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Abstract

We study the group testing problem where the goal is to identify a set of & infected individuals
carrying a rare disease within a population of size n, based on the outcomes of pooled tests which
return positive whenever there is at least one infected individual in the tested group. We consider
two different simple random procedures for assigning individuals to tests: the constant-column
design and Bernoulli design.

Our first set of results concerns the fundamental stzatistical limits. For the constant-column
design, we give a new information-theoretic lower bound which implies that the proportion of
correctly identifiable infected individuals undergoes a sharp “all-or-nothing” phase transition when
the number of tests crosses a particular threshold. For the Bernoulli design, we determine the
precise number of tests required to solve the associated detection problem (where the goal is to
distinguish between a group testing instance and pure noise), improving both the upper and lower
bounds of Truong, Aldridge, and Scarlett (2020).

For both group testing models, we also study the power of computationally efficient (polynomial-
time) inference procedures. We determine the precise number of tests required for the class of
low-degree polynomial algorithms to solve the detection problem. This provides evidence for an
inherent computational-statistical gap in both the detection and recovery problems at small sparsity
levels. Notably, our evidence is contrary to that of Iliopoulos and Zadik (2021), who predicted the
absence of a computational-statistical gap in the Bernoulli design. '

Keywords: Group testing, all-or-nothing phenomenon, low-degree likelihood ratio, computational-
statistical gap

1. Introduction

Motivated by the ongoing COVID-19 pandemic (Mutesa et al., 2021; McMahan et al., 2012) but
also a growing algorithmic and information-theoretic literature (Aldridge et al., 2019), in this work
we focus on the group (or pooled) testing model. Introduced by Dorfman (1943), group testing is
concerned with finding a subset of & individuals carrying a rare disease within a population of size
n. One is equipped with a procedure that allows for testing groups of individuals such that a test
returns positive if (and only if) at least one infected individual is contained in the tested group. The
ultimate goal is to find a pooling procedure and an (efficient) algorithm such that inference of the

1. Full version appears as [arXiv 2206.07640, v1].
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infection status of all individuals is conducted with as few tests as possible. Furthermore, group
testing has found its way into various real-world applications such as DNA sequencing (Kwang-
Ming and Ding-Zhu, 2006; Ngo and Du, 2000), protein interaction experiments (Mourad et al.,
2013; Thierry-Mieg, 2006) and machine learning (Emad et al., 2015).

As carrying out a test is often time-consuming, many real-world applications call for fast iden-
tification schemes. As a consequence, recent research focuses on non-adaptive pooling schemes,
i.e., all tests are conducted in parallel (Aldridge, 2019; Coja-Oghlan et al., 2020a,b; Iliopoulos and
Zadik, 2021; Scarlett and Cevher, 2016). On top of this, naturally the testing scheme is required to
be simple as well. Two of the most well-established and simple non-adaptive group testing designs
are the Bernoulli design and the constant-column design (for a survey, see Aldridge et al. (2019)).
The Bernoulli design is a randomised pooling scheme under which each individual participates in
each test with a fixed probability ¢ independently of everything else (Scarlett and Cevher, 2016).
In the constant-column design (Aldridge et al., 2016; Coja-Oghlan et al., 2020a), each individual
independently chooses a fixed number A of tests uniformly at random. We remark that the spatially
coupled design of Coja-Oghlan et al. (2020b) may be an attractive choice in practice because it ad-
mits information-theoretically optimal inference with a computationally efficient algorithm. In this
paper our focus will be on the two simpler designs (Bernoulli and constant-column), which may be
favorable due to simplicity and also serve as a testbed for studying computational-statistical gaps.

In this work, we take the number of infected individuals to scale sublinearly in the population
size, that is k = n+t°() for a fixed constant § € (0,1). This regime is mathematically interesting
and is also the one most suitable for modelling the early stages of an epidemic in the context of
medical testing (Wang et al., 2011). In the two group testing models, we study two different infer-
ence tasks (defined formally in Section 2.1): (a) approximate recovery, where the goal is to achieve
almost perfect correlation with the set of infected individuals, and (b) weak recovery, where the goal
is to achieve positive correlation with the set of infected individuals. The task of exact recovery has
also been studied (see Coja-Oghlan et al. (2020a)) but will not be our focus here.

Recently, there has been substantial work on the information-theoretic limits of group testing
(Aldridge et al., 2014; Chan et al., 2011; Coja-Oghlan et al., 2020a,b; Truong et al., 2020). An inter-
esting recent discovery is that for the Bernoulli group testing model there exists a critical threshold
Mint := (In2) "'k In(n/k) such that when the number of tests m satisfies m > (1 + &)myys for any
fixed € > 0 there is a (brute-force) algorithm that can approximately recover the infected individu-
als, but when m < (1 — €)mjy¢ no algorithm (efficient or not) can even weakly recover the infected
individuals. This sharp phase transition, known as the All-or-Nothing (AoN) phenomenon, was first
proven by Truong et al. (2020) for @ = 0 (that is, & = n°(!)) and then proven for all § € [0,1) by
Niles-Weed and Zadik (2021). This sharp phenomenon has been established recently in many other
sparse Generalized Linear Models (GLMs), starting with sparse regression (Reeves et al., 2019b).
Our first main result (Theorem 1) establishes the AoN phenomenon in the constant-column group
testing model for any 6 € (0, 1), occurring at the same information-theoretic threshold miy, as in
the Bernoulli model. To our knowledge, this is the first instance where AoN has been established
for a GLM where the samples (tests) are not independent (see Section 1.1 for further discussion).

An emerging but less understood direction is to study the algorithmic thresholds of the group
testing models. In both group testing models, the best known polynomial-time algorithm achieves
approximate recovery only under the statistically suboptimal condition m > (1 + &)may, Where
Malg = (In 2)*1minf. For the constant-column design, the algorithm achieving this is Combina-
torial Orthogonal Matching Pursuit (COMP) (Chan et al., 2011, 2014), which simply outputs all
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individuals who participate in no negative tests. For the Bernoulli design, the algorithm achiev-
ing Mg is called Separate Decoding (Scarlett and Cevher, 2018), which outputs all individuals
who participate in no negative tests and “sufficiently many” positive tests (above some threshold).
These results raise the question of whether better algorithms exist, or whether there is an inherent
computational-statistical gap. Starting from the seminal work of Berthet and Rigollet (2013), con-
jectured gaps between the power of all estimators and the power of all polynomial-time algorithms
have appeared recently throughout many high-dimensional statistical inference problems. While we
do not currently have tools to prove complexity-theoretic hardness of statistical problems, there are
various forms of “rigorous evidence” for hardness that can be used to justify these computational-
statistical gaps, including average-case reductions (see e.g. Brennan and Bresler (2020)), sum-of-
squares lower bounds (see e.g. Raghavendra et al. (2018)), and others.

In the Bernoulli group testing model, the recent work of Iliopoulos and Zadik (2021) suggested
(but did not prove) that a polynomial-time Markov Chain Monte Carlo (MCMC) method can achieve
approximate recovery all the way down to the information-theoretic threshold (that is, using only
minf tests). The evidence for this is based on first moment Overlap Gap Property calculations and
numerical simulations. The Overlap Gap Property is a landscape property originating in spin glass
theory, which has been repeatedly used in inference to offer evidence for the performance of local
search and MCMC methods, as initiated by Gamarnik and Zadik (2017). A significant motivation
for the present work is to gain further insight into the existence or not of such a computational-
statistical gap for both the constant-column and Bernoulli designs. Our approach is based on the
well-studied low-degree likelihood ratio (discussed further in Section 2.2), which is another frame-
work for understanding computational-statistical gaps.

In line with most existing results using the low-degree framework, we consider a detection (or
hypothesis testing) formulation of the problem. In our case, this amounts to the task of deciding
whether a given group testing instance was actually drawn from the group testing model with &
infected individuals, or whether it was drawn from an appropriate “null” model where the test
outcomes are random coin flips (containing no information about the infected individuals). Our
second set of results is that for both the constant-column and Bernoulli designs, we pinpoint the
precise low-degree detection threshold myp = mpp(k,n) (which is different for the two designs)
in the following sense: when the number of tests exceeds this threshold, there is a polynomial-time
algorithm that provably achieves strong detection (that is, testing with o(1) error probability); on
the other hand, if the number of tests lies below the threshold, all low-degree algorithms provably
fail to separate the two distributions (as defined in Section 2.2). This class of low-degree algorithms
captures the best known poly-time algorithms for many high-dimensional testing tasks (including
those studied in this paper), and so our result suggests inherent computational hardness of detection
below the threshold mp. For the exact thresholds, see Theorem 2 for the constant-column design
and Theorem 3 for Bernoulli design.

Since approximate recovery is a harder problem than detection our results also suggest that
approximate recovery is computationally hard below my,p. Since m1p exceeds m;y,s for sufficiently
small 4 (see Figure 2), this suggests the presence of a computational-statistical gap for the recovery
problem (in both group testing models). Notably, our evidence is contrary to that of Iliopoulos
and Zadik (2021), who suggested the absence of a comp-stat gap in the Bernoulli model for all
6 € (0,1)!
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Finally, our third set of results is to identify the precise statistical (information-theoretic) thresh-
old for detection in the Bernoulli design (commonly referred to in the statistics literature as the
detection boundary); see Theorem 4. Our main results are summarized in Figure 2.

1.1. Relation to Prior Work

Detection in the Bernoulli design To our knowledge, the only existing work on the detection
boundary in group testing is Truong et al. (2020), which focused on the Bernoulli design. They
gave a detection algorithm and an information-theoretic lower bound which did not match. In this
work we pinpoint the precise information-theoretic detection boundary by improving both, the upper
and lower bound (Theorem 4). The new algorithm involves counting the number of individuals who
participate in no negative tests and “sufficiently many” positive tests (above some carefully chosen
threshold). The lower bound of Truong et al. (2020) is based on a second moment calculation, and
our improved lower bound uses a conditional second moment calculation (which conditions away a
rare “bad” event).

Strictly speaking, our detection problem differs from the one studied by Truong et al. (2020)
because our detection problem takes place on “pre-processed” graphs where the negative tests have
been removed, but our results can be transferred to their setting.

All-or-Nothing phenomenon The All-or-Nothing (AoN) phenomenon was originally proven in
the context of sparse regression with an i.i.d. Gaussian measurement matrix (Gamarnik and Zadik,
2017; Reeves et al., 2019a,b), and was later established for (a) various other Generalized Linear
Models (GLMs) such as Bernoulli group testing (Niles-Weed and Zadik, 2021; Truong et al., 2020)
and the Gaussian Perceptron (Luneau et al., 2020; Niles-Weed and Zadik, 2021), (b) variants of
sparse principal component analysis (Barbier et al., 2020; Niles-Weed and Zadik, 2020), and (c)
graph matching models (Wu et al., 2021). In all of the GLM cases, a key assumption behind all
such proofs is that the samples (or tests in the case of Bernoulli group testing) are independent. This
sample independence gives rise to properties similar to the -MMSE formula (Guo et al., 2005),
which can then be used to establish the AoN phenomenon by simply bounding the KL divergence
between the planted model and an appropriate null model.

In the present work, we establish AoN for the constant-column group testing model which is
a GLM where the samples (tests) are dependent. Despite this barrier, we manage to prove this
result by following a more involved but direct argument, which employs a careful second moment
argument alongside a technique from the study of random CSPs known as the “planting trick”
originally used in the context of random k-SAT (Achlioptas and Coja-Oghlan, 2008).

Low-degree lower bounds Starting from the work of Barak et al. (2019); Hopkins (2018); Hop-
kins et al. (2017); Hopkins and Steurer (2017), lower bounds against the class of “low-degree poly-
nomial algorithms” (defined in Section 2.2) are a common form of concrete evidence for compu-
tational hardness of statistical problems (see Kunisky et al. (2019) for a survey). In this paper we
apply this framework to the detection problems in both group testing models, with a few key dif-
ferences from prior work. For the Bernoulli design, the standard tool—the low-degree likelihood
ratio—does not suffice to establish sharp low-degree lower bounds, and we instead need a condi-
tional variant of this argument that conditions away a rare “bad” event. Along with the concurrent
work of Bandeira et al. (2022), this is (to our knowledge) the first setting where a conditional low-
degree argument has been needed. Our result for the constant-column design is (to our knowledge)



STATISTICAL AND COMPUTATIONAL PHASE TRANSITIONS IN GROUP TESTING

the first example of a low-degree lower bound where the null distribution does not have independent
coordinates. For both group testing models, the key insight to make these calculations tractable is a
“low-overlap second moment calculation.”

Comparison with Iliopoulos and Zadik (2021) Perhaps the most relevant work, in terms of
studying the computational complexity of group testing, is the recent work of Iliopoulos and Zadik
(2021) which focuses on the Bernoulli design. The authors provide simulations and first-moment
Overlap Gap Property (OGP) evidence that a polynomial-time “local” MCMC method can approxi-
mately recover the infected individuals for any statistically possible number of tests m > (14+&)min¢
and any 6 € (0, 1). However, proving this remains open.

However, our present work shows that at least when 6 > 0 is small enough, no low-degree
polynomial algorithm can even solve the easier detection task for some number of tests strictly
above mi,¢. Given the low-degree framework’s track record of capturing the best known algorithmic
thresholds for a wide variety of statistical problems, this casts some doubts on the prediction of
[liopoulos and Zadik (2021). However, our results do not formally imply failure of the MCMC
method (which is not a low-degree algorithm). Our results “raise the stakes” for proving statistical
optimality of the MCMC method, as this would be a significant counterexample to optimality of
low-degree algorithms for statistical problems.

Notation

We will consider the limit n — oco. Some parameters (e.g. 6, ¢) will be designated as “constants”
(fixed, not depending on n) while others (e.g. k) will be assumed to scale with n in a prescribed
way. Asymptotic notation o(-), O(-),w(-), £2(-) pertains to this limit (unless stated otherwise), i.e.,
this notation may hide factors depending on constants such as 6, c. An event is said to occur with
high probability (w.h.p.) if it has probability 1 — o(1).

2. Getting Started
2.1. Group Testing Setup and Objectives
We will consider two different group testing models. The following basic setup pertains to both.

Group testing We first fix two constants # € (0,1) and ¢ > 0. A group testing instance is
generated as follows. There are n individuals z1, ..., z, out of which exactly &k = nfto) are
infected. There are m = (¢ + o(1))kIn(n/k) tests aq, . . ., an,.

For each test, a particular subset of the individuals is chosen to participate in that test, according
to one of the two designs (constant-column or Bernoulli) described below. The assignment of
individuals to tests can be expressed by a bipartite graph (see Figure 1). The ground-truth o <
{0,1}" is drawn uniformly at random among all vectors of length n and Hamming weight k. We
say individual x; is infected if and only if o; = 1. We denote the sequence of test results by
o € {0,1}™, where 6;,i € [m] is equal to one if and only if the i-th test contains at least one
infected individual.

We consider two different schemes for assigning individuals to tests, which are defined below.
Constant-column design In the constant column weight design (also called the random regular

design), every individual participates in exactly A = (¢ + o(1))In(2) In(n/k) tests, chosen uni-
formly at random.
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Bernoulli design In the Bernoulli design, every individual participates in each test independently
with probability q := v/k where v = In2 + o(1) is the solution to (1 — v/k)* = 1/2 so that each
test is positive with probability exactly 1/2.

We remark that the parameter v (in the Bernoulli design) and the constant In(2) in the definition of
A (in the constant-column design) could have been treated as free tuning parameters. To simplify
matters, we have chosen to fix these values so that roughly half the tests are positive (maximizing
the “information content” per test), but we expect our results could be readily generalized.

We will be interested in the task of recovering the ground truth o. Two different notions of
success are considered, as defined below.

Approximate recovery An algorithm is said to achieve approximate recovery if, given input
(Ggr, 6, k), it outputs a binary vector T € {0, 1}" with the following guarantee: with probability
1—o(1), =% =1 — o(1).

> Illzllellz

Equivalently, approx recovery means the number of false positive and false negatives are both o(k).

Weak recovery An algorithm is said to achieve weak recovery if, given input (Ggr, o, k), it
outputs a binary vector 7 € {0,1}" with the following guarantee: with probability 1 — o(1),
el — (1),

[Ill2llofl2

Pre-processing via COMP Note that in both models we can immediately classify any individual
who participates in a negative test as uninfected. Therefore, the first step in any recovery algorithm
should be to pre-process the graph by removing all negative tests and their adjacent individuals.
(We sometimes refer to this pre-processing step as COMP because it is the main step of the COMP
algorithm of Chan et al. (2011, 2014), which simply performs this pre-processing step and then
reports all remaining individuals as infected.) The resulting graph is denoted G, (see Figure 1).
We let N denote the number of remaining individuals and let M denote the number of remaining
tests. We use o’ € {0,1}* to denote the indicator vector for the infected individuals. Note that
after pre-processing, all remaining tests are positive and so & can be discarded.

Iy ) T2 Iy ) T2

a az as a4 a az as a4

Figure 1: The bipartite factor graph representing a group testing instance. Circles represent individuals
while squares represent tests. The colour of circle/square indicates infected / positive in red and
uninfected / negative in blue. The left figure shows an instance of G while the right figure
shows the corresponding instance of G’ where individuals in negative tests have already been
classified and removed.

In addition to recovery, we will also consider an easier hypothesis testing task. Here the goal
is to distinguish between a (“planted”) group testing instance and an unstructured (“null”) instance.
We now define this testing model for both group testing designs. The input is an (N, M )-bipartite
graph, representing a group testing instance that has already been pre-processed as described above.
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Constant-column design (testing) Let N = N,, and M = M,, scale as N = n !~ (1=0)c(In2)?+o(1)

and M = (¢/2+o0(1))kIn(n/k); this choice is justified below. Consider the following distributions
over (N, M)-bipartite graphs (encoding adjacency between N individuals and M tests).

* Under the null distribution Q, each of the N individuals participates in exactly A (defined
above) tests, chosen uniformly at random.

» Under the planted distribution [P, a set of k infected individuals out of N is chosen uniformly
at random. Then a graph is drawn from QQ conditioned on having at least one infected indi-
vidual in every test.

Bernoulli design (testing) Let N = N, and M = M, scale as N = n!~(1-0)3n2+0(1) 4pq
M = (¢/2 + o(1))kIn(n/k); this choice is justified below. Consider the following distributions
over (N, M)-bipartite graphs (encoding adjacency between N individuals and M tests).

* Under the null distribution QQ, each of the NV individuals participates in each of the M tests
with probability ¢ (defined above) independently.

* Under the planted distribution PP, a set of k infected individuals out of N is chosen uniformly
at random. Then a graph is drawn from Q conditioned on having at least one infected indi-
vidual in every test.

Note that in the pre-processed group testing graph G, the dimensions N, M are random variables.
For the testing problems above, we will instead think of IV, M as deterministic functions of n, which
are allowed to vary arbitrarily within some range (due to the o(1) terms). The specific scaling of
N, M is chosen so that the actual dimensions of G/ obey this scaling with high probability (see
e.g. Coja-Oghlan et al. (2020a); Iliopoulos and Zadik (2021)). Furthermore, the planted distribution
PP is precisely the distribution of G conditioned on the dimensions N, M.

We now define two different criteria for success in the testing problem.

Strong detection An algorithm is said to achieve strong detection if, given input (G, k) with G
drawn from either Q or IP (each chosen with probability 1/2), it correctly identifies the distribution
(Q or IP) with probability 1 — o(1).

Weak detection An algorithm is said to achieve weak detection if, given input (G, k) with G
drawn from either Q or [P (each chosen with probability 1/2), it correctly identifies the distribution
(Q or IP) with probability 1/2 + (1).

We will establish a formal connection between the testing and recovery problems: any algorithm
for approximate recovery can be used to solve strong detection (see the full version).

2.2. Hypothesis Testing and the Low-Degree Framework

Following Hopkins and Steurer (2017); Hopkins et al. (2017); Hopkins (2018), we will study the
class of low-degree polynomial algorithms as a proxy for computationally-efficient algorithms (see
also Kunisky et al. (2019) for a survey). Considering the hypothesis testing setting, suppose we
have two (sequences of) distributions P = P,,,Q = Q, over RP for some p = p,. Since our
testing problems are over (N, M )-bipartite graphs, we will set p = NM and take P, Q to be
supported on {0, 1}? (encoding the adjacency matrix of a graph). A degree-D polynomial algorithm
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is simply a multivariate polynomial f : RP — R with real coefficients (or rather, a sequence of such
polynomials: f = f,). In line with prior work, we define two different notions of “success” for
polynomial-based tests as follows.

Strong/weak separation A polynomial f : R? — R is said to strongly separate P and Q if

\/max {Varp[f], Varg[f]} = o (

£l - E11)). e

Also, a polynomial f : RP — R is said to weakly separate P and Q if

\/max (Varp(f], Varg|f]} = O (

Bl - E11)). 2

These are natural sufficient conditions for strong/weak detection: note that by Chebyshev’s
inequality, strong separation immediately implies that strong detection can be achieved by thresh-
olding the output of f; also, by a less direct argument, weak separation implies that weak detection
can be achieved using the output of f (Bandeira et al., 2022, Proposition 6.1).

Perhaps surprisingly, it has now been established that for a wide variety of “high-dimensional
testing problems” (including planted clique, sparse PCA, community detection, tensor PCA, and
many others), the class of degree-O(In p) polynomial algorithms is precisely as powerful as the best
known polynomial-time algorithms (e.g. Bandeira et al. (2020); Ding et al. (2019); Hopkins (2018);
Hopkins et al. (2017); Hopkins and Steurer (2017); Kunisky et al. (2019)). One explanation for this
is that such polynomials can capture powerful algorithmic frameworks such as spectral methods
(see Kunisky et al. (2019), Theorem 4.4). Also, lower bounds against low-degree algorithms imply
failure of all statistical query algorithms Brennan et al. (2021) and have conjectural connections to
the sum-of-squares hierarchy (see e.g. Hopkins et al. (2017); Hopkins (2018)). While there is no
guarantee that a degree-O(Inp) polynomial can be computed in polynomial time, the success of
such a polynomial still tends to coincide with existence of a poly-time algorithm.

In light of the above, low-degree lower bounds (i.e. provable failure of all low-degree algo-
rithms) is commonly used as a form of concrete evidence for computational hardness of statistical
problems. In line with prior work, we will aim to prove hardness results of the following form.

Low-degree hardness If no degree-D polynomial achieves strong (respectively, weak) separation
for some D = w(Inp), we say “strong (resp., weak) detection is low-degree hard”; this suggests
that strong (resp., weak) detection admits no polynomial-time algorithm and furthermore requires
runtime exp(€Q(D)) (where 2 hides factors of In p).

In this paper, we will establish low-degree hardness of group testing models in certain parameter
regimes. While the implications for all polynomial-time algorithms are conjectural, these results
identify apparent computational barriers in group testing that are analogous to those in many other
problems. As a result, we feel there is unlikely to be a polynomial-time algorithm in the low-degree
hard regime, at least barring a major algorithmic breakthrough.> Throughout the rest of this paper
we focus on proving low-degree hardness as a goal of inherent interest, and refer the reader to the
references mentioned above for further discussion on its interpretation.

2. Strictly speaking, we should perhaps only conjecture computational hardness for a slightly noisy version of group
testing (say where a small constant fraction of test results are changed at random) because some “noiseless” statistical
problems admit a poly-time algorithm in regimes where low-degree polynomials fail; see Section 1.3 of Zadik et al.
(2021) for discussion.
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3. Results

We now formally state our main results on statistical and computational thresholds in group testing,
which are summarized in Figure 2. Throughout, recall that we fix the scaling regime k = nf+o(1)
and m = (c¢+ o(1))kIn(n/k) for constants § € (0,1) and ¢ > 0. Our objective is to characterize
the values of (6, ¢) for which various group testing tasks are “easy” (i.e., poly-time solvable), “hard”
(in the low-degree framework), and (information-theoretically) “impossible.”

3.1. Constant-Column Design

Our first set of results pertains to the constant-column design, as defined in Section 2.1.

Weak recovery: All-or-Nothing phenomenon We start by focusing on the information-theoretic
limits of weak recovery in the constant-column design. We show that the AoN phenomenon occurs
at the critical constant ¢, = 1/1n 2, i.e., at the critical number of tests mi,¢ = (In2) 'k In(n/k). It
was known previously that when ¢ > 1/ In 2, one can approximately recover the infected individuals
via a brute-force algorithm (Coja-Oghlan et al., 2020a,b). It was also known that when ¢ < 1/1n 2,
one cannot approximately recover the infected individuals (see Aldridge et al. (2019)). We show
that in fact a much stronger lower bound holds: when ¢ < 1/1n 2, no algorithm can even achieve
weak recovery.

Theorem 1 Consider the constant-column design with any fixed 6 € (0,1). If ¢ < ¢ := 1/1n2
then every algorithm (efficient or not) taking input (Ggr, 6, k) and returning a binary vector T €
(T,0)

{0,1}™ must satisfy Tl = o(1) with probability 1 — o(1). In particular, weak recovery is
impossible.

Combined with the prior work mentioned above, this establishes the All-or-Nothing phenomenon,
namely:

* If ¢ > ¢jpr and m = (¢ + o(1))k In(n/k) then approximate recovery is possible.
* If ¢ < ¢jpr and m = (¢ + o(1))k In(n/k) then weak recovery is impossible.

As mentioned in the Introduction, the only algorithms known to achieve approximate recovery
with the statistically optimal number of tests m;ys do not have polynomial runtime (Coja-Oghlan
et al., 2020a,b). As a tool for studying this potential computational-statistical gap (and out of inde-
pendent interest), we next turn our attention to the easier detection task. We will return to discuss
the implications for hardness of the recovery problem later.

Detection boundary and low-degree methods We first pinpoint the precise “low-degree” thresh-
old cgg = CES(H) (where the superscript indicates “constant-column”) for detection: above this
threshold we prove that a new poly-time algorithm achieves strong detection; below this threshold
we prove that all low-degree polynomial algorithms fail to achieve weak separation, giving concrete
evidence for hardness (see Section 2.2). As a sanity check for the low-degree lower bound, we also
verify that low-degree algorithms indeed succeed at strong separation above the threshold (specif-
ically, this is achieved by a degree-2 polynomial that computes the empirical variance of the test
degrees).
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Theorem 2 Consider the constant-column design (testing variant) with parameters 6 € (0, 1) and
c > 0. Define

L (1—--L ) ifo<6<2/3,
g5 [ (1= mtn) yo<o<
0 if2/3<6<1.

(a) (Easy)lIfc > CES , there is a degree-2 polynomial achieving strong separation, and a polynomial-
time algorithm achieving strong detection.

(b) (Hard) If c < CES then any degree-n*Y) polynomial fails to achieve weak separation. (This
suggests that weak detection requires runtime exp(nQ(l)). )

We remark that when 6 > 2/3, the problem is “easy” for any constant ¢ > 0 (and perhaps even for
some sub-constant scalings for c, although we have not attempted to investigate this).

Hardness of recovery Above, we have given evidence for hardness of detection below the thresh-
old cgg. One can show (see full version) that recovery is a formally harder problem than detection:
any poly-time algorithm for approximate recovery can be made into a poly-time algorithm for strong
detection, succeeding for the same parameters 6, c. These two results together give evidence for
hardness of recovery below CES, via a two-step argument: our low-degree hardness for detection
leads us to conjecture that there is no poly-time algorithm for detection below cgg, and this conjec-
ture (if true) formally implies that there is no poly-time algorithm for approximate recovery below
CES. (However, our results do not formally imply failure of low-degree algorithms for recovery.)
Notably, it turns out that CES exceeds ¢t for some values of 6 (namely 0 < 6 < 1+ﬁ ~ 0.38),
revealing a possible-but-hard regime for recovery (Region I in Figure 2).

Since the recovery problem might be strictly harder than testing, our results do not pinpoint a
precise computational threshold for recovery (even conjecturally). However, one case where we
do pinpoint the computational recovery threshold is in the limit # — 0: here, the thresholds cgg
and ¢, coincide, that is, our low-degree hardness result for detection matches the best known poly-
time algorithm for recovery (COMP). This suggests that for small 6, the COMP algorithm is optimal
among poly-time methods (for approximate recovery).

An interesting open question is to resolve the low-degree threshold for recovery, in the style of
Schramm and Wein (2020). However, it is not clear that their techniques immediately apply here.

3.2. Bernoulli Design

Our second set of our results pertains to the Bernoulli design as defined in Section 2.1. As always,
we fix the scaling regime k = n?*°(1) and m = (¢ + o(1))kIn(n/k) for constants € (0,1) and
c>0.

Detection boundary and low-degree methods Similarly to the constant-column design, we will
determine both the statistical and low-degree thresholds for detection. In this case, the detection
boundary is more complicated and involves the Lambert W function: for x > —%, Wo(x) is defined
to be the unique y > —1 satisfying ye¥ = z. We begin with the low-degree threshold.

10
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Figure 2: Phase transitions in the constant-column (left) and Bernoulli (right) designs, in (6, ¢) space where
k =nf*°M and m = (c+o(1))kIn(n/k). Recovery is possible above the red line and impossible
below it. Polynomial-time recovery is only known above the blue line. Detection is achievable
in polynomial time above the dotted line and (low-degree) hard below it. In Region I, detection
and recovery are both possible-but-hard. In Region II, detection is easy and recovery is possible,
but it is open whether recovery is easy or hard. In Region III, detection is easy and recovery is
impossible. In Region IV, recovery is impossible; we expect detection is also impossible, and this
is proven for the Bernoulli design only. Above the blue line, detection and recovery are both easy.
See Section 3 for the formal statements.
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Theorem 3 Consider the Bernoulli design (testing variant) with parameters 6 € (0,1) and ¢ > 0.
Define

— s Wo(—exp(—1% In2 - 1)) if0 <6 < 3(1 — 755—7);

B — .

Lb = | mz * % if 5(1 = mo=y) <0 < 3, (3.2)
0 ifi <6<1.

(a) (Easy) If ¢ > CED, there is a degree-O(Inn) polynomial achieving strong separation, and a
polynomial-time algorithm achieving strong detection.

(b) (Hard) If c < CED then any degree-o(k) polynomial fails to achieve weak separation. (This

suggests that weak detection requires runtime exp(§2(k)).)

We remark that CED is a continuous function of 6 (see Figure 2). The new algorithm that succeeds
in the “easy” regime is based on counting the number of individuals whose degree (in the graph-
theoretic sense) exceeds a particular threshold. For 6 in the first case of (3.2), the low-degree
hardness result requires a conditional argument that conditions away a certain rare “bad” event; for
0 in the second case of (3.2), no conditioning is required and the resulting threshold matches the
information-theoretic detection lower bound of Truong et al. (2020). We remark that the predicted
runtime exp(€2(k)) in the “hard” regime is essentially tight, matching the runtime of the brute-force
algorithm up to log factors in the exponent.

Next, we determine the precise information-theoretic detection boundary. One (inefficient) de-
tection algorithm is the brute-force algorithm for optimal recovery. Another (efficient) detection
algorithm is the low-degree algorithm from Theorem 3 above. We show that for each § € (0,1)
statistically optimal detection is achieved by the better of these two algorithms. Brute-force is better

In2 ~ . .
when 0 <1 — 55-19-—5-7 ~ 0.079, and otherwise low-degree is better.

Theorem 4 Consider the Bernoulli design (testing variant) with parameters 6 € (0,1) and ¢ > 0.
Let cinr := 1/ 102 and define CED as in (3.2).

(a) (Possible) If ¢ > min{ciy¢, CED} then strong detection is possible.

(b) (Impossible) If ¢ < min{cipg, CED} then weak detection is impossible.

Hardness of recovery Similarly to the constant-column design, our low-degree hardness results
suggest hardness of recovery below the threshold CED (see the discussion in Section 3.1). This
suggests a possible-but-hard regime for recovery (namely Region I in Figure 2) in the Bernoulli
design, for sufficiently small 6 (namely 0 < 1 — m ~ 0.079). As discussed in the
Introduction, this is contrary to the evidence of Iliopoulos and Zadik (2021), who predicted the

absence of a computational-statistical gap for all § € (0,1).

4. Proof Ideas

We give an overview of the proof techniques, with details deferred to the full version of this paper.

12
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4.1. All-or-Nothing: Theorem 1

As approximate recovery is possible for ¢ > 1/1n(2) (Coja-Oghlan et al., 2020b), we only need
to prove the “nothing” part of the all-or-nothing phenomenon. Thus, our overall target is to show
that for any § > 0, a randomly sampled solution 7 satisfies P ((o, 7) > dk) = o(1) if o is the
actual ground-truth. It suffices by standard arguments to prove that, if Z(G) is the total number of
solutions and Z, (G, «) the number of solutions with overlap ak to the ground-truth,

> Z,(G,l/k) = 0(Z(G)).

Sk<t<k

The calculations are technically demanding in a model with a planted infected set (the ground-
truth). By an application of the planting trick, we manage to prove that it suffices to derive similar
bounds for a null model. To further simplify calculus in the resulting second moment argument, we
introduce a bi-regular model @Z,F that has fixed test degrees and individual degrees and allows an
individual to participate multiple times in the same test. While the latter simplifies the underlying
probability distribution, the former allows us to handle subtle local limit arguments that would not
hold under fluctuating test degrees.

Therefore, the first step is to prove that this auxiliary model has comparable properties to the
actual group testing instance. This highly technical proof uses the fact that with not too small
probability, no infected individuals participate in the same test twice. For uninfected individuals,
the calculus is much more convenient as there are no global dependencies, and the argument heavily
relies on a technique similar to the Poisson approximation of balls-into-bins. Finally, a highly
involved first moment argument that is again based on the Poisson approximation technique, proves
that there is, with high probability, only a vanishing fraction of pairs of solutions o, T of non-trivial
overlap that both satisfy a given group testing instance.

4.2. Detection Algorithms: Theorems 2(a) and 3(a)

In the constant-column design, the optimal low-degree test is given by the degree-2 polynomial
T = Zj\i 1 (Fj — NWA)2 where I'; denotes the degree of test j (i.e., the number of individuals
in test j). As under P every test contains at least one infected individual, there is a subset of &k
individuals that are distributed more equally over the whole graph, causing 7" to be smaller under P°

than under Q.

In the Bernoulli design, detection is easy in a larger regime of parameters because the degrees of
the individuals are not fixed and these degrees give away some weak information about the planted
signal: infected individuals are likely to have higher degree. The optimal low-degree test is based on
counting the number of individuals whose degree exceeds a particular carefully-chosen threshold
(which depends on the parameters ¢, c). While this is not a polynomial, we show that it can be
approximated by a logarithmic-degree polynomial up to negligible error.

In both models, the proof of strong separation proceeds by directly bounding the first two mo-
ments of the appropriate polynomials. These calculations are most challenging in the constant-
column design, where the contribution from infected individuals is handled using the Poisson ap-
proximation of the balls-into-bins experiment.

13
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4.3. Low-Degree Lower Bounds: Theorems 2(b) and 3(b)

Both low-degree lower bounds are proved using the notion of the “low-degree” x? divergence be-
tween the two probability measures, as denoted by xZ (PP || Q) (Hopkins, 2018). Analogous to the
standard information-theoretic argument that x2(PP, Q) = o(1) implies that weak detection between
P, Q is impossible, it holds that if x2 (P || Q) = o(1) then weak separation between P, Q is im-
possible by any D-degree polynomial. Hence, our goal is to prove x2p(P|| Q) = o(1). In the case
of the Bernoulli design, we actually need a modification of this strategy where we condition away
from a rare “bad” event (where individuals have unusually high degree).

In both models it seems challenging to directly bound x2 ,,(P || Q); for the Bernoulli model
this is due to the aforementioned conditioning, and for the constant-columns design this is because
the null model is not a product measure and so the orthogonal polynomials are complicated. For
this reason, we employ instead the recently introduced notion of the “low-overlap” x? divergence
between P, Q (Bandeira et al., 2022). This quantity corresponds a statistical-physics inspired object
which (1) takes the form of an expectation of a relatively simple random variable and (2) can be
proven to always upper-bound x2 (P || Q) for the group testing models. We are able to directly
bound the low-overlap x? divergence for the models and show that it is o(1), which implies the de-
sired result. Interestingly our lower bounds exactly match the positive algorithmic results discussed
above.

4.4. Detection Boundary: Theorem 4

As discussed above, the possibility result follows from the low-degree algorithm discussed above
along with the analysis of a brute-force test from prior work. It therefore remains to show the
impossibility result. Similarly to the low-degree lower bounds, we achieve this by proving that the
x? divergence (or in some cases the conditional x? divergence) is o(1). This re-uses many of the
calculations from the low-degree lower bounds. The main additional step is to also control the “high
overlap” terms in the x? divergence.
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