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Abstract

We propose a practical algorithm for learning mappings between two metric spaces, X and Y . Our

procedure is strongly Bayes-consistent whenever X and Y are topologically separable and Y is

“bounded in expectation” (our term; the separability assumption can be somewhat weakened). At

this level of generality, ours is the first such learnability result for unbounded loss in the agnos-

tic setting. Our technique is based on metric medoids (a variant of Fréchet means) and presents

a significant departure from existing methods, which, as we demonstrate, fail to achieve Bayes-

consistency on general instance- and label-space metrics. Our proofs introduce the technique of

semi-stable compression, which may be of independent interest.
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1. Introduction

Regression and multiclass classification fall under the rubric of supervised prediction from labeled

examples. The chief difference between the two is that classification typically assumes the discrete

metric on the label space (captured by the 0-1 loss), while regression (at least with absolute loss1)

implicitly assumes the standard metric over the real-valued labels. In this paper, we study the con-

siderably more general setting of learning with metric losses, where the labels reside in an arbitrary

metric space. This setting subsumes both multiclass classification and real-valued regression under

L1 loss, and strictly generalizes these.

We consider the following fundamental learning problem: the instance space X is endowed

with a metric ρ and the label space Y with a metric ℓ. The learner receives a training sample

(Xi, Yi), i ∈ [n], drawn iid from an unknown distribution µ̄ on X × Y . The learner’s goal is to

(efficiently) produce a hypothesis fn : X → Y , based on the labeled sample, so as to minimize the

risk R(fn) := E(X,Y )∼µ̄ ℓ(fn(X), Y ). In particular, we say that the learning procedure is strongly

universally Bayes-consistent if, for every µ̄, we have thatR(fn) → R(f∗) almost surely as n→ ∞,

where f∗ is the minimizer of R(·) over all measurable f : X → Y .

Our contribution. We propose a novel algorithm, MedNet, for learning in the metric-valued re-

gression setting. To our knowledge, this is the first strong Bayes-consistency result for unbounded

loss with agnostic noise. While inspired by the OptiNet algorithm of Hanneke et al. (2021), the

extension from 0-1 loss to arbitrary metrics required non-trivial modifications to the learning pro-

cedure and the risk analysis; a detailed account of the similarities and innovations is provided in

Section 2. We show that under quite general, natural conditions on the metric spaces (X , ρ) and

1. Quadratic loss can be captured by the inframetrics (Fraigniaud et al., 2008) or near-metrics (Hanneke, 2021b).
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(Y, ℓ), our algorithm is strongly universally Bayes-consistent. The structural assumptions on X and

Y are truly minimalistic: we require them to be separable metric spaces, and for Y to be bounded

in expectation: E(X,Y )∼µ̄ ℓ(y0, Y ) < ∞ for some y0 ∈ Y . A byproduct of our analysis is the

introduction of the semi-stable compression technique, which may be of independent interest.

Related work. The regression setting with labels residing in a metric space other than R is rela-

tively uncommon; such works include Ferraty et al. (2011) and Biess et al. (2019), who study the

Banach- and Hilbert-space valued cases, respectively, and mappings between Riemannian mani-

folds (Hein, 2009; Steinke et al., 2010); some more recent results are discussed below. Our work

builds on Hanneke et al. (2021), who gave a complete characterization of the metric spaces (X , ρ)
for which there exists a strong Universal Bayes-Consistent (UBC) learner, where Y = N is endowed

with the discrete metric. They also provided an algorithm, OptiNet, which achieves strong UBC

whenever the latter is achievable by any learner (also provided therein is a comprehensive litera-

ture review of the strengths and limitations of previous metric-space methods, including k-NN).

Györfi and Weiss (2021) followed up with a simplified algorithm, Proto-NN, which, in addition to

enjoying all of the properties of OptiNet, is also strongly UBC in L1 for unbounded real labels

Y = R, as long as E |Y | <∞; our boundedness in expectation generalizes this condition.

Hanneke (2021b) introduced the very general paradigm of “learning whenever learning is pos-

sible,” which extends the iid setting to essentially the broadest possible class of random processes.

That work dealt mostly with the realizable (noiseless) case and bounded losses, though certain kinds

of noise were considered in Section 9 therein. A series of recent preprints followed: Blanchard and Cosson

(2021); Blanchard (2021); Hanneke (2021a); Blanchard et al. (2021). These also study sampling

processes far more general than iid, but consider label-loss structures that are bounded, or noiseless,

or both. Blanchard and Cosson (2021), for example, provide a reduction from the metric-valued

regression problem to the binary classification problem for the realizable setting with bounded loss.

Another aspect in which the above works are incomparable to ours is their use of non-algorithmic

learning procedures: more in the spirit of an existence proof, these involve non-constructive opera-

tions such as enumerating elements of a σ-algebra.2

In the special case of the singleton X = {x} and a general metric space (Y, ℓ), the consistency

of various Fréchet means (which are naturally related to medoids) has been recently examined

by Evans and Jaffe (2020); Schötz (2021). More tangentially related works include Morvant et al.

(2012), who, in a PAC-Bayesian setting, gave multiclass risk bounds with a confusion matrix error

structure, which is close in spirit to assuming a metric on the label set. The assumptions there

are fairly restrictive (every label must appear at least a constant number of times in the sample),

and no learning procedure or Bayes-consistency result was provided. On the algorithmic front,

our procedure partitions the instance space X into Voronoi cells and chooses the label y ∈ Y for

each cell based on a variant of the medoid principle. A number of loosely medoid-based learning

algorithms have been proposed (der Laan et al., 2003; Gottlieb et al., 2016; Newling and Fleuret,

2017; Baharav and Tse, 2019), but our approach is distinct from all of these, in that we compute

medoids in the label (rather than instance) space.

Finally, stable compression was a technique introduced by Bousquet et al. (2020) for the real-

izable case and extended to the agnostic case by Hanneke and Kontorovich (2021). We introduce a

2. So as not to get sidetracked down with computability issues over continuous inputs, we only claim full algorithmic

constructivity for countable Y . When Y is merely separable, we assume access to an oracle for computing ε-nets

over Y . Such an oracle is easily constructed for, e.g., Y = R
d.
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semi-stable variant for both cases by allowing additional side information; only the compression set

(and not the side information) is required to satisfy the stability condition of Bousquet et al.

2. Main results and overview of techniques

Our main result is the existence of a strong Universal Bayes-Consistent (UBC) learner for metric-

valued regression.

Theorem 1 There exists a learning algorithm, MedNet, with the following property. Let (X , ρ)
and (Y, ℓ) be separable metric spaces endowed with a distribution µ̄ supported on the product

Borel σ-algebra of X × Y , such that Y is bounded in expectation: E(X,Y )∼µ̄ ℓ(y0, Y ) < ∞ for

some y0 ∈ Y . Given a training sample (Xi, Yi)i∈[n] drawn iid from µ̄ as input, MedNet outputs a

predictor fn : X → Y that is strongly universally Bayes-consistent: R(fn) → R∗ almost surely

(under µ̄) as n → ∞, where R(f) = E(X,Y )∼µ̄ ℓ(f(X), Y ) is the risk and R∗ the Bayes-optimal

risk (minimum risk achieved by any measurable f ).

The proof proceeds via a sequence of incremental results, culminating in Theorem 12, which is

a restatement of Theorem 1. A few remarks regarding our assumptions on (X , ρ) and (Y, ℓ) are in

order. As per Hanneke et al. (2021), the assumption of separability may be weakened to essential

separability (ES): this is the condition that the support of µ̄ is contained in a separable subspace. It

was shown therein that the ES condition (on X ) is also necessary for any learner to succeed, and

observed that in practice, any plausibly realistic metric space will be ES; in fact, the existence of

non-ES metric spaces is widely believed to be independent of ZFC. For countable Y , a variant of

Theorem 1 — namely, Theorem 10 — holds for any bounded loss function ℓ : Y × Y → [0, L];
no metric structure is necessary. Finally, a word about the computational efficiency of MedNet.

The latter, conceptually, consists of two stages: (I) computing a γ-net on the finite training sample

(residing in X ) and (II) for each Voronoi cellC induced on the sample by the γ-net, finding a medoid

y ∈ Y that minimizes
∑

c∈C ℓ(c, y). Assuming black-box access to an evaluator for the metric ρ,

the γ-net in stage (I) can indeed be efficiently constructed on a RAM machine (Gottlieb et al., 2014;

Kpotufe and Verma, 2017). At stage (II), MedNet truncates Y adaptively to some finite Y ′ over

which the medoid can always be computed in a runtime linear in |Y ′|. When additional structural

information regarding Y is available, it may be leveraged to obtain more efficient medoid oracles.

To illustrate our significant departure from previous techniques, let us provide some simple ex-

amples where those techniques fail to be Bayes-consistent for various simple label metrics. Let

X = {0} be the trivial singleton metric space and Y = {a, b, c, o} be the label space endowed

with the metric ℓ(a, b) = ℓ(b, c) = ℓ(c, a) = 1; ℓ(o, a) = ℓ(o, b) = ℓ(o, c) = 1/2, and let

the distribution µ̄ be such that P(X,Y )∼µ̄(Y = a) = P(X,Y )∼µ̄(Y = b) = P(X,Y )∼µ̄(Y =
c) = 1/3. We observe that any majority-vote based method, such as k-NN, which takes a vote

among the k nearest neighbors (Györfi et al., 2002), or OptiNet, which takes a vote within each

Voronoi cell (Hanneke et al., 2021), or the memory-based techniques of Blanchard and Cosson

(2021); Blanchard (2021); Blanchard et al. (2021), or the hybrid approach of Györfi and Weiss

(2021) cannot achieve Bayes-consistency in this case — for the simple reason that they can only

output the observed labels a, b, c (and hence, at best, achieve an asymptotic risk of 2/3), while the

Bayes-optimal predictor f∗ ≡ o achieves R(f∗) = 1/2.

The necessity of predicting labels that never occurred in the sample required overcoming a subtle

challenge not present in Hanneke et al. (2021). As in that work, we obtain finite-sample generaliza-
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tion bounds via a sample compression scheme. The latter selects a sub-sample SI = (Xi, Yi)i∈I⊂[n],

based on which the predictor will be constructed. To mitigate the noise, we occasionally wish to

relabel a point Xi ∈ SI with a label other than Yi. One could do this using b bits of side infor-

mation, but Hanneke et al. sidestepped this issue by doubling the compression set size: the first k
pairs (Xi, Yi) indicate which X’s to use (their Y ’s are discarded) and the second k pairs indicate

how to label those first k points Xi. This stratagem is not applicable when we wish to relabel an

X with a Y ∈ Y not occurring in the sample. Instead, MedNet adaptively truncates Y to a finite

Yn, whose elements can be described in b(n) = log2 |Yn| bits of side information. This solves two

problems simultaneously: the concentration inequalities we invoke require a bounded range, and

our compression schemes require bounded side information. We introduce a semi-stable variant of

the stable compression scheme (Bousquet et al., 2020; Hanneke and Kontorovich, 2021) to analyze

the behavior of our truncated medoid.

Finally, we recall the family of techniques based on Lipchitz-extension, which has found ap-

plications in some metric-space learning problems. A binary classifier based on the McShane-

Whitney extension theorem was shown to be Bayes-consistent (Kontorovich and Weiss, 2014); this

technique was also applied by Gottlieb et al. (2017); Ashlagi et al. (2021) to real-valued regression.

When X and Y are both Hilbert spaces, the Kirszbraun extension theorem likewise provides a basis

for a regression algorithm (Biess et al., 2019). (While the latter three works do not prove Bayes-

consistency, the finite-sample generalization bounds provided therein are likely straightforwardly

adaptable to such a result via an appropriate regularization schedule.) Unfortunately, Lipschitz ex-

tension is not suitable for learning general metric-to-metric mappings. Indeed, this technique is

limited to a small number of metric spaces with a special structure; besides the aforementioned

cases, Naor and Sheffield (2012) established one for X a locally compact length space and Y a met-

ric tree, remarking that “It is rare for a pair of metric spaces [. . . ] to have the isometric extension

property.” As a concrete example, the spaces (X , ρ) = (R3, ‖·‖1) and (Y, ℓ) = (R2, ‖·‖2) fail to

have this property (Naor, 2015, Counterexample 2.4).

Open problem. The bounded in expectation (BIE) condition on Y is a natural generalization of

the real-valued variant that E |Y | < ∞ (or, more generally, E |Y |p < ∞ if Lp risk is being con-

sidered). These conditions, while sufficient for Bayes consistency, are clearly not always necessary.

Consider, for example, X = Y = R, endowed with the standard metric, where the distribution

µ̄ is such that the X -marginal is Cauchy (i.e., has density f(x) = [π(1 + x2)]−1) and X = Y
almost surely. In this case, E |Y | = ∞ and the more general BIE condition also fails. Yet the

identity predictor h(x) = x achieves the Bayes-optimal risk of 0, and various simple learning al-

gorithms, including linear regression, achieve Bayes consistency (we conjecture that MedNet does

as well). Problem: formulate a necessary and sufficient condition on the metric spaces (X , ρ) and

(Y, ℓ), and the joint distribution µ̄ such that MedNet (or some other learning algorithm) is strongly

Bayes-consistent. A natural and optimistic candidate is the condition R∗ <∞.

3. Definitions and notation

For n ∈ N := {1, 2, . . .}, define [n] := {1, . . . , n}; for any set Z , we write Z+ :=
⋃∞

n=1Zn and

Z≤k :=
⋃k

n=1Zn, where |z| denotes the sequence length. For A ∈ Z+, we write B ⊂ A to denote

the subsequence relation. Our instance and label spaces are the metric spaces (X , ρ) and (Y, ℓ),
respectively, whose product Borel σ-algebra is equipped with the probability measure µ̄, whose

X -marginal will be denoted by µ and Y-marginal by µY . We say that Y is bounded in expectation
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(BIE) if E(X,Y )∼µ̄ ℓ(y0, Y ) <∞ for some y0 ∈ Y . Some of our results will also hold for countable

Y equipped with an arbitrary (possibly non-metric) loss function ℓ : Y × Y → [0,∞). We denote

set cardinalities by |Y| and the diameter by

‖Y‖ ≡ diam(Y) := sup
y,y′∈Y

ℓ(y, y′); (3.1)

the latter is also meaningful when ℓ is not a metric. For x ∈ X and r > 0, Br(x) denotes the open

ball of radius r about x; an analogous definition holds when (Y, ℓ) is a metric. Unless specified

otherwise, Sn = (Xi, Yi)i∈[n] is always sampled iid from µ̄. To any measurable mapping f :

X → Y we associate the (true) risk R(f) := E(X,Y )∼µ̄ ℓ(f(X), Y ) and the empirical risk R̂ :

YX × (X × Y)+ → R by

R̂(f ;S) := |S|−1
∑

(x,y)∈S
ℓ(f(x), y). (3.2)

The Bayes-optimal risk is R∗ := inff R(f), where the infimum is over all measurable f : X → Y .

We implicitly assume the existence of fixed measurable total orders on X and on Y , whose

existence is guaranteed by Hanneke et al. (2021, Proposition D.1), and refer to these orderings as

lexicographic. For A ⊆ X , denote its γ-envelope by UBγ(A) := ∪x∈ABγ(x) and consider the

γ-missing mass of Sn, defined as the following random variable:

mmγ(Sn) := µ(X \ UBγ(Sn)). (3.3)

As in Hanneke et al. (2021), we denote, for any labeled sequence S = (xi, yi)
n
i=1 ∈ (X × Y)n,

and any x ∈ X , the nearest neighbor of xwith respect to S and its label byXnn(x, S) and Ynn(x, S),
respectively:

(Xnn(x, S), Ynn(x, S)) := argmin
(xi,yi)∈S

ρ(x, xi),

where ties are broken lexicographically. The 1-NN predictor induced by S is defined as hS(x) :=
Ynn(x, S). For any m ∈ N, any sequence X = {x1, . . . , xm} ∈ Xm induces a Voronoi partition of

X , V(X) := {V1(X), . . . , Vm(X)}, where each Voronoi cell is

Vi(X) :=

{
x ∈ X : i = argmin

1≤j≤m
ρ(x, xj)

}
,

again breaking ties lexicographically. In particular, for X = {Xi : (Xi, Yi) ∈ S}, we have

hS(x) = Yi for all x ∈ Vi(X). A 1-NN algorithm is a mapping from an i.i.d. labeled sample

Sn ∼ µ̄n to a labeled set S′
n ⊆ X × Y , yielding the 1-NN predictor hS′

n
. For A ⊆ X and

γ > 0, a γ-net of A is any maximal set B ⊆ A in which all interpoint distances are at least γ.

For a partition A of B ⊆ X , we write ‖A‖ := supA∈A ‖A‖ (again, as in (3.1), ‖A‖ := diamA).

Given a labeled set Sn = (xi, yi)i∈[n], d ∈ [n], and any i = {i1, . . . , id} ∈ [n]d, denote the

sub-sample of Sn indexed by i by Sn(i) := {(xi1 , yi1), . . . , (xid , yid)}. Similarly, for a vector

y′ = {y′1, . . . , y′d} ∈ Yd, define Sn(i,y
′) := {(xi1 , y′1), . . . , (xid , y′d)}, namely the sub-sample of

Sn as determined by i where the labels are replaced with y′. Lastly, for i, j ∈ [n]d, we denote

Sn(i; j) := {(xi1 , yj1), . . . , (xid , yjd)}.
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We use standard order-of-magnitude notation throughout the paper; thus, for f, g : N → [0,∞)
we write f(n) ∈ O(g(n)) to mean lim supn→∞ f(n)/g(n) < ∞ and f(n) ∈ o(g(n)) to mean

lim supn→∞ f(n)/g(n) = 0. Likewise, f(n) ∈ Ω(g(n)) means that g(n) ∈ O(f(n)). In accor-

dance with common convention, we often use the less precise notation f(n) = O(g(n)), etc.

We say that a metric space (X , ρ) is separable if it contains a dense countable set. A metric

probability space (X , ρ, µ) is separable if there is a measurable X ′ ⊆ X with µ(X ′) = 1 such that

(X ′, ρ) is separable.

A sample compression scheme (κ, ψ) of size at most k using b bits of side-information consists

of a compression function and a reconstruction function. The compression function κ maps every

finite sample set to b bits plus a compression set, which is a subset of at most k labeled examples.

κ : (X × Y)+ → (X × Y)≤k × {0, 1}b .

The reconstruction function ψ maps every possible compression set and b bits to a hypothesis:

ψ : (X × Y)≤k × {0, 1}b → YX .

4. Semi-stable compression

In this section, we expand the definition of stable compression and present our results for this

notion. First, we split the compression function κ into its two components. For S ∈ (X × Y)+,

we write κ(S) = (κcs(S), κsi(S)) ∈ (X × Y)≤k × {0, 1}b; these are the compression set and the

side information. We say that (κ, ψ) is semi-stable if the κcs component is stable in the sense of

Bousquet et al. (2020): whenever κcs(S) ⊆ S′ ⊆ S, we have that

ψ(κcs(S
′), κsi(S)) = ψ(κcs(S), κsi(S)) = ψ(κ(S)).

We denote by |κcs(·)| and |κsi(·)| the sizes of the compression set and side information (in bits),

respectively.

Theorem 2 (proof deferred to Section C.3.4) Suppose that X is an instance space and Y a label

space with a loss function ℓ : Y × Y → [0, L], and (κ, ψ) is semi-stable compression scheme. For

any distribution µ̄ over X × Y , any n ∈ N, and any δ ∈ (0, 1), for Sn ∼ µ̄n we have that

R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn) ≤


20

√
|κcs(Sn)|

n
+ 20

√
|κsi(Sn)|

n
+ 15

√
ln(4e

2

δ )

n


 R̂(ψ(κ(Sn));Sn)

+ (6L+ 18)
|κcs(Sn)|

n
+ 8L

√
|κcs(Sn)|

n
+ (2L+ 12)

|κsi(Sn)|
n

+ 7L

√
|κsi(Sn)|

n
+ (3L+ 10)

ln(4e
2

δ )

n
+ 6L

√
ln(4e

2

δ )

n

holds with probability at least 1− δ.
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(α, k, b)-semi-stable-compression

Let X , Y , ℓ, and Sn be as in the statement of Theorem 2. For k ≤ n, b ∈ N, and α ≥ 0, we say that

(S′
n, hS′

n
) is an (α, k, b)-semi-stable-compression of Sn if there exist i ∈ [n]k and Y ∈ Yk such

that:

1. hS′
n

and S′
n = Sn(i,Y) are a result of a semi-stable compression scheme of size k with at

most b bits of side information. Thus, S′
n = κsi(Sn) and hS′

n
= ψ(κcs(S), κsi(S)).

2. R̂(hS′
n
;Sn) ≤ α.

Lemma 3 (proof in Section B.2) Let X , Y , ℓ, L, and Sn be as in Theorem 2. For k ≤ n, define

Q(n, α, k, b, δ, L) := Qn(α, k, b, δ, L) :=


20

√
k

n
+ 20

√
b

n
+ 15

√
ln(4e

2

δ )

n
+ 1


α (4.1)

+ (6L+ 18)
k

n
+ 8L

√
k

n
+ (2L+ 12)

b

n
+ 7L

√
b

n

+ (3L+ 10)
ln(4e

2

δ )

n
+ 6L

√
ln(4e

2

δ )

n
.

Then the function Q satisfies the following properties:

Q1. For any n ∈ N and δ ∈ (0, 1), with probability at least 1− δ over Sn ∼ µ̄n, for all α ∈ [0, L],
k ∈ [n], b ∈ N: If (S′

n, hS′
n
) is an (α, k, b)-semi-stable-compression of Sn, then

R(hS′
n
) ≤ Qn(α, k, b, δ, L).

Q2. For any fixed n ∈ N and δ ∈ (0, 1), Q is monotonically increasing in α and in k.

Q3′′. There is a sequence {δn}∞n=1, δn ∈ (0, 1) such that
∑∞

n=1 δn <∞, and for any kn ∈ o(n) we

have that

lim
n→∞

sup
α∈[0,L]

(Qn(α, kn, b, δn, L)− α) = 0.

5. Metric approximations

Our proof technique involves performing several distinct truncations, approximating a potentially

unbounded quantity by a finite one. In this section, we adapt a variant of this method from Hanneke et al.

(2021) for the 0-1 loss to arbitrary bounded losses. Here, (X , ρ) is assumed to be a separable metric

space, and Y a countable label space with a loss function ℓ : Y2 → [0, L]. Let V = {V1, . . . } be a

countable partition of X , and define the function IV : X → V such that IV(x) is the unique V ∈ V
for which x ∈ V . For any measurable set ∅ 6= E ⊆ X define the true medoid label y∗(E) by

y∗(E) = argmin
y∈Y

∫

X∈E
ℓ(y, Y )dµ̄, (5.1)

7
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where ties are broken lexicographically according to fixed total order on Y . Given V and a measur-

able set W ⊆ X , define the true medoid predictor h∗V,W : X → Y given by

h∗V,W (x) = y∗(IV(x) ∩W ). (5.2)

Lemma 4 (proof in Section B.3) Let µ̄ be a probability measure on X × Y with X -marginal µ,

where X is a metric probability space, and Y a countable label space with a loss function ℓ such

that L := ‖Y‖ < ∞. For any ν > 0, there exists a diameter β = β(ν) > 0 such that for any

countable measurable partition V = {V1, . . . } of X and any measurable set W ⊆ X satisfying

(i) µ(X \W ) ≤ ν

(ii) supV ∈V ‖V ∩W‖ ≤ β,

the true medoid predictor h∗V,W defined in (5.2) satisfies

R(h∗V,W ) ≤ R∗ + 9Lν.

The proof of Lemma 4 is similar to that of Hanneke et al. (2021, Lemma 3.6), with novel arguments

to handle the general loss function setting. Next, we state two results from Hanneke et al. (2021):

Lemma 5 (variant of Lemma 3.7, Hanneke et al. (2021)) Let (X , ρ, µ) be a separable metric

probability space. For Sn ∼ µn, let X(γ) be any γ-net of Sn. Then, for any γ > 0, there exists a

function tγ : N → R+ in o(n) such that P

[
sup

γ-nets X(γ)
|X(γ)| ≥ tγ(n)

]
≤ 1/n2.

Lemma 6 (Lemma 3.8, Hanneke et al. (2021)) Let (X , ρ, µ) be a separable metric probability

space, γ > 0 be fixed, and the γ-missing mass mmγ defined as in (3.3). Then there exists a function

uγ : N → R+ in o(1), such that P [mmγ(Sn) ≥ uγ(n) + t] ≤ exp
(
−nt2

)
for Sn ∼ µn and t > 0.

6. Algorithms and analysis: finite Y
In this section, we give the most basic version of our algorithm, denoted MedNet|Y|<∞, for the case

where (X , ρ) is a separable metric and Y is a finite set equipped with an arbitrary (not necessarily

metric) loss function ℓ : Y ×Y → R+. This rudimentary setting provides the basis for extension to

more general settings, in the sequel.

The input is the sample Sn; the set of instances in the sample is denoted by Xn = {X1, . . . , Xn}.

The algorithm defines a set Γ of all
(
n
2

)
scales γ > 0 which are interpoint distances in Xn, and the

additional scale γ = ∞. For each scale in Γ, the algorithm constructs a γ-net of Xn. Denote the

constructed γ-net by

X(γ) := {Xi1 , . . . , XiM }, (6.1)

where

M ≡Mn(γ) := |X(γ)| (6.2)

8
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denotes its size and i ≡ i(γ) := {i1, . . . , iM} ∈ [n]M denotes the indices selected from Sn for this

γ-net.

For each γ-net, Algorithm 1 finds the empirical medoid labels in the Voronoi cells defined by

the partition V(X(γ)) = {V1(X(γ)), . . . , VM (X(γ))}. These labels are denoted by Y ′(γ) ∈ YM .

Formally, for i ∈ [M ],

Y ′
i (γ) := argmin

y∈Y

∑

j∈[n]:Xj∈Vi

ℓ(y, Yj). (6.3)

As always, ties are broken lexicographically. The output of MedNet|Y|<∞ is a labeled set S′
n(γ) :=

Sn(i(γ),Y
′(γ)) for every candidate scale γ ∈ Γ. The algorithm then selects a single scale γ∗ ≡

γ∗n from Γ, and outputs the hypothesis that it induces, hS′
n(γ

∗). The choice of γ∗ is executed by

minimizing a generalization error bound, denoted Q, which upper-bounds R(hS′
n(γ)

) with high

probability.

Algorithm 1: MedNet|Y|<∞

Assumptions: (X , ρ) is a separable metric space, Y a finite label space with a loss function ℓ.
Define L := ‖Y‖ = maxy,y′∈Y ℓ(y, y′) and b := log2 |Y|.

Input : Sample Sn = (Xi, Yi)i∈[n], confidence δn ∈ (0, 1)
Output : predictor h : X → Y
Let Γ := ({ρ(Xi, Xj) : i, j ∈ [n]} ∪ {∞}) \ {0}
for γ ∈ Γ do

Let X(γ) be a γ-net of {X1, . . . , Xn}
Let Mn(γ) := |X(γ)|
For each i ∈ [Mn(γ)], let Y ′

i (γ) be the empirical medoid label of Vi(X(γ)) as in (6.3)

Set S′
n(γ) := (X(γ),Y ′(γ))

Set hS′
n(γ)

:= x 7→ Ynn(x, S
′
n(γ)).

Set αn(γ) := R̂(hS′
n(γ)

;Sn)

end

Find γ∗n ∈ argminγ∈ΓQn(αn(γ),Mn(γ), b, δ, L), where Qn is defined in (4.1)

Set S′
n := S′

n(γ
∗
n)

return h = hS′
n

Bayes Consistency of MedNet|Y|<∞

The Bayes consistency result of Hanneke et al. (2021) was for the 0-1 loss. Their approach was

also compression-based, but did not leverage the stability property, had no need for side informa-

tion, and did not have to truncate potentially unbounded losses. Our main technical innovation

was constructing MedNet (formally defined in Section A.1) as a semi-stable compression scheme

with side-information, and then invoking it with an appropriate truncation schedule for infinite and

unbounded Y .

The first order of business is to verify that MedNet|Y|<∞ indeed furnishes a semi-stable com-

pression scheme for any fixed γ:

9
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Lemma 7 (proof in Section B.1) Let (X , ρ) be a separable metric space, and Y a finite label

space with a loss function ℓ. For any fixed scale γ ∈ Γ, the procedure in Algorithm 1 generating

hS′
n(γ)

is a semi-stable compression scheme.

The following key technical lemma is a generalization of Hanneke et al. (2021, Lemma 3.5) from

0-1 loss to the general loss setting.

Lemma 8 (proof in Section B.4) Let µ̄ be a probability measure on X ×Y , where X is a metric

probability space, and Y a countable label space endowed with a loss function ℓ ≤ L < ∞. Let tγ
as in Lemma 5. Then there exist functions ε 7→ γ(ε) and ε 7→ γ := ν(ε) ∈ (0, ε

176L) such that for

each ε, b > 0 there is an N0(ν(ε), b, δn, tγ) such that for all n ≥ N0, and all d ∈ [tγ(n)],

pd := P

[
Qn(αn(γ),Mn(γ), b, δn, L) > R∗+ ε ∧ mmγ(Sn)≤

ε

18L
∧ Mn(γ)=d

]
≤ e−

nε2

32 + e−
1

2
nν2,

where Mn(γ) is defined in (6.2).

The main result of this section is

Theorem 9 Let (X , ρ) be a separable metric space, and Y a finite label space with a loss func-

tion ℓ. Then there exists a choice of δn∈N such that the sequence of hypotheses hn computed by

MedNet|Y|<∞(Sn, δn) is strongly Bayes consistent: P[limn→∞R(hn) = R∗] = 1.

Proof Recall that L := ‖Y‖ = maxy,y′∈Y ℓ(y, y′) and let b := log2 |Y|. LetQ be the generalization

bound in (4.1) and set the input confidence δ for input size n to δn as stipulated by Q3′′.
Given a sample Sn ∼ µ̄n, we abbreviate the optimal empirical error α∗

n = α(γ∗n) and the

optimal compression size M∗
n = M(γ∗n) as computed by Algorithm 1. By Lemma 7, the labeled

set S′
n(γ

∗
n) computed by Algorithm 1 is an (α∗

n,M
∗
n, b)-semi-stable compression of the sample Sn.

For brevity we denote Qn(α, k) := Qn(α, k, b, δn, L). To prove the Theorem, we first follow the

standard technique, used also in Hanneke et al. (2021), of decomposing the excess risk into two

terms:

R(hS′
n(γ

∗
n)
)−R∗ =

(
R(hS′

n(γ
∗
n)
)−Qn(α

∗
n,M

∗
n)
)
+
(
Qn(α

∗
n,M

∗
n)−R∗) =: TI(n) + TII(n)

and arguing that each term decays to zero almost surely. For TI(n) we have, similarly to Hanneke et al.,

that Property Q1 from Lemma 3 implies that for any n > 0,

P
[
R(hS′

n(γ
∗
n)
)−Qn(α

∗
n,M

∗
n) > 0

]
≤ δn. (6.4)

Applying Borel-Cantelli to the fact that
∑
δn < ∞ yields lim supn→∞ TI(n) ≤ 0 almost surely.

The main departure from the proof in Hanneke et al. is in establishing lim supn→∞ TII(n) ≤ 0
almost surely. We will argue that there exist N = N(ε) > 0, γ = γ(ε) > 0, ν = ν(ε) > 0, and

universal constants c, C > 0 such that ∀n ≥ N ,

P[Qn(αn(γ),Mn(γ)) > R∗ + ε] ≤ Cne−cnε2 + ne−ν2n/2 + 1/n2. (6.5)

For any γ > 0 (even if γ /∈ Γ), Algorithm 1 finds a γ∗n such that

Qn(α
∗
n,M

∗
n) = min

γ′∈Γ
Qn(αn(γ

′),Mn(γ
′)) ≤ Qn(αn(γ),Mn(γ)).

10
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The bound in (6.5) thus implies that ∀n ≥ N ,

P[Qn(α
∗
n,M

∗
n) > R∗ + ε] ≤ Cne−cnε2 + ne−ν2n/2 + 1/n2. (6.6)

By the Borel-Cantelli lemma, this implies that almost surely, lim supn→∞ TII(n) = lim supn→∞(Qn(α
∗
n,M

∗
n)−

R∗) ≤ 0. Since ∀n, TI(n) + TII(n) ≥ 0, this implies limn→∞ TII(n) = 0 almost surely, thus com-

pleting the proof.

It remains to prove (6.5), the 0-1 loss analog of which was proved in Hanneke et al., Eq. (3.4).

That argument does not hold for general losses, and we present the novel argument below. We

bound the left-hand side of (6.5) using a function n 7→ tγ(n) ∈ o(n), used to upper bound the

compression size; the latter is furnished by Lemma 5.

P[Qn(αn(γ),Mn(γ)) > R∗ + ε] (6.7)

≤ P

[
Qn(αn(γ),Mn(γ)) > R∗ + ε ∧ mmγ(Sn) ≤

ε

18L
∧ Mn(γ) ≤ tγ(n)

]

+ P[mmγ(Sn) >
ε

18L
] + P[Mn(γ) > tγ(n)] =: PI + PII + PIII.

We estimate PI via a union bound:

P

[
Qn(αn(γ),Mn(γ)) > R∗ + ε ∧ mmγ(Sn) ≤

ε

18L
∧ Mn(γ) ≤ tγ(n)

]

≤
tγ(n)∑

d=1

P

[
Qn(αn(γ),Mn(γ)) > R∗ + ε ∧ mmγ(Sn) ≤

ε

18L
∧ Mn(γ) = d

]
.

Thus, it suffices to bound each term in the summation separately. Applying Lemma 8 and summing,

we have, for n sufficiently large that tγ(n) ≤ n,

PI ≤
tγ(n)∑

d=1

pd ≤ tγ(n)(e
−nε2

32 + e−
1

2
nν2) ≤ n(e−

nε2

32 + e−
1

2
nν2). (6.8)

Now, using the function tγ , we note that PIII ≤ 1/n2 thanks to Lemma 5. A bound on PII, which

bounds the γ-missing-mass mmγ(Sn), is furnished by Lemma 6. Taking n sufficiently large so that

uγ(n), as furnished by Lemma 6, satisfies uγ(n) ≤ ε/36L, and invoking Lemma 6 with t = ε/36L,

we have PII = P[mmγ(Sn) > ε/18L] ≤ e−
nε2

1296L2 . Plugging this, (6.8), and PIII ≤ 1/n2 into (6.7)

yields (6.5), which completes the proof.

7. Extensions

7.1. Countable Y with finite diameter: MedNetℵ0

‖Y‖<∞

In this section we describe an extension of MedNet|Y|<∞, denoted MedNetℵ0

‖Y‖<∞, which is strongly

Bayes-consistent for countably infinite Y , but still with a finite diameter. A modification of MedNet|Y|<∞
is required because the latter uses a compression scheme with b = log2 |Y| bits of side information.

Our variant is formally presented in Algorithm 3 and operates as follows. We fix in advance

a specific sequence bn ∈ N, to be specified in the sequel. The family of γ-nets over the in-

put sample is generated exactly as in MedNet|Y|<∞. For each γ-net, MedNetℵ0

‖Y‖<∞ (presented

11
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in Section A.2) computes the truncated empirical medoid labels in the Voronoi cells defined by

the partition V(X(γ)) = {V1(X(γ)), . . . , VM (X(γ))}. These labels are denoted by Y ′(γ) ∈
pref(Y, bn)M . Formally, for i ∈ [M ],

Y ′
i := argmin

y∈pref(Y,bn)

∑

j∈[n]:Xj∈Vi

ℓ(y, Yj), (7.1)

where pref(Y, b) :=
{
y ∈ Y ′ : ω(y) ≤ 2b

}
for b ∈ N, for some fixed canonical injection ω : Y →

N. In words, pref(Y, bn) is a sample-dependent, cardinality-based truncation of the label space.

Other than the truncation, MedNetℵ0

‖Y‖<∞ behaves exactly as MedNet|Y|<∞.

Theorem 10 (proof in Section B.6) Let (X , ρ) be a separable metric space, and Y a countable

label space with a loss function ℓ ≤ L <∞. Then there is a choice of δn∈N and truncation schedule

bn∈N such that the sequence of hypotheses hn computed by MedNetℵ0

‖Y‖<∞(Sn, δn, bn) is strongly

Bayes consistent: P[limn→∞R(hn) = R∗] = 1.

7.2. Countable metric space (Y, ℓ) with unbounded diameter: MedNetℵ0

In this section, we extend MedNetℵ0

‖Y‖<∞ to the case where (Y, ℓ) is a countable metric space. That

is, the loss ℓ is now assumed to be a metric, but the boundedness condition ‖Y‖ < ∞ is relaxed to

boundlessness-in-expectation (BIE): E(X,Y )∼µ̄ ℓ(y0, Y ) < ∞ for some y0 ∈ Y . Boundedness was

used in the analysis of MedNetℵ0

‖Y‖<∞ in order to invoke a distribution-free concentration inequality

(Hoeffding’s). The present extension, denoted MedNetℵ0 , invokes MedNetℵ0

‖Y‖<∞ as a subroutine

with an appropriately diameter-truncated label space. The latter is defined as follows. Fix a y0 ∈ Y
that is a witness of the BIE property3. For y ∈ Y and L > 0, define JYKL := B(y0, L) and the

diameter-truncation operation

y ∧ L := argmin
ŷ∈JYKL

ℓ(y, ŷ). (7.2)

In words, y ∧ L is the closest ŷ to y in the L-ball about y0.

MedNetℵ0 is formally presented in Algorithm 2 and operates as follows. The cardinality- and

diameter-truncation schedules bn∈N and Ln∈N are fixed in advance; the former as any bn ∈ o(n)
and the latter specified in the sequel. Next, the labels Yi of the input sample are truncated to JYiK :=
Yi ∧ Ln; this is a substantive difference from the cardinality-based truncation in MedNetℵ0

‖Y‖<∞,

which does not modify the sample labels.

Theorem 11 (proof in Section B.7) Let (X , ρ) and (Y, ℓ) be metric spaces, separable and count-

able, respectively, equipped with a product distribution µ̄ such that BIE holds for Y . Then there is

a choice of δn∈N and truncation schedules bn∈N, Ln∈N such that the sequence of hypotheses hn
computed by MedNetℵ0(Sn, δn, bn, Ln) is strongly Bayes consistent: P[ lim

n→∞
R(hn) = R∗] = 1.

The only remaining extension to render the proof of Theorem 1 complete is from countable to

separable (Y, ℓ); this straightforward step is carried out in Section A.1.

3. Lemma 18 shows that if BIE holds then every y
′
∈ Y is such a witness, and in particular, we may always choose y0

as the “first” element under the canonical ordering.

12
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Algorithm 2: MedNetℵ0

Assumptions: (X , ρ) is a separable metric space, (Y, ℓ) a BIE countable metric space

Input : Sample Sn = (Xi, Yi)i∈[n], δn ∈ (0, 1), bn ∈ N, Ln > 0
Output : predictor h : X → Y
Set JSnK := {(Xi, JYiK) : i ∈ [n]}, where JYiK := Yi ∧ Ln

Set hn := MedNetℵ0

‖Y‖<∞(JSnK, δn, bn) in truncated label space JYKLn

(i.e., Y in (6.3) is replaced with JYKLn)

return h = hn
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hence we only give a sketch of the proof. In Section E, we give a countable discretization Yε ⊆ Y ,

with a corresponding discretized version µ̄ε of µ̄ and the induced Bayes-optimal risk R∗
ε on the

discretized space. Theorem 20 guarantees that R∗
ε → R∗ as ε→ 0.

As discussed in the Introduction, we assume access to an oracle that takes ε > 0 as input and

returns a (necessarily at most countable, due to separability) ε-net Yε of Y . Given this oracle,

MedNet operates as follows. First, a sequence εn ↓ 0 is fixed. For each n ∈ N, the sample Sn is

drawn and the ε-net Yn := Yεn is constructed. Next, each label Yi in Sn is projected onto Yn —

i.e., replaced by Y ′
i ∈ Yn that is closest to Yi. The resulting modified sample S′

n is then fed into

MedNetℵ0 with the additional arguments δn, bn, Ln as in Theorem 11. The latter shows that almost

surely, the the constructed predictor’s risk minus R∗
εn decays to zero.4 This, coupled with Theorem

20, implies Theorem 1:

Theorem 12 Let (X , ρ) and be (Y, ℓ) separable metric spaces equipped with a product distri-

bution µ̄ such that BIE holds for Y . For any εn ↓ 0, let Yn be a sequence of εn-nets as above.

Discretize each sample Sn ∼ µ̄n to S′
n with labels in Yn, as above. Then there is a choice of

δn∈N and truncation schedules bn∈N, Ln∈N such that the sequence of hypotheses hn computed by

MedNetℵ0(S′
n, δn, bn, Ln) is strongly Bayes consistent: P[limn→∞R(hn) = R∗] = 1.

4. Formally, Theorem 11 proves convergence on a fixed label space Y , but a standard diagonal argument lets us apply it

to the sequence Yn and conclude the aforementioned claim.
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A.2. The MedNetℵ0

‖Y‖<∞ algorithm

Algorithm 3: MedNetℵ0

‖Y‖<∞

Assumptions: Let (X , ρ) be a separable metric space, and Y a countable label space with a loss

function ℓ such that L := ‖Y‖ <∞.

Input : Sample Sn = (Xi, Yi)i∈[n], confidence δn ∈ (0, 1), side-information size bn ∈ N

Output : predictor h : X → Y
Let Γ := ({ρ(Xi, Xj) : i, j ∈ [n]} ∪ {∞}) \ {0}
for γ ∈ Γ do

Let X(γ) be a γ-net of {X1, . . . , Xn}
Let Mn(γ) := |X(γ)|
For each i ∈ [Mn(γ)], let Y ′

i (γ) be the truncated empirical medoid label of Vi(X(γ)) as in

(7.1)

Set S′
n(γ) := (X(γ),Y ′(γ))

Set hS′
n(γ)

:= x 7→ Ynn(x, S
′
n(γ)).

Set αn(γ) := R̂(hS′
n(γ)

;Sn)

end

Find γ∗n ∈ argminγ∈ΓQn(αn(γ),Mn(γ), bn, δ, L), where Qn is defined in (4.1)

Set S′
n := S′

n(γ
∗
n)

return h = hS′
n

Appendix B. Auxiliary Proofs

B.1. Proof of Lemma 7

Lemma Let (X , ρ) be a separable metric space, and Y a finite label space with a loss function

ℓ. For any fixed scale γ ∈ Γ, the procedure in Algorithm 1 generating hS′
n(γ)

is a semi-stable

compression scheme.

Proof Fix a γ ∈ Γ. Define b := log2 |Y| and the map bits : Y → {0, 1}b as one that converts the

lexicographic index of y ∈ Y to its unique b-bit binary representation. Our compression function:

(X × Y)+ → (X × Y)+ × {0, 1}b.
Recall our notation iγ as the γ-net indices calculated and selected for a sample Sn ∼ (X × Y)n,

and Y
′(iγ) the empirical medoid labels of a γ-net X(iγ), as defined in (6.3). Let κ be such that

κ(Sn) = (κcs(Sn), κsi(Sn)), where

κcs(Sn) = Sn(iγ) ∈ (X × Y)|iγ∗ |

κsi(Sn) =
{
bits(Y ′) : Y ′ ∈ Y

′(iγ)
}
∈
(
{0, 1}b

)|iγ∗ |
.

In words, κcs compresses the sample Sn to a specific γ-net keeping original labels, while κsi calcu-

lates the respective empirical limited medoid labels of the resulting sub-sample. As for the recon-

struction function

ψ : (X × Y)+ × {0, 1}b → YX ,

17
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it is defined as

ψ
(
Sn(iγ),Y

′(iγ)
)
= hSn(iγ ,Y′(iγ));

in words, we take the 1-nearest-neighbor rule predictor of the sub-sample Sn(iγ) labeled by Y
′(iγ).

It remains to argue that our compression scheme is semi-stable. Indeed, since the scale γ is fixed

and the net is constructed in a deterministic fashion, for any S′ satisfying κcs(Sn) ⊆ S′ ⊆ Sn, the

γ-net computed by the algorithm will be the same. Therefore κcs(S
′) = κcs(Sn) and the definition

follows.

B.2. Proof of Lemma 3

Lemma Let X , Y , ℓ, L, and Sn be as in Theorem 2. For k ≤ n, define

Q(n, α, k, b, δ, L) := Qn(α, k, b, δ, L) :=


20

√
k

n
+ 20

√
b

n
+ 15

√
ln(4e

2

δ )

n
+ 1


α

+ (6L+ 18)
k

n
+ 8L

√
k

n
+ (2L+ 12)

b

n
+ 7L

√
b

n

+ (3L+ 10)
ln(4e

2

δ )

n
+ 6L

√
ln(4e

2

δ )

n
.

Then the function Q satisfies the following properties:

Q1. For any n ∈ N and δ ∈ (0, 1), with probability at least 1− δ over Sn ∼ µ̄n, for all α ∈ [0, L],
k ∈ [n], b ∈ N: If (S′

n, hS′
n
) is an (α, k, b)-semi-stable-compression of Sn, then

R(hS′
n
) ≤ Qn(α, k, b, δ, L).

Q2. For any fixed n ∈ N and δ ∈ (0, 1), Q is monotonically increasing in α and in k.

Q3′′. There is a sequence {δn}∞n=1, δn ∈ (0, 1) such that
∑∞

n=1 δn <∞, and for any kn ∈ o(n) we

have that

lim
n→∞

sup
α∈[0,L]

(Qn(α, kn, b, δn, L)− α) = 0.

Proof Let X be an instance space, and Y a label space with a loss function ℓ such that L := ‖Y‖ <
∞. Starting from Q1, let (S′

n, hS′
n
) be an (α, k, b)-semi-stable-compression of Sn. Thus,Q satisfies

property Q1 by Theorem 2.

Furthermore, property Q2 (monotonicity in α and in k) can also be easily verified from the

definition in (4.1).

To establish Q3′′, an inspection of Qn(α, kn, b, δn, L)−α shows that since kn ∈ o(n), only the

terms containing
ln( 4e

2

δn
)

n are not obviously decaying to zero. To ensure the latter, any choice of δn
with − log δn ∈ o(n) suffices. The additional constraint δn must satisfy is

∑∞
n=1 δn <∞; one such

choice δn = e−
√
n.

18



LEARNING WITH METRIC LOSSES

B.3. Proof of Lemma 4

Lemma Let µ̄ be a probability measure on X × Y with X -marginal µ, where X is a metric

probability space, and Y a countable label space with a loss function ℓ such that L := ‖Y‖ < ∞.

For any ν > 0, there exists a diameter β = β(ν) > 0 such that for any countable measurable

partition V = {V1, . . . } of X and any measurable set W ⊆ X satisfying

(i) µ(X \W ) ≤ ν

(ii) supV ∈V ‖V ∩W‖ ≤ β,

the true medoid predictor h∗V,W defined in (5.2) satisfies

R(h∗V,W ) ≤ R∗ + 9Lν.

Proof We begin similarly to the proof of Hanneke et al. (2021, Lemma 3.6). Let ηy : X → [0, 1] be

the conditional probability function for label y ∈ Y ,

ηy(x) = P(Y = y |X = x),

and let ζy : X → [0, L] be the expected loss function for the label y ∈ Y:

ζy(x) = E
µ̄
[ℓ(y, Y ) |X = x] =

∫

y′∈Y
ℓ(y, y′)ηy′(x)dµ

which is measurable by Schervish (1995, Corollary B.22).

Define η̃y : X → [0, 1] as ηy’s conditional expectation function with respect to (V ,W ): For x
such that IV(x) ∩W 6= ∅,

η̃y(x) = P(Y = y |X ∈ IV(x) ∩W ) =

∫
IV (x)∩W ηy(z) dµ(z)

µ(IV(x) ∩W )
.

Otherwise, if IV(x) ∩W = ∅, define η̃y(x) = 1[y is lexicographically first]. Note that (η̃y)y∈Y are

piecewise constant on the cells of the restricted partition V ∩W . Accordingly, define ζ̃y → [0, L]:

ζ̃y(x) = E
µ̄
[ℓ(y, Y ) |X ∈ IV(x) ∩W ] =

∑

y′∈Y
ℓ(y, y′)η̃y′(x).

In the proof of Hanneke et al., there is no appearance of ζy or ζ̃y; there, the much simpler conditional

error probabilities suffice. Note likewise that their local majority vote classifier has been replaced

here by the local medoid. By definition, the Bayes-optimal predictor h∗ and the true medoid pre-

dictor h∗V,W satisfy

h∗(x) = argmin
y∈Y

ζy(x),

h∗V,W (x) = argmin
y∈Y

ζ̃y(x).
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It follows that

E
µ̄

[
ℓ(h∗V,W (X), Y ) |X = x

]
− E

µ̄
[ℓ(h∗(X), Y ) |X = x]

= ζh∗

V,W (x)(x)− ζh∗(x)(x)

= ζh∗

V,W (x)(x)− ζ̃h∗

V,W (x)(x) + ζ̃h∗

V,W (x)(x)− ζ̃h∗(x)(x)

+ ζ̃h∗(x)(x)− ζh∗(x)(x)

≤ ζh∗

V,W (x)(x)− ζ̃h∗

V,W (x)(x) + ζ̃h∗(x)(x)− ζh∗(x)(x)

≤ 2 max
y′∈{h∗

V,W (x),h∗(x)}

∣∣∣ζy′(x)− ζ̃y′(x)
∣∣∣

= 2 max
y′∈{h∗

V,W
(x),h∗(x)}

∣∣∣∣∣∣
∑

y∈Y
ℓ(y′, y) (ηy(x)− η̃y(x))

∣∣∣∣∣∣

≤ 2L

∣∣∣∣∣∣
∑

y∈Y
(ηy(x)− η̃y(x))

∣∣∣∣∣∣

≤ 2L
∑

y∈Y
|ηy(x)− η̃y(x)| .

By condition (i) in the lemma statement, µ(X \W ) ≤ ν. Thus,

R(h∗V,W )−R∗ = E
µ̄

[
ℓ(h∗V,W (X), Y )

]
− E

µ̄
[ℓ(h∗(X), Y )]

=

∫

X\W

(
E
µ̄

[
ℓ(h∗V,W (X), Y ) |X = x

]
− E

µ̄
[ℓ(h∗(X), Y ) |X = x]

)
dµ(x)

+

∫

W

(
E
µ̄

[
ℓ(h∗V,W (X), Y ) |X = x

]
− E

µ̄
[ℓ(h∗(X), Y ) |X = x]

)
dµ(x)

≤ L · µ(X \W ) + 2L

∫

W

∑

y∈Y
|ηy(x)− η̃y(x)| dµ(x)

≤ Lν + 2L
∑

y∈Y

∫

W
|ηy(x)− η̃y(x)| dµ(x).

Let Yν ⊆ Y be a finite set of labels such that P[Y ∈ Yν ] ≥ 1− ν. Then

∑

y/∈Yν

∫

W
|ηy(x)− η̃y(x)| dµ(x) ≤

∑

y/∈Yν

∫

W
ηy(x)dµ(x)

=
∑

y/∈Yν

∫

W
Pµ̄(Y = y |X = x)dµ(x)

=
∑

y/∈Yν

Pµ̄(Y = y,X ∈W )

≤
∑

y/∈Yν

P(Y = y)

= P(y /∈ Yν) ≤ ν.
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We conclude:

R(h∗V,W )−R∗ ≤ 3Lν + 2L
∑

y∈Yν

∫

W
|ηy(x)− η̃y(x)|dµ(x). (B.1)

To bound the integrals in (B.1), we invoke a result from the proof of Lemma 3.6 in Hanneke et al.

(2021), which showed that

∑

y∈Yν

∫

W
|ηy(x)− η̃y(x)| dµ(x) ≤

∑

y∈Yν

3ν

|Yν |
= 3ν.

Applying this bound to (B.1), we conclude R(h∗V,W )−R∗ ≤ 9Lν.

B.4. Proof of Lemma 8

Lemma Let µ̄ be a probability measure on X × Y , where X is a metric probability space, and

Y a countable label space endowed with a loss function ℓ ≤ L < ∞. Let tγ as in Lemma 5. Then

there exist functions ε 7→ γ(ε) and ε 7→ γ := ν(ε) ∈ (0, ε
176L) such that for each ε, b > 0 there is

an N0(ν(ε), b, δn, tγ) such that for all n ≥ N0, and all d ∈ [tγ(n)],

pd := P

[
Qn(αn(γ),Mn(γ), b, δn, L) > R∗+ ε ∧ mmγ(Sn)≤

ε

18L
∧ Mn(γ)=d

]
≤ e−

nε2

32 + e−
1

2
nν2,

where Mn(γ) is defined in (6.2).

Proof We begin the proof similarly to Hanneke et al. (2021, Lemma 3.5) and then diverge in order

to extend their 0-1 loss to the general loss setting. Let i = i(γ) ∈ [n]d be the set of indices in the

net X = X(γ) selected by the algorithm. Let Y ∗ ∈ Yd be the true medoid labels with respect to

the restricted partition V(X) ∩ UB2γ(X),

(Y ∗)j = y∗(Vj ∩ UB2γ(X)), j ∈ [d]. (B.2)

We pair X with the labels Y ∗ to obtain the labeled set

Sn(i, ∗) := Sn(i,Y
∗) = (X,Y ∗) ∈ (X × Y)d. (B.3)

Note that conditioned on X , Sn(i, ∗) does not depend on the rest of Sn.

The induced 1-NN predictor hSn(i,∗)(x) can be expressed as h∗V,W (x) = y∗(IV(x) ∩W ) with

V = V(X) and W = UB2γ(X) (see (5.2) for the definition of h∗V,W ). We now show that

mmγ(Xn) ≤
ε

18L
=⇒ R(hSn(i,∗)) ≤ R∗ + ε/2, (B.4)

by showing that under the assumption mmγ(Xn) ≤ ε
18L , the conditions of Lemma 4 hold for V ,W

as defined above. To this end, we bound the diameter of the partition V ∩W = V ∩ UB2γ(X), and

the measure of the missing mass µ(X \W ) = mm2γ(X) under the assumption.

To bound the diameter of the partition V ∩ UB2γ(X), let x ∈ Vj ∩ UB2γ(X). Note that Vj is

the Voronoi cell centered at xij ∈ X . Then ρ(x, xij ) = mini∈i ρ(x, xi) and, since x ∈ UB2γ(X),
mini∈i ρ(x, xi) ≤ 2γ. Thus,

‖V ∩W‖ = max
j

‖Vj ∩ UB2γ(X)‖ ≤ 4γ.
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To bound mm2γ(X) under the assumption mmγ(Xn) ≤ ε
18L , observe that for all z ∈ UBγ(Xn),

there is some i ∈ [n] such that z ∈ Bγ(xi). For this i, there is some j ∈ i such that xi ∈
Bγ(xj), since X is a γ-net of Xn. Therefore z ∈ B2γ(xj). Thus, z ∈ UB2γ(X). It follows

that UBγ(Xn) ⊆ UB2γ(X), thus mm2γ(X) ≤ mmγ(Xn). Under the assumption, we thus have

mm2γ(X) ≤ ε
18L . Hence, by the choice of γ = γ(ε) in the statement of the lemma, Lemma 4

implies (B.4).

To boundQn(αn(γ),Mn(γ)), we consider the relationship between the hypothetical true medoid

predictor hSn(i,∗) and the actual predictor returned by the algorithm, hSn(i,Y
′). Firstly, for any

ν ∈ (0, 1), there exists a finite Y ′
ν ⊆ Y such that P [Y ∈ Y ′

ν ] ≥ 1 − ν. Therefore, since b is non-

decreasing in n, there exists an N1(ν) large enough such that for any n ≥ N1(ν) Y ′
ν ⊆ pref(Y, b).

Fix such a ν specifically such that ν < ε
176L . Thus we have that P [Y ∈ pref(Y, b)] ≥ 1− ν.

For brevity we denote

Qn(α, k) := Qn(α, k, b, δn, L).

Let us split our cases:

pd = P
[
Qn(αn(γ),Mn(γ)) > R∗ + ε ∧ mmγ(Xn) ≤

ε

18L
∧ Mn(γ) = d

∧ R̂(hSn(i,Y
′);Sn) ≤ R̂(hSn(i,∗);Sn) + 2νL

]
+

+ P
[
Qn(αn(γ),Mn(γ)) > R∗ + ε ∧ mmγ(Xn) ≤

ε

18L
∧ Mn(γ) = d

∧ R̂(hSn(i,Y
′);Sn) > R̂(hSn(i,∗);Sn) + 2νL

]

:= (pd)1 + (pd)2. (B.5)

Now, let Y∗ be the best medoids possible for the sample, from the entire label space Y:

R̂(hSn(i,Y∗);Sn) = min
Y∈Yd

R̂(hSn(i,Y);Sn).

This means:

R̂(hSn(i,Y∗);Sn) ≤ R̂(hSn(i,Y′);Sn) and R̂(hSn(i,Y∗);Sn) ≤ R̂(hSn(i,∗);Sn).

Specifically, we note that since

R̂(hSn(i,Y′);Sn) = min
Y∈pref(Y,bn)d

R̂(hSn(i,Y);Sn),

we have that

R̂(hSn(i,Y′);Sn)− R̂(hSn(i,Y∗);Sn) =
1

n

∑

(X,Y )∈Sn,Y /∈pref(Y,bn)

ℓ(hSn(i,Y′)(X), Y )− ℓ(hSn(i,Y∗)(X), Y )

≤ 1

n
L |{(X,Y ) ∈ Sn, Y /∈ pref(Y, bn)}|

⇒ E

[
R̂(hSn(i,Y′);Sn)− R̂(hSn(i,Y∗);Sn)

]
≤ 1

n
L · νn = νL.

Hence, we observe:

E

[
R̂(hSn(i,Y′);Sn)− R̂(hSn(i,Y∗);Sn)

]
≤ νL and E

[
R̂(hSn(i,Y∗);Sn)− R̂(hSn(i,∗);Sn)

]
≤ 0,
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whence

E

[
R̂(hSn(i,Y′);Sn)− R̂(hSn(i,∗);Sn)

]
≤ νL.

Next, Hoeffding’s inequality implies that for any t > 0:

P

(
R̂(hSn(i,Y′);Sn)− R̂(hSn(i,∗);Sn) > νL+ t

)
< exp

(
− nt2

2L2

)
.

Taking t = νL we get:

(pd)2 ≤ P

(
R̂(hSn(i,Y′);Sn)− R̂(hSn(i,∗);Sn) > 2νL

)
< exp

(
−1

2
nν2

)
.

Next, we examine the case R̂(hSn(i,Y′);Sn) − R̂(hSn(i,∗);Sn) ≤ 2νL, and use the monotonicity

Property Q2 of Q:

Qn(αn(γ),Mn(γ)) ≤ Qn

(
R̂(hSn(i,∗);Sn) + 2νL,Mn(γ)

)

≤ Qn

(
R̂(hSn(i,∗);Sn),Mn(γ)

)
+ 2νL


20

√
Mn(γ)

n
+ 20

√
b

n
+ 15

√
ln(4e

2

δn
)

n
+ 1




≤ Qn

(
R̂(hSn(i,∗);Sn),Mn(γ)

)
+ 2νL


21 + 20

√
b

n
+ 15

√
ln(4e

2

δn
)

n




:= Qn

(
R̂(hSn(i,∗);Sn),Mn(γ)

)
+ 2νL · Fn(b, δn).

Examining, Fn(b, δn) we note (as shown in the proof of Lemma 3) that for n sufficiently large

(larger than some N2(b, δn)), we have Fn(b, δn) ≤ 22. Thus,

Qn(αn(γ),Mn(γ)) ≤ Qn

(
R̂(hSn(i,∗);Sn),Mn(γ)

)
+ 44νL. (B.6)

Combining (B.4) and (B.6),

{
Qn(αn(γ),Mn(γ)) > R∗ + ε ∧ mmγ(Xn) ≤

ε

18L
∧ Mn(γ) = d

∧ R̂(hSn(i,Y
′);Sn) ≤ R̂(hSn(i,∗);Sn)

}

=⇒
{
Qn(R̂(hSn(i,∗);Sn), d) + 44νL > R(hSn(i,∗)) +

ε

2
∧ |i| = d

}
.

Thus, for all d ≤ tγ ,

(pd)1 ≤ P

[
Qn(R̂(hSn(i,∗);Sn), d) > R(hSn(i,∗)) +

ε

2
− 44νL ∧ |i| = d

]

≤ P

[
∃i ∈ [n]d : Qn(R̂(hSn(i,∗);Sn), d)

> R(hSn(i,∗)) +
ε

2
− 44νL

]
. (B.7)
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To bound the last expression, let i ∈ [n]d and denote

rd,n = sup
α∈(0,L)

(Qn(α, d)− α).

We therefore have

Qn(R̂(hSn(i,∗);Sn), d) ≤ R̂(hSn(i,∗);Sn) + rd,n.

Let i′ = {1, . . . , n} \ i and note that

R̂(hSn(i,∗);Sn) ≤
n− d

n
R̂(hSn(i,∗);Sn(i

′)) +
d

n
.

Combining the two inequalities above, we get

Qn(R̂(hSn(i,∗);Sn), d) ≤ R̂(hSn(i,∗);Sn(i
′)) +

d

n
+ rd,n.

Recalling tγ ∈ o(n), by Property Q3′′,

lim
n→∞

tγ
n

+ rtγ ,n = 0.

In addition, by Q2, we have rd,n ≤ rtγ ,n for all d ≤ tγ . Hence, using our ν < ε
176L , we take n

sufficiently large (larger than some N3(tγ)), so that for all d ≤ tγ ,

d

n
+ rd,n ≤ tγ

n
+ rtγ ,n ≤ ε

4
− 44νL,

and thus

Qn(R̂(hSn(i,∗);Sn), d) ≤ R̂(hSn(i,∗);Sn(i
′)) +

ε

4
− 44νL.

Therefore, for any n ≥ N0(ν, b, δn, tγ) := max{N1, N2, N3},

Qn(R̂(hSn(i,∗);Sn), d) > R(hSn(i,∗)) +
ε

2
− 44νL

=⇒ R̂(hSn(i,∗);Sn(i
′)) > R(hSn(i,∗)) +

ε

4
.

Now,

P

[
R̂(hSn(i,∗);Sn(i

′)) > R(hSn(i,∗)) +
ε

4

]
(B.8)

= E
Sn(i)

[
PSn(i′) |Sn(i)

[
R̂(hSn(i,∗);Sn(i

′)) > R(hSn(i,∗)) +
ε

4

]]
.

Since PSn(i′) |Sn(i) is a product distribution, by Hoeffding’s inequality we have that (B.8) is bounded

above by e−2(n−d)( ε
4
)2 . Since hSn(i,∗) is invariant to permutations of i’s entries, bounding (B.7) by

a union bound over i yields

(pd)1 ≤
(
n

d

)
e−2(n−d)( ε

4
)2 ≤ ed log(

en
d )−2(n−d)( ε

4
)2 ,

where we used
(
n
d

)
≤
(
en
d

)d
. Selecting n large enough so that for all d ≤ tγ we have d log(en/d) ≤

(n− d)( ε4)
2 and d ≤ n/4. Combining this with (B.7) proves the lemma.
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B.5. Proof of Lemma 5

Lemma Let (X , ρ, µ) be a separable metric probability space. For Sn ∼ µn, let X(γ) be

any γ-net of Sn. Then, for any γ > 0, there exists a function tγ : N → R+ in o(n) such that

P

[
sup

γ-nets X(γ)
|X(γ)| ≥ tγ(n)

]
≤ 1/n2.

Proof Almost identical to Hanneke et al. (2021, Lemma 3.7) — the former has a factor of 2 multi-

plying |X(γ)| — and hence omitted.

B.6. Proof of Theorem 10

Theorem Let (X , ρ) be a separable metric space, and Y a countable label space with a loss

function ℓ ≤ L < ∞. Then there is a choice of δn∈N and truncation schedule bn∈N such that the

sequence of hypotheses hn computed by MedNetℵ0

‖Y‖<∞(Sn, δn, bn) is strongly Bayes consistent:

P[limn→∞R(hn) = R∗] = 1.

Proof The claim will follow if we succeed in showing how the lemmas and theorems invoked in

proving Bayes consistency of MedNet|Y|<∞ (Theorem 9) are applicable in the present setting.

In Lemma 7, which established that the procedure is a semi-stable compression scheme a glob-

ally constant b = log2 |Y| was used. The claim remains perfectly true if the size of the label space

happens to depend on the sample size, which is precisely how the result is being invoked in the

present setting.

Next, we argue that the Qn bound in Lemma 3 remains valid for sufficiently slowly growing

bn, and our chosen rate of o(n) suffices. The remaining lemmas 4 and 8 can be used freely since

they allow for countable label spaces. Lemmas 5 and 6 likewise do not require any modifications.

Thus, we have shown how a straightforward modification of the proof of Theorem 9 also proves the

theorem in question.

B.7. Proof of Theorem 11

Theorem Let (X , ρ) and (Y, ℓ) be metric spaces, separable and countable, respectively, equipped

with a product distribution µ̄ such that BIE holds for Y . Then there is a choice of δn∈N and trunca-

tion schedules bn∈N,Ln∈N such that the sequence of hypotheses hn computed by MedNetℵ0(Sn, δn, bn, Ln)
is strongly Bayes consistent: P[ lim

n→∞
R(hn) = R∗] = 1.

Proof Let Q be the generalization bound as defined in Lemma 3, and set the input confidence δ for

input size n to δn as stipulated by Q3′′. Choose any bn ∈ o(n), andLn such thatL2
nkn, L

2
nbn, L

2
n ln(

4e2

δn
) ∈

o(n). Similarly, we choose kn ∈ o(n) arbitrarily (cf. Lemma 3). Given a sample Sn ∼ µ̄n, we

abbreviate the optimal empirical error Jα∗
nK = α(γ∗n) and the optimal compression size JM∗

nK =
M(γ∗n) as computed by Algorithm 1 on our truncated sample. Let JhnK be the output of MedNetℵ0 ,

Jf∗nK := argmin
f :X→Y∧Ln

R(f),
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be the Bayes-optimal predictor for the truncated label space and

JR∗
nK := R(Jf∗nK).

be the optimal risk in the truncated setting on our modified sample. For brevity we denote

Qn(α, k) := Qn(α, k, b, δn, Ln).

To prove Theorem 11, we first follow the standard technique, used also in Theorem 9, of decom-

posing the excess error over the Bayes error into two terms:

R(JhnK)− JR(f∗n)K =
(
R(JhnK)−Qn(α

∗
n,M

∗
n)
)
+
(
Qn(α

∗
n,M

∗
n)− JR(f∗n)K

)

=: TI(n) + TII(n).

We now show that each term decays to zero almost surely. Regarding, TI(n) we wish to invoke

Lemmas 7 and 3 as in the proof of Theorem 9. The argument of Lemma 7, which shows that

MedNetℵ0

‖Y‖<∞ is a semi-stable compression scheme, applies verbatim to MedNetℵ0 .

As for Lemma 3, properties Q1 and Q2 trivially continue to hold, while to ensure Q3′′, we

constrain the choice of the diameter truncation schedule Ln to satisfy L2
nkn, L

2
nbn, L

2
n ln(

4e2

δn
) ∈

o(n), where kn ∈ o(n) is as in Lemma 3. Having verified the applicability of Lemmas 7 and 3, we

invoke property Q1 from Lemma 3:

P[R(JhnK)−Qn(α
∗
n,M

∗
n) > 0] ≤ δn, n ≥ 1.

Since δn was chosen as furnished by Lemma 3(Q3′′), the Borel-Cantelli lemma implies that

lim supn→∞ TI(n) ≤ 0 with probability 1.

We now proceed to argue that the generalization bound Qn(α
∗
n,M

∗
n) approaches the truncated

optimal Bayes error JR∗
nK, which will establish lim supn→∞ TII(n) ≤ 0 almost surely. Since Lem-

mas 4, 8, 5 and 6 do not rely on Ln being fixed, the are applicable to our setting. Thus, the argument

from the proof of Theorem 9 applies here as well, and thus lim supn→∞ TII(n) ≤ 0 almost surely.

It follows that limn→∞R(JhnK)−JR∗
nK = 0. It remains to exploit the BIE property of Y and invoke

Theorem 19 to conclude that limn→∞JR(f∗n)K −R∗ = 0, whence

lim
n→∞

R(JhnK)−R∗ = 0.

Appendix C. Compression Scheme Theorems

In this section we introduce a series of new theorems regarding semi-stable compression schemes,

each leading to the next, culminating in Theorem 2 which is used to bound the generalization of

MedNet.

C.1. Definitions

C.2. Setting

Let X be an instance space, and Y of finite diameter, and µ̄ a distribution supported on the product

Borel σ-algebra of X × Y , such that Y is bounded by some L > 0: ∀y1, y2 ∈ Y : ℓ(y1, y2) ≤ L.
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C.3. Theorems & Lemmas

C.3.1. SEMI-STABLE AGNOSTIC SAMPLE COMPRESSION SCHEME OF GIVEN SIZE

Theorem 13 For any k, b ∈ N ∪ {0}, let (κ, ψ) be any semi-stable compression scheme of size at

most k using at most b bits of side-information. For any distribution µ̄ over X ×Y , any n ∈ N with

n > 2k, and any δ ∈ (0, 1), for Sn ∼ µ̄n, with probability at least 1− δ

∣∣∣R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn)
∣∣∣ ≤

√
4L2

n− 2k
(k ln(4) + ln(4/δ)) +

√
L2

n− 2k
b ln(2).

Proof If k = 0, the result trivially follows from Hoeffding’s inequality, so let us suppose k ≥ 1.

As in the proof of Theorem 5 in Bousquet et al. (2020), fix any Tn ∈ [n − 1] and let In be any

family of subsets of [n] with the properties that each I ∈ In has |I| ≤ n − Tn, and for every

i1, . . . , ik ∈ [n] there exists I ∈ In such that {i1, . . . , ik} ⊆ I . In particular, Bousquet et al.

construct a family In satisfying the properties above with Tn = k⌊ n
2k⌋, and with |In| =

(
2k
k

)
< 4k:

namely, let D1, . . . , D2k be any partition of [n] with each |Di| ∈ {⌊ n
2k⌋, ⌈ n

2k⌉)}, and define In =
{⋃{Dj : j ∈ J } : J ⊆ [2k], |J | = k}; that is, In contains all unions of exactly k of the 2k sets

Dj .

Let there be a sample Sn ∼ µ̄n. Recall our notation that for any I ∈ In we have S(I) ⊆ Sn.

For any I ∈ In, define Ī := [n] \ I . Let σ : [n] → [n] be a uniformly random permutation of [n],
and for any I = (i1, . . . , iℓ) ⊆ [n] define σ(I) := (σ(i1), . . . , σ(iℓ)).

Next, for any I ⊆ [n] and any b ∈ {0, 1}b, let ĥI,b := ψ (κcs (S (I)) , b). Now, since S(Ī) is

independent of S(I), Hoeffding’s Inequality (applied under the conditional distribution given S(I))
and the law of total probability imply that with probability 1− δ

2|In|·2b :

∣∣∣R
(
ĥI,b

)
− R̂

(
ĥI,b;S

(
Ī
))∣∣∣ ≤

√
L2 ln(4|In|·2

b

δ )

2(n− |I|)

=

√
L2 (ln(|In|) + b ln(2) + ln(4/δ))

2(n− |I|) .

Applying this under the conditional distribution given σ, together with the union bound and

the law of total probability, we have that with probability at least 1 − δ
2 , every I ∈ In and every

b ∈ {0, 1}b has

∣∣∣R
(
ĥσ−1(I),b

)
− R̂

(
ĥσ−1(I),b;S

(
σ−1 (I)

))∣∣∣ ≤
√
L2 (ln(|In|) + b ln(2) + ln(4/δ))

2(n− |I|) .

In particular, let i∗ be the indices such that

κcs(Sn) = {(Xi, Yi) ∈ Sn : i ∈ i∗} = Sn(i
∗).

Now, by property (ii) of In there must exist I∗ ∈ In such that

σ(i∗) ⊆ I∗,
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which means:

⇒ i∗ ⊆ σ−1(I∗)

⇒ κcs(Sn) = Sn(i
∗) ⊆ Sn(σ

−1(I∗)).

Due to the semi-stability property of (κ, ψ) and since Sn(σ
−1(I∗)) ⊆ Sn, this implies

⇒ ψ(κcs(Sn(σ
−1(I∗))), κsi(Sn)) = ψ(κcs(Sn), κsi(Sn)) = ψ(κ (Sn)).

Thus, on the above event of probability at least 1− δ
2 we get, for I = I∗ and b = κsi(Sn),

∣∣∣R(ψ(κ (Sn)))− R̂(ψ(κ (Sn));S(σ−1(I∗)))
∣∣∣ ≤

√
L2 (ln(|In|) + b ln(2) + ln(4/δ))

2(n− |I∗|) .

Furthermore, by property (i) of In we have that n− |I∗| ≥ Tn, and so

∣∣∣R(ψ(κ (Sn)))− R̂(ψ(κ (Sn));S(σ−1(I∗)))
∣∣∣ ≤

√
L2 (ln(|In|) + b ln(2) + ln(4/δ))

2Tn
. (C.1)

Next, we want to relate R̂(ψ(κ (Sn));S(σ−1(I∗))) to R̂(ψ(κ (Sn));Sn). Let ĥ := ψ(κ (Sn)).
For each i ∈ [n], let ℓi := ℓ(ĥ(Xi), Yi). For any I ∈ In, by Hoeffding’s inequality without replace-

ment (Bardenet and Maillard, 2015) applied under the conditional distribution given Sn, together

with the law of total probability, with probability at least 1− δ
2|In| it holds that

∣∣∣∣∣∣
1

n− |I|
∑

i∈σ−1(I)

ℓi − R̂(ψ(κ (Sn));Sn)

∣∣∣∣∣∣
≤
√
L2 ln(4|In|/δ)
2(n− |I|) .

By the union bound, this holds simultaneously for all I ∈ In with probability at least 1− δ
2 . In

particular, taking I = I∗, and recalling that n− |I∗| ≥ Tn, on this event we have that

∣∣∣R̂(ψ(κ (Sn));S(σ−1(I∗)))− R̂(ψ(κ (Sn));Sn)
∣∣∣ ≤

√
L2 ln(4|In|/δ)

2Tn
(C.2)

By the union bound, the above two events (each of probability at least 1 − δ
2 ) hold simultaneously

with probability at least 1− δ, in which case (C.1) and (C.2) together imply
∣∣∣R(ψ(κ (Sn)))− R̂(ψ(κ (Sn));Sn)

∣∣∣ ≤
∣∣∣R(ψ(κ (Sn)))− R̂(ψ(κ (Sn));S(σ−1(I∗)))

∣∣∣+

+
∣∣∣R̂(ψ(κ (Sn));S(σ−1(I∗)))− R̂(ψ(κ (Sn));Sn)

∣∣∣

≤
√
L2 (ln(|In|) + b ln(2) + ln(4/δ))

2Tn
+

√
L2 ln(4|In|/δ)

2Tn

≤
√

4L2 (ln(|In|) + ln(4/δ))

2Tn
+

√
L2b ln(2)

2Tn

The theorem now immediately follows from plugging the aforementioned family In from Bousquet et al.

(2020), having |In| =
(
2k
k

)
< 4k and Tn = k

⌊
n
2k

⌋
> n−2k

2 .

28



LEARNING WITH METRIC LOSSES

C.3.2. ACCOUNTING FOR REALIZABLE CASE

Lemma 14 Let Z1, . . . , Zn be i.i.d random variables with values in [0, L] for some L > 0, and let

δ > 0. Define Z̄ := 1
n

∑n
i=1 Zi. Then with probability at least 1− δ we have:

E[Z̄]− Z̄ ≤ Z̄ ·
√

2 ln(4/δ)

n− 1
+ L

√
2 ln(4/δ)

n− 1
+

7L ln(4/δ)

3(n− 1)
.

Proof Let Z ′
i :=

Zi

L ∈ [0, 1] for all i ∈ {1, . . . , n}. Using the empirical Bernstein inequality stated

in Maurer and Pontil (2009, Theorem 4), we get

E[Z̄ ′]− Z̄ ′ ≤

√
2V̂ar(Z′) ln(4/δ)

n
+

7 ln(4/δ)

3(n− 1)

⇒ E[Z̄]− Z̄ ≤ L

√
2V̂ar(Z) ln(4/δ)

L2n
+

7L ln(4/δ)

3(n− 1)
(C.3)

=

√
2V̂ar(Z) ln(4/δ)

n
+

7L ln(4/δ)

3(n− 1)
,

where V̂ar(Z) is defined to be:

V̂ar(Z) :=
1

n(n− 1)

∑

1≤i<j≤n

(Zi − Zj)
2.

Observe that

V̂ar(Z) =
1

n(n− 1)

∑

1≤i<j≤n

(Zi − Zj)
2

=
1

n(n− 1)
· n

n∑

i=1

(Zi − Z̄)2

=
1

n− 1

n∑

i=1

(Zi − Z̄)2

=
1

n− 1

(
n∑

i=1

Z2
i − 2Z̄

n∑

i=1

Zi + nZ̄2

)

=
1

n− 1

(
n∑

i=1

Z2
i − 2nZ̄2 + nZ̄2

)

=
1

n− 1

(
n∑

i=1

Z2
i − nZ̄2

)

≤ 1

n− 1

(
nL2 − nZ̄2

)

=
n

n− 1

(
L2 − Z̄2

)
.
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Now plugging this back into (C.3):

E[Z̄]− Z̄ ≤
√

2(L2 − Z̄2) ln(4/δ)

n− 1
+

7L ln(4/δ)

3(n− 1)

≤
√

2(L2 + Z̄2) ln(4/δ)

n− 1
+

7L ln(4/δ)

3(n− 1)

≤ Z̄

√
2 ln(4/δ)

n− 1
+ L

√
2 ln(4/δ)

n− 1
+

7L ln(4/δ)

3(n− 1)
,

where the last inequality used
√
x+ y ≤ √

x+
√
y for any x, y > 0.

Lemma 15 Let Sn = {(Xi, Yi)}ni=1 ∼ (X×Y)n be a given sample. Let ĥ : X → Y be a predictor,

and ℓ : Y ×Y → R
+ be a bounded loss function by some L > 0. Let I ⊆ [n] be a random variable

sampled without replacement from [n]. Then for any δ ∈ (0, 1), with confidence at least 1− δ:

∣∣∣∣∣
1

|I|
∑

i∈I
ℓ
(
ĥ(Xi), Yi

)
− R̂(ĥ;Sn)

∣∣∣∣∣ ≤ R̂(ĥ;Sn)

√
2 ln(2/δ)

|I| + L

√
2 ln(2/δ)

|I| +
2L ln(2/δ)

3|I| .

Proof Let ℓi := ℓ(ĥ(Xi), Yi) for i ∈ [n]. Treating ℓ1, . . . , ℓn as a given finite population, and

{ℓi}i∈I as a random sample drawn without replacement from it, we can use a version of Bernstein’s

inequality (Bardenet and Maillard, 2015),

P

(∣∣∣∣∣
1

|I|
∑

i∈I
ℓi − µ

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− |I|ε2
2σ2 + 2L

3 ε

)
ε > 0,

where we have defined:

µ :=
1

n

n∑

i=1

ℓi = R̂(ĥ;Sn) (population mean)

σ2 :=
1

n

n∑

i=1

(ℓi − µ)2 (population variance).

For any δ ∈ (0, 1), we get that with confidence at least 1− δ:

∣∣∣∣∣
1

|I|
∑

i∈I
ℓi − µ

∣∣∣∣∣ ≤
2L

3|I| ln(2/δ) +
√

2σ2 ln(2/δ)

|I| .

Now similarly to the analysis in the proof of Lemma 14, we see that

σ2 ≤ L2 + R̂2(ĥ;Sn)

using that and that
√
x+ y ≤ √

x+
√
y for any x, y > 0 we get the statement of the lemma.
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Theorem 16 For any k ∈ N, b ∈ N ∪ {0}, let (κ, ψ) be any semi-stable compression scheme of

size at most k using at most b bits of side-information. For any distribution µ̄ over X × Y , any

n ∈ N with n > 4k + 4, and any δ ∈ (0, 1), for Sn ∼ µ̄n, with probability at least 1− δ

R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn) ≤ R̂(ψ(κ(Sn));Sn)


5

√
8
(
ln(4δ ) + k ln 4

)

n
+ 4

√
8b ln 2

n




+ 2L

√
8
(
ln(4δ ) + k ln 4

)

n
+

(28 + 8L)
(
ln(4δ ) + k ln 4

)

3n

+ L

√
8b ln 2

n
+

28b ln 2

3n
.

Proof Similarly to Hanneke and Kontorovich (2021), this proof follows similar arguments as Theo-

rem 13, except using Lemma 14 in place of Hoeffding’s inequality in both places in the proof where

such inequalities are used.

Let In and Tn be as in the proof of Theorem 13, and let [n] = {1, . . . , n} for and n ∈ N.

Let there be a sample Sn = {(Xi, Yi)}ni=1 ∼ µ̄n. As in Theorem 13, for any I ∈ In we have

S(I) = {(Xi, Yi) : i ∈ I} ⊆ Sn, for any I ∈ In, define Ī := [n]\I . Let σ : [n] → [n] be a uniform

random permutation of [n], and for any I = (i1, . . . , iℓ) ⊆ [n] define σ(I) := (σ(i1), . . . , σ(iℓ)).
For any I ⊆ [n] and any b ∈ {0, 1}b, let ĥI,b := ψ (κcs (S (I)) , b). Now, since S(Ī) is

independent of S(I), Lemma 14 (applied under the conditional distribution given S(I)) and the law

of total probability imply that with probability 1− δ
2|In|·2b :

R
(
ĥI,b

)
− R̂

(
ĥI,b;S

(
Ī
))

≤ R̂
(
ĥI,b;S

(
Ī
))
√

2 ln(4|In|·2
b

δ )

n− |I| − 1

+ L

√
2 ln(4|In|·2

b

δ )

n− |I| − 1
+

7 ln(4|In|·2
b

δ )

3(n− |I| − 1)
.

Applying this under the conditional distribution given σ, together with the union bound and the law

of total probability, we have that with probability at least 1− δ
2 , every I ∈ In and every b ∈ {0, 1}b

has

R
(
ĥσ−1(I),b

)
− R̂

(
ĥσ−1(I),b;S

(
σ−1 (I)

))
≤ R̂

(
ĥσ−1(I),b;S

(
σ−1 (I)

))
√

2 ln(4|In|·2
b

δ )

n− |I| − 1

+ L

√
2 ln(4|In|·2

b

δ )

n− |I| − 1
+

7 ln(4|In|·2
b

δ )

3(n− |I| − 1)
.

In particular, let i∗ be the indices such that

κcs(Sn) = {(Xi, Yi) ∈ Sn : i ∈ i∗} = Sn(i
∗)

Now, by property (ii) of In there must exist I∗ ∈ In such that

σ(i∗) ⊆ I∗,
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which means:

⇒ i∗ ⊆ σ−1(I∗)

⇒ κcs(Sn) = Sn(i
∗) ⊆ Sn(σ

−1(I∗)).

Due to the semi-stability property of (κ, ψ) and since Sn(σ
−1(I∗)) ⊆ Sn, this implies

⇒ ψ(κcs(Sn(σ
−1(I∗))), κsi(Sn)) = ψ(κcs(Sn), κsi(Sn)) = ψ(κ (Sn)).

Thus, on the above event of probability at least 1− δ
2 we can get for I = I∗ and b = κsi(Sn),

R (ψ(κ (Sn)))− R̂
(
ψ(κ (Sn));S

(
σ−1 (I∗)

))
≤ R̂

(
ψ(κ (Sn));S

(
σ−1 (I∗)

))
√

2 ln(4|In|·2
b

δ )

n− |I∗| − 1

+ L

√
2 ln(4|In|·2

b

δ )

n− |I∗| − 1
+

7 ln(4|In|·2
b

δ )

3(n− |I∗| − 1)
.

Furthermore, by property (i) of In we have that n−|I∗| ≥ Tn, and that R̂
(
ψ(κ (Sn));S

(
σ−1 (I∗)

))
≤

n
Tn
R̂ (ψ(κ (Sn));Sn), so

R (ψ(κ (Sn)))− R̂
(
ψ(κ (Sn));S

(
σ−1 (I∗)

))
≤ n

Tn
R̂ (ψ(κ (Sn));Sn)

√
2 ln(4|In|·2

b

δ )

Tn − 1
(C.4)

+ L

√
2 ln(4|In|·2

b

δ )

Tn − 1
+

7 ln(4|In|·2
b

δ )

3(Tn − 1)
.

Now, given Sn, we define ℓi := ℓ(ψ(κ(Sn))(Xi), Yi) for i ∈ [n]. Now for any I ∈ In, under the

conditional distribution given Sn we apply Lemma 15 and see that with probability at least 1− δ
2|In| :

∣∣∣∣∣∣
1

n− |I|
∑

i∈σ−1(I)

ℓi − R̂(ψ(κ(Sn));Sn)

∣∣∣∣∣∣
≤ R̂(ψ(κ(Sn));Sn)

√
2 ln(4|In|/δ)
n− |I|

+ L

√
2 ln(4|In|/δ)
n− |I| +

2L ln(4|In|/δ)
3(n− |I|) .

By the union bound, this holds simultaneously for all I ∈ In with probability at least 1 − δ
2 . In

particular, taking I = I∗, and recalling that n− |I∗| ≥ Tn, on this event we have that

∣∣∣R̂(ψ(κ(Sn));S(σ−1 (I∗)))− R̂(ψ(κ(Sn));Sn)
∣∣∣ ≤ R̂(ψ(κ(Sn));Sn)

√
2 ln(4|In|/δ)

Tn
(C.5)

+ L

√
2 ln(4|In|/δ)

Tn
+

2L ln(4|In|/δ)
3Tn

.
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By the union bound, the two events represented by (C.4) and (C.5) hold simultaneously with prob-

ability at least 1− δ, in which case together we get:

R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn) ≤ R (ψ(κ (Sn)))− R̂
(
ψ(κ (Sn));S

(
σ−1 (I∗)

))

+
∣∣∣R̂(ψ(κ(Sn));S(σ−1 (I∗)))− R̂(ψ(κ(Sn));Sn)

∣∣∣

≤ R̂(ψ(κ(Sn));Sn)



(
1 +

n

Tn

)√
2 ln(4|In|δ )

Tn − 1
+

n

Tn

√
2b ln 2

Tn − 1




+ 2L

√
2 ln(4|In|δ )

Tn − 1
+

(7 + 2L) ln(4|In|δ )

3(Tn − 1)
+ L

√
2b ln 2

Tn − 1
+

7b ln 2

3(Tn − 1)
.

The theorem now follows from plugging the aforementioned family In from Bousquet et al. (2020),

with |In| =
(
2k
k

)
< 4k and Tn = k

⌊
n
2k

⌋
> n−2k

2 — with the modification thatsince n > 4k+4 we

have n−2k
2 − 1 > n

4 , meaning Tn > Tn − 1 > n
4 :

R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn) ≤ R̂(ψ(κ(Sn));Sn)


5

√
8
(
ln(4δ ) + k ln 4

)

n
+ 4

√
8b ln 2

n




+ 2L

√
8
(
ln(4δ ) + k ln 4

)

n
+

(28 + 8L)
(
ln(4δ ) + k ln 4

)

3n

+ L

√
8b ln 2

n
+

28b ln 2

3n
.

C.3.3. SEMI-STABLE COMPRESSION SCHEME OF BOUNDED SAMPLE-DEPENDENT SIZE

Theorem 17 Let (κ, ψ) be any semi-stable compression scheme with side-information. For any

distribution µ̄ over X × Y , any n ∈ N, and any δ ∈ (0, 1), for Sn ∼ µ̄n, with probability at least

1− δ, if |κcs(Sn)| < n
4 − 1 then

R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn) ≤ R̂(ψ(κ(Sn));Sn)

(
5

√
8Tκ,Sn

n
+ 4

√
8|κsi(Sn)| ln 2

n

)

+ 2L

√
8Tκ,Sn

n
+

(28 + 8L)Tκ,Sn

3n

+ L

√
8|κsi(Sn)| ln 2

n
+

28|κsi(Sn)| ln 2
3n

,

where

Tκ,Sn := ln

(
4(|κcs(Sn)|+ 1)(|κcs(Sn)|+ 2)(|κsi(Sn)|+ 1)(|κsi(Sn)|+ 2)

δ

)
+ |κcs(Sn)| ln 4.
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Proof

Let (κ, ψ) be any semi-stable compression scheme with side-information. Now for each k ∈
N ∪ {0} and b ∈ N ∪ {0}, let (κk,b, ψ) be a compression scheme such that, for any Sn ∼ µn,

if |κcs(S)| ≤ k and |κsi(S)| ≤ b, then κk,b(S) = κ(S), and otherwise (κcs)k,b(Sn) = ∅ and

(κsi)k,b(Sn) = ∅. In particular, note that |(κcs)k,b(S)| ≤ k and |(κsi)k,b(S)| ≤ b always. Thus, for

each k and b, Theorem 16 implies that for any n > 4k + 4

∣∣∣R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn)
∣∣∣ ≤ R̂(ψ(κ(Sn));Sn)

(
5

√
8tk,b
n

+ 4

√
8b ln 2

n

)

+ 2L

√
8tk,b
n

+
(28 + 8L)tk,b

3n

+ L

√
8b ln 2

n
+

28b ln 2

3n

holds with probability at least 1− δ
(k+1)(k+2)(b+1)(b+2) , where

tk,b := ln

(
4(k + 1)(k + 2)(b+ 1)(b+ 2)

δ

)
+ k ln 4.

By the union bound, the above claim holds simultaneously for all k ∈ N∪ {0} and b ∈ N∪ {0}
with probability at least 1−∑k,b

δ
(k+1)(k+2)(b+1)(b+2) = 1− δ. Finally, note that there necessarily

exists some k ∈ N ∪ {0} and b ∈ N ∪ {0} for which |κcs(S)| = k and |κsi(S)| = b, in which case

ψ(κ(S)) = ψ(κk,b(S)) for these k and b. This completes the proof.

C.3.4. SEMI-STABLE COMPRESSION SCHEME OF ANY SAMPLE-DEPENDENT SIZE

Theorem 2. Suppose that X is an instance space and Y a label space with a loss function

ℓ : Y × Y → [0, L], and (κ, ψ) is semi-stable compression scheme. For any distribution µ̄ over

X × Y , any n ∈ N, and any δ ∈ (0, 1), for Sn ∼ µ̄n we have that

R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn) ≤


20

√
|κcs(Sn)|

n
+ 20

√
|κsi(Sn)|

n
+ 15

√
ln(4e

2

δ )

n


 R̂(ψ(κ(Sn));Sn)

+ (6L+ 18)
|κcs(Sn)|

n
+ 8L

√
|κcs(Sn)|

n
+ (2L+ 12)

|κsi(Sn)|
n

+ 7L

√
|κsi(Sn)|

n
+ (3L+ 10)

ln(4e
2

δ )

n
+ 6L

√
ln(4e

2

δ )

n

holds with probability at least 1− δ.
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Proof Let (κ, ψ) be any semi-stable compression scheme with side-information. We will observe

the RHS of Theorem 17. Since ln(x2) < x
2 for any x ≥

√
3, firstly we have:

Tκ,Sn := ln

(
4(|κcs(Sn)|+ 1)(|κcs(Sn)|+ 2)(|κsi(Sn)|+ 1)(|κsi(Sn)|+ 2)

δ

)
+ |κcs(Sn)| ln 4

≤ ln(
4

δ
) + |κcs(Sn)| ln 4 +

|κcs(Sn)|+ 2

2
+

|κsi(Sn)|+ 2

2

= |κcs(Sn)| ln(4
√
e) +

1

2
|κsi(Sn)|+ ln(

4e2

δ
)

Next, let us abbreviate the right-hand side of the bound in Theorem 17:

R̂(ψ(κ(Sn));Sn)

(
5

√
8Tκ,Sn

n
+ 4

√
8|κsi(Sn)| ln 2

n

)
+ 2L

√
8Tκ,Sn

n
+

(28 + 8L)Tκ,Sn

3n

+L

√
8|κsi(Sn)| ln 2

n
+

28|κsi(Sn)| ln 2
3n

:= AIR̂(ψ(κ(Sn));Sn) +AII,

AI := 5

√
8Tκ,Sn

n
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√
8|κsi(Sn)| ln 2

n

≤ 5

√
8(|κcs(Sn)| ln(4

√
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2 |κsi(Sn)|+ ln(4e
2

δ ))

n
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√
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√
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√
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√
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δ )
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√
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n
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|κsi(Sn)|

n
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√
ln(4e

2

δ )

n

:= BI,

35



TSIR COHEN KONTOROVICH

AII := 2L
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√
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+
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√
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14 + 4L+ 28 ln 2
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3
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n
+ 2

√
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√
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≤ (6L+ 18)
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n
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:= BII.

Let µ̄ be any distribution over X × Y , and let n ∈ N, and δ ∈ (0, 1). From Theorem 17 we know

that for Sn ∼ µ̄n, with probability at least 1− δ, if |κcs(Sn)| < n
4 − 1 then

R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn) ≤ AIR̂(ψ(κ(Sn));Sn) +AII (C.6)

≤ BIR̂(ψ(κ(Sn));Sn) +BII.
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Now, for BI we note that even if |κcs(Sn)| ≥ n
4 − 1 we have:

BI := 20
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n
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ln(4e
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n
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and for BII, we observe firstly that if n ≤ 4:
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and now even if n ≥ 5 and |κcs(Sn)| ≥ n
4 − 1:

BII :=
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Thus, even if |κcs(Sn)| ≥ n
4 − 1, we have

BIR̂(ψ(κ(Sn));Sn) +BII ≥ L− R̂(ψ(κ(Sn));Sn) (C.7)

≥ R(ψ(κ(Sn)))− R̂(ψ(κ(Sn));Sn).
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Finally, the theorem follows from (C.6) and (C.7).

Appendix D. Diameter-truncating BIE Y
Recall the bounded-in-expectation (BIE) condition: E(X,Y )∼µ̄ ℓ(y0, Y ) < ∞ for some y0 ∈ Y .

Under BIE, the trivial f0(x) ≡ y0 achieves R(f0) <∞, and a fortiori, R∗ = inff R(f) <∞.

Lemma 18 If there exists some y0 ∈ Y for which E(X,Y )∼µ̄ ℓ(y0, Y ) < ∞, then this holds for all

y ∈ Y .

Proof Suppose that E(X,Y )∼µ̄ ℓ(y0, Y ) <∞ for some y0 ∈ Y . Then, by the triangle inequality, for

any other y′ ∈ Y , we have

E
(X,Y )∼µ̄

ℓ(y′, Y ) ≤ E
(X,Y )∼µ̄

[ℓ(y′, y0) + ℓ(y0, Y )] = ℓ(y′, y0) + E
(X,Y )∼µ̄

ℓ(y0, Y ) <∞.

Thus, the choice of y0 ∈ Y is immaterial; let us fix one such element once and for all. For any

sequence Ln ↑ ∞, let JYKn := B(y0, Ln) denote the “Ln-truncated” space.

We observe that

f∗(x) := argmin
y′∈Y

E[ℓ(y
′, Y ) |X = x]

(where ties in Y are broken lexicographically) achieves R(f∗) = R∗, since it is a pointwise mini-

mizer of the non-negative risk integrand. Let us also define a truncated version:

f∗n(x) := argmin
ŷ∈JYKn

E[ℓ(ŷ, Y ) |X = x].

Since y0 ∈ JYKn, we have that

gn(x) := E[ℓ(f
∗
n(x), Y |X = x)] ≤ E[ℓ(y0, Y |X = x)] =: h(x).

While one or both of gn, h may be infinite for some x, BIE implies that h is integrable. Next, we

claim that

lim
n→∞

gn(x) = g(x) := E[ℓ(f
∗(x), Y |X = x)], x ∈ X .

Indeed, this follows from a stronger property: there is a function N : X → N such that f∗n(x) =
f∗(x) for all x and all n ≥ N(x); this is immediate by construction and because Ln ↑ ∞. Applying

Lebesgue’s Dominated Convergence Theorem to the sequence gn ≤ h yields

Theorem 19 If Y is BIE, f∗ is a Bayes-optimal predictor and f∗n is its truncation as defined above,

then

lim
n→∞

R(f∗n) = R(f∗) = R∗.
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Appendix E. Discretizing separable (Y , ℓ)

For any separable (Y, ℓ) and ε > 0, any ε-net Yε ⊆ Y is always countable. Define πε(y) as the

closest element to y in Yε, breaking ties lexicographically. Then the Voronoi cell V (y) about each

y ∈ Yε is given by V (y) = {y′ ∈ Y : πε(y
′) = y}. Any probability measure µ̄ on the product Borel

σ-algebra on X × Y induces the product measure µ̄ε on X × Yε as follows. By Pollard (2002,

Appendix F, Theorem 1), the measure µ̄ admits the disintegration intro µY ⊗ Λ, where µY is the

Y-marginal of µ̄ and Λ(y,E) = P(X,Y )∼µ̄(X ∈ E |Y = y) is the conditional kernel. Define the

measure µYε on Yε by µYε (y) = µY(V (y)) and the product measure µ̄ε = µYε ⊗ Λ on X × Yε. Let

R∗, R∗
ε be the Bayes-optimal risk under µ̄ and µ̄ε, respectively.

Theorem 20

lim
ε→0

R∗
ε = R∗.

Proof Appealing to a standard truncation argument, we assume without loss of generality thatR∗ <
∞. The product metric ρ⊕ ℓ on Z = X × Y , given by ρ⊕ ℓ((x, y), (x′, y′)) = ρ(x, x′) + ℓ(y, y′)
renders (Z, ρ⊕ ℓ, µ̄) and (Zε, ρ⊕ ℓ, µ̄ε) metric probability spaces. Let h∗ : X → Y be the Bayes-

optimal predictor for (Z, ρ⊕ ℓ, µ̄), and define f∗ : X × Y → R by f∗(x, y) = ℓ(h∗(x), y). Then

R∗ =
∫

X×Y
f∗(x, y)dµ̄(x, y).

Since we assumed R∗ <∞, we have that f∗ ∈ L1(µ̄) and hence, by Hanneke et al. (2021, Lemma

A.1) f∗ may be approximated in L1 by Lipschitz functions: for all η > 0, there is a ∆ < ∞ and a

∆-Lipschitz f̃ : X × Y → R such that
∫
X×Y |f∗(x, y) − f̃(x, y)|dµ̄(x, y) < η. Thus, there is no

loss of generality in assuming f∗ to be ∆-Lipschitz:

|f∗(x, y)− f∗(x′, y′)| ≤ ∆(ρ(x, x′) + ℓ(y, y′)).

Define the natural projection of h ∈ YX onto hε ∈ Yε, via hε(x) := πε(h(x)). Then by the

Lipschitz property, |R(hε)−R(h)| ≤ ∆ε.
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