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Abstract

We present an asymptotically optimal (¢, d) differentially private mechanism for answering mul-
tiple, adaptively asked, A-sensitive queries, settling the conjecture of Steinke and Ullman [2020].
Our algorithm has a significant advantage that it adds independent bounded noise to each query,
thus providing an absolute error bound. Additionally, we apply our algorithm in adaptive data anal-
ysis, obtaining an improved guarantee for answering multiple queries regarding some underlying
distribution using a finite sample. Numerical computations show that the bounded-noise mecha-
nism outperforms the Gaussian mechanism in many standard settings.

1. Introduction

Differential privacy provides a framework to publish statistics of datasets that contain users’ infor-
mation, while preserving their privacy. Here, one assumes an underlying datasetx = (x1,...,2,) €
X where z; contains private information of user ¢. An analyst, which does not have access to the
dataset, requests some statistics of the data. These statistics are provided by the dataset holder,
however, by analyzing them, the analyst should not learn significant information on any specific
datapoint ;. We follow the standard framework of (e, 0) differential privacy Dwork et al. (2006b,a)
where the parameter € quantifies the typical level of privacy and ¢ is (intuitively) the probability that
the algorithm fails to preserve privacy (formally defined in Section 3).

Perhaps the most well-studied problem in differential privacy is answering multiple queries.
The adaptive version is described by an interactive game between the dataset holder and the analyst:
in each iteration ¢ = 1,..., k, the analyst submits a query ¢;: X" — R. Then, the dataset holder
should provide an approximate answer a; ~ ¢;(x). Providing the exact answer may cause a leakage
of private information and a common approach is to output a; = ¢;(x) + 7;, where 7; is a random
noise, whose outcome is unknown to the analyst. The goal is to keep the magnitude of noise as low
as possible while preserving privacy.

Clearly, it is impossible to preserve privacy while answering arbitrary queries accurately. This
happens when particular datapoints have significant influence over the outcome of the query: Here,
an accurate answer to the query would necessarily leak information on these datapoints. To avoid
this issue, it is common to assume that each datapoint can change the outcome by at most A.
Formally, we use the standard notion of A-sensitive queries: For any user ¢ and any datasets x
and x’ that differ only on entry i, we assume that |¢;(x) — ¢;(x’)| < A. For example, ¢; can be
the average of some bounded statistic h: X — [0, 1], where ¢;(21,...,2,) = £ > | h(z;) and
A=1/n.

Despite being a central problem in differential privacy, it was unknown what is the least amount
of noise that should be added. This question can be formalized as follows:
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Question 1 Fix parameters €,0,k and A. What is the minimal noise-level «, such that there is
an (e,0) differentially private algorithm that answers k A-sensitive queries with error at most o?
(namely, Vi = 1---k,|a; — ¢;(x)| < o)

One of the earliest algorithms, the Gaussian mechanism Dwork et al. (2006a), consists of adding in-
dependent Gaussian noise of standard deviation o = O(R), where R := A\/klog1/d/e. Namely,
a; = qi(x) + n; where n; ~ N(0,0?) are independent Gaussians. This yields a high-probability
error of

—Lyeees

since the maximum of k Gaussian random variables with standard deviation o is bounded by
O(o+/log k) with high probability. This was the best known algorithm until long after, when Steinke
and Ullman (2016) showed how to obtain an improved bound o < O(R+/log log k), by applying the
same Gaussian mechanism and adding a smart algorithmic step that truncates the most-erroneous
answers (via the sparse vectors algorithm Dwork et al. (2009); Hardt and Rothblum (2010); Dwork
et al. (2010); Roth and Roughgarden (2010)). In the same paper, they also showed a lower bound
of a > Q(R), for any § > e~*. Later, Ganesh and Zhao (2020) showed how to obtain an improved
bound of O(R+/logloglog k) by replacing the Gaussian distribution with a generalized Gaussian
and applying the same truncation technique of Steinke and Ullman (2016). We further note that for
all § < e~*, the optimal noise level is different, and equals ©(k/e), using an algorithm that is in
fact (¢, 0) private Hardt and Talwar (2010). Yet, it remained open whether one can match the lower
bound of Steinke and Ullman (2016) and achieve a noise of & = O(R) for § > e°) This was
raised as an open problem by Steinke and Ullman (2020).

One feature common to these algorithms is that they rely on adding unbounded noise, and then,
possibly, making a correction. Such an approach has multiple obvious disadvantages: (1) All the
above-discussed algorithms fail to give a definite bound on the error that holds with probability 1;
(2) The correction step (i.e. the sparse vector technique), if used, complicates the algorithm and (3)
The numerical constants associated with the noise may significantly degrade if one uses correction
techniques.

To guarantee a bounded noise, various prior works Liu (2018); Holohan et al. (2020) suggested
to truncate known noise distributions such as the Gaussian and Laplace. Yet, this yields suboptimal
algorithms and it is possible that specifically tailored bounded-noise distributions would provide
better results. This gives rise to the following question:

Question 2 What are the best mechanisms that rely on adding i.i.d. bounded noise? Can they
provide the asymptotically optimal noise rate? Can they yield a reduced noise in practical settings?

1.1. Main Results
In this paper, we provide a positive answer to the above two questions:
Theorem 1 Let k,n € N, ¢ € (0,1], § € [e*/1og”(R) log" log (k) 1/2] and A > 0. There exists

an algorithm for answering k adaptive A-sensitive queries that is (e, 0) differentially private and
further, its error is bounded as follows:

max la; — qi(x)] < O(R) := O(A/klog(1/6)/€), with probability 1.

i=1,...,
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Further, this is attained using an algorithm that adds i.i.d. noise of bounded magnitude to each
answer.

In addition to providing an optimal error, this algorithm has additional benefits:

* The bound on the maximal error, max; |a; — gi(x)| = O(R), holds with probabilty 1! This
provides to the analyst definite bounds on the true answer ¢;(x), which is significantly more
convenient in some settings. In comparison, the previous algorithms discussed above only
guarantee a high probability error bound, which degrades at least as fast as R+/log 1/ for
confidence level 1 — /3.

e The algorithm is simple: the noise added to each query is drawn i.i.d. from some simple
closed-form density. This is compared to the previous algorithms discussed above that relied
on an additional algorithmic truncation step.

* It yields better bounds than the Gaussian mechanism in many practical settings. This can
be shown using an algorithm that computes upper bounds on the optimal noise level that is
required to achieve (e, d) privacy (see Section 5; code available online).

We recall that our algorithm achieves an optimal noise only for § > e~*/log” kloghlogk = A
subsequent (which was essentially concurrent) independent work of Ghazi et al. (2020) provided an
optimal rate for all § > e~*, thus closing the gap between the upper and lower bounds that was left
open for ¢ slightly larger than e~*. Their algorithm smartly consists of permuting the queries and
applying multiple stages of the sparse vector algorithm to reduce the noise. The advantages of our
algorithm include the three items discussed above and the fact that it can answer adaptively asked
queries, which also makes it applicable to adaptive data analysis.

Lastly, we argue that it is impossible to achieve an optimal bound using an algorithm that adds
i.i.d. bounded noise for all § > e~*: (Proof of Section C)

Theorem 2 (informal) There is no (€, 0) differentially private algorithm that adds bounded i.i.d.
noise, that is asymptotically optimal in the regime § > e~/ log? k) where w() denotes a strict
asymptotic inequality (we assume in the proof that the noise density is unimodal, yet we believe that

this assumption is redundant).

1.2. Application to adaptive data analysis.

Adaptive data analysis concerns of answering multiple adaptively asked queries on some underlying
distribution P over a domain X', while having access only to a finite i.i.d. sample z1,...,z, ~ P
(Dwork et al., 2015; Hardt and Ullman, 2014). This scenario is common in statistics and machine
learning, where an adaptive procedure or an algorithm are used to infer or learn properties of the
distribution.

The standard setting can be formulated as an interaction between the dataset holder, that has
access to n i.i.d. samples from P, and a statistical analyst whose goal is to infer properties of the
distribution. In each iteration t = 1, ..., k the algorithm submits a statistical query q;: X — [0, 1],
and the goal of the dataset holder is to send an answer a; that approximates the expectation ¢;(P) =
E.~p[gi(x)]. The queries are asked adaptively, namely, ¢; can depend on the previous answers
ai,-...,a;—1. The goal is to answer all the queries with low error, ensuring that with probability at
least 1 — 3, |a; — ¢;(P)| < « for all 4.
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The straightforward approach is to answer each query g; using the sample average, outputting
1

a; = Z?Zl gi(x;). This gives a valid result with high probability for non adaptively-asked
queries, namely, if q1, . . ., g, are given a priori. However, in case that they are asked adaptively, it
is possible, and even likely in some scenarios, that they fit or adjust to the specifically-drawn sam-
ple. In such cases, the sample-mean will not provide a valid approximation to the true expectation
qi(P). A solution suggested by Dwork et al. (2015) is to use a differentially private algorithm to
answer the queries. Intuitively, this prevents the queries ¢; from fitting to the data, since the previ-
ous answers a; - - - a;—1 are differentially private with respect to it. In particular Dwork et al. (2015)
proved a transfer theorem that yields guarantees for adaptive data analysis given guarantees for the
underlying differentially private algorithm. This was further improved by various authors: Bassily
et al. (2021) gave asymptotically tight bounds, whereas Feldman and Steinke (2017, 2018); Rogers
et al. (2020) proved improved instance-specific bounds. Finally, Jung et al. (2021) provided a new
proof with significantly improved constants. Applying the transfer theorem of Jung et al. (2021)
on the best known differentially private algorithms, one obtains the following guarantee: for all

a, € (0,1/2), there is a sample size

\klogklog?(1/ap) \/kloglog klog™(1/ap)

o? a?

n(a, 8) = O | min ) ey

and an algorithm that receives n(«a, 3) samples from some arbitrary distribution P, and answers k
adaptively asked queries, with a high-probability error bound of

PrVi=1---k, |¢i(P)—a;| <a] >1-p.

Here, the first argument in the right hand side of Eq. (1) corresponds to the Gaussian mechanism and
the second to the algorithm of Steinke and Ullman (2016). In this paper, we obtain the following
improved bound: (Proof in Section D)

Corollary 3 Forevery k € Nand o, 5 € (0,1/2) such that o > de—k/log” kloglog" k thore exists
an algorithm for answering k adaptive statistical queries q;: X — [0, 1], with a sample size of

klog(1
0 ( oz /a6)> |
a
that satisfies Pr Vi = 1---k, |¢i(P) — a;| < a] > 1 — 5. More generally, this bound is also valid
for answering 1-sensitive queries.

This yields an optimal dependence both on £ and 3 (Bassily et al., 2021), while removing logarith-
mic factors in k, «, 5. Further, this algorithm can answers approximately twice as many queries as
the Gaussian mechanism in a standard setting (see Section 5).

2. The abstract theorem

We present an abstract statement that provides guarantees for bounded-noise distributions, assuming
that they satisfy some differential inequalities. We use the following notation for bounded-noise
mechanisms:

1. When answering a A-sensitive query g: X™ — R, the goal is to provide an approximation to the expected value of
the query taken over a random dataset, ¢(P") := Ex~pn [q(X)].
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Definition 4 Given a function f: (—1,1) — (0, 00), consider the continuous distribution p s with
density |
py(n) = M’ where Z :/ exp (1) dn.
Zy _1
Further, for any R > 0 denote by (5 r the scaling of j1y by R, namely n ~ py g is obtained from
sampling 0 ~ py and setting n = Rn'. Equivalent, jis p has density

— R
Mf»R(n) = M, where Zf,R:/ exp_f(n/R) dn:RZf
Zrn .

Define by M g the mechanism that adds to each query a noise drawn independently from [i 1 g.

Next, we present our abstract theorem that shows that some noise mechanisms are optimal, if
[ satisfies some desired properties. There are two essential properties: (1) y s decays to zero in the
neighborhoods of —1 and 1, or, equivalently, f(n) — oo as n — +1; and (2) x does not decay too
fast, which amounts to requiring that | f’(n)| is bounded in terms of f(n). In particular, we would
like that I(|f"(n)|) < f(n) for a monotonic increasing function I defined below. Any function f
that satisfies these assumptions (and a couple more technical assumptions), yields DP mechanisms
with asymptotically optimal error, for any § > 4. The threshold §;; improves (i.e. decreases) as the
upper bound on | f/(n)| improves, or, equivalently, as I increases.

Formally, let I: [0,00) — [0, 00) be a continuous function that satisfies the following proper-
ties:

o I(t) < tand I(t) > cy/t forany t > C, where C, ¢ > 0 can be any constants independent of
t.

 I(t) is increasing in ¢t and I(t)/t is decreasing in ¢.
For example, I(t) = t* for some o € [1/2,1] or I(t) = t/log®t for & > 0. Now, we state some
requirements on the function f that appears in the definition above:

1. fissymmetric,ie. f(—n) = f(n);

2. fdiverges: lim, ;- f(n) = lim,_,_q+ f(n) = oo.

3. Bounded first derivative: I(|f'(n)]) < f(n).

4. Bounded second derivative: |f”(n)| < Cf(n)?, where C > 0 can be any constant indepen-
dent of 7).

Lastly, we define ;. For this purpose, define ¢* as the unique solution to t = kI(t)/2t. Notice
that such a unique solution exists as (¢)/t is continuous and decreasing in ¢. Then, we define
5 = et (t")/Cs where Cy > 0 is a constant depending only on f. This yields the following
theorem: (Proof in Section A)

Theorem 5

Let I(t) and f satisfy the conditions above, let k € N and 6}, be defined as above. Let A > 0,
e € (0,1}, 6 € [0},1/2] and define R = CyA\/klog1/6/e for some constant C'y depending only on
f. Then, the mechanism My g is (€, §)-differentially private for answering k adaptive A-sensitive
queries.
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As a corollary, we obtain the following guarantees for specific functions f: (Proof in Section B)

Corollary 6 The following functions f yield mechanisms My r with an optimal value of R =

O(A+/klog(1/d))/e), for any 6 > &;:

e The function f(n) = 1/(1 — n*)P with §; = exp (—C(p)kp/(p+2)), for any p > 2, where
C(p) depends only on p.

* The function f(n) = exp (exp (1/(1 —n?))) with 6} = exp(—Ck/(log? klog*log k)), for
some C' > 0.

3. Preliminaries

Neighboring datasets and A-sensitive queries. Given a domain X and n € N, a dataset is any
element of X™. Two datasets x and x’ are called neighbors if x and x’ differ on exactly one entry.
Given A > 0, a A-sensitive query is any function g: ™ — R such that for any two neighboring
datasets x and x/, it holds that |¢(x) — ¢(x)| < A.

Interactive and non-interactive query-answering. The interactive setting can be viewed as an
interactive game between two parties: (1) a dataset holder, which has access to some dataset
x € X", and (2) an analyst that has no information on x. In each iteration t = 1,...,k, the
analyst submits to the dataset-holder some query ¢;: X" — R, who replies with an answer a;,
that approximates the value ¢;(x). Notice that here ¢; can depend only on the previous answers
ai,...,a;—1. In comparison, in the non-interactive setting the analyst submits all the queries ahead
of time, and then the dataset holder answers them.

Differential privacy. Fix some mechanism M for answering k A-sensitive queries and fix €, >
0. Let A denote any query-asking strategy of the analyst that defines each query ¢; as a function of
the previous answers ay, . .., a;—1. We say that M satisfies (¢, ¢)-differential privacy if for any two
neighboring datasets x and x’, any analyst A and any subset U C R of possible answers,

Pr((ai,...,ax) € U | x,A] < e Prl(a1,...,a) € U | X', A] +6.

Intuitively, the distributions over the answers given any two neighboring datasets are similar.

4. Proof Sketch

We provide a proof sketch for Theorem 5, assuming that A = 1. To simplify the presentation, we
assume that the queries ¢, . . ., g5, are fixed and non-adaptive. The proof consists of two steps: first,
we reduce the problem to showing a concentration inequality on a sum of independent variables,
and secondly, we bound this sum.

REDUCING TO A CONCENTRATION INEQUALITY

In this section, our goal is to show that it suffices to prove Eq. (5) ahead, which corresponds to
bounding a weighted sum of f'(n;),..., f (nx), for randomly drawn 7y, ..., 7 i g Denote
by q := (q1,...,q) and a := (aq,...,ax) the vectors of queries and answers, respectively, and

let Pr |, and density,, denote the conditional probability and density of a given the dataset x,
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respectively. Recall that we want to show that for any two neighboring datasets x and y and any
subset U C R¥, we have that Pr.xla € U] < e“Pr.y[a € U] + 4. A simple argument shows that
it suffices to prove that

density . |a
Pr[ Y. xlal

>ef| <6 .
density. |, [a] ~ ¢ ] <0 @

Intuitively, this means that only a small fraction of the possible answers a € R¥ are significantly
more likely given x compared to y. Recall that the answers a; are obtained by adding an i.i.d. noise
whose density equals noise(n;) := exp(—f(n:;/R))/Zy,r, therefore

density | [a H noise(a H exp ( <;(x))> /Zi R

Substituting this in Eq. (2) and taking a log inside the Pr[], one obtains

Xk: < >+Zf( )>ze]§5. 3)

=1

We substitute 7; = (a; — ¢;(x))/R and v; = (¢i(x) — ¢i(y))/R, which also implies that (a; —
¢(y))/R = n; + v;. Notice that 7; ~ pr1 = i, namely 7; is drawn from the normalized noise
supported in (—1,1) and notice that v; € [—-1/R,1/R], since ¢; is 1-sensitive. Then, Eq. (3)
translates to

Pr
n~. ;U'f

K K
Zf(ni+vi)_2f(77i)2€] <. 4

i=1 i=1

We then use the second-degree Taylor expansion to obtain f(n;+v;) = f(n:)+vif (n:)+v2 (&) /2
for some &; in the line connecting 7; and 7; + v;, and particularly, & € [, — 1/R,n; + 1/R].
Substituting this in Eq. (4) and substituting v; = wu;/R, it suffices to prove the second inequality
below:

k k k
1
Pr, D ovif () + Y vl f"(&) > e gw Zuzf () + 5z 2 max | ["(&)] 2 e
f Li=1 =1 =1 )
<5 5)

where u; € [—1,1], we substituted v? = u?/R? < 1/R? and the maximum is taken over ¢; €
[ — 1/R,n; + 1/R)]. Notice that it is possible that {; ¢ (—1, 1), and for these values, we use the
convention f”(&;) = oo. We will bound separately by €/2 the sums that correspond to the first and
the second derivatives.

PROVING THE CONCENTRATION INEQUALITY.

Before sketching the actual concentration inequality that is used to bound the sum of first derivatives,
we give an intuition by applying a central limit theorem, which is valid for any fixed d as k — oo.
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Central limit theorem for the sum of first-derivatives. Here, we assume for simplicity that
u; € {—1,1}, which implies that Var(u; f'(n;)) = Var(f'(n;)) := o2. Further, notice that since f
is assumed to be symmetric, we have that E[u; f'(n;)] = wE[f'(n;)] = 0 for all 4. Thus, for any
t>0,

. S uif (mi) 2 g5/ —12/2 2 /
lim Pr | &==———"~ >¢ ds<e ; where 0 = Var i) .
k—o0 \/EO‘ ‘ o - (f (77 ))

If we fix § > 0, take ¢t = /log(2/0) and R = 20+/klog(2/0)/e, we obtain that for a sufficiently

large k,
o [ Syl ()
R

This is what we wanted to prove, in terms of the sum over first derivatives, and if we prove a similar
statement with respect to the sum of second derivatives, the proof concludes. Yet, this bound holds
for any fixed ¢ in the limit £ — oco. Instead, we want a bound that holds when £ — co and § — 0
simultaneously.

> 6/2] <4§/2.

Non-asymptotic bound for the sum of first derivatives. Here, we would like to prove a non-
asymptotic result. The standard approach to bounding a sum of independent random variables,
Zle X, is to prove that each individual variable X; concentrates, and this should imply a concen-
tration inequality for the sum. Perhaps the most well-known concentration inequality is Chernoff-
Hoeffding, which assumes that the variables X; are bounded. Other inequalities assume that the
X;s have a bounded tail. For example, Bernstein’s inequality is valid if there exists some constant
C > 0 such that
Pr[|X;| > 1] < Cexp(—t/C). (©6)
In our case, substituting X; = w;f’'(n;), we cannot guarantee such behavior. Instead, we can
guarantee
Pr(|X;| > ] = Prllus f'(n;)| > 1] < Cexp(=I(t)), )
where I(t) < t is the function given in the theorem statement. Next, we describe how to obtain
Eq. (7) and then, we explain how to bound the sum ), u; f’(;) assuming Eq. (7).
To prove Eq. (7), one can use the assumption f(n;) > I(|f'(n;)|) and the fact that I(t) is
monotonic non-decreasing, and integrate:

1 1 '
e < Prll _ —f) g < 11 )
Prljuif ()l > t] < Pr{[f (m)] > 1] Z; AG(—LI): e Mdn < Z; Jre(-11): © dn
[f' ()=t |f/ ()| =t
| » > _
< Ogn < Z_ e~ 1)
=75 hen: €IS e

|f" ()=t
Next, we explain how to bound the sum of independent variables satisfying Eq. (7). Here we go
along the lines of Bakhshizadeh et al. (2020) which uses the known idea of truncation, as explained
below. We start by explaining the standard approach that is used for bounded random variables or
variables satisfying Eq. (6), and then explain how to adapt these ideas to our setting. The standard
approach is via an analysis of the moment generating function: for any § > 0, we can compute

K k
E [exp <92Xz>] = HE [exp(0X5)],

i=1
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and use Markov’s inequality to bound:

E [exp (032 Xi)] _ [T, E [exp (0X)] .

Pr <

exp(6t) exp(6t)

ZXi > t] = Pr |exp (92X¢> > exp(6t)

We can now optimize over § > 0 to obtain the known inequalities.

Next, we move to our setting, substituting X; = u; f'(n;). Since I(t) < t and Eq. (6) does not
hold, we cannot use the MGF bound, because E[exp(6.X;)] = oo for all # > 0. This is called the
heavy-tailed regime. A standard approach is to truncate the random variables. Given some fixed
L > 0, we define XiSL = X;1(X; < L) and notice that XZSL is bounded, hence its MGF is finite
for any # > 0. Then, in order to bound the probability that ) *, X; > ¢, we first bound the probability
that >, X fL > t and then bound the probability that there exists an 7 such that X; > L, leading to
the following bound:

k
Pr [ZXi>t

=1

k
+) Pr[X; > IJ.
=1

k
< Pr [ZX@.SL >t

=1

The first term can be bounded using the moment generating function, and the second term is simply
bounded by Cke~!(X), using Eq. (7). Optimizing over the parameter  in the MGF bound and over
the truncation parameter L, one obtains the following bound, assuming that the X;s have zero mean:

k
> Xi> t] < 26K 4 (e 1)/ "

=1

Pr

for all ¢ < t* where ¢* is the solution to ¢t = kI(t)/2t. Here, t* is the same parameter as defined in
Theorem 5 and C” > 0 possibly depends on I(t). We note that the first term is the analogue of the
CLT, and it dominates the second term for ¢ < t*, hence, we obtain the desired bound.

Bounding the sum of second derivatives. Recall that we want to show that

Pr

k
1 Z
_ I <e/2] >1-46/2. 9
21 e oy € < ] =1 ©
First, using the condition that | f”(n)| < f(n)?, it suffices to show that

Pr

k
2]1{221rléaxf(fi)2§e/2] >1-4/2. (10)
i=1 '

Next, we show that with high probability over 7;, we have that f(&;) < 2f(n;). Since the density
is proportional to exp(—f(7;)), f(n;) is small with high probability, so it is sufficient to show that
if f(n;) is not too large, then f(n; £ 1/R) < 2f(n;). For that purpose, we use the condition that
|f'(n:)| < f(m:)?, which guarantees that if f is not very large, then it cannot grow very fast. This
will conclude that with high probability f(&;) < 2f(n;), and by taking a union bound, this holds
with high probability simultaneously for all <. Then, Eq. (10) translates to

1 k
Proms ;@f(m))? <e/2| >1-4/2.
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Similarly to the arguments above regarding the first derivative, we can show that Pr[f(n;)? >
t] < Cexp(—+/t). Again, we use a concentration inequality similar to Eq. (8) to bound this sum.
Following Eq. (5) and the bound on the sum of first derivatives, this concludes the proof.

5. Simulations

We compare the numerical noise-levels of bounded-noise mechanisms to the Gaussian mechanism,
for fixed values of k, e and §. We used a computer program to derive tighter noise bounds than
the ones appearing in the proof, by an exact computation of a suitable moment generating function
(the formal derivation appears in Section E ). We note that similar techniques can be used to obtain
bounds on any mechanism that uses i.i.d. noise. Yet, for the Gaussian mechanism we used the exact
optimal noise level, computed in Balle and Wang (2018). Still, the upper bounds on the bounded-
noise mechanism outperform those optimally computed values for the Gaussian mechanism. We
did not compare to the other mechanisms that have better asymptotic noise than the Gaussian mech-
anism, as the constants associated with their bounds are significantly worse.

The comparison appears in Figure 1. For the bounded mechanism, we plot both the absolute
bound on the noise and the 0.95 probability bound on the maximal noise over k queries, whereas for
the Gaussian mechanism we plotted high probability bounds on the maximal noise with different
confidence levels. It is worth noting that the gap between the bounded noise and the Gaussian
mechanism increases as k grows, as expected. For the fixed setting of ¢ = 0.1 and § = 10719, the
0.95-probability bound for the bounded-noise mechanism matches the 0.95 bound by the Gaussian
mechanism already at &k = 102, and it is 29% less at & = 10°. Further, the absolute bound for
the bounded-noise mechanism is lower by 28% than the 0.999-probability bound of the Gaussian
mechanism at k = 10°.

Further, we present numerical comparisons for adaptive data analysis in Figure 2. We used the
same setting that was plotted in Jung et al. (2021): we set the values of & = 0.1 and 3 = 0.05,
and for multiple values of n, we computed the number of adaptive queries that can be answered
while keeping all the errors below « with probability 1 — /3. Here, the bounded noise mechanism
can answer at least twice many queries as the Gaussian mechanism for any n > 8 - 10° and it
significantly outperforms the Gaussian mechanism also for smaller values of k.

10
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(a) k ranges from 100 to 10'%, ¢ = 0.1 and § = (b) € ranges from 10" to 1, k = 10% and § =

10710
10

0 . : -

102 10 3 IU‘“J 10 an l{]--ll][] 10 2350

(¢) 6 ranges from 1072 to 10720, k = 10 and
e=0.1

Figure 1: The errors of different mechanisms are plotted as a function of k, € and d. The solid lines
correspond to bounded noise mechanism with f(n) = 1/(1 —n%)2. In all of the plots, the
upper solid line corresponds to the absolute bound on the noise, while the lower solid line
corresponds to a 0.95-probability bound on the maximal error over the k queries. The
dashed lines corresponds to the Gaussian mechanism, and they correspond to bounds on
the maximal error that hold with probabilities 1 — 107%,0.999.0.95 and 0.5 (larger noise
corresponds to a higher probability). The values on the x-axis are described in each figure
separately and the y-axis corresponds to the noise divided by /klog(1/6)/e.
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120

100

Figure 2: The number of queries k£ (in thousands) that can be answered as a function of n (in
millions), while retaining (o« = 0.1, 5 = 0.05)-validity. The top line corresponds to the
bounded noise mechanism with f(n) = 1/(1—n?), the middle line to f(n) = 1/(1—n?%)?
(which is the same mechanism tested in Figure 1) and the dashed line corresponds to the
Gaussian mechanism.
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Appendix A. Abstract upper bound: Proof of Theorem 5

First, notice that in the proof sketch we assume the queries to be non-adaptive. Hence, we start by
explaining the differences that one has to make in order to adjust to the adaptive setting. Then, we
proceed with the formal proof.

The adaptive vs. the non-adaptive setting. In the non-adaptive setting, the queries q1,...,qn
are asked ahead of time, and assumed to be fixed. Notice that in Eq. (5), the queries ¢; come into
play via ;. Indeed, recall that u; = Rv; = ¢;(x) — ¢;(y). In this setting, the u; are fixed numbers.
Since the noise entries 7); are i.i.d., we derive that ). u; f'(1;) is a sum of i.i.d. random variables.
In order to bound them, we apply a concentration inequality for a sum of i.i.d. variables.

In comparison, in the adaptive setting, g; is asked after observing the previous answers ay, . .., a;—1.
Since ¢; depends on ay, ..., a;—1, then u; depends on 71, ...,7;—1. In particular, the summands in
u; f'(n;) are no longer i.i.d. Yet, since g; is only a function of 7y, ..., n;_1, then u; is only a func-
tion of n1,...,n;—1 and it is independent on 7;,...,n,. Since the n; variables are i.i.d., it holds
that E[u; f'(n:) | m,-..,ni—1] = wE[f (n:) | m,-..,mi—1] = 0. In particular, the partial sums
of >, f’(ni)u; constitute of a Martingale whose deviation can be bounded using a concentration
inequality.

FORMAL PROOF

Here, we use asymptotic notation, e.g. O(), to hide constants that might depend on the log-density
function f. Notice that it suffices to prove for A = 1 (we can always scale the the queries and the
noise by the same amount, while retaining (e, §)-privacy).

We start with a simple sufficient condition for the mechanism to be (¢, ¢) differentially private:

Lemma7 Lete,§ > 0andletk € N. Let f andn = (n1,...,m) o pyi. Let R > 0 and assume
that for any random variables v, . . ., v, € [—1/R,1/R] such that v; is a deterministic function of
N1, --.,Ni—1, it holds that

k k
Pr|> flj+v) <> fln)+e| =21-06 (11)
1 j=1

j:
Then, My g is (€, 0) differentially private.

Proof First, we can assume that Zy p = ffR e~ F(/R)dn = 1 (otherwise, f can be replaced with

f +1logZsR). Let x and x’ denote two neighboring datasets, let @ = (a,...,a;) denote the

random output of the algorithm on input x = (1, ..., z,) denote by @’ = (af, ..., a}) its output
on input x’. Let U C R and our goal is to show that Pr[a € U] < e Pr[a’ € U] + 4. Denote
vj = (gj(x) — ¢;(x"))/R for j € [k] and notice that v; is a deterministic function of 71, ..., 7;_1.
Denote

G=ameR": D fn) =) fn+v;)—e
j j

14
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Notice that by Eq. (11), Pr[n ¢ G] < §. Denote (U —b)/c = {(u —b)/c: u € U} for any b € R*
and ¢ # 0, define gq(x) = (¢1(x), . .., qx(x)), notice that a; = ¢;(x) + Rn; and estimate:

Prla € Ul =Pr[Rn € (U — q(x))] < Pr[n e ((U—-q(x)) /R)NG]+Prn ¢ G|

<Prlne((U-qx )/R)ﬁG]—f—é—/ e~ Xl dy 4§
ue((U—q(x))/R)NG

).

ue((U-q(x))/R)NG
=e¢Prine (U-qx))/R)NG|+6<ePr[Rne (U—-q(x))]+0
= e Pr[x’ € U] + 4.

To prove that Eq. (11) holds, one can approximate f by its second-degree Taylor expansion,
thus deriving the following statement.

Lemma8 Letre,0,R > 0andlet k € N. Let f and let n i pyr1. Assume that for any
Ul, ..., U, € [—1,1] such that uj is a deterministic functionmn, - - - ,nj_1, the following holds:
k
. ui f' (i) f"(&)!
Pr |Vi, n; € (-14+1/R,1 —1/R), and i <e|l >1-4.
P e L /R) @ ; 2@ eomi<y/r 2R2 | T

(12)
Then, My g is (€, 0) differentially private.

Proof We will show that Eq. (12) implies Eq. (11), where w; in Eq. (12) is replaced with Ruv; in
Eq. (11). In particular, notice that we can write f(7; 4+ v;) using the Taylor expansion f(n; +v;) =
fmi) + f'(nj)v; + f”(§j)vj2-/2 where &; is a point in the line connecting 7; and 7; + v;. We have

" '1)2
Zf(nj +v;) = Zf(nj) + Zf/(ﬁj)vj + Z f(ij)J

f'(nj)uy | f" (&)l
SZf(mH Z %uj Zs; &) ony|<1/R R
J J

Thus, whenever the high-probability event in Eq. (12) holds, the event of Eq. (11) also holds. In
particular, Eq. (12) implies Eq. (11), which concludes the proof. |

To apply Lemma 8, we would like to prove concentration of the sum of the derivatives of f. In
order to analyze the concentration properties of a sum of random variables, it is common to consider
each variable separately and then use a concentration result for sums. We start by providing a
definition of what it means for a random variable to concentrate:

Definition 9 Given C > 0 and a function 1(t): [0,00) — R, we say that a random variable X is
(I(t),C) bounded if for all t, Pr[|X| > t] < Cexp(—1(t)).

Given a sum of (I(t), C') bounded variables, we can obtain the following concentration inequal-
ity, that is proven in Section A.1, using ideas from Bakhshizadeh et al. (2020).

15
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Proposition 10 Let X --- X,, be a Martingale, namely, for all i, E[X; | X1,...,X;—1] = 0.
Further, assume that there exists a function I : [0,00) — [0, 00) and C > 0 such that

PI“HXZ| >t | X1 .. 'Xifl] < Cexp(—](t)),

and additionally, 1(t) < t and I(t)/t is monotonic decreasing. Let M > 0 be such that M >
c fooo (t? + 275)8_](75)/2 and let t* be the unique solution to

t=MnlI(t)/2t.
Then, for any t > 0,

n

>

=1

Pr 2e~11/4 4 Cpe— 1) t>t*

N t] _ {2et2/2M” 4+ Cne 1) ¢ < ¢

To give some intuition, we note that for any ¢ < t*, the first term dominates the second, and
here, we get a sub-Gaussian concentration, namely, the tail behaves as a Gaussian tail, where the
variance of the Gaussian is replaced with Mn, where M is just a constant that depends on I(t).
Yet, one could not hope for a sub-Gaussian concentration for all ¢ > 0. After all, a single variable
X, decays slower than a Gaussian. At some point, the heavy tail of the single X; will dominate
the sub-Gaussian tail of the sum, and this happens exactly at t*. From that point onward, the tail is
dictated by the function I(t).

In order to apply Proposition 10, we would like to show concentration properties of a single
instance of f’(n) and f”(n). This follows from the fact that f’ and f” are bounded in terms of some
function of f, using the following simple lemma:

Lemma 11 Let 1) be a random variable supported on (—1,1), with density e =1 | Z where Z is
the normalizing constant and f(n) > 0. Assume that h: (—1,1) — Ris suchthat f(n) > I(|h(n)|)
for all m, for some increasing I: (0,00) — (0,00). Then, for any t > 0,

2

Ee_I(t) .

Pr{[n(n)| = 1] <

Proof A simple calculation shows

1 B 1 B
Pr{[h(n)| 2 t] = ZAE(M): e TMan < Zﬁe(m: e~ TR g
[R(m)|>t |h(n)|>t

1

sz ne(—1,1):
[R(m)|>t

10 gy < %6_1@

We can apply Lemma 11 to prove a bound on the weighted sum of derivatives:

Lemma 12 Let t* be as in the definition of Theorem 5. It holds that for any t < t* and any
sufficiently large k,

Pr | [ fi(nj)uy| > t| < e /20 4 10D/
J
where C'y depends only on f.
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Proof Applying Lemma 11, we have that f’(»;) is zero mean and is (I(t),2/Zy,1) bounded, where
2/Zy.1 is a constant. Since u; and 7; are independent conditioned on 7y, . .., 7;—1 and since |u;| < 1,
we derive that conditioned on 71, ...,7;_1, the random variable u;f’(n;) is also zero mean and
(I(t),2/Zs1)-bounded. We would like to apply Proposition 10. Let us discuss what values we
substitute in that proposition:

* First, consider the value M, that has to be lower bounded by C' fooo (t2+2t)e~1()/2dt. Notice
that this integral converges due to the assumption in Theorem 5 that I(t) > Q(v/t). We will
substitute M to the maximum of that integral and 1

¢ Next, notice that we substitute n with k.

* Further, let us distinguish between the value ¢* appearing in Proposition 10, that we will de-
note here by , which is the solution of ¢ = MkI(t)/2t, and the value appearing Theorem 3,
which is the solution of ¢ = kI(t)/2t, that we denote here by ¢*. We note that ¢’ > ¢*, since
M > 1 and since I(t)/t is monotonic decreasing in ¢.

We obtain that for any ¢ < ¢*,

|

Let us bound the second term, C'ke , and for that purpose, let us obtain a lower bound on ¢*:
first, for a sufficiently large k, it holds that t* > 1. Indeed, for any ¢ < 1 and for a sufficiently
large k, the value at the right hand side of the equation ¢t = kI(t)/2tis kI(t)/2t > kI(1)/(2-1) >
1 > t, which follows from the monotonicity assumption on I(t)/t. By definition of t* we have
t* > 1. From the definition of ¢* we have that ¢* = kI(t*)/2t*, hence, t* = \/kI(t*)/2. For any
sufficiently large k, t* > 1, hence, since I(t) is increasing, we have that ¢* > /kI(1)/2. Further,
recall that I(t) > Q(v/t), which implies that I(t*) > Q(+/k), hence, for a sufficiently large k,

k

> wif'(m)

=1

> t] < 92e 12ME | =1t

—I(t%)

Che~ 1) = Ce10/2) . ~10)/2 < Cpe-SVE) | o~1)/2 < o=1()/2,
m

Next, we would like to bound the term that corresponds to the second derivative. Recall that
our goal is to bound . |f”(&;)| where & is in the vicinity of n;. We start by bounding the sum
> 1f"(n;)| and then relate the sum over &; to that over 7;. Since |f”(n)| < O(f(n)?) we can
instead use the following lemma:

Lemma 13 Letn ~ /‘?1- Then, for any sufficiently large k and any t > k,
k

> Fm)?

=1

Pr >t+ Ck §e*c‘/z

Y

for some constants C, c > 0 depending only on f.

Proof We would like to apply Proposition 10, with the following substitutions:
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» We replace n with k and X; with f(n;)®> — Ef(n;)?. Notice that X; is zero mean and
X1, ..., X are independent, hence E[X; | X ... X;_;1] = 0 as required.

« From Lemma 11, we have that X; is (v/#,2/Zy)-bounded. In particular, we replace I(t)
with v/ and C with 2/Z; ;.

* We replace M with the corresponding integral in Proposition 10, and this integral converges
as argued in Lemma 12.

* We replace ¢* with with the solution of ¢t = Mk+/t/2t, and notice that tx = (Mk/2)?/3.

Since t* = ©(k?/3) it follows that for a sufficiently large k, k > ¢*. From Proposition 10 we obtain
that for any ¢ > k,

k k
Pr> " fm)? > t+ Y Ef(n)?| <27V,
i=1 =1

for some constant ¢ > 0. Lastly, notice that from Lemma 11, we have that E[f(;)?] < oo, hence,
Zle Ef(n;)? < O(k). This concludes the proof. [ |

This lets us bound ). | f(n:)”|, however, recall that we want a bound on ), | f”(&;)| for some &;
in the vicinity of 7;. In fact, it suffices to bound f(&;) in terms of f(n;) and then bound f”(&;) <
O(f(&:)?). Therefore, we have the following lemma:

Lemma 14 Let f: (—1,1) — (0,00) be a function such that lim,_,,- f(n) = lim,_,_1+ = oo,
and |f'(n)| < Cf(n)? for some C > 0. Then, for anyn € (—1,1) and any X € [—1,1],

s = £ (n+ 5o ) 12

Proof First, assume that A > 0. Fix some 7, let C be the constant such that f'(n) < Cf(n)? and

define the function )

90 = T T ot =0y

Computing the derivative of g with respect to 6, one obtains

C
! 2
g(0) = = Cyg(0)",

(1/f(n) +C(n —6))*
forall # such that 1/ f(n)+C(n—80) > 0. In particular, this holds for all § < n+1/(C f(n)). Notice
that f(n) = g(n) and further, that the assumption that f'(n) < Cf(n)? while ¢’(8) = Cg(0)?,
implies that f(0) < ¢g(#) forall 6 € [n,n+ 1/(Cf(n))). In particular,

/ <77+ 20;(77)) <g <n+ 20;(77)) _ 1{“;)/2 < 2f(n),

as \ < 1.
For the case that A < 0, the result follows by applying the same lemma with A= -\ n=-n

and f(0) = f(—0). n

We derive the following bound on the the sum of second derivatives as a consequence:
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Lemma 15 For a sufficiently large k, and any t > k, it holds with probability at least 1 —e~ VO

e B/Cs that
k

S s @) <o,

i—1 &t 1&i—mi|<1/R

where C'y > 0 is a constant depending only on f.

Proof First, we bound f”(&;) < Cf(&)?, as given in the assumptions of Theorem 5. Next, we
would like to bound f(&;) in terms of f(7;). Notice that |§; — 7;| < 1/R. From Lemma 14, we
have that if 1/2C f(n) > 1/R, then f(&;) < 2f(n;). This happens whenever f(n) < R/2C. From
Lemma 11, this happens with probability at least 1 — 2/Z¢; - e~f/2C By a union bound over
the k coordinates, and since R > +/k, we have that if k is sufficiently large, then with probability
1 — e~ B/4C all the k coordinates satisfy f(n) < R/2C'. This implies that

Z (&))< cZﬂ&)z < 2CZf(m)2-

From Lemma 13, we have that w.p. e~°V%, > f(ni)* < t+0O(k). Combining the above arguments,
we obtain that with probability at least 1 — emeVt _ ¢~ R/AC,

Z (&) < 2CZf(m)2 <20t +O(k) < O(t),

since we assumed in this lemma that ¢ > k. This concludes the proof. |

Proof [Proof of Theorem 5] From Lemma 8 it suffices to show that with probability 1 — 4,
k

Z szR(nz) +

=1

k
1" (&)
=¢ 13
;&:I&H—l??i}l{g/}z oz =€ (13)

The first term can be bounded by €/2, if we substitute ¢ = Re/2 in Lemma 12, and the failure
probability is bounded by
e—RQeQ/kcf + e 1(t)/2.

Since we assumed that R > Q(y/klog1/§/e), if the constant in the definition of R is sufficiently
large, then the first term can be bounded by §/4. For the second term, recall that we assume that
§ > e U)) If the constant in the Q() is sufficiently small, then this term is also bounded by
d/4. We conclude that the weighted sum of derivatives is bounded by /2 with probability at least
1—4/2.

Next, we consider the The second term, that corresponds to the second derivatives. To bound it,
we apply Lemma 15, substituting t = Cok log(1/9), where Cy > 0 is a sufficiently large constant

to be determined later. We derive that with probability 1 — e~V t/Cs _ e=R/Cy

D1/ (€)l < O(klog(1/6)).

Recall that in Eq. (13) this sum is divided by R2. In particular, if the constant in the definition of
R is sufficiently large, then this term is bounded by €/2 as required. Lastly, notice that the failure
probability is bounded by

eme/klog(l/(S)/Cf _’_efcoR/Cf < 26700\/klog(1/6)/0f,
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assuming that the constant in the definition of R is sufficiently large. First, we would like to bound
k > log1/0. Recall that § > e 1) > e=t" ince I(t) < t. From the inequality I(¢) < ¢ and the
definition of t*, we have that t* = kI(t*)/2t* < k/2 < k, which, in combination with § > =",
implies that 6 > e~*. Hence, k > log(1/4). Let us get back to the failure probability, and notice

that it is bounded by
9e—Colog(1/6)/Cy

Recall that Cy is a constant that we can define, and we can set it sufficiently large such that this
failure probability is at most § /2. This concludes that the bound on the sum of second derivatives is
bounded by €/2 with probability 1 — 6 /2. In particular, Eq. (13) holds with probability 1 — é which
concludes the proof. |

A.1. Proof of Proposition 10

We restate the following proposition and prove it:

Proposition 16 Let X --- X,, be a Martingale, namely, for all i, E[X; | X1,...,X;_1] = 0.
Further, assume that there exists a function I : [0,00) — [0, 00) and C > 0 such that

PI‘HXZ| >t | X1 .. ‘Xi—l] < Cexp(—[(t)),

and additionally, I(t) < t and 1(t)/t is monotonic decreasing. Let M > 0 be such that M >
C fooo (t? + 275)qf,)_j(t)/2 and let t* be the unique solution to

t = MnlI(t)/2t.

Then, for any t > 0,

Pr

< 2e—t2/2Mn 4 Ope=I(t") ¢ < ¢
= 2e~11/4 L Cpe—1®) t>t*

n
>
=1

For convenience, we will refer to a random variable X as (I(¢), C) bounded if Pr[|X| > ¢] <
Cexp(—I(t)) forall ¢t > 0.

We will use a truncation of the random variables. Given L > 0 define XZ-SL = X;1(|X;| < L)
and Xi>L = X;1(|X;| > L), and notice that X; = XFL + XfL. We bound the sum ), X; by
considering the moment generating function of » |, X ;L and bounding the probability that there
exists ¢ such that X; > L, as formalized in the following lemma:

Lemma 17 Fix L, K,0,6 > 0 be such that for all i,

E [ | Xy X | <X and Pr[|X; 1] <6
i 1 X1 <ey an I"HXZ|>L’X1"'X2—1]§ .

|

Then, for any t > 0,

>

)

> t] < 26810t 4 4.
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Proof First, by a standard induction on n, one can show that

E [exp (9&){?)] < efn,

i=1

Consequently, by Markov’s inequality,

Pr [Z X=F >t
%

Similarly, the probability that the sum is less than —¢ can be bounded by the same quantity. Thus,

Pr [ d X S xs
7 %

>t >t| +Pr[3i, X7F > 0]

>t] =Pr

St
%

§Pr[

< 2€Kn70t + né.
|

Therefore, we would like to bound the moment generating function of X;1; given X; - -- X;.
We have the following lemma:

Lemma 18 Let X be a zero-mean random variable. Then, for any 6 > 0,
E[e’X] < 1 + 02B[X 27X /2.

Proof For any z € R, we have by the Taylors series of e* aronud z = 0,

: 2 o) 2 1
e:1+z+?e §1+z+?e

where ((z) is in the segment between 0 and z. Substituting z = 6.X, taking expectation over X,
and using the fact that X is zero mean, the result follows. |

We would like to apply the above lemma for bounding the moment generating function.
Lemma 19 Let X be a zero-mean random variable that is (I(t), C') bounded. Then,

E{Xze("Xq g/ (2t + 012)e® Pr[|X| > ¢]dt.
0

Proof Define Z = |X|. Then, our goal is to bound E[Z2e??]. By a standard change of mea-
sure argument (that can be proved, e.g., using integration by parts), for any differentiable function
h: [0,00) and any nonnegative r.v. Z, one has

E[h(Z)] = h(0) + /0 T piz > t]a”;y)dt.

Applying for h(t) = t2e?, and substituting dh(t)/dt = (2t + 0t*)e?, the result follows. [ |

We would like use Lemma 19 on X =L:
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Lemma 20 Ler X be a zero-mean random variable that is (I(t), C') bounded. Let L,0 > 0 such
that 0 < I(L)/2L. Assume that I(t)/t is monotonic decreasing and that I(t) < t. Then, for the
value M defined in Proposition 10,

E[e?X="] < M2,
Proof Notice that from the monotonicity of I(¢)/t and from the fact that 6L < I(L)/2, we have
that forany 0 < ¢ < L,

Ié)[(t) < 9](LL)I(t) < I(t)/2.

Using this inequality and the fact that < I(L)/2L < 1/2 < 1, we obtain

0t =20

00 L L
/ (2t + 0t2)e” Pr[| X =F| > t]dt < C/ (2t 4 12)e" 1O ar < C/ (2t 4+ t2)e~ 1O/ 2q;
0 0 0

< C/ (2t + t2)e 1O 2q < M.

0

Using Lemma 18 and Lemma 19, it follows that
E[®X"] <1+ 62M/2 < 7M/2,
|

Proof [Proof of Proposition 10] We apply Lemma 17, substituting L, 6,4, such that L is to be
chosen later, § = e~ /(L) and @ is a value to be chosen later that satisfies § < min(I(L)/2L,1).
From Lemma 20 we can further substitute K = 6?1 /2. We obtain that

¥

)

Pr

> t] < 2e0*Mn/2-0t | o= (L), (14)

Let us now substitute L and 6. Let t* be the solution of t = MnI(t)/2t, and notice that there is a
unique solution, since the left hand side (%) is increasing while the right hand side is decreasing, by
the assumption that I(t)/t is decreasing. If t < t*, we take L = t* and 0 = ¢/Mn. Notice that

0 =t/Mn <t*/Mn=1(t")/2t* = I(L)/2L,
as required by Lemma 20. Then,

2 _ 42
69 Mn/2—0t _ et /2Mn?

and substituting into Eq. (14) concludes the case ¢ < t*. If t > t*, we substitute L = ¢ and
0 = I(t)/2t = I(L)/2L. Then, using the definition of ¢*, we can bound the right hand side of
Eq. (14) by

90" Mn/2—0t + Cne~ (L) — 2€I(t)2Mn/8t2—1(t)/2 + Cne 1) — 9 I(t)Mn/2t-1(t)/4t—1(t)/2 + Cne1®

< 2eIW/A=10/2 L Ope= (1) = 2= 1/4 4 Ope 1),

This concludes the proof. |
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Appendix B. Applying the abstract bound: Proof of corollary 6

For the function f(n) = 1/(1 — 1?)?, one can compute that
Oftm)| _ | 2mp 2p
677 (1 _ 772)p+1 (1 _ n2)p+1 ’

Using the function I(t) = (t/2p)?/P+1), we have that I(|f'(n)|) < f(n). Itis straightforward to
verify that all the other conditions on () and f follow as well. Next, we find ¢*, which is the solu-
tion to t = kI(t)/2t, namely to t = k(t/2p)?/®P+1) /2t which is solved by t* = C/(p)k®+1)/(p+2),
where C(p) depends only on p. Lastly, we have

I(t*) = C'(p) . kp/(p+2)’

<

for some C’(p), and the guarantee of the theorem implies an optimal rate for any ¢ > exp(—1I(t*)).

Next, we study the function f(n) = exp (exp (1/(1 —n?))). Denote by h(n) = 1_1772’ and
notice that f(n) = exp(exp(h(n))). By the chain rule,
d
|f'(m)] = ay Pexp(R(n)| = |exp(exp(h(n))) exp(h(n))h' (n)]| = | f(n)log( (77))(1_27372)2

< |2f(n)log(f(n)) - h(n)Q\ =2f(n) log(f(n))(loglogf(n))2-

Now, the intuition is to take I(t) to be the inverse of g(u) = 2uloguloglog? u, and this will imply
that (| f'(n)|) < f(n). This substitution, however, does not satisfy all the required assumptions on
I(t). To be more formal, notice that g(u) is monotonic increasing in [e, c0), that g(e) = 0 and that
limy 00 g(u) = oco. Hence, g: [e,00) — [0,00) has an inverse that we denote by h: [0,00) —
[e, 00), which is also monotonic increasing. Further, we argue that h is concave. Letting ¢, g, b’
and A" denote derivatives, one has that

—1
(g'(h=1())%g" (h=1(t))
as g is increasing and convex in [e, 00). Since g(u) = w(u) as u — oo, we have that h(t) = o(t) as
t — oo. Let t' = sup, h(t) > t, and define

I(t):{t L=t

h(t) t>t

<0,

h//(t) —

Then, I(t) < t as required, and further, I(t) > Q(v/t) as t — oo, since I(t) = O(h(t)) =
O(t/(logtlog?logt)) as t — oo. It remains to argue that I(t)/t is decreasing. First, I(t) is

a concave function as a minimum of two concave functions, and it satisfies 7(0) = 0. Then,
computing the derivative of I(t)/t, one has

!/ t 7/ !/
d I(t) _ I'(t)t —1(t) :/ I(t)_j(s)dsg(),
dt t 2 0 2

which follows from the fact that I is concave, hence its derivative is decreasing in ¢. This concludes
that I(t)/t is decreasing. It is straightforward to verify the other assumptions on f and I(t).

Recall that I(t) = ©(t/(logtlog?logt)) as t — co. Next, we solve for t* that is the solution
of t = kI(t)/2t = k/(2logtlog?logt). We obtain that t* = ©(k/(log k log?log k)), and I(t*) =
O(k/(log? klog*log k)), as required.
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Appendix C. Lower bound: Proof of Theorem 2

Below, we state a formal version of Theorem 2 and provide its proof.

Theorem 21 Fix k,0,e = 1, A = 1 and M > 0, and let i be a continuous noise distribution
supported on [—M, M| whose density is monotonically decreasing for n > 0 and increasing for
1 < 0. Assume that the algorithm that adds to each answer an i.i.d. noise drawn from p, is (1,9)
differentially private against 1-sensitive queries. Then, M > Q(log1/dlogk). In particular, for
§=e* M >Q(klogk), and for any § < e=<(/ log”k) 7f > w(y/klog1/d), where w() denotes
a strict asymptotic inequality.

We can assume that p[0,00) > 1/2 (otherwise we can consider — instead of p). Further,
recall that . is a continuous distribution, hence it has density that we can denote by e~/(*) where
f(x) = oo if the density is zero. Our assumption implies that f(n) is increasing for n > 0 and
decreasing for n < 0.

The argument consists of the following lemmas:

Lemma 22 Assume that Pr,[n > 0] > 1/2 and that § < 0.1. Then,
f(1/2) <log(10M).

For an intuitive explanation about this lemma, notice that it is stating that the density at 1/2
cannot be very small. This follows from two facts: (1) the density at O is at least 1/2M, since
([0, M]) > 1/2 and the density is decreasing in [0, M]. Further, since the noise satisfies (1,0.1)-
DP, its density cannot drop “too fast”, other a change in the true query value will be detected. The
formal proof of this lemma appears in Section C.1.

Lemma 23 Letn > 1/2 such that

max <10g 2, m> < 1) < 2202,

Then,
f(n+1/2) < f(n) exp(8/log(2/9)).

To gain some intuition on this lemma, we again use the fact that since p satisfies DP, the noise
density cannot drop too fast. In particular, if the density at 7 is non-negligible, then the density at
7 + 1/2 cannot drop too fast. Notice that the assumption that the density at 7 is non-negiligible
corresponds to requiring that f(n) < log(1/9)/3. On the other hand, the lower bound requirement
on f weakens as k grows. This is due to the fact that we utilize the multiple samples. The proof
appears in Section C.2.

The proof concludes by combining these two lemmas. Since f(1/2) is relatively and due
to the bound on the growth rate of f, we conclude that f(n) < O(log(1/d)) for some n >
Q(log klog1/9). In particular, this implies that [0, 7] is contained in the support of y, and con-
cludes the proof. The analysis is based on a case analysis as formalized below:

Proof [Proof of Theorem 21] To complete the proof, let 79 be the minimal 7 such that n > 1/2 and
log(2/9)

£(n) > max <1og2, 4<k—1>> |
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Then, by Lemma 22,
log(2/)
4(k—1)

Applying Lemma 23 multiple times, we derive that

f(no) < max (log 2, ,log(lOM)) . (15)

Fno +1i/2) < f(no)ed/ 0a(2/9),

for any ¢ such that
Flo)e ™/ 105C/9) < log(2/6)

Equivalently, this holds for any

._ 10g(10g(2/6)/3f(n0))_0 log(2/6) log(2/9)
ST TS og(2/0) _lg<3f(770)> 8

In particular, f(no + |¢]/2) < oo, which implies that M > ng + |[£]/2. It suffices to show that
¢ > Q(log 1/4-log k) to conclude the proof. We divide into cases according to f (7)), using Eq. (15).

o If f(no) < log2: then, ¢ > Q(log(2/0)loglog(2/d)). We divide into cases according to ¢:
if § < e~*/108”k then loglog(2/6) > Q(log k) and the proof follows. Otherwise, we use the
theorem of Steinke and Ullman (2016) that claims that for any 6 > e~ F and for any (1,9)
mechanism for 1-sensitive queries, it holds that the average error is bounded as follows:

k
%Zm(x) — ail = Q(/klog(1/9)) .
=1

This implies that if the mechanism uses independent bounded noise of magnitude bounded
by M, then M > Q(y/klog(1/4)). Since \/klog(1/6) > log1/dlogk for § < e~/ log’k
the result follows.
o If f(no) < log(10M). As argued for the previous case, we can assume that § < e~/ log”k
Further, we can assume that M/ < log(1/9) log(k)/10, otherwise the theorem follows. The
above two assumptions imply that

f(n0) < log(10M) < log log(1/5) + loglog k < O(loglog(1/3)).

This implies that

o (log(2/6)\ log(2/6)
e—log(3f(n0))- 2% > 0 (1og log(1/5) log(1/8)) > Q(log klos(1/6)),

where the last inequality follows from § < e %/ log?k

o If f(no) <log(2/9)/4(k—1), it clearly follows from definition of £ that ¢ > Q(log(1/6) log k).

This concludes the proof. |
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C.1. Proof of Lemma 22

We start with a simple lemma that argues that if we shift any subset U of R¥ by any v € [0, A]* then
the probability of the shifted set should not significantly differ from that of U, if the noise satisfies
DP.

Lemma 24 Let ¢, 6, let ¥ be a noise that is (e, 0) differentially private against 1-sensitive queries.
LetU CRF, v e [0, 1]]‘3, and define U +v ={u+v: u € U}. Then.

pE(U) < e pf (U +v) + 6.

Proof Assume that X = [—1,0], that n = 1, and define the query ¢;(z) = x foralli = 1,... k.
Let 21 = (0,...,0) and 2§ = —v. Recall that ay,...,a; are the answers of the algorithm, and
notice that by the (¢, §) differential privacy,

Prl(ai,...,ax) € U | xz1] < e Prl(ay,...,ar) € U | z}] + 6.

This is equivalent to
Prin e Ul < ePrlp e U +v] 44,
2 2

as required. |

We can conclude with the proof.
Proof [Proof of Lemma 22] Assume towards contradiction that f(1/2) > log(10M), and this
implies by monotonicity that f(1) > log(10M ). Then,

M M
p[l,00) = p[l, M] = / e FMdp < / e T Wan < Me= M < 1/10.
1 1

Consequently,
1[0, 1] = p[0,00) — pu[l,00) > 0.4

while
w[1,2] < pll,00) <0.1.

Let U = {(z1,...,2,): 1 < 1}. It holds that
W) = 10,1] > 0.4,

while
w* (U + (1,0,...,0)) = u[1,2] <0.1.

This implies that
p™(U) > etp™(U + (1,0,...,0)) + 0.1,

which contradicts Lemma 24 and the fact that the noise is (1,0.01) private. |
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C.2. Proof of Lemma 23

First we use the following result, which is analogous to a bound that appears in the upper bound in
this paper, and follows from Lemma 24 above.

Lemma 25 If the noise if pi* is (1,0) private with respect to 1-sensitive queries, then for any
V1, ..., € 10,1],

k
Pr [Z flxi +vi) — f(x) > 2] < 20. (16)

R =
Proof Look atthe set U = {n: . f(n;+vi) — f(n;) > 2}. From Lemma 24 and the (1, §) privacy
assumption, we have
Pr[U] < ePr[U +v] + 6.

7 1
Further,
k k
= - ; xp [ —2 — i + Ui =2 Pr .
Pr(U] —/Uexp< ;f(m)dn> >/Ue p( 2 ;f(m‘FUz)dn) ¢ Pr{U + 0]

Combining the above inequalities, we derive that

Pr[U] < ePr[U +v] + 6§ < Pr[U]/e + 6,
p 1 1

hence
Pr[U](1 —1/e) <4,
n

which implies that Pr, [U] < 26 as required. [

Recall that we want to bound f(n+1/2) — f(n). In the proof, we assume towards contradiction
that f(no + 1/2) — f(no) is large for some appropriate 79 and we will derive that Eq. (16) fails to
hold, which, by Lemma 25 implies that the mechanism is not DP. As a first step, we will prove that
if f(no 4+ 1/2) — f(no) is large then a variant of Eq. (16) is not satisfied, with different constants
and k = 1.

Claim 26 Letng > 1/2. Then,

e—f (o)
Prlfn+1) = f() 2 flm+1/2) = fom)] 2 5 .

Proof We have by monotonicity of f(n),

e—f(ﬂo)
2

0
Prim-1/2<n<ml = [

1) gy > / T ) gy —
no—1/2 no—1/2

For any such n € [y — 1/2, 1] we have
fm) < flmo) < flmo+1/2) < fln+1).
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Consequently, f(n+ 1) — f(n) > f(no +1/2) = f(no)- L

Next, we extend Claim 26 to show that if f(ny + 1/2) — f(no) is large for some 7, then a
variant of Eq. (16) does not hold, where the sum is over m > 1 elements. To achieve that, we first
use Claim 26 to show that Pr[f(n 4+ 1) — f(n) > a] > b for some a,b > 0 and then derive that if
N, ..., Nm are i.i.d., then

m

Pr() " f(ni+1) = f(n;) = ma] > Pr[vi <m, f(n; + 1) — f(n;) > a
i=1

= [IPrlf(m +1) = f(m) > a] =b™.
i=1

Choosing a and b appropriately yields the desired result.

Lemma 27 Letng > 1/2, let 6o > 0, and let C > 0. Assume that

f(no +1/2) = f(no)(1 +4C/log(1/d0))

and that log(1/8 log(1/8
max <10g 2, Z(gk(_/f))> < flmo) < Og(g/O).

Then, there is m < k such that

m

Y fi+1) = fm)=C

i=1

Proof Define K = 4C'f(ny)/log(1/dp) and L = f(n9) + log 2. Applying Claim 26, we have

Prif(n+1)=f(n) = K] = Prif(n+1) = f(n) = fno +1/2) = f(mo)] = e~

Pr

> 0p.
nevpk

Let m = [C/K]. First, notice that m < k: indeed, it suffices to show that C'/K + 1 < k, which

holds since | 1/(5
0og 0
> ——
Then,

m

PSS fOn+ 1) = flm) > €)= Privie (1oom), fln+1) = fn) > K] = e
=1

It remains to argue that e~ > &g, or equivalently, Lm < log(1/do). By definition of m, it suffices
to show that L(C/K + 1) < log1/dp. Indeed, using the fact that f(7) > log2 > 1/2 and that

f(mo) <log(1/do)/3.

L(C/K +1) = LC/K + L = log 1/50W

i;gzgg +2f(no0) < 3f(no) <log(1/do)

+ f(no) +log?2

<log1/do
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This concludes the proof. |

Proof [Proof of Lemma 23] Assume towards contradiction the existence of such 7. Then, since
e* > 1+ x for all x, we have

fn+1/2) = f(n)(1 +8/log(2/4)).
Applying Lemma 27 with C' = 2 and §p = 24, we obtain that there eixsists m < k such that
m
Pr 1> f(mi+1) = f(m) > 2| > 26.
MR | =1

However, by Lemma 25 this does not hold. We derive the contradiction, and this concludes the
proof. |

Appendix D. Adaptive data analysis: Proof of Corollary 3
We use the following transfer theorem from Jung et al. (2021):

Theorem 28 Assume that A is an algorithm that answers k statistical queries, ¢;: X — [0,1]
given some dataset (x1,...,x,) € X" Further, assume that the algorithm is (e, §)-differentially
private with respect to its dataset and that with probability 1 — [3', all of its answers a; are o/-
accurate with respect to the sample, namely,

: 1
Pr|Vi=1,...,k: ai—n2qi(xj) <d|>1-p".
J:

Assume that x1, . ..,y are drawn from some distribution P. Then, for any c,d > 0, the algorithm
M produces answers that are o(c, d)-accurate with respect to P with probability 1 — (¢, d), where

alc,d) = + e —1+c+2d; Ble,d)=8/c+/d.

Namely,
PriVi=1,...,k: |a; — ¢;(P)| < a(e,d)] > 1 — (c,d) .

From this, we can easily derive our theorem:

Proof [Proof of Corollary 3] Fix «, 5 € (0,1/2). We apply Theorem 28, using the bounded noise
mechanism from Theorem 1, that answers each query ¢ with a; = > y ¢i(x) + n; where 7); are
i.i.d. bounded noise. We set the privacy parameters to € = /8 and 6 = «3/4. We obtain that the
answers are o/-accurate with respect to the sample, for

J—0 ( klogﬂ/&ﬁ)) |

en

using Theorem 1 and the fact that the statistical queries on a dataset of size n are A = 1/n-sensitive.
This holds with probability 1, hence, we can substitute ' = 0. We take ¢ — 0 and d = «//4, and
we derive that

lim a(c,d) = o/ + e —1+a/2 <o +3a/4; Ve>0, B(c,d) = 85.

c—0
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Here, we used e < 1+ 2z for x € [0, 1]. If we take

2 )

€ o?

then we have o/ < «a/4, hence, a(c,d) < « for some ¢ > 0 and 3(c,d) = (. We derive by
Theorem 28 that the protocol is c-accurate with respect to P with probability 1 — /3, as required. l

Appendix E. Computing tighter upper bounds

Here we explain how to derive an algorithm that upper bounds the optimal noise level, for each
given ¢, k and §. The final algorithm is given as Algorithm 2 below, yet, we start by explaining it
step by step. First of all, we note the following sufficient condition for (e, d)-privacy, which is a
tighter variant of its analogoue in the proof of Theorem 5:

Lemma 29 Let P and Q be probability distributions over R* with densities p(x) and q(z), respec-
tively. Let €,0 > 0, and assume that

o p(X) e—t
< 0.
/6 Xflrp[logq( )>t}e dt <94

Then, for any U C R4,
Pr [ X eU]<e® Pr[X eU]+o.
X~P X~Q

Proof First of all, notice that by change of variables s = ¢ — ¢, one has

T

Assume that the above statement holds and denote by A the random variable

z\znmx<ngZﬁ§;—e>

where X ~ P. The left hand side translates to
o0
/ Pr[A > tle”tdt < 6.
0

We use the known technique of integration by parts for probability distributions, which states that
for a nonnegative random variable Z and for a function F': [0, 00) — R with a continuous derivative
that satisfies F'(0) = 0,

Ew@n:/ Pr[Z > ] F/(¢)dt.
0
Substituting Z = A and F(t) = 1 — e, we derive that

E[l —e ] <4
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Using the fact that 1 — e~ Y = 0 and the fact that A > 0, we derive that
E[(1 —e ™ ™1(A > 0)] < 4.

Substituting the value of A, we obtain

/Rk p(z) <1 - 66]923) 1 (logzgg > e) dr = /Rk (p(x) — eq(z)) 1 (p(z) > eq(x)) da < 6.

This implies that for any U C R¥,

/Up(a:) —eq(z)dr < | (p(z) —eq(z)) 1 (p(x) > e“q(x)) dx

IN

—

(p(z) — e“q(x)) 1 (p(x) > eq(z)) dz <6,

k

as required. |

Let us apply the above lemma for answering multiple queries. Below, we assume for simplicity that
the queries are non-interactive, namely, g1, . . ., g; are given a-priori. Yet, one can obtain the exact
same bounds while assuming that they are asked adaptively. We refer to the proof of Theorem 5
(and particularly, to Lemma 17).

Lemma 30 Let M be a mechanism that answers k fixed A-sensitive queries by adding an i.i.d.
noise drawn from some distribution | over R, with density

—f(n)
wu(n) = ¢ 7 where 7 = / e~ fMdn.
R

(Here, we use the convention f(n) = oo if u(n) = 0.) Let €, > 0 and assume that for all
V1, ..., 0k € [=A, Al it holds that

~ k

/ Pr [Z FOni+ i) = f(mi) > t] etdt < 0. (17)
€ e S izt

Then, the mechanism is (¢, §)-private.

Proof Let x; and x3 be two neighboring datasets, let ¢q1, ..., q; denote the queries. Denote the
densities of the output of the mechanism on x; and x2 by p; and po, respectively. Our goal is to
show that for all U C R¢,

/p1(y1,---,yk)dySee/pz(y1,---,yk)dy+5-
U U

In order to show this inequality, from Lemma 29 it suffices to show that

/ Pr [log Pl ye) t} e“tdt < 6. (18)
e Wisyr)~p1 P2(Y1, - Yk)
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Towards this goal, notice that

k
P, uk) = Hﬂ(yz‘ = 4i(%)))-
i=1

In particular,

pl(yh <o 7yk

log— fy — f(yi — ai(x1)). (19)

p2(y17'-'7yk ; ( ‘ Z( ))

Assuming that (Y7,...,Y}) is a random variable denoting the output of the mechanism on x;, we

have that Y; — ¢;(x1) are distributed i.i.d. according to u. Hence, the right hand side of Eq. (19) is
distributed according to

k
D Fi+ qi(x1) — qi(x2)) = f(m),
i=1
iid. . . .
where n1,...,nr ~  u. Denote v; = ¢;(x1) — ¢i(x2) and since the queries are A-sensitive,

|v;| < A. We have that the right hand side of Eq. (19) equals

k
> Fni+ o) = f(m)-
i=1
Combining with the assumption of this lemma, this proves Eq. (18), which concludes the proof. W

Next, we show how to bound the deviations of ). f(n; + v;) — f(n;). A standard way is to
use the moment generating function, however, for the bounded noises suggested in this paper, the
corresponding MGF might not exist. Instead, one can use truncation. In particular, we will find
some threshold L such that Pr[|n;| > L] < 6;/k, for some §; < 6. This implies that Pr[3i =
1,...,k: |n;| > L] < &1. Then, the left hand side of Eq. (17) can be bounded by

[,

[Zf mi+vi) = f(m) >t A max|y| < L

+ Pr[3i, ;] > €]> e tdt
MLk l~ p

o k
S/ Pr [ f771+vz) f(nz)>t A max‘nz’<L e tdt+517
€ 1

i.i.d.
M- 777k ~

1=
using the fact that Pr[3i, |n;| > ] < 6; and [“e" = 1. Denote X; = (f(n; + vi) —
fm:i)L(|m:] < L) and denote d2 = 6 — d;. It is sufficient to prove that

o0
/ Pr [Z X; > t] etdt < §s. (20)

We bound the deviations of ) . X; using the moment generating function technique: for any A > 0,
by Markov’s inequality, one has

Pr [ZXl >1
%

Recall that X; = (f(n; +v;) — f(m:))1(|n:| < L). We would like to eliminate the dependence on
€ [-A, A]. We will bound its MGF as follows:

AY, X, X,
= Pr [T V] < Bl =] ILE[] 1)

e}\t e)\t

32



A BOUNDED-NOISE MECHANISM FOR DIFFERENTIAL PRIVACY

Lemma 31 Assume that 1 is distribution with density (1) o< e~/ defined on [~ R, R]. Assume

that  is log concave, namely, p((n1+n2)/2) > /1(n1)(n2). Further assume that i is symmetric,
namely, p(n) = p(—n). Let A, L > 0. Define for any |t| < R — L the random variable

Xe=(fn+1) = f(n)L(Inl < L),
where 1) ~ p. Then, for any |a| < |b| < R — L,
Elexp(AX,)] < Elexp(AX3)]
(notice that X is undefined for |t| > R — L).

Proof It is sufficient to assume that f has a continuous derivative. Otherwise, one can approximate
f with a sequence of functions with continuous derivatives. We will show that E[e*Xt] is monotone
increasing when ¢ > 0, and the result will follow since E[e**t] = E[e*~¢], as 1 is symmetric. Let
E be the event that || < L. Then, from symmetricity of x and f,

M) | A(—n+t)

5 e M(nq

E [eAXt} —E [ekf(nth)eﬂ\f(n)]l E] _E i

[eAf(lnH) + eMnl=t)

: eAf(ﬁ)]lE] .

It is sufficient to show that the following derivative is nonnegative, for any n > 0:

d eMOtt) L M=t 1y 4 ) MO (g — £)eM D)

dt 2 a 2 (22)

Since p is symmetric and log-concave, then f is convex and symmetric. In particular, this implies
that f has a minimum at 0 and it is monotonic nondecreasing at > 0. Since we assumed that
71,1t > 0, this implies that n+¢ > | —t|, which implies that f(n+t) > f(n—t). Further, convexity
of f implies that its derivative is increasing, which implies that

fa+t) = fn—th =1 (-1,
using the fact that the derivative of a symmetric function is antisymmetric. The above implies that
F(n+t)eNmt) > | (g — )M O=D |
which derives that Eq. (22) is nonnegative and concludes the proof. |

Define
X = (fn+A4)— f(n)L(nl <L),

where 77 ~ 1, and the above lemma implies that E[e**i] < E[e*X] forall i = 1,..., k. Combining
with Eq. (21), one has

B [eAX]k - AX
g X; >t Slnngexp 1nfklog<E[e D—/\t .
p A>0 e A>0
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The function k log (E [e*X]) — At is known to be convex in A for any random variable X, hence,
it can be optimized efficiently, and any A would yield an upper bound. Integrating over ¢, one can
bound the left hand side of Eq. (20). This produces a way to certify that Eq. (20) holds, for given
€,0, k and p. Recall that if this inequality holds, then the mechanism is guaranteed to be (¢, §)-DP.
In particular, given f and R, Eq. (20) certifies that My p is (e, 0)-DP. If we want to find an upper
bound on the minimal magnitude R such that My g is (¢, )-DP, we can perform a simple binary
search over values of R > 0 (stopping when the desired precision has achieved). We note that in
order to obtain a proper upper bound, one has to ensure that the approximation errors in the relevant
computations are one sided (e.g. the computed MGF value should not be lower than the actual
value). Algorithm 1 tests if a mechanism is (e, §)-DP and Algorithm 2 finds an upper bound on the
minimal noise R given some function f.
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Function testPrivacy (6,0, k, A, p): /* Checks if a mechanism is
(e,0)-private */
Input: Privacy parameters ¢ > 0 and § € (0, 1); Number of queries & € N; sensitivity A > 0;
A probability density p over (—R, R) such that log p(y) is concave and p(y) = p(—y).
Output: An indication whether the mechanisms that answers k£ A-sensitive queries with i.i.d.
noise according to p is (e, d)-DP. A false answer may be wrong but a true answer is

always correct.

Function MGF (L, \): /+ Computes a moment generating function *x/
Input: A threshold L > 0 and a real parameter A > 0

Output: The moment generating function E[e*¥], where Y ~ p and X = (logp(Y) —
logp(Y + A)1([Y| < L)

return f_LL p(y) exp(A(log p(y) —logp(y + A)))dy /+ An upper bound is also

valid and can be computed since logp(y) —logp(y+A) is monotone

increasing. */
return
Function deviationBound (L,t): /* Computes a probability of
deviation */

Input: Real numbers L, > 0
iid.

Output: An upper bound on the probability that Zle X; > t, where Y1,...,Y, "~ p,
v; € [-A, A] are arbitrary and X; = (logp(Y;) — logp(Y; + v;))1(|Y;| < L)
logProb <— infy~q kMGF (L, \) — At return e'°sProb
return
Tunable Parameter: ¢; € (0, 9).
/* Can be set arbitrarily. A possible setting is: 0 =0.016 =/
L < the unique value in [0, R] such that fpr(y)dy =1-461 / An upper bound is
also valid. x/ if L + A > R then
| return false
end
09 f:o deviationBound(L,t)etdt /+ An upper bound is valid and can

be computed since deviationBound is monotone decreasing in t =/

if 61 + 02 < 6 then
| return true

else

| return false
end

Algorithm 1: Check if a mechanism satisfies DP
return
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Function noiseUpperBound (¢,d,k,A,p1): /+ Computes an upper bound on the

noise required for preserving a desired privacy level */
Input: Privacy parameters ¢ > 0 and § € (0,1); Number of queries k; Sensitivity A; A

probability density function py: (—1,1) — (0,00) such that logp; is concave and

p1(y) = p1(=y).
Definition: For all R > 0, define by pgr the density over [—R, R|, such that pr(y) =

p1(y/R)/R.
/* Equivalently, a sample y ~ pr is obtained by sampling vy ~ pi
and outputting Ry . */
Output: A number R > 0 such that pr, is (¢, §)-DP for answering k& A-sensitive queries.
err< a very small number /« For example, 107% */
/* Compute an upper bound b on the minimal allowable noise R.
*/
b+« 1 whilenot testPrivacy (e,d,k,A,pg) do
| b+ 2xb
end
a0/ A lower bound on the minimal allowable noise R */

while b — a > err do
m < (a+b)/2 if testPrivacy (¢,d,k, A, py,) then
| b<m

else
I a<—m

end
end

return b
return

Algorithm 2: Find a suitble noise magnitude R
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