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Abstract

Hamilton and Moitra (2021) showed that, in certain regimes, it is not possible to accelerate Rie-
mannian gradient descent in the hyperbolic plane if we restrict ourselves to algorithms which make
queries in a (large) bounded domain and which receive gradients and function values corrupted by
a (small) amount of noise. We show that acceleration remains unachievable for any deterministic
algorithm which receives exact gradient and function-value information (unbounded queries, no
noise). Our results hold for a large class of Hadamard manifolds including hyperbolic spaces and
the symmetric space SL(n)/SO(n) of positive definite n X n matrices of determinant one. This
cements a surprising gap between the complexity of convex optimization and geodesically convex
optimization: for hyperbolic spaces, Riemannian gradient descent is optimal on the class of smooth
and strongly geodesically convex functions (in the regime where the condition number scales with
the radius of the optimization domain). The key idea for proving the lower bound consists of
perturbing squared distance functions with sums of bump functions chosen by a resisting oracle.
Keywords: geodesic convexity; Riemannian optimization; curvature; lower bounds; acceleration

Introduction

We consider optimization problems of the form

min f(z) (P)
where M is a Riemannian manifold and f: M — R is a smooth strongly geodesically convex
(g-convex) function (we review technical geometric terms in Section 2). When M is a Euclidean
space, problem (P) amounts to smooth strongly convex optimization.

Several problems of interest are non-convex but can be recast as g-convex optimization prob-
lems, which means global solutions can be found efficiently. Examples and applications in data
science, statistics and machine learning include: computing intrinsic means or medians on curved
spaces (Karcher, 1977; Yuan et al., 2020) such as for computational anatomy (Fletcher et al., 2009)
or phylogenetics (Bacdk, 2014, Ch. 8), metric learning (Zadeh et al., 2016), computing optimistic
likelihoods (Nguyen et al., 2019), parameter estimation for mixture models (Hosseini and Sra,
2015), robust covariance estimation and subspace recovery (Auderset et al., 2005; Wiesel, 2012;
Zhang, 2012; Wiesel and Zhang, 2014; Sra and Hosseini, 2015; Ciobotaru and Mazza, 2020; Franks
and Moitra, 2020), estimation for matrix normal models (Tang and Allen, 2021; Amendola et al.,
2021; Franks et al., 2021), sampling on Riemannian manifolds (Goyal and Shetty, 2019), and land-
scape analysis such as for matrix completion (Ahn and Suarez, 2021). In mathematics and theo-
retical computer science, applications of g-convex optimization include computing Brascamp-Lieb
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constants (Sra et al., 2018), the null cone membership problem and polynomial identity testing—
see (Allen-Zhu et al., 2018; Biirgisser et al., 2019; Franks and Reichenbach, 2021) and references
therein. More generally, optimization on manifolds also has applications in scientific computing,
imaging, communications and robotics (Absil et al., 2008; Hu et al., 2020; Boumal, 2022).

Given these applications, it is natural to ask for fast algorithms for the g-convex optimization
problem (P). We consider algorithms which have access to an oracle providing first-order informa-
tion (function values and gradients), and consider the following computational task:

Let f: M — R be a p-strongly g-convex function which is L-smooth in a geodesic
ball B of radius r and whose minimizer x* lies in B (see Sections 1.2 and 2.3). Find a
point x € M within distance % of x*.!

The radius 7 represents our initial uncertainty about the location of the minimizer of f. Thus we
ask: how many queries are required to reduce our uncertainty by a constant factor (five in this case)?
When M = R¢is Euclidean space, g-convexity is equivalent to convexity, and it is well known that
(projected) gradient descent (GD) uses at most O(k) queries to solve this computational task, where
the condition number kK = % represents the conditioning of the problem. In contrast, Nesterov’s

accelerated gradient method (NAG) (adapted to the ball domain) uses O(\/E) queries (Nesterov,
2013, Thm. 6 and Sec. 5.1), and that is optimal (Nesterov, 2004, Ch. 2).2

For the moment, let us consider the case where M is a hyperbolic space, meaning it has constant
negative curvature. Zhang and Sra (2016) show that (projected) Riemannian gradient descent (RGD)
uses at most O( x) gradient queries to solve the computational task described above.®> This matches
the rate of gradient descent in Euclidean spaces. We are led to the following question:

Is there an algorithm for g-convex optimization on hyperbolic spaces which solves the
above computational task in O(\/k) queries?

In this paper, we show that no such accelerated algorithm exists, and in fact RGD is optimal for
smooth strongly g-convex optimization on hyperbolic spaces, in the regime r = ©(k) (see Sec-
tion 1.3).* Indeed, a number of algorithms have been developed to address this question (Liu et al.,
2017; Zhang and Sra, 2018; Ahn and Sra, 2020; Jin and Sra, 2021; Martinez-Rubio, 2021; Lezcano-
Casado, 2020; Alimisis et al., 2020, 2021; Huang and Wei, 2021; Duruisseaux and Leok, 2021;
Franca et al., 2021a,b), but none of them are proven to achieve the fully accelerated rate of ON(\/E)

Our analysis builds on the recent work of Hamilton and Moitra (2021), who show that accel-
eration on the hyperbolic plane is impossible when function values and gradients are corrupted by
noise, even when this noise is very small. Their argument introduces a number of important ideas,
most notably a key geometric property of the hyperbolic plane which we call the “ball-packing
property”: for » > 0 sufficiently large, any geodesic ball of radius r in the hyperbolic plane con-
tains N = ¢©(") disjoint open geodesic balls of radius 7- Using several of Hamilton and Moitra
(2021)’s ideas, plus additional ideas we introduce, we prove that acceleration is impossible even
when function values and gradients are known exactly, i.e., not corrupted by noise.

1. It suffices to ask how many queries are required to reduce the uncertainty radius r by a factor ¢, for any fixed
e € (0, 1). Throughout we take € = 1, following Hamilton and Moitra (2021).

2. Throughout, O and 2 do not hide the parameter r. Also, O and Q hide logarithmic factors in k = % and r.

3. The rate given by Zhang and Sra (2016) depends on r, but see Appendix K for how to remove this dependence on r
for hyperbolic spaces.

4. To establish lower bounds when x > r >> 1, further ideas seem to be necessary.
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In addition to proving lower bounds for queries yielding exact information (our main contribu-
tion), we improve upon the results of Hamilton and Moitra (2021) in several ways. In Section 2.2,
we establish the ball-packing property for a large class of Hadamard manifolds, including the sym-
metric space SL(n)/SO(n) of positive definite matrices with determinant one which is important in
applications, at least in part because the Riemannian metric on SL(n)/SO(n) is the Fisher—Rao in-
formation metric for covariance matrices of Gaussian distributions (Skovgaard, 1984; Lenglet et al.,
2006). In turn, we show that acceleration is impossible on this large class of Hadamard manifolds.
Hamilton and Moitra (2021) also restrict all algorithms to query in a bounded domain. We remove
this assumption using a reduction which, starting from hard functions designed for algorithms mak-
ing bounded queries, produces hard functions for algorithms which can make unbounded queries.

Key ideas: building hard g-convex functions

Hamilton and Moitra (2021) establish their lower bound by exhibiting a distribution on strongly g-
convex functions which is challenging for any algorithm receiving function information corrupted
by noise. Amazingly, the hard distribution they consider is simply a uniform distribution over a
finite number of Riemannian squared distance functions. Intuitively, this distribution is difficult for
algorithms because geodesics diverge rapidly in hyperbolic space (see Lemma 6), so a small amount
of noise in a gradient is magnified. However, like in Euclidean spaces, the Riemannian gradient of
a squared distance function points directly towards the function’s minimizer. Therefore, squared
distance functions are not enough to go beyond noisy oracles.

The key idea we introduce is to use squared distance functions perturbed by a resisting oracle,
i.e., functions f(z) = dist(x,2*)* 4+ H(z) with |HessH ()| small. The perturbations H are not
g-convex, but since their Hessian is small, the perturbed functions f retain strong g-convexity. Each
perturbation is constructed as a sum of bump functions, that is, C°° functions with compact support.

Algorithm and problem classes

It is crucial to define the class of functions for which we prove lower bounds. A natural function
class to consider is the set of functions f: M — R which are L-smooth> and j-strongly g-convex
on all of M (see Section 2.3). Yet, if M has sectional curvatures upper bounded by some K, < 0
or if M = SL(n)/SO(n), then this class is empty. It is impossible for a function to be both
L-smooth and strongly g-convex on all of M if Ky, < 0 or if M = SL(n)/SO(n).°

A simple remedy for this issue is to consider minimizing u-strongly g-convex functions which
are L-smooth in a ball of finite radius r. This is especially natural since whether acceleration is
possible depends on how r compares with xk—this will become clearer in Section 1.4. Let M be a
Hadamard manifold, and let B(xcf,7) C M denote the closed geodesic ball centered at z,of € M
of radius r (see Section 2.1). We consider the following class of real-valued functions f: M — R.

Definition 1 For k > 1,7 > 0, 7ef € M, let F2t (M) be the set of C™ functions on M which
* are p-strongly g-convex in all of M with u > 0;

* are L-smooth in B(Zyet, 1) with k = % and

5. We say a function is L-smooth if it has L-Lipschitz Riemannian gradient (Definition 9). When we say a function is
smooth, we mean that it is L-smooth for some L > 0. We say a function is C*° if it is infinitely differentiable.
6. See Proposition 28 in Appendix I, which is an extension of a result due to Hamilton and Moitra (2021).
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* have a unique global minimizer x* which lies in the ball B(xycf, %7“).

In the third item of Definition 1, we require %7’ instead of r to ensure that the ball B(z*, ¢) is

contained in the interior of B(Zyef, 7).

We impose no restrictions on the algorithm except that it is deterministic. A deterministic first-
order algorithm A on M is an initial point 2 and a sequence of maps (Ax: (Rx TM)* — M)>1.
Running an algorithm A4 on a cost function f: M — R produces iterates xg, x1,xs,... given

by 2 = Ax((fo, (%0,90)), -, (fe—1, (Th—1,9%-1))), Where fy = f(z,) and g, = gradf(z()
constitute the past function value and gradient information gathered thus far. It is an open question
whether the lower bounds in this paper can be extended to randomized algorithms.

Main results

We now state our main results about the impossibility of acceleration for the function class J 7! (M)
in Definition 1. There is some leeway in choosing the constants below.

Theorem 2 Let M be a Hadamard manifold of dimension d > 2 whose sectional curvatures are
in the interval Ko, Kp] with Ky, < 0. Let zyef € M, £ > 1000 I[((—lll‘; and define r > 0

such that k = 12r\/— K\, + 9. For every deterministic first-order algorithm A, there is a function
[ € Fixt (M) such that algorithm A requires at least

Bp ____» :@< K“p-m>
K, 10001log (10&) K,

queries in order to find a point x € M within distance ¢ of the minimizer of f.

Corollary 3 Let M be a hyperbolic space (K, = Kyp = K < 0), Ty € M, K > 1000 and
define r > 0 such that k = 12rv/— K + 9. Among deterministic first-order algorithms, Riemannian
gradient descent is optimal (up to log factors) on the function class Fist (M).

The symmetric space SL(n)/SO(n) does not have strictly negative curvature as required by
Theorem 2, but we can still show that acceleration is unachievable if n > 2 is held fixed as x grows.

Theorem 4 Let x,f € SL(n)/SO(n), k > 1000n and define v > 0 such that k = 6r\/2 + 9. For
every deterministic first-order algorithm A, there is a function f € Firf(SL(n)/SO(n)) such that

the algorithm A requires at least L% . mj = Q(% . /<;) queries in order to find a point x

within distance g of the minimizer of f.

The lower bound Q(%) also holds for the symmetric space P, of positive definite matrices with

affine-invariant metric because it is isometric to R x SL(n)/SO(n) (see Appendix J). It is an open

question whether one can remove the factors 4/ If(‘l”” and % in the lower bounds in Theorems 2 and 4.

Comparison to literature: best known upper bounds

Let us review the best known upper bounds for smooth g-convex optimization (see Appendix A for
a more complete discussion of the literature). Ahn and Sra (2020) provide an algorithm which is
strictly faster than RGD, and requires only O(+/k) queries for the computational task described in
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the introduction when r < O(ﬁ) Intuitively this makes sense because Riemannian manifolds
are locally Euclidean, so in a small enough ball the effects of curvature are negligible. When 7 is
not small, the algorithm of Ahn and Sra (2020) requires O(x) gradient queries.

The guarantees for the algorithm provided by Ahn and Sra (2020) hold for Hadamard manifolds
of bounded curvature. For hyperbolic spaces in particular, Martinez-Rubio (2021) improves upon
these guarantees by providing an algorithm requiring eo(’")\/ﬁ queries to solve the computational
task; in particular, this algorithm is accelerated when r < O(1).

Preliminaries and the ball-packing property

We introduce the tools used to prove the main results. For an introduction to Riemannian manifolds
see (Lee, 2012, 2018), or (Absil et al., 2008; Boumal, 2022) for an optimization perspective.

Hadamard manifolds

Throughout, M denotes a smooth manifold which has tangent bundle TM and tangent spaces
T, M. We equip M with a Riemannian metric: a smoothly-varying inner product (-, ) on each
tangent space T, M. Throughout, we drop the subscript and denote these inner products by (-, -).
The metric allows us to define the gradient gradf(z) € T, M and Hessian Hessf(z): T,M —
T, M of the cost function f at each point x (Boumal, 2022, Ch. 3, 5). We write ||v]| = /(v,v)
for v € T, M and || A|| for the operator norm of a linear operator A: T, M — T, M. We use I to
denote the identity linear operator from T, M to T, M.

The Riemannian metric gives M a notion of distance dist and geodesics. The closed (geodesic)
ball of radius 7 centered at z € M is B(x,r) = {y € M : dist(y,z) < r}. The closed ball in
T, M centered at g € T, M with radius r is By (g,7) = {s € ToM @ ||s —g]| <7}

The metric also provides a notion of intrinsic curvature. We focus on Hadamard manifolds:

Definition 5 A Riemannian manifold M is a Hadamard manifold if M is complete, simply con-
nected and has nonpositive sectional curvature everywhere.

By the Cartan—-Hadamard Theorem, all d-dimensional Hadamard manifolds M are diffeomorphic
to R? (Lee, 2018, Thm. 12.8). The Hopf-Rinow Theorem implies that the exponential map
exp: TM — M is well defined on the entire tangent bundle, and moreover every pair of points
can be connected by a unique geodesic and this geodesic is minimal (Lee, 2018, Prop. 12.9). This
means that the inverse of the exponential map exp, ': M — T, M is well defined for all z € M.
We use P,y : T, M — Ty M to denote parallel transport along the geodesic connecting x and y.
The next lemma is a direct consequence of the hyperbolic law of cosines and Toponogov’s
triangle comparison theorem—see Appendix B. It expresses the fact that when the underlying space
is negatively curved, geodesics diverge quickly. Lemma 6 forms the basis of Lemma 7 (spaces
with sufficient negative curvature satisfy the ball-packing property), which is the most important
geometric fact underlying Theorems 2 and 4. A proof of Lemma 6 can be found in Appendix H.1.

Lemma 6 (Geodesics diverge) Let vy, vy be two tangent vectors at xrot on a Hadamard manifold
M with identical norms s = ||v1]| = |lv2|| and forming an angle at least 0. If the sectional
curvatures of M are upper bounded by K, < 0 and 0 = el =35V “Kap then dist(z1, z2) > %s
where z; = exp,, _ (v;) fori=1,2.
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It is instructive to compare this lemma to the Euclidean case, where the law of cosines implies
|21 — zo||* < 252 — 252 cos(#) = O(s262). Therefore, if § = ©(e*), then ||z; — 25| = O(se™).

The ball-packing property

To prove the lower bound, we require our space to satisfy the following geometric property.

A 1 (Ball-packing property) There is a point x,of € M, an 7 > 0 and a ¢ > 0 such that for
all ¥ > T, there exist N > e points z1, ..., zy in the ball B(zy.f, %r) so that all pairs of points
are separated by a distance of at least 5: dist(z;, zj) > & for all i # j. We say M satisfies the
ball-packing property with 7, ¢ and x,et € M.

We think of the points z1,..., 2y as centers of disjoint open balls of radius 7 contained in
B(2yef,7). No Euclidean space R? satisfies a ball-packing property as the volume of a ball of
radius 7 scales polynomially as ¢, not exponentially.

A 2 (Strong ball-packing property) There is an 7 > 0 and a ¢ > 0 such that M satisfies the
ball-packing property with v, ¢ and every xyet € M.

Lemma 7 Letd > 2 and M be a d-dimensional Hadamard manifold whose sectional curvatures

are in the interval (—oo, K,p| with K., < 0. Then M satisfies the strong ball-packing property A2
~ 4 ~ \ _Kup

forr = mandc-d T -

Proof Let z,,f € M. Letr > 7 and let s = %r. Let = ¢! 35V ~Kw_ Consider the sphere
Si-1(s) = {v € Ty M : |v|| = s}. We have § < T because s\/—Ky, > 3. Therefore
using d > 2 and a standard covering number argument adapted to our setting (see Lemma 27 in

Appendix H.2), we find there exist

N > g—(d-1) _ e(d—l)(gsw/—Kup—l) > e%d(%m/—Kup—l) > eédr —Kup

tangent vectors vi,...,UN € Sgr_efl(s) such that the angle between vectors v; and v; is at least ¢
for all i # j. Define z; = exp, . (v;) for j =1,2,..., N. Therefore, z; € B(%yet, %r) for all j.
Moreover, dist(z;, z;) > %s = g forall 7 # j owing to Lemma 6 (geodesics diverge). |

If M is a hyperbolic space, we can instead argue Lemma 7 using a simple volume argument,
combined with the fact that the covering number is less than the packing number (Vershynin, 2018,
Lem. 4.2.8). However, that argument does not hold for spaces with nonconstant curvature because
we would need a bound on the ratio of K, to K. Lemma 7 does not make such an assumption.

The symmetric spaces SLP,, = SL(n)/SO(n) and P, = R x SLP,, are Hadamard manifolds
which do not have strictly negative curvature, so we cannot apply Lemma 7. However, SLP,, con-
tains an (n — 1)-dimensional totally geodesic submanifold isometric to a hyperbolic space (Bridson
and Haefliger, 1999, Ch. I1.10). This allows us to prove Lemma 8 in Appendix J, where we also
argue the best possible ¢ for SLP,, satisfies ¢ < O(n%/?) = o(dim(SLP,)).

Lemma 8 Forn > 3, both SLP,, and P, satisfy the strong ball-packing property A2 with 7 =

8v2,é= 1”6?/15 and SL Py and Ps satisfy the strong ball-packing property with 7 = 44/2, ¢ = 4—\1/5.
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2.3 Geodesic convexity

A subset D of a Hadamard manifold M is g-convex if the geodesic segment connecting each pair
of points in D is contained in D (Udriste, 1994). Geodesic balls are g-convex. We study special
functions on g-convex sets (Lemma 16 has other characterizations of g-convexity and smoothness).

Definition 9 Let f: M — R be a twice continuously differentiable function on a Hadamard
manifold M, and let D be a g-convex subset of M. We say (somewhat restrictively) that:

* fis p-strongly g-convex in D if Hessf(x) = pl forall x € D.
 fis L-smooth in D if |Hessf(x)|| < L for all x € D.

(If f is L-smooth in D, then ||gradf(z) — Py—agradf(y)| < Ldist(x,y) forall z,y € D.)

Lemma 10 (Alimisis et al., 2020, Lem. 2 in App. B) Let M be a Hadamard manifold with sectional
curvatures in [K,,0]. Fix z € M, and let f: M — R, f(z) = 3dist(z,2)% Then f is C*,

gradf(z) = —exp, ' (2), and f is 1-strongly g-convex in M and L-smooth in B(z,r) for any
N Ve o ——
?”>0Wll‘hL—m§1+r —K]O.

3 Technical version of the main theorem and proof of key lemma

We are now ready to prove our main technical theorem, from which Theorems 2 and 4 in the intro-
duction follow. For ease of exposition, we state and prove the following slightly simpler theorem
in the main part of the paper. For this theorem, we assume the algorithm only receives gradient
information (no function values), and the algorithm always makes queries in a bounded domain.
For the statement below, recall the definition of the function class F%f (M) from Section 1.2.

Theorem 11 Let M be a Hadamard manifold of dimension d > 2 which satisfies the ball-packing
property Al with constants T, ¢ and point T, € M. Also assume M has sectional curvatures in
the interval [K),, 0] with Kj, < 0. Let r > max {f, %, zl(digﬂ)}' Define k = 4r\/— K)o + 3.
Let A be any deterministic algorithm which only makes grac?ient queries, and assume that A always
queries in B(xyet, ), with # > .

Then there is a function f € Firet (M) with minimizer x* such that running A on f yields
iterates o, T1, T2, ... satisfying dist(xy,x*) > 7 forallk = 0,1,...,T — 1, where

Lag—1
T_ ca T
log (2000 - 1éd~1r(3%/ =Ko +2)) |

)

In the theorem, observe that k = ©(r) and so T' = O(r) = (k) (assuming % = poly(r)).

In Appendices F and G, we state and prove Theorem 24: an extension of Theorem 11 which
provides a lower bound for algorithms which can also make function-value queries as well as un-
bounded queries. Theorems 2 and 4 follow directly from Theorem 24 and the ball-packing proper-
ties established in Lemmas 7 and 8—see Appendices M.1 and M.2 for the details.

To allow for algorithms which make unbounded queries, the high-level idea is to modify all hard
instances f from Theorem 11 so that f(z) = %dist(ac,:z:mf)2 for x & B(yer, #) (recall Z > 7).
This way, the algorithm gains no information by querying outside the ball B(zycf, #). On the
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other hand, we still want the hard functions f to remain untouched in the ball B(zf, 7). In the
region between radii r and %, we smoothly interpolate between these two choices of functions. We
show that we can choose & appropriately so that the lower bound Q(r) still holds and the modified
functions are still strongly g-convex. Technically, we do this via a reduction, which is depicted in
Figure 1 in Appendix G with additional details.

Key lemma: Piece de résistance

The main ingredient to prove Theorem 11 is Lemma 12 stated below. At a high-level, we show
that as long as the algorithm has made at most 7' queries, the oracle can always answer these
queries in such a way that there exist two cost functions consistent with these queries and yet whose
minimizers are significantly far away from each other. Let us make this more precise.

Consider a Hadamard manifold M satisfying the ball-packing property Al with #,¢ > 0 and
Trot € M. Let 21,22, ...,2xn, with N > € be points in B(zf, %r),r > 7, so that all pairs of
points are separated by a distance of at least 5. Let A be a first-order optimization algorithm. One
can even give the list of points 21, . . ., 2 to the algorithm designer. The algorithm .4 queries points
Zg,x1,...and our job (as the resisting oracle) is to choose gradients go, g1, . . . to return to .A.

At each iteration £ > 0, we maintain a list of “active candidate functions” f;;: M — R
indexed by j € A C {1,..., N}. The notation Ay, stands for “active” set at iteration k. Each of
the functions f;,j € Ay, is differentiable, strongly g-convex, and has minimizer at z; with z; a
distance of at least 7 from all queried points. Additionally, the functions f; , j € Ay, are consistent
with the & gradient queries (o, o), - - -, (®x—1, gk—1) answered so far, meaning gradf; ;(zm) =
gm forall m < k and j € Ay. Therefore, any of the functions f; ;, with j € Ay, can be the actual
function being optimized. Hence, any of the minimizers z;, with j € Ay, can be the minimizer of
the actual function being optimized. As long as Ay, is nonempty, we can conclude that the algorithm
A has not queried a point within distance 7 of the minimizer up to iteration k.

The next set of active candidate functions {fjr+1 : j € A1} is chosen by modifying the
current set of active candidate functions: f; ;41 = fjx + hjx. The modifications h; ;. and the set
Ap41 € Ay, are chosen so that grad fj 11 (zx) = gk, where gy, is the gradient chosen by the resisting
oracle to return to the algorithm in response to the query x. Given the queries xg, x1, . . . , £ made
by the algorithm and the current active set Ay, the resisting oracle chooses g, € T;, M in such
a way that the algorithm gains as little information about the location of x* as possible. This
amounts to choosing gj, so that the cardinality of Ay, is as large as possible. For example, if
M is a d-dimensional hyperbolic space of curvature —1, we show |A; 1| > Q(|Ax| /r%). Since
|Ag| > €24 due to the ball-packing lemma 7, this allows us to conclude the desired lower bound.

Lemma 12 Let M be a Hadamard manifold of dimension d > 2 with sectional curvatures in the
interval [K),, 0] and K, < 0. Let Tyot € M, 7 > \/_87](10, X >r. Letz1,...,2N € B(Zyef, %r) be
distinct points in M such that dist(z;, z;) > & for all i # j. Define Ag = {1,2,...,N}. Let A be
any first-order algorithm which only makes gradient queries and only queries points in B(xyet, Z).
Finally, let w > 1 (this is a tuning parameter we will set later).

For every k = 0,1,2,...,|2w|, algorithm A queries x, = Ak((x0,90),- -, (Tk-1,9k-1))
and there exists a tangent vector gy, € T, M and a set Ay C Ay, satisfying

| A — 1

A >
A= (2000w(3%v/— Ky + 2))4

2



3.2

NEGATIVE CURVATURE OBSTRUCTS ACCELERATION FOR GEODESICALLY CONVEX OPTIMIZATION

such that for each j € Ay there is a C* function f;j+1: M — R of the form

1.
Fijer1(z) = Sdist(z, %)% + Hjpi(2) 3)
satisfying:
L1 fjpi1is(1— %)-strongly g-convex in M and [2r\/— K, + 1+ kﬁ}]-smooth in B(yef,7);

L2 gradf;;+1(2zj) = 0 (hence in particular, the minimizer of f; 11 is z;);
L3 gradfji+1(xm) = gm form =0,1,...,k (fj k41 is compatible with all queries);
L4 dist(zm,,25) > 7 forallm =0,1,... k;

L5 |gradHj 41 ()| < ﬁ and |[HessH; 1 (2)|| < EEL forallz € M7
Proof [Proof of Theorem 11] Let us apply Lemma 12 to M and A. Let the points z1, ..., zy be
provided by the ball-packing property so that N > €. Set w = éd~'r/4 in Lemma 12.

It is easy to show by induction that inequality (2) along with |Ag| > € and r > 4(d7;2) imply
|Ag| > 2 for all k < min{T, [2w]|} = T'. For completeness, we give a short proof in Appendix L.

Since A7 is nonempty, we can choose j € Ar andlet f = f; . By property L1 and T' < 2w, f
is 1-strongly g-convex in M and [2ry/=Kj, + 3]-smooth in B(zyef, 7). Property L2 implies f has
minimizer z; which is contained in B(zyef, 57). Thus, f is in Fiiet (M) with 5 = dry/— K)o + 3.

On the other hand, properties L.3 and L4 imply running A on f produces iterates xg, . .., xp_1
satisfying dist(z, z;) > 7 forall k = 0,1,...,T — 1: all are far from the minimizer. |

Proof of the key lemma 12

We prove by induction on k that there is a set Ay and functions f;x41,J € Ag41, satisfying the
properties L1, L2, L3, L4, LS. As we do this, we also construct the gradients gg, g1, - . ., and we
show that inequality (2) holds for each k£ > 0.

Our base case is k + 1 = 0. At the start (no queries), we simply define

1
Fio(w) = Sdist(z, 2)%,  Vj € Ag = {1,...,N}. (4)

Clearly gradf;o(z;) = 0 (L2 is satisfied), and f;¢ is 1-strongly g-convex and [2r\/—K), + 1]-
smooth in B(xef, ) by Lemma 10 (L1 is satisfied). At iteration 0, all the functions f; ¢ are trivially
consistent with the set of past queries because there are no past queries (L3 and L4 are satisfied).
Finally, H) ¢ is identically zero (L5 is satisfied).

Now let us move on to the inductive step. The remainder of this section is devoted to the
inductive step. We are at iteration k£ € [0, [2w|), and there have been k past queries at the points
xg, ..., Tkp_1, along with the k gradients gy, . . ., gx_1 returned by the oracle.

The algorithm queries a point . If £ > 1, let 4 be a previous query point closest to xg, i.e.,

Ty € argming g, ydist (g, ). (5)

L1y Th—1

7. This last property is helpful for the induction used to prove Lemma 12. It is not explicitly used to prove Theorem 11.
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If z;, = x4 (i.e., the algorithm repeats a query), just return g = gy, take Ax11 = Ag, and we are
done. Otherwise, we can assume &y 7 .

By the inductive hypothesis (IH), we have a set Aj such that for each j € Ay there is an
infinitely differentable function f; ; for which:

IH1 f;is (1 — ﬁ)—s‘[rongly g-convex in M and [2r/— K, + 1 + ﬁ]—smooth in B(Zyef,T);
IH2 gradf;(z;) = 0;

IH3 gradf;i(zm) = gm form =0,...,k —1;

IH4 dist(xp,, z;) > § forallm =0,1,...,k - 1;

IH5 ||gradH; i (z)| < ﬁ and ||HessH; ; ()| < ﬁ for all z € M.

We want to choose a large set A1 C Ay, and for each j € Aj41 we must construct fj 11 as

fik+1 = fik + hjg, (6)

where hj: M — R is an appropriately chosen function. What properties do we want the func-
tions h; . to satisfy? Compare the properties IH1, IH2, TH3, IH4, IHS satisfied by f; , with the
properties L1, L2, L3, L4, L5 we want f; ;.11 to satisfy. Let us look at each property.

* Inorder to ensure f; ;1 satisfies L4, we simply need to choose Ay so that dist(z, z;) > 7
forall j € Ay, 1. Define

Ay = {j € Ay, - dist(xy, 25) > Z} @)

Since any pair of minimizers z;, z; are separated by a distance of at least /2, there is at most
one j € Ay such that dist(zy, zj) < r/4. Therefore |Aj| > |Ai| — 1. Below we define A4

as a particular subset of Ay.

* Let us look at property L3. If k = 0, then f; 51 is trivially consistent with the past queries
(because there are none). Assume k > 1. In order for f; 1 to remain consistent with the
past queries xo, . . ., x_1, it is sufficient to enforce that the closed support® supp(h; ) does
not contain x, . .., rx_1. Of course h; j vanishes identically on the complement of its closed
support M \ supp(h; ). Further, M \ supp(h;x) is an open set, so

gradh;i(z) =0, Hesshjp(z) =0 Vo e M\ supp(hji).

Using grad fj x+1 = gradf;x + gradh;, and the inductive hypothesis IH3, this ensures that
fjk+1 is consistent with the queries xg, ..., Tg_1.

In order to gain control of the gradient of f; 1 at z3, we also want the support of h; . to
contain x. So using that x, (5) is a past query point closest to xy, it is enough to enforce that
the support of h; j, remains in the ball B(zy, $dist(2, z)). We are not done with L3 but let
us move on for now.

8. We use the notation supp(f) = {x € M : f(x) # 0} to denote the support of a function f: M — R, and S to
denote the closure of the set S.

10
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¢ In the previous item we saw that if £ > 1, we want the support of /. to be contained in a
ball centered at x;, and whose radius is no more than idist(xk, xy). For L2, it is convenient
to require that this radius is no more than g. Precisely, we shall ensure that the support of /1 x

is contained in the ball B(xy, R](D]Z)H) where

o _ T k) .1 A
Ry = 3’ R, = min {Zdlst(:vk,a:g), é} if k> 1. )

Let us now show that this choice of Rl()];)u guarantees L2, i.e., grad fj r41(z;) = 0. We know
gradf;x(z;) = 0. Therefore, to satisfy L2 it is sufficient to impose that the closed support of

h; x does not contain z;. We know that dist(zy, z;) > 7 forall j € Ay,. Since R,(j;)n < g we

indeed have z; ¢ B(xy, Rg;)u) forall j € Ay,
e Since fj,k+1 = fj,k + thg (6) and Hj,k+1 = Hj,k + thg due to (3),
Hessf;r — ||[Hessh; || I = Hessf;j x+1 < Hessf; 1 + ||Hessh; x| I,

|gradHj 11l < |lgradHj k|| + l|gradh; k|l ,  ||HessHjgi1]| < |[HessHj k| + [[Hessh; k|| -

Therefore (using Definition 9), for f; 1 to satisfy L1 and H) 1 to satisfy L5, it is enough

to require ||[Hessh; ()| < 2 and ||gradh; ,(z)| < ﬁ forall z € M.

Since we are looking for a function /1, with support contained in a ball, we are looking to
construct a bump function, that is a C'™° function on M whose closed support is compact. In
Appendix E, we state and prove Lemma 17 which, given a point x;, € M and a radius Ry > 0,
provides a family of bump functions

{hg: M — R}geBxk (0,w719norm(Rball))7 (9)

such that for each g with ||g|| < w™gnorm(Rpan), the function hy is supported in B(zy, Rpan)
(property BF2 in Lemma 17), has gradh,(zy) = g (property BF1), and in addition satisfies the
bounds [[Hesshy(z)|| < - and |gradhy(z)| < ﬁ for all x € M (property BF3). Here
gnorm: [0,00) — R is a certain univariate function with a simple explicit formula (equation (17)).
(Remember that By, (0, w_lgnorm(Rbau)) C Ty, M denotes a Euclidean ball, see Section 2.1.)

So far we have not chosen g;, € T, M. However, using the family of bump functions (9), we
have shown for any choice of g € Bxk(O,w_lgnorm(Ré?H)) and j € Ay, the function fik1 =
fj.k+ hg satisfies properties L1, L2, L4, L5, as well as grad f; y+1(%m) = gm form =0,1,.. . k—
1 (this is part of property L3). It remains to choose g; € T, M and Ay C Ak so that
gradf; p41(x) = gi forall j € Ay, and so that inequality (2) is satisfied.

Around each gradient grad f; (x1),j € A}, there is a small ball Bj ; which is the set of possible
gradients of f;x11 = f;r + hg at x;. More precisely, the balls B;;, C T, M are defined by

- k .
Bj = Buy (grad f (), w ™ guorm (Ri))), Vi € Ay (10)
Some of these balls overlap, and we want to choose g, € T, M which simultaneously lies in as
many of the balls as possible. This is because the oracle only gets to pick one g and we would like
gi to be compatible with as many f; ;41,j € Ay, as possible. Therefore, choose

gr € arg maxXger, M {j S flk 1g € Bj,k}‘ . (11D

11
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Define Ay = {j € Ay :gi € B -}. The number of balls {B;;} which intersect at the com-
mon vector g equals |A;,1|. For each j € Ay, the vector g;, = gr — gradfjr(xy) is in

Bxk (07 w_lgnorm(R]()];)H)) and so

grad(fjx + hy, ) (wx) = gradfj x(zx) + gradhy, , (z1) = gradfjr(zx) + gjx = gk
using property BF1 of Lemma 17. Therefore, defining % ;. = hy, ,, we have

gradfjri1(zr) = grad(fix + hjx)(Tr) = gk, forall j € Agq1.

It remains to show inequality (2), i.e., a large enough subset of the balls B; ; do indeed intersect
at a common point. For this, we use a geometric lemma (short proof in Appendix C).

Lemma 13 Consider n closed balls By, ..., B, C R? of radius q each, and assume each of the
balls is also contained in a larger closed ball B of radius r: B; C B forall j = 1,...,n. Choose
g € argmaxyep [{j € {1,...,n}:y € Bj}|andlet A={j € {1,...,n} : g € Bj}. Then

|A| > nVol(By)/Vol(B) = ng®/r¢.

To use Lemma 13, we need to find a ball B, C T,, M containing all the balls B;,j € Zlk,
and we want the radius of By, to be small. This is the last step of the proof. Care has to be taken in
bounding the radius of Bj because the distance between x; and x, (5) can be arbitrarily small. If
dist(z, x¢) is very small, then the radius of the balls Bj . is very small, and so we must show that
the radius of By, is also sufficiently small for Lemma 13 to be useful. We upper bound the radius of
the ball By, in the following two cases, showing that

Vol(Bj 1) S 1
Vol(By) ~ (2000w(3%2+v/— Ko + 2))?
holds in each case. The most important part is to choose a good center for By:
Case 1: either K = 0, or k > 1 and /— K dist(xg, x7) > 4. This captures the scenario where
either there are no previous query points, or the algorithm queries x not close to any previous query.
In this case, the overarching idea to upper bound the radius of By, is as follows: f; ;. is a perturbed

version of the squared distance function x +— %dist(a:, zj)Q. Therefore, the gradient of f;, at x,
(which is the center of B; ;) is approximately — exp;kl(zj) (see Lemma 10). The points {z;}

(12)

jEA
are clustered around ¢ in a ball of radius r. Therefore the vectors {— exp;kl(zj)} jed, are ilus—
tered around — exp.! (zef). Consequently the same is true for the gradients {grad f; (%)}
We use this intuition to work out the details in Appendix D.1.

Case 2: k > 1 and /—K)dist(zy, z¢) < 4. This captures the scenario where the algorithm
queries xj close to a previous query. In this case, the overarching idea to bound the radius of a ball
By, is as follows. All the functions f;,J € Ak, have the same gradient at x4, namely g,. Therefore,
since dist(zy,x¢) is small, gradient-Lipschitzness of the functions f; ;. (see Definition 9) implies
that the gradients {grad f; (k) };c 5, are all clustered around Py, g (the parallel transport of
ge to Ty, M). This intuition guides the details given in Appendix D.2.

After establishing inequality (12), we can use Lemma 13 to show that g, (11) is contained in

Vol(Bjix) |Ag| =1
Vol(Br) = (2000w(3%+/— Ky, + 2))4

jEAL"

| Aa] > |Ag|
of the balls Bj 1, j € A},. This concludes the inductive step, proving Lemma 12.

12
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Further literature review

Liu et al. (2017) were the first to claim acceleration on Riemannian manifolds. However, their
algorithm requires solving nonlinear equations at each iteration which a priori might be as difficult
as the optimization problem itself.

The results of Ahn and Sra (2020) mentioned previously are an improvement on the results
of Zhang and Sra (2018) who also show that acceleration is possible if the initial iterate is sufficiently
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close to the minimizer x*. Ahn and Sra (2020)’s algorithm additionally converges globally. Jin and
Sra (2021) propose a framework for generating and analyzing eventually-accelerated algorithms;
the algorithm of Ahn and Sra (2020) is an instance of this framework.

Martinez-Rubio (2021) presents algorithms for acceleration on spheres and hyperbolic spaces.
For hyperbolic spaces, Martinez-Rubio (2021) proves the rates e9(")\/k for the strongly g-convex
case, and eo(’")ﬁ for the nonstrongly g-convex case (to find a point x satisfying f(z) — f(z*) <

€ - %LT‘Q). The key idea consists of pulling back the optimization problem to a vector space via
a geodesic map; the pullback satisfies a relaxed notion of convexity. This idea is similar to the
method of trivializations, introduced in (Lezcano-Casado and Martinez-Rubio, 2019) and applied
to momentum methods in (Lezcano-Casado, 2020).

Alimisis et al. (2021) tackle the problem of acceleration on the class of smooth nonstrongly g-
convex functions. In certain scenarios (when r and curvature are sufficiently small), their algorithm
outperforms RGD; however, in general their algorithm requires O(é) iterations to solve the prob-
lem, which is not better than RGD. Nevertheless, the experimental results of Alimisis et al. (2021)
show promise. Huang and Wei (2021) develop an algorithm for Riemannian optimization based on
FISTA (Beck and Teboulle, 2009) which also demonstrates promising experimental results.

Alimisis et al. (2020) construct an ordinary differential equation (ODE) to model a Riemmanian
version of Nesterov’s accelerated gradient method. They prove that this ODE achieves an accel-
erated rate. It is unclear whether the discretization of this ODE preserves a similar acceleration.
Recently, techniques from dynamical systems and symplectic geometry have been used to derive
ODEs (Duruisseaux and Leok, 2021) and discretize such ODEs to obtain algorithms on Riemannian
manifolds (Franca et al., 2021a,b). It is also unclear whether such algorithms achieve acceleration.

In stark contrast to the results presented in this paper, on non-convex functions it is possible to
achieve acceleration for finding (first- and second-order) critical points on Riemannian manifolds,
even negatively curved manifolds (Criscitiello and Boumal, 2020).

One can also sometimes model non-Euclidean geometries using a Bregman distance function;
such geometries have different properties than Riemannian geometries. For example, the functions
in consideration are still convex in the Euclidean sense (unlike g-convex functions); the Bregman
geometry alters the notion smoothness and conditioning of these functions. Dragomir et al. (2021)
recently showed that acceleration is not possible in this setting. The techniques they use and the key
geometric obstructions to acceleration are significantly different from the Riemannian setting.

Useful geometric propositions, and characterizations of g-convexity and smoothness

In the appendices, we use the following geometric propositions, which are consequences of the
Euclidean law of cosines, the hyperbolic law of cosines (Ratcliffe, 2019, Thm. 3.5.3), and Topono-
gov’s triangle comparison theorem (see (Lee, 2018, Thm. 11.10), (Burago et al., 2001, Sec. 6.5),
or (Alexander et al., 2019, Thm. 8.13.3)). In the appendices, we also use the equivalent characteri-
zations of u-strong g-convexity and L-smoothness given in Lemma 16.

Proposition 14 Let M be a Hadamard manifold. Let xyz be a geodesic triangle of M with
vertices x,y,z € M and side lengths dist(y, z) = a,dist(x, z) = b,dist(x,y) = c. Also let the

X -1 X -1
angle at x be a, i.e., o = arccos (<ed£§(;i))’§i£&i§)>). Then a® > b2+ c? — 2bc cos(a) (Lee, 2018,
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Prop. 12.10). Equivalently,

dist(y, z)? > dist(z, 2)? + dist(z, y)? — 2 <exp;1(y), exp;1(2)> = Hexpgl(y) - expgl(z)}|2 .

Proposition 15 Consider the same setting as Proposition 14. In addition, assume the sectional
curvatures of M are in the interval (—oo, K] with Ky, < 0. Then

cosh(ay/—Kyp) > cosh(by/—Kyp) cosh(cy/—Kyp) — sinh(by/—K,p) sinh(cy/—Kyp) cos(a).

Lemma 16 Let M be a Hadamard manifold, and D C M be a g-convex set. Let f: M — R be
twice continuously differentiable. With reference to Definition 9:

o If f is p-strongly g-convex in D then f(y) > f(z) + <gradf(:c)7 exp;l(y)> + Gdist(z, y)?
forall x,y € D.

o If f is L-smooth in D then |f(y) — f(z) — (gradf(z),exp; 1 (y))| < 5dist(z,y)? for all
z,y € D.
Proof of the simple geometric lemma 13

For each = € B, let N(x) be the number of smaller balls which contain z:
N(z)=|{j€{1,...,n}:z € Bj}|.

Therefore, g € arg maxyep N (y). The sum of the volumes of the smaller balls is

nVol(B;) = /zEB N(z)dV (z) < /xEB (maXN( ))dV(x) - (maXN(y))vol(B).

yeB yeB

So |A| = max,ep N(y) > nVol(B;)/Vol(B) = ng?/r?

Details for Cases 1 and 2 in proof of the key lemma 12
Case 1: z, is not close to any previous query point

By Proposition 14, nonpositive curvature yields Hexp;k1 (z5) — exp;kl(:z:ref) H < dist(zj, Trer) < 7
By the inductive hypothesis and the assumptions k¥ < 2w and rv/—Kj, > 8,

1 1 r
< < —.
dwr/ Ko — 2vV—Kip T 2

Therefore, using the definition of H ;, (equation (3)),

lgrad Hj . (z1)|| < k

_ _ _ 3r
lerad fix (k) — expy, (@rer) || = [lexpy, () + gradHj g (wx) — expy, (wrer)|| < 5
Since gnorm () (17) from Lemma 17 is increasing on [0, 00),
-1
-1 (k) 1 q- r T
w gnorm(Rbau) <w tliglo gnorm(t) 961/3\/7 961/3\/7 901/3 5
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So each Bj, is contained in the ball

_ 3r _ k _
Bfﬂk <6prk1 (xref)v ? +w 1gH0Tm(Rl(oa)ll)) - Blk (eprkl (l'ref), 27’).

. _ Vol(B; ~dgorm (R )d

Defining, B = By, (exkal (Zyet), 21), we have \?of(é;f)) _wl (2r)(d bal)”
Now assume k = 0 or /—Kjodist(xg, z¢) > 4, where xy is defined in equation (5). Using

rv/—Kj, > 8 and the definition of Rg;)u (8), this assumption implies R](D];)H > 1/v/—Kjo. Thus,

8/V-Ki, 1
el/3(1485 + 72) ~ 300v/—Kyo.

k /
gnorm(Réa)ll) 2 gnorm(]-/ _Klo) 2

We conclude

Vol(By,) (2r)d (300 —Kjpo)% - (2r)d (600wry/— Ko )4

Case 2: zy, is close to a previous query point

Assume /— Kjodist(xg, z¢) < 4, where x, is defined in equation (5). Since r > 8/v/—Kj,, we
have Rg;)n = %dist(a:k, xy).

By assumption, dist(xy, Zrer) < Z. Since dist(zj, Tyef) < 7 and dist(zg, z7) < 4/v/ =Ko <
r/2, the triangle inequality implies dist(zy, z;) and dist (¢, z;) are both at most 3%. The inductive
hypothesis IHS implies f;x(z) = Sdist(z,z;)? + H;,(x) and ||[HessH; (z)|| < £ < 1 forall
x € M, using k < 2w. So by Lemma 10,

3 3
|[Hess f; k()| < max{dist(xy, 2;), dist(z, z;) } v/ —Kio + 2 < 3%\ —Ki + 2 (14)

for all z € B(z;, max{dist(zy, 2;), dist(x¢, z;)}). Additionally, the inductive hypothesis TH3
implies grad f; (z¢) = g for all j € Ay. Therefore, by Definition 9:

3\ .. .=
llgradf;i(xr) — Pry—argell < (3% —Kjo + §>dlst(.%'k,$g) forall j € Ayg.

We have shown that all the gradients grad fj7k(a:k), Jj € flk, are contained in a ball in T, M
centered at P,,_,,, g¢ with radius (3%v/— K, + %)dist(xk, xp).
Recall the definition of the balls Bjj defined in equation (10). We conclude all the balls

Bk, j € flk, are contained in a ball By, C T,, M centered at P,,_,;, g, with radius

3 1
(3% —Kj, + §>dist(3:k, xp) + w_lgnorm<1dist(xk, wg)) < (3% — Ko + 2)dist(xg, x¢),

using that w > 1 and gnorm <%dist(mk, xg)) < SdQT%QE’L’f;%))/ 4 < diStl(ggd”). Therefore,
Vol(Bj 1) _ W™ gnorm (dist (zg, 2¢)/4)¢ - w4dist(zg, 20)?
Vol(By,) ((3%)\/—7.[(101—1— 2)dist(zg, 2¢))® ~ (2000(3%Z+/— K)o + 2)dist(zg, z¢))? (15)
~ (2000w(3%/— Ky + 2))4
using gnorm(%diSt(qjka ﬂﬁe)) > efﬁ;:%’gf%) > diStz(ggdx‘) , whichis due to /— Ko dist(x, z/) < 4.
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Bump functions

Lemma 17 (Family of bump functions) Let M be a Hadamard manifold with sectional curva-
tures in the interval K., 0] with K, < 0. Let Ry, > 0,w > 0, z, € M. Define

R
: 10, R, R) = , 16
a: [0,00) = o) = VR 1 55/R) (16)
8R
norm * |[Y, R, norm = . 1
gnorm: [0, 00) = guom(B) = 5 55 + o T 4

There is a family of functions {hy: M — R}, indexed by g € By, (0,0 gnorm (Rban)), satisfying
foreach g € Bmk(O,w_lgmrm(Rbau)) C Ty M:

BF1 gradhg(xy) = g;
BF2 the support of each hg is contained in B(xy,, Rpan);
BF3 |gradhy(z)|| < —F—=—

o(@)|| < & forallz € M;

), and |hy(z)| < w™'a(Rpan) for all z € M.

BF4 hy(zy) = & ||g| g;olrm(

Proof of Lemma 17
Define ¢r: R — R by

or(t) = ¢ - exp ( . 1/(1 - t)) — exp(2t/(2t — R?))  fort € (—o0, R2/2),

and ¢r(t) = 0 elsewhere. The function ¢r: R — R is C* (Lee, 2012, Lem. 2.20). We consider
bump functions supported in B(p, R) of the form h(z) = a - ¢r(dist(z,p)?/2) fora € R. As a
composition of C'*™° functions, these bump functions are also C*°.

Remark 18 Since dist(z,p)?/2 > 0, the values of ¢ on (—00,0) are irrelevant. All that matters
is that ¢ R is infinitely differentiable in a neighborhood of the origin.

We have ¢(R?/8) = ¢~ /3, and for t € (—oo, R?/2)
On(t) = —r(t) - 2R2/(R2 = 20)%,  §l4(t) = ér(t) - AR (4t — B?)/(R? — 21)".
We have partitioned the proof of Lemma 17 into several subsections: E.1.1, E.1.2 and E.1.3.

BUMP FUNCTION CONSTRUCTION
For each p € B(x, Rpan/3): let R = 2dist(z, p) and define ﬁwk,p : M — Rby

hayp(2) = w™a(R)or(dist(z,p)*/2).

By construction, il:%p is supported in the closed ball B(p, R) C B(x, Rpan)-
We have B
gradhy, p(z) = —w ™ a(R)¢p(dist(z, p)?/2) exp, ' (p).

21



E.1.2

CRISCITIELLO BOUMAL

So using that ||exp, ! (p)|| = dist(z, p) = R/2,

|eradhe, p(an) | = wla(R)|6R(B/8)|R/2

16
= W a(R)O(R?[8) oy Bj2 = wl e Pa(R) (18)
1/3 3
_ .1 | hd
- 9R(4\/—K10/R+55/R2) v gnorm(2R>

where R can take any value in [0, 2Ry, /3]. Since the function gyorm, is strictly increasing on [0, o)
and gnorm (0) = 0, we see that ngadﬁwkvp(xk) H takes all values in the interval [0, w ™! gnorm (Rbal)]

(as p varies).

)
gradhxk Tk H Hip

Therefore,
Xpzy, (P ”

On the other hand, gradhxk plzr) = ‘

{gradﬁxk,p(fk) 'pE B(.Tk, Rball/g)} = Bxk (0, wilgnorm(RbaH))-

More precisely, for each g € By, (0, W gnorm (Rpar)) there is exactly one p € B(xy, Rpan/3)
such that g = gradhy, (1), and vice versa. Finally, define

hgradizwk,p(a:k) = hfl'knp Vp € B(l‘k, Rball/B).

This defines the family of functions in Lemma 17, and also establishes property BF1. By construc-
tion, property BF2 is also satisfied.
We calculate

Rgradinn, (o) (@) = hayp(@r) = w™a(R)or(dist(zx, p)*/2) = w™ a(R)or(R*/8)

= wila(R)efl/B’ = ’

where we used equation (18) for the last two equalities. This shows the first part of property BF4.

. 9R
gradhg, p(zk) H 6

B 9 2 s
gradhﬂ?k,P(xk)H 16 3gn0rm (w ‘ gradhﬂmp(xk)H )

BOUNDING THE FUNCTION VALUES AND GRADIENTS OF THE BUMP FUNCTIONS

The maximum of

ﬁxkvp(x)‘ is attained when z = p and equals w~'a(R), which is at most

La(2Rpan/3) < wta(Rpan). This shows the second part of property BF4.
By Section E.1.1, we know that

gradhy, »(z) = —w ™ a(R)¢R(dist(z, p)*/2) exp; ' (p)

if dist(x,p) < R and gradh,, ,(z) = 0 otherwise. Therefore, for any = € M,

|

gradﬁxk,p(as)H < wla(R) max | R ( t2/2)|
t€[0,R]

=w™'a(R) e b or(t°/2) - 2R*/(R® — £2)?
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It is easy to see that the maximizer of this problem is ¢t = R/ 31/4, which yields

‘ gradfzxk’p(x)H <w la(R)R™1\/36 + 21V/3e1/27V3/2 < 3w la(R)R™!
<w! i < L
o 55 + 4R/ — Ko ~ 4wy —K,

This proves the first part of property BF3.

E.1.3 BOUNDING THE HESSIAN OF THE BUMP FUNCTIONS

For v € T, M and dist(x, p) < R, we have

(v, Hesshy, p(z)v) = w™a(R)$(1/2) (v, — expy ' (0))*  +w ™ a(R)$R(t7/2) (v, H (x)v)
= (term 1) + (term 2)

where t = dist(x, p) and S (x) is the Hessian of the function z +— dist(z, p)?/2.
We have ¢ = dist(z, p) = ||exp;*(p)|| and

17 ()] < 1+ dist(z,p) /= Kio = 1 + ty/ =Ko,

by Lemma 10. So for ¢ € [0, R] we have that

2092 _ p2 5
term 1] < (w™'a(R) [|v]]?) [¢(t2/2)Wt2] < (wla(R) o]?) [436“]

< (w™ta(R) |Jv||*) [436 : 2566—3/38} < (w™ra(R) |Jv|*) [51/32] ,and

- 2

|term 2| < (w_la(R) HUHQ) ¢(t2/2)(1 + t\/_iKlo)R;RQ)z]
< (wta(R) o] > (1+ Ry~ K, RM/Q))]

< (wla(R) [o]) |20 + RV=Ri)R? - 47/ R4]

< (wa() olP) [t/ F/ R+ 4/ 2.

Of course |Hesshy, ,(z)|| = 0 for z ¢ B(p,R). So for all x, we have ||[Hessh,, ,(z)| <
~la(R)(4v/=Kio/R + 55/R?) = 4. We have proven the second part of property BF3.

E.2 Bump functions for function-value queries

In this section, we construct a family of bump functions parametrized by both function value
and gradient, as explained in Appendix F. To do this, we first prove Lemma 19. Then we prove
Lemma 22 (stated in Appendix F).
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Lemma 19 Let M be a Hadamard manifold with sectional curvatures bounded below by K, < 0.
Let Ry > 0,w > 0,2, € M. Define a: [0,00) — R as in equation (16). There is a family of
bump functions

{hp: M — R}fG[—w’1a(Rba11)aw’1a(Rbau)]’

satisfying for each f € [—w™a(Rpan), wa(Rpan)):

~

* hy(xr) = f;
e gradhf(zy) = 0;

* the support of each h ¢ is contained in B(xy, Rpan);

~

hf(x)‘ < wla(Ryan),

. -1
gradhf(x)H S W o

Hessﬁf(:c)H < & forallz € M.

Proof We use the notation established in Section E.I. For f € [—w ™ a(Rpan), wta(Rpan)],
define the smooth functions hy: M — R as follows:

Pew—1a(Rya) (T) = cw  a(Rpan) o R, (dist(z, 21,)%/2), Ve € [-1,1],Vz € M.
For each f € [~w™ a(Rpan), w ta(Rpan)], we know:
. iLf is supported in B(xg, Rpan);

* hy(zg) = cw a(Rpan) = f;

gradizf(:rk) = 0, since = > dist(x, z)?/2 has zero gradient at z = xy;

* using the calculations from Section E.1.2 and |¢| < 1,

gradﬁf(x)H — Je|w ™ a(Roan) |, ., (dist(z, 21)2/2)] - [|Jexpy " (z4)

< lelw ta(R ma; ! 2/ t<w !
— ’ ’ ( ball) tE[O,Ri)(aH} ‘¢Rball( / )‘ —

1
4/~Ky'
* using the calculations from Section E.1.3 and |¢| < 1,

1

HHessﬁﬂx)H < |c|w_1a(Rbau)(4\/ — K)o/ Rpan + 55/R%a11) < o

Proof [Proof of Lemma 22] For all

A~

f € [~w ta(Rpan), w  a( Ryan)], 9 € By, (0,w ™ guorm (Rpan)),

Lemmas 17 (property BF4) and 19 imply (Bf+hg)(xk) = f+% 91l 9niim (w llgll ) and grad(ﬁf—k
hg)(zk) =0+g=g.
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We know that [|g| € [0,w ™ gnorm (Rpban)]. Additionally, gnorm(0) = 0 and gnorm is strictly
increasing. Therefore (introducing the change of variables gnorm (t) = w || g||)

3

min Sw  guorm(®) - < > gll gk (gl ) < max S guoem(t) - .
t€[0, Rpan] & - T t€[0,Rpan] 8

Using that ¢ — gnorm (%) is increasing,

3 _ 3 _
0< g HgH gnolrm <w ”g”> < §w 1Rballgnorm(Rball)‘

Therefore, for any f € [—w™'a(Rpan) + 3w ™" Rualignorm (Rban), w ™ a(Ruan)] and for any g €

By, (0,w ™ gnorm (Rban)), we can define h s, = h + hg. By construction, we have

F=2llgllgiorm (wlgll)
htg(xr) = f and gradhy 4(x)) = g. Moreover, Lemmas 17 and 19 imply

* the support of each hy 4 is contained in B(xj, Rpan);

* llgradhyg (@)l < g +

YO on forall z € M;

1 < 1
47’”\/7](10 - 2’11]\/7[(10

* |[Hesshyy(z)|| < & + & < & forallz € M.

Incorporating function-value queries

We want to extend the lower bound in Theorem 11 to algorithms which can make function-value
and unbounded queries. We do this in two steps. First in Appendix F (this section), we prove Theo-
rem 20 below, an extension of Theorem 11 providing a lower bound for algorithms using function-
values but making bounded queries. Second in Appendix G, we prove Theorem 24, an extension of
Theorem 20 providing a lower bound for algorithms making function-value and unbounded queries.

Theorem 20 Let M be a Hadamard manifold of dimension d > 2 which satisfies the ball-packing
property Al with constants 7, ¢ and point .o € M. Also assume M has sectional curvatures in
the interval [K),, 0] with K)o < 0. Let r > max {f, \/_87[(10, 4(d;2) } Define k = 4r\/— K\, + 3. Let
A be any deterministic algorithm, and assume that A always queries in B(xyet, %), with £ > .
There is a function f € Firef (M) with minimizer x* such that running A on f yields iterates

To,T1, T2, . .. satisfying dist(xy,2*) > § forallk = 0,1,...,T — 1, where

T éd+2)"tr
| log (2000&(d + 2)Lr(3%v/—Kio +2)) |

(19)
Moreover; [ is of the form f(z) = 3dist(z, z*)?+ H (z) where x* € B(Zyer, 37) and H: M —

R is a C* function satisfying

1 |[HessH (x)|| < Vee M. (20)

1
2 /7_K107 _57
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Inequalities (20) are included because they are useful for the proof for Theorem 24 (see Section G.2).

Before continuing to the details, let us first sketch the main ideas needed for this proof. In
the case where the oracle only returns a gradient, Lemma 17 gives us a family of bump functions
indexed by vectors g such that for each g in a ball of T;, M there is a bump function hy: M — R
satisfying gradhg(x) = ¢ (and a number of other properties). This allowed us to use Lemma 13
to choose the vector g;. In the case where the oracle also returns function values, we need a lemma
which gives us a family of bump functions indexed by pairs ( f, g) lying in a cylinder I x B, where I
is a closed interval of the real line and B is a closed ball in T, M. For each pair (f, ¢), the lemma
should provide a bump function hs,: M — R satisfying h¢4(x) = f and gradhysg(zr) = g.
Lemma 22 in Appendix F does exactly this.

Lemma 22 works by constructing a bump function Ay , as a sum of two bump functions h ¢ and
hyg (the latter from Lemma 17), the first controlling the function value of /¢ 4, the second controlling
its gradient. We then use Lemma 23, which is analogous to Lemma 13, to choose a pair ( f, gx) to
return to the algorithm. Since we are now comparing the volumes of sets of the form I x B which live
in a space of dimension larger than d, we end up showing that [A1| > Q(|A| /(Zv/—K,)??)
instead of |Apy1| > Q(|Ax| /(%+/—K1,)?). This is not an issue because d + 2 = O(d).

Proof of Theorem 20

Lemma 21, which is analogous to Lemma 12, forms the backbone of the proof of Theorem 20.

Lemma 21 Let M be a Hadamard manifold of dimension d > 2 with sectional curvatures in the
interval K)o, 0] with K)o < 0. Let Xyt € M, 7 > 8/\/—K)o, Z > 1. Let 21, . .., 2N € B(Zyef, %7“)
be distinct points in M such that dist(z;, z;) > 5 for all i # j. Define Ag = {1,2,...,N}. Let A
be any first-order algorithm which only queries points in B(xyet, Z). Finally, let w > 1 (this is a
tuning parameter we will set later).

For every nonnegative integer k = 0,1,2,..., |w], the algorithm A makes the query ) =
A ((fo, (0,90)), -, (fk—1, (Tk—1,9K—1))) and there exists f, € R, g € Tz M and a set
Ak C€H{1,..., N} satisfying

12000w(| Ay — 1)
d+2
(2000w(3%/—K10 + 2))

|Agt1] >

21

such that for each j € A1 there is a C*° function f;j1: M — R of the form

1.,
Fikii(@) = Sdist(z, 25)* + Hjpy1 (2)
satisfying:

LI f;gpqis (1— 5D strongly g-convex in M and [2r/— Ko + 1+ 5L -smooth in B(wyet, ),

2w 2w

Lfv2 gradf;r+1(2;) = 0 (hence in particular the minimizer of f; p41 is 2;);
Lv3 fjr1(xm) = fm and grad fj g1 (vm) = gm form =0,1,... k;
Lfvd dist(zy,, zj) > § forallm =0,1,... k.
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k k
LS |H o (2)] < e, llgrad H g (2)]| < 50— |[HessHy g (2)]| < 5L for all
r e M.

Proof [Proof of Theorem 20] Let us apply Lemma 21 to the manifold M and algorithm .A. Let the
points 21, . .., zx be provided by the ball-packing property so that N > ¢
Setw = ¢ér(d + 2)~! in Lemma 21, and observe that

) . N 1 ér(d+2)71
min{|w],T} = min { lér(d+2)"], \‘log (2000w(37y T + 2))J } =T
because w = ér(d +2)~! > 4 and Z\/— Ky, > 8.

For the same reasons as in the proof of Theorem 11, it suffices to show that |Ax| > 2 for
all k < T. We induct on k. (Base case) By the ball-packing property, |4g| > e > 2 since
r > 4(d 4+ 2)/¢. (Inductive hypothesis) Assume |A,,| > 2 forallm < kand k +1 < T.
Therefore, |Ap,| — 1 > | Ay, | /2 for all m < k.

Lemma 21 implies

6000w | A, | 2| Ap|
d+2 = d
(ZOOOw(E%R\/T(b + 2)) (2000w(3%/—K10 + 2))

Unrolling these inequalities and using |Ag| > e, we get

Vm < k.

|Am+1| Z 12

e&rzk—i—l
(2000w (3%+/— Ko + 2)) (k+1)(d+2) "
On the other hand, k£ + 1 < T implies

|Apy1] >

eCT‘

> 1.
(2000w(3%y/— K, + 2)) F )
So |Ag+1| > 2. Lastly, note that Lemma 21 and our choice of 7" implies for all z € M

1
I< 57
2v/—K)o

|Hjr(x) |grad H; 1 (z) [HessHj r(z)|| <

N =

.
| < ——v,
64v/— K

Proof of Lemma 21

The proof approach for Lemma 21 is very similar to the proof presented in Section 3.2, so we are
more succinct, focusing on the additional analysis needed to handle function-value queries. Before
we prove this lemma, we state two lemmas which we use. The following lemma is analogous to
Lemma 17, and its proof can be found in Appendix E.2.

Lemma 22 Let M be a Hadamard manifold with sectional curvatures in the interval [K),, 0] with
Ky, < 0. Let Ry > 0,w > 0,2, € M. Define a: [0,00) — R and gnorm: [0,00) — R as in
Lemma E. There is a family of bump functions {hs ,: M — R} indexed by (f, g) satisfying

_ 3 _ _ _
fe|l-—w 1a(Rball)+§w ! Rpalgnorm (Rpan ), w 1a(Rball)}a 9 € By, (0,w ™ gnorm (Rban))

such that for each such (f, g):
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* hpglar) = f;
* gradhy q(z1) = g,

s the support of each hy 4 is contained in B(xy, Ryan);

o |hpg(x)| < 2w ta(Rpan), gradhyq(z)| < 1

TN % Hesshyg(x)|| < ﬁfor all x € M.

The interval [—w_la(Rbau)—i-%w_leaugnorm(Rball), w™ta(Ryan)| has length at least w™ a( Ryan).

By cylinder we mean any subset C' of a Euclidean space of the form C' = I x B, where [
is a closed interval of R and B is a closed Euclidean ball. Note that these cylinders include their
interior—there is a distinction between a cylinder and the surface of a cylinder. The height of a
cylinder C = I x B is the length of I; the radius of C'is the radius of the ball B.

Lemma 23 Inthe following I, I denote closed intervals of R, and B, B; denote closed d-dimensional
balls of Euclidean space.

Let Cy = 11 x By,...,C, = I, X By be n cylinders of radius q and height a each. Assume
each of the cylinders is also contained in a larger cylinder C = I x B of radius r and height b:
C; CCforallj=1,...,n. Choose

(f,g9) €arg max [{j e {1,...,n}:(t,y) € Cj},
(t,y)eC

andlet A={je{l,...,n}:(f,g9) € C;}. Then

Vol(Ch) Vol(B1) a @ a
Al > _ a4 e
A= ne@) =" Vo) 5= "

The proof of Lemma 23 is essentially identical to the proof of the analogous Lemma 13.

Let us now prove Lemma 21. We construct the function values fy, f1, . .., gradients gg, g1, . - -,
sets Ag, A1, ..., and functions f; o, fj 1, ... inductively. We prove the claim by induction on k. The
base case is the same as in Section 3.2. In particular, we define f;o(z) = 3dist(z, z;)? for all
jEAOI{l,...,N}.

Let’s consider the inductive step. We are at iteration £ > 0, and we assume properties Lfv1,
Lfv2, Lfv3, Lfv4, Lfv5 hold with k replacing k£ + 1 in all expressions (the inductive hypothesis).
The algorithm queries a point zy. If & > 1, let 2, £ < k, be a previous query point closest to x.
We can assume xy # x. Define Ay, as in equation (7).

We shall define f; 41 = fjr + hjr wWhere h; is an appropriately chosen bump function. We

want h j, to be a bump function whose support is contained in B(xy, R}()];)H) where R}()];)H is defined

by equation (8). With this choice for R}()Z)H, we set h; 1 to be one of the bump functions h , supplied
by Lemma 22 (which one remains to be determined). With this setup, we immediately know the
function f; ,41 = fjr + hy g satisfies properties Lfv2 and Lfv4, as well as f; j1(zm) = fm and
grad fj k+1(m) = gm form = 0,1,...,k — 1, for the reasons given in Section 3.2. Additionally,
using

r/8 B r
(4\/ _Klo) 64wy _Klo’

we see the function f; ;41 = fjr + hy 4 satisfies properties Lfvl and LfvS.

2w71a(Rg;)u) < 2w71a<§> < 2w714
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It remains to choose Agy1 C Ay, fr e Rand g, € Ty Msothat f; pi1(xk) = fi, gradf;pr1(zr) =
gi forall j € Ay, and inequality (21) is satisfied.
Consider the cylinders in R x T, M defined by C}; , = I X Bj where we define

_ 3 _ _
T = [ fialan) = w ™ a(Ryy) + S R guorm (RU): Fiaen) +w a(RED| @2)

and recall that B; , = By, (gradf;x(xr), wilgnorm(Ré?H)). Let

(fk>9r) € argmax s pyerxr,, M ({7 € Ay (f.9) € Cj,k}’ -

Define A1 = {j € Ax : (fx, k) € Cjn}-
For each j € Ay define g; , = gr —gradf; x(x)) and ffg‘) = fr— fjx(xk). Then Lemma 22
implies for each j € Ay there is a bump function h;j, := h FE0 satisfying
j.k 293,

hin(aer) = Fi5) = i — fix(ze)  and  gradh;g(er) = gjk = g — grad fj ().

Therefore for all j € Api1, fjrti(zn) = fip(wr) + hjr(zr) = fi and gradfj (o) =
gradf; p(xr) + gradh; () = gk

It remains to verify inequality (21). To do so, we use Lemma 23. To use this lemma, we need (a)
a good upper bound on the radius of a ball B, C T,, M containing the balls B; ., j € flﬁ, and (b)
a good upper bound for the length of an interval I C R containing the intervals I, j € Aj. We’ve
already done (a) in the proof from Section 3.2. Recall that we showed (using lines (13) and (15))

VOI(Bj’k) > 1
Vol(Br) = (2000w(3%+v/— Ko + 2))7

For (b), we upper bound the length of an interval Ij, containing I;,j € Ay, in two cases, as in
Section 3.2:

Case 1: either k = 0, or k > 1 and /— K} dist(xy, z4) > 4.

Case 2: k > 1 and /— K\ dist(z, x¢) < 4.

In each case, we show that

Length(I; ;) - 12000w
Length(I;) ~— (2000w (3%2+/—Ko +2))?

Therefore, using Lemma 23, ( fx, gi) is contained in

VO](B]‘JC) ' Length(ljvk) > 12000w(|Ag| — 1)
Vol(By) Length(ly) — (2000w(3%m+2))d+2

| Agt1] > ‘Ak

of the cylinders Cj 1, j € Aj,. This concludes the inductive step, proving Lemma 21.
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CASE 1 (FOR FUNCTION-VALUE QUERIES)

We have

|dist(:vk, zj)2 — dist(xg, .'Ifref)2’

= (dist(xy, z;) + dist(xg, Trer)) |dist(zg, 2;) — dist(zg, Tref)| 23)

< (dist(x, ;) + dist(ag, Trer))dist (2}, Trer)

< (2dist(zk, Tref) + dist(25, Trer) )dist (25, Trer) < (2dist(zg, Tref) + 1)1
By the inductive hypothesis and k < w, [Hj k()| < & \/ I;o < & \/T_ = Combining this with
inequality (23), we conclude

1
fik(xr) — *dlst($k, xref = |H, p(x1) + dlSt(:L‘k, ZJ) — *dlbt(fb’k,l‘ref)
(24)

2dist (2, Tror) + 7)1 < (dist(xg, Xrer) + 7)1 < (Z + 71
_64m ( (k ref) ) ( (k ref) ) ( )
using 7v/— K, > 8 for the penultimate inequality. Therefore, all function values f; ;(xy),j € Ay,
are contained in an interval centered at 2dist(zy, Zer)? of length at most 2(% + r)r. This implies
that all the intervals I;,j € Ay, are contained in an interval [}, centered at %dist(a:k, Tret)? of
length at most

r

A% +r)r + 2w a(RY)) < 2A% + r)r + 2w a( AT
—N]o

8> <2(Z+r)r+

< 2(Z +2r)r < 6%r

using that w > 1 and rv/—Kj, > 8.
Now assume k = 0 or /—Kj,dist(xg, z¢) > 4, where xy is deﬁned in equation (5). Using

rv/—K), > 8 and the definition of Rl()all (8), this assumption implies Rb3L11 > 1/v/—K),. Therefore,

Length(Z; 1) - w_la(R](D];)H) LW La(1/v/— 10) 1
Length(I) —  6%r - 6%r = 2000w(Zy—K)r/—F)

CASE 2 (FOR FUNCTION-VALUE QUERIES)

Assume k > 1 and /— K dist(zg, xg) < 4. Since rv/—Kj, > 8, R]()];)H = dist(zg, x¢)/4. The
analysis for this case is similar to Case 2 in Section D.2.

The inductive hypothesis implies |[HessH; ;. (x)|| < % < fforallz € M, using k < w. So
as in equation (14), we know

3
|Hess f; k()| < 3%Z+/ —Kio + > Vo € B(z;, max{dist(xy, 2;), dist(z¢, 2j)}).

Additionally, the inductive hypothesis implies f; ;(x¢) = f; and gradf; x(z¢) = g¢ for all j € Ay
Therefore, by Lemma 16

3 -
| fik (k) = fo— {ge,expy, (zx)) || < (3% — Ko + §>dist(3?k,3?£)2, Vj € Ay.
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We have shown that all the function-values f; ;(xy),j € flk, are contained in an interval centered
at f + (ge, expy! (1)) with length at most 2(3%+/— K, + 3)dist (g, z¢)?.
Therefore, all the intervals [, j € flk, are contained in an interval I, C R of length

2(39? —Kio + ;)dist(a:k, xg)Q + 2w*1a(dist(xk, xp)/4) < 2(3%’\/ —Kijo + 2) dist(z, 33[)2

(dist(xy,x,)/4)? dist(z,r¢)?

using w > 1 and a(dist(zg, z¢)/4) = IV Rodist(zpme) 755) = 64(55) Therefore,
Length(I;x) < w™ta(dist(zy, 20)/4) - w~tdist (2, 2¢)?
Length(l) — 2(3%/% n 2) dist (g, 22)2 8000 (3%\/% n 2) dist (2, 2¢)?
_ 3%\—-Kio+2 . 12000w 12000w

>

24 (2000w (3%\/% n 2))2 - (2000w (3%\/% v 2))2

using R]g];)u = dist(xg, z¢)/4 and

. (dist (g, z¢)/4)* (dist(zy, x¢)/4)* _ dist (g, z0)?
dist 4) = > >
aldist(zy, v2)/4) A —Kudist(zn, 27) +55) —  4(A+55)  — 4000

which itself follows from dist(z, z¢) < 4/v/— K.

Unbounded queries

We now want to extend the lower bound from Theorem 20, which holds for algorithms querying
only in B(xef, %), to algorithms which can query anywhere. That is, we want to prove Theorem 24.

Theorem 24 Let M be a Hadamard manifold of dimension d > 2 which satisfies the ball-packing
property Al with constants T, ¢ and point xet € M. Also assume M has sectional curvatures in

the interval [K),, 0] with Kj, < 0. Let r > max {ﬁ \/—LTI’ @} Define k = 4ry/— K)o, + 3.

Let A be any deterministic algorithm.

There is a function f € F3 ! (M) with minimizer x* such that running A on f yields iterates

To,T1, T2, . .. satisfying dist(zy,z*) > 7 forallk = 0,1,...,T — 1, where
T é(d+2)"1r - é(d+2)"1r
| log (2000&(d + 2)~1r(3%v—Kio +2)) | ~ |log (2106 - &(d + 2)"Lr(rv/—K0)?)

with Z = 27 log(rv/—Kio )2

To prove Theorem 24, the high-level idea is to modify all hard instances f from Theorem 20
so that f(z) = $dist(2, Zyer)? for @ & B(wyer, Z) (recall Z > r). This way, the algorithm gains
no information by querying outside the ball B(zef, #). On the other hand, we still want the hard
functions f to remain untouched in the ball B(xyf, ). In the region between radii  and %, we
smoothly interpolate between these two choices of functions. We show that we can choose %
appropriately so that the lower bound Q(r) still holds and the modified functions are still strongly
g-convex. Technically, we do this via a reduction, which is depicted in Figure 1. This argument was
inspired by (Carmon et al., 2019, Sec. 5.2).
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G.1 Proof of Theorem 24: a reduction from Theorem 20

Define 7: M — Rby 2(x) = 3dist(z, )% Given any f: M — R (think from Theorem 20),
define the function f, z: M — R by

Jra (@) =s0.2(2(@)) f(@) + [1 = 50,0(2(@))| 2(2) (25)

where s, : R — Ris a C* function which is 1 on (—oo, 3% and 0 on [122?, o). More precisely,
following Lee (2012, Lem. 2.20, 2.21) we define the C* function ¢: R — R by

1 for 7 € (—o0,0];
1
t(r)=q == forr e (0,1);
e I-T4e 7
0 for 7 € [1,00)

P — ir?
sr (D) = t(lf), forall 7 € R.

In Appendix G.2, we show that if we set Z = 2%rlog(rv/—K},)? and if f € Fiet (M) is from
Theorem 20, then f, 5 € F3rt(M).

3K,r

Definition 25 The (first-order) oracle for a differentiable function f: M — Risthe map Op: M —
R x TM given by Of(x) = (f(x), (x,gradf(x))).

Given the oracle Oy of any function f, we can use Oy to emulate the oracle Oy, , using equa-
tion (25), and the following formula for grad f;. »:

—expy ! (Trer) if d(z, Tret) > Z;
gradf( ) if d(z, zpef) < 75
gradfy.z(x) = =51 4 (2(2)) (f(2) — 2(2)) exp; ! (wrer)
—(1 —sr2(9(x ))) expy ! (Zret)
+5r7%(9($))gmdf(ﬂf) otherwise.

See Appendix G.2 for the derivation of this formula for grad f;. ».

To prove a lower bound for an algorithm 5 querying anywhere, we make B interact with the
oracle Oy, ,, (which we simulate using Oy). This implicitly defines an algorithm .A which interacts
with O —see Figure 1. Explicitly, the algorithm A internally runs the algorithm B as a subroutine
as follows:

* if B outputs y, & B(&rer, #), A does not query the oracle Oy, but simply passes
L. _
(Fruo ()s g frn () = ( Gelist (g, )2, = ex0, (et )
to 3; this corresponds to path 1°-2’-3” in Figure 1;
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* if B outputs y, € B(ret, #), A queries Oy at x; = yy, receives (f(x;), gradf(x;)) from
Oy, and passes ( fy # (), grad f, #(x;)) to B (which it computes using
(f(x;),grad f(x;))); this corresponds to path 1-2-3-4-5 in Figure 1.

Inside of A, the algorithm B outputs the sequence yo, y1,y2, . ... The algorithm A produces the
sequence of queries o = Yy, T1 = Yky,--- € B(Trer, #Z) where 0 < kg < k1 < kg < ... are
integers. Let Kp = {ko, k1,...,kr—1}.

1 Of
E T’R :
5 2.% = yi YES ~. 11y
with k = ki dlSt(yk: xref) < R? ‘i
NO
0 B
f 2.
3. C o | 5,3 .
(f (x;), gradf (xi)) R (fr,n (x;) gradfr,ﬁ(xi))u (fr_R (y), gradfy » (yk))

Figure 1: A diagram of the reduction used in Section G.1. The algorithm A first internally runs
B to get an iterate y;. Then, depending on the distance between y; and x,ef, A ei-
ther queries the oracle Oy (path 1-2-3-4-5) or does not query the oracle (path 1°-2’-
3”). The box %, 4 represents a map which when given a pair (f(z), gradf(x)), outputs
(fr2(), gradf, #(x)). Atstep 2’, A computes (dist(yx, Tref)?, — expy, (Tref)) (not
shown for clarity) which it then returns to 5.

By design, algorithm .4 makes queries only in B(zef, #). Therefore, we can apply Theorem 20
to A. That theorem implies there is a function f € Fxef (M) with minimizer x* for which running
Aon fyields o = yry, 1 = Yrys- - PT-1 = Yhyp_, € B(Trer, #) satistying dist(z*, 21) >
forall k = 0,1,...7T — 1. Here, kK = 4r/—Kj, + 3, and T is given by Theorem 20 with # =
297 log(rv/—Kio)?, that is,

- e(d+2)"tr S éd+2)""r
| log (2000&(d + 2)~1r(3% V=K, +2)) | — |log (2106 - &(d +2)Lr(rv=K)?) |’

using that rv/— K}, > 8. In other words, dist(x*, yx) > % forall k € KCp.
On the other hand, we know that dist(zyef, yg) > Z forall k € {0,1,...,7 — 1} \ Kp. There-
fore, using that #Z > r and x* € B(Xyet, %r),

dist(z*, y) > % forall k € {0,1,...,T — 1} \ Kr.
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We conclude dist(z*,y;) > 7 forall k = 0, 1,...,T — 1. Finally, observe that (by our construction

of A) if we run B on the functlon fr% then we get exactly the sequence %o, y1,...,yr—1. Since
fra € Fyen (M) if Z = 2%rlog(ry/—Ki,)?, as stated above, this proves Theorem 24.

Verifying f, » is in the function class

In this section, we abbreviate s = s,. 5. To finish the proof of Theorem 24 (from Section G.1), it
remains to show that if f € F, ,ff,?f(/\/l) is a hard function from Theorem 20, then f,. 4 € F3 (M)

3k,r
for a suitable choice of Z. To do this, we use that a hard function f from Theorem 20 is Q—strongly

g-convex in M and [2r/=K, + 3]-smooth in B(zef, 7). We also use that f has the form

1 3
f(z) = §dist(:1:, )2 + H(z), witha* € B(.Tref, 17‘),

and, from inequalities (20), for all x € M we have

* ||lgradH ()| < < 15 (since we assume r/—Kj, > 8); and

1
2v/ =Ko

2 o
< & (again since we assume 7v/—K), > 8).

¢ |H($)‘ < 64\/7;T10 — 512

Recall Definition 1 for the function classes Fr¢f (M) and F57t(M). Since f(z) = f.%(x)

3K,T

for all z € B(zyef,7), it suffices to show that Hess f, 5 (z) = 1[ for all z € M. We just need to
check that this is true when r < dist(z, zyef) < Z. Let’s compute gradf, z(x) and Hessf, z(x)
when r < dist(x, Tyef) < Z.

Let (t) be a geodesic with v(0) = x,7'(0) = v and ||v|| = 1. For the moment, define

D(z) = %dist(x Tret)?, keeping in mind that 2: M — R depends on x,.r. Additionally, define
I(x)—3r

T(z) = 11&7 so that
/ 1 / 1 1 7
(@) = tr@): {(P@) = Tt @) 9@ = ot @)
For the gradient, we have:

d d
(v gradfrip(@)) == | frr(1(B)] _ = 2 |S@EONFGE) + 1= s@HON2((0)] _

= Ls@Ge0)] _ (F@) — 2@) + s(2@) % [100)]

¥ [1 - s(@(a:m% [@('y(t))L:O

2)) (v, = expy  (zre)) (f(2) = 2(2)) + 5(Z(2)) (v, grad f (z))
+ [1 = 5(2(2))] (v, — exp;  (wrer)) -

34



NEGATIVE CURVATURE OBSTRUCTS ACCELERATION FOR GEODESICALLY CONVEX OPTIMIZATION

For the Hessian, we have:

d2

(v Hessfr(@)v) = 23 [ Fa(V(0)]
2
= @I 60) + [ - s @GEN260)]
2
= S s@0w))] _ r@ 2t [s@ewn] _ S[raw)]

2 2
+s(2@) o [16)] _ - 5 [s(26m))]_ 2()

2
- Cls@tm)] _ S[2Gun] |+ - @) o [260)]
Further simplifying yields:

t=0

d2

2
(v, Hess fa(0)0) = (7)) 35 [F0)] _ + 1= (2@ 55 [260)]
2
+ s[5 @6] _ (F@) - 2)

Using that f(z) = sdist(z, 2*)? + H(x),
(v,Hessfr (x)v) = s(2(z)) (v,Hess f(z)v) + [1 — s(Z(x))] (v, HessZ (z)v)
d?

+ 2 [s(@('y(t)))]tO(;dist(;g’g;*)Q H() - @(@)
_ 2$ [S(.@(’Y(t)»]tzo ( <U, expajl(x*) _ eXp;l(Jj'ref)> — (v, gradH (x)) > .

Rearranging yields

(v,Hess fr (x)v) = t(r(z)) (v, Hessf(z)v) + [1 — t(7(2))] (v, HessP (z)v)

2 - _
+ Sls@aen] s <dist(9c, ) — dist(z, xreg) (dist@, )+ dist(, xmf)>
2 (@ 0)] _ (vrexpr (@) — exps ()

2 - _
+ % s(Z20())],_ H(x)+ 2% [s(g(y(t)))} (v, gradH (z)) .

Using r < dist(z, xpef) < Z, we have ‘<v,exp;1(:vref)>‘ < dist(x, o) < Z. Using Proposi-
tion 14,

Kv,exp;l(x*) - expx_l(a:ref)ﬂ < Hexpgl(ac*) - expgl(xref)H < dist(a™, xper) < 7
Using the triangle inequality,

(dist(x, x*) — dist(z, CCref)) <dist(x, x*) + dist(z, ZUref)) ’

< dist(x*, Tref) (diSt([Eref, z*) + 2dist(z, xref)) <r(r+2%) <3r%.
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Therefore, we have

(v,Hess fr.z(x)v) > t(T(x)) (v, Hess f(z)v) + [1 — t(7(x))] (v, HessZ (z)v)

2
—Sra | s @to)] | -or| Ss@an]
7"2 2 T
S @] _ | - 5| S ls@am)],
> t(r(x)) (v,Hessf(x)v) + [1 — t(7(z))] (v, HessZ(x)v)
2
~Sra | s @] _ || Ss@6en] |-
Additionally, we have
@] | = @@ E[200)] | = s W) (v et @)
z .,
< 1 V)
and
2 2 2
Sls@am)] _|= @@ (jt [@(v(t»}t_(}) (@@) S [26w)]
%2 " 1 /
< W ‘t (T(:L‘))| + W ‘t (7’(.7}))‘ (v,HessZ(x)v) .

In the following, we set Z = 2°r log(rv/—Kj,)?). This choice of Z and r/— K}, > 8 implies
X = 2°rlog(rv/—Kjo)?) > 271og(8)%r > 2!r. Since Z > 217, we conclude

<v, HeSSfT’%((IJ)’U> > t(r(x)) (v, Hess f(x)v)

+ [1 —t(r(z)) — % }t,(T(.’E))‘:| (v, HessZ(z)v)

3Ir#

8 %3
o1l | (7 (@)
1L,

“ g g O

> t(r(x)) (v, Hess f(x)v)

+ [1 —t(r(x)) — ‘t'(r(m))’] (v, HessZ (z)v)

Srot® p 3Ir#A
“Ga—z ey T e
= t(7(x)) (v, Hessf(x)v)

|t/(7(2))|
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One can check that —2 < #/(7) < 0 and [t(7)"(0)| < 16 for all T € (0, 1). So using Z > 2!
(v,Hess fr z(x)v) > t(7(x)) (v,Hessf(z)v) + |1 —t(r(x)) — % |t'(7(2))| | (v,HessZ(x)v)

Next we make two observations about the univariate function ¢

«if T €[5,1), then1 — (1) — 33 [¢/(7)| > 1 — 355;

«if7€(0,3)and Z > 9-4.5r, then 1 — ¢(7) — £5° |¢/(7)| > —2€ V 9. We prove this fact
in the next Sectlon G.3.

Using these facts, if 7(z) € [%, 1) then (using (v, HessZ(z)v) > 1 and Z > 2'1r)

If r(z) € (0,1),

26_\/3-2% —K10:4e_\/%10g<r —Kuo)

211

(Y Klo IOg UV Klo 2
1
Klo \/7 LAY, Klo log LAY, Klo 2 S %

G.3 Technical fact about the function ¢: R — R in the interval (0, 1)
Lemma 26 If7 € (0,%) and ¢ > 9, then 1 — t(1) — 1 |t/(1)| > —2e~ V2,
, eTfTa (2724271
Proof We have t'(7) = ———== - ~—pzz—~ < 0,50
=
1
er—2 (272 — 27 4+ 1)
t'(r)| = - ) (26)
‘ | <€ﬁ+e$)2 (T_1)27-2
Consider 7 € (0, 3) and also take ¢ > 9. Using (26) we find
1 2
1 T2 et —2em3 4 er? — 272+ 21— 1 i
1—- t(T) - E }t,(T)‘ = 16 1\ 2 ( C(T _ 1)272 ) :
()

Y

(CT4 — 23+ er? —272 4 27 — 1)

(ei n e%>2 e(t —1)%72
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where for the penultimate inequality we used the fact

CT4—2C7'3—|-C7'2—27'2—|—27'—1>C—1 1
et —1)272 - 2 cr2

This algebraic inequality can be verified by a computer algebra system, such as Mathematica.
For 7 € (0, 3], we have

1 1
67-77—2 67-77—2 1 2
T

1 1) 2 < 1\2
CEoNE

— 2 <2 —1forr €[0,1]. Therefore, using (27),

1—t(T)—E‘t(T)|ZG Tmln{ 5 —m_Q,O}:mm{e r( 50 —CTQ),O}.

<e? 7 7)

We know 7 € (0,3] and 5t — -5 < O if and only if 0 < 7 < % < 1. Additionally,
lim, g+ 27 (% — CT%) = 0. Therefore the minimum of 7 — min{ (g — Ci2> } for
T € (0, ) must occur at a critical point of 7 — €2 -7 (% — W%) Let’s compute that point:
dpy 1/c—1 1 627%(07'2—7'2—#47'—2) 1
o= Lle(et o Ly G S
dr 2¢ cr? 2t el g
V2
Therefore,
2 Vetl
, L) c—l 1 O_2€<1+\C/§>
—tr) - c [#(7)] 2 min CTZH =" ( a 1+
\C/E +1 ce 2
2
- e“&? B \/CT

H Technical details for the ball-packing property

H.1 Geodesics diverge: Proof of Lemma 6

The angle between v; and vs is in the interval [0, 7]; therefore, the statement of the lemma requires
a proof only for § € [0, 7]. We split this into two cases. For both we use the following consequence
of Proposition 15:

cosh(dist(z1, 22) /= Kup) > cosh(sy/—Kyp)? — sinh(s\/—Kup)? cos(6). (28)

If 6 > 7, then
cosh(dist(z1, 22)/—Kup) > cosh(sy/—Kyp)? > cosh(s/—Kyp),
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and so dist(z1, z9) > s > %3. So we can assume that § < 7.

Note that ¢! =3t > \/ 3 (1 — COSh(tl;&i;g(%/ 3)> for all t > 0. Therefore,

g — =25\ > 3(1 B cosh(s/—Kup)? — cosh(2sw/—Kup/3)>
- sinh(s/—Kup)?

— 262 > cos(6) (since € (0, 5]). Rearranging

osh(sy/—Kup)2—cosh(2sy/—Kup/3) 1
sinh(s\/—Kup)2 -
this inequality and applying inequality (28),

cosh(2s\/—Kup/3) < cosh(sy/—Kup)?—sinh(sy/—Kyp)? cos(6) < cosh(dist (21, 22)/—Kup)-

We conclude dist (21, 22) > Zs.

which implies °

Placing well-separated points on the unit sphere

To prove Lemma 7, we used the following lemma about placing well-separated points on the unit
sphere ST1 = {z € R?: ||z| = 1}. For z,y € S%!, distga—1(z, y) equals the angle between the
vectors x and y: distga—1 (1, y) = arccos(z " y).

Below, we use Vol(S9~1) to denote the volume of the “surface” of the sphere (with the usual
metric). Note that Vol(S?~1) does not denote the volume of the unit Euclidean ball in R?.

Lemma 27 Foranyd > 2 and 0 € (0, g], there are N > ed%l vectors v1,...,vyN on the d — 1-
dimensional unit sphere S*~! satisfying distga—1(v;,v;) >0 Vi # j.

Proof The sphere S?~! is a metric space. The packing number on any metric space is lower
bounded by the covering number (Vershynin, 2018, Lem. 4.2.8). More precisely (Vershynin, 2018,
Lem. 4.2.8) imples there exist N distinct vectors V = {v1,v2,...,vn} withv; € S? such that

1. distga(vs,v;) > 6 forall i # j;

2. and moreover the geodesic balls on the sphere (spherical caps) of radius ¢ centered at v € V
cover S* 1, ie., U oy BS ' (0) D ST

(The set V is said to be a maximally #-separated net.) Therefore, the sum of the volumes of the balls
{BS"7"(6)} ey must at least be the volume of the unit sphere, i.c.,

27Td/2

L(g)

Vol BS*! _ ol( BS! ol(SA-1) —
NV1(B (9)) %VI(BU (9)))2\/1(@ )

The last equality is the standard formula for the surface area of a sphere in Euclidean space. The
volume of a geodesic ball of radius # on S~ ! is

§d-1 d—2 0 d—2 QW% 0 d—2
VOl(B (9)) = Vol(§%2) / sin2(n)dy = ——— / sind=2 () dn,
0 F(?) 0
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see (Lee, 2018, Cor. 10.17) or (Gual-Aenau and Naveira, 1999, p. 314). Using that § < 7 and

d—1
sin(n) < nforalln € [0, 5], Vol (BSEF1 (9)) < 1%?1131) 56971, Therefore,
=

(d—-1I(4H) o (d-DT(SF) 1 1

N > 7l/? > :
= (%) gd—1 (2 gd—1 = gd—1

Geometry influences the objective function

Hamilton and Moitra (2021) show that there is no strongly g-convex function which has bounded
condition number on all of the hyperbolic plane. This statement is of course not true in Euclidean
space. Using a different technique, Martinez-Rubio (2021) proves a similar result (see Proposition
C.6 therein). We extend the result of Hamilton and Moitra (2021) to Hadamard spaces with sectional
curvature upper bounded by K, < 0.

Proposition 28 Let M be a Hadamard manifold whose sectional curvatures are in the interval
(—o00, Kyp) with Ky, < 0. Let f: M — R be L-smooth and p-strongly g-convex in a ball

B(xyet, 7). Then % > %(r\/—Kup — 1) provided r > % llerad f (xref) || + \/_l?up

Before proceeding to the proof of Proposition 28, we note that the bound x > €(r) also applies
to the symmetric spaces SLP,, and P, even though neither have strictly negative curvature. This
is an immediate corollary of the result of Hamilton and Moitra (2021) because for every point = in
those spaces, there is always a totally geodesic submanifold containing « and which is isometric to
a hyperbolic plane (see Appendix J).

Proof The proof is very similar to the proof of Hamilton and Moitra (2021). The main difference
is we have to be a little careful because the manifold no longer necessarily has the same symmetries

as a hyperbolic space. Denote 0B (xyef, ) = {z € M : dist(z, xyer) = 7}
1

Letc = . Letz € argmingcpp(p, ;r—c) f(y). Geodesic convexity of f implies
Ko
r—c c r—c _
ORSCWE f(expmmf (= expxl.;(y))) > f(z) Wy € IB(@rer, 7).
Therefore,
r
f(y) - f(l'ref) Z r_ C(f(:E) - f(mref)) Vy € 8B($refar)- (29)

On the other hand, p-strong g-convexity of f implies

f(@) = f(arer) = (gradf(zrer), exp, ! (z)) + B )2

> — |lgrad f (zref)|| (r — ) +

(30)

provided r — ¢ > % lgrad f (xyer) ||
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Consider any geodesic v: R — M with v(0) = z,[]5(0)]| = 1 and (7/(0), exp, ! (x)) = 0.
We claim (R) intersects 0B (e, r) in at least two distinct points y, y_. By Proposition 14,

dist(y(£), 2rer)? = dist(1(8),2)2 + (r — €)% — 2 (exp; (4(t)), exD  (zrer))
= dist(y(t), 2)> 4+ (r — ¢)> = 2 + (r — ¢)*.
Choosing t so that t2 + (r — ¢)? > r, continuity of ~ implies that we must have (¢ ),v(t-) €

OB (Zyet,7) forsome t; > 0andt— < 0. Lety; = (¢4 ) and y_ = ~(¢t_). Itis clear that y; # y_
as geodesics do not form closed loops in Hadamard manifolds (Lee, 2018, Prop. 12.9). Observe

exp, ' (y4) =t47/(0), and exp,'(ys) =t-+(0). 31)
By L-smoothness of f,
Fls) < F(o) + (arad (o), expy (ys)) + Sdist(, )2
F(0-) < F@) + {grad (), exp; () + Sdlist(a, )

which summed yield

L p—_ f(y—)éf(x)+L(

L 2
dist dist(z, y_
— — 5 ist(x, y4)? + —dist(z, y-) >

e —t_ t —t_
L
< f(@) + 5 (dist(e, g )? + dist(z,5-)?)

where we have used (31) to cancel the terms (grad f (), exp; ! (y+)). Using inequality (29),

T —t_ t+

(f(x) = f(@rer)) < (f(y+) = f(xret)) +

T —2¢C _t+*t7 t+*t,

< fx) = fapes) + g(dist(x,y+)2 + dist(a:,y_)2>,

(f(y=) = f(zrer))

which rearranging and applying inequality (30) becomes

%C(T*C): ¢ -E(rfc)2§ ¢

r—c 4 r—-c

(f(2) = flarer)) <

N’\h

(dlbt(IE vy )? +dist(x,y7)2)

provided r — ¢ > % |grad f (wref)]]-

For the last step we shall upper bound dist (1 , 2)? and dist(y_, 2)2. Let us focus on dist(y, )2
since the exact same reasoning applies to dist(y_,x)?. Consider the geodesic triangle x,ctzy.y.
Again, note that the angle at x is 5. So by Proposition 15,

cosh(ry/—Kup) = cosh(dist(zref, ¥+ )/ —Kup)
cosh(dist(z, y+ )/ — Kup) cosh(dist (zyef, )/ — Kup)
= cosh(dist(z,y+ )/ —Kup) cosh((r — ¢)/—Kyp).

Y
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Using e? cosh(t — q) = (7~ + ') > 1(e™! + ') = cosh(t) forany t € R and g > 0,

S eC —Kup —=e

cosh(ry/—Kup)
cosh(dist(x, —Kup) <
( ( y+) up) — COSh((r _ C) —Kup)

i.e., dist(x, < L__ arccosh(e).
( y+) > \/Tup ( )

We conclude thatif r—c > % |grad f (Trer)||, then &c(r—c) < —£— arccosh(e)?. Rearranging,

Kup
— _ 1 — — 1
\/Tup(r _Kup) . \/Tup(T‘ \/Tup) < £
8 - 4 arccosh(e)? o
provided r — —— > 2 ||grad f (2yer)|| - -
\/Tup M

Positive definite matrices

Lemma 29 Let M be a Hadamard manifold of dimension d which contains a totally geodesic
submanifold N of dimension dy. Assume that all the sectional curvatures of the submanifold N
are upper bounded by K, with K., < 0. Then, M satisfies the ball-packing property for 7 =

~ di14/—Ku . .. . .
\/4?, ¢ = % and any Tiof € N. If in addition M is a homogeneous manifold, then M
—Kup

satisfies the strong ball-packing property with the same constants 7 and c.

d1/—Kup . .
Proof Let z,of € N. By Lemma 7, there are at leaste™ s " points in B (yer, %r) which are

pairwise separated by a distance of 5, provided 7 > 7. Note that here we have used that distance on
N is equal to distance on M because N is totally geodesic.

If M is homogenous, then by definition for all z,y € M there is an isometry ¢: M — M
such that ¢(z) = y. In particular, this implies that every z € M is an element of a totally geodesic
submanifold isometric to V. n

Lemma 30 Let My be a di-dimensional Hadamard manifold whose sectional curvatures are
upper bounded by K., everywhere, with K., < 0. Let My be a Hadamard manifold. Then

M = My x My satisfies the strong ball-packing property for 7 = 7 4K iy
—fHup

,C= s and Tyt

any point in M.

Proof This follows from Lemma 29 by noting that for every xo € Mo, My X {2} is a totally
geodesic submanifold, so we can apply the same logic from Lemma 29. |

Let P, = {P € R®™" : PT = P P = 0} be the Riemannian manifold of n x n positive
definite matrices (with real entries), endowed with the so-called affine-invariant metric

(X,Y)p=Tr(P'XP'Y) forP€ P, and X,Y € TpP, = Sym(n),

where Sym(n) is the set of n x n real symmetric matrices. Let SLP,, = SL(n)/SO(n) be the
totally geodesic submanifold of P, consisting of those matrices of determinant one. Both P,, and
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SLP,, are important in applications (Skovgaard, 1984; Bhatia, 2007; Fletcher and Joshi, 2007;
Lenglet et al., 2006; Sra and Hosseini, 2015; Moakher, 2005; Moakher and Batchelor, 2006; Allen-
Zhu et al., 2018; Ciobotaru and Mazza, 2020). We know SLP,, and P,, are symmetric spaces and
Hadamard manifolds (Dolcetti and Pertici, 2018, Prop. 3.1) whose sectional curvatures are each
between —% and 0 (Criscitiello and Boumal, 2020, Prop. I.1). Since they are symmetric, SLP,, and
‘P,, are also a homogeneous manifolds (Lee, 2018, prob. 6-19).

It is well-known that SLP5 is isomorphic to the hyperbolic plane of curvature —% (Chossat and
Faugeras, 2009; Dolcetti and Pertici, 2018), and thus satisfies a strong ball property by Lemma 7.
For n > 3, Bridson and Haefliger (1999, Ch. I1.10) show that SLP,, contains a totally geodesic
submanifold containing the identity matrix I which is isomorphic to an (n — 1)-dimensional hy-
perbolic space for some K < 0. We show that K = —%, see Lemma 31. Therefore applying

Lemma 29, SLP,, satisfies the strong ball-packing property with:

L gy2 =22 - L=

° 7 Ji2 T 4v2
e i 4 _ ~_ (n=1)/1/8  pq .
r—\/ﬁ—S\/i,c— 3 —16\/§1fn23.

Since Py, is isometric to R x SLP,, (Dolcetti and Pertici, 2018), Lemma 30 implies the strong ball
packing property holds for P, with the same constants 7, ¢ just given. This proves Lemma 8. We
note that Franks and Reichenbach (2021) independently use the observation that SLP,, contains a
hyperbolic plane for a similar purpose.

Lemma 31 For n > 3, SLP,, contains a totally geodesic submanifold containing 1 which is

isomorphic to the (n — 1)-dimensional hyperbolic space of curvature —%.

Proof Theorem 10.58 and Remark 10.60(4) of (Bridson and Haefliger, 1999) state that N' =
P,NO(n—1,1) is a totally geodesic submanifold of 7,, which is isometric to a (n —1)-dimensional
hyperbolic space of some constant sectional curvature X < 0. Here, O(n — 1,1) = {A € R™*" :
ATJA = J} is an indefinite orthogonal group (symmetries of the (n — 1)-dimensional hyper-
boloid model in Minkowski space), where J = diag(1,1,...,1,—1) (Bridson and Haefliger, 1999,
Ex. 10.20(4)).

Note that N' € SLP, N O(n — 1,1) since ATJA = J = det(A)? = 1, and any positive
definite matrix has positive determinant. Thus, N is also a totally geodesic submanifold of SLP;,.

We have T;O(n — 1,1) = {X € R"™*": X T.J = —JX}. Therefore,

S

TN = Symy(n) N T;0(n—1,1) = { <0(n_1)$(n_1) S) 15 € ]R”l}

where Sym(n) is the set of n x n real symmetric matrices with vanishing trace.
Let 51,52 € R" 1 with ||s1]|2 = ||s2]|> = 1/2, 5{ s2 = 0. Let

_ (On—D)x(n-1) S1 _ (Om—1)x(n-1) S2
Xl( s 0)’ X2 = S9 0)°

sls—r — sst 0
Therefore (X1, Xo) = 0, || X1]|? = || X2||? = 1, and [X1, Xo] = 2 ! .

0 0
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By Proposition 2.3 of (Dolcetti and Pertici, 2018), the curvature tensor of SLP is
1
Rm(W, X, Y, 2)(P) = = Te([P~'W, PTIX][P71Y, P71 Z]), for W, X,Y, Z € Symy(n)
where [X, Y] = XY — Y X is the matrix commutator of X, Y. Therefore,

K = Rm(X1, X, Xo, X1)(I) = —%Tr([Xl,Xg] [Xo, X1]) = %Tr([Xl,XQ]Q)

1
= *TI“((SLSJ — 5251)2) =

1
Tr(—sisT — sosT) — — 1
1 r(—s18, — S289 ) 5

=~ =
N —

For positive definite matrices, ¢ < O(n%/?)

We do not know if the constant ¢ stated in Lemma 8 is the best possible constant (i.e., is as large
as possible). Dolcetti and Pertici (2018) show that SLP,, is an Einstein manifold with constant
Ricci curvature —7%. Therefore, by the Bishop-Gromov volume comparison theorem (Lee, 2018,
Thm. 11.19), the volume of a geodesic ball of radius r in SLP,, is at most the volume of a geodesic
ball in a dim(SLP,,)-dimensional hyperbolic space of sectional curvature — . Hence,
the volume of a geodesic ball of radius r in SLP,, is at most

exp <@ <dim(8£7?n)r\/ T SZPH) — 1)>> = exp(0(rn?/?)).

On the other hand, for r sufficiently large, the volume of a geodesic ball of radius 7 in SLP,, is at
least 1. So the number of disjoint balls of radius § we can pack into a ball of radius 7 in SLP,, is at
most exp(O(rn®/?)), which implies & < O (n3/?).

T@m(SLP)=T)

Comparison to Riemannian Gradient Descent

Zhang and Sra (2016) show that, for a bounded g-convex domain D with diameter 2r, projected
RGD initialized in D finds a point = within ¢ of the minimizer of f in no more than O(max{k,rv/—Kp})
queries. This rate depends on curvature. However, if M is a hyperbolic space of curvature K < 0,
Proposition 28 implies x > Q(r/—K). Hence, RGD uses at most O(x) queries when M is a
hyperbolic space—this is a curvature-independent rate. We have the following proposition.

Proposition 32 Let M be a hyperbolic space of curvature K < 0, and let xyef € M. Let L >
w>0 k= %, andr > 0. Let f € Fiet be L-smooth and have minimizer x*. Then projected RGD

. 1
Tyl = PI‘OJD<eprk ( — Zgradf(azk))>, TQ = Tref, D = B(&yet, 1)

k—2
satisfies dist(zy, %)% < 4 (1 — ﬁ . %) kr2, forall k > 2. Here, Proj, denotes metric projection

on to the geodesic ball D.
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Proof Zhang and Sra (2016) prove
1
flaw) — f(a*) < (1 - 6)’“‘2§L(2r>2 =201 - &) 2L VE>2

where 67! = max{# tanrh(i Vr?/_;} By p-strong g-convexity, Ldist(zy, 2%)* < f(xx) — f(z*).

— _ =K — L -1 L
First, assume rv/—K < 8. Then, tanh(rv/—T0) <l4rv—-K <9< 9#' Hence, 6= < 9M.

Second, assume r\/ K > 8. This implies 7v/—K — 1 > gv/— Proposition 28 applied to
the ball B = B ( ) 1mp11es that the condition number of f in B is at least ( vV—-K —-1) >
1EV-K) =4 \/ K. On the other hand, we know z* € B(yet, 57) because f € Fiet. There-

fore, B C B(xyet,7), which implies £ > > g1V —K. We conclude = er/jf) <1l+ry—K <

m
L L L -1 L
1+ 645 < 65E < 1005, andso 6+ < lOOE. |

Technical fact from proof of Theorem 11

We show that the inequality (2) implies |A;| > 2 for all £ < T, where T is given by (1). We
do this by induction on & > 0. (Base case) By the ball-packing property, |Ag| > e® > 2 since
r > 4442 > 4 (Inductive hypothesis) Assume k + 1 < T, and |4,,| > 2 for all m < k.
Therefore \Am\ —1>|A,| /2 forallm < k.

The bounds r > @ and k + 1 < T imply that k + 1 < |2w] (recall w = éd~'r/4). So we
can apply Lemma 12 to get

[Am| =1 [Am| /2
>
2000w (3% — Ko + 2))¢ ~ (2000w (3% +/— K)o + 2))4’

Unrolling these inequalities and using |Ag| > €, we get

eér/2k+1 667’/2(k+1)d
| Apy1] = iDd = wra 32
(2000w (3% =Ko + 2)) (2000w (32+v/— Ko + 2))
On the other hand, using the formula (1) for T, k + 1 < T implies
ofr/2 19 (k+1)d
/ (33)

(2000w(3%y/— K, + 2))*

Combining inequalities (33) and (32) (and using that /2 < efr /2), we determine that |Ag 1| > 2.

Deriving Theorems 2 and 4 from Theorem 24

Theorem 2 from the introduction follows from Theorem 24 and Lemma 7 (see Appendix M.1).
Theorem 4 follows from Theorem 24, Lemma 8, and the fact that SLP,, has sectional curvatures in
the interval [—%, 0] (Criscitiello and Boumal, 2020, Prop. I.1) (see Appendix M.2).

45



M.1

M.2

CRISCITIELLO BOUMAL

Deriving Theorem 2 from Theorem 24 and Lemma 7

We use the values for 7 and ¢ given by Lemma 7. First, we have to check that the assumptions
of Theorem 2 imply » > max {f, \/%, 4(dgr 2) } Indeed, the bound x > 1000, /% implies
x > 1000, and so

_ A9 ipf 990 64
12=K, ~ 12¢=Ki, ~ 12/~Kup ~ /—Kup

{N 8 4-8(d+2)} {N 8 4(d+2)}
> max T, , = max T, , — .
\/_Klo d\/_Kup _Klo C

Second, we have to verify the lower bound in Theorem 2 follows from the lower bound for T°
given in Theorem 24. We have

r

99
TN S S PV S k. Vi O 1
8 12/ —Ky, — 8(d+2) 12¢/-Kj, — 16 12v/— K,
Therefore,
T> v —Kup %E 1 J
16  12/—K, v —Ku
 log(2 - 100 - Yo e (ry/= Kio)?)
- —Kyup %/@ ‘ 1
- 16 12¢/—K), log(272-10% - {5(5%)?)
o VK ok 1 2| K K
- 16 12K, 3log(10k)| — K, 1000log(10%) |

Deriving Theorem 4 from Theorem 24 and Lemma 8

We use the values for # and ¢ given by Lemma 8, and K, = —%. First, we have to check that
the assumptions of Theorem 4 imply » > max {f, \/—STI’ 4(d6+ 2) } Indeed, the bound x > 1000n
implies x > 1000, and so
K9 ek - 990n >max{8\/§ 8 2(n(n+1)+2)}
6vV2 T 6v2 T 6v2 /12 ¢
- 8 4(d+2) }
> max 4 T, , — .
{ V _Klo c
For the second to last inequality, we used (a) %9\%‘ > 2("(n+711)j12)'16\/§ for all n > 3, and (b) % >

2(n(n + 1) + 2)4v/2 if n = 2. For the last inequality, we used d = dim(SLP,,) = w -1
Second, we have to verify the lower bound in Theorem 4 follows from the lower bound for T’
given in Theorem 24. We have for n > 2

n—1 2 K > o(d+2)"! n—1 2 K—9
. c r= .
4/2 nn+1)+2 62 enV2nn+1)+2 62
n—1 2 19—(%&

> .
T 16c,v/2n(n+1)+2 62’
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where ¢, = 1 if n > 3 and ¢y = 1/4. Therefore,

T>

v

>

n—1

2

99

99
_100M 1 J
-1 2
[ 16cnv/2n(n +1)+2 6v2 log(2-10°- 8752y - 525 (555)%)

1 2 g5 1 J
T 2 K K
| 16v/2 gn 6v2 log(2- 106 - 77'7(67)2)
L2 19090“ 1
16vV2In 62 3log (10k) n 100010g 1000 log(10k) |

For the third to last inequality, we used that 37% < n(”i_l < 3foralln > 2.

n+1)+2
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