0 max
(

exp
(
− log(N)(i+1)/2

4f

)
, exp

(
− c2N

16
√

logN

))
on the graph.

Proof First, we assume that ∀t ∈ [1,
√

logN ], |C(t)
i | ≥

|Ci|
2
√

logN
. This happens with probability

1−1/N on the algorithm’s randomness, due to Lemma 8. We now can show the claim by induction.
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The second statement of Lemma 8 ensures that α(0), β(0) > 1
8f3/2

√
2n

with probability 1 − 1
8f −

O(
√
f/n) on the algorithm. This initializes our induction.

Suppose now that after step t, α(t), β(t) > log(N)t/4

8f3/2
√

2n
. In order to apply Lemma 5, we need to

lower bound ∆ = s̃
(t)
2,2 − s̃

(t)
1,2: for that, we deal differently with the case t = 0 and t > 0.

At the very first step, there is no need to subsample, and so it holds that ∆ = 2|C(0)
1 | · α(0) =

2|C(0)
2 | · β(0). Using Lemma 8, we therefore have ∆ ≥ nα(0)

f and ∆ ≥ nβ(0)

f . By average (and

taking some slack for later), ∆ ≥ n(α(0)+β(0))
8f .

At the other steps, one needs to deal with the effect of subsampling: Lemma 8 gives that |C(t)
i | >

|Ci|
2
√

logN
≥ n

2f and |S(t)
1 |+ |S

(t)
2 | = n, so

|C(t)
1 | · |C

(t)
2 |

max(|S(t)
1 |, |S

(t)
2 |)

≥
n2(1− 1

2f )

2f
· 1

n
=

n

4f
.

Hence, |C(t)
1 |·|C

(t)
2 |

max(|S(t)
1 |,|S

(t)
2 |)

(α(t) + β(t)) ≥ log(N)t/4
√
n

32
√

2f5/2
. Therefore, Lemma 7 with x = n

8f (α(t) +

β(t)) ≥ log(N)t/4
√
n

64
√

2f5/2
ensures that

PA
[
∆ ≥ n

8f
(α(t) + β(t))

]
≥ 1− exp

− 2 log(N)t/2 · n

642f5 ·min
(
|S(t)

1 |, |S
(t)
2 |
)


≥ 1− exp

(
O

(
− log(N)t/2

f3

))
.

We now condition on the event ∆ ≥ n
8f (α(t) + β(t)), which depends only on the algorithm’s

randomness. Under that condition, Lemma 5 gives that each vertex of C1 (resp. C2) is assigned by
the algorithm to the S(t+1)

1 (resp. S(t+1)
2 ) with probability 1/2+cmax

(
1,
√
n

8f ·
(p−q)√

p (α(t) + β(t))
)

on the graph. Using the assumption p−q√
p ≥ Cf

5/2
√

logN
N = Cf5/2 log1/4N√

n
this is at least

1/2 + max
(
c, Cf3/2 log(N)1/4(α(t) + β(t))

)
≥ 1/2 + max

(
c,

log(N)(t+1)/4

√
n

)
.

We focus now on vertices of community 1, and bound α(t+1). The proof for β(t+1) is exactly
alike. When 3

√
f log(N)1/4(α(t) + β(t)) ≤ c, the previous equation gives that in expectation over

the graph randomness, µ := EG [|C1 ∩ S(t+1)
1 |] ≥ |C(t+1)

1 |(1/2 + log(N)(t+1)/4
√
n

). The variable |C1 ∩

S
(t+1)
1 | is a sum of |C(t+1)

1 | ≥ n
2f independent 0/1 variable, on which we can apply Hoeffding’s

inequality to bound the deviation to the expectation:
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PG

[
|C1 ∩ S(t+1)

1 | < µ− |C
(t+1)
1 | · log(N)(t+1)/4

2
√
n

]
≤ exp

(
−|C

(t+1)
1 | log(N)(t+1)/2

2n

)

≤ exp

(
− log(N)(t+1)/2

4f

)
.

Hence, we conclude: when t > 0, α(t), β(t) > log(N)t/4/
√
n and Cf3/2 log(N)1/4(α(t) +

β(t)) ≤ c, then with probability 1 − exp
(
O
(
− log(N)t/2

f3

))
on the algorithm and probability 1 −

exp
(
− log(N)(t+1)/2

4f

)
on the graph, α(t+1) ≥ log(N)(t+1)/4

2
√
n

. The same conclusion hold for t = 0, but
with probability 1 on the algorithm.

The case where 3
√
f log(N)1/4(α(t)+β(t)) > c follows similarly: in that case µ =

∣∣∣C(t+1)
1

∣∣∣ (1/2+

c), and so α(t+1) > c/2 with probability

1− exp

−c2
∣∣∣C(t+1)

1

∣∣∣
8

 ≥ 1− exp

(
− c2N

16
√

logN

)

on the graph. The induction principle concludes the lemma.

Lemma 10 The algorithm ExactRecovery performs
(
b
2

)
updates.

Proof To see this, we view the algorithm as a walk on an undirected complete graph with nodes
{1, 2, . . . , b}. Whenever Update(Sj , Si) is executed, then the walk traverses the edges {j, i}. The
algorithm terminates when it is on node h and for all i Update(Sh, Si) and Update(Si, Sh) has been
called. This occurs when all edges of the current node have been traversed. Therefore, it suffices
to argue that any valid path that does not traverse any edge twice, results in an Euler cycle of the
graph. To see this, consider the path v1, v2, . . . , v`. Where v1 is the node 1 and v` is the current
node. Suppose ever time an edge is traversed, the edge gets removed. Therefore we have for all
i ∈ [2, ` − 1] the degree of the nodes is even (using that b is odd). Moreover, if ` 6= 1, then both
nodes v1 and v` have an odd degree and there exists an Euler path between ` and 1. Otherwise, if
` = 1, then node 1 is of even degree and there exists an Euler cycle. Thus in all case the exists an
Euler cycle. After continuing the path from p` to any neighbor p`+1 the argument can be repeated.

B.3. Proof of Section 3.3

Lemma 12 Let S, S′ be two equal-size subsets of the vertices ofG. Fix a partition PS′ = (P1, P2)
of S′, with |Ci ∩ Pi| ≥ |Ci ∩ S′|(1/2 + c/2) for the constant c given in Lemma 5. The following
holds with probability at least 1 − 2 exp(−100 logN) on the graph and 1 − exp

(
−Nκ2

2f

)
on the

algorithm. For any vertex v ∈ S ∩ Ci, v has more edges to S̃i than to the other part (S̃1 or S̃2),
where S̃i are subsamples of Si as done in algorithm Phase2.
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Proof Let u be an arbitrary vertex of S′ of community C1 (a symmetric argument applies to vertices
of C2). We aim at bounding the number of edges from u to S̃1 minus the number of edges from u to
S̃2, where S̃1, S̃2 are obtained by subsampling the partition (S1, S2) of S (as defined in algorithm
Phase2).

We define two types of edges for the edges outgoing from u. The type-1 edges e1(u) are the
edges from u to a vertex of S̃1. The type-2 e2(u) edges are the edges from u to a vertex of S̃2.

Thus, the number of edges u has to S̃1 minus the number of edges to S̃2 is given by e1(u)−e2(u).
Let Σu denote this quantity, namely Σu = e1(u) − e2(u). Our goal is to show that Σu is positive
w.h.p. ensuring that u is assigned correctly.

Using s̃i,j to denote |S̃i,j |, we have EG [e1(u)] = s̃1,1pu + s̃1,2qu and EG [e2(u)] = s̃2,1pu +
s̃2,2qu, and so:

EG [Σu] = EG [e1−e2] = (s̃1,1−s̃2,1)pu+(s̃1,2−s̃2,2)qu = (s̃1,1−s̃2,1)pu−(s̃2,2−s̃1,2)qu = ∆(pu−qu),

with ∆ = s̃1,1 − s̃2,1 = s̃2,2 − s̃1,2 by Lemma 7. We now show that both e1(u) and e2(u) are
concentrated by applying a standard multiplicative Chernoff bound. Let µ = EG [e2(u)] and

δ =
∆(pu − qu)

4µ
.

Thus, when δ < 1, we have

PG [e2(u) > (1 + δ)E [ e2(u) ]] ≤ exp

(
−1

2
δ2E [ e2 ]

)
≤ exp

(
−∆2 (pu − qu)2

32µ

)

≤ exp

(
− ∆2 (pu − qu)2

32(s̃2,1p+ s̃2,2q)

)

≤ exp

(
− ∆2 (pu − qu)2

32(s2,1p+ s2,2p)

)
≤ exp

(
− ∆2γ2

32|S2|

)
Lemma 7 can be used to bound ∆:

PA
[
∆ ≥ |C1 ∩ S| · |C2 ∩ S|

max(|P1|, |P2|)
c− x

]
≥ 1− exp

(
− 2x2

min (|P1|, |P2|)

)
.

Since |Ci ∩ S| ≥ N
2f , N

2 ≥ |Pi| ≥
N
4f , it holds that ∆ ≥

Nc
(

1− 1
2f

)
4f ≥ N

8f with probability

1−exp
(
−Nκ2

2f

)
on the random choices of the algorithm. In that case, we conclude using |S2| ≤ N

and γ = minu
pu−qu√

pu
≥ Cf5/2

√
logN
N :

PG [e2 > (1 + δ)E [ e2 ]] ≤ exp

−
(
Nc
8f

)2
· C2f5 logN

N

32N


≤ exp

(
−c

2C2

2048
· f3 logN

)
≤ exp(−100 logN),
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where the last inequality follows from C > 500
c and f > 1.

When δ ≥ 1, we have that

PG [e2(u) > (1 + δ)E [ e2(u) ]] ≤ exp

(
− 1

32
∆(pu − qu)

)
≤ exp

(
− 1

32

Nκ

4f
pu

)
≤ exp (−100 logN) ,

where we have used pu ≥ pu−qu
pu
≥ C2f5 logN

N . The concentration bound for e1(u) is identical.
We thus have with probability probability at least 1 − 2 exp(−100 logN) on the graph that

e2 < EG [e2(u)] + ∆(pu − qu)/2 and e1 > EG [e1(u)] − ∆(pu − qu)/2, and so by taking a union
bound we have that with probability at least 1− 2 exp(−100 logN).

Σu > ∆(p− q) ≥ 1. (9)

Therefore, for any arbitrary vertex u ∈ S′ of community Ci, we have that its number of edges
to S̃i is bigger than to the other part with probability 1 − exp

(
−Nκ2

2f

)
on the algorithm and 1 −

2 exp(−100 logN) on the graph. Applying a union bound over all the vertices u ∈ S′ shows that
the probability that all nodes are correctly assigned is at least 1− 2 exp(−100 logN) on the graph.
The proof for vertices of S is exactly alike.

Appendix C. Proof of Lower Bound

Lemma 18 Let c ∈ (0, 1/10), p = c log n/n, X ∼ BIN(n, p) For all i ∈ [np − c3/2 logn
10 , np +

c3/2 logn
10 ] we have

P [X = i ] ≥ n−8c

Proof Our goal is to bound the following expression for all ε ∈ [− c3/2 logn
10n , c

3/2 logn
10n ](

n

np+ εn

)
pnp+εn(1− p)n−np−εn. (10)

To bound the asymptotic of Equation 10, we use Stirling’s approximation:(
n

np+ εn

)
pnp+εn(1− p)n−np−εn =

= (1− o(1))
(n/e)n

√
2πn · pnp+εn(1− p)n−np−εn

(n(1− p− ε)/e)n−np−εn
√

2πn(1− p− ε) · (n(p+ ε)/e)np+εn
√

2πn(p+ ε)

= (1− o(1))
1√

2πn · (1− p− ε)(p+ ε)
· (1− p)n−np−εnpnp+εn

(1− p− ε)n−np−εn(p+ ε)np+εn

≥ (1− o(1))
1

2
√
πpn

· (1− p)n−np−εnpnp+εn

(1− p− ε)n−np−εn(p+ ε)np+εn
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To simplify this expression, we show some separate bounds. Fix some ε ∈ [− c3/2 logn
10n , c

3/2 logn
10n ],

and k = n(p+ ε). We start by showing that

(p+ ε)k ≤ ec log(n)/5pk. (11)

To show this inequality, observe that (p + ε)k ≤ pk(1 + ε/p)k ≤ pkekε/p with kε/p = npε
p +

ε2n
p ≤

c3/2 logn
10 + c3 log2 n

100n2
n
p ≤ 2 c logn

10 .
Moreover, it also hold that

1− p− ε ≤ (1− p)(1 + 2|ε|). (12)

Indeed, since p ≤ 1/2, 1− p− ε ≤ 1− p− 2|ε|+ 2p|ε| = (1− p)(1 + 2|ε|).
Our last preliminary inequality is the following. Note that |ε|n ≤ c

√
c log n ≤ c log n. We have

(1 + 2|ε|)n−k ≤ (1 + 2|ε|)n ≤ e2n|ε| ≤ e2c logn. (13)

Thus, using Equation 11, Equation 12 and Equation 13, we can simplify the Stirling approxi-
mation:(

n

np+ εn

)
pnp+εn(1− p)n−np−εn

≥ (1− o(1))
1

2
√
πpn

· (1− p)n−np−εnpnp+εn

(1− p− ε)n−np−εn(p+ ε)np+εn

≥
(a)

(1− o(1))
1

2
√
πc log n

· (1− p)n−np−εnpnp+εn

(1− p)n−np−εn · (1 + 2|ε|)n−np−εnpnp+εnec logn/5

≥
(b)

(1− o(1))
1

2
√
πc log n

· 1

e2c logn+c logn/5

≥ (1− o(1))
1

2
√
πc log n

· 1

e4c logn
≥ 1

n8c
,

where (a) uses Equation 11 and Equation 12, and (b) uses Equation 13.

Proof [Proof of Theorem 3] For simplicity assume we have exactly 2n nodes, and that nq is an
integer. Let also assume that the two communities are drawn uniformly at random: each node has
probability 1/2 to be in each of them (with the restriction that |C1| = |C2| = n). We say a node is
confusing if it has exactly

• nq incoming edges from nodes of its community,

• nq incoming edges from nodes of the other community,

• nq outgoing edges to nodes of its community and

• nq outgoing edges to nodes of the other community.
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We fix some probability events. Let G be the observed graph. Given a vertex u, let Cu be the
event that u is confusing, and given a set of vertices S, let Com(S) be the community assignment
of vertices from S.

Since all nodes have same pu, qu, it holds that:

P [G | u ∈ C1, v ∈ C2, Cu, Cv,Com(V \ {u, v}) ] = P [G | u ∈ C2, v ∈ C1, Cu, Cv,Com(V \ {u, v}) ] .

Hence, using Bayes formula, we get:

P [u ∈ C1, v ∈ C2 | G, Cu, Cv,Com(V \ {u, v}) ] = P [u ∈ C2, v ∈ C1 | G, Cu, Cv,Com(V \ {u, v}) ]

This probability is 1/2 when there are n − 1 other vertices both in C1 and C2. This means that
knowing that u and v have exactly the same number of neighbors in each community does not
inform us in any way on their respective community. Now, we can show using Lemma 18 that there
exist confusing nodes with high probability.

The number of outgoing (incoming) edges to nodes of its own community follows BIN(n− 1, p),
and, by assumption of the theorem,

p− q ≤ √p cp
20

√
log n

n
≤ c3/2

p

log n

20n
.

This implies that nq ∈ [np− cp
√
np logn
10 , np] and we can apply Lemma 18: P [ BIN(n− 1, p) = nq ] ≥

1/n8cp ≥ n−1/10. The number of edges toward (from) the other community follows a bino-
mial BIN(n, q), with q = cq log n/n and cq < cp ≤ 1/40. Applying the lemma directly shows
P [ BIN(n, q) = nq ] ≥ 1/n8cq ≥ n−1/10. Hence, since all the edges considered are independent, a
node is confusing with probability at least n−4/10.

Given a pair of vertices u, v that do not share edges and any assignment of the other vertices to
communities, with n − 1 vertices in each, we therefore have that both u and v are confusing with
probability n−8/10 – note that since u and v do not share edges, the events are independent.

Partition the vertex set into n pairs, and let Ai be the event that the nodes in the i-th pair are
both confusing. The variables Ai are 8-read w.r.t. to the definition given in Theorem 14, since
Ai only depends on edges adjacent to vertices of the i-th pair, and so Ai and Aj involve only 8
common edges. Hence, we can apply the concentration bound of Theorem 14 to say that there exist
a confusing pair with probability 1− exp(−γn), for some constant γ.

Thus, with high probability there exists two confusing nodes from two different communities.
Even knowing the graph G, those two nodes have equal probability of being in each community:
therefore, any algorithm that only observes the graph G and assign communities to those vertices
must fail on half of the assignments.

So any algorithm fails with probability 1/2 on the graph randomness.
Note that it is easy to boost this probability to 1 − o(1), by identifying a larger number of

confusing pairs instead of a single one: with k pairs, the probability of failure becomes 1− 1/2k.
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