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Abstract

We study the optimization landscape of the log-likelihood function and the convergence of
the Expectation-Maximization (EM) algorithm in latent Gaussian tree models, i.e. tree-
structured Gaussian graphical models whose leaf nodes are observable and non-leaf nodes
are unobservable. We show that the unique non-trivial stationary point of the population
log-likelihood is its global maximum, and establish that the expectation-maximization al-
gorithm is guaranteed to converge to it in the single latent variable case. Our results for the
landscape of the log-likelihood function in general latent tree models provide support for
the extensive practical use of maximum likelihood based-methods in this setting. Our re-
sults for the EM algorithm extend an emerging line of work on obtaining global convergence
guarantees for this celebrated algorithm. We show our results for the non-trivial station-
ary points of the log-likelihood by arguing that a certain system of polynomial equations
obtained from the EM updates has a unique non-trivial solution. The global convergence
of the EM algorithm follows by arguing that all trivial fixed points are higher-order saddle
points.

1. Introduction

Estimating latent variable models is a widely-studied task in Statistics and Machine Learn-
ing. It is also a daunting one, computationally and statistically. Even if the underlying, fully
observable distribution is an exponential family and therefore has a concave log-likelihood
function, marginalizing out the latent variables makes the log-likelihood non-concave, in
most cases. In the same exponential-family setting, under mild conditions, the population
(i.e. infinite sample) log-likelihood of the complete model has a unique maximum at the true
model parameters, yet even in this setting very little is understood about the landscape of
the partially observable model’s log-likelihood or its stationary points.

A widely-applicable method for estimating latent variable models is the Expectation-
Maximization (EM) algorithm of Dempster et al. (1977). Given a parametric family of
distributions {pg(X,Y)}eco, where variables X are observable and variables Y are unob-
servable, and given independent observations x1, s, . .. from some model in this family, the
EM algorithm starts with some initialization 60 and iteratively performs a sequence of in-
terleaved “E-steps” and “M-steps,” a consecutive pair of which are called an “EM update.”
Specifically, for all ¢ > 0, the algorithm updates the current vector of parameters o) by
performing the following:
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e (E-step) for each sample ¢, compute a posterior belief about the values of the unob-
servable variables by setting, for all vy, QZ@ (Y) =peoy (Y = y| X = =x;);

e (M-step) update the parameters to 0U+Y ¢ arg maxg > fy Qgt) (y) log %z’;;:y)dy.
Notice that, by Jensen’s inequality, the function maximized in the M-step of the algorithm
lower bounds the log-likelihood of the samples and, by the choice made in the E-step of
the algorithm, this lower bound equals the log-likelihood of the samples at 8 = 7108 Thus,
whenever the EM update results in ot+1) % O(t), the likelihood of the samples increases.
Moreover, when the class of models {pg}gco is an exponential family, the M-step becomes
a concave maximization problem, making the algorithm quite attractive in this setting.

Despite its wide use and study, with north of 66k citations, relatively little is known
about EM’s behavior. Conditions have been identified under which the EM iterates con-
verge to or cluster at stationary points of the log-likelihood — see e.g. Wu (1983); Tseng
(2004); Chrétien and Hero (2008), or exhibit local convergence to the maximum of the like-
lihood — see e.g. Redner and Walker (1984); Balakrishnan et al. (2017); Zhao et al. (2020);
Kwon and Caramanis (2020a). Conditions under which EM exhibits global convergence
to the maximum of the likelihood are rare (Wu, 1983) with a surge of recent results inch-
ing towards establishing global convergence guarantees in more and more settings — from
balanced mixtures of two Gaussians (Xu et al., 2016; Daskalakis et al., 2017) to balanced
mixtures of two truncated Gaussians (Nagarajan and Panageas, 2020), balanced mixtures
of two Laplace distributions (Barazandeh and Razaviyayn, 2018), unbalanced mixtures of
two Gaussians (Xu et al., 2018), binary variable naive Bayes models (Daskalakis et al.,
2018), and mixtures of linear regression models (Kwon et al., 2019; Klusowski et al., 2019;
Kwon and Caramanis, 2020b; Kwon et al., 2021) — and towards understanding the role of
overparametrization in EM’s global convergence (Xu et al., 2018; Dwivedi et al., 2020).

To the best of our knowledge, recent works on the global convergence of EM are for
single-latent-variable models. Extending this recent line of work, our paper studies the con-
vergence of EM in Latent Gaussian Tree Models (LGTMs), i.e. tree-structured Gaussian
Graphical Models whose leaf variables are observable and non-leaf variables are unobserv-
able. Latent tree models in general, and LGTMs in particular have found wide use in
scientific and applied domains due to their combined expressiveness and tractability of in-
ference; see e.g. Mourad et al. (2013); Zwiernik (2018) for recent surveys. Some notable
applications of LGTMs are in phylogenetics, where they have been used to model the evo-
lution of continuous traits (Felsenstein, 1973; Hiscott et al., 2016; Truell et al., 2021), in
network tomography, to model network delays (Castro et al., 2004; Eriksson et al., 2010;
Bhamidi et al., 2010), and in linguistics, for modelling the evolution of languages using
acoustic data (Ringe et al., 2002; Shiers et al., 2017).

Given observations from a latent tree model, a long line of research has studied whether
the structure of the model can be recovered and, if the structure is known, whether the
parameters of the model can be recovered. Most techniques with provable guarantees are
based on defining and estimating tree metrics from the samples; see e.g. Erdds et al. (1999);
Felsenstein (2004); Daskalakis et al. (2006); Roch (2006, 2010); Roch and Sly (2017) and
their references. On the practical front, however, some of the most popular packages are
based on maximum likelihood estimation; see e.g. Yang (1997); Stamatakis (2006). Even
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when the latent structure is known, however, the landscape of the likelihood function is
not well understood (Felsenstein, 1973; Truell et al., 2021). This is true even in the popu-
lation limit, i.e. when infinitely many samples are available, even when the tree is trivial,
i.e. there is a single latent node, and even when the latent tree model is a LGTM. For this
paradigmatic and widely used family of models we study the following question:

Main Question: Given a LGTM model pg=(X,Y) on a tree T whose leaves X are ob-
servable and internal nodes Y are unobservable, can we characterize the stationary points
of the population log likelihood {g+(0) = EmNpe*(X)[logpg(X = x)|? Does it have spurious
stationary points @ # 0* and under what conditions does EM converge to 8*?

We study the afore-described questions in the setting where all the nodes of T" are single-
dimensional Gaussian variables and assume, without loss of generality, that they have zero
mean and that the setting is ferromagnetic, i.e. assume that for every pair of variables
their correlation lies in (0,1). Our first main result is the following (the formal version is
Theorem 15, combined with Lemma 14):

Informal Theorem 1 In the setting of our main question, and that of the preceding
paragraph, suppose that 6 is a stationary point of the population log-likelihood lg=(-) that
is non-trivial, i.e. in model pg(X,Y’) there is no edge of the tree whose endpoints have
correlation in {0,1}. Then 6 = 0*.

Our result guarantees that, if gradient-descent, EM, or similar method converges to a sta-
tionary point of the population log-likelihood that is non-trivial, then this point indexes
the true model. While there are other criteria that can be used, our result implies that
the stationarity of the log-likelihood can be used as an alternative, post-hoc criterion to
argue that the correct model has been identified. In particular, our result substantiates the
extensive use of maximum-likelihood-based methods in practice (Yang, 1997; Stamatakis,
2006), and the experimental evidence that EM succeeds with high probability in this set-
ting (Wang and Zhang, 2006). Next, we study whether we can guarantee that EM converges
to a non-trivial stationary point in our setting. We show this for the case where there is a
single latent node in the model (the formal statement is Theorem 3):

Informal Theorem 2 In the setting Informal Theorem 1, suppose additionally that there
is a single latent node. In this case, EM is quaranteed to converge to 0*. If n is the number
of leaves and € is the desired accuracy for all the parameters (in absolute value), then the
sample complezity is O(poly(n)/e®) and the number of iterations is O(poly(n)log(1/¢)).

Proof Ideas. Starting with Informal Theorem 2, it is known that EM converges to some
0 that is a fixed point of the EM update. Hence, the proof follows by making the following
arguments: (1) 8% is the only non-trivial fixed point of the EM update; if we parametrize
the model via correlations on its edges this the same as saying that 0 is the only fixed
point of the EM update in the interior of the parameter space ©; and (2) While there are
fixed points at the boundary of ©, EM does not converge to any of those. To show (1), we
analyze the EM update and show that its fixed points are solutions to a system of degree-
2 polynomial equations. By using a simple special form of the Jacobian Conjecture we
argue that these have a unique non-trivial solution. To show (2), we analyze the behavior
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of the EM around the fixed points at the boundary, by computing the derivatives of the
update rule around these points. This requires careful analysis since these fixed points are
higher-order saddle points. For the case of general trees (Informal Theorem 1), we show
that the fixed points are solutions of higher-degree polynomial equations. We establish a
novel reduction of these algebraic equations to the second-degree polynomial system from
the single-latent-model case, and use this reduction to certify that there is a unique fixed
point at the interior of the parameter space, which is 6*.

2. Tree models with one latent node

We start by elaborating on the simpler setting with one latent node. For simplicity, we start
by anayzing the population EM, which amounts to running the EM algorithm on the whole
population (rather than a finite sample). So simplify even more, we analyze asymptotic
convergence, namely, in the limit as the number of iterations goes to infinity. Later, in
Section 2.6, we describe the finite-sample and finite-iterate result.

2.1. Definitions and properties of the model

We consider the family of multivariate Gaussian distributions over zero-mean variables,
with latent node y and observed nodes x1,...,x,, that have the property

n

Pr[z1,...,2n,y] = Pry] HPf[l“i ly] .

Each such distribution is uniquely defined by the following parameters:

a; .= Var(y); o2 := Var[z]; p; == Cov(zs,y) ,fori=1,...,n ,
' Var(x;) Var(y)

We note that generally p; € [—1,1], yet, we analyze the ferromagnetic setting where p; €
[0,1]. Denote by P the set of all such distributions with p; € [0, 1] and oy, 05, > 0. We use
the following convenient properties of distributions in P:

Claim 1 For any i # j, Cov(z;, x;) = 04,04, pipj. Further, E[z; | y] = U%ypiy and

pi/(1 = p7)
L+ 300, 03/ (1—p5)

Ely |z zy] = Uyz)‘i?’ where \; = (1)
i=1 ¢

Given any distribution p € P, denote its marginals and conditionals as pz, ...z, s ty|z; .z,
etc. Lastly, denote p = (p1,...,pn) and T = (z1,...,x,).

2.2. The expectation-maximization algorithm - over the population

We analyze the EM algorithm. We start by analyzing the population EM: this assumes
that each iteration of the EM is executed over the whole population, rather than over a
finite sample. This greatly simplifies the analysis (see Section 2.6 for the results on finite
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sample). The population EM can be described as follows: we set u° € P arbitrarily. Then,
at any t > 0, define

t+1
pit = argmax E E log Pr(z1,...,zn,v)],
PEP  TL Tty oy, Yol M

t
ylzy - zn

where Pr, denotes the density with respect to . Denote by of, p! the parameters corre-
sponding to u' and by A! the coefficients from (1). Similarly, o*, p; and A} correspond to
w*. We would like to understand how these parameters update in each iteration of the EM
algorithm. For this purpose, we have the following lemma:

Lemma 1 Let pb* denote the joint distribution over x1---x,,y such that

f:r[xl,--‘ s T,y = Pray, - 2n] Prly [ 21, .., @)
ph p ut

Then, for any i, we have that
E [z;y] = MIE‘* [ziy], Vary:-[z;] = Var, et [z;], Var,.[y] = Var,[y] .

Mt+1

Proof Notice that u!*! is the MLE over P, given samples drawn from p‘*. Hence, for any
peP,

E logPr(z,y) = log Pr HPr (i | y)
Ty~ ph w fr,yNu
= E log Pr ) + Z E log Pr(x, | y). (2)
Ty~ pb* T,y~pb

Recall that each y € P can be decomposed as Pry[z,y] = Pry, [y] [[; Py, |, [2i | y], and each

term in this decomposition can be chosen to maximize its corresponding summand from

(2). By Gibbs inequality!, the maximizing choice is obtained by selecting p, ~ ,ug’* and
tx %

b t .

Haily ™ Hy - This choice satisfies pz,y ~ fytiy,ly ~ Hy Py ™ pzy. Hence, the pairwise
1

marglnals between x; and y are conserved, which concludes the proof. |

As a corollary, we obtain the following update rules for the parameters Jé,af and p!,

using the analogous parameters of ;*, that are calculated using formulas for the conditional
Gaussian measure (proof appears in Section A.3).

Lemma 2 For any i # j, denote by AU = p;pj — pip;- For any t >0 and any 1, ol = o},

B ] = oloy | X4+ D _pini) | = oloy | A+ D AN |
JFi JFi

n

B[] = (of™)? = (a0)? [ D)2+ > Mpipr | = (oh)? [ 14D AL,
i=1 i#je{l,...,n} J#k
S = N+ 252 \ipi ) _ Pi+ i BigA]
\/Z?:l()‘g)z + X itjett, .y MAPEP] \/1 + D DA

1. Gibb’s inequality states that for any distribution P, argmaxg Ez~plogPrg[z] = P, where Q is taken
over all the probability measures. This inequality can be similarly applied on conditional distributions.

3)
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2.3. Asymptotic Convergence of the population EM

We would like to argue that the iterates of the EM converge to p*, which is characterized by
the parameters oy, 07 and p; for : = 1,...,n. Yet, notice that one only observes samples
from the marginal p, ..., , which is a function of only o, and p; but not of ;. Hence, we

cannot expect to learn o,. With regard to the other parameters, we prove:

Theorem 3 Assume that the correlations in the underlying distribution p* satisfy p; €
(0,1) for all i and that the first iterate of the population EM satisfies p? € (0,1) for all
i. Then, the iterates pt and ol of the population EM converge to the parameters of the
underlying distribution.:

lim p! = pf, andol =0} foralli=1,....n andt>1 .
t—r00

We will stay under the assumptions that p¥, p{ € (0, 1) for all i throughout the proof. Recall
that Lemma 2 argues that for any ¢ > 1, ‘75:,- = o0,,. Hence, it remains to argue about the
convergence of p! to pf. We use the following definition:

Definition 4 A point p = (p1,...,pn) s a stationary point of the EM if pt = p implies
that p+1 = .

Denote the set of all stationary points by S. The following is proved in Section A.3:

Lemma 5 The iterates of the population EM converge to some stationary point p € S.
Further, for any p € S, if pt = p then for any i, p'tt = pt

Since the EM converges only to a stationary point, it is useful to characterize the set of
stationary points, as stated below:

Lemma 6 The set S of stationary points of the population EM equals

| Sl
S =4 P (0 O} UL i =1, n), where ) =4 17!
pipy JF#1

We will rule out the possibility of convergence to any point that is not the true parameter.

Lemma 7 The correlation parameters of the population EM converge to a point in (0,1):

0< limpl <1 foralli=1,...,n .
t—o00

Combining the two lemmas above, we obtain that p! must converge to p}, which con-
cludes Theorem 3. In Section 2.4 we will prove that there are no stationary points where
pi € (0,1) for all 7. In Section A.1 we will prove that the only stationary point with some
pi =0is (0,...,0), and that the algorithm does not converge to this point. In Section A.2 we
will prove that the only stationary points where some p; = 1 are 7 and that the algorithm
does not converge to these points. In Section 2.5 we sketch the proofs from Section A.1 and
Section A.2.
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2.4. No stationary points at the interior

In this section, we will prove that there are no stationary points of the EM with p; € (0, 1)
for all ¢, as summarized in the following lemma:

Lemma 8 Letp= (p1,...,pn) € (0,1)". If p # p* then p is not a stationary point.

Below, fix some stationary point p' = (p1,...,pn) € (0,1)" and we will prove that
p=p". By Lemma 5, E ;¢++1[z;y] = E,¢[x;y] for all 4, and by Lemma 2 this translates to

Uitaép’;f:afaz p’é—i— E A%A; — E A%/\Ezo — E pfp}f)\zz E p?fp;)\z- .
J#i J#i J#i J#i

¢

A

Multiplying by A} and substitute pi\; = uf and p5\; = uf, we obtain

j j
Vi=1,...,n: prp;)\f)\z- = Zp§p§A§A§- = Zufuﬁ = Zufu; . (4)
J#i J#i J#i J#i
By the assumption that pf, p¥ € (0,1) and by definition of A; in (1), we have that A\! > 0,

hence uﬁ, u; > 0. We will prove that this set of equations imply that ' = u*, as summarized
below:

Lemma 9 Letw,v € (0,00)", and assume that for alli =1,... n, Z#i uju; = Z#i VV;.
Then uw = 1.

Lemma 9 will imply that Alp! = Alp¥ which implies that p! = p} as required to conclude
the proof of Lemma 8.

In the remainder of this section, we prove Lemma 9. For this purpose, we have the
following lemma, which is a special case of the Jacobian Conjecture on the uniqueness of
solutions of polynomial systems. Its special case for degree-2 polynomials was proven by
Wang (1980). We state and prove a corollary of this statement:

Lemma 10 Letpi,...,pn: R®™ = R a collection of quadratic polynomials. If there are two
distinct vectors, w and W such that p;(u) = p;(@) for all j, then, the Jacobian matriz of p
computed at (u+u')/2, JP((u+u')/2), is singular, where

P _ dpi(V)

D _ (2

JZ,] (U) - de .

Proof Look at the path 7: [0,1] — R™ defined by ~(s) = su+ (1 —s)u’. Then, p;(7(s)) is a
quadratic polynomial in s, that satisfies p;(7(0)) = pi(v(1)). Therefore, 1/2 is a stationary
point, hence

d dp; dry; dp;
0= —pi(7(s)) =D e => T (uj — uy).
s=1/2 j J lo=~(1/2) s=1/2 j J lo=~(1/2)
Combining these equalities in a matrix form for all ¢ = 1,...,n, we derive that 0 =
JP(H(1/2))(W —u) = JP((u+u')/2)(w — u) hence JP((u + u’)/2) is singular. [ ]

To complete the proof of Lemma 9, let us substitute p;(u) = Z#i u;uj. The following
lemma proves that the Jacobian matrix of this system is non-singular at any point @ with
positive entries, which suffices to conclude the proof:
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Lemma 11 Let uy,...,u, > 0. Then the following matriz J is non singular:
7y = {Z’#Z 7 ®)
u; i F ]

Notice that this matrix can be written as D + 7w ', where D is diagonal and 7,w €
R™. Such a matrix is singular if and only if 1 + 7' A™'%w = 0 Sherman and Morrison
(1950). Proving that this matrix is non-singular from this formula is not immediate. For
completeness, we present in Section A.3 a proof that does not rely on this formula. This
concludes Lemma 9 and Lemma 8 follows.

2.5. The limiting point is bounded away from the boundary

In this section, we sketch the proof that 0 < lim—,. p! < 1, whose full version appears in
Section A.1 and Section A.2. First, by inspecting the update rule from Lemma 2, it is easy
to verify that the only stationary points with some p; € {0,1} are 0 = (0,...,0) and p®®
(defined formally in Lemma 6). It remains to prove that the EM does not converge to these

stationary points. To argue about 0, we write the Taylor series of le around 0 and obtain

()

1 k% 2
AT =+ D et =0 | DAk | 2 e+ <I?2$<p5‘> -0 <je?}axn}(p§) )
i ik

This can be used to show that whenever p' approaches 0, in the subsequent iteration it
will repel from 0 and particularly, ), pﬁ“ > . pt. Hence, the algorithm cannot converge
to 0.

Next, we explain why EM does not converge to p(¥. Assume w.l.o.g that i = 1 and recall
that () = (1, pips, ..., pip%). The proof is more involved than the proof at 0, due to (1)
one is required to derive a second-order Taylor series (compared to a first-order computed
around 0), and (2) one would like to argue that if 5* ~ () then ||[p*T1 =5 | > |[p* =51 (in
some norm). Yet, this is true only for some values of p': in particular, this holds whenever
max; |p} — pgl)\ < O(lpt — p§1)|). By analyzing the update step of the EM, it can be shown
that even if p' does not satisfy this condition, which might happen with a bad initialization

(t = 0), pt*! will always satisfy it and the proof follows.

2.6. Finite sample and finite iteration

In this section we assume that m draws from the marginal distribution over the leaves are
given, where sample 7 is denoted by (:ng), A x,(f)), fori € {1,...,m}. Then, the EM iterate
is defined by

m
,ut‘H = argmaxz E [log Pr (xgl), .. ,xﬁ?,y)] .
HEP STV ) ) "
ylag) oy,
We have the following theorem, which bounds the sample complexity and the convergence
time of the population EM:
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Theorem 12 Let o, 3 > 0 and assume that 09,07 > « for all i and 69,0F <1 — 3 for all
i. Then, there exist constants Cy(«, ), Cs(a, B) that depend only on o and B and universal
constants Co, Cy such that the following holds: let €,0 > 0 and assume that the number of
samples m is at least m > (Cy(a, B)n®? +log(1/6))/e? and let T > Cs(a, B)nt log(1/¢).
Then, with probability 1 — & over the sample, for any t > T, |pt — pf| < € and |o! — o} <€

forallie{1,...,n}.

3. General Tree models

We now extend the analysis for more complicated tree topologies.

3.1. Definitions and properties of the model

We consider a multivariate Gaussian latent-tree distribution, that is characterized by a tree
G = (V, E) with n leaves x1, ..., z, (of degree 1) and m internal nodes y1, ..., y, (of degree
at least 2). The vertices u € V' corresponds to random variables {z,: u € V} with the joint
distribution

Pr(z1,. .., 2ngm] = H Pr(z;, 2] (6)

(4,J)EE

where z;, are observed by the algorithm and z,, are latent variables. The variables are as-
sumed zero-mean and the distribution is uniquely characterized by the variance parameters

02 := Var[Z,) for u € V and the correlation parameters py, := Cov|Z,Z,]/+/Var(Z,) Var(Z,)
for each edge (u,v) € E. As with one latent, we assume py, € [0,1]. The correlation be-
tween any two nodes u,v € F can be expressed as the product of correlations along the
path connecting them,

Elz;2;
Prizj = M = H Pzuz, Where P(z;,z;) is the path connecting ¢ and j.
02i0z; (zu,2v)EP(24,25)

Similarly to the argument regarding topologies of one latent node, the variances of the
latent nodes agj cannot be estimated (see Remark 66).

An equivalent way to characterize the distribution is through the exponential family
parametrization (J = —X71 k), where Pr[z;--- 2,1m] o exp (E” Jijzizi |24+, hizi>
Since the distribution factorizes as (6), the only non-zero entries J;; correspond to edges
(i,7) € E and for diagonal elements ¢ = j. While in the original model h; = 0 since the
random variables are zero mean, in the conditional distribution of y given x this is no longer
true and hy = —Jy,x.

Lastly, we remark that the parameters are information-theoretically identifiable only
when all the latent nodes have degree at least 3, yet, any graph can be modified to to
satisfy this property, while retaining the distribution over observables (see Remark 67).

3.2. EM and likelihood for general trees

In this section, we analyze the EM iteration on latent tree models (see Section 2.2 for an

elaborate exposition). Given an initial point u" € Pg, its iteration uf is defined as:
1 — max E E [log ITLT(M, e Ty YLy e Ym) s (7)

es ~ * es ~ t
HEPG x1--Tn Hzq--zn Y1, Ym Hylzq - an



DAGAN DASKALAKIS KANDIROS

where Pr, denotes the density with respect to pu. Denote by of, pt, J' the parameters
corresponding to pf. Similarly, 0¥, pf and A\* correspond to u*. Using the same arguments
as in Lemma 1, the following can be shown:

Lemma 13 Let pub* denote the joint distribution over x1---Tp, Y1, ..., Ym such that
Pr[ﬂfl,“' y Tns Y1, - - aym] = PI'[J,‘l,‘ o 7$n]Pr[y17"' » Ym | T1,--- 7~Tn]-
ut,* N'* ,U,t

Then, for any u € V and any (v,w) € E,
Cov i1 (2y, 2w) = Covyrs (2u, 20), Vare«[zu] = Var i [z] -

Denote by S the set of fixpoints of the EM, namely, the points p such that p! = p
implies p'*! = 5. Analogously to Lemma 5, these correspond to the set of fixpoints p of
(7). We can equivalently consider the EM iteration under the natural parametrization J, h,
as discussed in Section 3.1. Hence, a fixed point p corresponds to some J, meaning that S
remains unchanged if we change parametrization. The reason we choose the parameter J is
that the likelihood has a more convenient form as an exponential family. The importance
of § is further exemplified by the following lemma, which states that the notions of EM
fixpoints and stationary points of the log-likelihood are equivalent. The proof is folklore.

Lemma 14 Let pu* € Pg be such that pj; € (0,1) for all (i,j) € E and define L(J) :=
Egp log Pry ) (). Then, for any Je RS:ler)X(ner) we have that VL(J) = 0 if and only
if J is a stationary point of the update rule (7).

3.3. Uniqueness of EM fixpoints for general trees

In this section, we prove that the only fixpoint of EM with non-degenerate edge weights is
the true model p*. A detailed proof of all the claims in this Section is given in Section F.

Theorem 15 Let G = (V. E) be a tree and p* € Pg be a distribution with pj; € (0,1) for
all (i,7) € E. Suppose p is a stationary point of the EM update rule (49) with p;; € (0,1)
for all (i,j) € E. Then pi; = p;; for all (i,7) € E.

We will denote by p*! the distribution defined as p*!(z,y) := u*(x)a(y|r). We begin
by exploring a simple implication of the fixpoint conditions, according to the rules (7). The
proof follows by noticing that the conditional distribution of y given z is the same in f and

*,t
[T

Lemma 16 Let u*, i be the distributions defined in Theorem 15. Then, for any internal
nodes y1,ys that are connected by and edge in G

£ B o] Byl | = B

==

1] Ig[ygwx]]

=

2 [geF] - 2 [gtnlo7]. 2 [tmie?] -5 gt

10
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Hence, all we have to do is compute these conditional expectations in a suitable way, so
as to reveal some structure. Let N be the set of neighbors of y; in G and assume w.l.o.g.
that they are all non-leaf nodes (the case of leaf neighbors is even easier). The first step will
be to marginalize all the other non-leaf nodes except y; and ys. Denote by Y¢ the set of
non-leaf nodes that are not neighbors of 1. Then, let h;l, hfw be the information parameters
of y1,y2 after the marginalization of Y¢. Since no neighbor of y; was marginalized, we will
have h;l = 0. Suppose we remove the edge (y1,y2) from the tree. Then the set of leaves is
partitioned into two subsets. Call Sy, the subset that is connected to yo after the removal.
We show that hj, is a linear combination of the values of the leaves in Sy,. To do that,
we utilize the margmahzatlon formulas for Gaussian distributions, as well as the fact that
JYCYC can be thought of as a covariance matrix of some Gaussian tree distribution and

hence satisfies the multiplication over paths property.

Lemma 17 Let yo be a non-leaf neighbor of y1 and Sy, be the corresponding set of leaves
for the partition that yo belongs to. Then, the quantity h yo = hys — JyQYCJYcYChYC s a
linear combination of the leaves in Sy, .

A similar result holds for any neighbor y; of y1. Our strategy is to build a system of
equations similar to the one in Lemma 9. But in the proof of one latent, the variables of
the system corresponded to the covariances of the latent node with individual leaves. Here,
for neighbor ys we will define some variable that depends on a linear combination of the
paths leading to leaves in Sy,. In this direction, let’s define the vector H € R?, which has
one entry for each node in N. We define H; = h; .

So far we have marginalized on everyone except nodes in N. To gain specific information
about the interaction of y1,y2, we now marginalize also over the neighbors of y1, except
y2. Denote by Ny that set of neighbors. Let Ay, hy, , J" be the resulting parametrizations.
From standard properties of the Gaussian, we can compute these as follows

~ J, . -
Ui ! 127 2: Y1Yj5 4.1 /N ! 127 7/
h hyl JleQ(JNQNQ) hN2 - T hy] h‘yg - hyg_Jy2N2(JN2N2) hN2 - h‘yg
Y ENy;Fy2 “Yili

This follows by the fact that the matrix jj’\,z N, is diagonal, since the neighbors of y; are
not connected to each other, and Jy,n, = 0. To write this more compactly, we introduce
the vector r € R®, where r; = Jy,,,/J; , if i € N. Notice that r; # 0 always. Hence, this

relation becomes
hgl = Z T’Z‘HZ‘ (8)
i#y2

We are now close to arriving at the desired form of the polynomial equations. Since
we have marginalized over all nodes except y1,y2, we can now determine the conditional

expectations by the formula
Eafle]) _q (M)
Eglyola]) — “vele h”

11
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that connects the two parametrizations in a Gaussian. Here, 3 is the 2 x 2 covariance

yy2lx
matrix of the conditional distribution of y;,y2 given x. The reason we have used %, ,, |, is

that the covariance matrix does not change when we marginalize some nodes. Suppose

= 1 C2
E p—
y1yzlz c3 c4
with c1cq — cocg # 0. The reason the variances are not necessarily 1 is that we are now in

the conditional model. Then, the first fixpoing condition of Lemma 16 translates to the
following:

E [(Clhgl + CQhZQ)(CthI + C4hy2)] = zIEﬂ[(Qth + CQhZ2)(03hZ1 + C4hy2)]

xT~u*

We observe that this relation can be viewed as a linear equation in terms of the variables
Eppr (03] — Eonp[h3], Epmpr [h3] — Exmi[h3], Egopr [R1h2] — Egon[h1ha). The coefficients of
these variables are functions of ¢, ¢, c3,c4. We can obtain two other such equations from
the other two conditions of Lemma 16. It turns out that this 3 x 3 system has a unique

solution if and only if iylyz\x is invertible. This is the content of the following Lemma.

Lemma 18 Let ¥ be invertible. Then the conditions of Lemma 16 imply that

y1y2|x

E [ hy,) = E [ byl E ()2 = B ((h))2, E (W% = E [(,)?

ZNILL* Y1' Y2 fBNﬁ Y1 Y2 xN/I,* Y1 ZBNM*

Using the previous calculations for hy , hy,, the first equality of this Lemma can be written
as

o [Hy > riH; = E [Hy > riH; (9)
i#Y2 i#Y2

Now we are almost in the algebraic form of Lemma 9. All we need to do is get rid of the
expectations. So, it is time to compute them. Let ¢,57 € N be two neighbors. Then, we
know that H;, H; are linear combinations of leaves in the partitions of 4, j. Thus, by the
multiplication property E[H;H;] involves the covariances of all pairs of leaves from Sy, to
Sy,. Suppose that H; = (ai)TXyi, where X, is the vector of leaves in Sy,. By the path
multiplication property

E [HH)= E [()7X, )X, )= > aa] ] 0

Top Top
xkesyi,mleSyj GEP(mk,.Il)

where P(zy, z;) denotes the path between leaves z, ;. Now, notice that all the paths from
Xy, to Xy, will have to go through the edges connecting y; to y; and y1 to y;. Let p;, p;
be the correlations in these two edges. Then, using the multiplication over paths, Equation
(9) can be written as

12
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il D a I e Do el Do ad I »i

Tr €Sy,  e€Pp.y, y; EN,jFL €Sy,  e€Ppgy;

— 5. i 5 5. J 5

= pi § ay H Pe § Pj E @5 H Pe (10)
Tr€Sy,  e€Pg.y, y; EN,j#i rs€Sy;  e€Pugy;

In this form, we can define

wi=pi | Y ar [ ei|s@=p| > a [ &

mresyi 8€P($r,yi) a?rGSyi €€P($T,yi)

Now the condition is

W E riw; | = rjw; g 7W; (11)

i#] i#]

which is exactly in the form of the system of Lemma 9. By applying this Lemma, we
immediately get the following corollary.

Lemma 19 Let p*, i be defined as in Theorem 15. Then for every node i, if we define
Sy, in reference to some neighbor y1, it holds w; = w;.

If a node y; is connected to a leaf 2; with correlation p7, then we can extend all the previous
statements and define wj = p;,w;j = p;. This immediately implies that pj = p;. The proof
of Theorem 15 relies exactly on using the equalities implied by Lemma 19 in the correct
order, in order to guarantee that all correlations are the same in the two models.

Proof [Proof sketch of Theorem 15] We use the following procedure: in each iteration, we
select an internal node y that only has one non-leaf neighbor in the remaining tree (there is
always one such node). If e is some edge connecting y with some leaf in the tree, we declare
that p} = p. and remove this edge along with the leaf from the tree. After we do this for
all such edges, the current iteration ends.

First of all, it is clear that if a node y is selected for some iteration, then for the remaining
iterations it will be a leaf and not be selected. Hence, the process terminates after m steps,
at which point all edges have been examined. We prove inductively that at each step the
algorithm correctly infers the equality of the edges. For the base case, we already argued
that edges that are adjacent to leaves will agree in the two models. For some arbitrary
iteration, if y is selected and has a leaf neighbor x, then we use Lemma 19 on z with
y1 = y to infer that w} = w,. From the definition of w and the inductive hypothesis, the
parentheses multiplying p; and p; are equal in the two models, which implies that p] = p;
and the proof is complete. |
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Appendix A. Deferred proofs for one latent node
A.1. The EM does not converge to 0

In this section, we will prove the following two lemmas:

Lemma 20 The point 0 = (0,...,0) is a stationary point and there is no other stationary
point p with some p; = 0.

Lemma 21 The iterate of the EM algorithm satisfies lim;_ o p* # 0.
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First, we notice that the point 0 = (0,...,0) is a stationary point. Indeed, by (1), p' =
(0,...,0) then Al = 0. Together with, Lemma 2, this implies that p'*! = (0,...,0) which
concludes that 0 is a stationary point. The following concludes the proof of Lemma 20:

Lemma 22 [f pfjl > 0 for some i1 > 0 then, pf""l > 0 for alli. Consequently, if p satisfies
pio = 0 and p;; > 0 for some ig and i1, then p is not a stationary point.

Proof We start with the first part of the proof. Recall the update rule for the covariances,
from Lemma 2:

E o) = oty | X+ D pinf;
J#i

Further, from (1), we know that )\Zj’ > 0 whenever p§ > 0. In particular, )\§1 > 0, which
implies that for all i, E 1[zy] > ol opp; ,0:‘1 AL, > 0. This concludes the first part of the
proof. For the second part, notice that if u! = p then, by the first part, pltJrl > 0= p’;O,
hence @ cannot be a stationary point. |

The first part of the lemma follows from the update rule analyzed in Lemma 2, while the
second part follows directly from the first part and the definition of a stationary point. This
concludes Lemma 20.

For the remainder, we prove Lemma 21. The first part of Lemma 22 implies that if
7° # 0 then pt # 0 for all t > 0. It remains to prove that p' does not converge to 0 and we
will analyze the updates of the EM rule in the nelghborhood of p' =0, viewing p'*! as a
function of p'.

Lemma 23 If p! = 0 then p't! = 0. Further, there exists C > 0 such that for all
i,5,k€{l,...,n} and all p € [0,1/2]",

41 S 2 t+1
dri |~ 1* STl o< “p <
doj o \piv; i#7 dpjdpk 5
Proof We use the formula for p'*! from Lemma 2:
t+1 _ pf + Z];él Aij)‘t — fl(ﬁt)
’ w + 3 AN 9i(p")

Before computing the derivatives of pﬁ“, let us compute the derivatives of ! as a function
of p§ where the formula of A\l appears in (1). For any i, j, k and p € [0,1/2]",

1 i1=3 d?\
= Z j N and — C S tilt >~
o (0 i#J dp;dpy |5

d\!
dpz»

for some constant C' > 0. Using the fact that Al = 0 if p! = 0, we derive that

1 Jj=1i — = dgi(p
- 02 am=0, )
Ajj=pip; JFi P;

dfi(p")
dpE»

0

0

17



DAGAN DASKALAKIS KANDIROS

Hence,
d pt_+1

7

dp

_ dfi(@)

1 =i
5 pip G F

t+1

Similarly, the second derivatives of p;”" are bounded, using the bounds on the second

derivatives of )\2 . [ |

This implies that if p* approaches 0, then p'*! repels from O:
Lemma 24 There exists some ¢ > 0 such that if max; p, < ¢ then >, pt > >, pk.

Proof Using Lemma 23, we can write pﬁ“ as a Taylor series around 0

ko k C
iz o Y ke = ) bk
i I

Summing over i, we derive that

SO0+ pinies =) %pﬁ-pk

i i#j ik

While the second term in the right hand side is Q(max; p!), the third term is O(max;(p})?).
In particular, if the constant ¢ > 0 from the definition of this lemma is sufficiently small,
then the second term dominates the third and the proof follows. |

To conclude the proof of Lemma 21, assume toward contradiction that p — 0. Let
¢ > 0 be the parameter from Lemma 24, and let 7' > 0 be the iteration such that for any
t > T, max; p! < c. From Lemma 24, this implies that for any ¢ > T, > pﬁ» > pJT. From
Lemma 22, Zj p? > 0. In particular, liminf; Zj pé- > Zj p]T > 0 which implies that
lim;_ o p' # 0, as required.

A.2. Stationary points with some p;, =1

In this Section, we analyze the case of stationary points such that there exists at least one
1 with p;1. We show that EM will never converge to any of those points. Let us start with
the case where there are at least two 4, j such that p; = p; = 1. In that case, let © be the
distribution at this point. Also, let

Lip) = E logPr(z)

T~ p*

be the log-likelihood function. The following lemma shows that the EM algorithm will never
converge to this stationary point.

Lemma 25 We have that
lim L(p) =—o0

pi—1l,p;—1
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Proof We can write the log-likelihood function as follows:

L(p) = E logPr(z)

Tt

= E log (Pr(wz,x])Pr( T\ {i,j} ]xz,ajj)>

Tp*
= xlEu 1ogPr(:L‘z,xj) —I— E logPr( T\ {i,5} ’ ﬂjz,SL’j)

The second term is clearly upper bounded over the whole region. For the first term, it is

clear that

E logPr(zi,z;) = —KL(w (i, ), pli, 25 p)) = LB, log (i, )

Tt

and it is clear that
lim  KL(p"(xi, ), p(xg, x5 p)) = 00

pi—1l,pj—1

while the second term is constant. It follows that

lim E log Pr(:cl, xj) = —00

pi—l,pj—1x~p*

which completes the proof. |

Since the EM is guaranteed to improve the value of the likelihood at every step, it is
impossible to converge to this point.

Now, let us consider the case where there is exaclty one ¢ with p; = 1. Without loss
of generality, suppose p; = 1. The reason this is a fixpoint is that if p} = 1, then y = z;
in the conditional model of y given z, which means that p!*! = 1. Then, by the fixpoint
equations we immediately get that in the fixpoint we should have

pi = p; p1

for ¢ # 1. From now on, when we refer to p, these will be the values that are implied.
We would like to show that when we start running EM from a point in the interior of the
region, we will not converge to this stationary point. However, we already know that if we
start from a point with p; = 1, then inevitably in the next iteration we will converge to the
stationary point values for the other variables as well. Hence, this stationary point will be
a saddle point of the log-likelihood.

In particular, we will prove the following Theorem.

Theorem 26 Let p be a stationary point with p1 = 1. Then, there exists an g > 0, such
that the following condition holds: if we start running EM from any initial point p° that
satisfies || p° — pll2 < €0 and such that p? < 1 for alli, then after a finite number of iterations
t =t(py) we have

1" = pll2 > €
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We stress that the number of iterations ¢t depends on the initial value pg. Let us argue why
Theorem 26 implies that EM does not converge to p from any initial point inside the region.
Indeed, if EM converged for some initial value p°, then for any ¢ > 0, and in particular for
€ = €q, there exists some iteration 71" such that for ¢ > T we get

o' = pl <€

However, if we apply Theorem 26 for p° = p”, we get that there should exists some ¢t > T
with ||p* — p|| > €. This is a contradiction to the convergence claim. Hence, it suffices to
prove Theorem 26. The first step is to establish the following Lemma. It’s purpose is to
show that if the distances of all the coordinates are roughly equal, then p; will move away
from the fixpoint value of 1.

Lemma 27 Let p' be the current iteration of EM and define
€:= m?x|ﬁi — ol
Then, there are constants C, K > 0 such that
Pt <Pl = Clph — 1P + Keé?
Proof The proof consists of viewing the update rule as a function of the previous step and

writing the Taylor expansion of the this function around the fixpoint p. In particular, we

define the function ..
p1+ 22 521(P1P) — PIPA)

\/1 + Zj,k;; j;&k(Pij - P;PZ))\j)\k

f(p)

where
Pj
)
1 pj

A= ——
T+ o7

Clearly, we have that

Fp") = o
We will compute the Taylor expansion of f around the fixpoint p. We start by computing
the first derivatives of f at the fixpoint p. To do that, we need the derivatives of \; with
pi- We start with the case ¢ = j

o) Pi
O\ B Op; \ 1—p?

) 9 Y p32.2 (1fip?>

Opi /i Op —~ 1 —p? 2\
R ’ ’ <1 +2 1—'23-)
1 207 pi
_1-p7 " (1-p})? ( 2p; 1—p?
N ’ (1-p})? 2 \?
L+251 ]pQ ' <1+2j 12)2)
Al ,Oi/\l )\%
== 4205 -2
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Let’s evaluate the limit as p — p. We know that as py — 1, we will have A\ — 1 and \; — 0
for j # 1. Based on these observations, we have that

17p1
P1 — 2
1+5. 2
lim LT A
2 2
pi—1 1 —p7 1—p7
Jj_ _ _P1
p1+p12j1 P2 1_p%

1

Jim, p1+ L) E
J;ﬁl 7

S

= _ 2

Pl

Hence,

p—p Op1 o 1 — PJ )2
For j # 1, we have
Pj P
9\ _ 9 - 1-p] 9 < Pi )
Op;  Op; o 0 1—p?
Pi pzleZk 1J€pi ( +Zk1 ey ) Pi P
Pj
_ 1-pj 2pi
- 02 21 2)2
(1+55) 00
A1
= 2 2%
1—p;

pi—=11—0p
Hence,
oA )
lim J —_ pj/il )
p—p Opi 1 —(pip7)

What we mostly care about is that these derivatives are bounded. Now, we are ready to
compute the various derivatives of f at the fixpoint. We will use the notation Aj, :=
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Pi Pk = PjPk-

P
of o ('01 +2 Alj)‘j) 1 p1+ 22501 AL 0 ) A
o R 3 2o 1T > AirAide
VI Sk jn AidiA (14 e g ki) jk ik
oA
_ I+ Zj;él AljaTi - Zj;él Ajpj
\/1 + D ke ok DkA Ak
1 p1+ D A1 AN AN
— 5 i71 e 3/2 2 81 ]Alj _QZAl)\]pJ Z a] kA]k
<1+Z. , A-AA) j#1 #1 ikt OP1
Gk j#Ek DIk J J J

Now, let us examine what happends when we plug in the fixpoint. We know that
Ay; — 0 and A\; — 0 for j # 1, hence the entire first term tends to 1. As for the second

term, we have
i p1+ 20521 A1jA;

p1—1
' (1 + 2 ks otk Ajk)‘j)‘k)

=1

3/2

Also, notice that

A _ O, 0N

= ' W
Ip1 apl 3P1

is bounded, hence

lim > s Ay =0
s dp;

It is also clear that

lim Z/\l)\]pj =0

pPi—

J?ﬂ
Lastly, we have
ONj A dAy O\j
=\ + A —0
dpi Tdp; " "Fdp,
Hence, the second term tends to 0. Hence,
lim ﬁ =1
p—p Op1

Let’s now calculate 0f/dp, for some u # 1. Using the exact same calculation, we arrive at

the formula

o\
af _ 221 D1igt = Aupr
Opu \/1 25k gk DEA Ak

p1+ D1 Ay A\
2y e 2> Mg — Y
3/2 uj ufj —
(1 + Zj,k:: J#k AjkAjAk) JFu JFu J#k#u

N

u

1
2 i
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This time, both the first and the second terms converge to 0, hence

Now, we move on to the second derivatives. First of all, let’s compute the ones for A;.
We just want to ensure that they will be bounded.

82)\j _ i (_2 )‘1>‘j >
Pp1 I \ T1-pi

_ (8/\1/ap1) 2(8)\]'/8/)1)/\1 . Al)\jpl
1—pf 1-pf (1 - p7)?

_ (ml/@pl) iy NAE MAie
1—pf 1=p})?  (1—pP)?

_ (8)\1/8[)1) +4 )\1>\j <)\1 — p1>
1—p 1—pf \ 1-pi

The first term is constant in the limit and the second term is also constant, since the limit
lim,, 1 (A1 — p1)/(1 — p?) has been shown to be constant. Similarly, we have

2N 9 (_ AN )
8plapu B 8pu 1- pl
(a)‘l/apu)A + 8)‘ /apu)

1—pi
M A

A= 0—p2)  a=p)-72)

It’s clear that both terms tend to 0. Finally, let’s calculate

=4

2 2
3>\1_5<)\1+2P1)\1_ )\1>

- 2
»p1 Ip 1—pi "1-p%

a (A o\ — A 0 — A
_ 0 (1> NPT s P W <P1 21)
dp1 \ ;1 op1 1—p7 op1 \ 1 —p3
By taking the limit p; — 1 we verify easily that the second derivative is bounded.

Now, let’s compute the second derivative 92 f/9?p;. To make the presentation easier,
we derive each of the two terms separately.

O\s 92X O\ [o2¥;
0 (1 X Bug — 2p A | 2 Blige — 2 95y Pi ~ 21 Gpr P
AN ES ST NiED VRPN

2%}
B 11"‘2]7&1 Aljaipi _233&1 pr Z d)\lAJAl _22)\1)\ Py Z a)\]AkA
J Iy

2 A Cop "
(1 + 2 ik ik jk)\j/\k> j#1 J#1 jEkAi

23



DAGAN DASKALAKIS KANDIROS

In the first term, the final result once we take the limit is
—2 Z Pj ap] ‘p
J#1

As for the second term, the rightmost parenthesis is 0, as shown in the calculation of the
first derivative. Now, let’s move to the second term. We want

o1 p1+ 2052 DA d)\l)\] ONj A
ap1 2 75 (22 g, BT 2) M= ) Bpy b
(1 + 2k gk DA /\k) i#1 J#1 kA
We can view this as a product of three terms and use the product rule. Notice that the

third term is 0 in the fixpoint, so when deriving the first two terms we will get 0 in the final
expression. Hence, the only term that matters is

5 = — 3/2 apl Z 1 JAU — QZAl)\Jp] Z a]plkAjk
(1 2k Ajk:)\j)\k) #1 ki
1 P1+ D s BrjA Za AlA]A zzd/\l)\ ‘_QZdAlxj S PNk
_2(1+z A )\)\)3/2 v dp1 2 "opy 1T 2 Ty T
Gkt Ak SIRATNE 7#1 J#1 J#1 jAkA
First of all, as usual we have
+ i AN
lim oLt g B 57 = 1
p—p
Also, we have
0? >\1
lim AL =0
p%pz L
O O\ d\ O\
lim =1 A J
P;PZ (9/)1 Pi pgnz<1 p - Jap> ij |pp

Hence, we get the same expression as in the first term and these two cancel each other. We
are only left with computing the term

) [ORDYD)
it 7P
If we set g(z) = x/(1 — 2?), then we get

2 . 2 2

~ 2 ~ 2
pﬁpj;«ék;él 8 L1 pP—p Jri) 8 ,0 0 (9p1 d,Ol
=8 > g(pirh)gloion)son(l — (p1)%)
J#EFAL
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Hence,
o ==4 Y glpir))a(pier)pipi(l = (p1)?) <0
J#k#1
Let’s define
=2 > g(pirh)glpion) i1 = (1))
J#k#L
Clearly C' is a constant depending only on the true model. Now, let’s compute the other

mixed derivatives. Let u # 1. We will compute 92f/9p10p,. Again, for convenience we
will derive each of the two terms of dp}/dp1 separately. We have

O\ 0%\, dha O
0 (1 By — NP | i Aligpaen — GpPL T 2 gpuli ~ Mu
BNV SN YN NCED VPN
0N,
1142050 Ayt = 2221 NP d)\ )\] ONj Ak
-5 73 T A =2 Xadipi— D B Ay,
<1 + 2k ok Ajk)‘j)‘k) ol J7u J#hFu

From the first term, the only term that survives in the limit is

Do
Ip1 PLlp=p opr 77

We turn to the second term that needs differentiation. This is similar to what we had
previously, where the only term that matters is

1 p1+ 2052 A1jA o NPT ONj Ak
92 3/2 §p,, 22 dp1 AU_QZ)‘l)‘Jf’J Z ap1 Ajk
(14 e g ki) 771 71 Pt
1 p1+ 2052 A1jA;
T2 3/2
< +Z]k ]#kA]kA )\k)
EPNPY dA1 )\ dA1 A 0%\ 8)\ )\
Zap Dy B — 275 S = 2) 5 = 2 = 3 S R A
10pu 1 7 OPu k1 O PLPu jFul
The only terms that survive in the second parenthesis are
O Ay
-2
ap P1
In the limit, this is equal to
O
Ip p=p
We see that this exactly cancels with what we got in the first term. Hence,
0’ f R
aplapu =
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Similarly, for v # v # 1 we get
82
f oy
Opudpy

By similar calculations we can easily show that the third derivatives will also be bounded
in a neighborhood of p. By using the second order Taylor Theorem, we get that

af 10%f
t+1 __ t - 7
pr =1+ (o1 1)8[)1 |p=p +2 82p,

= p1 = Clpt =17+ 0(€)

=5 (1= p1)* + O(”)

Using Lemma 27, it is clear that there is a second order term that is pushing p! away
from 1. Notice that this implies that we do not have a strict saddle point. However, the
third order term depends on the distance of all the other coordinates from their fixpoint
values. Hence, in order for the second order term to dominate the third order term, we need
to prove that |pf — p¥pi| is roughly the same size as 1 — p} for all i # 1. Obviously, with a
bad initialization, this might not happen. However, we can prove that after one iteration
of the EM, this will always happen, no matter the starting point. This is the content of the
following lemma.

Lemma 28 Let p' be the current iteration of EM. Then, there exists an € > 0 such that if
ot — plloo < €, then there exists an absolute constant M > 0 such that for all i # 1

ot = piptl < M(1—pith)

(2

Proof Let us fix an ¢ # 1 and define the functions

_ Pt apipg — pipj)A
| \/1 + ijk: j;ék;(pjpk - P;PZ))\j)\k
i+ a(pips — iy
| \/1 + Zj,k; j;&k(pjpk - P;PZ)Aj)\k

. filp) = pipd
rilp) = filp) —1

We will show that the limit

lim 7;(p)
p—p

exists and is bounded. First, let’s fix the coordinates p; for ¢ # 1 and have p; — 1. This
means that A\; — 1 and \; — 0 for j # 1. Notice however that we do not have A;; — 0,
as the values of the other coordinates are not in the fixpoint yet. However, we will see that
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this will not matter for the computation of the limit. We have by L’Hospital’s rule

5£1‘(P)
. . — . pl
plllgll " (p) p111g1 9f1(p)
dp1
O\ O\;
= Z TpiAij — A1pi — aT)iAlj
J# J#1

Now, we take the limit with respect to the remaining variables, which gives

O\
lim r;(p) = L s pipi (1 = (pD)?) = pipt
p—p 7«(p) Z apl |,0*P pzpj( (pl) ) Pi P1

J#i
This is a finite quantity that depends only on the true parameters, hence it is a constant.
Since the function r;(p) is continuous, we get that there exists an € > 0 such that if
o = pllec < € then

ri(p)l < M
for some M > 0. Substituting p = p' gives

Pt — pip
Pt =1

<M

which is what we wanted to prove.
|

With Lemmas 27 and 28 in our hands, we can proceed to prove Theorem 26. The idea
is the following: if in the starting point p° the distance of p{ from 1 is much less that the
distances of the other coordinates from the fixpoint values, then in the following iteration
they will all come closer to the fixpoint, so that all the distances are comparable. This
means that even if the algorithm starts from a bad angle, it will quickly correct itself to a
good angle in the next iteration. After that, in the following iterations, the second order
term computed in Lemma 27 will dominate the third order term and repel p; away from 1,
until it gets out of the ball.

Proof [Proof of Theorem 26] Let €; be the value of € from Lemma 27 and €3 be the value
from Lemma 28. Also, let €3 be small enough so that

Ceé?/2 > KMé

for all € < e3. We choose ¢y = min(er, ea,€e3). Let p° be a starting point of EM with
p° — pll2 < €0 and ;3? < 1 for all 4.

Let t > 1. If ||p" — p|l2 > €o for some ¢ < t, then we have nothing to prove. Suppose
|p" = pll2 < €o for all # < t. Then, by applying Lemma 28 we get that

lpi — pipil < M(1—p})

for all 4 ## 1. This means that by applying Lemma 27 and by the particular choice of ¢y, we
have that

C
P <Pt = =)+ KM(1= ph)* < ph = (1= py)?
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This implies that

C
5(1 —ph)?

This holds for all times up to ¢. If we set oy = 1 — p!, this implies the recursive relation

L=p>1—pf +

ot > af 4 %<at)2
It is obvious that o is an increasing function of ¢, meaning that o’ > a°. This means that
altt > ot + %(aO)Q. Since o’ = 1 — p? > 0, we have that lim;_ o o’ = co. This implies
that there exists a finite time 7" such that
1-pl=a'>¢

This implies that ||p! — p||2 > € and the proof is complete.

[ |
A.3. Deffered proofs from Section 2
Proof [Proof of Lemma 2] Using Lemma 1 and Claim 1, we derive that
n O't
E [ziy] = E [z;y] = E | E [z;9] E E[y| =E |z;Y ZNz
it ! e ' bl “typ: ! J7 H';/\ac My ij; Cf§- 7
no gt
= PN E [mi) = oyoiN + 3 oyoiNipin) = ool | X+ D Nieip;
j=1 "7 ° J#i J#i
(12)

This concludes the first expression for E :+1[2;y]. Next, we would like to show that the
second expression equals the first expression. First, recall that in (12) we have shown that

E

4 E [z;y]
W

t
Hyla

=oy0f | Ai + Z Nopip;
J#i

If we substitute u! instead of u*, we derive that

E

E my}] —otot [ Al
J#
Since the right hand side equals

E[xzy] - U przv

we derive that

O'O'y,OZ—O'O'Z )\t+Z)\tpzpj =0. (13)
J#i
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Adding the left hand side of (13) to (12), we derive that

E low) = afol, [ o+ (pie; — Pie)N: |
J#i

which is exactly the second expression for E 11 [7;y]. Next, we compute the variance for y,
again, using Lemma 1 and Claim 1:

2
no_t
2 2 o | _ Tyt
Ell=ElI=E ,}ti[y J|=E z; - Ao (14)
Ji
n o n O't t n
- ;?A 7? [.17@.%‘]] (02)2 Z(AW + Z )\t)\tpZ P;
i=1j=1 "1 i=1 i#je{1,...n}

This derives the first expression for the variance of y. We derive the second expression
using a similar logic as in the calculation in the second expression for E i1 [z;y]. First,
substituting p’ instead of p* in (14), we derive that

n

= (@) [ D002+ D ANl

i=1 i#j€{1,...,n}

(0,)’ =Ely’] = E
ply

E [y’
Poyla

This implies that

n

(@) [1=Y_0D2 = > ANl | =o.
i=1 i#je{l,...,n}

Adding this to the expression in (14), this yields the second expression for the covariance
of y, as required.

Lastly, the expression of pltJrl is derived, by definition of p;,
1 _ E#tJrl [xzy]
Pi

VVar e [zi] Var i [y]

and by substituting the expressions for the covariance of x; and y, the variance of y, and
using Lemma 1 which argues that Var,e1[z;] = o7 [ |

Proof [Proof of Lemma 5] Yuval: Elaborate if there’s time The convergence of p! to some
p € S follows directly from Wu (1983). For the second part of the lemma, assume that p € S
and by deﬁnltlon of a stationary point, p't! = 5. Further, by Lemma 2, we know that

obtl = o} = ol for all t. This implies that pf ., = u?{l .z, - In particular, KL(p*||u") =
KL(,u HMH). Yet Wu (1983) implies that if ut“'l # ut then KL(p* || ) < KL(p*||pd).

Hence, p!'™1 = pt as required. |

Proof [Proof of Lemma 11] We will analyze the transpose of the matrix in (5), assuming
that J;; = u; for any ¢ # j. Indeed, the original matrix is singular if and only if its transpose
is.
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We would like to show that there is no nontrivial solution a for Ja = 0. We have

(Ja); = Zajuj + ai(z uj) = ZajUj + ai(z uj — 2u;).

JFi J#i
Substitute s = > u; and u =} aju;, we have
(Ja); = u+ a;(s — 2u;).

To solve the system of equations Ja = 0, we assume without loss of generality that u; =
max; u; and divide into cases according to u;. First, assume that u; < s/2. Then,

(Ja); =u+ a;i(s —2u;) =0 (15)

implies
—u

a; = .
s — 2u;

The equation ZZ u;a; = u implies

zi:uz‘ai = Z S__u;;l = u. (16)

)

Notice that u # 0. Assume towards contradiction that v = 0. Then, we have
0=a;(s — 2u;).

Dividing by s —2u; we get a; = 0 for all i. Since we look for nontrivial solutions a to Ja = 0,
we assume that a # 0 which implies that u # 0. Dividing (16) by u we get

—u;
=1. 1
Zs—Qui (17)

7

By the assumption u; < s/2 we have s —2u; > s—2uq > 0. In particular, the left hand side
of (17) is negative while the right hand side is positive, hence there is no solution! Next,
assume that u; > s/2. In this case, we have u; < s/2 for all i > 2, since ), u; = s. Here,
(17) is still valid, and is equivalent to

U1 Uy
1=
2u1 — S ZS—Qui’

which is equivalent to

S — Uy Z Uq
2up —s 4~ s—2u;
i>1

Here, we will show that the left hand side is strictly greater than the right hand side, which
implies that there is no equality. First, notice that for any ¢ > 2, 2u; — s < s — 2u;. Indeed,
this follows from s = > ;jUj > u1 + uj, since all u; are positive and n > 3. We derive that

S — Uy (7 (%
2u; — s ' Qup — S s — 2u;
1>2 2
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which arrives at a contradiction. Lastly, assume that u; = s/2. Since s = > ' | u; and
n > 3, then for all i > 2 we have u; < s/2. Recall (15) which states that

0= (Ja); =u+a;(s — 2u;).

Applying with ¢ = 1 we obtain
u = 0.

For all i > 2 we have
a;(s —2u;) =0

which implies that a; = 0 for ¢ > 2. By definition of v and by the computations above,

O0=u= E a;u; = aju.
%

Since u1 > 0 we have
aj] = 0.

We conclude that a; = 0 for all ¢ which implies that there is no nontrivial solution for
Ja = 0, as required. ]

Appendix B. Upper and Lower bounds for EM iteration

We will denote by pf, 8 the vector of correlations, covariances at time t. We also denote
by p, the density of the distribution on leaves with correlations p. Our first task will be to
show that if we initialize EM at a constant distance away from the optimum, it will always
remain in a bounded distance within that optimum.

Theorem 29 Suppose that min; pY > c1,1 — max; p{ > co, where c1,co € (0,1) are con-
stants. Suppose we have access to m i.i.d. samples V), ... (k¥ from the distribution p}.
Let pt be the correlations produced by the EM iteration run using these samples. Then, with
probability at least 1 — &, there are absolute constants C,C’ > 0 such that for all t > 0, 1

and k = 5: :
O, O
k2 =P = nAk+9

We will break the proof of Theorem 29 into multiple lemmas over the next few Sections.

B.1. Two correlations cannot be close to 1

We will first be concerned with establishing that all p; remain bounded away from 1 in all
iterations. Our first Lemma contributes in this direction. It says that no 2 coordinates i, j
can have p;, p; simultaneously close to 1.

Lemma 30 Suppose that min; p? > c1, 1 —max; p? > c9, where c1,c2 € (0,1) are constants.

Suppose we have access to m i.i.d. samples zV, ..., z*) from the distribution wh. Let pt be
the correlations produced by the EM iteration run using these samples. Then, with probability
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at least 1 — 4, there exists a constant ¢ = c(c1, ca, p*) such that for all t, there exists at most
one i € [n] such that pt > 1 — c/(n?n), where

log(n/4)

Proof We use the fact that EM always improves the value of the likelihood function. We
consider the likelihood of a given observation on the leaves as a function of the standard
deviations at the leaves o,, and the correlations p; between xz;,y. Let o, be the vector of
standard deviations and p the vector of correlations. The empirical likelihood function can
be written as

1 m
L(p,oa;a®,....a®) = — Tlog 0, ()

From now on, we will omit the dependence on the samples 2™, ... 2(*) whenever it is
implied. We have that

py O—ZE = Zlog:u‘PJx )

1 1 & .
= —5 log (27T ’Ep,o’z - % Z p,g’z ( )
k=1
1 L,
= =5 10§ (27 [y, ) = 5tr (zp,},zz> (18)

where 3 is the empirical covariance matrix of the samples. Recall the closed form expression
for KL of Gaussians.
|2s]

LN, 50N 0,52) = 5 (log 21 = n 4 1r(2550))

From this, we conclude that

L(p,oa) = =5 = 5log (2 [5]) = KLV (0, 9)IA(0, 5,0,)

Let us start by lower bounding L(p°, 09). We are going to upper bound K L(N(0, £)||JN(0, ¥0,60)))-
The matrix 3, ,, can be written as a sum of a rank 1 matrix and a diagonal matrix. We

will use this to evaluate determinants and inverses of these matrices. Specifically, for any

p, if o, is the all 1’s vector, we have that

1—-p3 0 L 0
Spoe = (:) : B (:] +pp" (19)
6 0 o1 - P2
We will denote this diagonal matrix as diag(l — p?) for convenience. From now on, we
will omit the dependence on o, if we have unit variances (which happens for p° and p* for
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example). Using the Sherman-Morrison formula, we get that

diag(1 — p*)~'pp " diag(1 — p*)!
L+ pTdiag(l —p?)~1p

-1 _ g 2\ -1
¥, =diag(1—p7)"" — (20)

We will first try to bound tr(E;()lEp*) and then show that it is close to tr(ijolf]) Thus,
after some algebraic manipulations, we have that

2 0

(P} )4
2 TP

(i) - (=) + o
1"‘211(&70)2
(Z g Gl )) (ZZ( 1)—(20/33% ) 5 A )>>( 7
1+Z" 1- (p

tr(Z;olEp*) =n-+

=n-+

Now, notice that the function z ~— z%/(1 — 2?) is increasing. This implies, using the
assumption of the Lemma, that

0)2 2
S e
p 1—(p7) L—cq

Also, since the function x + x/(1 — 22) is increasing, this implies that

3 PR +p) o, 1

- TSy
and
0V( 0 _ % —
Z(pi)(m 2 <om 1—c
— 1—(p))? 1—(1—c)?

Also, for all i we have

[(p)% = (p))?] = |pf — PYllpy + p| < 2

By monotonicity again, this implies

0V2(( /¥\2 _ (0)2
Z(m)((m) (pi)%)

0)2 1— )2
i (p?)2)2 (ps) <9 ( 2)

S A= (02 T T - (1 - )P

%

Putting all these facts together, we conclude that there exists a constant C = C(cy, ¢2),
such that

(pl)(pz —pl D) (p2+p5) +pl) (P92 ((p1)*=(p)%)
(Ei = )(Z - () )*Ei (1—(0))?

L+ 5

< Cn (21)
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Now, let’s focus on tr(E;olﬁl). By standard Chernoff bounds, we have that with probability

at least 1 — ¢, for all 4,
_0 ( log(n/5)> —
m

A

‘(Ep*)z‘j — X

We have
(S5 E - 50)) = 20 () — )
z’-?
Hence, all we have to do is bound the entries of ¥ 7}. For this, we can use the Sherman-

Morrison formula, which we also used earlier. Let’s start with a non-diagonal element i # j.
Then, the formula gives

P A
1-(p0)2 1-(p9)2 1
‘(Epo)ij‘ - —(pOJ)2 < 2
Ly
For ¢ = j, we have
1 ( 2 )2 1 1 1
1-(p?)?
‘(Epo)u‘: 2 t 0 <5< —+—=
_ (p9)2 2 2
L= 1473, - p(p?)2 Gl 2 4
Hence, with probability at least 1 — ¢
‘tr (2;01(2 - 2,;*))‘ < Cn*n (22)

where C' is some constant. Now, let’s calculate the determinant. We use the matrix deter-
minant lemma to compute |X,|.

2
[Sol = (1+ p"diag(1 = p*) 7 p)ldiag(1 — p*)| = (1+ ) _ 1 f’pg) [T

%

This gives us

L—(p))?
1 P U
i Z BT ()

The function = + log(1 — x?) is decreasing, hence we have

1 (p?)Q

S0 + 2

5,0~ loe %
P L+ =y

log

1—(p))? 1—cf
log ——5 < nlog
Zi: 1—(p;)? €2

We also have
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Finally
(p})?
P> Cn
; 1- (Pz’)2

It follows that there exists a constant C" = C’(M, p*), such that

<C'n (23)

However, in the expression we have ¥ instead of ©*. We use the property that

dlog | A -1
b= kel R
0A
We already showed that the entries of Z;l are bounded if p is upper and lower bounded by
constants. Using this and Taylor’s Theorem, we get

hype
10g|‘f|

< Cn? 24
e n (24)

for some constant C'.
Using inequalities (21) and (23) together with the expression of KL, we conlcude that

KL(N(0,%,)[IN(0,%,0)) < Kn

where K = K (p*). Also, using this result and inequalities (24) and (22) we get
KLN(0,2)[IN(0,E50)) < K'n’n

Overall, by equation(18) we get that

1 .
L(p°) > —g - 510% (27r ‘ZD — K'n?n
for some K' = K'(c1, c2, p*).
Now, suppose for some iteration ¢ there exist two indices 7,5 with pf > 1 — e,pg- >
1 — €, where € will be determined in the sequel. Now, let us upper bound L(p!). By KL
subadditivity, we have

L(p'ot) = 2 - %log (27 [8[) - KEW(O, 9N, B 00))

— g — %log (27T ’i’) — KL(N(0, i:zi,zj)HN(Oa (Ept703)$ia$j>)

where in the last equation we are comparing the marginals of the distributions on x;, z;.
The marginal distribution of z;, x; is a gaussian with zero mean. First, we will analyze the
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ideal situation where we have ¥* instead of 3. Using the closed form of the KL divergence
between two Gaussians, we obtain:

KL(N(O E* ) ‘ (0 (Ept,a;i)%,&?j))

|
1 1= (pir§)® 1 L =plpt\ (1 pipt
= — | log o 2t ot ¢t x
2 —(pip ]) (1- (pipj) —PiPj 1 Pi Py 1
1 log G Nl [ 10
= (p}p})? 1 — (piph)?

Then,

. 1 1—p;pj/4
KL(N(O Exl x])HN(Oa (Zpt,og)fti,xj)) > log(l - (p§p§)2) —2+2 1 jt )
2 1 (pipj)

Now, for any constant ¢ > 0, consider the function f(z) = x(logx + ¢/x). This is a
continuous function on (0,1) and it is easy to see that it is decreasing for x < 1/e. Let zg
be a small enough constant such that xglogxg+ ¢ > ¢/2. Then, for z < x

¢/
xT

f(x) > f(xo) = logx +c/x >

Now let ¢ = 2(1 — pfpj/4). If we set e = d /(nn?) for some suitable constant ¢/, then we
have that

1= (pipj)? <z

and
KLN(0, %5, DN, (S 0t )a2;)) > (K" + K")n?n

where K" is a constant that will be determined now. Using the exact same arguments as
in the case of p°, we can show that

KL(N<O7 Zzi,xj)HN(Ov (2/)’5,0;)%7:6]')) - KL(N(Ov E;hxj)HN(O, (Ept,aé)mi,l’j)) < K//n
for some constant C. It follows that
1 ~
L(p', o) < —g - ilog (27r ’ED — K'n?*n < L(p°)

This is a contradiction, since the likelihood value increases at each step of EM. This gives
us the desired result.
|

B.2. No correlation can be too close to 1

In the previous Section, we showed that two corrrelations cannot be close to 1 at the same
time. In this Section, building on this result, we show that in fact no correlation can be too
close to 1. Hence, each p; is upper bounded at all iterations of the algorithm. This is the
topic of the following Lemma:
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Lemma 31 Suppose ||p° — p*|lc < M. Then, for all i and for all t, pt < 1 — C"/n*+9
where C" is an absolute constant and k > 5.

Remark 32 The proof is assumes that the executed dynamics are according to the popula-
tion EM. The extension to the sample EM is straightforward.

To prove it, we will essentially prove that no p; will ever get really close to 1. The
proof will be similar to the one that established divergence from the saddle points at the
boundary. We start by stating a direct Corollary of Lemma 30.

Corollary 33 Suppose ||p° — p*||ec < M. If for some t we have p} > 1—c/n, then for all
i # 1 we have p! < 1— c/n, where c is the constant of Lemma 30.

Our strategy now will be the following: we want to show that p; will not be very close
to 1, without loss of generality. First of all, we want to argue that if it comes close to 1, it
will immediately start moving away. We do this by showing that after one iteration of EM,
the errors of the others will be comparable to the error of p;. We showed a similar claim in
the proof of divergence from stationary points. The difference here is that the errors of the
other p; can be close to 1, while in the original proof they were assumed to lie in some ball
around the fixpoint. Hence, we prove the following Lemma.

Lemma 34 Suppose that for some t we have p! < « for all i # 1 and p} > B, for some
a,p € (0,1). Define

R= R(a,8,n) = n*—— " "

~ i I—ap T Pl—a) (%)

and assume that (1 — B)R < 1/2. Then, for all i # 1

1+ 2% +R
it —pipil < C —~ih) Lo 0 e pith
1- (1 + m) Fia "V mrar ~ O

where C is some absolute constant.

The first step to proving this Lemma will be to show that if all p; are bounded away from
1 except p1, then A; will be small for ¢ ## 1. This is the content of the following Lemma.

Lemma 35 Suppose for some p we have p; < « for all © # 1 and p1 > 3, for some
a,B € (0,1).Then,

P1

Al > ——————

P lyonia

and ( )

2(1 —p
i < —— L
T A1l a)
for all i # 1.
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Proof We have

Pi
1—p2 Pi
A= P’ - p2(1-p?)
1+ Zj 1—p? 1+ Z]#Z 1—p?
For i # 1, this implies
1 1—p}
Ai < 5

- p;(1=p7) = p2(1 — p?

D it =7

We have 1 — p? = (1 —p1)(1+p1) <2(1 —p1) and 1 — p? = (1 — p;)(1 + p;) > 1 — a. This
gives
2(1 —
A< 20 =p)
p*(1—-a)

We also have

A = 1
N p2(1-p?)
L+ 2

We have that

2 2

(1 — 1—
Z Pji 2’1) <on ; P1 A > P1l_p1
A —P; -« L+ 2n

We are now ready to prove Lemma 34.
Proof [Proof of Lemma 34] We will first prove that

oi ™ = pipil < Cla, B)lph — 1 (26)

for some constant C'(«, 3) that will be specified in the sequel. We have that

ISR Pi 32 (PEp% — Pip%)A,
T T
\/1 + 225k NN (05 0% — PGpg)

— PP

As usual, denote A';fj =p;pj — p?p?. Also, let
U= NN (o507 — pll)
Jj#k
Hence, we can write
1o — prpt| = i +z#iA§j)‘§‘ —ppiv1+ U
P PiP1 m
i+ M (pipt = piot) — pipiVI+ U+ 305, AN,
V14Ut
M = VI+UY(pipi = pipt) + pi(1 = pivVT+ U + 30,41 AL
V1+U?
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Let’s start by bounding U?. Using lemma 35 have that for j, k # 1:
21— pl) \?
tyt AL 1
AN < 2 (gzu_a)
If j =1 then

. 2(1 - pY)
IH%@MVWWMS2@aj5

Hence, we conclude that

8(1—pfh)* 1 —pf
t < 2 1 1
< e T B - a)

By Assumption(25) we have that the right hand side of the last inequality is < 1/2. This
gives, by a simple Taylor approximation, that

IV1+Ut—1| < C|UY

for some constant C. Hence,

t 1— t\2 1— t
|AE — \/1+Ut\<])\t—1]+]\/1—|—Ut—1\<1—7+Cn2M+4Cn27p1
1420220 Ail-a) F(1-a)

2n 2 8(1 — pf)? 1—pf

We also have

8(1 —pf)? 1—pf
1—p/14UH<1=p+p1=V1+UH<1-p+Cn® ——"L 4+ 40n— "L
1=pivV1+U <1—pi+pi +UN<1=p1+Cn B0 — a)? + "1 - q)

Lastly, we have

t yt ﬂtl
AN <dn———
J#Zzl o (1—a)
Hence,
2n 2 8(1—p})? 1—p}
‘pt+1_pp‘< (2—1—@)(1—01)—1—011 B 1)2 +4Cn ( )+4n52(1 1a)
o T
pt(1-a)? 62(1 a)
2n 1-p n
< C(1—ph) <1+ 1_a+” Bi(1 — )2 +,82(1—a))

for some constant C, since we have assumed (25). If we set C(«, ) equal to the multiplier
of 1 — p!, we have obtained (26). The second step is to show that

1-pi"' > K(a, 8)(1 - ph) (27)
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Inequalities (26) and (27) together give us the desired result. We have that

1 P12 (P1F — PPN
1

\/1 + 225 AN P50k — PSP
First of all, by Taylor we have that if |z| < 1/2

(1+:c)71/2§1—g+cx2

We have already shown that |U?| is smaller than a constant (using also assumption (25)).
This gives

Ut
P < o+ D) (ot — piph)N, <1 - +0|Ut|2>

J#1
Ut
= b+ ) (010 — PLolNS = pIALD (e — )AL — Z AL, — ZAL-/\? + U P} + )
J#1 J#1 J#k# j;él J7
< ph 4 (1—piad) ZAt A 4 On? (1 - pf)? Cn|Ut|(1 — ) + Cn|Ut]2(1 — )
= 1 2Pt Bil—a2 7 B(1-a) B2(1 = a)

i#1
We know that

t
Y AN < 4n7”1
Jj#1 (1 B Oé)

and

2n
L= AN =1 ph 1= M) < (o) (14 12

Hence, we have that

‘ ‘ 2n 1\ n(1—p} 1—pf n|U*
LA 0o (1 (14 770) B - O e )

We now have almost all the necessary ingredients required for the proof of Lemma 31.
The final Lemma we will prove says that if p; happens to come very close to 1, then after
one iteration it will start moving away from 1. This is qualitatively similar to the proof of
Theorem 25 in the manuscript, but now we have to make precise quantitative predictions
for how close it should be to 1. This is the content of the following Lemma.

Lemma 36 Suppose p} > 1— d /nF > 1—c/n, where ¢ > 0 is a sufficiently small constant
and k > 5. Then, for all t’' > t + 1 we have that if p'i/ > ¢/ /nF, then for some absolute
constant C > 0 we have

/ / C
Pt <l =S
Proof We first restate, without proof, Lemma 26 from the manuscript.
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Lemma 37 Let p' be the current iteration of EM and define
t._ t * ok t
¢ := max(1 — py, max |pjpi — pj)
Then, there exist absolute constants C', K > 0 such that
Pt < pl = Clph — 17 + Kn?()?

By Corollary 33 we have that pt < 1 — ¢/n. Thus, if we set a =1 —¢/n and 8 =1— ¢/ /n*
we get that

(1= Rl b) < O (g 407

which can be made less than 1/2 with k£ > 2. Thus, all the assumptions of Lemma 34 are
satisfied. By applying this result, we get that for some constant C

2
P = pipll < O (L= 4™ < Cn?(1 = )

7
nk—2

Similarly, for any ¢’ > t + 1 such that pﬁl > 1 — ¢/ /n”* the previous calculations apply, hence
we get for all ' >t +1

2
’ I n /
i — pipil < 01_70/(1 - < C"n?(1-p)

k=2

Thus, for every t' >t + 1 we have
et, S C//n2(1 _pli,)
Hence, by applying Lemma 37, we get that

pitt=pl —C1—pf)* + K'n®(1 - p{*1)?

Now, if £ > 5 and ¢’ is a small enough constant, we have
Kno(1—p )2 < /2

which implies that
/ ! C ’
PSP =)

We are now ready to present the proof of the main Lemma of this section.
Proof [Proof of Lemma 31] Initially, we have p? < 1 —¢//n for all 4. Let t by the first time
where pt > 1 — ¢//n for some i. Let T be the first time after ¢ such that pt < 1 — ¢/ /nk.
Then, by Lemma 36 we have that pf“ < pf for all T > t' > t + 1. Hence, we have

pg/ < mam(pf, pﬁ“) for all ' < T. Let us now try to upper bound p!™! and pf,f. First of all,

1
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t

we can write y* = Ax! + rt, where r! is independent of zf. Let v? be the variance of r'.

Then, by definition
’ A 1

PR R 1T (/A2

We have that A = Cov(y!, zt) < 3. A\l < n. As for v?, we can show Vardis: add proof here
that

2 1
= (i~ 1)?
L+

v

Now, we know that 1 — (pi™1)2 > 1 — ¢//n* for all i by definition. Hence,
C
2
vt 2 n2k+1
Hence,
. 1 c’

PO I
Pi > /1+C/n2k.+3 <1 n2k+3

Using this bound, in a completely similar fashion we get that

1
i+l <1 07
i = nAE+9

Hence, we have that pf < 1-C/n*+9 for all ' < T. Now, let’s examine what happens after
time T. We proved in Lemma 37 that ]pjT —pipjl < Cn?(1 —pI=1) < C/n*=2 for all j # i.
Hence, for k > 2 and small enough constant ¢ € (0, 1) we have that p? < pipitq<1-d/n¥
for j # i. We already know that p! < 1 — ¢//n* by definition of T. Hence, at the T-th
iteration all correlations will remain bounded away from 0. We can then consider the first
time after 7" such that some correlation becomes bigger than 1 —¢’/n* and the same bounds
that we already established apply again and so on. Hence, we conclude that for all ¢,¢,
pg <1- C”/n4k+9-

|

B.3. No correlation is close to 0

In this Section, we prove a lower bound for all the correlations at any iteration of the
algorithm. We will prove the following Lemma.

Lemma 38 Suppose ||p° — p*|lco < M. Then, there exists a constant ¢ = c(M, p*) such
that for all t and for alli € [n] p; > c¢/n**+? for k > 4.

Remark 39 The proof is assumes that the executed dynamics are according to the popula-
tion EM. The extension to the sample EM is straightforward.

Proof We start by restating Lemma 22 from the manuscript.
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Lemma 40 If p! = 0 then p't! = 0. Further, there exists C > 0 such that for all
i,5,k€{1,...,n} and all p € [0,1/2]",

dpt.ﬂ B {1 i=j o< deEH
0

)

dp

pipy iE G ~ dpldp},

p
Using Lemma 40 and Taylor’s Theorem, we get that for all ¢

C

Pz o Y pieies = D S pbk (28)
J#i Jk

We now prove that during all iterations ¢ and for all i # j, we have p! > ¢(n) ,0?», for some

constant c¢(n) that is independent of the iteration ¢. For ¢ = 0, we can find some constant

¢ independent of m such that this is satisfied (because we initially start at a constant

distance from the optimum). Now, suppose ¢ > 1. Suppose without loss of generality that
pifl > pgfl for all 4 # 1. Let us fix ¢ # j. By the update rule, we have that

—1 % % * %
ol > )‘ti PiP1 - PiP1yt-1
= Tyon2 T a3t

On the other hand, we have that

t t—1 t—1
ED IR RN
k

since )\tfl > )\’,‘;1 for all £ # 1. Thus, we conclude that

¢ PiPl 4 K
pizn;i\/gpjzﬁpj

so we set c(n) := K/n?, where K is some constant that depends on the lower bound on p*
(it is lower bounded by assumption).

Now that we have proven this claim, we can use inequality(28). Suppose w.l.o.g. that
1 = argmax; p!. Then

. C K K
P Z A D pipi e = D Sk 2 Pt st — On () = g+l — O ()
i#i i

Suppose p} < ¢/ n®, where k will be determined later. Then,
Pt = ph 4 pL (K /n — Cn? /n?) > pf

if k —2 > 2 and c is small enough. Now suppose p} > ¢/ n*. Then, we have already proved

that K
P = A
n

Now, we have

CPA-0DD ~ nt1
L+ 2im — 1o —
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since 1 — (p})? <1 — (p})? for all j # 1. Tt follows that

1S cK
Pi = nk+2

Hence, if the maximum exceeds the threshold, all correlations are lower bounded, otherwise
they do not decrease. We conclude that for all iterations ¢ and all ¢ the required bound
holds. |

Appendix C. Proof of Theorem 12: finite sample and finite iterate
C.1. The finite iterate
To describe the EM update, we have the following analogue of Lemma 1 for the sample EM:

Lemma 41 Denote by [i, the uniform distribution over the m samples. Let ,ut’/ denote
the joint distribution over xy ---xn,y such that

Pr[$1,"' 7xn7y] = Pr[xlv"' 7xn] PT[?/ ‘ L1y .- 7xn]'
,ut!/ Hax ut

Then, for any i, we have that

Mﬁl[xz‘y} - HIE, [ziy], Var . |z;] = Varci[z], Var . [y] = Var,+[y] .

The proof follows the same lines as the proof of Lemma 1, where the only difference is that
here we are considering the sample-EM. As a consequence, we have the following analogue
of Lemma, 2:

Lemma 42 For any t, denote

For any i # j, denote

O-f = a-ia
Hgl[xly} — O'Z‘O'y )\z + Zaz])\j) = Uiay 0 —+ ZAU)\] ,
i i
n
El[y2] = (0y"1)? = (0)? Z()\gy + Z XX | = (o0)* [ 1+ ZA%)@)\Z
' = i#j€{1,n} Z
i+l — A+ Z#i )‘E‘&ij B Pl + Z#i Aij)\z.

(29)

)

\/Z?:l()‘g)z + 2 itjeft, . n) AN G \/1 + 30 Dij AN,
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Proof The proof is similar to the proof of Lemma 2. First, 6; = o! follows directly from
Lemma 1. Next, Using Lemma 41 and Claim 1, we derive that

B o) = Eloal = & | B lowl| =B o B bil| =B |53 Dot
12 fzo Hyle Ha Pyl Hax =1 U]
nogt
= D2 N E [ay] = ofotd 43 ojotNiay = ajot | X+ D Ny
j=1"J ’ JFi jF#i

This concludes the first expression for E+1[z;y]. The second equality is derived similarly
to the proof of Lemma 2. Next, we compute the variance for y, again, using Lemma 41 and
Claim 1:

2
E E E|E [ =E Yty
ut“[ ] ut/[y] fix le[y] fa 321 05 7
nono gt n
=D % *121 E [izs) = @) [ D_ODP+ D May
i=1 =17 i=1 i#je{L,...n}

This derives the first expression for the variance of y. The second expression is derived
similarly to its analogue in Lemma 2.
Lastly, the expression of pﬁ“ is derived, by definition of p;,

pt+1 Eutﬂ[:ciy]
! V/Var i [z] Var e [y]

and by substituting the expressions for the covariance of z; and y, the variance of y, and
using that Var,i+ [z;] = 67. [ |

7

From Lemma 42, it follows that the convergence rate of the EM is not affected by the
variance of the nodes. In particular, the correlation parameters pf are independent of these.
Therefore, we will assume for simplicity that o} =1 for all i.

C.2. A deterministic assumption

Note that our theorem holds with high probability. To remove the probabilistic part, we
assume a deterministic assumption on the sample, that will hold with high probability.
First, we present a definition:

Definition 43 Let n > 0. We say that a sample z) ... 2™ is n-representative of we i
the following hold:

e Foralli=1,...,n,

l—n< i(wgk))QSlJrn-

(recall that we assumed that the variance of each coordinate of ks is 1).
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o Foralli#je{l,...,n}:

o Foralli+#j,

m (k) (k
e i 7y

VA () s ()

We will assume that the sample is n-representative, where 7 is sufficiently small. We note
that from Chernoff-Hoeffding bound, the sample is n-representative with probability 1 — 4,
if m > Q(log(n/d)/n?).

pip; —n < Gij = <Pl

C.3. Iterates are bounded away from 0 and 1

We start by arguing that in all iterates, the correlations p! are always bounded away from
0 and 1, assuming finite sample: (proof is in Section B)

Lemma 44 Let o, 8 > 0 and assume that p{, p} > « for all i while p,pf <1 — B for all
B. Then, there ezist constants, C(a, ) Ci(a, B) and Ca (v, B), that depend only on o and
B and a universal constant C' such that for allt > 0 and all 1,

Cl(aaﬁ) t CQ(QaB)

assuming that n < C(a, 8)/n<".

Next, we would use the fact that the iterates are always bounded away from 0 and 1 for
the remainder of the proof. For that purpose, we have the following definition:

Definition 45 We say that the iterates of the EM are (A, B)-bounded if A < pf <1—B
cmdASpgS 1—B foralli andt > 0.

C.4. Sample-EM is close to the population EM

Next, we will argue that one iterate of the sample EM close to one iterate of the population
EM, if the sample is n-representative.

Lemma 46 Assume that the sample is n-representative, for some n > 0. Fiz values of

phy .., Pl and let pﬁ“, ..., piL denote the value of the next iterate according to the finite-
sample update of Lemma 42. Similarly, denote by ﬁiﬂ, oo, PEFL the result of applying the

population EM wupdate, as described in Lemma 2. Assume that the iterates of the EM are
(A, B)-bounded, that A < 1/n for some A >0 and assume that n < A%/2. Then,

L st 4v/8n*  /8n
‘pz‘ Pi ‘—77 A3 + A
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Proof Fix i € {1,...,n}. Let us denote the numerator and the denominator, for both the
expressions for ,0'”rl and thrl as follows:
X =M+ May, X=X+ Mo
JF#i JF#i

and

n n

Y=Y )2+ > Aday, V=Y 007+ Y AN
i=1 i#j€{1,...,n} i=1 i#je{l,...,n}

Then, the quantity that we wish to bound is:

X ' X X X 1 .

’\/17_\/17 - \/WIX_X}
_XW—W PP L (R
B YY’ W Niod %G

(30)
Our goal is to upper bound X, lower bound Y and Y’, and upper bound |X — X’| and
|Y — Y|, as computed below. First, notice that

X=X = [ S My | = (XS i || < S0 A — ﬂzpﬂ<nZA
j#i J#i J#

where the last inequality follows by assumption of this lemma that |&;; — p} p;\ < 7. Recall
the expression for A! in (1), and notice that we can bound it as follows:

N pi/ (1 = (p})?) < A=)
T ()2 = (05)2) T 14 (p))2/ (1 = (p))?)

Then, >, \j < n, which implies that

ST

<1

X — X'| <.

Next:
V=Y = Y AN — > MNpEpr| <D NN |dws — pipi| < mm,
i i Ji
using the fact that A} < 1 and the assumption of this lemma that |&;; — pf p;| <. Further,
n
X=X+) May <> X <n
j#i i=1

Further,

n n n n n 2
DD B §ﬂ?P§>ZZA2=<ZA§> 4%,
=1

i=1 j=1 i=1 j=1
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using the assumption that p; > A for all <. Similarly, we derive that
Y > Z Z AXbd; > ZZ NXEA? /2 = <Z )\t> A?)2,
=1 j=1 =1 j=1

using the assumptions that pj > A for all 4, and that |&;; — pjpj| < A?/2. Tt remains to
lower bound the value of Y. AL:

¢ i P8/ (1 = (ph)?) iy P8/ (1= (hh)?) > Pl nA
Z)\ 1+ 370 (ph)2/ (1 = (p})? )> L+ 300 0t/ (1= (p0)?) = L+ ot T4 nA

where, for the last two inequalities, we used the fact that if @ > o’ > 0 and b > 0 then
a/(a+b) > d /(a'+b). We will further use the assumption that A > 1/n to derive that the
right hand side is lower bounded by 1/2. We derive that

Y,Y' > A?/8.
Substituting our estimates from (30), we derive that, for some universal constant C' > 0,

n - nn? 1 _ 44/8n? n @
= 2s2anm)  ans T\ T A

C.5. KL is comparable to the parameter /5 distance

In our argument, we will prove that in each iteration, the KL divergence between the iterate
and the true distribution shrinks by a constant factor. In order to argue about that, we
would like to claim that the KL divergence between two models is comparable to the ¢o
distance between their correlation parameters p;, provided that those are bounded away
from 0 and 1:

Lemma 47 Assume that the iterates of the EM are (A, B)-bounded. Then, for some
universal constant C > 0 and for allt > 0,

(n/AB)~C|lp" — p*|I” < KL(p3[|pl) < (n/(AB))|lp" — p*||.

In the sections below we will prove statements that are slightly more general (which will
also be used further in the proof).

C.5.1. UPPER BOUNDING THE KL

We start by proving the following lemma:
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Lemma 48 Assume that p},pt <1 — B for all i and some B > 0. Then,

‘dKL(uiHui)

< poly(n,1/B) - o = p*l2.
dp}

Consequently, for p and p/,

KL (k|| 12) — KL(uk | u2)| < poly(n, 1/B) max(||p — p*||, |0 — p*IDIle’ — pll-

Lastly,
KL(p||ph) < poly(n,1/B) - ||p" — p*[I5-

Proof We start by proving the first inequality. We use a few folklore equations: first, we
define for any real-valued function f of a matrix A by df (A)/dA the matrix whose ij-entry
is the derivative of f(A) as a function of A;;. The first folklore equation is:

dlogdet(A)

T =A™ HT. (32)

For the second equation, assume that A is a function of some parameter A. Then,

dATN _ ydA

-1
d\ d)\A ’

where dA/d) is a matrix whose ij entry is the derivative of A;; as a function A. Further:

df (A) df(A)\ " dA
= trace <<dA> d)\> . (33)

Lastly, if A € R™*" is symmetric and || A|| is the operator norm of A then
trace(A) < n| A]. (34)

Indeed, this is true because trace(A) is the sum of its singular values of A while ||A]| is the
largest singular value in absolute value.

Let us continue by analyzing the KL divergence. We note that the KL divergence
between two mean-zero Gaussian vectors and covariances 1 and Yo, is

o —1
KL(%1]|X2) = % (— logjezgﬁgji_li —-n —|—trace((22)_121)> .

Applying this on the covariances ¥* and ¥ that correspond to p* and p!, we get that

ot((Xt)-1
KL(pk || k) = % <— log je‘zé((g*))_l)) —n+ trace((Et)lﬁ*)> .

Let us first compute the first derivative as a function of p!. By (33), we have that

ARLG ) _ (oo ((dKL(“jﬂ”“@)T d@t)_l) . (35)

dp! d(sh)L ap!
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Let us expand on the first term. By (32),

dKL(pzllps) 1
d(zh)T 2d(xh)1

Note that the derivative at p* = p' equals 0, which implies that

d KL (|| )
dp!

By (35), for a general p', we have that

dKL (k|| 1 d(xh)—t 1 d(xh)—t
;ﬁ?”ﬂx) = §trace <(Z* —-xhHT (dp% > = — trace ((Z* - ¥ (=) > .

Let us differentiate this again. We have that

2

dpt dp] dpt 2

gt t
j dp;  dp;

dp}

KL L) d 1 A=H1N 1 dst d(sh)~! (xh)~!
Mzi—trace ((E*—Zt) (=) )— trace (— &) +(E*—Et)¥

In order to bound the left hand side above, we use (34), to obtain that

trace (—dztd(zt)_l + (X — Et)cmt)_l> <n H A’ d(=)~7 + (X* — Zt)m

dpt  dp! dpdp} d,o] dpt dpidp!;
dEt d2(2t)_1
I _—
- H art || I L dp;dp§

We note that each of the components above is bounded by poly(n, 1/B), using the formulas
for X% and (X*)~! that appear in (19) and (20). To conclude the first part of this lemma,
we use the fact that the derivative equals 0 at p' = p* as shown in (36), and we integrate
the second derivative along the path p(7) = (1 — 7)p* + 7p'. Define u7 the distribution
obtained with correlations p(7), then

b d dKL(pglp3)

dKL(ullpe) | |dKL(pallps) — dKL(uglps) | ir
dp! dpﬁ dpﬁ o dr  dp}
_ / dKL (1z 1) dp / dKL uxllux)( _ pdr
dpidp} dpidp}
§ KL )

1 n
t * t *
pr—=p dTS/ poly(n,1/B) |p" — p"|dT
< poly(n, 1/B)[p" = p*[ln < Vnpoly(n,1/B)|p" — p*|2.

This concludes the first part of the lemma. The second part of this lemma is bounded
similarly, by integrating, now over the first derivative: define by p(7) = (1 — 7)p + 70’
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Then,

dKL uxllux )Y dp(r )dT
dr

/ dKL(us ™)
0 dT

\KL(u;nug) — KL |luf))| =

3~ 4KL ux\lu )

(p pi)dr — pi)dr

/1 = dKL(ux!\up(T)(
[ — dp(7)i

d KL( uxllux )

/

< poly(m 1/B) max HP(T) — p*ll2llpf — pills
< v/npoly(n,1/B)max(|lp — p*|l2, 0" = p*IDIlpi — pill2 -

The last part of this lemma is obtained from the second part by substituting p' = p*. R

- plar < [ Zpolynl/Bwpu "ol — pildr

C.5.2. KL UPPER BOUNDS BOUNDS THE PARAMETER DIFFERENCE

Lemma 49 Let i and i’ be two distribution. Assume that Var,[y] = 1 and further that
Var,[z;] = Vary [x;] = 1. Then,

(Eu[xiy] - Eu’ [mz’y])2
5 .
We would like to lower bound KL(z/||p) by (E[ziy] — Ev[ziy])?. Notice that by the data-

processing inequality and by the chain rule for KL divergence,
KL(p'||1) = KL(pg || paiy) = KL (11, Huxz)+ B KLy, e )] = E, KLy g,

ZNN;_"—l
(37)
We would like to compute the conditional distribution of y given x;, for both p and u/. We
use the following formula for conditional Gaussians:

KL(p/[|p) > max
1

t+1

Lemma 50 Let Z and W be jointly distributed Gaussian variables. Then,
E[W | Z] =EW + E[ZW] Var[Z]"' Z,

and
Var[W | Z] = Var[W] — E[W Z)? Var[Z] !

Using the formula of Lemma 50,
Ely | 2;] = E[y] + Elzsy] Var[z) ™ i,

while
Var[y | ;] = Var[y] — E[z;y)%/ Var[z).

Computing some values for p and p/, we get that

Ely | zi]) = Blziylzi ;  Ely | @] = Elziylas; Varly | 2] = 1 — E[ziy)* < 1.
7 M Iz I H
We use the formula for the KL of two univariate Gaussians:

51



DAGAN DASKALAKIS KANDIROS

Lemma 51 For two univariate Gaussians X1, Xo with means i, e and covariances
a%,ag, respectively,

09 0% T (g — p2)? > (1 — p2)?
205 2 20% - 205

Proof The first equality is folklore and follows from a direct calculation. To get the in-
2

equality, notice that log g—f + % — % is the KL of two Gaussians with variances o1 and o9
2

and the same means, hence it is nonnegative. |

we have that

EByly | 2] = Byuly | :])* _ 23 (B [ziy] — Eulwiy])®
2Var,t[y | 2] - 2 '

Substituting this in the right hand side of (37) and using the fact that E,, [z?] = 1, we get
the desired result.

C.5.3. ANOTHER UPPER BOUND ON THE KL

Lemma 52 Let p, and p, be two leaf distributions with parameters p and p', respectively,
which are (A, B)-bounded, namely, for all i, A < p;,p; < 1 — B. Assume further that
Var, [z;] = Vary [x;] = 1 for all i. Then,

KL(p, || p2) > cA* maix |pi — p,
where ¢ > 0 is a universal constant.

Below, we prove Lemma 52. We note that there exist 7, j such that |p;p; — p;pj| is large.
Indeed, let i be the maximizer of [p; — pi|. For the purpose of lower bounding |pip; — p;pjl,
we can assume that p; > p}. Denote, let A = p;/p;. Denote M = max; |p; — p|. Notice that

A=1=(pi=pi)/p; 2 pi = p; = max|pr = pi| = M.
Then, divide into cases:

e If there exist two different values, j, k, such that pj/,o;-,,ok/pﬁ€ < y/1/A. Then,

Pifk - \

P3Pk
hence .,
PiPx — PiPk
PjPk
e Otherwise, there is some j such that pj/p;- > /1/\. Then,
PiPL > N> VM +1 > 1+cM,
PiPj

for some universal constant ¢ > 0. This implies that

P3Pk — PiPk = pipk = (A= 1)pipr > Mpjpy > MA®.

piP; — Pif

pipj = cMpip; > cMA?.
pipj

piPj = Pi; =
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This derives that there exist some j, k such that |p;p — p} Pl > cA?M for some universal
constant ¢ > 0. This implies that

| Efwjor] — Elwjoy]| 2 cA’M.
w

From this point onwards, the proof is analogous to the proof of Lemma 49. We start by
arguing that by the data processing inequality,

Then, we lower bound KL(4;, o, [|/tz;a,) using the fact that |E,[2;2x] — Ey[z;2]|, exactly
the same way as in Lemma 49 we lower bounded KL(p;,,, [|#42,y) using the fact that | E,,[z;y]—
E,[x;y]| is large. The proof follows.

C.5.4. PROOF OF LEMMA 47

The proof follows directly from Lemma 48 and Lemma 52 that were proven in the previous
subsections.

C.6. Contraction in KL - population EM

In this section, we prove that the KL between the true and the current model contracts
by a constant factor in each iteration, for the populatoin EM. Later, we will show how to
derive the same results for the sample-EM as well.

Proposition 53 Let p' denote iterate t of the population-EM, and assume that the iterates
are (A, B)-bounded. Then,

KL(p5 15 < (1= #) KL(ig [lg),
where Kk = A1 BC2 /nC3 for some universal constants C1,Co,C3 > 0.
We describe the proof of Proposition 53, in the subsections below.
C.6.1. FIrsT BOUND ON THE KL DIFFERENCE
We will prove the following lemma:

Lemma 54
KL (g ||peh) — KL (|| i) > KL(u" | b

xT

First of all, we use the following well-known behavior of the EM:

Lemma 55 (Folklore.)

KL(pk||ph) — KL(pal|ph™) > E  [log Pri(z,y)]]— E [ogPr[(z,y)]] .  (38)
oY~ pts* pttt oY~ pto* ut
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Yuval: Prove if we have time
Proof [Proof of Lemma 54] We conclude Lemma 54 by analyzing the right hand side of
(38). Notice that by Lemma 1,

E Mog Prll@yll = E

Ty~ pt* Ty~ pt*

log Pr.[y] + D> _log Pr o] y]
K3

= E loguﬁ’gl[y]JerogME’gl[wi!y]]= E,,log Pr (@ )] .
1

x,y~pttt z,y~pttl

Similarly,
E [logPr{(z,y)]] = E [logPr((z,y)]] .
j j

Ty~ ph Ty~ pttt

Hence, the right hand side of (38) equals

E, . log b [(z,y)] - log lljtr[(fv, Il = KL H|u"),

@ y~pttl

as required. |

C.6.2. BOUNDING THE KL BY THE COVARIANCE DIFFERENCE

We apply Lemma 49 with u = pf amd p/ = p't!. Note that this lemma requires that

Var,:[y] = 1. Indeed, for the purpose of proving Proposition 53, we can assume that, since
this proposition only argues about the z-marginal, and since the correlation parameters p*
and p'*! are not affected by Var,:[y]. Then, Lemma 49, in combination with Lemma 54,
imply that

(Eut [xly] - IE/,Lt'H [l'ly])z
2

KL () = KLl p5t) > KL ) > max (39)

C.6.3. MINIMAL EIGENVALUE BOUND
We would like to lower bound the right hand side of (39). To do so, we start with an

auxiliary lemma, bounding the minimal eigenvalue of some matrix.

Lemma 56 Let U be a matriz with U;; = u; if i # j and Zk# uy, otherwise, where u; > 0
for alli. Then,

(min; u;)®  (n —2)3
(U) = U > .
omin(U) = max_ [Vele = iy 128n

Our goal is to show that the minimal singular value of this matrix is bounded away from
0. In particular, denote Ua = K for some unit vector a = (ay,...,a,) and K = (Ky,..., K,)
and our goal is to lower bound || K||. The proof has multiple ingredients. First, we denote
by s =), u; and t =), a;u;. We have that

K, = aiZuj + Zajuj =t+ ai(s — 2ui),
J#i J#i
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hence
t+ CLZ'(S - 2u7,) — Kl = 0, (40)

In particular, we have for all i # j
a;(s —2u;) — K; = aj(s — 2uj) — K;.
Let us assume that u; > uo > -+ > u, >.
If |s — 2u;| is small.
Lemma 57 Assume that |s —2ui| < (n—2)uy,/(8n). Then, max; |K;| > (n—2)u,/(16n).
Proof Denote € = |s — 2u;| and let us lower bound || K||. Then, we have for all i,
ai(s —2u;) — K; = a1e — K.

Hence, for all ¢ > 1,

are — K1+ K;
Qy — ————————.
s — 2u;
Denote K = max; K;. Then,
are — K1+ K; ’6’+2K
|ai| = < :
s — 2uy; s — 2uy

Notice that s — 2u; > s — uy — ug > (n — 2)uy,. Then,
€|+ 2K

jagf < 192K

(n —2)uy,
Denote the right hand side by m. Then,

|t| = \Zaiuﬂ > |ajuq| — Z lai|u; > lai|ug — mZul
i 1>1 1>1
Further, recall that }, a? = 1 hence af = 1-),_, a? > 1—nm hence |a;| > /1 —nm >1/2
assuming that m < 1/(2n). Hence, t > u1/2 —m ), ; u; > u1/2 — mnuy > vy /4 assuming
that m < 1/(4n). We derive that
(Ko | = [t +ar(s = 2un)| > [t] = |aa|ls — 2ur| > [t] — |e] = u1/4 — |e|.

In particular, if || < u;/8 then K1 > u1/8. Recall that we further assumed that m < 1/(4n)

which is satisfied whenever
(n —2)uy,

- 8n
and

We derive that if

then
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t is large or K; is large.
Lemma 58 Assume that |s — 2ui| > €. Then, either ) . |K;| > €/2 ort > €/2n.

Proof We assume that |s — 2uj| > e. Then, |s — 2u;| > € for all 4. Further, recall from (40)
that |a;(s — 2u;) + t| = | K;|, which implies that |K;| > |a;(s — 2u;)| — |t| > |a;|e — t. Then,
Yo Kl > €>; |ai| — nt = €llalli — nt > €||all2 — nt = € —nt. In particular, either ¢t > €/2n
or ), |Ki| > €/2. [ |

Assuming that u; < s/2.

Lemma 59 Assume that t # 0 and that s — 2u; > €. Then, || K|2 > €t/|ul2.

Proof From (40), for all 4,
K;—1

s — 2u;

a; =
From definition of ¢,

w; K; — ut — ’asz‘ ‘UZKZ| HUHQHKH2
= = —— < < <
t= Zazuz ZZ: 3_2u —EZ: S—2u Zs_zul—zl: € - €

(41)

Hence
[ K|l > et/[|ull2.

The case that u; > s/2.
Lemma 60 Assume that 2u; — s > € and that t # 0. Then,

2(s — uy — ug)elt|

K2 =
[ell2s

Proof Using the first few equalities of (41) we get that

’LLZKl — Uit
t= _—
Z s — 2uy;

)

or equivalently,

- uiKi/t—uii_ U;
1_2 s—2u; Zs—2uz+R where 1t = Z s—2uZ

3 (2

Z U; _R=— Ul 71:S—U1 :Z U; .
s — 2u; 2up — s 2uyp — s = 2u1 — s
7

Then,

hence

1 1 S —u; — s—ul—uQ S—u; — Uy
—R = g — =2 ; > 2 =2 .
;u <2u1—s 5—2ui> Z;ul( — 2u;)( 2u1—3 Zul
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We derive that

2(s — w1 —up) _ < lullzlK]l2

<R <
Itl et

Z]3—2u| Z ifs

- \etl

In particular,
2(s — uy — ug)elt]|
[ul2s

1K ll2 =
=

We would like to culminate the proof of the main lemma. From Lemma 57 we can
assume that [s — 2u1| > (n — 2)u, /8n := ¢, otherwise

| K||2 > max K; > (n — 2)u,/(16n)
A

and the proof follows. From Lemma 58 we can assume that [t| > €/2n, otherwise

1Kz = [ K1[1/v/n = €/ (2v/n)

and the proof follows. Lastly, from Lemma 59 and Lemma 60 we can derive that

K]z = HdtH’min <1, 2(s ﬂ qu - “2)> > eltl(n = 2Jun _ (n—2un _ (n—2)%;
Uuj|2 Ul|28

l|lull2s = 2n|lullas 128n3||ullz2s

C.6.4. BOUNDING THE DIFFERENCE IN COVARIANCE

We are ready to bound the right hand side of (39). This is stated in the following lemma:

Lemma 61 Assume that the iterates of the population EM are (A, B) bounded, let t > 0.
Then,
2 12 8
A (1 — B) t *\2
<M§j{1[%yl - E[%M) 2o > (pi—p)",
(2

where ¢ > 0 is a universal constant.

We note that Lemma 61 together with (39) imply that

n

C AC1 BC2

s (i = 1) - (42)

=1

KL (e ||ph) — KL ||t >

Below, we prove Lemma 61. In the proof below, we use a,b to denote bounds on the
iterates: a < p! <1 —b for all ¢ and i. Further, we use a* and b* to denote bounds on p}:

a* < pr < b*. We recall that we assume O‘;Z_ = a; =1 for all i. By Lemma 2, we derive that

t
#E [xly] - )‘ + szpj
J#i
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We can use the same lemma to derive E«[z;y]: indeed, if we apply this lemma in a different
scenario where the underlying distribution is u! (i.e. substituting u* = pf), then !+t =yt
as well. Hence, if we substitute u* = p* and pf*t! = p? in this lemma we get that

Efziy] = X+ plpia

J#
We get that
2
(A2 </}§_1[xiy] g xzy> sz p; )\t>\t _ plp])\t)\t
J#i
Substituting u; = Alp¥ and v; = Apl, we derive that
2
09* (B o] - Bl ) S sy — vy
J#
We will prove the following lemma:
Lemma 62 Ifu= (uy,...,up), v=(v1,...,0,) where u;,v; >0 for all i, then
2
2 2
Yo Doy — vy | = owmin(A) - [lu— o3

i\
where Aij = (ui +v;)/2 if i # j and Ay =375 (wi +vi) /2.

We will first use Lemma 62 to complete the proof of Lemma 61, and then we’ll prove
Lemma 62.
Proof [Proof of Lemma 61] First,

;(pﬁ — )< (Iniin /\§> - ;(Ag)%pg — i) = <miin A;?) - Z(u —u)?.

Then, by Lemma 62,

R R AN
- 2 Zz: ;UZ’U,] ViV - O'min(A)Q Zz:(A'L) <Mgl[xly] E[%y])

< O'rninl(14)2 > <ME1[M/] - E[%’y])2,

i

as )\f,f < 1. We conclude that

b 1 ?
S (-0 < (i 3 2o (A)? > (ﬁl[miy] - g[xiyo - (43)

7 7
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We would like to expand on this bound. Using the expression of A! from (1), we derive that

v A=)
PR (- ()

From the assumption that 0 < a < p; < b < 1, we derive that

pi/(1—(ph)?) = pl > a,

while
(P52 /(1= (p)?) <1/(1 = (p5)%) < 1/(1 =b°).

Therefore,
2 2
ts a _ a(l —b%) >a(1—b) m
)\1_1+n/(1—b2) 1-0+n~- n+1 (44)

Further, we want to bound opin(A). Using Lemma 56 applied on u < (u + v)/2, it suffices
to estimate properties of (u + v)/2. First of all, using the assumption a* < p! < b*,

wit v Ui _ A pr S a(l —bv%)a*

2 T2 2 7 2n42

Further, we have that
XA
5 <
which implies that
I@+70)/2(h <n, [[(@+7)/2]2 < vV .

Using Lemma 56, the minimal eigenvalue of A is at least

(min; (u; + v;)/2)3 (n— 2)3 < a(1—b%)3(a*)? (n— 2)3 N Ca3(1 —b)3(a*)?
I(w+0)/2|2]|(v+v)/2l1  128n3 = (2n+2)3n3/2  128n3 — nd/2 ’

where ¢ > 0 is some universal constant. Substituting this and the lower bound on A!
(Eq. (44)), in (43), we derive that

2 8 8( ,*\4
a®(1 — b)*(a”) "
(Bl - Blow) = U S
7
where ¢ > 0 is a universal constant. [ ]
Now we will prove Lemma 62. Define for i = 1,...,n functions p;(w) = >, wiw;

where w = (wy,...,wy,). Let p(w) = (p1(w),...,pp(w)), then we want to show that ||p(u)—
p(v)||? > C - |lu — v||*>. We use the following simple observation:

Lemma 63 Let p(x) be a second-degree polynomial of one variable x and let p'(x) denote
its derivative. Then, for any s,t € R,

p(s) = p(t) = p'((s +1)/2)(s — 1),
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Proof Let p(r) = az? + bz + c. Then, p/(x) = 2ax + b. Then,

p(s) = p(t) = a(s* = %) + b(s — 1)
while

P ((s+1)/2)(s—t) = (a(s +1) +b)(s —t) = as® — at®> + b(s — t) = p(s) — p(t).

|
We use the following corollary:
Lemma 64 Let p: R" — R”™ be a system of second-degree polynomials, namely, p(x) =
(p1(x),...,pn(x)) where each p; is a second degree polynomial. Then,
p(s) = (1) = J?|513)2(5 — 1), (45)
where JP|z is the Jacobian matriz of p evaluated at T, namely,
_ dp;(T
v dCCj
Consequently,
15(s) = POl = omin (JP|2) s — ¢, (46)

where omin(A) is the minimal singular value of a matriz A.

Proof To show the first part, look at the path y(\) = At + (1 — A\)s. Then, v(1) = ¢ while
v(0) = 5. Applying Lemma 63 on the polynomials p;(y(A)) while substituting s = 0 and
t = 1, one obtains (45). Then, (46) follows from taking the norm in both sides of the above
equality, and using the fact that for a matrix A and a vector v, ||A7|| > omin(A4)|7]|. [ |

To complete the proof of Lemma 62, notice that the matrix A in this lemma is the
Jacobian of p evaluated at (u + v)/2.

C.6.5. BOUNDING THE PARAMETER DIFFERENCE BY THE KL: CONCLUSION OF
PROPOSITION 53

To conclude Proposition 53, we would like to bound the right hand side of (42). Recall that
this right hand side contains the term ||p* — p*||3. By Lemma 48, this is lower bounded by

B& .
o KL(zlli)-

In combination with (42), this concludes the proof of Proposition 53.
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C.7. Contraction for the sample EM

While we have proven in Proposition 53 that the sample-EM contracts, we now prove that
the population EM contracts as well:

Lemma 65 Let u! denote the t’th iterate of the sample EM, and assume that the sample
is n-representative. Assume that n < min (1, KL(,u;‘}H,ué)> (AB/n)C for some sufficiently
large universal constant C' > 0. Then,

KL(pp iz ™) < (1= #") KLz |145),
where k > (AB/n)C" for some universal constant C' > 0.

Proof Below, we prove Lemma 65. To argue about that, we would use the Lemma 46
which argues that the sample step is close to the population step, in parameter distance,
and further, we will use Lemma 48 to argue that this implies that the KL distance after
one population step is close to that after one sample step. To be more concrete, let p
denote the t'th iterate of the sample EM, let p*t! denote the result of applying one step

of the population EM on p' and let p!*! denote iterate t 4+ 1 of the sample EM, namely,

ptTt is obtained from p! via one iterate of the sample EM. Let ™! and pif! denote the

corresponding distributions. Then, from Lemma 46, we obtain that for all 7,
5 = p"* < mpoly(1/4,1/B,n).
By Lemma 48 this implies that
KL [l ™) — KL(pg | 5|
< poly(n,1/A,1/B)|p" = p"™* || max (|| o1 = p*[|, 5" = p*[])
n,1/A,1/Bynmax (||p" = p*[|, |5 = p*|))
n, 1/A,1/Bynmax (||p* = p*|| + [l0* = oI, 157 = p*]])
n, /A, 1/B)n ([l0° = oIl + 1l = "))
n,1/A,1/B)n (|lp" = p*|| + poly(n,1/A,1/B)n) .
By Lemma 47, the right hand side is at least

poly(n, 1/A,1/B)n (VKL(uz 1) +n)

By the assumption of Lemma 65 on 7, this is at least

2poly(n,1/A,1/B)n/ K L(j||pk,).

Again, by the assumption on this lemma on 7, if the constant C' in this assumption is
sufficiently large, then the last term is bounded by

< poly
< poly

~— — ~— —

= poly
< poly

—~ o~~~

KL(1; | i) (AB/n)<",

where C} can be chosen arbitrarily large (if C' is). Combining with Proposition 53, this
concludes the proof: indeed, let x be the constant from the proposition. Then,

KL (i) < KLl ™)+ KL (g llug™) — KL(uallag™)| < (1-r) KLl pe)+K L) (AB/n) <.
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Recall that kK = (AB/n)? for some universal constant Cs. Since we can select C; to be
arbitrarily large, we can ensure that (AB/n)“! < k/2. This implies that

KL (s ||pith) < (1 — k/2) KL (| p2h)

which suffices to conclude the proof. |

C.8. Concluding the proof of Theorem 12

Proof [Proof of Theorem 12] We will assume that the sample is n-representative, for n <
(AB/n)%e for a sufficiently large C' > 0. This can be guaranteed if the sample size is
m = O(log(1/3)/n*) = poly(n,1/A,1/B)log(1/5)/e?. With this value of 1, Lemma 65
guarantees that as long as KL(u% || uf) > e(AB/n)", then,

KL(pp i) < (1= ") KLz |15),

where C7 can be chosen arbitrarily large and &’ is polynomial in A, B,1/n. The initial
value of KL(u%||p2) is bounded by poly(1/A,1/B,n)|p° — p*||> < npoly(1/A,1/B,n),
from Lemma 47. Hence, the number of iterations that it takes KL(u%|/u) to drop below
¢(AB/n)°" is bounded by poly(n,1/A,1/B)log(1/¢). Using Lemma 47, if C} is sufficiently
large then once the KL divergence drops below that value, |p! — p¥| < € for all i.

Lastly, notice that for all ¢ > 1 and all 4, 0! = &;, from Lemma 42. Since the sample is
n < € representative, this implies that |o! — 0| < <. This concludes the proof. [ |

Appendix D. General tree model

We consider a multivariate Gaussian latent-tree distribution, that is characterized by a tree
G = (V,E). Each vertex u € V corresponds to a random variable z,. Suppose the total
number of nodes in the tree is n + m. From now on, we might refer to the node itself as
the random variable, when it is clear from the context what we mean. We define a joint
probability distribution over the nodes as follows:

Pr(z1,..., 2n4m] = H Pr(z;, 2] (47)

(i,j)eE
The vertices V are divided into two groups: nodes of degree 1(leaves), denoted by z1, ...,z
and nodes of degree at least 2 (internal nodes), denoted by yi,...,¥ymn. When we want to

refer to some node in the tree without wanting to specify whether it is a leaf or an internal
node, we will use the symbol z. The edges e € F are divided into two groups: the ones that
are between y nodes, called internal edges and denoted by E,,, and the ones between one y
node and one x node, called boundary edges and denoted by FE,,. Each leaf x; has a variance
agi and so it corresponds to a random variable x; ~ N(0, 03261_). Likewise, each internal node
y; has a variance agi and so it corresponds to a random variable y; ~ N (0, agi). For each
edge (yi,y;) € Eyy we define the correlation py.y; of variables y;, y; and similarly, for each
edge (v;,y;) € Eyy we define the correlation p,,,, between z;,y;. It can be shown that in
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a Gaussian Graphical Model that satisfies the product decomposition 47, it can be shown
Vardis: proof should go to appendix that these parameters are enough to specify the joint
distribution over all x and y.

Elz;z;
Pziz; = M = H Pzuzy
(2u,20) EP(24,25)

In other words, the correlation between a pair of nodes is the product of the correlations
along the edges of the path that connects them.

Define such distribution by pg 5z where G is ommitted if it is clear from context. A
sample Z ~ 57 can be drawn as follows: first, z. ~ N(0,02) is drawn for the root r (the
root can be assigned as any node of the tree). For any choice of the root, there is a unique
way to direct the edges going away from the root. This defines parent-child relationships
between the nodes. One assigns random values from the remaining of the nodes, from top
to bottom. Assuming that the value z, on the parent u of a node v was already set, we
draw z, as follows:

Zy = Oy (puvoz_u +V1- p%vev7>

u

where ¢, ~ N(0,1) independently of the other variables and p,, = p. for the edge e that
connects v and v. Up to scaling the individual variables, one can assume that o, = 1 for
all v.

An equivalent way to characterize the distribution is through the information matrix
J = Y71 Because of the factorization of the distribution, the only non-zero entries J;; will
be when (i, j) is an edge or if i = j. In general, the distribution could have an external field
h. This will not happen in the joint distribution, since we assume the means to be 0.

In the following, we will also need the conditional distribution of the internal nodes

y given the leaves x. Since the model is Gaussian, we know that there exists a matrix
A € R™*™ guch that

E[yl‘x] = Z )‘yixjxj (48)

Lastly, the external field of y in the conditional distribution is given by the relation
hy = —Jyzx

All these properties will prove useful in the sequel.

In an estimation setting, we observe independent samples from the latent distribution
over the leaves of the tree. In particular, each sample contains the information of (x;);",,
obtained using one draw from the marginal (joint) distribution over the leaves. The goal is
to learn the parameters p. for all the edges of the tree and the variances al2 for all leaves .
Vardis: we have assumed variance one I guess.

Remark 66 The variances 05

. on the internal nodes y, of the tree cannot be estimated.
This is due to the fact that samples from two distributions sz, ps 5 that have the same
correlations p and the same variances on the leaves, differ only by a scaling of the unobseved
nodes. In particular, we can transfer a sample from one distribution to a sample from the
other by just multiplying the hidden nodes by constants. This change does not affect the

marginal distribution over the observed nodes.
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Remark 67 One has to assume that each internal node has degree at least 3. Indeed, if
v 18 an internal node with neighbors uy,uz, then, as long as py,vPvu, remains constant, the
distribution over the leaves is not affected. In case that such a node v exists, one can remove
it while keeping the same distribution over the leaves. In particular, uy is connected with v
and one sets py,u, as equal to the value py,ypyu, n the old graph.

Appendix E. EM and the likelihood function for general trees

We are interested in analyzing the landscape of the likelihood function over the space of
unknown parameters J. In particular, we show that we can characterize the stationary
points of the likelihood function for a general tree. To help us identify the stationary
points, it is convenient to view them as fixpoints of the EM algorithm.

Let Pg be the set of all distributions of the form pug ), for any possible values of p
and 0. In each iteration t = 0,1, ..., the algorithm will hold some distribution puf, such
that p° is arbitrary, and ! is obtained using u’~!. The goal is to find some unknown
distribution p* € Pg, given only samples from py ... , namely, y1,...,¥n is not observed.
The algorithm can be described as follows: we set u® € P arbitrarily. Then, at any t > 0,
define

pit = max E E log Pr(x1,...,2n,y)], (49)
HEPG T1Tn ™~y oy Yoot o

yloq-mn

where Pr, denotes the density with respect to pu. Denote by of, pt, J' the parameters
corresponding to u' and by A! the coefficients from (48). Similarly, o*, p¥ and A\* correspond
to u*. We would like to understand what are the fixpoints of this iteration rule and how
they relate to the stationary points of the likelihood function. For this purpose, we first
describe more explicitly the update rule in each iteration. The proof follows along the same
lines as Lemma 1.

Lemma 68 Let pub* denote the joint distribution over x1---Tp,y1,...,Ym such that

:uty*(l'b Ty YL, e ,ym) = :UJ*(:Elv o 7$n)ugl,...7ym\x1,... Tn (y)
Then, for any x;,yj, yx, we have that

[yjyk], Varut,* [JL‘Z] = Val”#t+1 [l’l], Varut,* [yj] = Varutﬂ [yj] .

*

Elmyl = E vl E ] = E

We notice that the variance of the leaves remains the same at each iteration. This means
that the determining quantity for the distribution in each iteration are the correlations pt. In
particular, during the execution of the algorithm, the variances of the internal nodes might
be different than 1, however the correlations always dictate the next iteration. Hence, for
any fixpoint fi of the procedure that is given by some parameters &, J can be converted into
a fixpoint with the same likelihood value but with all internal nodes y having variance 1.
Therefore, in the sequel when we analyze the fixpoint of this rule, we assume w.l.o.g. that
all variances are equal to 1. By scaling the variances of the internal nodes, we can obtain
all equivalent fixpoints.
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To see how the fixpoint of this rule relates to the stationary points of the log-likelihood,
let’s first choose a parametrization in terms of the inverse covariance matrix J. This ex-
ponential family parametrization will enable us to compute the stationary points easily by
setting the derivatives to 0.

We first define the function L : Rgﬁm)x(rﬁm) — R as

L(J):= E log Pr(z
(7):= E,log Pr (a)

We have the following Lemma, which connects the stationary points of L with the fixpoints
of EM. The proof is standard and is omitted. Vardis: will add if we have time

Lemma 69 Let u* € Pg be such that pj; € (0,1) for all (i,5) € E. Then, for any =

R$+m)x(n+m) we have that VL(J) = 0 if and only if J is a stationary point of the update
rule (49).

Hence, the two notions of stationarity are equivalent and we can focus on understanding
when the update rule (49) has a fixpoint.

Appendix F. Uniqueness of stationary points of EM for general trees

We would like to prove that the only stationary point of the log-likelihood if p;; € (0,1) is
when p = p*. This is the content of the following Theorem.

Theorem 15 Let G = (V, E) be a tree and p* € Pg be a distribution with p; € (0,1) for
all (i,7) € E. Suppose p is a stationary point of the EM update rule (49) with p;; € (0,1)
for all (i,7) € E. Then pij = pj; for all (i,j) € E.

Proof Let i denote the distribution induced by the fixpoint p. Let J be the information
matrix and ¥ the covariance matrix corresponding to p. Also, let 1™ denote the distribution
with density

w (2,y) = p (@) Ayle)
Using Lemma 68, we get that in the fixpoint we should have for all z;, z; € V'
Var . r(2i) = Varp(zi) ,  Cov,r(2i,25) = Covi(zi, 25) (50)

where z;, z; are either leaf or non-leaf nodes that are connected in the topology of G.

We will show that the only possible solution to this system of equations is p = p*. First,
let us analyze these equations for two non-leaf nodes y1,y2 that are connected in G. Since
all the variables are zero mean, we have by the definition of p*7 that

Covyes(1,92) = E [yiyp] = E [Blyiyalz]] = E [Cova(yr, yalz) + Elyi|a] Elya|a]]
e Tt z~p fi i

We get a similar equation for fi, namely that
Covi(y1,y2) = xINEﬂ[Cov,z(yl, ya|z) + Ig[ylll’] E[yz|z]]

it
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At this point, we notice that the first of the two terms contains the quantity Cov(y1, y2|z),
which does not depend on the value x that we condition upon (this can be seen by just
applying the conditioning formula for gaussians). Hence, this term will appear in both sides
of the equation and can be cancelled. So, we only need to compute the second term, which
will depend on the values x. A similar argument for the variance shows that

Vs (1) = B [Varz(le) + Elp o]
Vary (1) = B [Varmynx) n Ig[ynwﬂ (51)

Again, the conditional variance does not depend on the value of z, hence it will be the same
for the two distributions.

After this preliminary observations, let’s see how the we can reduce this problem to the
one latent case. Suppose y; is a latent node and denote its set of neighbors in G by N. Notice
that some of the neighbors will be leaves and some will be non-leaves, which prompts us to
partition N into corresponding subsets N, Ny. Let’s denote s = |N|, s, = |Ng|, sy = [Ny
There is a natural partition of the leaves Ry, ..., Rs, which is induced by removing y; from
the graph and taking the leaves in each connected component. We will focus on the fixed
point equations that we get for the covariances of y; with it’s neighbors. To do that, we
should calculate the conditional expectations of y; and it’s neighbors, given z. We will
need to be careful when calculating them, since we would like certain quantities to appear.
Therefore, we will start by marginalizing out all the non-leaf nodes except y; and N,. Let
Y¢ denote these nodes. We first compute what is the external field of y; and the nodes in
N, when we do this marginalization. Indeed, if h,, was the original external field of y; and
the new external field is h’yl, then we have that

hgn = hy, — JleCJB;ClYBhYC

However, notice that the vector jylyc is the 0 vector, since Y ¢ does not contain any neighbor
of y1. Hence, the external field of y; does not change. Now let yo be a neighbor in N,.
Then,

I T 7—1
hy, = hyy = Jypyeyeyehye

Notice that h,, is a linear combination of the leaves that are neighbors of y3. Also, we can
show that the second term of the right hand side is a linear combination of the leaves that
belong to the connected component corresponding to yo and are not neighbors of yo. This
is established in the following Lemma.

Lemma 70 Let yo be a non-leaf neighbor of y1 and Sy, be the corresponding set of leaves
for the partition that yo belongs to. Then, the quantity h;n = hy, — JyQYCchlychyc s a
linear combination of the leaves in Sy, .

Proof The leaves in Sy, can be partitioned into subsets A, B, where A are the leaves that
are neighbors of yo and B the remaining leaves. Let 75 be the topology of the connected
component that y» belongs to, when we remove y;. Also, let No be the neighborhood of yo
in 75, with corresponding subsets Na;, Na,,. Clearly, h,, is a linear combination of the leaves
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in A. We will show that the second term is a linear combination of the leaves in B, thus
concluding the claim. First of all, notice that Jyeye is the information matrix of a gaussian
model, whose graphical representation is the tree G' when y; and all nodes in N, have been
removed. Let’s call T3 this new topology. In this topology, T5 has been partitioned into
| N2| subtrees, one for each neighbor of ys (because yo is removed). Hence, the leaves B of
T5 have been partitioned into | Ny, | subsets Q1, ... s Q| Ny |-

Since jycyc is an information matrix, it’s inverse J;CIYC is a covariance matrix, where
the nodes have standard deviations w; and normalized covariances (correlations) wj;. Since
T3 is a forest, there is at most one path connecting each one of the nodes. Hence, it is well
known that the covariances multiply across paths in this structure, namely:

7 10 , if 4, 7 are not connected in T}
(Jyeye)yj = (I HeePij w;j , if Pj; is the unique path connecting i, j

Given this description, it is easy to see that for each i € Y¢, we have that (j;clyc hye); is a
linear combination of leaves that belong to the same component as ¢ in T3. Hence, for each
1€ Ngy,~(j;01¥c hye); is a linear combination of the leaves of the @; that i is connected to.
Hence, Jy,ye chlychyc is simply a linear combination of the leaves in all the @);’s, which
means it is a linear combination of the leaves in B. |

Hence, overall the external field h;, will be a linear combination of the leaves in Sy,.
The same is true for all nodes in N,. It will be convenient to define the vector H € R?,
which has one entry for each node in N. If the node is a y; € Ny, then define H; = h;i. If
the node is an x; € N, then define H; = x;. Let’s focus on some y» € N, and see what
relations we get in the fixed point. As we say in the earlier computation, the relation for
the covariance becomes

E[E[y:|2] E[yz|]] = E[E[y|x] Elys|z]] (52)
Iy fi w i fi
The inner expectation is common on both sides, so let’s start by calculating that. Since
we have already marginalized out all the nodes in Y¢, we only need to marginalize out the
nodes in N, other than y». For convenience, denote No = N, \{y2}. Then, if we marginalize
out nodes in Na, the resulting extenal field h’y'1 will be

i 7 -1
hgl = hyl - Jy1N2(‘]J/V2N2) h/NQ
The reason why we write J’ is that the information matrix has been altered when marginal-

izing Y¢. Now, notice that since the neighbors of y; are not connected with each other, the
matrix J]'V2 N, is diagonal. This means that we have

T Jy1y~
hl = Z Jyy 2, Ti + Z 2 Lhy,

2;€Nz Y;ENy, Y #y2 ~ YiVi

To write tNhis more compactly, we introduce the vector r € R®, where r; = ~ym if i € N,
and r; = Jy,y,/J,,,, if i € Ny. Notice that r; # 0 always. With this notation, the previous
equation becomes

i#y2
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We also need to compute h;’Q, which is a much easier task, since
"o 7 7/ —17 g7
hyz - hyz - Jy2N2(JN2N2) hn, = hyz

since Jy, N, is the zero vector (no connections between neighbors). Hence, we have calculated
the external field of y1, y2 in the marginal model that contains only these two nodes. Now,
to calculate the conditional expectations of these two nodes, we just have to use the relation

(Eﬁ[ylyx]) =3 | <h;/:1)
Ealyzlz] IE\ Py,
that connects the external field to the mean of a gaussian. Here, Ey1y2|x is the 2 x 2

covariance matrix of the conditional distribution of y1, yo given x. The reason we have used
Yy1yole 18 that the covariance matrix does not change when we marginalize some nodes.

Suppose
fnd Cc1 C2

with cieq — coc3 # 0. The reason the variances are not necessarily 1 is that we are now in
the conditional model. Then, condition(52) translates to the following:

mlEu*[(Clhfu/l + cahy, ) (eshy, + cahy,)] = xlﬁlﬁ[(ﬂhgl + cahy, ) (cahy, + cahy,))]
This implies that

crea( B [(H)7] = E [(065)%) + coca(_E [(007,)%] = E ()7

+(c1eq + 0263)( E iy hagy] — E [hgthQ]) =0 (54)
Similarly, from the variance condition on y; (Equations 51) we obtain
IE*[(Clh; + CQhZ2)2] - mIEﬂ[(Cthl + CQh,Zz)Q]

This implies

GE,[0,)% = E [0 + (B [(hy,)"
— E ()% + 2012 E [}, i) = E [k, i) =0 (55)

Similarly, for yo we get

c§< E [1]] - Ejh%])—kci( E [ - E | h2>

T~p T~ Tt T~

+2e304 ( E [hihy] - E [hlhg}) (56)

T
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We can think of equations (54), (55) and (56) as a 3 x 3 system with matrix

C1C3 C2C4 C1C4 + C2C3

C% 2 2c1c9

i A 2c3c4

where the three unknown variables are

E [hi]— E [h3], E [h3]— E [h3], E [hiho] — E [h1ho]

Tt T Tp xevp Tovp xevf

The determinant of this matrix is —(c1cq — 0203)3 , which is non-zero, since the matrix
Yy, yo|e 18 invertible. The reason is that we have assumed that in the fixpoint p all correlations
are strictly less than 1. Hence, we conclude that

" " _ i i
IEEM* [hyl hy2] - xINEﬂ[hyl hyz]

Based on the calculations that were done earlier (equation (53)), this equation can be
written as

E |Hy | Y riHi || = E |Hy | Y rH

Tt T

1F£Y2 Gl

If x; is a non-leaf neighbor, the fixed point equations give us

EJ%(ZriHZ-)]: E [z;(> )] —
’ 7 T
E (H;Q_rH)] = EH;(3 riff)

Top* — -
] 7]

The key observation here is that the coefficients r; that appear will be the same in
all equations involving y;. The last step of the argument involves actually computing the
expectation and seeing what it implies for p*/. First, let’s try to compute E[H,H,] for
¥i,Y; € Ny. Remember that we have established already that for each i € N, H; is a
linear combination of the leaves in the partition corresponding to ¢. Hence, computing
E[H;H;] amounts to computing the covariance between all pairs of leaves from the two
different subsets. Suppose H; = (ai)TXi, where X; is the vector of leaves in S;. As we said,
correlations multiply across paths, so in particular we have that

E [HH)= E (@) X)) X]= Y aja] E [za]]
K K T, €S5;,71E€S8; K
Sy 1w
T, E€S;,11E€S; CEka,xl

where P(zy, x;) denotes the path between leaves xy, x;. Now, notice that all the paths from
X to X; will have to go through the edges connecting y; to ¢ and y; to j. Let p;, p; be
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the correlations in these two edges. Then, there is a convenient factorization that can be
written as follows

E [HiH;) = pip] Soai IT e [ Do I #:

TEES; €€sz,yi xZGSj 6€levyj

T

The exact same relations hold for g, since the topology is the same. Hence, by writing out
the condition

il Do a I e Do o Dl I e

x-€S; eerﬁ“yi ZjEN,j;ﬁi CESESJ' €€Pg¢szj
~ i ~ ~ 1 ~
= P E a,. H Pe E Pj § ag H Pe (57)
zrE€S; €€ Pyry, Z;EN,j#i xsES; eEPISZj

The reason we used the notation z; is that this neighbor could be either a leaf or an internal
node. Hence, for each i € IV, we set

wi=pf | Y a [] e

reXt el

and similarly

Wi = pi Z a; H Pe
reX? ecP;;
Notice that if ¢ or j is a leaf neighbor, then we get the same expression, except that the
parenthesis will be 1 and we will simply have p; or p} as the variable. Hence, this definition
can be extended to all i € N. Now, given these parametrizations, the fixed point conditions
are

rjw;f Z m-w;k = T’jﬂ)j Z Tﬂfji (58)
1#] i#]
for each i € N. But this is exactly the system that we got for one latent.. As we proved
in Lemma 9, the only solution for this system is r;w; = r;w] for each i, which implies that
w; = w; for each i. Notice that if NV, is nonempty, then this implies that p; = p. for all
edges e between y; and it’s neighboring leaves.

We can use this result to show that p = p*. Our argument is inductive. At each step,
we pick an internal node y that only has one non-leaf neighbor (it’s parent). Then, for all
edges of the form e = (y,x;) for some z;, we have that p} = p. by the previous argument.
Once we establish that, we remove all the leaf nodes that are connected to y from the tree
along with their corresponding edges. This means that in the next iteration, y will be a
leaf, so it will no longer be selected. This means that this process terminates after m steps.

The correctness of this procedure can be proven inductively as follows: for the base case,
we already saw that edges that are connected to leaves will be equal in the two models. In

70



WHERE DOES EM CONVERGE IN LATENT GAUSSIAN TREE MODELS?

each step, for the node y that is selected at that step, we know from the induction hypothesis
that all of it’s leaves in the remaining tree are either true leaves, or internal nodes who have
already been selected. This means that are descendants of y have already been proven to
be equal in the two models. Then, for each leaf neighbor z of the node y (it might not be
a true leaf in the original tree) we have parameters w*, w. These are proven to be equal by
the previous arguments. Let e be the edge connecting z,y. Then w* is a multiple of p} and
w is a multiple of p.. The multiplier for both of these is the same in both quantities, since
it only depends on descendant edges, which are proven to be equal for the two models. It
follows that p} = p. and the induction stpe is complete.

|
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