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Abstract

We study the optimization landscape of the log-likelihood function and the convergence of
the Expectation-Maximization (EM) algorithm in latent Gaussian tree models, i.e. tree-
structured Gaussian graphical models whose leaf nodes are observable and non-leaf nodes
are unobservable. We show that the unique non-trivial stationary point of the population
log-likelihood is its global maximum, and establish that the expectation-maximization al-
gorithm is guaranteed to converge to it in the single latent variable case. Our results for the
landscape of the log-likelihood function in general latent tree models provide support for
the extensive practical use of maximum likelihood based-methods in this setting. Our re-
sults for the EM algorithm extend an emerging line of work on obtaining global convergence
guarantees for this celebrated algorithm. We show our results for the non-trivial station-
ary points of the log-likelihood by arguing that a certain system of polynomial equations
obtained from the EM updates has a unique non-trivial solution. The global convergence
of the EM algorithm follows by arguing that all trivial fixed points are higher-order saddle
points.

1. Introduction

Estimating latent variable models is a widely-studied task in Statistics and Machine Learn-
ing. It is also a daunting one, computationally and statistically. Even if the underlying, fully
observable distribution is an exponential family and therefore has a concave log-likelihood
function, marginalizing out the latent variables makes the log-likelihood non-concave, in
most cases. In the same exponential-family setting, under mild conditions, the population
(i.e. infinite sample) log-likelihood of the complete model has a unique maximum at the true
model parameters, yet even in this setting very little is understood about the landscape of
the partially observable model’s log-likelihood or its stationary points.

A widely-applicable method for estimating latent variable models is the Expectation-
Maximization (EM) algorithm of Dempster et al. (1977). Given a parametric family of
distributions {pθ(X,Y )}θ∈Θ, where variables X are observable and variables Y are unob-
servable, and given independent observations x1,x2, . . . from some model in this family, the
EM algorithm starts with some initialization θ(0) and iteratively performs a sequence of in-
terleaved “E-steps” and “M-steps,” a consecutive pair of which are called an “EM update.”
Specifically, for all t ≥ 0, the algorithm updates the current vector of parameters θ(t) by
performing the following:
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• (E-step) for each sample i, compute a posterior belief about the values of the unob-

servable variables by setting, for all y, Q
(t)
i (y) = pθ(t)(Y = y|X = xi);

• (M-step) update the parameters to θ(t+1) ∈ argmaxθ
∑

i

∫
y Q

(t)
i (y) log pθ(X=xi,Y =y)

Q
(t)
i (y)

dy.

Notice that, by Jensen’s inequality, the function maximized in the M-step of the algorithm
lower bounds the log-likelihood of the samples and, by the choice made in the E-step of
the algorithm, this lower bound equals the log-likelihood of the samples at θ = θ(t). Thus,
whenever the EM update results in θ(t+1) ̸= θ(t), the likelihood of the samples increases.
Moreover, when the class of models {pθ}θ∈Θ is an exponential family, the M-step becomes
a concave maximization problem, making the algorithm quite attractive in this setting.

Despite its wide use and study, with north of 66k citations, relatively little is known
about EM’s behavior. Conditions have been identified under which the EM iterates con-
verge to or cluster at stationary points of the log-likelihood — see e.g. Wu (1983); Tseng
(2004); Chrétien and Hero (2008), or exhibit local convergence to the maximum of the like-
lihood — see e.g. Redner and Walker (1984); Balakrishnan et al. (2017); Zhao et al. (2020);
Kwon and Caramanis (2020a). Conditions under which EM exhibits global convergence
to the maximum of the likelihood are rare (Wu, 1983) with a surge of recent results inch-
ing towards establishing global convergence guarantees in more and more settings — from
balanced mixtures of two Gaussians (Xu et al., 2016; Daskalakis et al., 2017) to balanced
mixtures of two truncated Gaussians (Nagarajan and Panageas, 2020), balanced mixtures
of two Laplace distributions (Barazandeh and Razaviyayn, 2018), unbalanced mixtures of
two Gaussians (Xu et al., 2018), binary variable naive Bayes models (Daskalakis et al.,
2018), and mixtures of linear regression models (Kwon et al., 2019; Klusowski et al., 2019;
Kwon and Caramanis, 2020b; Kwon et al., 2021) — and towards understanding the role of
overparametrization in EM’s global convergence (Xu et al., 2018; Dwivedi et al., 2020).

To the best of our knowledge, recent works on the global convergence of EM are for
single-latent-variable models. Extending this recent line of work, our paper studies the con-
vergence of EM in Latent Gaussian Tree Models (LGTMs), i.e. tree-structured Gaussian
Graphical Models whose leaf variables are observable and non-leaf variables are unobserv-
able. Latent tree models in general, and LGTMs in particular have found wide use in
scientific and applied domains due to their combined expressiveness and tractability of in-
ference; see e.g. Mourad et al. (2013); Zwiernik (2018) for recent surveys. Some notable
applications of LGTMs are in phylogenetics, where they have been used to model the evo-
lution of continuous traits (Felsenstein, 1973; Hiscott et al., 2016; Truell et al., 2021), in
network tomography, to model network delays (Castro et al., 2004; Eriksson et al., 2010;
Bhamidi et al., 2010), and in linguistics, for modelling the evolution of languages using
acoustic data (Ringe et al., 2002; Shiers et al., 2017).

Given observations from a latent tree model, a long line of research has studied whether
the structure of the model can be recovered and, if the structure is known, whether the
parameters of the model can be recovered. Most techniques with provable guarantees are
based on defining and estimating tree metrics from the samples; see e.g. Erdős et al. (1999);
Felsenstein (2004); Daskalakis et al. (2006); Roch (2006, 2010); Roch and Sly (2017) and
their references. On the practical front, however, some of the most popular packages are
based on maximum likelihood estimation; see e.g. Yang (1997); Stamatakis (2006). Even
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when the latent structure is known, however, the landscape of the likelihood function is
not well understood (Felsenstein, 1973; Truell et al., 2021). This is true even in the popu-
lation limit, i.e. when infinitely many samples are available, even when the tree is trivial,
i.e. there is a single latent node, and even when the latent tree model is a LGTM. For this
paradigmatic and widely used family of models we study the following question:

Main Question: Given a LGTM model pθ∗(X,Y ) on a tree T whose leaves X are ob-
servable and internal nodes Y are unobservable, can we characterize the stationary points
of the population log likelihood ℓθ∗(θ) ≡ Ex∼pθ∗ (X)[log pθ(X = x)]? Does it have spurious
stationary points θ ̸= θ∗ and under what conditions does EM converge to θ∗?

We study the afore-described questions in the setting where all the nodes of T are single-
dimensional Gaussian variables and assume, without loss of generality, that they have zero
mean and that the setting is ferromagnetic, i.e. assume that for every pair of variables
their correlation lies in (0, 1). Our first main result is the following (the formal version is
Theorem 15, combined with Lemma 14):

Informal Theorem 1 In the setting of our main question, and that of the preceding
paragraph, suppose that θ is a stationary point of the population log-likelihood ℓθ∗(·) that
is non-trivial, i.e. in model pθ(X,Y ) there is no edge of the tree whose endpoints have
correlation in {0, 1}. Then θ = θ∗.

Our result guarantees that, if gradient-descent, EM, or similar method converges to a sta-
tionary point of the population log-likelihood that is non-trivial, then this point indexes
the true model. While there are other criteria that can be used, our result implies that
the stationarity of the log-likelihood can be used as an alternative, post-hoc criterion to
argue that the correct model has been identified. In particular, our result substantiates the
extensive use of maximum-likelihood-based methods in practice (Yang, 1997; Stamatakis,
2006), and the experimental evidence that EM succeeds with high probability in this set-
ting (Wang and Zhang, 2006). Next, we study whether we can guarantee that EM converges
to a non-trivial stationary point in our setting. We show this for the case where there is a
single latent node in the model (the formal statement is Theorem 3):

Informal Theorem 2 In the setting Informal Theorem 1, suppose additionally that there
is a single latent node. In this case, EM is guaranteed to converge to θ∗. If n is the number
of leaves and ϵ is the desired accuracy for all the parameters (in absolute value), then the
sample complexity is O(poly(n)/ϵ2) and the number of iterations is O(poly(n) log(1/ϵ)).

Proof Ideas. Starting with Informal Theorem 2, it is known that EM converges to some
θ that is a fixed point of the EM update. Hence, the proof follows by making the following
arguments: (1) θ∗ is the only non-trivial fixed point of the EM update; if we parametrize
the model via correlations on its edges this the same as saying that θ∗ is the only fixed
point of the EM update in the interior of the parameter space Θ; and (2) While there are
fixed points at the boundary of Θ, EM does not converge to any of those. To show (1), we
analyze the EM update and show that its fixed points are solutions to a system of degree-
2 polynomial equations. By using a simple special form of the Jacobian Conjecture we
argue that these have a unique non-trivial solution. To show (2), we analyze the behavior
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of the EM around the fixed points at the boundary, by computing the derivatives of the
update rule around these points. This requires careful analysis since these fixed points are
higher-order saddle points. For the case of general trees (Informal Theorem 1), we show
that the fixed points are solutions of higher-degree polynomial equations. We establish a
novel reduction of these algebraic equations to the second-degree polynomial system from
the single-latent-model case, and use this reduction to certify that there is a unique fixed
point at the interior of the parameter space, which is θ∗.

2. Tree models with one latent node

We start by elaborating on the simpler setting with one latent node. For simplicity, we start
by anayzing the population EM, which amounts to running the EM algorithm on the whole
population (rather than a finite sample). So simplify even more, we analyze asymptotic
convergence, namely, in the limit as the number of iterations goes to infinity. Later, in
Section 2.6, we describe the finite-sample and finite-iterate result.

2.1. Definitions and properties of the model

We consider the family of multivariate Gaussian distributions over zero-mean variables,
with latent node y and observed nodes x1, . . . , xn, that have the property

Pr[x1, . . . , xn, y] = Pr[y]
n∏

i=1

Pr[xi | y] .

Each such distribution is uniquely defined by the following parameters:

σ2
y := Var(y); σ2

xi
:= Var[xi]; ρi :=

Cov(xi, y)√
Var(xi)Var(y)

, for i = 1, . . . , n ,

We note that generally ρi ∈ [−1, 1], yet, we analyze the ferromagnetic setting where ρi ∈
[0, 1]. Denote by P the set of all such distributions with ρi ∈ [0, 1] and σy, σxi > 0. We use
the following convenient properties of distributions in P:

Claim 1 For any i ̸= j, Cov(xi, xj) = σxiσxjρiρj. Further, E[xi | y] =
σxiρi
σy

y and

E[y | x1 · · ·xn] = σy

n∑
i=1

λi
xi
σi
, where λi =

ρi/(1− ρ2i )

1 +
∑n

j=1 ρ
2
j/(1− ρ2j )

. (1)

Given any distribution µ ∈ P, denote its marginals and conditionals as µx1···xn , µy|x1···xn

etc. Lastly, denote ρ = (ρ1, . . . , ρn) and x = (x1, . . . , xn).

2.2. The expectation-maximization algorithm - over the population

We analyze the EM algorithm. We start by analyzing the population EM : this assumes
that each iteration of the EM is executed over the whole population, rather than over a
finite sample. This greatly simplifies the analysis (see Section 2.6 for the results on finite
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sample). The population EM can be described as follows: we set µ0 ∈ P arbitrarily. Then,
at any t > 0, define

µt+1 = argmax
µ∈P

E
x1···xn∼µ∗

x1···xn
E

y∼,µt
y|x1···xn

[log Pr
µ
(x1, . . . , xn, y)],

where Prµ denotes the density with respect to µ. Denote by σt
· , ρ

t
i the parameters corre-

sponding to µt and by λt
i the coefficients from (1). Similarly, σ∗

· , ρ
∗
i and λ∗

i correspond to
µ∗. We would like to understand how these parameters update in each iteration of the EM
algorithm. For this purpose, we have the following lemma:

Lemma 1 Let µt,∗ denote the joint distribution over x1 · · ·xn, y such that

Pr
µt,∗

[x1, · · · , xn, y] = Pr
µ∗
[x1, · · · , xn] Pr

µt
[y | x1, . . . , xn].

Then, for any i, we have that

E
µt+1

[xiy] = E
µt,∗

[xiy], Varµt,∗ [xi] = Varµt+1 [xi], Varµt,∗ [y] = Varµt+1 [y] .

Proof Notice that µt+1 is the MLE over P, given samples drawn from µt,∗. Hence, for any
µ ∈ P,

E
x,y∼µt,∗

log Pr
µ
(x, y) = E

x,y∼µt,∗
log Pr

µ
(y)
∏
i

Pr
µ
(xi | y)

= E
x,y∼µt,∗

log Pr
µ
(y) +

∑
i

E
x,y∼µt,∗

log Pr
µ
(xi | y). (2)

Recall that each µ ∈ P can be decomposed as Prµ[x, y] = Prµy [y]
∏

i Prµxi|y
[xi | y], and each

term in this decomposition can be chosen to maximize its corresponding summand from
(2). By Gibbs inequality1, the maximizing choice is obtained by selecting µy ∼ µt,∗

y and
µxi|y ∼ µt,∗

xi|y. This choice satisfies µxiy ∼ µyµxi|y ∼ µt,∗
y µt,∗

xi|y ∼ µt,∗
xi,y. Hence, the pairwise

marginals between xi and y are conserved, which concludes the proof.

As a corollary, we obtain the following update rules for the parameters σt
y, σ

t
i and ρti,

using the analogous parameters of µt,∗, that are calculated using formulas for the conditional
Gaussian measure (proof appears in Section A.3).

Lemma 2 For any i ̸= j, denote by ∆t
ij = ρ∗i ρ

∗
j − ρiρj. For any t > 0 and any i, σt

i = σ∗
i ,

E
µt+1

[xiy] = σt
iσ

t
y

λt
i +
∑
j ̸=i

ρ∗i ρ
∗
jλ

t
j

 = σt
iσ

t
y

ρti +
∑
j ̸=i

∆t
ijλ

t
j

 ,

E
µt+1

[y2] = (σt+1
y )2 = (σt

y)
2

 n∑
i=1

(λt
i)
2 +

∑
i ̸=j∈{1,...,n}

λt
iλ

t
jρ

∗
i ρ

∗
j

 = (σt
y)

2

1 +
∑
j ̸=k

∆t
ijλ

t
jλ

t
k


ρt+1
i =

λt
i +
∑

j ̸=i λ
t
jρ

∗
i ρ

∗
j√∑n

i=1(λ
t
i)
2 +

∑
i ̸=j∈{1,...,n} λ

t
iλ

t
jρ

∗
i ρ

∗
j

=
ρti +

∑
j ̸=i∆ijλ

t
j√

1 +
∑

j ̸=k ∆ijλt
jλ

t
k

. (3)

1. Gibb’s inequality states that for any distribution P , argmaxQ Ex∼P log PrQ[x] = P , where Q is taken
over all the probability measures. This inequality can be similarly applied on conditional distributions.
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2.3. Asymptotic Convergence of the population EM

We would like to argue that the iterates of the EM converge to µ∗, which is characterized by
the parameters σ∗

y , σ
∗
xi

and ρ∗i for i = 1, . . . , n. Yet, notice that one only observes samples
from the marginal µ∗

x1···xn
, which is a function of only σ∗

xi
and ρ∗i but not of σ∗

y . Hence, we
cannot expect to learn σ∗

y . With regard to the other parameters, we prove:

Theorem 3 Assume that the correlations in the underlying distribution µ∗ satisfy ρ∗i ∈
(0, 1) for all i and that the first iterate of the population EM satisfies ρ0i ∈ (0, 1) for all
i. Then, the iterates ρti and σt

i of the population EM converge to the parameters of the
underlying distribution:

lim
t→∞

ρti = ρ∗i , and σt
i = σ∗

i for all i = 1, . . . , n and t ≥ 1 .

We will stay under the assumptions that ρ∗i , ρ
0
i ∈ (0, 1) for all i throughout the proof. Recall

that Lemma 2 argues that for any t ≥ 1, σt
xi

= σ∗
xi
. Hence, it remains to argue about the

convergence of ρti to ρ∗i . We use the following definition:

Definition 4 A point ρ = (ρ1, . . . , ρn) is a stationary point of the EM if ρt = ρ implies
that ρt+1 = ρ.

Denote the set of all stationary points by S. The following is proved in Section A.3:

Lemma 5 The iterates of the population EM converge to some stationary point ρ ∈ S.
Further, for any ρ ∈ S, if ρt = ρ then for any i, µt+1 = µt

Since the EM converges only to a stationary point, it is useful to characterize the set of
stationary points, as stated below:

Lemma 6 The set S of stationary points of the population EM equals

S = {(ρ∗1, . . . , ρ∗n), (0, . . . , 0)} ∪ {ρ(i) : i = 1, . . . , n}, where ρ
(i)
j =

{
1 j = i

ρ∗i ρ
∗
j j ̸= i

.

We will rule out the possibility of convergence to any point that is not the true parameter.

Lemma 7 The correlation parameters of the population EM converge to a point in (0, 1):

0 < lim
t→∞

ρti < 1 for all i = 1, . . . , n .

Combining the two lemmas above, we obtain that ρti must converge to ρ∗i , which con-
cludes Theorem 3. In Section 2.4 we will prove that there are no stationary points where
ρi ∈ (0, 1) for all i. In Section A.1 we will prove that the only stationary point with some
ρi = 0 is (0, . . . , 0), and that the algorithm does not converge to this point. In Section A.2 we
will prove that the only stationary points where some ρi = 1 are ρ(i) and that the algorithm
does not converge to these points. In Section 2.5 we sketch the proofs from Section A.1 and
Section A.2.
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2.4. No stationary points at the interior

In this section, we will prove that there are no stationary points of the EM with ρi ∈ (0, 1)
for all i, as summarized in the following lemma:

Lemma 8 Let ρ = (ρ1, . . . , ρn) ∈ (0, 1)n. If ρ ̸= ρ∗ then ρ is not a stationary point.

Below, fix some stationary point ρt = (ρ1, . . . , ρn) ∈ (0, 1)n and we will prove that
ρ = ρ∗. By Lemma 5, Eµt+1 [xiy] = Eµt [xiy] for all i, and by Lemma 2 this translates to

σt
xt
σt
yρ

t
i = σt

iσ
t
y

ρti +
∑
j ̸=i

∆t
ijλ

t
j

 =⇒
∑
j ̸=i

∆t
ijλ

t
j = 0 =⇒

∑
j ̸=i

ρ∗i ρ
∗
jλ

t
j =

∑
j ̸=i

ρtiρ
t
jλ

t
j .

Multiplying by λt
i and substitute ρtiλ

t
i = uti and ρ∗jλ

t
j = u∗j , we obtain

∀i = 1, . . . , n :
∑
j ̸=i

ρ∗i ρ
∗
jλ

t
iλ

t
j =

∑
j ̸=i

ρtiρ
t
jλ

t
iλ

t
j =⇒

∑
j ̸=i

utiu
t
j =

∑
j ̸=i

u∗iu
∗
j . (4)

By the assumption that ρti, ρ
∗
i ∈ (0, 1) and by definition of λi in (1), we have that λt

i > 0,
hence uti, u

∗
i > 0. We will prove that this set of equations imply that ut = u∗, as summarized

below:

Lemma 9 Let u, v ∈ (0,∞)n, and assume that for all i = 1, . . . , n,
∑

j ̸=i uiuj =
∑

j ̸=i vivj.
Then u = v.

Lemma 9 will imply that λt
iρ

t
i = λt

iρ
∗
i which implies that ρti = ρ∗i as required to conclude

the proof of Lemma 8.
In the remainder of this section, we prove Lemma 9. For this purpose, we have the

following lemma, which is a special case of the Jacobian Conjecture on the uniqueness of
solutions of polynomial systems. Its special case for degree-2 polynomials was proven by
Wang (1980). We state and prove a corollary of this statement:

Lemma 10 Let p1, . . . , pn : Rn → R a collection of quadratic polynomials. If there are two
distinct vectors, u and u′ such that pj(u) = pj(u

′) for all j, then, the Jacobian matrix of p
computed at (u+ u′)/2, Jp((u+ u′)/2), is singular, where

Jp
i,j(v) =

dpi(v)

dvj
.

Proof Look at the path γ : [0, 1]→ Rn defined by γ(s) = su+(1− s)u′. Then, pi(γ(s)) is a
quadratic polynomial in s, that satisfies pi(γ(0)) = pi(γ(1)). Therefore, 1/2 is a stationary
point, hence

0 =
d

ds
pi(γ(s))

∣∣∣∣
s=1/2

=
∑
j

dpi
dvj

∣∣∣∣
v=γ(1/2)

dγj
ds

∣∣∣∣
s=1/2

=
∑
j

dpi
dvj

∣∣∣∣
v=γ(1/2)

(u′j − uj).

Combining these equalities in a matrix form for all i = 1, . . . , n, we derive that 0 =
Jp(γ(1/2))(u′ − u) = Jp((u+ u′)/2)(u′ − u) hence Jp((u+ u′)/2) is singular.

To complete the proof of Lemma 9, let us substitute pi(u) =
∑

j ̸=i uiuj . The following
lemma proves that the Jacobian matrix of this system is non-singular at any point u with
positive entries, which suffices to conclude the proof:
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Lemma 11 Let u1, . . . , un > 0. Then the following matrix J is non singular:

Jij =

{∑
k ̸=i uk i = j

ui i ̸= j
. (5)

Notice that this matrix can be written as D + vw⊤, where D is diagonal and v, w ∈
Rn. Such a matrix is singular if and only if 1 + v⊤A−1w = 0 Sherman and Morrison
(1950). Proving that this matrix is non-singular from this formula is not immediate. For
completeness, we present in Section A.3 a proof that does not rely on this formula. This
concludes Lemma 9 and Lemma 8 follows.

2.5. The limiting point is bounded away from the boundary

In this section, we sketch the proof that 0 < limt→∞ ρti < 1, whose full version appears in
Section A.1 and Section A.2. First, by inspecting the update rule from Lemma 2, it is easy
to verify that the only stationary points with some ρi ∈ {0, 1} are 0 = (0, . . . , 0) and ρ(i)

(defined formally in Lemma 6). It remains to prove that the EM does not converge to these
stationary points. To argue about 0, we write the Taylor series of ρt+1

i around 0 and obtain

ρt+1
i ≥ ρti +

∑
j ̸=i

ρtjρ
∗
i ρ

∗
j −O

∑
j,k

ρtjρ
t
k

 ≥ ρti +Ω

(
max
j ̸=i

ρtj

)
−O

(
max

j∈{1,...,n}
(ρtj)

2

)
.

This can be used to show that whenever ρt approaches 0, in the subsequent iteration it
will repel from 0 and particularly,

∑
i ρ

t+1
i ≥

∑
i ρ

t
i. Hence, the algorithm cannot converge

to 0.

Next, we explain why EM does not converge to ρ(i). Assume w.l.o.g that i = 1 and recall
that ρ(1) = (1, ρ∗1ρ

∗
2, . . . , ρ

∗
1ρ

∗
n). The proof is more involved than the proof at 0, due to (1)

one is required to derive a second-order Taylor series (compared to a first-order computed
around 0), and (2) one would like to argue that if ρt ≈ ρ(1) then ∥ρt+1−ρ(1)∥ ≥ ∥ρt−ρ(1)∥ (in
some norm). Yet, this is true only for some values of ρt: in particular, this holds whenever

maxi |ρti − ρ
(1)
i | ≤ O(|ρt1 − ρ

(1)
1 |). By analyzing the update step of the EM, it can be shown

that even if ρt does not satisfy this condition, which might happen with a bad initialization
(t = 0), ρt+1 will always satisfy it and the proof follows.

2.6. Finite sample and finite iteration

In this section we assume that m draws from the marginal distribution over the leaves are

given, where sample i is denoted by (x
(i)
1 , . . . , x

(i)
n ), for i ∈ {1, . . . ,m}. Then, the EM iterate

is defined by

µt+1 = argmax
µ∈P

m∑
i=1

E
y∼µt

y|x(i)1 ···x(i)n

[
log Pr

µ

(
x
(i)
1 , . . . , x(i)n , y

)]
.

We have the following theorem, which bounds the sample complexity and the convergence
time of the population EM:
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Theorem 12 Let α, β > 0 and assume that θ0i , θ
∗
i ≥ α for all i and θ0i , θ

∗
i ≤ 1− β for all

i. Then, there exist constants C1(α, β), C3(α, β) that depend only on α and β and universal
constants C2, C4 such that the following holds: let ϵ, δ > 0 and assume that the number of
samples m is at least m ≥ (C1(α, β)n

C2 + log(1/δ))/ϵ2 and let T ≥ C3(α, β)n
C4 log(1/ϵ).

Then, with probability 1− δ over the sample, for any t ≥ T , |ρti − ρ∗i | ≤ ϵ and |σt
i − σ∗

i | ≤ ϵ
for all i ∈ {1, . . . , n}.

3. General Tree models

We now extend the analysis for more complicated tree topologies.

3.1. Definitions and properties of the model

We consider a multivariate Gaussian latent-tree distribution, that is characterized by a tree
G = (V,E) with n leaves x1, . . . , xn (of degree 1) and m internal nodes y1, . . . , yn (of degree
at least 2). The vertices u ∈ V corresponds to random variables {zu : u ∈ V } with the joint
distribution

Pr[z1, . . . , zn+m] =
∏

(i,j)∈E

Pr[zi, zj ] (6)

where zxi are observed by the algorithm and zyi are latent variables. The variables are as-
sumed zero-mean and the distribution is uniquely characterized by the variance parameters
σ2
u := Var[Zu] for u ∈ V and the correlation parameters ρuv := Cov[ZuZv]/

√
Var(Zu)Var(Zv)

for each edge (u, v) ∈ E. As with one latent, we assume ρuv ∈ [0, 1]. The correlation be-
tween any two nodes u, v ∈ E can be expressed as the product of correlations along the
path connecting them,

ρzizj :=
E[zizj ]
σziσzj

=
∏

(zu,zv)∈P (zi,zj)

ρzuzv , where P (zi, zj) is the path connecting i and j.

Similarly to the argument regarding topologies of one latent node, the variances of the
latent nodes σ2

yj cannot be estimated (see Remark 66).
An equivalent way to characterize the distribution is through the exponential family

parametrization (J = −Σ−1, h), where Pr[z1 · · · zn+m] ∝ exp
(∑

ij Jijzizj/2 +
∑

i hizi

)
.

Since the distribution factorizes as (6), the only non-zero entries Jij correspond to edges
(i, j) ∈ E and for diagonal elements i = j. While in the original model hi = 0 since the
random variables are zero mean, in the conditional distribution of y given x this is no longer
true and hy = −Jyxx.

Lastly, we remark that the parameters are information-theoretically identifiable only
when all the latent nodes have degree at least 3, yet, any graph can be modified to to
satisfy this property, while retaining the distribution over observables (see Remark 67).

3.2. EM and likelihood for general trees

In this section, we analyze the EM iteration on latent tree models (see Section 2.2 for an
elaborate exposition). Given an initial point µ0 ∈ PG, its iteration µt is defined as:

µt+1 = max
µ∈PG

E
x1···xn∼µ∗

x1···xn
E

y1,··· ,ym∼µt
y|x1···xn

[log Pr
µ
(x1, . . . , xn, y1, . . . , ym)], (7)
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where Prµ denotes the density with respect to µ. Denote by σt
· , ρ

t
i, J

t the parameters
corresponding to µt. Similarly, σ∗

· , ρ
∗
i and λ∗ correspond to µ∗. Using the same arguments

as in Lemma 1, the following can be shown:

Lemma 13 Let µt,∗ denote the joint distribution over x1 · · ·xn, y1, . . . , ym such that

Pr
µt,∗

[x1, · · · , xn, y1, . . . , ym] = Pr
µ∗
[x1, · · · , xn] Pr

µt
[y1, . . . , ym | x1, . . . , xn].

Then, for any u ∈ V and any (v, w) ∈ E,

Covµt+1(zv, zw) = Covµt,∗(zv, zw), Varµt,∗ [zu] = Varµt+1 [zu] .

Denote by S the set of fixpoints of the EM, namely, the points ρ such that ρt = ρ
implies ρt+1 = ρ. Analogously to Lemma 5, these correspond to the set of fixpoints µ of
(7). We can equivalently consider the EM iteration under the natural parametrization J, h,
as discussed in Section 3.1. Hence, a fixed point ρ̃ corresponds to some J̃ , meaning that S
remains unchanged if we change parametrization. The reason we choose the parameter J is
that the likelihood has a more convenient form as an exponential family. The importance
of S is further exemplified by the following lemma, which states that the notions of EM
fixpoints and stationary points of the log-likelihood are equivalent. The proof is folklore.

Lemma 14 Let µ∗ ∈ PG be such that ρ∗ij ∈ (0, 1) for all (i, j) ∈ E and define L(J) :=

Ex∼µ∗ log Prµ(J)(x). Then, for any J̃ ∈ R(n+m)×(n+m)
+ we have that ∇L(J̃) = 0 if and only

if J̃ is a stationary point of the update rule (7).

3.3. Uniqueness of EM fixpoints for general trees

In this section, we prove that the only fixpoint of EM with non-degenerate edge weights is
the true model µ∗. A detailed proof of all the claims in this Section is given in Section F.

Theorem 15 Let G = (V,E) be a tree and µ∗ ∈ PG be a distribution with ρ∗ij ∈ (0, 1) for
all (i, j) ∈ E. Suppose ρ̃ is a stationary point of the EM update rule (49) with ρ̃ij ∈ (0, 1)
for all (i, j) ∈ E. Then ρ̃ij = ρ∗ij for all (i, j) ∈ E.

We will denote by µ∗,t the distribution defined as µ∗,t(x, y) := µ∗(x)µ̃(y|x). We begin
by exploring a simple implication of the fixpoint conditions, according to the rules (7). The
proof follows by noticing that the conditional distribution of y given x is the same in µ̃ and
µ∗,t.

Lemma 16 Let µ∗, µ̃ be the distributions defined in Theorem 15. Then, for any internal
nodes y1, y2 that are connected by and edge in G

E
µ∗

[
Ẽ
µ
[y1|x] Ẽ

µ
[y2|x]

]
= Ẽ

µ

[
Ẽ
µ
[y1|x] Ẽ

µ
[y2|x]

]
E
µ∗

[
Ẽ
µ
[y1|x]2

]
= Ẽ

µ

[
Ẽ
µ
[y1|x]2

]
, E

µ∗

[
Ẽ
µ
[y2|x]2

]
= Ẽ

µ

[
Ẽ
µ
[y2|x]2

]
10
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Hence, all we have to do is compute these conditional expectations in a suitable way, so
as to reveal some structure. Let N be the set of neighbors of y1 in G and assume w.l.o.g.
that they are all non-leaf nodes (the case of leaf neighbors is even easier). The first step will
be to marginalize all the other non-leaf nodes except y1 and y2. Denote by Y c the set of
non-leaf nodes that are not neighbors of y1. Then, let h

′
y1 , h

′
y2 be the information parameters

of y1, y2 after the marginalization of Y c. Since no neighbor of y1 was marginalized, we will
have h′y1 = 0. Suppose we remove the edge (y1, y2) from the tree. Then the set of leaves is
partitioned into two subsets. Call Sy2 the subset that is connected to y2 after the removal.
We show that h′y2 is a linear combination of the values of the leaves in Sy2 . To do that,
we utilize the marginalization formulas for Gaussian distributions, as well as the fact that
J̃−1
Y cY c can be thought of as a covariance matrix of some Gaussian tree distribution and

hence satisfies the multiplication over paths property.

Lemma 17 Let y2 be a non-leaf neighbor of y1 and Sy2 be the corresponding set of leaves
for the partition that y2 belongs to. Then, the quantity h′y2 = hy2 − J̃y2Y c J̃−1

Y cY chY c is a
linear combination of the leaves in Sy2.

A similar result holds for any neighbor yi of y1. Our strategy is to build a system of
equations similar to the one in Lemma 9. But in the proof of one latent, the variables of
the system corresponded to the covariances of the latent node with individual leaves. Here,
for neighbor y2 we will define some variable that depends on a linear combination of the
paths leading to leaves in Sy2 . In this direction, let’s define the vector H ∈ Rs, which has
one entry for each node in N . We define Hi = h′yi .

So far we have marginalized on everyone except nodes in N . To gain specific information
about the interaction of y1, y2, we now marginalize also over the neighbors of y1, except
y2. Denote by N2 that set of neighbors. Let h′′y1 , h

′′
y2 , J̃

′′ be the resulting parametrizations.
From standard properties of the Gaussian, we can compute these as follows

h′′y1 = hy1−J̃y1N2(J̃
′
N2N2

)−1h′N2
=

∑
yj∈N,yj ̸=y2

J̃y1yj

J̃ ′
yjyj

h′yj , h
′′
y2 = h′y2−J̃y2N2(J̃

′
N2N2

)−1h′N2
= h′y2

This follows by the fact that the matrix J̃ ′
N2N2

is diagonal, since the neighbors of y1 are
not connected to each other, and Jy2N2 = 0. To write this more compactly, we introduce
the vector r ∈ Rs, where ri = J̃y1yi/J̃

′
yiyi if i ∈ N . Notice that ri ̸= 0 always. Hence, this

relation becomes

h′′y1 =
∑
i ̸=y2

riHi (8)

We are now close to arriving at the desired form of the polynomial equations. Since
we have marginalized over all nodes except y1, y2, we can now determine the conditional
expectations by the formula (

Eµ̃[y1|x]
Eµ̃[y2|x]

)
= Σ̃y1y2|x

(
h′′y1
h′′y2

)
11
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that connects the two parametrizations in a Gaussian. Here, Σ̃y1y2|x is the 2× 2 covariance

matrix of the conditional distribution of y1, y2 given x. The reason we have used Σ̃y1y2|x is
that the covariance matrix does not change when we marginalize some nodes. Suppose

Σ̃y1y2|x =

(
c1 c2
c3 c4

)
with c1c4 − c2c3 ̸= 0. The reason the variances are not necessarily 1 is that we are now in
the conditional model. Then, the first fixpoing condition of Lemma 16 translates to the
following:

E
x∼µ∗

[(c1h
′′
y1 + c2h

′′
y2)(c3h

′′
y1 + c4hy2)] = E

x∼µ̃
[(c1h

′′
y1 + c2h

′′
y2)(c3h

′′
y1 + c4hy2)]

We observe that this relation can be viewed as a linear equation in terms of the variables
Ex∼µ∗ [h21]−Ex∼µ̃[h

2
1], Ex∼µ∗ [h22]−Ex∼µ̃[h

2
2], Ex∼µ∗ [h1h2]−Ex∼µ̃[h1h2]. The coefficients of

these variables are functions of c1, c2, c3, c4. We can obtain two other such equations from
the other two conditions of Lemma 16. It turns out that this 3 × 3 system has a unique
solution if and only if Σ̃y1y2|x is invertible. This is the content of the following Lemma.

Lemma 18 Let Σ̃y1y2|x be invertible. Then the conditions of Lemma 16 imply that

E
x∼µ∗

[h′′y1h
′′
y2 ] = E

x∼µ̃
[h′′y1h

′′
y2 ], E

x∼µ∗
[(h′′y1)

2] = E
x∼µ̃

[(h′′y1)
2], E

x∼µ∗
[(h′′y2)

2] = E
x∼µ̃

[(h′′y2)
2]

Using the previous calculations for h′′y1 , h
′′
y2 , the first equality of this Lemma can be written

as

E
x∼µ∗

Hy2

∑
i ̸=y2

riHi

 = E
x∼µ̃

Hy2

∑
i ̸=y2

riHi

 (9)

Now we are almost in the algebraic form of Lemma 9. All we need to do is get rid of the
expectations. So, it is time to compute them. Let i, j ∈ N be two neighbors. Then, we
know that Hi, Hj are linear combinations of leaves in the partitions of i, j. Thus, by the
multiplication property E[HiHj ] involves the covariances of all pairs of leaves from Syi to
Syj . Suppose that Hi = (ai)⊤Xyi , where Xyi is the vector of leaves in Syi . By the path
multiplication property

E
x∼µ∗

[HiHj ] = E
x∼µ∗

[(ai)⊤Xyi(a
j)⊤Xyj ] =

∑
xk∈Syi ,xl∈Syj

aika
j
l

∏
e∈P(xk,xl)

ρ∗e

where P (xk, xl) denotes the path between leaves xk, xl. Now, notice that all the paths from
Xyi to Xyj will have to go through the edges connecting y1 to yi and y1 to yj . Let ρ∗i , ρ

∗
j

be the correlations in these two edges. Then, using the multiplication over paths, Equation
(9) can be written as

12
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ρ∗i

 ∑
xr∈Syi

air
∏

e∈Pxryi

ρ∗e

 ∑
yj∈N,j ̸=i

ρ∗j

 ∑
xs∈Syj

ajs
∏

e∈Pxsyj

ρ∗e


= ρ̃i

 ∑
xr∈Syi

air
∏

e∈Pxryi

ρ̃e

 ∑
yj∈N,j ̸=i

ρ̃j

 ∑
xs∈Syj

ajs
∏

e∈Pxsyj

ρ̃e

 (10)

In this form, we can define

w∗
i = ρ∗i

 ∑
xr∈Syi

air
∏

e∈P (xr,yi)

ρ∗e

 , w̃i = ρ̃i

 ∑
xr∈Syi

air
∏

e∈P (xr,yi)

ρ̃e

 .

Now the condition is

rjw
∗
j

∑
i ̸=j

riw
∗
i

 = rjw̃j

∑
i ̸=j

riw̃i

 (11)

which is exactly in the form of the system of Lemma 9. By applying this Lemma, we
immediately get the following corollary.

Lemma 19 Let µ∗, µ̃ be defined as in Theorem 15. Then for every node i, if we define
Syi in reference to some neighbor y1, it holds w∗

i = w̃i.

If a node y1 is connected to a leaf xj with correlation ρ∗j , then we can extend all the previous
statements and define w∗

j = ρ∗j , w̃j = ρ̃j . This immediately implies that ρ∗j = ρ̃j . The proof
of Theorem 15 relies exactly on using the equalities implied by Lemma 19 in the correct
order, in order to guarantee that all correlations are the same in the two models.

Proof [Proof sketch of Theorem 15] We use the following procedure: in each iteration, we
select an internal node y that only has one non-leaf neighbor in the remaining tree (there is
always one such node). If e is some edge connecting y with some leaf in the tree, we declare
that ρ∗e = ρ̃e and remove this edge along with the leaf from the tree. After we do this for
all such edges, the current iteration ends.

First of all, it is clear that if a node y is selected for some iteration, then for the remaining
iterations it will be a leaf and not be selected. Hence, the process terminates after m steps,
at which point all edges have been examined. We prove inductively that at each step the
algorithm correctly infers the equality of the edges. For the base case, we already argued
that edges that are adjacent to leaves will agree in the two models. For some arbitrary
iteration, if y is selected and has a leaf neighbor x, then we use Lemma 19 on x with
y1 = y to infer that w∗

x = w̃x. From the definition of w and the inductive hypothesis, the
parentheses multiplying ρ∗i and ρ̃i are equal in the two models, which implies that ρ∗i = ρ̃i
and the proof is complete.

13
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Appendix A. Deferred proofs for one latent node

A.1. The EM does not converge to 0

In this section, we will prove the following two lemmas:

Lemma 20 The point 0 = (0, . . . , 0) is a stationary point and there is no other stationary
point ρ with some ρi = 0.

Lemma 21 The iterate of the EM algorithm satisfies limt→∞ ρt ̸= 0.
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First, we notice that the point 0 = (0, . . . , 0) is a stationary point. Indeed, by (1), ρt =
(0, . . . , 0) then λt

i = 0. Together with, Lemma 2, this implies that ρt+1 = (0, . . . , 0) which
concludes that 0 is a stationary point. The following concludes the proof of Lemma 20:

Lemma 22 If ρti1 > 0 for some i1 > 0 then, ρt+1
i > 0 for all i. Consequently, if ρ satisfies

ρi0 = 0 and ρi1 > 0 for some i0 and i1, then ρ is not a stationary point.

Proof We start with the first part of the proof. Recall the update rule for the covariances,
from Lemma 2:

E
µt+1

[xiy] = σt
xi
σt
y

λt
i +
∑
j ̸=i

ρ∗i ρ
∗
jλ

t
j

 .

Further, from (1), we know that λt
i > 0 whenever ρti > 0. In particular, λt

i1
> 0, which

implies that for all i, Eµt+1 [xiy] ≥ σt
xi
σt
yρ

∗
i ρ

∗
i1
λt
i1

> 0. This concludes the first part of the

proof. For the second part, notice that if µt = µ then, by the first part, ρt+1
i0

> 0 = ρti0 ,
hence µ cannot be a stationary point.

The first part of the lemma follows from the update rule analyzed in Lemma 2, while the
second part follows directly from the first part and the definition of a stationary point. This
concludes Lemma 20.

For the remainder, we prove Lemma 21. The first part of Lemma 22 implies that if
ρ0 ̸= 0 then ρt ̸= 0 for all t > 0. It remains to prove that ρt does not converge to 0 and we
will analyze the updates of the EM rule in the neighborhood of ρt = 0, viewing ρt+1 as a
function of ρt.

Lemma 23 If ρt = 0 then ρt+1 = 0. Further, there exists C > 0 such that for all
i, j, k ∈ {1, . . . , n} and all ρ ∈ [0, 1/2]n,

dρt+1
i

dρtj

∣∣∣∣
0

=

{
1 i = j

ρ∗i ρ
∗
j i ̸= j

; −C ≤
d2ρt+1

i

dρtjdρ
t
k

∣∣∣∣
ρ

≤ C.

Proof We use the formula for ρt+1 from Lemma 2:

ρt+1
i =

ρti +
∑

j ̸=i∆ijλ
t
j√

1 +
∑

j ̸=k ∆ijλt
jλ

t
k

:=
fi(ρ

t)√
gi(ρt)

.

Before computing the derivatives of ρt+1
i , let us compute the derivatives of λt

i as a function
of ρtj where the formula of λt

i appears in (1). For any i, j, k and ρ ∈ [0, 1/2]n,

dλt
i

dρtj

∣∣∣∣
0

=

{
1 i = j

0 i ̸= j
; and − C ≤ d2λt

i

dρtjdρ
t
k

∣∣∣∣
ρ

≤ C

for some constant C > 0. Using the fact that λt
i = 0 if ρti = 0, we derive that

dfi(ρ
t)

dρtj

∣∣∣∣∣
0

=

{
1 j = i

∆ij = ρ∗i ρ
∗
j j ̸= i

, fi(0) = 0,
dgi(ρ

t)

dρtj

∣∣∣∣∣
0

= 0, gi(0) = 1.

17
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Hence,

dρt+1
i

dρtj

∣∣∣∣∣
0

=
dfi(ρ

t)

dρtj
=

{
1 j = i

ρ∗i ρ
∗
j j ̸= i

.

Similarly, the second derivatives of ρt+1
i are bounded, using the bounds on the second

derivatives of λt
j .

This implies that if ρt approaches 0, then ρt+1 repels from 0:

Lemma 24 There exists some c > 0 such that if maxi ρ
t
i ≤ c then

∑
i ρ

t
i+1 ≥

∑
i ρ

t
i.

Proof Using Lemma 23, we can write ρt+1
i as a Taylor series around 0

ρt+1
i ≥ ρti +

∑
j ̸=i

ρjρ
∗
i ρ

∗
j −

∑
j,k

C

2
ρtjρ

t
k.

Summing over i, we derive that∑
i

ρt+1
i ≥

∑
i

ρti +
∑
i ̸=j

ρjρ
∗
i ρ

∗
j −

∑
i,j,k

C

2
ρtjρ

t
k.

While the second term in the right hand side is Ω(maxj ρ
t
j), the third term is O(maxj(ρ

t
j)

2).
In particular, if the constant c > 0 from the definition of this lemma is sufficiently small,
then the second term dominates the third and the proof follows.

To conclude the proof of Lemma 21, assume toward contradiction that ρt → 0. Let
c > 0 be the parameter from Lemma 24, and let T > 0 be the iteration such that for any
t ≥ T , maxi ρ

t
i < c. From Lemma 24, this implies that for any t ≥ T ,

∑
j ρ

t
j ≥

∑
j ρ

T
j . From

Lemma 22,
∑

j ρ
T
j > 0. In particular, lim inft→∞

∑
j ρ

t
j ≥

∑
j ρ

T
j > 0 which implies that

limt→∞ ρt ̸= 0, as required.

A.2. Stationary points with some ρi = 1

In this Section, we analyze the case of stationary points such that there exists at least one
i with ρi1. We show that EM will never converge to any of those points. Let us start with
the case where there are at least two i, j such that ρi = ρj = 1. In that case, let µ be the
distribution at this point. Also, let

L(ρ) = E
x∼µ∗

log Pr
ρ
(x)

be the log-likelihood function. The following lemma shows that the EM algorithm will never
converge to this stationary point.

Lemma 25 We have that

lim
ρi→1,ρj→1

L(ρ) = −∞

18
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Proof We can write the log-likelihood function as follows:

L(ρ) = E
x∼µ∗

log Pr
ρ
(x)

= E
x∼µ∗

log

(
Pr
ρ
(xi, xj) Pr

ρ

(
x[n]\{i,j} | xi, xj

))
= E

x∼µ∗
log Pr

ρ
(xi, xj) + E

x∼µ∗
log Pr

ρ

(
x[n]\{i,j} | xi, xj

)
The second term is clearly upper bounded over the whole region. For the first term, it is
clear that

E
x∼µ∗

log Pr
ρ
(xi, xj) = −KL(µ∗(xi, xj), µ(xi, xj ; ρ))− E

x∼µ∗
logµ∗(xi, xj)

and it is clear that

lim
ρi→1,ρj→1

KL(µ∗(xi, xj), µ(xi, xj ; ρ)) =∞

while the second term is constant. It follows that

lim
ρi→1,ρj→1

E
x∼µ∗

log Pr
ρ
(xi, xj) = −∞

which completes the proof.

Since the EM is guaranteed to improve the value of the likelihood at every step, it is
impossible to converge to this point.

Now, let us consider the case where there is exaclty one i with ρi = 1. Without loss
of generality, suppose ρ1 = 1. The reason this is a fixpoint is that if ρt1 = 1, then y = x1
in the conditional model of y given x, which means that ρt+1 = 1. Then, by the fixpoint
equations we immediately get that in the fixpoint we should have

ρ̃i = ρ∗i ρ
∗
1

for i ̸= 1. From now on, when we refer to ρ̃, these will be the values that are implied.
We would like to show that when we start running EM from a point in the interior of the
region, we will not converge to this stationary point. However, we already know that if we
start from a point with ρ1 = 1, then inevitably in the next iteration we will converge to the
stationary point values for the other variables as well. Hence, this stationary point will be
a saddle point of the log-likelihood.

In particular, we will prove the following Theorem.

Theorem 26 Let ρ be a stationary point with ρ1 = 1. Then, there exists an ϵ0 > 0, such
that the following condition holds: if we start running EM from any initial point ρ0 that
satisfies ∥ρ0−ρ∥2 < ϵ0 and such that ρ0i < 1 for all i, then after a finite number of iterations
t = t(ρ0) we have

∥ρt − ρ∥2 > ϵ0
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We stress that the number of iterations t depends on the initial value ρ0. Let us argue why
Theorem 26 implies that EM does not converge to ρ from any initial point inside the region.
Indeed, if EM converged for some initial value ρ0, then for any ϵ > 0, and in particular for
ϵ = ϵ0, there exists some iteration T such that for t ≥ T we get

∥ρt − ρ∥ ≤ ϵ

However, if we apply Theorem 26 for ρ0 = ρT , we get that there should exists some t > T
with ∥ρt − ρ∥ > ϵ0. This is a contradiction to the convergence claim. Hence, it suffices to
prove Theorem 26. The first step is to establish the following Lemma. It’s purpose is to
show that if the distances of all the coordinates are roughly equal, then ρ1 will move away
from the fixpoint value of 1.

Lemma 27 Let ρt be the current iteration of EM and define

ϵ := max
i
|ρ̃i − ρti|

Then, there are constants C,K > 0 such that

ρt+1
1 ≤ ρt1 − C|ρt1 − 1|2 +Kϵ3

Proof The proof consists of viewing the update rule as a function of the previous step and
writing the Taylor expansion of the this function around the fixpoint ρ. In particular, we
define the function

f(ρ) =
ρ1 +

∑
j ̸=1(ρ1ρj − ρ∗1ρ

∗
j )λj√

1 +
∑

j,k : j ̸=k(ρjρk − ρ∗jρ
∗
k)λjλk

where

λj =

ρj
1−ρ2j

1 +
∑

k
ρ2k

1−ρ2k

Clearly, we have that
f(ρt) = ρt+1

We will compute the Taylor expansion of f around the fixpoint ρ. We start by computing
the first derivatives of f at the fixpoint ρ̃. To do that, we need the derivatives of λj with
ρi. We start with the case i = j

∂λ1

∂ρi
=

∂
∂ρi

(
ρi

1−ρ2i

)
1 +

∑
j

ρ2j
1−ρ2j

− ∂

∂ρi

1 +
∑
j

ρ2j
1− ρ2j


(

ρi
1−ρ2i

)
(
1 +

∑
j

ρ2j
1−ρ2j

)2

=

1
1−ρ2i

+
2ρ2i

(1−ρ2i )
2

1 +
∑

j

ρ2j
1−ρ2j

−
(

2ρi
(1− ρ2i )

2

) (
ρi

1−ρ2i

)
(
1 +

∑
j

ρ2j
1−ρ2j

)2

=
λ1

ρi
+ 2

ρiλ1

1− ρ2i
− 2

λ2
1

1− ρ2i
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Let’s evaluate the limit as ρ→ ρ̃. We know that as ρ1 → 1, we will have λ1 → 1 and λj → 0
for j ̸= 1. Based on these observations, we have that

lim
ρ1→1

ρ1 − λ1

1− ρ21
=

ρ1 −
ρ1

1−ρ21

1+
∑

j

ρ2
j

1−ρ2
j

1− ρ21

= lim
ρ1→1

ρ1 + ρ1
∑

j

ρ2j
1−ρ2j

− ρ1
1−ρ21(

1 +
∑

j

ρ2j
1−ρ2j

)
(1− ρ21)

= lim
ρ1→1

ρ1 +
ρ31 − ρ1
1− ρ21

+ ρ1
∑
j ̸=1

ρ2j
1− ρ2j


=
∑
j ̸=1

ρ2j
1− ρ2j

Hence,

lim
ρ→ρ̃

∂λ1

∂ρ1
= 2

∑
j ̸=1

ρ̃2j
1− ρ̃2j

+ 1 = 2
∑
j ̸=1

(ρ∗j )
2(ρ∗1)

2

1− (ρ∗j )
2(ρ∗1)

2
+ 1

For j ̸= 1, we have

∂λj

∂ρi
=

∂

∂ρi

ρj
1−ρ2j

1 +
∑

k
ρ2k

1−ρ2k

= −
ρj

1−ρ2j(
1 +

∑
k

ρ2k
1−ρ2k

)2 ∂

∂ρi

(
ρ2i

1− ρ2i

)

= −
ρj

1−ρ2j(
1 +

∑
k

ρ2k
1−ρ2k

)2 2ρi
(1− ρ2i )

2

= −2 λ1λj

1− ρ2i

We know that as ρi → 1, we have λ1 → 1. Also,

lim
ρi→1

λj

1− ρ2i
= ρj/(1− ρ2j )

Hence,

lim
ρ→ρ̃

∂λj

∂ρi
= −2

ρ∗jρ
∗
1

1− (ρ∗jρ
∗
1)

2

What we mostly care about is that these derivatives are bounded. Now, we are ready to
compute the various derivatives of f at the fixpoint. We will use the notation ∆jk :=
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ρ∗jρ
∗
k − ρjρk.

∂f

∂ρ1
=

∂
∂ρ1

(
ρ1 +

∑
j ̸=1∆1jλj

)
√

1 +
∑

j,k : j ̸=k ∆jkλjλk

− 1

2

ρ1 +
∑

j ̸=1∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2 ∂

∂ρ1

1 +
∑

j,k : j ̸=k

∆jkλjλk


=

1 +
∑

j ̸=1∆1j
∂λj

∂ρ1
−
∑

j ̸=1 λjρj√
1 +

∑
j,k : j ̸=k ∆jkλjλk

− 1

2

ρ1 +
∑

j ̸=1∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2
2
∑
j ̸=1

∂λ1λj

∂ρ1
∆1j − 2

∑
j ̸=1

λ1λjρj −
∑

j ̸=k ̸=1

∂λjλk

∂ρ1
∆jk


Now, let us examine what happends when we plug in the fixpoint. We know that

∆1j → 0 and λj → 0 for j ̸= 1, hence the entire first term tends to 1. As for the second
term, we have

lim
ρ1→1

ρ1 +
∑

j ̸=1∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2 = 1

Also, notice that
∂λ1λj

∂ρ1
=

∂λ1

∂ρ1
λj +

∂λj

∂ρ1
λ1

is bounded, hence

lim
ρ→ρ̃

∑
j ̸=1

dλ1λj

dρi
∆1j = 0

It is also clear that
lim
ρi→1

∑
j ̸=1

λ1λjρj = 0

Lastly, we have
∂λjλk

dρi
= λj

dλk

dρi
+ λk

∂λj

dρi
→ 0

Hence, the second term tends to 0. Hence,

lim
ρ→ρ̃

∂f

∂ρ1
= 1

Let’s now calculate ∂f/∂ρu for some u ̸= 1. Using the exact same calculation, we arrive at
the formula

∂f

∂ρu
=

∑
j ̸=1∆1j

∂λj

∂ρu
− λuρ1√

1 +
∑

j,k : j ̸=k ∆jkλjλk

− 1

2

ρ1 +
∑

j ̸=1∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2
2
∑
j ̸=u

dλuλj

∂ρu
∆uj − 2

∑
j ̸=u

λjλuρj −
∑

j ̸=k ̸=u

∂λjλk

∂ρu
∆jk


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This time, both the first and the second terms converge to 0, hence

lim
ρ→ρ̃

∂f

∂ρu
= 0

Now, we move on to the second derivatives. First of all, let’s compute the ones for λ1.
We just want to ensure that they will be bounded.

∂2λj

∂2ρ1
=

∂

∂ρ1

(
−2 λ1λj

1− ρ21

)
= −2(∂λ1/∂ρ1)λj

1− ρ21
− 2

(∂λj/∂ρ1)λ1

1− ρ21
− 4

λ1λjρ1
(1− ρ21)

2

= −2(∂λ1/∂ρ1)λj

1− ρ21
+ 4

λjλ
2
1

(1− ρ21)
2
− 4

λ1λjρ1
(1− ρ21)

2

= −2(∂λ1/∂ρ1)λj

1− ρ21
+ 4

λ1λj

1− ρ21

(
λ1 − ρ1
1− ρ21

)
The first term is constant in the limit and the second term is also constant, since the limit
limρ1→1(λ1 − ρ1)/(1− ρ21) has been shown to be constant. Similarly, we have

∂2λj

∂ρ1∂ρu
=

∂

∂ρu

(
−2 λ1λj

1− ρ21

)
= −2(∂λ1/∂ρu)λj + (∂λj/∂ρu)λ1

1− ρ21

= 4
λ1λjλu

(1− ρ21)(1− ρ2u)
+ 4

λjλuλ1

(1− ρ21)(1− ρ2u)

It’s clear that both terms tend to 0. Finally, let’s calculate

∂2λ1

∂2ρ1
=

∂

∂ρ1

(
λ1

ρ1
+ 2

ρ1λ1

1− ρ21
− 2

λ2
1

1− ρ21

)
=

∂

∂ρ1

(
λ1

ρ1

)
+ 2

∂λ1

∂ρ1

ρ1 − λ1

1− ρ21
+ 2λ1

∂

∂ρ1

(
ρ1 − λ1

1− ρ21

)
By taking the limit ρ1 → 1 we verify easily that the second derivative is bounded.

Now, let’s compute the second derivative ∂2f/∂2ρ1. To make the presentation easier,
we derive each of the two terms separately.

∂

∂ρ1

1 +
∑

j ̸=1∆1j
∂λj

∂ρ1
−
∑

j ̸=1 λjρj√
1 +

∑
j,k : j ̸=k ∆jkλjλk

 =

∑
j ̸=1∆1j

∂2λj

∂2ρ1
−
∑

j ̸=1
∂λj

∂ρ1
ρj −

∑
j ̸=1

∂λj

∂ρ1
ρj√

1 +
∑

j,k : j ̸=k ∆jkλjλk

− 1

2

1 +
∑

j ̸=1∆1j
∂λj

∂ρ1
−
∑

j ̸=1 λjρj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2
2
∑
j ̸=1

dλ1λj

∂ρ1
∆1j − 2

∑
j ̸=1

λ1λjρj −
∑

j ̸=k ̸=i

∂λjλk

∂ρ1
∆jk


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In the first term, the final result once we take the limit is

−2
∑
j ̸=1

ρj
∂λj

∂ρ1
|ρ=ρ̃

As for the second term, the rightmost parenthesis is 0, as shown in the calculation of the
first derivative. Now, let’s move to the second term. We want

∂

∂ρ1

1

2

ρ1 +
∑

j ̸=i∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2
2
∑
j ̸=1

dλ1λj

∂ρ1
∆1j − 2

∑
j ̸=1

λ1λjρj −
∑

j ̸=k ̸=i

∂λjλk

∂ρ1
∆jk


We can view this as a product of three terms and use the product rule. Notice that the
third term is 0 in the fixpoint, so when deriving the first two terms we will get 0 in the final
expression. Hence, the only term that matters is

1

2

ρ1 +
∑

j ̸=i∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2 ∂

∂ρ1

2
∑
j ̸=1

dλ1λj

∂ρ1
∆1j − 2

∑
j ̸=1

λ1λjρj −
∑

j ̸=k ̸=i

∂λjλk

∂ρ1
∆jk


=

1

2

ρ1 +
∑

j ̸=i∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2
2
∑
j ̸=1

∂2λ1λj

∂2ρ1
∆1j − 2

∑
j ̸=1

dλ1λj

∂ρ1
ρj − 2

∑
j ̸=1

dλ1λj

∂ρ1
ρj −

∑
j ̸=k ̸=i

∂2λjλk

∂2ρ1
∆jk


First of all, as usual we have

lim
ρ→ρ̃

ρ1 +
∑

j ̸=i∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2 = 1

Also, we have

lim
ρ→ρ̃

∑
j ̸=1

∂2λ1λj

∂2ρ1
∆1j = 0

lim
ρ→ρ̃

∑
j ̸=1

∂λ1λj

∂ρ1
ρj = lim

ρ→ρ̃

∑
j ̸=1

(
λ1

∂λj

∂ρ1
+ λj

dλ1

∂ρ1

)
ρj =

∑
j ̸=1

ρj
∂λj

∂ρ1
|ρ=ρ̃

Hence, we get the same expression as in the first term and these two cancel each other. We
are only left with computing the term

lim
∑

j ̸=k ̸=1

∂2λjλk

∂2ρ1
∆jk

If we set g(x) = x/(1− x2), then we get

lim
ρ→ρ̃

∑
j ̸=k ̸=1

∂2λjλk

∂2ρ1
∆jk = lim

ρ→ρ̃

∑
j ̸=k ̸=1

(
∂2λj

∂2ρ1
λk +

∂2λk

∂2ρ1
λj + 2

∂λj

∂ρ1

dλk

dρi

)
∆jk

= 8
∑

j ̸=k ̸=1

g(ρ∗1ρ
∗
j )g(ρ

∗
1ρ

∗
k)ρ

∗
jρ

∗
k(1− (ρ∗1)

2)
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Hence,
∂2f

∂2ρ1
= −4

∑
j ̸=k ̸=1

g(ρ∗1ρ
∗
j )g(ρ

∗
1ρ

∗
k)ρ

∗
jρ

∗
k(1− (ρ∗1)

2) < 0

Let’s define
C := 2

∑
j ̸=k ̸=1

g(ρ∗1ρ
∗
j )g(ρ

∗
1ρ

∗
k)ρ

∗
jρ

∗
k(1− (ρ∗1)

2)

Clearly C is a constant depending only on the true model. Now, let’s compute the other
mixed derivatives. Let u ̸= 1. We will compute ∂2f/∂ρ1∂ρu. Again, for convenience we
will derive each of the two terms of ∂ρ′1/∂ρ1 separately. We have

∂

∂ρu

1 +
∑

j ̸=1∆1j
∂λj

∂ρ1
−
∑

j ̸=1 λjρj√
1 +

∑
j,k : j ̸=k ∆jkλjλk

 =

∑
j ̸=1∆1j

∂2λj

∂ρ1∂ρu
− dλu

∂ρ1
ρ1 −

∑
j ̸=1

∂λj

∂ρu
ρj − λu√

1 +
∑

j,k : j ̸=k ∆jkλjλk

− 1

2

1 +
∑

j ̸=1∆1j
∂λj

∂ρ1
−
∑

j ̸=1 λjρj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2
2
∑
j ̸=u

dλuλj

∂ρu
∆uj − 2

∑
j ̸=u

λuλjρj −
∑

j ̸=k ̸=u

∂λjλk

∂ρu
∆jk


From the first term, the only term that survives in the limit is

−dλu

∂ρ1
ρ1 |ρ=ρ̃= −

dλu

∂ρ1
|ρ=ρ̃

We turn to the second term that needs differentiation. This is similar to what we had
previously, where the only term that matters is

1

2

ρ1 +
∑

j ̸=i∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2 ∂

∂ρu

2
∑
j ̸=1

dλ1λj

∂ρ1
∆1j − 2

∑
j ̸=1

λ1λjρj −
∑

j ̸=k ̸=i

∂λjλk

∂ρ1
∆jk


=

1

2

ρ1 +
∑

j ̸=i∆1jλj(
1 +

∑
j,k : j ̸=k ∆jkλjλk

)3/2×
×

2
∑
j ̸=1

∂2λ1λj

∂ρ1∂ρu
∆1j − 2

dλ1λu

∂ρ1
ρ1 − 2

∑
j ̸=1

dλ1λj

∂ρu
ρj − 2λ1λu −

∑
j ̸=k ̸=1

∂2λjλk

∂2ρ1ρu
∆jk − 2

∑
j ̸=u,1

∂λjλu

∂ρ1
ρj


The only terms that survive in the second parenthesis are

−2∂λ1λu

∂ρ1
ρ1

In the limit, this is equal to

−2∂λu

∂ρ1
|ρ=ρ̃

We see that this exactly cancels with what we got in the first term. Hence,

∂2f

∂ρ1∂ρu
|ρ=ρ̃= 0
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Similarly, for u ̸= v ̸= 1 we get

∂2f

∂ρudρv
= 0

By similar calculations we can easily show that the third derivatives will also be bounded
in a neighborhood of ρ̃. By using the second order Taylor Theorem, we get that

ρt+1
1 = 1 + (ρt1 − 1)

∂f

∂ρ1
|ρ=ρ̃ +

1

2

∂2f

∂2ρ1
|ρ=ρ̃ (1− ρt1)

2 +O(ϵ3)

= ρt1 − C|ρt1 − 1|2 +O(ϵ3)

Using Lemma 27, it is clear that there is a second order term that is pushing ρt1 away
from 1. Notice that this implies that we do not have a strict saddle point. However, the
third order term depends on the distance of all the other coordinates from their fixpoint
values. Hence, in order for the second order term to dominate the third order term, we need
to prove that |ρti − ρ∗i ρ

∗
1| is roughly the same size as 1− ρt1 for all i ̸= 1. Obviously, with a

bad initialization, this might not happen. However, we can prove that after one iteration
of the EM, this will always happen, no matter the starting point. This is the content of the
following lemma.

Lemma 28 Let ρt be the current iteration of EM. Then, there exists an ϵ > 0 such that if
∥ρt − ρ̃∥∞ < ϵ, then there exists an absolute constant M > 0 such that for all i ̸= 1

|ρt+1
i − ρ∗i ρ

∗
1| ≤M(1− ρt+1

1 )

Proof Let us fix an i ̸= 1 and define the functions

fi(ρ) :=
ρi +

∑
j ̸=i(ρiρj − ρ∗i ρ

∗
j )λj√

1 +
∑

j,k : j ̸=k(ρjρk − ρ∗jρ
∗
k)λjλk

f1(ρ) :=
ρ1 +

∑
j ̸=1(ρ1ρj − ρ∗1ρ

∗
j )λj√

1 +
∑

j,k : j ̸=k(ρjρk − ρ∗jρ
∗
k)λjλk

ri(ρ) :=
fi(ρ)− ρ∗i ρ

∗
1

f1(ρ)− 1

We will show that the limit

lim
ρ→ρ̃

ri(ρ)

exists and is bounded. First, let’s fix the coordinates ρi for i ̸= 1 and have ρ1 → 1. This
means that λ1 → 1 and λj → 0 for j ̸= 1. Notice however that we do not have ∆ij → 0,
as the values of the other coordinates are not in the fixpoint yet. However, we will see that
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this will not matter for the computation of the limit. We have by L’Hospital’s rule

lim
ρ1→1

ri(ρ) = lim
ρ1→1

∂fi(ρ)
∂ρ1

∂f1(ρ)
∂ρ1

=
∑
j ̸=i

∂λj

∂ρ1
∆ij − λ1ρi −

∑
j ̸=1

∂λj

∂ρ1
∆1j

Now, we take the limit with respect to the remaining variables, which gives

lim
ρ→ρ̃

ri(ρ) =
∑
j ̸=i

∂λj

∂ρ1
|ρ=ρ̃ ρ∗i ρ

∗
j (1− (ρ∗1)

2)− ρ∗i ρ
∗
1

This is a finite quantity that depends only on the true parameters, hence it is a constant.
Since the function ri(ρ) is continuous, we get that there exists an ϵ > 0 such that if
∥ρ− ρ̃∥∞ < ϵ then

|ri(ρ)| ≤M

for some M > 0. Substituting ρ = ρt gives∣∣∣∣ρt+1
i − ρ∗i ρ

∗
1

ρt+1
1 − 1

∣∣∣∣ ≤M

which is what we wanted to prove.

With Lemmas 27 and 28 in our hands, we can proceed to prove Theorem 26. The idea
is the following: if in the starting point ρ0 the distance of ρ01 from 1 is much less that the
distances of the other coordinates from the fixpoint values, then in the following iteration
they will all come closer to the fixpoint, so that all the distances are comparable. This
means that even if the algorithm starts from a bad angle, it will quickly correct itself to a
good angle in the next iteration. After that, in the following iterations, the second order
term computed in Lemma 27 will dominate the third order term and repel ρ1 away from 1,
until it gets out of the ball.
Proof [Proof of Theorem 26] Let ϵ1 be the value of ϵ from Lemma 27 and ϵ2 be the value
from Lemma 28. Also, let ϵ3 be small enough so that

Cϵ2/2 > KMϵ3

for all ϵ < ϵ3. We choose ϵ0 = min(ϵ1, ϵ2, ϵ3). Let ρ0 be a starting point of EM with
∥ρ0 − ρ̃∥2 ≤ ϵ0 and ρ0i < 1 for all i.

Let t ≥ 1. If ∥ρt′ − ρ̃∥2 > ϵ0 for some t′ ≤ t, then we have nothing to prove. Suppose
∥ρt′ − ρ̃∥2 < ϵ0 for all t′ ≤ t. Then, by applying Lemma 28 we get that

|ρti − ρ∗i ρ
∗
1| ≤M(1− ρt1)

for all i ̸= 1. This means that by applying Lemma 27 and by the particular choice of ϵ0, we
have that

ρt+1
1 ≤ ρt1 − C(1− ρt1)

2 +KM(1− ρt1)
3 ≤ ρt1 −

C

2
(1− ρt1)

2
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This implies that

1− ρt+1
1 ≥ 1− ρt1 +

C

2
(1− ρt1)

2

This holds for all times up to t. If we set αt = 1− ρt1, this implies the recursive relation

αt+1 ≥ αt +
C

2
(αt)2

It is obvious that αt is an increasing function of t, meaning that αt ≥ α0. This means that
αt+1 ≥ αt + C

2 (α
0)2. Since α0 = 1 − ρ01 > 0, we have that limt→∞ αt = ∞. This implies

that there exists a finite time T such that

1− ρt1 = αt > ϵ0

This implies that ∥ρt − ρ̃∥2 > ϵ0 and the proof is complete.

A.3. Deffered proofs from Section 2

Proof [Proof of Lemma 2] Using Lemma 1 and Claim 1, we derive that

E
µt+1

[xiy] = E
µt,∗

[xiy] = E
µ∗
x

[
E

µt
y|x

[xiy]

]
= E

µ∗
x

[
xi E

µt
y|x

[y]

]
= E

µ∗
x

xi n∑
j=1

σt
y

σt
j

λt
jxj


=

n∑
j=1

σt
y

σt
j

λt
j E
µ∗
x

[xixj ] = σt
yσ

t
iλ

t
i +
∑
j ̸=i

σt
yσ

t
iλ

t
jρ

∗
i ρ

∗
j = σt

yσ
t
i

λt
i +
∑
j ̸=i

λt
jρ

∗
i ρ

∗
j

 .

(12)
This concludes the first expression for Eµt+1 [xiy]. Next, we would like to show that the
second expression equals the first expression. First, recall that in (12) we have shown that

E
µ∗
x

[
E

µt
y|x

[xiy]

]
= σt

yσ
t
i

λt
i +
∑
j ̸=i

λt
jρ

∗
i ρ

∗
j

 .

If we substitute µt instead of µ∗, we derive that

E
µt
x

[
E

µt
y|x

[xiy]

]
= σt

yσ
t
i

λt
i +
∑
j ̸=i

λt
jρ

t
iρ

t
j

 .

Since the right hand side equals
E
µt
[xiy] = σt

iσ
t
yρ

t
i,

we derive that

σt
iσ

t
yρ

t
i − σt

iσ
t
y

λt
i +
∑
j ̸=i

λt
jρ

t
iρ

t
j

 = 0 . (13)
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Adding the left hand side of (13) to (12), we derive that

E
µt+1

[xiy] = σt
iσ

t
y

ρti +
∑
j ̸=i

(ρ∗i ρ
∗
j − ρtiρ

t
j)λ

t
j

 ,

which is exactly the second expression for Eµt+1 [xiy]. Next, we compute the variance for y,
again, using Lemma 1 and Claim 1:

E
µt+1

[y2] = E
µt,∗

[y2] = E
µ∗
x

[
E

µt
y|x

[y2]

]
= E

µ∗
x

 n∑
j=1

σt
y

σt
j

λt
jxj

2 (14)

=

n∑
i=1

n∑
j=1

σt
y

σt
i

λt
i

σt
y

σt
j

λt
j E
µ∗
x

[xixj ] = (σt
y)

2

 n∑
i=1

(λt
i)
2 +

∑
i ̸=j∈{1,...,n}

λt
iλ

t
jρ

∗
i ρ

∗
j

 .

This derives the first expression for the variance of y. We derive the second expression
using a similar logic as in the calculation in the second expression for Eµt+1 [xiy]. First,
substituting ρt instead of ρ∗ in (14), we derive that

(σt
y)

2 = E
µt
[y2] = E

µt
x

[
E

µt
y|x

[y2]

]
= (σt

y)
2

 n∑
i=1

(λt
i)
2 +

∑
i ̸=j∈{1,...,n}

λt
iλ

t
jρ

t
iρ

t
j

 .

This implies that

(σt
y)

2

1−
n∑

i=1

(λt
i)
2 −

∑
i ̸=j∈{1,...,n}

λt
iλ

t
jρ

t
iρ

t
j

 = 0.

Adding this to the expression in (14), this yields the second expression for the covariance
of y, as required.

Lastly, the expression of ρt+1
i is derived, by definition of ρi,

ρt+1
i =

Eµt+1 [xiy]√
Varµt+1 [xi] Varµt+1 [y]

,

and by substituting the expressions for the covariance of xi and y, the variance of y, and
using Lemma 1 which argues that Varµt+1 [xi] = σ2

i .

Proof [Proof of Lemma 5] Yuval: Elaborate if there’s time The convergence of ρt to some
ρ ∈ S follows directly from Wu (1983). For the second part of the lemma, assume that ρ ∈ S
and by definition of a stationary point, ρt+1 = ρt. Further, by Lemma 2, we know that
σt+1
xi

= σ∗
xi

= σt
xi

for all t. This implies that µt
x1···xn

= µt+1
x1···xn

. In particular, KL(µ∗∥µt) =
KL(µ∗∥µt+1). Yet, Wu (1983) implies that if µt+1 ̸= µt then KL(µ∗∥µt+1) < KL(µ∗∥µt).
Hence, µt+1 = µt as required.

Proof [Proof of Lemma 11] We will analyze the transpose of the matrix in (5), assuming
that Jij = uj for any i ̸= j. Indeed, the original matrix is singular if and only if its transpose
is.
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We would like to show that there is no nontrivial solution a for Ja = 0. We have

(Ja)i =
∑
j ̸=i

ajuj + ai(
∑
j ̸=i

uj) =
∑
j

ajuj + ai(
∑
j

uj − 2ui).

Substitute s =
∑

j uj and u =
∑

j ajuj , we have

(Ja)i = u+ ai(s− 2ui).

To solve the system of equations Ja = 0, we assume without loss of generality that u1 =
maxj uj and divide into cases according to u1. First, assume that u1 < s/2. Then,

(Ja)i = u+ ai(s− 2ui) = 0 (15)

implies

ai =
−u

s− 2ui
.

The equation
∑

i uiai = u implies∑
i

uiai =
∑
i

−uui
s− 2ui

= u. (16)

Notice that u ̸= 0. Assume towards contradiction that u = 0. Then, we have

0 = ai(s− 2ui).

Dividing by s−2ui we get ai = 0 for all i. Since we look for nontrivial solutions a to Ja = 0,
we assume that a ̸= 0 which implies that u ̸= 0. Dividing (16) by u we get∑

i

−ui
s− 2ui

= 1. (17)

By the assumption u1 < s/2 we have s−2ui ≥ s−2u1 > 0. In particular, the left hand side
of (17) is negative while the right hand side is positive, hence there is no solution! Next,
assume that u1 > s/2. In this case, we have ui < s/2 for all i ≥ 2, since

∑
i ui = s. Here,

(17) is still valid, and is equivalent to

u1
2u1 − s

− 1 =
∑
i>1

ui
s− 2ui

,

which is equivalent to
s− u1
2u1 − s

=
∑
i>1

ui
s− 2ui

.

Here, we will show that the left hand side is strictly greater than the right hand side, which
implies that there is no equality. First, notice that for any i ≥ 2, 2u1− s < s− 2ui. Indeed,
this follows from s =

∑
j uj > u1 + ui, since all uj are positive and n ≥ 3. We derive that

s− u1
2u1 − s

=
∑
i≥2

ui
2u1 − s

>
∑
i≥2

ui
s− 2ui

,
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which arrives at a contradiction. Lastly, assume that u1 = s/2. Since s =
∑n

i=1 ui and
n ≥ 3, then for all i ≥ 2 we have ui < s/2. Recall (15) which states that

0 = (Ja)i = u+ ai(s− 2ui).

Applying with i = 1 we obtain

u = 0.

For all i ≥ 2 we have

ai(s− 2ui) = 0

which implies that ai = 0 for i ≥ 2. By definition of u and by the computations above,

0 = u =
∑
i

aiui = a1u1.

Since u1 > 0 we have

a1 = 0.

We conclude that ai = 0 for all i which implies that there is no nontrivial solution for
Ja = 0, as required.

Appendix B. Upper and Lower bounds for EM iteration

We will denote by ρt, θt the vector of correlations, covariances at time t. We also denote
by µρ the density of the distribution on leaves with correlations ρ. Our first task will be to
show that if we initialize EM at a constant distance away from the optimum, it will always
remain in a bounded distance within that optimum.

Theorem 29 Suppose that mini ρ
0
i ≥ c1, 1 − maxi ρ

0
i ≥ c2, where c1, c2 ∈ (0, 1) are con-

stants. Suppose we have access to m i.i.d. samples x(1), . . . , x(k) from the distribution µ∗
x.

Let ρti be the correlations produced by the EM iteration run using these samples. Then, with
probability at least 1 − δ, there are absolute constants C,C ′ > 0 such that for all t > 0, i
and k = 5:

C

nk+2
≤ ρti ≤ 1− C ′

n4k+9

We will break the proof of Theorem 29 into multiple lemmas over the next few Sections.

B.1. Two correlations cannot be close to 1

We will first be concerned with establishing that all ρi remain bounded away from 1 in all
iterations. Our first Lemma contributes in this direction. It says that no 2 coordinates i, j
can have ρi, ρj simultaneously close to 1.

Lemma 30 Suppose that mini ρ
0
i ≥ c1, 1−maxi ρ

0
i ≥ c2, where c1, c2 ∈ (0, 1) are constants.

Suppose we have access to m i.i.d. samples x(1), . . . , x(k) from the distribution µ∗
x. Let ρti be

the correlations produced by the EM iteration run using these samples. Then, with probability
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at least 1− δ, there exists a constant c = c(c1, c2, ρ
∗) such that for all t, there exists at most

one i ∈ [n] such that ρti > 1− c/(n2η), where

η :=

√
log(n/δ)

m

Proof We use the fact that EM always improves the value of the likelihood function. We
consider the likelihood of a given observation on the leaves as a function of the standard
deviations at the leaves σxi and the correlations ρi between xi, y. Let σx be the vector of
standard deviations and ρ the vector of correlations. The empirical likelihood function can
be written as

L(ρ, σx;x
(1), . . . , x(k)) =

1

m

m∑
k=1

logµρ,σx(x
(k))

From now on, we will omit the dependence on the samples x(1), . . . , x(k) whenever it is
implied. We have that

L(ρ, σx) =
1

m

m∑
k=1

logµρ,σx(x
(k))

= −1

2
log (2π |Σρ,σx |)−

1

2m

m∑
k=1

(x(k))⊤Σ−1
ρ,σx

x(k)

= −1

2
log (2π |Σρ,σx |)−

1

2
tr
(
Σ−1
ρ,σx

Σ̂
)

(18)

where Σ̂ is the empirical covariance matrix of the samples. Recall the closed form expression
for KL of Gaussians.

KL(N (0,Σ1)||N (0,Σ2)) =
1

2

(
log
|Σ2|
|Σ1|

− n+ tr(Σ−1
2 Σ1)

)
From this, we conclude that

L(ρ, σx) = −
n

2
− 1

2
log
(
2π
∣∣∣Σ̂∣∣∣)−KL(N (0, Σ̂)||N (0,Σρ,σx))

Let us start by lower bounding L(ρ0, σ0
x). We are going to upper boundKL(N (0, Σ̂)||N (0,Σρ0,σ0

x
))).

The matrix Σρ,σx can be written as a sum of a rank 1 matrix and a diagonal matrix. We
will use this to evaluate determinants and inverses of these matrices. Specifically, for any
ρ, if σx is the all 1’s vector, we have that

Σρ,σx =


1− ρ21 0 . . . 0

0 1− ρ22 . . . 0
...

...
...

0 0 . . . 1− ρ2n

+ ρρ⊤ (19)

We will denote this diagonal matrix as diag(1 − ρ2) for convenience. From now on, we
will omit the dependence on σx if we have unit variances (which happens for ρ0 and ρ∗ for
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example). Using the Sherman-Morrison formula, we get that

Σ−1
ρ = diag(1− ρ2)−1 − diag(1− ρ2)−1ρρ⊤diag(1− ρ2)−1

1 + ρ⊤diag(1− ρ2)−1ρ
(20)

We will first try to bound tr(Σ−1
ρ0

Σρ∗) and then show that it is close to tr(Σ−1
ρ0

Σ̂) Thus,
after some algebraic manipulations, we have that

tr(Σ−1
ρ0

Σρ∗) = n+

(∑
i

(ρ0i )
2

1−(ρ0i )
2

)2
−
(∑

i
ρ0i ρ

∗
i

1−(ρ0i )
2

)2
+
∑

i
(ρ0i )

2(ρ∗i )
2

(1−(ρ0i )
2)2
−
∑

i
(ρ0i )

4

(1−(ρ0i )
2)2

1 +
∑

i
(ρ0i )

2

1−(ρ0i )
2

= n+

(∑
i
(ρ0i )(ρ

0
i−ρ∗i )

1−(ρ0i )
2

)(∑
i
(ρ0i )(ρ

0
i+ρ∗i )

1−(ρ0i )
2

)
+
∑

i
(ρ0i )

2((ρ∗i )
2−(ρ0i )

2)

(1−(ρ0i )
2)2

1 +
∑

i
(ρ0i )

2

1−(ρ0i )
2

Now, notice that the function x 7→ x2/(1 − x2) is increasing. This implies, using the
assumption of the Lemma, that

∑
i

(ρ0i )
2

1− (ρ0i )
2
≥ n

c21
1− c21

Also, since the function x 7→ x/(1− x2) is increasing, this implies that

∑
i

(ρ0i )(ρ
0
i + ρ∗i )

1− (ρ0i )
2
≤ 2n

1− c2
1− (1− c2)2

and ∣∣∣∣∣∑
i

(ρ0i )(ρ
0
i − ρ∗i )

1− (ρ0i )
2

∣∣∣∣∣ ≤ 2n
1− c2

1− (1− c2)2

Also, for all i we have

|(ρ∗i )2 − (ρ0i )
2| = |ρ∗i − ρ0i ||ρ∗i + ρ0i | ≤ 2

By monotonicity again, this implies∣∣∣∣∣∑
i

(ρ0i )
2((ρ∗i )

2 − (ρ0i )
2)

(1− (ρ0i )
2)2

∣∣∣∣∣ ≤ 2
∑
i

(ρ0i )
2

(1− (ρ0i )
2)2
≤ 2n

(1− c2)
2

(1− (1− c2)2)2

Putting all these facts together, we conclude that there exists a constant C = C(c1, c2),
such that ∣∣∣∣∣∣

(∑
i
(ρ0i )(ρ

0
i−ρ∗i )

1−(ρ0i )
2

)(∑
i
(ρ0i )(ρ

0
i+ρ∗i )

1−(ρ0i )
2

)
+
∑

i
(ρ0i )

2((ρ∗i )
2−(ρ0i )

2)

(1−(ρ0i )
2)2

1 +
∑

i
(ρ0i )

2

1−(ρ0i )
2

∣∣∣∣∣∣ ≤ Cn (21)
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Now, let’s focus on tr(Σ−1
ρ0

Σ̂). By standard Chernoff bounds, we have that with probability
at least 1− δ, for all i, j

∣∣∣(Σρ∗)ij − Σ̂ij

∣∣∣ = O

(√
log(n/δ)

m

)
:= η

We have

tr
(
Σ−1
ρ0

(Σ̂− Σρ∗)
)
=
∑
i,j

(Σ−1
ρ0

)ij

(
(Σρ∗)ij − Σ̂ij

)
Hence, all we have to do is bound the entries of Σ−1

ρ0
. For this, we can use the Sherman-

Morrison formula, which we also used earlier. Let’s start with a non-diagonal element i ̸= j.
Then, the formula gives

∣∣(Σρ0)ij
∣∣ = ρ0i

1−(ρ0i )
2

ρ0j
1−(ρ0j )

2

1 +
∑

i
(ρ0i )

2

1−(ρ0i )
2

≤ 1

c22

For i = j, we have

∣∣(Σρ0)ii
∣∣ =

∣∣∣∣∣∣∣
1

1− (ρ0i )
2
−

(
ρ0i

1−(ρ0i )
2

)2
1 +

∑
i

(ρ0i )
2

1−(ρ0i )
2

≤ 1

c22

∣∣∣∣∣∣∣ ≤
1

c2
+

1

c22

Hence, with probability at least 1− δ∣∣∣tr (Σ−1
ρ0

(Σ̂− Σρ∗)
)∣∣∣ ≤ Cn2η (22)

where C is some constant. Now, let’s calculate the determinant. We use the matrix deter-
minant lemma to compute |Σρ|.

|Σρ| = (1 + ρ⊤diag(1− ρ2)−1ρ)|diag(1− ρ2)| = (1 +
∑
i

ρ2i
1− ρ2i

)
∏
i

(1− ρ2i )

This gives us

log
|Σρ0 |
|Σρ∗ |

= log
1 +

∑
i

(ρ0i )
2

1−(ρ0i )
2

1 +
∑

i
(ρ∗i )

2

1−(ρ∗i )
2

+
∑
i

log
1− (ρ0i )

2

1− (ρ∗i )
2

The function x 7→ log(1− x2) is decreasing, hence we have

∑
i

log
1− (ρ0i )

2

1− (ρ∗i )
2
≤ n log

1− c21
c2

We also have ∑
i

(ρ0i )
2

1− (ρ0i )
2
≤ n

1

c2
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Finally ∑
i

(ρ∗i )
2

1− (ρ∗i )
2
≥ Cn

It follows that there exists a constant C ′ = C ′(M,ρ∗), such that∣∣∣∣log |Σρ0 |
|Σρ∗ |

∣∣∣∣ ≤ C ′n (23)

However, in the expression we have Σ̂ instead of Σ∗. We use the property that

∂ log |A|
∂A

= A−1

We already showed that the entries of Σ−1
ρ are bounded if ρ is upper and lower bounded by

constants. Using this and Taylor’s Theorem, we get∣∣∣∣∣log |Σρ∗ |
|Σ̂|

∣∣∣∣∣ ≤ Cn2η (24)

for some constant C.

Using inequalities (21) and (23) together with the expression of KL, we conlcude that

KL(N (0,Σρ∗)||N (0,Σρ0)) ≤ Kn

where K = K(ρ∗). Also, using this result and inequalities (24) and (22) we get

KL(N (0, Σ̂)||N (0,Σρ0)) ≤ K ′n2η

Overall, by equation(18) we get that

L(ρ0) ≥ −n

2
− 1

2
log
(
2π
∣∣∣Σ̂∣∣∣)−K ′n2η

for some K ′ = K ′(c1, c2, ρ
∗).

Now, suppose for some iteration t there exist two indices i, j with ρti > 1 − ϵ, ρtj >
1 − ϵ, where ϵ will be determined in the sequel. Now, let us upper bound L(ρt). By KL
subadditivity, we have

L(ρt, σt
x) = −

n

2
− 1

2
log
(
2π
∣∣∣Σ̂∣∣∣)−KL(N (0, Σ̂)||N (0,Σρt,σt

x
))

− n

2
− 1

2
log
(
2π
∣∣∣Σ̂∣∣∣)−KL(N (0, Σ̂xi,xj )||N (0, (Σρt,σt

x
)xi,xj ))

where in the last equation we are comparing the marginals of the distributions on xi, xj .
The marginal distribution of xi, xj is a gaussian with zero mean. First, we will analyze the
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ideal situation where we have Σ∗ instead of Σ̂. Using the closed form of the KL divergence
between two Gaussians, we obtain:

KL(N (0,Σ∗
xi,xj

)||N (0, (Σρt,σt
x
)xi,xj ))

=
1

2

(
log

1− (ρtiρ
t
j)

2

1− (ρ∗i ρ
∗
j )

2
− 2 +

1

(1− (ρtiρ
t
j)

2
tr

((
1 −ρtiρtj

−ρtiρtj 1

)(
1 ρ∗i ρ

∗
j

ρ∗i ρ
∗
j 1

)))

=
1

2

(
log

1− (ρtiρ
t
j)

2

1− (ρ∗i ρ
∗
j )

2
− 2 + 2

1− ρtiρ
t
jρ

∗
i ρ

∗
j

1− (ρtiρ
t
j)

2

)
Then,

KL(N (0,Σ∗
xi,xj

)||N (0, (Σρt,σt
x
)xi,xj )) ≥

1

2

(
log(1− (ρtiρ

t
j)

2)− 2 + 2
1− ρ∗i ρ

∗
j/4

1− (ρtiρ
t
j)

2

)

Now, for any constant c > 0, consider the function f(x) = x(log x + c/x). This is a
continuous function on (0, 1) and it is easy to see that it is decreasing for x < 1/e. Let x0
be a small enough constant such that x0 log x0 + c > c/2. Then, for x < x0

f(x) ≥ f(x0) =⇒ log x+ c/x ≥ c/2

x

Now let c = 2(1 − ρ∗i ρ
∗
j/4). If we set ϵ = c′/(ηn2) for some suitable constant c′, then we

have that
1− (ρtiρ

t
j)

2 < x0

and
KL(N (0,Σ∗

xi,xj
)||N (0, (Σρt,σt

x
)xi,xj )) > (K ′ +K ′′)n2η

where K ′′ is a constant that will be determined now. Using the exact same arguments as
in the case of ρ0, we can show that∣∣∣KL(N (0,Σ∗

xi,xj
)||N (0, (Σρt,σt

x
)xi,xj ))−KL(N (0,Σ∗

xi,xj
)||N (0, (Σρt,σt

x
)xi,xj ))

∣∣∣ ≤ K ′′η

for some constant C. It follows that

L(ρt, σt
x) < −

n

2
− 1

2
log
(
2π
∣∣∣Σ̂∣∣∣)−K ′n2η < L(ρ0)

This is a contradiction, since the likelihood value increases at each step of EM. This gives
us the desired result.

B.2. No correlation can be too close to 1

In the previous Section, we showed that two corrrelations cannot be close to 1 at the same
time. In this Section, building on this result, we show that in fact no correlation can be too
close to 1. Hence, each ρi is upper bounded at all iterations of the algorithm. This is the
topic of the following Lemma:
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Lemma 31 Suppose ∥ρ0 − ρ∗∥∞ ≤ M . Then, for all i and for all t, ρti ≤ 1 − C ′′/n4k+9,
where C ′′ is an absolute constant and k ≥ 5.

Remark 32 The proof is assumes that the executed dynamics are according to the popula-
tion EM. The extension to the sample EM is straightforward.

To prove it, we will essentially prove that no ρi will ever get really close to 1. The
proof will be similar to the one that established divergence from the saddle points at the
boundary. We start by stating a direct Corollary of Lemma 30.

Corollary 33 Suppose ∥ρ0 − ρ∗∥∞ ≤M . If for some t we have ρt1 > 1− c/n, then for all
i ̸= 1 we have ρti ≤ 1− c/n, where c is the constant of Lemma 30.

Our strategy now will be the following: we want to show that ρ1 will not be very close
to 1, without loss of generality. First of all, we want to argue that if it comes close to 1, it
will immediately start moving away. We do this by showing that after one iteration of EM,
the errors of the others will be comparable to the error of ρ1. We showed a similar claim in
the proof of divergence from stationary points. The difference here is that the errors of the
other ρi can be close to 1, while in the original proof they were assumed to lie in some ball
around the fixpoint. Hence, we prove the following Lemma.

Lemma 34 Suppose that for some t we have ρti ≤ α for all i ̸= 1 and ρt1 > β, for some
α, β ∈ (0, 1). Define

R = R(α, β, n) := n2 1− β

β4(1− α)2
+

n

β2(1− α)
(25)

and assume that (1− β)R ≤ 1/2. Then, for all i ̸= 1

|ρt+1
i − ρ∗i ρ

∗
1| ≤ C

1 + 2n
1−α +R

1−
(
1 + 2n

1−α

)
n(1−β)
β2(1−α)

− Cn2 (1−β)
β4(1−α)2

− C n(1−β)R
β2(1−α)

(1− ρt+1
1 )

where C is some absolute constant.

The first step to proving this Lemma will be to show that if all ρi are bounded away from
1 except ρ1, then λi will be small for i ̸= 1. This is the content of the following Lemma.

Lemma 35 Suppose for some ρ we have ρi ≤ α for all i ̸= 1 and ρ1 > β, for some
α, β ∈ (0, 1).Then,

λ1 >
ρ1

1 + 2n1−ρ1
1−α

and

λi ≤
2(1− ρ1)

β2(1− α)

for all i ̸= 1.
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Proof We have

λi =

ρi
1−ρ2i

1 +
∑

j

ρ2j
1−ρ2j

=
ρi

1 +
∑

j ̸=i

ρ2j (1−ρ2i )

1−ρ2j

For i ̸= 1, this implies

λi ≤
1∑

j ̸=i

ρ2j (1−ρ2i )

1−ρ2j

≤ 1− ρ21
ρ21(1− ρ2i )

We have 1− ρ21 = (1− ρ1)(1 + ρ1) < 2(1− ρ1) and 1− ρ2i = (1− ρi)(1 + ρi) ≥ 1− α. This
gives

λi ≤
2(1− ρ1)

β2(1− α)

We also have
λ1 =

ρ1

1 +
∑

j ̸=1

ρ2j (1−ρ21)

1−ρ2j

We have that ∑
j ̸=1

ρ2j (1− ρ21)

1− ρ2j
≤ 2n

1− ρ1
1− α

=⇒ λ1 ≥
ρ1

1 + 2n1−ρ1
1−α

We are now ready to prove Lemma 34.
Proof [Proof of Lemma 34] We will first prove that

|ρt+1
i − ρ∗i ρ

∗
1| ≤ C(α, β)|ρt1 − 1| (26)

for some constant C(α, β) that will be specified in the sequel. We have that

|ρt+1
i − ρ∗i ρ

∗
1| =

∣∣∣∣∣∣ ρti +
∑

j ̸=i(ρ
∗
i ρ

∗
j − ρtiρ

t
j)λ

t
j√

1 +
∑

j ̸=k λ
t
jλ

t
k(ρ

∗
jρ

∗
k − ρtjρ

t
k)
− ρ∗i ρ

∗
1

∣∣∣∣∣∣
As usual, denote ∆t

ij = ρ∗i ρ
∗
j − ρtiρ

t
j . Also, let

U t :=
∑
j ̸=k

λt
jλ

t
k(ρ

∗
jρ

∗
k − ρtjρ

t
k)

Hence, we can write

|ρt+1
i − ρ∗i ρ

∗
1| =

∣∣∣∣∣ρti +
∑

j ̸=i∆
t
ijλ

t
j − ρ∗i ρ

∗
1

√
1 + U t

√
1 + U t

∣∣∣∣∣
=

∣∣∣∣∣ρti + λ1(ρ
∗
i ρ

∗
1 − ρtiρ

t
1)− ρ∗i ρ

∗
1

√
1 + U t +

∑
j ̸=i,1∆

t
ijλ

t
j√

1 + U t

∣∣∣∣∣
=

∣∣∣∣∣(λ1 −
√
1 + U t)(ρ∗i ρ

∗
1 − ρtiρ

t
1) + ρti(1− ρt1

√
1 + U t) +

∑
j ̸=i,1∆

t
ijλ

t
j√

1 + U t

∣∣∣∣∣
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Let’s start by bounding U t. Using lemma 35 have that for j, k ̸= 1:

|λt
jλ

t
k∆

t
jk| ≤ 2

(
2(1− ρt1)

β2(1− α)

)2

If j = 1 then

|λt
1λ

t
k(ρ

∗
1ρ

∗
k − ρt1ρ

t
k)| ≤ 2

2(1− ρt1)

β2(1− α)

Hence, we conclude that

|U t| ≤ n2 8(1− ρt1)
2

β4(1− α)2
+ 4n

1− ρt1
β2(1− α)

By Assumption(25) we have that the right hand side of the last inequality is < 1/2. This
gives, by a simple Taylor approximation, that

|
√

1 + U t − 1| ≤ C|U t|

for some constant C. Hence,

|λt
1 −

√
1 + U t| ≤ |λt

1 − 1|+ |
√

1 + U t − 1| ≤ 1− ρt1

1 + 2n
1−ρt1
1−α

+ Cn2 8(1− ρt1)
2

β4(1− α)2
+ 4Cn

1− ρt1
β2(1− α)

≤
(
1 +

2n

1− α

)
(1− ρt1) + Cn2 8(1− ρt1)

2

β4(1− α)2
+ 4Cn

1− ρt1
β2(1− α)

We also have

|1− ρt1
√

1 + U t| ≤ 1− ρt1 + ρt1|1−
√
1 + U t| ≤ 1− ρt1 + Cn2 8(1− ρt1)

2

β4(1− α)2
+ 4Cn

1− ρt1
β2(1− α)

Lastly, we have ∑
j ̸=i,1

∆t
ijλ

t
j ≤ 4n

1− ρt1
β2(1− α)

Hence,

|ρt+1
i − ρ∗i ρ

∗
1| ≤

(
2 + 2n

1−α

)
(1− ρt1) + Cn2 8(1−ρt1)

2

β4(1−α)2
+ 4Cn

1−ρt1
β2(1−α)

+ 4n
1−ρt1

β2(1−α)√
1− n2 8(1−ρt1)

2

β4(1−α)2
− 4n

1−ρt1
β2(1−α)

≤ C(1− ρt1)

(
1 +

2n

1− α
+ n2 1− β

β4(1− α)2
+

n

β2(1− α)

)
for some constant C, since we have assumed (25). If we set C(α, β) equal to the multiplier
of 1− ρt1, we have obtained (26). The second step is to show that

1− ρt+1
1 ≥ K(α, β)(1− ρt1) (27)
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Inequalities (26) and (27) together give us the desired result. We have that

ρt+1
1 =

ρt1 +
∑

j ̸=1(ρ
∗
1ρ

∗
j − ρt1ρ

t
j)λ

t
j√

1 +
∑

j ̸=k λ
t
jλ

t
k(ρ

∗
jρ

∗
k − ρtjρ

t
k)

First of all, by Taylor we have that if |x| ≤ 1/2

(1 + x)−1/2 ≤ 1− x

2
+ cx2

We have already shown that |U t| is smaller than a constant (using also assumption (25)).
This gives

ρt+1
1 ≤

ρt1 +
∑
j ̸=1

(ρ∗1ρ
∗
j − ρt1ρ

t
j)λ

t
j

(1− U t

2
+ c|U t|2

)

= ρt1 +
∑
j ̸=1

(ρ∗1ρ
∗
j − ρt1ρ

t
j)λ

t
j − ρt1λ

t
1

∑
j ̸=1

(ρ∗1ρ
∗
j − ρt1ρ

t
j)λ

t
j −

ρt1
2

∑
j ̸=k ̸=1

∆t
ijλ

t
jλ

t
k −

U t

2

∑
j ̸=1

∆t
1jλ

t
j + c|U t|2(ρt1 +

∑
j ̸=1

∆t
1jλ

t
j)

≤ ρt1 + (1− ρt1λ
t
1)
∑
j ̸=1

∆t
1jλ

t
j + Cn2 (1− ρt1)

2

β4(1− α)2
+ C

n|U t|(1− ρt1)

β2(1− α)
+ C

n|U t|2(1− ρt1)

β2(1− α)

We know that ∑
j ̸=1

∆t
1jλ

t
j ≤ 4n

1− ρt1
β2(1− α)

and

1− ρt1λ
t
1 = 1− ρt1 + ρt1(1− λt

1) ≤ (1− ρt1)

(
1 +

2n

1− α

)
Hence, we have that

1− ρt+1
1 ≥ (1− ρt1)

(
1−

(
1 +

2n

1− α

)
n(1− ρt1)

β2(1− α)
− Cn2 (1− ρt1)

β4(1− α)2
− C

n|U t|
β2(1− α)

)

We now have almost all the necessary ingredients required for the proof of Lemma 31.
The final Lemma we will prove says that if ρ1 happens to come very close to 1, then after
one iteration it will start moving away from 1. This is qualitatively similar to the proof of
Theorem 25 in the manuscript, but now we have to make precise quantitative predictions
for how close it should be to 1. This is the content of the following Lemma.

Lemma 36 Suppose ρt1 > 1−c′/nk > 1−c/n, where c′ > 0 is a sufficiently small constant
and k ≥ 5. Then, for all t′ ≥ t + 1 we have that if ρt

′
1 > c′/nk, then for some absolute

constant C > 0 we have

ρt
′+1
1 ≤ ρt

′
1 −

C

2
(1− ρt

′
1 )

2

Proof We first restate, without proof, Lemma 26 from the manuscript.
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Lemma 37 Let ρt be the current iteration of EM and define

ϵt := max(1− ρt1,max
i
|ρ∗i ρ∗1 − ρti|)

Then, there exist absolute constants C,K > 0 such that

ρt+1
1 ≤ ρt1 − C|ρt1 − 1|2 +Kn3(ϵt)3

By Corollary 33 we have that ρti < 1− c/n. Thus, if we set α = 1− c/n and β = 1− c′/nk

we get that

(1− β)R(α, β, n) ≤ C
1

nk

(
1

nk−4
+ n2

)
which can be made less than 1/2 with k ≥ 2. Thus, all the assumptions of Lemma 34 are
satisfied. By applying this result, we get that for some constant C

|ρt+1
i − ρ∗i ρ

∗
1| ≤ C

n2

1− C′

nk−2

(1− ρt+1
1 ) ≤ C ′′n2(1− ρt+1

1 )

Similarly, for any t′ ≥ t+1 such that ρt
′
1 > 1− c′/nk the previous calculations apply, hence

we get for all t′ ≥ t+ 1

|ρt′i − ρ∗i ρ
∗
1| ≤ C

n2

1− C′

nk−2

(1− ρt+1
1 ) ≤ C ′′n2(1− ρt

′
1 )

Thus, for every t′ ≥ t+ 1 we have

ϵt
′ ≤ C ′′n2(1− ρt

′
1 )

Hence, by applying Lemma 37, we get that

ρt
′+1
1 = ρt

′
1 − C(1− ρt

′
1 )

2 +K ′n9(1− ρt
′+1
1 )3

Now, if k ≥ 5 and c′ is a small enough constant, we have

K ′n9(1− ρt
′+1
1 )2 < C/2

which implies that

ρt
′+1
1 ≤ ρt

′
1 −

C

2
(1− ρt

′
1 )

2

We are now ready to present the proof of the main Lemma of this section.

Proof [Proof of Lemma 31] Initially, we have ρ0i < 1− c′/nk for all i. Let t by the first time
where ρti > 1 − c′/n for some i. Let T be the first time after t such that ρti ≤ 1 − c′/nk.

Then, by Lemma 36 we have that ρt
′+1
i ≤ ρt

′
i for all T > t′ ≥ t + 1. Hence, we have

ρt
′
i ≤ max(ρti, ρ

t+1
i ) for all t′ < T . Let us now try to upper bound ρt+1

i and ρti. First of all,
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we can write yt = Axti + rt, where rt is independent of xti. Let v2 be the variance of rt.
Then, by definition

ρti =
A√

A2 + v2
=

1√
1 + (v/A)2

We have that A = Cov(yt, xti) ≤
∑

i λ
t
i ≤ n. As for v2, we can show Vardis: add proof here

that

v2 ≥ 1

1 +
∑ (ρt−1

i )2

1−(ρt−1
i )2

Now, we know that 1− (ρt−1
i )2 > 1− c′/nk for all i by definition. Hence,

v2 ≥ C

n2k+1

Hence,

ρti ≤
1√

1 + C/n2k+3
≤ 1− C ′

n2k+3

Using this bound, in a completely similar fashion we get that

ρt+1
i ≤ 1− C ′′

n4k+9

Hence, we have that ρt
′
i ≤ 1−C/n4k+9 for all t′ < T . Now, let’s examine what happens after

time T . We proved in Lemma 37 that |ρTj − ρ∗i ρ
∗
j | ≤ Cn2(1− ρT−1

i ) ≤ C/nk−2 for all j ̸= i.

Hence, for k ≥ 2 and small enough constant q ∈ (0, 1) we have that ρTj ≤ ρ∗i ρ
∗
j+q ≤ 1−c′/nk

for j ̸= i. We already know that ρTi ≤ 1 − c′/nk by definition of T . Hence, at the T -th
iteration all correlations will remain bounded away from 0. We can then consider the first
time after T such that some correlation becomes bigger than 1−c′/nk and the same bounds
that we already established apply again and so on. Hence, we conclude that for all i, t,
ρti ≤ 1− C ′′/n4k+9.

B.3. No correlation is close to 0

In this Section, we prove a lower bound for all the correlations at any iteration of the
algorithm. We will prove the following Lemma.

Lemma 38 Suppose ∥ρ0 − ρ∗∥∞ ≤ M . Then, there exists a constant c = c(M,ρ∗) such
that for all t and for all i ∈ [n] ρi > c/nk+2 for k ≥ 4.

Remark 39 The proof is assumes that the executed dynamics are according to the popula-
tion EM. The extension to the sample EM is straightforward.

Proof We start by restating Lemma 22 from the manuscript.
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Lemma 40 If ρt = 0 then ρt+1 = 0. Further, there exists C > 0 such that for all
i, j, k ∈ {1, . . . , n} and all ρ ∈ [0, 1/2]n,

dρt+1
i

dρtj

∣∣∣∣
0

=

{
1 i = j

ρ∗i ρ
∗
j i ̸= j

; −C ≤
d2ρt+1

i

dρtjdρ
t
k

∣∣∣∣
ρ

≤ C.

Using Lemma 40 and Taylor’s Theorem, we get that for all i

ρt+1
i ≥ ρti +

∑
j ̸=i

ρjρ
∗
i ρ

∗
j −

∑
j,k

C

2
ρtjρ

t
k. (28)

We now prove that during all iterations t and for all i ̸= j, we have ρti ≥ c(n)ρtj , for some
constant c(n) that is independent of the iteration t. For t = 0, we can find some constant
c independent of n such that this is satisfied (because we initially start at a constant
distance from the optimum). Now, suppose t > 1. Suppose without loss of generality that
ρt−1
1 ≥ ρt−1

i for all i ̸= 1. Let us fix i ̸= j. By the update rule, we have that

ρti ≥
λt−1
1 ρ∗i ρ

∗
1√

1 + 2n2
≥ ρ∗i ρ

∗
1

n
√
3
λt−1
1

On the other hand, we have that

ρtj ≤
∑
k

λt−1
k ≤ nλt−1

1

since λt−1
1 ≥ λt−1

k for all k ̸= 1. Thus, we conclude that

ρti ≥
ρ∗i ρ

∗
1

n2
√
3
ρtj ≥

K

n2
ρtj

so we set c(n) := K/n2, where K is some constant that depends on the lower bound on ρ∗

(it is lower bounded by assumption).
Now that we have proven this claim, we can use inequality(28). Suppose w.l.o.g. that

1 = argmaxi ρ
t
i. Then

ρt+1
i ≥ ρti +

∑
j ̸=i

ρjρ
∗
i ρ

∗
j −

∑
j,k

C

2
ρtjρ

t
k ≥ ρti + n

K

n2
ρt1 − Cn2(ρt1)

2 = ρti +
K

n
ρt1 − Cn2(ρt1)

2

Suppose ρt1 < c/nk, where k will be determined later. Then,

ρt+1
i ≥ ρti + ρt1(K/n− Cn2/nk) > ρti

if k − 2 ≥ 2 and c is small enough. Now suppose ρt1 ≥ c/nk. Then, we have already proved
that

ρt+1
i ≥ K

n
λt
1

Now, we have

λt
1 =

ρt1

1 +
∑

j ̸=1

(ρtj)
2(1−(ρt1)

2)

1−(ρtj)
2

≥ ρt1
n+ 1
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since 1− (ρt1)
2 ≤ 1− (ρtj)

2 for all j ̸= 1. It follows that

ρt+1
i ≥ cK

nk+2

Hence, if the maximum exceeds the threshold, all correlations are lower bounded, otherwise
they do not decrease. We conclude that for all iterations t and all i the required bound
holds.

Appendix C. Proof of Theorem 12: finite sample and finite iterate

C.1. The finite iterate

To describe the EM update, we have the following analogue of Lemma 1 for the sample EM:

Lemma 41 Denote by µ̂x the uniform distribution over the m samples. Let µt,′ denote
the joint distribution over x1 · · ·xn, y such that

Pr
µt,′

[x1, · · · , xn, y] = Pr
µ̂x

[x1, · · · , xn] Pr
µt
[y | x1, . . . , xn].

Then, for any i, we have that

E
µt+1

[xiy] = E
µt,′

[xiy], Varµt,′ [xi] = Varµt+1 [xi], Varµt,′ [y] = Varµt+1 [y] .

The proof follows the same lines as the proof of Lemma 1, where the only difference is that
here we are considering the sample-EM. As a consequence, we have the following analogue
of Lemma 2:

Lemma 42 For any i, denote

σ̂i =

√√√√ 1

m

m∑
k=1

(
x
(k)
i

)2
For any i ̸= j, denote

α̂ij =
1

σ̂iσ̂j

1

m

m∑
k=1

x
(k)
i x

(k)
j .

Denote by ∆t
ij = α̂ij − ρiρj. Then, for any t > 0 and any i:

σt
i = σ̂i,

E
µt+1

[xiy] = σt
iσ

t
y

λt
i +
∑
j ̸=i

α̂ijλ
t
j

 = σt
iσ

t
y

ρti +
∑
j ̸=i

∆t
ijλ

t
j

 ,

E
µt+1

[y2] = (σt+1
y )2 = (σt

y)
2

 n∑
i=1

(λt
i)
2 +

∑
i ̸=j∈{1,...,n}

λt
iλ

t
jα̂ij

 = (σt
y)

2

1 +
∑
j ̸=k

∆t
ijλ

t
jλ

t
k


ρt+1
i =

λt
i +
∑

j ̸=i λ
t
jα̂ij√∑n

i=1(λ
t
i)
2 +

∑
i ̸=j∈{1,...,n} λ

t
iλ

t
jα̂ij

=
ρti +

∑
j ̸=i∆ijλ

t
j√

1 +
∑

j ̸=k ∆ijλt
jλ

t
k

. (29)
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Proof The proof is similar to the proof of Lemma 2. First, σ̂i = σt
i follows directly from

Lemma 1. Next, Using Lemma 41 and Claim 1, we derive that

E
µt+1

[xiy] = E
µt,′

[xiy] = E
µ̂xo

[
E

µt
y|x

[xiy]

]
= E

µ̂x

[
xi E

µt
y|x

[y]

]
= E

µ̂x

xi n∑
j=1

σt
y

σt
j

λt
jxj


=

n∑
j=1

σt
y

σt
j

λt
j E
µ̂x

[xixj ] = σt
yσ

t
iλ

t
i +
∑
j ̸=i

σt
yσ

t
iλ

t
jα̂ij = σt

yσ
t
i

λt
i +
∑
j ̸=i

λt
jα̂ij

 .

This concludes the first expression for Eµt+1 [xiy]. The second equality is derived similarly
to the proof of Lemma 2. Next, we compute the variance for y, again, using Lemma 41 and
Claim 1:

E
µt+1

[y2] = E
µt,′

[y2] = E
µ̂x

[
E

µt
y|x

[y2]

]
= E

µ̂x

 n∑
j=1

σt
y

σt
j

λt
jxj

2
=

n∑
i=1

n∑
j=1

σt
y

σt
i

λt
i

σt
y

σt
j

λt
j E
µ̂x

[xixj ] = (σt
y)

2

 n∑
i=1

(λt
i)
2 +

∑
i ̸=j∈{1,...,n}

λt
iλ

t
jα̂ij

 .

This derives the first expression for the variance of y. The second expression is derived
similarly to its analogue in Lemma 2.

Lastly, the expression of ρt+1
i is derived, by definition of ρi,

ρt+1
i =

Eµt+1 [xiy]√
Varµt+1 [xi] Varµt+1 [y]

,

and by substituting the expressions for the covariance of xi and y, the variance of y, and
using that Varµt+1 [xi] = σ̂2

i .

From Lemma 42, it follows that the convergence rate of the EM is not affected by the
variance of the nodes. In particular, the correlation parameters ρti are independent of these.
Therefore, we will assume for simplicity that σ∗

i = 1 for all i.

C.2. A deterministic assumption

Note that our theorem holds with high probability. To remove the probabilistic part, we
assume a deterministic assumption on the sample, that will hold with high probability.
First, we present a definition:

Definition 43 Let η > 0. We say that a sample x(1), . . . , x(m) is η-representative of µ∗
x if

the following hold:

• For all i = 1, . . . , n,

1− η ≤

√√√√ 1

m

m∑
k=1

(
x
(k)
i

)2
≤ 1 + η.

(recall that we assumed that the variance of each coordinate of µ∗
x is 1).
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• For all i ̸= j ∈ {1, . . . , n}:

ρ∗i ρ
∗
j − η ≤ 1

m

m∑
k=1

x
(k)
i x

(k)
j ≤ ρ∗i ρ

∗
j + η .

• For all i ̸= j,

ρ∗i ρ
∗
j − η ≤ α̂ij =

1
m

∑m
k=1 x

(k)
i x

(k)
j√

1
m

∑m
k=1

(
x
(k)
i

)2√
1
m

∑m
k=1

(
x
(k)
j

)2 ≤ ρ∗i ρ
∗
j + η .

We will assume that the sample is η-representative, where η is sufficiently small. We note
that from Chernoff-Hoeffding bound, the sample is η-representative with probability 1− δ,
if m ≥ Ω(log(n/δ)/η2).

C.3. Iterates are bounded away from 0 and 1

We start by arguing that in all iterates, the correlations ρti are always bounded away from
0 and 1, assuming finite sample: (proof is in Section B)

Lemma 44 Let α, β > 0 and assume that ρ0i , ρ
∗
i ≥ α for all i while ρ0i , ρ

∗
i ≤ 1 − β for all

β. Then, there exist constants, C(α, β) C1(α, β) and C2(α, β), that depend only on α and
β and a universal constant C ′ such that for all t ≥ 0 and all i,

C1(α, β)

n12
≤ ρti ≤ 1− C2(α, β)

n29
,

assuming that η ≤ C(α, β)/nC′
.

Next, we would use the fact that the iterates are always bounded away from 0 and 1 for
the remainder of the proof. For that purpose, we have the following definition:

Definition 45 We say that the iterates of the EM are (A,B)-bounded if A ≤ ρ∗i ≤ 1 − B
and A ≤ ρti ≤ 1−B for all i and t ≥ 0.

C.4. Sample-EM is close to the population EM

Next, we will argue that one iterate of the sample EM close to one iterate of the population
EM, if the sample is η-representative.

Lemma 46 Assume that the sample is η-representative, for some η > 0. Fix values of
ρt1, . . . , ρ

t
n and let ρt+1

1 , . . . , ρt+1
n denote the value of the next iterate according to the finite-

sample update of Lemma 42. Similarly, denote by ρ̃t+1
1 , . . . , ρ̃t+1

n the result of applying the
population EM update, as described in Lemma 2. Assume that the iterates of the EM are
(A,B)-bounded, that A ≤ 1/n for some A > 0 and assume that η ≤ A2/2. Then,

∣∣ρt+1
i − ρ̃t+1

i

∣∣ ≤ η

(
4
√
8n3

A3
+

√
8n

A

)
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Proof Fix i ∈ {1, . . . , n}. Let us denote the numerator and the denominator, for both the
expressions for ρt+1

i and ρ̃t+1
i , as follows:

X = λt
i +
∑
j ̸=i

λt
jα̂ij , X ′ = λt

i +
∑
j ̸=i

λt
jρ

∗
i ρ

∗
j

and

Y =

n∑
i=1

(λt
i)
2 +

∑
i ̸=j∈{1,...,n}

λt
iλ

t
jα̂ij , Y ′ =

n∑
i=1

(λt
i)
2 +

∑
i ̸=j∈{1,...,n}

λt
iλ

t
jρ

∗
i ρ

∗
j .

Then, the quantity that we wish to bound is:∣∣∣∣ X√Y − X ′
√
Y ′

∣∣∣∣ = ∣∣∣∣ X√Y − X√
Y ′

+
X√
Y ′
− X ′
√
Y ′

∣∣∣∣ ≤ |X| ∣∣∣∣ 1√
Y
− 1√

Y ′

∣∣∣∣+ 1√
Y ′

∣∣X −X ′∣∣
=

X
∣∣∣√Y −√Y ′

∣∣∣
√
Y Y ′

+
1√
Y ′

∣∣X −X ′∣∣ = X |Y − Y ′|
√
Y Y ′

∣∣∣√Y +
√
Y ′
∣∣∣ + 1√

Y ′

∣∣X −X ′∣∣ .

(30)
Our goal is to upper bound X, lower bound Y and Y ′, and upper bound |X − X ′| and
|Y − Y ′|, as computed below. First, notice that

|X −X ′| =

∣∣∣∣∣∣
λt

i +
∑
j ̸=i

λt
jα̂ij

−
λt

i +
∑
j ̸=i

λt
jρ

∗
i ρ

∗
j

∣∣∣∣∣∣ ≤
∑
j ̸=i

λt
j |α̂ij − ρ∗i ρ

∗
j | ≤ η

n∑
j=1

λt
j , (31)

where the last inequality follows by assumption of this lemma that |α̂ij − ρ∗i ρ
∗
j | ≤ η. Recall

the expression for λt
i in (1), and notice that we can bound it as follows:

λt
i =

ρti/(1− (ρti)
2)

1 +
∑n

j=1(ρ
t
j)

2/(1− (ρtj)
2)
≤ ρti/(1− (ρti)

2)

1 + (ρti)
2/(1− (ρti)

2)
= ρti ≤ 1.

Then,
∑

i λi ≤ n, which implies that

|X −X ′| ≤ ηn.

Next:

|Y − Y ′| =

∣∣∣∣∣∣
∑
j ̸=i

λt
iλ

t
jα̂ij −

∑
j ̸=i

λt
iλ

t
jρ

∗
i ρ

∗
j

∣∣∣∣∣∣ ≤
∑
j ̸=i

λt
iλ

t
j |α̂ij − ρ∗i ρ

∗
j | ≤ ηn2,

using the fact that λt
i ≤ 1 and the assumption of this lemma that |α̂ij − ρ∗i ρ

∗
j | ≤ η. Further,

X = λt
i +
∑
j ̸=i

λt
jα̂ij ≤

n∑
j=1

λt
j ≤ n.

Further,

Y ′ ≥
n∑

i=1

n∑
j=1

λt
iλ

t
jρ

∗
i ρ

∗
j ≥

n∑
i=1

n∑
j=1

A2 =

(
n∑

i=1

λt
i

)2

A2,
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using the assumption that ρ∗i ≥ A for all i. Similarly, we derive that

Y ≥
n∑

i=1

n∑
j=1

λt
iλ

t
jα̂ij ≥

n∑
i=1

n∑
j=1

λt
iλ

t
jA

2/2 =

(
n∑

i=1

λt
i

)2

A2/2,

using the assumptions that ρ∗i ≥ A for all i, and that |α̂ij − ρ∗i ρ
∗
j | ≤ A2/2. It remains to

lower bound the value of
∑

i λ
t
i:

∑
i

λt
i =

∑n
i=1 ρ

t
i/(1− (ρti)

2)

1 +
∑n

i=1(ρ
t
i)
2/(1− (ρti)

2)
≥

∑n
i=1 ρ

t
i/(1− (ρti)

2)

1 +
∑n

i=1 ρ
t
i/(1− (ρti)

2)
≥

∑n
i=1 ρ

t
i

1 +
∑n

i=1 ρ
t
i

≥ nA

1 + nA
,

where, for the last two inequalities, we used the fact that if a ≥ a′ > 0 and b ≥ 0 then
a/(a+ b) ≥ a′/(a′+ b). We will further use the assumption that A ≥ 1/n to derive that the
right hand side is lower bounded by 1/2. We derive that

Y, Y ′ ≥ A2/8.

Substituting our estimates from (30), we derive that, for some universal constant C > 0,∣∣∣∣ X√Y − X ′
√
Y ′

∣∣∣∣ ≤ n · ηn2

A2/8 · 2(A/
√
8)

+
1

A/
√
8
ηn = η

(
4
√
8n3

A3
+

√
8n

A

)
.

C.5. KL is comparable to the parameter ℓ2 distance

In our argument, we will prove that in each iteration, the KL divergence between the iterate
and the true distribution shrinks by a constant factor. In order to argue about that, we
would like to claim that the KL divergence between two models is comparable to the ℓ2
distance between their correlation parameters ρi, provided that those are bounded away
from 0 and 1:

Lemma 47 Assume that the iterates of the EM are (A,B)-bounded. Then, for some
universal constant C > 0 and for all t ≥ 0,

(n/AB)−C∥ρt − ρ∗∥2 ≤ KL(µ∗
x∥µt

x) ≤ (n/(AB))C∥ρt − ρ∗∥2.

In the sections below we will prove statements that are slightly more general (which will
also be used further in the proof).

C.5.1. Upper bounding the KL

We start by proving the following lemma:
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Lemma 48 Assume that ρ∗i , ρ
t
i ≤ 1−B for all i and some B > 0. Then,∣∣∣∣dKL(µ∗
x∥µt

x)

dρti

∣∣∣∣ ≤ poly(n, 1/B) · ∥ρt − ρ∗∥2.

Consequently, for ρ and ρ′,∣∣∣KL(µ∗
x∥µρ

x)−KL(µ∗
x∥µρ′

x )
∣∣∣ ≤ poly(n, 1/B)max(∥ρ′ − ρ∗∥, ∥ρ− ρ∗∥)∥ρ′ − ρ∥.

Lastly,
KL(µ∗

x∥µt
x) ≤ poly(n, 1/B) · ∥ρt − ρ∗∥22.

Proof We start by proving the first inequality. We use a few folklore equations: first, we
define for any real-valued function f of a matrix A by df(A)/dA the matrix whose ij-entry
is the derivative of f(A) as a function of Aij . The first folklore equation is:

d log det(A)

dA
= (A−1)⊤. (32)

For the second equation, assume that A is a function of some parameter λ. Then,

dA−1

dλ
= −A−1dA

dλ
A−1,

where dA/dλ is a matrix whose ij entry is the derivative of Aij as a function λ. Further:

df(A)

dλ
= trace

((
df(A)

dA

)⊤ dA

dλ

)
. (33)

Lastly, if A ∈ Rn×n is symmetric and ∥A∥ is the operator norm of A then

trace(A) ≤ n∥A∥. (34)

Indeed, this is true because trace(A) is the sum of its singular values of A while ∥A∥ is the
largest singular value in absolute value.

Let us continue by analyzing the KL divergence. We note that the KL divergence
between two mean-zero Gaussian vectors and covariances Σ1 and Σ2, is

KL(Σ1∥Σ2) =
1

2

(
− log

det((Σ2)
−1)

det((Σ1)−1)
− n+ trace((Σ2)

−1Σ1)

)
.

Applying this on the covariances Σ∗ and Σt that correspond to ρ∗ and ρt, we get that

KL(µ∗
x∥µt

x) =
1

2

(
− log

det((Σt)−1)

det((Σ∗)−1)
− n+ trace((Σt)−1Σ∗)

)
.

Let us first compute the first derivative as a function of ρti. By (33), we have that

dKL(µ∗
x∥µt

x)

dρti
= trace

((
dKL(µ∗

x∥µt
x)

d(Σt)−1

)⊤
d(Σt)−1

dρti

)
. (35)
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Let us expand on the first term. By (32),

dKL(µ∗
x∥µt

x)

d(Σt)−1
=

1

2

d

d(Σt)−1

(
− log det((Σt)−1) + trace((Σt)−1Σ∗)

)
=

1

2

(
−(Σt)⊤ +Σ∗

)
=

1

2

(
Σ∗ − Σt

)
.

Note that the derivative at ρ∗ = ρt equals 0, which implies that

dKL(µ∗
x∥µt

x)

dρti

∣∣∣∣
ρt=ρ∗

= 0. (36)

By (35), for a general ρt, we have that

dKL(µ∗
x∥µt

x)

dρti
=

1

2
trace

(
(Σ∗ − Σt)⊤

d(Σt)−1

dρti

)
=

1

2
trace

(
(Σ∗ − Σt)

d(Σt)−1

dρti

)
.

Let us differentiate this again. We have that

d2KL(µ∗
x∥µt

x)

dρtidρ
t
j

=
d

dρtj

1

2
trace

(
(Σ∗ − Σt)

d(Σt)−1

dρti

)
=

1

2
trace

(
−dΣt

dρtj

d(Σt)−1

dρti
+ (Σ∗ − Σt)

d2(Σt)−1

dρtidρ
t
j

)
.

In order to bound the left hand side above, we use (34), to obtain that

trace

(
−dΣt

dρtj

d(Σt)−1

dρti
+ (Σ∗ − Σt)

d2(Σt)−1

dρtidρ
t
j

)
≤ n

∥∥∥∥∥−dΣt

dρtj

d(Σt)−1

dρti
+ (Σ∗ − Σt)

d2(Σt)−1

dρtidρ
t
j

∥∥∥∥∥
≤

∥∥∥∥∥dΣt

dρtj

∥∥∥∥∥
∥∥∥∥d(Σt)−1

dρti

∥∥∥∥+ ∥∥(Σ∗ − Σt)
∥∥∥∥∥∥∥d2(Σt)−1

dρtidρ
t
j

∥∥∥∥∥
We note that each of the components above is bounded by poly(n, 1/B), using the formulas
for Σt and (Σt)−1 that appear in (19) and (20). To conclude the first part of this lemma,
we use the fact that the derivative equals 0 at ρt = ρ∗ as shown in (36), and we integrate
the second derivative along the path ρ(τ) = (1 − τ)ρ∗ + τρt. Define µτ

x the distribution
obtained with correlations ρ(τ), then∣∣∣∣dKL(µ∗

x∥µt
x)

dρti

∣∣∣∣ = ∣∣∣∣dKL(µ∗
x∥µt

x)

dρti
− dKL(µ∗

x∥µ∗
x)

dρti

∣∣∣∣ = ∣∣∣∣∫ 1

0

d

dτ

dKL(µ∗
x∥µτ

x)

dρti
dτ

∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0

n∑
j=1

dKL(µ∗
x∥µτ

x)

dρtidρ
t
j

dρ(τ)j
dτ

dτ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ 1

0

n∑
j=1

dKL(µ∗
x∥µτ

x)

dρtidρ
t
j

(ρt − ρ∗)dτ

∣∣∣∣∣∣
≤
∫ 1

0

n∑
j=1

∣∣∣∣∣dKL(µ∗
x∥µτ

x)

dρtidρ
t
j

∣∣∣∣∣ ∣∣ρt − ρ∗
∣∣ dτ ≤ ∫ 1

0

n∑
j=1

poly(n, 1/B)
∣∣ρt − ρ∗

∣∣ dτ
≤ poly(n, 1/B)∥ρt − ρ∗∥1 ≤

√
n poly(n, 1/B)∥ρt − ρ∗∥2.

This concludes the first part of the lemma. The second part of this lemma is bounded
similarly, by integrating, now over the first derivative: define by ρ(τ) = (1 − τ)ρ + τρ′.
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Then,∣∣∣KL(µ∗
x∥µρ

x)−KL(µ∗
x∥µρ′

x )
∣∣∣ = ∣∣∣∣∣

∫ 1

0

dKL(µ∗
x∥µ

ρ(τ)
x )

dτ
dτ

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

n∑
i=1

dKL(µ∗
x∥µ

ρ(τ)
x )

dρ(τ)i

dρ(τ)i
dτ

dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

n∑
i=1

dKL(µ∗
x∥µ

ρ(τ)
x )

dρ(τ)i
(ρ′i − ρi)dτ

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

n∑
i=1

dKL(µ∗
x∥µ

ρ(τ)
x )

dρ(τ)i
(ρ′i − ρi)dτ

∣∣∣∣∣
≤
∫ 1

0

n∑
i=1

∣∣∣∣∣dKL(µ∗
x∥µ

ρ(τ)
x )

dρ(τ)i

∣∣∣∣∣ |ρ′i − ρi|dτ ≤
∫ 1

0

n∑
i=1

poly(n, 1/B)∥ρ(τ)− ρ∗∥2|ρ′i − ρi|dτ

≤ poly(n, 1/B)max
τ
∥ρ(τ)− ρ∗∥2∥ρ′i − ρi∥1

≤
√
n poly(n, 1/B)max(∥ρ− ρ∗∥2, ∥ρ′ − ρ∗∥)∥ρ′i − ρi∥2 .

The last part of this lemma is obtained from the second part by substituting ρ′ = ρ∗.

C.5.2. KL upper bounds bounds the parameter difference

Lemma 49 Let µ and µ′ be two distribution. Assume that Varµ[y] = 1 and further that
Varµ[xi] = Varµ′ [xi] = 1. Then,

KL(µ′∥µ) ≥ max
i

(Eµ[xiy]− Eµ′ [xiy])
2

2
.

We would like to lower bound KL(µ′∥µ) by (Eµ[xiy]− Eµ′ [xiy])
2. Notice that by the data-

processing inequality and by the chain rule for KL divergence,

KL(µ′∥µ) ≥ KL(µ′
xiy∥µxiy) = KL(µ′

xi
∥µxi)+ E

xi∼µt+1
xi

[KL(µ′
y|xi
∥µy|xi

)] = E
xi∼µt+1

xi

[KL(µ′
y|xi
∥µy|xi

)].

(37)
We would like to compute the conditional distribution of y given xi, for both µ and µ′. We
use the following formula for conditional Gaussians:

Lemma 50 Let Z and W be jointly distributed Gaussian variables. Then,

E[W | Z] = EW + E[ZW ] Var[Z]−1Z,

and
Var[W | Z] = Var[W ]− E[WZ]2Var[Z]−1.

Using the formula of Lemma 50,

E[y | xi] = E[y] + E[xiy] Var[xi]−1xi,

while
Var[y | xi] = Var[y]− E[xiy]2/Var[xi].

Computing some values for µ and µ′, we get that

E
µ
[y | xi] = E

µ
[xiy]xi ; E

µ′
[y | xi] = E

µ′
[xiy]xi; Varµ[y | xi] = 1− E

µ
[xiy]

2 ≤ 1.

We use the formula for the KL of two univariate Gaussians:
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Lemma 51 For two univariate Gaussians X1, X2 with means µ1, µ2 and covariances
σ2
1, σ

2
2, respectively,

KL(X1∥X2) = log
σ2
σ1

+
σ2
1

2σ2
2

− 1

2
+

(µ1 − µ2)
2

2σ2
2

≥ (µ1 − µ2)
2

2σ2
2

Proof The first equality is folklore and follows from a direct calculation. To get the in-

equality, notice that log σ2
σ1

+
σ2
1

2σ2
2
− 1

2 is the KL of two Gaussians with variances σ1 and σ2

and the same means, hence it is nonnegative.

we have that

KL(µ′
y|xi
∥µy|xi

) ≥
(Eµ′ [y | xi]− Eµt [y | xi])2

2Varµt [y | xi]
≥

x2i (Eµ′ [xiy]− Eµ[xiy])
2

2
.

Substituting this in the right hand side of (37) and using the fact that Eµ′ [x2i ] = 1, we get
the desired result.

C.5.3. Another upper bound on the KL

Lemma 52 Let µx and µ′
x be two leaf distributions with parameters ρ and ρ′, respectively,

which are (A,B)-bounded, namely, for all i, A ≤ ρi, ρ
′
i ≤ 1 − B. Assume further that

Varµ[xi] = Varµ′ [xi] = 1 for all i. Then,

KL(µ′
x∥µx) ≥ cA4max

i
|ρi − ρ′i|,

where c > 0 is a universal constant.

Below, we prove Lemma 52. We note that there exist i, j such that |ρiρj−ρ′iρ
′
j | is large.

Indeed, let i be the maximizer of |ρi − ρ′i|. For the purpose of lower bounding |ρiρj − ρ′iρ
′
j |,

we can assume that ρi > ρ′i. Denote, let λ = ρi/ρ
′
i. Denote M = maxj |ρj−ρ′j |. Notice that

λ− 1 = (ρi − ρ′i)/ρ
′
i ≥ ρi − ρ′i = max

l
|ρl − ρ′l| = M.

Then, divide into cases:

• If there exist two different values, j, k, such that ρj/ρ
′
j , ρk/ρ

′
k ≤

√
1/λ. Then,

ρ′jρ
′
k

ρjρk
≥ λ,

hence

ρ′jρ
′
k − ρjρk =

ρ′jρ
′
k − ρjρk

ρjρk
ρjρk ≥ (λ− 1)ρjρk ≥Mρjρk ≥MA2.

• Otherwise, there is some j such that ρj/ρ
′
j ≥

√
1/λ. Then,

ρiρj
ρ′iρ

′
j

≥
√
λ ≥
√
M + 1 ≥ 1 + cM,

for some universal constant c > 0. This implies that

ρiρj − ρ′iρ
′
j =

ρiρj − ρ′iρ
′
j

ρiρj
ρiρj ≥ cMρiρj ≥ cMA2.
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This derives that there exist some j, k such that |ρjρk − ρ′jρ
′
k| ≥ cA2M for some universal

constant c > 0. This implies that

|E
µ
[xjxk]− E

µ′
[xjxk]| ≥ cA2M.

From this point onwards, the proof is analogous to the proof of Lemma 49. We start by
arguing that by the data processing inequality,

KL(µ′
x∥µx) ≥ KL(µ′

xjxk
∥µxjxk

).

Then, we lower bound KL(µ′
xjxk
∥µxjxk

) using the fact that |Eµ[xjxk]− Eµ′ [xjxk]|, exactly
the same way as in Lemma 49 we lower bounded KL(µ′

xiy∥µxiy) using the fact that |Eµ[xiy]−
Eµ′ [xiy]| is large. The proof follows.

C.5.4. Proof of Lemma 47

The proof follows directly from Lemma 48 and Lemma 52 that were proven in the previous
subsections.

C.6. Contraction in KL - population EM

In this section, we prove that the KL between the true and the current model contracts
by a constant factor in each iteration, for the populatoin EM. Later, we will show how to
derive the same results for the sample-EM as well.

Proposition 53 Let ρt denote iterate t of the population-EM, and assume that the iterates
are (A,B)-bounded. Then,

KL(µ∗
x∥µt+1

x ) ≤ (1− κ)KL(µ∗
x∥µt

x),

where κ = AC1BC2/nC3 for some universal constants C1, C2, C3 > 0.

We describe the proof of Proposition 53, in the subsections below.

C.6.1. First bound on the KL difference

We will prove the following lemma:

Lemma 54

KL(µ∗
x∥µt

x)−KL(µ∗
x∥µt+1

x ) ≥ KL(µt+1∥µt)

First of all, we use the following well-known behavior of the EM:

Lemma 55 (Folklore.)

KL(µ∗
x∥µt

x)−KL(µ∗
x∥µt+1

x ) ≥ E
x,y∼µt,∗

[log Pr
µt+1

[(x, y)]]− E
x,y∼µt,∗

[log Pr
µt
[(x, y)]] . (38)
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Yuval: Prove if we have time
Proof [Proof of Lemma 54] We conclude Lemma 54 by analyzing the right hand side of
(38). Notice that by Lemma 1,

E
x,y∼µt,∗

[log Pr
µt+1

[(x, y)]] = E
x,y∼µt,∗

[
log Pr

µt+1
[y] +

∑
i

log Pr
µt+1

[xi | y]

]

= E
x,y∼µt+1

[
log Pr

µt+1
[y] +

∑
i

log Pr
µt+1

[xi | y]

]
= E

x,y∼µt+1
[log Pr

µt+1
[(x, y)]] .

Similarly,
E

x,y∼µt,∗
[log Pr

µt
[(x, y)]] = E

x,y∼µt+1
[log Pr

µt
[(x, y)]] .

Hence, the right hand side of (38) equals

E
x,y∼µt+1

[log Pr
µt+1

[(x, y)]− log Pr
µt
[(x, y)]] = KL(µt+1∥µt),

as required.

C.6.2. Bounding the KL by the covariance difference

We apply Lemma 49 with µ = µt amd µ′ = µt+1. Note that this lemma requires that
Varµt [y] = 1. Indeed, for the purpose of proving Proposition 53, we can assume that, since
this proposition only argues about the x-marginal, and since the correlation parameters ρt

and ρt+1 are not affected by Varµt [y]. Then, Lemma 49, in combination with Lemma 54,
imply that

KL(µ∗
x∥µt

x)−KL(µ∗
x∥µt+1

x ) ≥ KL(µt+1∥µt) ≥ max
i

(
Eµt [xiy]− Eµt+1 [xiy]

)2
2

. (39)

C.6.3. Minimal eigenvalue bound

We would like to lower bound the right hand side of (39). To do so, we start with an
auxiliary lemma, bounding the minimal eigenvalue of some matrix.

Lemma 56 Let U be a matrix with Uij = uj if i ̸= j and
∑

k ̸=i uk otherwise, where ui > 0
for all i. Then,

σmin(U) := max
a : ∥a∥2=1

∥Ua∥2 ≥
(mini ui)

3

∥u∥2∥u∥1
· (n− 2)3

128n3
.

Our goal is to show that the minimal singular value of this matrix is bounded away from
0. In particular, denote Ua = K for some unit vector a = (a1, . . . , an) andK = (K1, . . . ,Kn)
and our goal is to lower bound ∥K∥. The proof has multiple ingredients. First, we denote
by s =

∑
i ui and t =

∑
i aiui. We have that

Ki = ai
∑
j ̸=i

uj +
∑
j ̸=i

ajuj = t+ ai(s− 2ui),
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hence
t+ ai(s− 2ui)−Ki = 0, (40)

In particular, we have for all i ̸= j

ai(s− 2ui)−Ki = aj(s− 2uj)−Kj .

Let us assume that u1 ≥ u2 ≥ · · · ≥ un ≥.

If |s− 2u1| is small.

Lemma 57 Assume that |s− 2u1| ≤ (n− 2)un/(8n). Then, maxi |Ki| ≥ (n− 2)un/(16n).

Proof Denote ϵ = |s− 2u1| and let us lower bound ∥K∥. Then, we have for all i,

ai(s− 2ui)−Ki = a1ϵ−K1.

Hence, for all i > 1,

ai =
a1ϵ−K1 +Ki

s− 2ui
.

Denote K = maxiKi. Then,

|ai| =
∣∣∣∣a1ϵ−K1 +Ki

s− 2ui

∣∣∣∣ ≤ |ϵ|+ 2K

s− 2ui
.

Notice that s− 2ui ≥ s− u1 − u2 ≥ (n− 2)un. Then,

|ai| ≤
|ϵ|+ 2K

(n− 2)un
.

Denote the right hand side by m. Then,

|t| = |
∑
i

aiui| ≥ |a1u1| −
∑
i>1

|ai|ui ≥ |a1|u1 −m
∑
i>1

ui.

Further, recall that
∑

i a
2
i = 1 hence a21 = 1−

∑
i>1 a

2
i ≥ 1−nm hence |ai| ≥

√
1− nm ≥ 1/2

assuming that m < 1/(2n). Hence, t ≥ u1/2−m
∑

i>1 ui ≥ u1/2−mnu1 ≥ u1/4 assuming
that m < 1/(4n). We derive that

|K1| = |t+ a1(s− 2u1)| ≥ |t| − |a1||s− 2u1| ≥ |t| − |ϵ| ≥ u1/4− |ϵ|.

In particular, if |ϵ| ≤ u1/8 thenK1 ≥ u1/8. Recall that we further assumed thatm ≤ 1/(4n)
which is satisfied whenever

|ϵ| ≤ (n− 2)un
8n

and

K ≤ (n− 2)un
16n

.

We derive that if

|ϵ| ≤ (n− 2)un
8n

then

K ≥ (n− 2)un
16n

.
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t is large or Ki is large.

Lemma 58 Assume that |s− 2u1| ≥ ϵ. Then, either
∑

i |Ki| ≥ ϵ/2 or t ≥ ϵ/2n.

Proof We assume that |s− 2u1| ≥ ϵ. Then, |s− 2ui| ≥ ϵ for all i. Further, recall from (40)
that |ai(s− 2ui) + t| = |Ki|, which implies that |Ki| ≥ |ai(s− 2ui)| − |t| ≥ |ai|ϵ− t. Then,∑

i |Ki| ≥ ϵ
∑

i |ai| − nt = ϵ∥a∥1 − nt ≥ ϵ∥a∥2 − nt = ϵ− nt. In particular, either t ≥ ϵ/2n
or
∑

i |Ki| ≥ ϵ/2.

Assuming that u1 < s/2.

Lemma 59 Assume that t ̸= 0 and that s− 2u1 ≥ ϵ. Then, ∥K∥2 ≥ ϵt/∥u∥2.

Proof From (40), for all i,

ai =
Ki − t

s− 2ui
.

From definition of t,

t =
∑
i

aiui =
∑
i

uiKi − uit

s− 2ui
≤
∑
i

uiKi − uit

s− 2ui
≤
∑
i

|aiKi|
s− 2ui

≤
∑
i

|uiKi|
ϵ
≤ ∥u∥2∥K∥2

ϵ

(41)
Hence

∥K∥2 ≥ ϵt/∥u∥2.

The case that u1 > s/2.

Lemma 60 Assume that 2u1 − s ≥ ϵ and that t ̸= 0. Then,

∥K∥2 ≥
2(s− u1 − u2)ϵ|t|

∥u∥2s
.

Proof Using the first few equalities of (41) we get that

t =
∑
i

uiKi − uit

s− 2ui
.

or equivalently,

1 =
∑
i

uiKi/t− ui
s− 2ui

= −
∑
i

ui
s− 2ui

+R, where R =
∑
i

uiKi

t(s− 2ui)
.

Then, ∑
i>1

ui
s− 2ui

−R =
u1

2u1 − s
− 1 =

s− u1
2u1 − s

=
∑
i>1

ui
2u1 − s

.

hence

−R =
∑
i

ui

(
1

2u1 − s
− 1

s− 2ui

)
= 2

∑
i

ui
s− u1 − ui

(s− 2ui)(2u1 − s)
≥ 2

∑
i

ui
s− u1 − u2

s2
= 2

s− u1 − u2
s

.
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We derive that

2(s− u1 − u2)

s
≤ |R| ≤ 1

|t|

∣∣∣∣∣∑
i

uiKi

|s− 2ui|

∣∣∣∣∣ ≤ 1

|ϵt|

∣∣∣∣∣∑
i

uiKi

∣∣∣∣∣ ≤ ∥u∥2∥K∥2|ϵt|
.

In particular,

∥K∥2 ≥
2(s− u1 − u2)ϵ|t|

∥u∥2s
.

We would like to culminate the proof of the main lemma. From Lemma 57 we can
assume that |s− 2u1| ≥ (n− 2)un/8n := ϵ, otherwise

∥K∥2 ≥ max
i

Ki ≥ (n− 2)un/(16n)

and the proof follows. From Lemma 58 we can assume that |t| ≥ ϵ/2n, otherwise

∥K∥2 ≥ ∥K∥1/
√
n ≥ ϵ/(2

√
n)

and the proof follows. Lastly, from Lemma 59 and Lemma 60 we can derive that

∥K∥2 ≥
ϵ|t|
∥u∥2

min

(
1,

2(s− u1 − u2)

∥u∥2s

)
≥ ϵ|t|(n− 2)un

∥u∥2s
≥ ϵ2(n− 2)un

2n∥u∥2s
=

(n− 2)3u3n
128n3∥u∥2s

.

C.6.4. Bounding the difference in covariance

We are ready to bound the right hand side of (39). This is stated in the following lemma:

Lemma 61 Assume that the iterates of the population EM are (A,B) bounded, let t ≥ 0.
Then, (

E
µt+1

[xiy]− E
µt
[xiy]

)2

≥ c
A12(1−B)8

n11

∑
i

(ρti − ρ∗i )
2 ,

where c > 0 is a universal constant.

We note that Lemma 61 together with (39) imply that

KL(µ∗
x∥µt

x)−KL(µ∗
x∥µt+1

x ) ≥ CAC1BC2

nC3

n∑
i=1

(
ρti − ρ∗i

)2
. (42)

Below, we prove Lemma 61. In the proof below, we use a, b to denote bounds on the
iterates: a ≤ ρti ≤ 1− b for all t and i. Further, we use a∗ and b∗ to denote bounds on ρ∗i :
a∗ ≤ ρ∗i ≤ b∗. We recall that we assume σt

xi
= σt

y = 1 for all i. By Lemma 2, we derive that

E
µt+1

[xiy] = λt
i +
∑
j ̸=i

ρ∗i ρ
∗
jλ

t
j .
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We can use the same lemma to derive Eµt [xiy]: indeed, if we apply this lemma in a different
scenario where the underlying distribution is µt (i.e. substituting µ∗ = µt), then µt+1 = µt

as well. Hence, if we substitute µ∗ = µt and µt+1 = µt in this lemma we get that

E
µt
[xiy] = λt

i +
∑
j ̸=i

ρtiρ
t
jλ

t
j .

We get that

(λt
i)
2

(
E

µt+1
[xiy]− E

µt
[xiy]

)2

=

∑
j ̸=i

ρ∗i ρ
∗
jλ

t
iλ

t
j − ρtiρ

t
jλ

t
iλ

t
j

2

.

Substituting ui = λt
iρ

∗
i and vi = λt

iρ
t
i, we derive that

(λt
i)
2

(
E

µt+1
[xiy]− E

µt
[xiy]

)2

=

∑
j ̸=i

uiuj − vivj

2

.

We will prove the following lemma:

Lemma 62 If u = (u1, . . . , un), v = (v1, . . . , vn) where ui, vi > 0 for all i, then

∑
i

∑
j ̸=i

uiuj − vivj

2

≥ σmin(A)2 · ∥u− v∥22

where Aij = (ui + vi)/2 if i ̸= j and Aii =
∑

j ̸=i(ui + vi)/2.

We will first use Lemma 62 to complete the proof of Lemma 61, and then we’ll prove
Lemma 62.
Proof [Proof of Lemma 61] First,

∑
i

(ρti − ρ∗i )
2 ≤

(
min
i

λt
i

)−2∑
i

(λt
i)
2(ρti − ρ∗i )

2 =

(
min
i

λt
i

)−2∑
i

(ui − vi)
2.

Then, by Lemma 62,

∑
i

(ui − vi)
2 ≤ 1

σmin(A)2

∑
i

∑
j ̸=i

uiuj − vivj

2

=
1

σmin(A)2

∑
i

(λt
i)
2

(
E

µt+1
[xiy]− E

µt
[xiy]

)2

≤ 1

σmin(A)2

∑
i

(
E

µt+1
[xiy]− E

µt
[xiy]

)2

,

as λt
i ≤ 1. We conclude that

∑
i

(ρti − ρ∗i )
2 ≤ 1

(mini λt
i)
2σmin(A)2

∑
i

(
E

µt+1
[xiy]− E

µt
[xiy]

)2

. (43)

58



Where Does EM Converge in Latent Gaussian Tree Models?

We would like to expand on this bound. Using the expression of λt
i from (1), we derive that

λt
i =

ρti/(1− (ρti)
2)

1 +
∑n

i=1(ρ
t
j)

2/(1− (ρtj)
2)

.

From the assumption that 0 < a ≤ ρi < b ≤ 1, we derive that

ρti/(1− (ρti)
2) ≥ ρti ≥ a,

while

(ρtj)
2/(1− (ρtj)

2) ≤ 1/(1− (ρtj)
2) ≤ 1/(1− b2).

Therefore,

λt
i ≥

a

1 + n/(1− b2)
=

a(1− b2)

1− b2 + n
≥ a(1− b2)

n+ 1
. (44)

Further, we want to bound σmin(A). Using Lemma 56 applied on u← (u+ v)/2, it suffices
to estimate properties of (u+ v)/2. First of all, using the assumption a∗ ≤ ρ∗i ≤ b∗,

ui + vi
2

≥ ui
2

=
λt
iρ

∗
i

2
≥ a(1− b2)a∗

2n+ 2
.

Further, we have that
λt
i(ρ

t
i + ρ∗i )

2
≤ 1,

which implies that

∥(u+ v)/2∥1 ≤ n, ∥(u+ v)/2∥2 ≤
√
n .

Using Lemma 56, the minimal eigenvalue of A is at least

(mini(ui + vi)/2)
3

∥(u+ v)/2∥2∥(u+ v)/2∥1
· (n− 2)3

128n3
≥ a3(1− b2)3(a∗)2

(2n+ 2)3n3/2
· (n− 2)3

128n3
≥ c

a3(1− b)3(a∗)2

n9/2
,

where c > 0 is some universal constant. Substituting this and the lower bound on λt
i

(Eq. (44)), in (43), we derive that(
E

µt+1
[xiy]− E

µt
[xiy]

)2

≥ c′
a8(1− b)8(a∗)4

n11

∑
i

(ρti − ρ∗i )
2

where c′ > 0 is a universal constant.

Now we will prove Lemma 62. Define for i = 1, . . . , n functions pi(w) =
∑

j ̸=iwiwj

where w = (w1, . . . , wn). Let p(w) = (p1(w), . . . , pn(w)), then we want to show that ∥p(u)−
p(v)∥2 ≥ C · ∥u− v∥2. We use the following simple observation:

Lemma 63 Let p(x) be a second-degree polynomial of one variable x and let p′(x) denote
its derivative. Then, for any s, t ∈ R,

p(s)− p(t) = p′((s+ t)/2)(s− t).
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Proof Let p(x) = ax2 + bx+ c. Then, p′(x) = 2ax+ b. Then,

p(s)− p(t) = a(s2 − t2) + b(s− t)

while

p′((s+ t)/2)(s− t) = (a(s+ t) + b)(s− t) = as2 − at2 + b(s− t) = p(s)− p(t).

We use the following corollary:

Lemma 64 Let p : Rn → Rn be a system of second-degree polynomials, namely, p(x) =
(p1(x), . . . , pn(x)) where each pi is a second degree polynomial. Then,

p(s)− p(t) = Jp|(s+t)/2(s− t), (45)

where Jp|x is the Jacobian matrix of p evaluated at x, namely,

(
Jp|x

)
ij
=

dpi(x)

dxj
.

Consequently,

∥p(s)− p(t)∥ ≥ σmin(J
p|x)∥s− t∥, (46)

where σmin(A) is the minimal singular value of a matrix A.

Proof To show the first part, look at the path γ(λ) = λt+ (1− λ)s. Then, γ(1) = t while
γ(0) = s. Applying Lemma 63 on the polynomials pi(γ(λ)) while substituting s = 0 and
t = 1, one obtains (45). Then, (46) follows from taking the norm in both sides of the above
equality, and using the fact that for a matrix A and a vector v, ∥Av∥ ≥ σmin(A)∥v∥.

To complete the proof of Lemma 62, notice that the matrix A in this lemma is the
Jacobian of p evaluated at (u+ v)/2.

C.6.5. Bounding the parameter difference by the KL: conclusion of
Proposition 53

To conclude Proposition 53, we would like to bound the right hand side of (42). Recall that
this right hand side contains the term ∥ρt − ρ∗∥22. By Lemma 48, this is lower bounded by

BC1

nC2
KL(µ∗

x∥µt
x).

In combination with (42), this concludes the proof of Proposition 53.
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C.7. Contraction for the sample EM

While we have proven in Proposition 53 that the sample-EM contracts, we now prove that
the population EM contracts as well:

Lemma 65 Let µt denote the t’th iterate of the sample EM, and assume that the sample

is η-representative. Assume that η ≤ min
(
1,
√
KL(µ∗

x∥µt
x)
)
(AB/n)C for some sufficiently

large universal constant C > 0. Then,

KL(µ∗
x∥µt+1

x ) ≤ (1− κ′)KL(µ∗
x∥µt

x),

where κ ≥ (AB/n)C
′
for some universal constant C ′ > 0.

Proof Below, we prove Lemma 65. To argue about that, we would use the Lemma 46
which argues that the sample step is close to the population step, in parameter distance,
and further, we will use Lemma 48 to argue that this implies that the KL distance after
one population step is close to that after one sample step. To be more concrete, let ρt

denote the t’th iterate of the sample EM, let ρ̃t+1 denote the result of applying one step
of the population EM on ρt and let ρt+1 denote iterate t + 1 of the sample EM, namely,
ρt+1 is obtained from ρt via one iterate of the sample EM. Let µ̃t+1

x and µt+1
x denote the

corresponding distributions. Then, from Lemma 46, we obtain that for all i,

|ρ̃t+1 − ρt+1| ≤ η poly(1/A, 1/B, n).

By Lemma 48 this implies that∣∣KL(µ∗
x∥µt+1

x )−KL(µ∗
x∥µ̃t+1

x )
∣∣

≤ poly(n, 1/A, 1/B)∥ρt − ρt+1∥max
(
∥ρt+1 − ρ∗∥, ∥ρ̃t+1 − ρ∗∥

)
≤ poly(n, 1/A, 1/B)ηmax

(
∥ρt+1 − ρ∗∥, ∥ρ̃t+1 − ρ∗∥

)
≤ poly(n, 1/A, 1/B)ηmax

(
∥ρt − ρ∗∥+ ∥ρt − ρt+1∥, ∥ρ̃t+1 − ρ∗∥

)
= poly(n, 1/A, 1/B)η

(
∥ρt − ρ∗∥+ ∥ρt − ρt+1∥

)
≤ poly(n, 1/A, 1/B)η

(
∥ρt − ρ∗∥+ poly(n, 1/A, 1/B)η

)
.

By Lemma 47, the right hand side is at least

poly(n, 1/A, 1/B)η
(√

KL(µ∗
x∥µt

x) + η
)

By the assumption of Lemma 65 on η, this is at least

2 poly(n, 1/A, 1/B)η
√

KL(µ∗
x∥µt

x).

Again, by the assumption on this lemma on η, if the constant C in this assumption is
sufficiently large, then the last term is bounded by

KL(µ∗
x∥µt

x)(AB/n)C1 ,

where C1 can be chosen arbitrarily large (if C is). Combining with Proposition 53, this
concludes the proof: indeed, let κ be the constant from the proposition. Then,

KL(µ∗
x∥µt+1

x ) ≤ KL(µ∗
x∥µ̃t+1

x )+
∣∣KL(µ∗

x∥µt+1
x )−KL(µ∗

x∥µ̃t+1
x )

∣∣ ≤ (1−κ)KL(µ∗
x∥µt

x)+KL(µ∗
x∥µt

x)(AB/n)C1 .
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Recall that κ = (AB/n)C2 for some universal constant C2. Since we can select C1 to be
arbitrarily large, we can ensure that (AB/n)C1 ≤ κ/2. This implies that

KL(µ∗
x∥µt+1

x ) ≤ (1− κ/2)KL(µ∗
x∥µt

x)

which suffices to conclude the proof.

C.8. Concluding the proof of Theorem 12

Proof [Proof of Theorem 12] We will assume that the sample is η-representative, for η ≤
(AB/n)Cϵ for a sufficiently large C > 0. This can be guaranteed if the sample size is
m = O(log(1/δ)/η2) = poly(n, 1/A, 1/B) log(1/δ)/ϵ2. With this value of η, Lemma 65
guarantees that as long as KL(µ∗

x∥µt
x) ≥ ϵ(AB/n)C1 , then,

KL(µ∗
x∥µt+1

x ) ≤ (1− κ′)KL(µ∗
x∥µt

x),

where C1 can be chosen arbitrarily large and κ′ is polynomial in A,B, 1/n. The initial
value of KL(µ∗

x∥µ0
x) is bounded by poly(1/A, 1/B, n)∥ρ0 − ρ∗∥2 ≤ n poly(1/A, 1/B, n),

from Lemma 47. Hence, the number of iterations that it takes KL(µ∗
x∥µt

x) to drop below
ϵ(AB/n)C1 is bounded by poly(n, 1/A, 1/B) log(1/ϵ). Using Lemma 47, if C1 is sufficiently
large then once the KL divergence drops below that value, |ρti − ρ∗i | ≤ ϵ for all i.

Lastly, notice that for all t ≥ 1 and all i, σt
i = σ̂i, from Lemma 42. Since the sample is

η ≤ ϵ representative, this implies that |σt
i − σ∗

i | ≤ η ≤ ϵ. This concludes the proof.

Appendix D. General tree model

We consider a multivariate Gaussian latent-tree distribution, that is characterized by a tree
G = (V,E). Each vertex u ∈ V corresponds to a random variable zu. Suppose the total
number of nodes in the tree is n + m. From now on, we might refer to the node itself as
the random variable, when it is clear from the context what we mean. We define a joint
probability distribution over the nodes as follows:

Pr[z1, . . . , zn+m] =
∏

(i,j)∈E

Pr[zi, zj ] (47)

The vertices V are divided into two groups: nodes of degree 1(leaves), denoted by x1, . . . , xn
and nodes of degree at least 2 (internal nodes), denoted by y1, . . . , ym. When we want to
refer to some node in the tree without wanting to specify whether it is a leaf or an internal
node, we will use the symbol z. The edges e ∈ E are divided into two groups: the ones that
are between y nodes, called internal edges and denoted by Eyy, and the ones between one y
node and one x node, called boundary edges and denoted by Exy. Each leaf xi has a variance
σ2
xi

and so it corresponds to a random variable xi ∼ N(0, σ2
xi
). Likewise, each internal node

yi has a variance σ2
yi and so it corresponds to a random variable yi ∼ N(0, σ2

yi). For each
edge (yi, yj) ∈ Eyy we define the correlation ρyiyj of variables yi, yj and similarly, for each
edge (xi, yj) ∈ Exy we define the correlation ρxiyj between xi, yj . It can be shown that in
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a Gaussian Graphical Model that satisfies the product decomposition 47, it can be shown
Vardis: proof should go to appendix that these parameters are enough to specify the joint
distribution over all x and y.

ρzizj :=
E[zizj ]
σziσzj

=
∏

(zu,zv)∈P (zi,zj)

ρzuzv

In other words, the correlation between a pair of nodes is the product of the correlations
along the edges of the path that connects them.

Define such distribution by µG,ρ,σ where G is ommitted if it is clear from context. A
sample z ∼ µρ,σ can be drawn as follows: first, zr ∼ N(0, σ2

r ) is drawn for the root r (the
root can be assigned as any node of the tree). For any choice of the root, there is a unique
way to direct the edges going away from the root. This defines parent-child relationships
between the nodes. One assigns random values from the remaining of the nodes, from top
to bottom. Assuming that the value zu on the parent u of a node v was already set, we
draw zv as follows:

zv = σv

(
ρuv

zu
σu

+
√
1− ρ2uvϵv,

)
where ϵv ∼ N(0, 1) independently of the other variables and ρuv = ρe for the edge e that
connects u and v. Up to scaling the individual variables, one can assume that σv = 1 for
all v.

An equivalent way to characterize the distribution is through the information matrix
J = Σ−1. Because of the factorization of the distribution, the only non-zero entries Jij will
be when (i, j) is an edge or if i = j. In general, the distribution could have an external field
h. This will not happen in the joint distribution, since we assume the means to be 0.

In the following, we will also need the conditional distribution of the internal nodes
y given the leaves x. Since the model is Gaussian, we know that there exists a matrix
λ ∈ Rm×n such that

E[yi|x] =
∑
j

λyixjxj (48)

Lastly, the external field of y in the conditional distribution is given by the relation

hy = −Jyxx

All these properties will prove useful in the sequel.
In an estimation setting, we observe independent samples from the latent distribution

over the leaves of the tree. In particular, each sample contains the information of (xl)
n
l=1,

obtained using one draw from the marginal (joint) distribution over the leaves. The goal is
to learn the parameters ρe for all the edges of the tree and the variances σ2

l for all leaves l.
Vardis: we have assumed variance one I guess.

Remark 66 The variances σ2
yv on the internal nodes yv of the tree cannot be estimated.

This is due to the fact that samples from two distributions µρ,σ, µρ,σ′ that have the same
correlations ρ and the same variances on the leaves, differ only by a scaling of the unobseved
nodes. In particular, we can transfer a sample from one distribution to a sample from the
other by just multiplying the hidden nodes by constants. This change does not affect the
marginal distribution over the observed nodes.
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Remark 67 One has to assume that each internal node has degree at least 3. Indeed, if
v is an internal node with neighbors u1, u2, then, as long as ρu1vρvu2 remains constant, the
distribution over the leaves is not affected. In case that such a node v exists, one can remove
it while keeping the same distribution over the leaves. In particular, u1 is connected with v
and one sets ρu1u2 as equal to the value ρu1vρvu2 in the old graph.

Appendix E. EM and the likelihood function for general trees

We are interested in analyzing the landscape of the likelihood function over the space of
unknown parameters J . In particular, we show that we can characterize the stationary
points of the likelihood function for a general tree. To help us identify the stationary
points, it is convenient to view them as fixpoints of the EM algorithm.

Let PG be the set of all distributions of the form µG,ρ,σ for any possible values of ρ
and σ. In each iteration t = 0, 1, . . . , the algorithm will hold some distribution µt, such
that µ0 is arbitrary, and µt is obtained using µt−1. The goal is to find some unknown
distribution µ∗ ∈ PG , given only samples from µ∗

x1···xn
, namely, y1, . . . , ym is not observed.

The algorithm can be described as follows: we set µ0 ∈ P arbitrarily. Then, at any t > 0,
define

µt+1 = max
µ∈PG

E
x1···xn∼µ∗

x1···xn
E

y∼µt
y|x1···xn

[log Pr
µ
(x1, . . . , xn, y)], (49)

where Prµ denotes the density with respect to µ. Denote by σt
· , ρ

t
i, J

t the parameters
corresponding to µt and by λt the coefficients from (48). Similarly, σ∗

· , ρ
∗
i and λ∗ correspond

to µ∗. We would like to understand what are the fixpoints of this iteration rule and how
they relate to the stationary points of the likelihood function. For this purpose, we first
describe more explicitly the update rule in each iteration. The proof follows along the same
lines as Lemma 1.

Lemma 68 Let µt,∗ denote the joint distribution over x1 · · ·xn, y1, . . . , ym such that

µt,∗(x1, · · · , xn, y1, . . . , ym) = µ∗(x1, · · · , xn)µt
y1,...,ym|x1,··· ,xn

(y).

Then, for any xi, yj , yk, we have that

E
µt+1

[xiyj ] = E
µt,∗

[xiyj ], E
µt+1

[yjyk] = E
µt,∗

[yjyk], Varµt,∗ [xi] = Varµt+1 [xi], Varµt,∗ [yj ] = Varµt+1 [yj ] .

We notice that the variance of the leaves remains the same at each iteration. This means
that the determining quantity for the distribution in each iteration are the correlations ρt. In
particular, during the execution of the algorithm, the variances of the internal nodes might
be different than 1, however the correlations always dictate the next iteration. Hence, for
any fixpoint µ̃ of the procedure that is given by some parameters σ̃, J̃ can be converted into
a fixpoint with the same likelihood value but with all internal nodes y having variance 1.
Therefore, in the sequel when we analyze the fixpoint of this rule, we assume w.l.o.g. that
all variances are equal to 1. By scaling the variances of the internal nodes, we can obtain
all equivalent fixpoints.
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To see how the fixpoint of this rule relates to the stationary points of the log-likelihood,
let’s first choose a parametrization in terms of the inverse covariance matrix J . This ex-
ponential family parametrization will enable us to compute the stationary points easily by
setting the derivatives to 0.

We first define the function L : R(n+m)×(n+m)
+ 7→ R as

L(J) := E
x∼µ∗

log Pr
µ(J)

(x)

We have the following Lemma, which connects the stationary points of L with the fixpoints
of EM. The proof is standard and is omitted. Vardis: will add if we have time

Lemma 69 Let µ∗ ∈ PG be such that ρ∗ij ∈ (0, 1) for all (i, j) ∈ E. Then, for any J̃ ∈
R(n+m)×(n+m)
+ we have that ∇L(J̃) = 0 if and only if J̃ is a stationary point of the update

rule (49).

Hence, the two notions of stationarity are equivalent and we can focus on understanding
when the update rule (49) has a fixpoint.

Appendix F. Uniqueness of stationary points of EM for general trees

We would like to prove that the only stationary point of the log-likelihood if ρ̃ij ∈ (0, 1) is
when ρ̃ = ρ∗. This is the content of the following Theorem.

Theorem 15 Let G = (V,E) be a tree and µ∗ ∈ PG be a distribution with ρ∗ij ∈ (0, 1) for
all (i, j) ∈ E. Suppose ρ̃ is a stationary point of the EM update rule (49) with ρ̃ij ∈ (0, 1)
for all (i, j) ∈ E. Then ρ̃ij = ρ∗ij for all (i, j) ∈ E.

Proof Let µ̃ denote the distribution induced by the fixpoint ρ̃. Let J̃ be the information
matrix and Σ̃ the covariance matrix corresponding to ρ̃. Also, let µ∗,f denote the distribution
with density

µ∗,f (x, y) = µ∗(x)µ̃(y|x)

Using Lemma 68, we get that in the fixpoint we should have for all zi, zj ∈ V

Varµ∗,f (zi) = Varµ̃(zi) , Covµ∗,f (zi, zj) = Covµ̃(zi, zj) (50)

where zi, zj are either leaf or non-leaf nodes that are connected in the topology of G.

We will show that the only possible solution to this system of equations is ρ̃ = ρ∗. First,
let us analyze these equations for two non-leaf nodes y1, y2 that are connected in G. Since
all the variables are zero mean, we have by the definition of µ∗,f that

Covµ∗,f (y1, y2) = E
µ∗,f

[y1y2] = E
x∼µ∗

[Ẽ
µ
[y1y2|x]] = E

x∼µ∗
[Covµ̃(y1, y2|x) + Ẽ

µ
[y1|x] Ẽ

µ
[y2|x]]

We get a similar equation for µ̃, namely that

Covµ̃(y1, y2) = E
x∼µ̃

[Covµ̃(y1, y2|x) + Ẽ
µ
[y1|x] Ẽ

µ
[y2|x]]
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At this point, we notice that the first of the two terms contains the quantity Covµ̃(y1, y2|x),
which does not depend on the value x that we condition upon (this can be seen by just
applying the conditioning formula for gaussians). Hence, this term will appear in both sides
of the equation and can be cancelled. So, we only need to compute the second term, which
will depend on the values x. A similar argument for the variance shows that

Varµ∗,f (y1) = E
µ∗

[
Varµ̃(y1|x) + Ẽ

µ
[y1|x]2

]
Varµ̃(y1) = Ẽ

µ

[
Varµ̃(y1|x) + Ẽ

µ
[y1|x]2

]
(51)

Again, the conditional variance does not depend on the value of x, hence it will be the same
for the two distributions.

After this preliminary observations, let’s see how the we can reduce this problem to the
one latent case. Suppose y1 is a latent node and denote its set of neighbors inG byN . Notice
that some of the neighbors will be leaves and some will be non-leaves, which prompts us to
partition N into corresponding subsets Nx, Ny. Let’s denote s = |N |, sx = |Nx|, sy = |Ny|.
There is a natural partition of the leaves R1, . . . , Rs, which is induced by removing y1 from
the graph and taking the leaves in each connected component. We will focus on the fixed
point equations that we get for the covariances of y1 with it’s neighbors. To do that, we
should calculate the conditional expectations of y1 and it’s neighbors, given x. We will
need to be careful when calculating them, since we would like certain quantities to appear.
Therefore, we will start by marginalizing out all the non-leaf nodes except y1 and Ny. Let
Y c denote these nodes. We first compute what is the external field of y1 and the nodes in
Ny when we do this marginalization. Indeed, if hy1 was the original external field of y1 and
the new external field is h′y1 , then we have that

h′y1 = hy1 − J̃y1Y c J̃−1
Y cY chY c

However, notice that the vector J̃y1Y c is the 0 vector, since Y c does not contain any neighbor
of y1. Hence, the external field of y1 does not change. Now let y2 be a neighbor in Ny.
Then,

h′y2 = hy2 − J̃y2Y c J̃−1
Y cY chY c

Notice that hy2 is a linear combination of the leaves that are neighbors of y2. Also, we can
show that the second term of the right hand side is a linear combination of the leaves that
belong to the connected component corresponding to y2 and are not neighbors of y2. This
is established in the following Lemma.

Lemma 70 Let y2 be a non-leaf neighbor of y1 and Sy2 be the corresponding set of leaves
for the partition that y2 belongs to. Then, the quantity h′y2 = hy2 − J̃y2Y c J̃−1

Y cY chY c is a
linear combination of the leaves in Sy2.

Proof The leaves in Sy2 can be partitioned into subsets A,B, where A are the leaves that
are neighbors of y2 and B the remaining leaves. Let T2 be the topology of the connected
component that y2 belongs to, when we remove y1. Also, let N2 be the neighborhood of y2
in T2, with corresponding subsets N2x, N2y. Clearly, hy2 is a linear combination of the leaves
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in A. We will show that the second term is a linear combination of the leaves in B, thus
concluding the claim. First of all, notice that J̃Y cY c is the information matrix of a gaussian
model, whose graphical representation is the tree G when y1 and all nodes in Ny have been
removed. Let’s call T3 this new topology. In this topology, T2 has been partitioned into
|N2| subtrees, one for each neighbor of y2 (because y2 is removed). Hence, the leaves B of
T2 have been partitioned into |N2y| subsets Q1, . . . , Q|N2y |.

Since J̃Y cY c is an information matrix, it’s inverse J̃−1
Y cY c is a covariance matrix, where

the nodes have standard deviations wi and normalized covariances (correlations) wij . Since
T3 is a forest, there is at most one path connecting each one of the nodes. Hence, it is well
known that the covariances multiply across paths in this structure, namely:

(J̃Y cY c)−1
ij =

{
0 , if i, j are not connected in T3

wiwj
∏

e∈Pij
wij , if Pij is the unique path connecting i, j

Given this description, it is easy to see that for each i ∈ Y c, we have that (J̃−1
Y cY chY c)i is a

linear combination of leaves that belong to the same component as i in T3. Hence, for each
i ∈ N2y, (J̃

−1
Y cY chY c)i is a linear combination of the leaves of the Qi that i is connected to.

Hence, J̃y2Y c J̃−1
Y cY chY c is simply a linear combination of the leaves in all the Qi’s, which

means it is a linear combination of the leaves in B.

Hence, overall the external field h′y2 will be a linear combination of the leaves in Sy2 .
The same is true for all nodes in Ny. It will be convenient to define the vector H ∈ Rs,
which has one entry for each node in N . If the node is a yi ∈ Ny, then define Hi = h′yi . If
the node is an xi ∈ Nx, then define Hi = xi. Let’s focus on some y2 ∈ Ny and see what
relations we get in the fixed point. As we say in the earlier computation, the relation for
the covariance becomes

Ẽ
µ
[Ẽ
µ
[y1|x] Ẽ

µ
[y2|x]] = E

µ∗
[Ẽ
µ
[y1|x] Ẽ

µ
[y2|x]] (52)

The inner expectation is common on both sides, so let’s start by calculating that. Since
we have already marginalized out all the nodes in Y c, we only need to marginalize out the
nodes in Ny other than y2. For convenience, denote N2 = Ny \{y2}. Then, if we marginalize
out nodes in N2, the resulting extenal field h′′y1 will be

h′′y1 = hy1 − J̃y1N2(J̃
′
N2N2

)−1h′N2

The reason why we write J ′ is that the information matrix has been altered when marginal-
izing Y c. Now, notice that since the neighbors of y1 are not connected with each other, the
matrix J̃ ′

N2N2
is diagonal. This means that we have

h′′y1 =
∑

xi∈Nx

J̃y1xixi +
∑

yj∈Ny ,yj ̸=y2

J̃y1yj

J̃ ′
yjyj

h′yj

To write this more compactly, we introduce the vector r ∈ Rs, where ri = J̃y1xi if i ∈ Nx

and ri = J̃y1yi/J̃
′
yiyi if i ∈ Ny. Notice that ri ̸= 0 always. With this notation, the previous

equation becomes

h′′y1 =
∑
i ̸=y2

riHi (53)
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We also need to compute h′′y2 , which is a much easier task, since

h′′y2 = h′y2 − J̃y2N2(J̃
′
N2N2

)−1h′N2
= h′y2

since Jy2N2 is the zero vector (no connections between neighbors). Hence, we have calculated
the external field of y1, y2 in the marginal model that contains only these two nodes. Now,
to calculate the conditional expectations of these two nodes, we just have to use the relation(

Eµ̃[y1|x]
Eµ̃[y2|x]

)
= Σ̃y1y2|x

(
h′′y1
h′′y2

)
that connects the external field to the mean of a gaussian. Here, Σ̃y1y2|x is the 2 × 2
covariance matrix of the conditional distribution of y1, y2 given x. The reason we have used
Σ̃y1y2|x is that the covariance matrix does not change when we marginalize some nodes.
Suppose

Σ̃y1y2|x =

(
c1 c2
c3 c4

)
with c1c4 − c2c3 ̸= 0. The reason the variances are not necessarily 1 is that we are now in
the conditional model. Then, condition(52) translates to the following:

E
x∼µ∗

[(c1h
′′
y1 + c2h

′′
y2)(c3h

′′
y1 + c4hy2)] = E

x∼µ̃
[(c1h

′′
y1 + c2h

′′
y2)(c3h

′′
y1 + c4hy2)]

This implies that

c1c3( E
x∼µ∗

[(h′′y1)
2]− E

x∼µ̃
[(h′′y1)

2]) + c2c4( E
x∼µ∗

[(h′′y2)
2]− E

x∼µ̃
[(h′′y2)

2])

+(c1c4 + c2c3)( E
x∼µ∗

[h′′y1h
′′
y2 ]− E

x∼µ̃
[h′′y1h

′′
y2 ]) = 0 (54)

Similarly, from the variance condition on y1 (Equations 51) we obtain

E
x∼µ∗

[(c1h
′′
y1 + c2h

′′
y2)

2] = E
x∼µ̃

[(c1h
′′
y1 + c2h

′′
y2)

2]

This implies

c21( E
x∼µ∗

[(h′′y1)
2]− E

x∼µ̃
[(h′′y1)

2]) + c2( E
x∼µ∗

[(h′′y2)
2]

− E
x∼µ̃

[(h′′y2)
2]) + 2c1c2( E

x∼µ∗
[h′′y1h

′′
y2 ]− E

x∼µ̃
[h′′y1h

′′
y2 ]) = 0 (55)

Similarly, for y2 we get

c23

(
E

x∼µ∗
[h21]− E

x∼µ̃
[h21]

)
+ c24

(
E

x∼µ∗
[h22]− E

x∼µ̃
[h22]

)
+2c3c4

(
E

x∼µ∗
[h1h2]− E

x∼µ̃
[h1h2]

)
= 0 (56)
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We can think of equations (54), (55) and (56) as a 3× 3 system with matrixc1c3 c2c4 c1c4 + c2c3
c21 c2 2c1c2
c23 c24 2c3c4


where the three unknown variables are

E
x∼µ∗

[h21]− E
x∼µ̃

[h21], E
x∼µ∗

[h22]− E
x∼µ̃

[h22], E
x∼µ∗

[h1h2]− E
x∼µ̃

[h1h2]

The determinant of this matrix is −(c1c4 − c2c3)
3, which is non-zero, since the matrix

Σy1y2|x is invertible. The reason is that we have assumed that in the fixpoint ρ̃ all correlations
are strictly less than 1. Hence, we conclude that

E
x∼µ∗

[h′′y1h
′′
y2 ] = E

x∼µ̃
[h′′y1h

′′
y2 ]

Based on the calculations that were done earlier (equation (53)), this equation can be
written as

E
x∼µ∗

Hy2

∑
i ̸=y2

riHi

 = E
x∼µ̃

Hy2

∑
i ̸=y2

riHi


If xj is a non-leaf neighbor, the fixed point equations give us

E
x∼µ∗

[xj(
∑
i ̸=j

riHi)] = E
x∼µ̃

[xj(
∑
i ̸=j

riHi)] =⇒

E
x∼µ∗

[Hj(
∑
i ̸=j

riHi)] = E
x∼µ̃

[Hj(
∑
i ̸=j

riHi)]

The key observation here is that the coefficients ri that appear will be the same in
all equations involving y1. The last step of the argument involves actually computing the
expectation and seeing what it implies for µ∗,f . First, let’s try to compute E[HiHj ] for
yi, yj ∈ Ny. Remember that we have established already that for each i ∈ N , Hi is a
linear combination of the leaves in the partition corresponding to i. Hence, computing
E[HiHj ] amounts to computing the covariance between all pairs of leaves from the two
different subsets. Suppose Hi = (ai)⊤Xi, where Xi is the vector of leaves in Si. As we said,
correlations multiply across paths, so in particular we have that

E
x∼µ∗

[HiHj ] = E
x∼µ∗

[(ai)⊤Xi(a
j)⊤Xj ] =

∑
xk∈Si,xl∈Sj

aika
j
l E
x∼µ∗

[xikx
j
l ]

=
∑

xk∈Si,xl∈Sj

aika
j
l

∏
e∈Pxk,xl

θ∗e

where P (xk, xl) denotes the path between leaves xk, xl. Now, notice that all the paths from
Xi to Xj will have to go through the edges connecting y1 to i and y1 to j. Let ρ∗i , ρ

∗
j be
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the correlations in these two edges. Then, there is a convenient factorization that can be
written as follows

E
x∼µ∗

[HiHj ] = ρ∗i ρ
∗
j

∑
xk∈Si

aik
∏

e∈Pxk,yi

ρ∗e

∑
xl∈Sj

ajl

∏
e∈Pxl,yj

ρ∗e


The exact same relations hold for ρ̃, since the topology is the same. Hence, by writing out
the condition

ρ∗i

∑
xr∈Si

air
∏

e∈Pxryi

ρ∗e

 ∑
zj∈N,j ̸=i

ρ∗j

 ∑
xs∈Sj

ajs
∏

e∈Pxszj

ρ∗e


= ρ̃i

∑
xr∈Si

air
∏

e∈Pxryi

ρ̃e

 ∑
zj∈N,j ̸=i

ρ̃j

 ∑
xs∈Sj

ajs
∏

e∈Pxszj

ρ̃e

 (57)

The reason we used the notation zj is that this neighbor could be either a leaf or an internal
node. Hence, for each i ∈ Ny we set

w∗
i = ρ∗i

∑
r∈Xi

air
∏
e∈Pri

ρ∗e


and similarly

w̃i = ρ̃i

∑
r∈Xi

air
∏
e∈Pri

ρ̃e

 .

Notice that if i or j is a leaf neighbor, then we get the same expression, except that the
parenthesis will be 1 and we will simply have ρ∗i or ρ∗j as the variable. Hence, this definition
can be extended to all i ∈ N . Now, given these parametrizations, the fixed point conditions
are

rjw
∗
j

∑
i ̸=j

riw
∗
i

 = rjw̃j

∑
i ̸=j

riw̃i

 (58)

for each i ∈ N . But this is exactly the system that we got for one latent.. As we proved
in Lemma 9, the only solution for this system is riw̃i = riw

∗
i for each i, which implies that

w̃i = w∗
i for each i. Notice that if Nx is nonempty, then this implies that ρ∗e = ρ̃e for all

edges e between y1 and it’s neighboring leaves.
We can use this result to show that ρ̃ = ρ∗. Our argument is inductive. At each step,

we pick an internal node y that only has one non-leaf neighbor (it’s parent). Then, for all
edges of the form e = (y, xi) for some xi, we have that ρ∗e = ρ̃e by the previous argument.
Once we establish that, we remove all the leaf nodes that are connected to y from the tree
along with their corresponding edges. This means that in the next iteration, y will be a
leaf, so it will no longer be selected. This means that this process terminates after m steps.

The correctness of this procedure can be proven inductively as follows: for the base case,
we already saw that edges that are connected to leaves will be equal in the two models. In
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each step, for the node y that is selected at that step, we know from the induction hypothesis
that all of it’s leaves in the remaining tree are either true leaves, or internal nodes who have
already been selected. This means that are descendants of y have already been proven to
be equal in the two models. Then, for each leaf neighbor z of the node y (it might not be
a true leaf in the original tree) we have parameters w∗, w̃. These are proven to be equal by
the previous arguments. Let e be the edge connecting z, y. Then w∗ is a multiple of ρ∗e and
w̃ is a multiple of ρ̃e. The multiplier for both of these is the same in both quantities, since
it only depends on descendant edges, which are proven to be equal for the two models. It
follows that ρ∗e = ρ̃e and the induction stpe is complete.
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