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Abstract

We establish optimal Statistical Query (SQ) lower bounds for robustly learning certain families of
discrete high-dimensional distributions. In particular, we show that no efficient SQ algorithm with
access to an e-corrupted binary product distribution can learn its mean within ¢5-error o(e+/log(1/€)).
Similarly, we show that no efficient SQ algorithm with access to an e-corrupted ferromagnetic high-
temperature Ising model can learn the model to total variation distance o(elog(1/€)). Our SQ lower
bounds match the error guarantees of known algorithms for these problems, providing evidence that
current upper bounds for these tasks are best possible. At the technical level, we develop a generic
SQ lower bound for discrete high-dimensional distributions starting from low-dimensional moment
matching constructions that we believe will find other applications. Additionally, we introduce new
ideas to analyze these moment-matching constructions for discrete univariate distributions.

Keywords: robust statistics, statistical query model, discrete distributions, Ising model

1. Introduction

1.1. Background and Motivation

Robust Statistics and Information-Computation Tradeoffs We study high-dimensional learn-
ing in the presence of a constant fraction of arbitrary outliers. Robust learning in high dimensions
has its roots in robust statistics, a branch of statistics initiated in the 60s with the pioneering works of
Tukey and Huber (Tukey, 1960; Huber, 1964). Early work developed minimax optimal estimators
for various robust estimation tasks, albeit with runtimes exponential in the dimension. A recent line
of work in computer science, starting with Diakonikolas et al. (2016); Lai et al. (2016), developed
polynomial time robust estimators for a range of high-dimensional statistical tasks. Algorithmic
high-dimensional robust statistics is by now a relatively mature field, see, e.g., Diakonikolas and
Kane (2019) for a survey.

The line of work in algorithmic robust statistics established the existence of computationally
efficient algorithms with dimension-independent error guarantees for a range of high-dimensional
robust estimation tasks. In some instances, these algorithms achieve the information-theoretically
optimal error (within constant factors). Alas, in several interesting settings, there is a super-constant
gap between the information-theoretic optimum and what known efficient algorithms achieve. This
raises the following natural question: For a given high-dimensional robust estimation task, is the
information-theoretically optimal error achievable in polynomial time?

© 2022 1. Diakonikolas, D.M. Kane & Y. Sun.



DIAKONIKOLAS KANE SUN

In several high-dimensional statistical settings, there is strong evidence that inherent resource
tradeoffs exist. In robust statistics, the study of such information-computation tradeoffs was initi-
ated in Diakonikolas et al. (2017), which established the first such lower bounds in the Statistical
Query (SQ) model (Kearns, 1998). The methodology for proving such lower bounds introduced
in Diakonikolas et al. (2017) applies to “Gaussian-like” distributions. In particular, the general
problem underlying that work — known as Non-Gaussian Component Analysis (NGCA) (Blan-
chard et al., 2006; Tan and Vershynin, 2018; Goyal and Shetty, 2019) — considers distributions that
are distributed as a standard Gaussian in all but one hidden direction.

Here we are interested in exploring information-computation tradeoffs for robustly learning dis-
crete high-dimensional distributions. The two concrete examples — that were the main motivation
for this work — are (1) the class of binary product distributions and (2) the (more general) class
of Ising models. For both of these distribution classes, there are gaps between the information-
theoretically optimal error and the error that known polynomial-time algorithms can achieve. Given
the aforementioned prior work for Gaussian-like distributions (Diakonikolas et al., 2017), it would
be tempting to conjecture that these gaps are in fact inherent. In this work, we develop the necessary
methodology that allows us to prove such statements for discrete distributions, and in particular for
the aforementioned families.

Before we proceed, we give the necessary background on the SQ model and robust statistics.

Statistical Query (SQ) Model SQ algorithms are the class of algorithms that are only allowed to
query expectations of bounded functions of the underlying distribution rather than directly access
samples. The SQ model was introduced by Kearns (1998) in the context of supervised learning as
a natural restriction of the PAC model (Valiant, 1984) and has been extensively studied in learning
theory. A recent line of work (Feldman et al., 2013, 2015, 2017; Feldman, 2017) generalized the
SQ framework for search problems over distributions.

The class of SQ algorithms is fairly broad: a wide range of known algorithmic techniques in ma-
chine learning are known to be implementable in the SQ model. These include spectral techniques,
moment and tensor methods, local search, and many others (see, e.g., Chu et al. (2006); Feldman
etal. (2013,2017)). A notable exception are learning algorithms using Gaussian elimination (in par-
ticular for learning parities, see, e.g., Blum et al. (2003)), Brennan et al. (2020) recently established
a connection between the SQ model and low-degree polynomial tests under certain assumptions.

Contamination Model We focus on the following contamination model, where the adversary can
corrupt the true distribution in total variation distance.

Definition 1 (TV-contamination) Given a parameter 0 < € < 1/2 and a distribution class D, we
say that a distribution D' is an e-corrupted version of a distribution D € D if dyy(D,D’) < e.

We will study algorithms robust against this kind of contamination. In particular, we want
algorithms that given sample access to a distribution D’ which is an e-corrupted version of some
unknown distribution D € D, can approximate relevant parameters of the “true” distribution D. For
such algorithms, one may want to consider the distribution D’ to be adversarially selected, perhaps
in a way designed to fool the particular algorithm in question. We also note that several algorithms
in robust statistics can be made to function in the presence of even stronger contamination models,
such as the strong contamination model, where the adversary can inspect the samples drawn and
adaptively choose which samples to corrupt and how. However, these stronger models are harder to
formalize for SQ algorithms where our lower bounds will apply.
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1.2. Problems of Interest and Our Results

With this background, we are ready to summarize prior algorithmic work on the two problems of
interest and informally state our contributions.

Robust Mean Estimation for a Binary Product Distribution A binary product distribution is a
distribution over {0, 1} whose coordinates are independent. We consider the algorithmic problem
of computing an approximation to the mean vector up of a binary product distribution P, in /o-
norm, given access to a set of samples from an e-corrupted version of P. Diakonikolas et al. (2016)
gave the first efficient algorithm for this problem that outputs an estimate zi such that with high
probability || — pup|| = O(ey/log(1/e€)). Information-theoretically, it is possible to approximate
pp within £5 error ©(e). Our first main result shows that this gap is inherent for SQ algorithms (see
Theorem 24 for a detailed statement).

Theorem 2 (SQ Lower Bound for Binary Products, Informal) Any SQ algorithm that robustly
learns the mean of a binary product distribution over {0, 1}M , given access to an e-corruption,
within la-error o(e+/log(1/€)) either requires at least oMY nany statistical queries or must make
a query of accuracy inverse super-polynomial in M.

Theorem 2 shows that no SQ algorithm can robustly approximate the mean of a binary product
distribution to error o(ey/log(1/€)) with a sub-exponential in M**(1) queries, unless using queries
of very small tolerance — that would require super-polynomially many samples in M to simulate.
In that sense, Theorem 2 is an information-computation tradeoff for robust mean estimation of a
binary product distribution within the class of SQ algorithms.

Robustly Learning a Ferromagnetic High-Temperature Ising Model Given a symmetric ma-
trix (eij)z’,je[ M] € Rf *M with zero diagonal, a ferromagnetic Ising model is a distribution over
{£1}M with mass function Pp(x) = % exp ((1/2) 2 i je[M] 0;jzi2;), where Z(0) is a normal-
izing constant. We say that an Ising model lies in the high-temperature regime if there is a universal
constant 0 < 7 < 1 such that maxe(as 3 2;4; 0| < 1 — 7. Here we would like an algorithm
that given samples from an e-corrupted version of an unknown ferromagnetic high-temperature
Ising model P, approximates P in total variational distance. Diakonikolas et al. (2021e) gave the
first efficient algorithm for this problem that outputs an estimate P such that with high probability
dryv (P, P) = O(elog(1 /€)). On the other hand, the information-theoretically optimal error in total
variation distance is ©(e). Our second main result shows that this gap is inherent for SQ algorithms
(see Theorem 29 for a detailed statement).

Theorem 3 (SQ Lower Bound for Ising Models, Informal) Any SQ algorithm that robustly learns
a ferromagnetic high-temperature Ising Model over {+1YM given access to an e-corruption, within
total variation distance o(elog(1/€)) either requires at least 2™ “ many statistical queries or must
make a query of accuracy inverse super-polynomial in M.

Similarly, Theorem 3 is an information-computation tradeoff for robust learning of an Ising model
within the class of SQ algorithms. In summary, for both of these problems, we show that known
algorithms are essentially optimal within the class of Statistical Query (SQ) algorithms.
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1.3. Technical Overview

Here we provide an outline of our approach and techniques. To prove our SQ lower bound in
the discrete setting, we need to develop a novel generic discrete SQ lower bound machinery for
distributions over {0, 1}*. Ata high level, our construction resembles the lower bound construction
of Dachman-Soled et al. (2015) (in the context of supervised learning), adapting several ideas of
Diakonikolas et al. (2017) from a Gaussian version of this problem.

In particular, showing an SQ lower bound for learning functions in some class essentially boils
down to proving lower bounds for the corresponding SQ dimension. In our case, this amounts to
finding large families of e-corrupted binary product distributions or e-corrupted Ising models that
have pairwise small chi-squared inner product with respect to some given base distribution. We will
select as a base distribution the uniform distribution over the hypercube.

To construct these distributions, we will adapt and generalize the techniques of Dachman-Soled
et al. (2015). In particular, we aim to find a single distribution Dy of the appropriate type over
{0,1}™, for some m substantially smaller than M, so that Dy’s low-degree Fourier coefficients
vanish. One can then use Dy to obtain many different distributions over {0, 1} by embedding it
over some subset (chosen in one of many different ways) of the coordinates, and using the uniform
distribution over the remaining coordinates. One can show (see Lemma 19) that this allows one to
produce many nearly orthogonal distributions.

This leaves us with the task of producing an appropriate distribution Dg. To achieve this, we
take inspiration from the Gaussian regime (Diakonikolas et al., 2017). In particular, we simplify
matters by considering only symmetric distributions Dy. This means that Dy is determined by a
one-dimensional distribution A — specifically, the distribution over the sum of the coordinates of
Dy. This distribution A must be close in total variation distance to an appropriate one-dimensional
version of either a binary product distribution or an Ising model, and must match several of its
low-degree moments with the Binomial distribution.

In order to construct these one-dimensional distributions, we again borrow ideas from Di-
akonikolas et al. (2017). We want to obtain a distribution A close to some other distribution B
that matches its low-degree moments with the binomial. We will achieve this by starting with the
distribution B and modifying its probability mass function (pmf) over some appropriately chosen
interval I. In particular, if we modify it by a degree-k polynomial p over I, there will be a unique
choice of this polynomial that gives us some specified first £ moments. To establish correctness, we
need to verify that the resulting polynomial p is not too large (both to ensure that the resulting pmf
is non-negative and to ensure that A and B are close in total variation distance). This can be shown
via an explicit analysis involving Legendre polynomials (as is done by Diakonikolas et al. (2017),
in the continuous case) along with additional technical work required to show that the change to the
discrete setting does not significantly affect things.

2. Preliminaries

Notation For n € Z,, we denote [n] o {1,...,n}. For two distributions p, g over a probability
space €, let drv (p, q) = supgcq |p(S) — q(S)| denote the total variation distance between p and q.
We use Pr[£] and I[£] for the probability and the indicator of event €. For a real random variable
X, we use E[X], Var[X] to denote the expectation and variance of X, respectively. For n € Z
and 0 < p < 1, we use Bin(n, p) to denote the Binomial distribution with parameters n and p.
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Properties of Legendre Polynomials We record some properties of Legendre polynomials that
we will need throughout this paper.

Fact 4 (Szego (1989)) The Legendre polynomials, P;(x), fori € Z., satisfy the following proper-
ties: (i) P;(x) is a degree i-polynomial with Py(z) = 1 and Py (z) = x. (ii) f_ll Pi(z)Pj(x)dx =
;ﬁﬂ foralli,j > 0. (iii) |P;y(z)] < 1 forall |z| < 1. (iv) Pi(z) = (=1)'Pi(—x). (v) P;(z) =
27 S (=) () ()2 i) [Pi(w)| < (@lal) for all x| > 1 i) [1)|Pi(w)|de <
O(1//3). (viii) | P! ()| < O(i2) for all |z| < 1.

Ising Models We recall basic facts about Ising models, which will be used throughout this paper.

Definition 5 (Ising Model) Given a symmetric matrix (05); jc(a € R¥X4 with zero diagonal, the
Ising model distribution Py is defined as: Py(x) = % exp ((1/2) dijeld 0;jzix;), Vx € {£1}4,
where the normalizing factor Z(0) is called the partition function. We call the matrix (eij)i,je[d] €

R4 the interaction matrix. In addition, we say that Py is ferromagnetic if 0;; > 0,Yi,5 € [d].

The following Dobrushin’s condition for Ising models is a classical assumption needed to rule out
certain pathological behaviors. This condition is standard in various areas, including statistical
physics, computational biology, machine learning, and theoretical CS (Kiilske, 2003; Gétze et al.,
2019; Dagan et al., 2020; Adamczak et al., 2019; Gheissari et al., 2018; Marton, 2015).

Definition 6 (Dobrushin’s Condition) Given an Ising model Py with interaction matrix (0;5); je[a)»
we say that it satisfies Dobrushin’s condition, or lies in the high temperature regime, if there is a
constant 0 < n < 1 such that max;c(q) > _; ; 10ij| <1 —n.

Statistical Query Algorithms We will use the framework of Statistical Query (SQ) algorithms
for problems over distributions introduced in Feldman et al. (2013). Before we get into the formal
statement of our generic discrete SQ lower bound, we formulate it as a decision problem as follows:

Definition 7 (Decision/Testing Problem over Distributions) Let D be a distribution and D be a
family of distributions over RM . We denote by B(D, D) the decision (or hypothesis testing) problem
in which the input distribution D’ is promised to satisfy either (a) D' = D or (b) D' € D, and the
goal of the algorithm is to distinguish between these two cases.

We define SQ algorithms as algorithms that do not have direct access to samples from the
distribution, but instead have access to an SQ oracle. We consider the following standard oracle.

Definition 8 (STAT Oracle) Let D be a distribution on RM . A Statistical Query (SQ) is a bounded
function f : RM — [—1,1]. For 7 > 0, the STAT(7) oracle responds to the query f with a value v
such that [v—Ex . .p[f(X)]| < 7. We call T the tolerance of the statistical query. A Statistical Query
(SQ) algorithm is an algorithm whose objective is to learn some information about an unknown
distribution D by making adaptive calls to the corresponding STAT(7) oracle.

To define the SQ dimension, we need the following definition.

Definition 9 The pairwise correlation of two distributions with probability density functions D1, Dy :

{0,1}M — R, with respect to a distribution with density D : {0,1}™ — R, where the support of

D contains the supports of D1 and D, is defined as xp(D1, D2)+1 & > xefoaym D1(x)Da(x)/D(x).

We say that a set of s distributions D = {D1, ..., Ds} over {0, 1} is (v, B)-correlated relative to
a distribution D if |xp(D;, Dj)| < v foralli # j, and |xp(D;, D;)| < B fori = j.
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Definition 10 (SQ Dimension) For vy, 3 > 0, a decision problem B(D, D), where D is fixed and
D is a family of distributions over {0, l}M , let s be the maximum integer such that there exists
Dp C D such that Dp is (v, B)-correlated relative to D and |Dp| > s. We define the Statistical
Query dimension with pairwise correlations (v, ) of B to be s and denote it by SD(B,~, [3).

The connection between SQ dimension and lower bounds is captured by the following lemma.

Lemma 11 (Feldman et al. (2013)) Let B(D, D) be a decision problem, where D is the reference
distribution and D is a class of distributions over RM. For v, 3 > 0, let s = SD(B,~, ). Any

SQ algorithm that solves B with probability at least 2/3 requires at least s - v/ queries to the
STAT(\/27) oracles.

We note that the hypothesis testing problem of Definition 7 may in general be information the-
oretically hard. In particular, if some distribution D’ € D is very close to the reference distribution
D, it will be hard to distinguish between D’ and D. On the other hand, if D’ is far from the reference
distribution D in total variation distance for any D’ € D, then one can straightforwardly reduce the
hypothesis testing problem to the problem of learning an unknown D’ € D to small accuracy. For
completeness, we defer the formal statement and proof to Appendix A.6.

3. Generic Discrete SQ Lower Bound Construction
We start with some basic definitions.

Definition 12 (Characters) For x € {0, 1}, we denote x7(x) = (—1)Zi6T ¥ For a distribu-
tion P over {0,1}M let P(T) = Ex~p[xr(X)].

We will denote by Uy the uniform distribution over {0, 1}*. By Plancherel’s identity, we have the
following fact about the chi-squared inner product in the discrete setting.

Fact 13 For distributions P, Q over {0, 1}, we have that 1+xy,,(P, Q) = >_rciM] P(T)Q(T).
We will require the orthogonal polynomials under the Binomial distribution.

Definition 14 (Kravchuk Polynomial Szego (1989)) For k,m,x € Z, with 0 < k,x < m, the
Kravchuk polynomial Ky, (x; m) is the univariate degree-k polynomial in x defined by Ky (x;m) :=
ZTg[m],\T\:k xr(y) = Z?ZO(—l)J (f) ("l;‘:f), where'y has x 1’s and m — x 0’s.

Fact 15 (Orthogonality Szegd (1989)) Let j, k,m € Z. Then, Ex _in(m,1/2)[/C;(X;m)Cp(X;m)] =
1[j = k|(}). In particular, if k > 1, then Ex Bin(m,1/2)[Kr(X;m)] = 0.

Our basic technique for producing near-orthogonal distributions over the hypercube takes inspi-
ration from Dachman-Soled et al. (2015). They show that if one can construct a distribution D over
a small number of coordinates whose degree up-to-k Fourier coefficients agree with the uniform
distribution, then by taking embeddings of D into the hypercube as a junta can provide many or-
thogonal distributions. This leaves us with finding our moment-matching distribution D. Our basic
idea will be to make D a symmetric distribution, as this will simplify things substantially due to the
added symmetry. Essentially, D will be defined by some distribution A on » z;. This distribution
A will need to nearly match the first £ moments with the Binomial distribution Bin(m, 1/2).

We now formally define the high-dimensional distribution family that is the basis of our discrete
SQ lower bound construction.
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Definition 16 (High-Dimensional Hidden Junta Distribution) Let m, M € Z, with m < M.
For a distribution A on [m] U {0} with probability mass function (pmf) A(x) and a subset S C [M|
with |S| = m, consider the probability distribution over {0, 1}M , denoted by Pé, such that for
X ~ Pé the distribution (X;);gs is the uniform distribution on its support and the distribution
(Xi)ies is symmetric with ) ;g X; distributed according to A. Specifically, Pg‘ is given by the

_ -1
pmfPA() = 2744 A (8 ) (L)
i€S "t
We now define the hypothesis testing problem which will be used throughout this paper:

Definition 17 (Hidden Junta Testing Problem) Let m, M € Z, with M > m and A be a one-
dimensional distribution over [m|U{0}. In the (A, M )-Hidden Junta Testing Problem, one is given
access to a distribution D so that either Hy: D = Uy, Hi: D is given by Pg‘ for some subset
S C [M] with |S| = m, where P4 denotes the hidden junta distribution corresponding to A. One
is then asked to distinguish between Hy and H.

Note that this is just the hypothesis testing problem B(D, D) with D = Uy and D = {P%}. The
following condition describes the approximate moment-matching property of the desired distribu-
tion A with the Binomial distribution.

Condition 18 (Approximate Moment-Matching) Lerv > 0and k,m € Z4 with k < m. The
distribution A on [m] U {0} satisfies |Exa[lCt(X;m)]| < v, forall1 <t <k.

In particular, if A exactly matches the first K moments with Bin(m, 1/2), then we will have that
Ex alKi(X;m)] = E X Bin(m,1/2) [Ke(X;m)] =0, forall 1 <t <k.

In order to prove SQ lower bounds for the above testing problem, one needs to find many sets
S for which the corresponding Pé are nearly orthogonal. For this, we show that it suffices to find
many subsets S whose intersections are pairwise much smaller than m. In particular, we prove that
if |S N S| = o(m), then the corresponding inner product will be sufficiently small. This makes our
technique somewhat reminiscent of Diakonikolas et al. (2017), which proves lower bounds in the
Gaussian setting, where their hard distributions are equal to some moment-matching distribution A
in a hidden direction v and are standard Gaussian in the orthogonal directions. Diakonikolas et al.
(2017) shows that if two such distributions have hidden-directions w and v, then the chi-squared
inner product of these distributions is on the order of |u”v|?, where d is the number of matching
moments. A significant difference with the Gaussian case here is in the way we embed the one-
dimensional distribution A as a higher dimensional one. Our main structural lemma for the discrete
setting is the following:

Lemma 19 (Correlation Lemma) Let k,m, M € Z with k < m < M. If the distribution A
on [m] U {0} satisfies Condition 18, then for all S,S" C [M] with |S| = |S’| = m, we have that
Ixvw (P§, PG| < (1S 0S| /m)1x?(A, Bin(m, 1/2)) + kv? .

Proof By definition, we have that

—1N 2
1+ x*(Pg, Un) =2 D xe{0,1}M (2_M+mA(Zz‘es ;) <Z 8 ) )

ies i

= 2" 37 AGP/(T) = 1+ x°(A,Bin(m. 1/2))
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where we let j denote ) ;g x; in the second equality.
Now we proceed via discrete Fourier analysis. Note that by Definition 12, p 5(T) = Ex.pa [x7(X)],

whichis: (i) 0if 7" € S, (ii) aj/(j) if ' C Sand |T| = j, where a; = E;4[IC;(t;m)]. ThlS
is because symmetry implies that for each 7" C S with |T'| = j we have that PA(T) is the same.
Furthermore, E;4[IC;(t;m)] = Ex.pa [ZTQS,|T|:J‘ XT(X)}. From this, by Fact 13, we have

1+ x*(A,Bin(m,1/2)) = 1 + x*(P§,Un) = 1+ x0,, (P, P§) = S5 g PA(T)?

=D im0 2TCS, )=t (at/(?))Q =143 a%/(?) ;

where the last equality follows from the fact Ko (¢;m) = 1. In addition, by Fact 13, we have that
~ mh 2
1+ X0 (PE,PE) = Drcong PATIPA(T) = S (T = [T = 1.7 € s 8} a3/ ()

ez (V)

where the last equality follows from the fact Ko (¢; m) = 1. By Condition 18, we have that

s (505 Na/ (1) < St < b

The sum over terms with ¢ > k is at most
(707 )air (7)< ity (7w (P (7)
) e (S o)

(=) (557) () - (05

< x*(4,Bin(m, 1/2)) (IS N | /m)" " .

IN

This completes the proof. n
We will additionally require the following (see Appendix A.5 for the proof).

Claim 20 Letrm,M € Z; withm < M. Forany 0 < ¢ < 1/2 and M > 2mite there exists a
collection C of 2™ /4 subsets S C [M] with |S| = m such that any pair S, S’ € C, with S # 5,
satisfies |S N S'| < m!i=¢.

Proposition 21 (Generic Discrete SQ Hardness) Let m, M € Z, with M > 2m>/*. Let A be a
distribution on [m] U {0} satisfying Condition 18. Let T > m~*+1/4x2(A Bin(m,1/2)) + kv

Any SQ algorithm that solves the testing problem of Definition 17 with probability at least 2 /3 either

makes queries of accuracy better than \/ 21 or makes at least m statistical queries.

8
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Proof Let C be a collection of s = 22(V™) subsets S C [M] with |S| = m whose pairwise
intersections are all less than m?/4. By Claim 20 (taking the local parameter ¢ = 1/4), such a set is
guaranteed to exist. By Lemma 19, we have that for S, S’ € C with S # S, it holds that

|XUM(P§1,P§,)| < mf(kﬂ)/‘le(A, Bin(m,1/2)) + kv? <.

If S = 9, then xv,, (P4, P5) = x*(P4,Un) = x*(A,Bin(m,1/2)). Lety = 7 and B =
x%(A,Bin(m, 1/2)). We have that the statistical query dimension of this testing problem with
correlations (v, 3) is at least s. Then applying Lemma 11 with (v, 3) completes the proof. [ |

4. SQ Lower Bound for Robustly Learning a Binary Product Distribution

In this section, we use the framework of Section 3 to prove our super-polynomial SQ lower bound
for robustly learning a binary product distribution.

Definition 22 (Hard Instances) Let 0 < 0 < 1/2 and M,m € Z, with M > m. For any
subset S C [M] with |S| = m, define Uj\qf to be the product distribution over {0, 1}, where each
coordinate has mean 1/2 + 0 if it belongs to set S, and has mean 1/2 otherwise. We let ,uif denote
the mean vector of Uij‘s.

The following lemma states that the distributions in our hardness family are far from the uniform
distribution Uy in total variation distance. We defer the proof to Appendix B.2.

Lemma 23 Let m, M € Zy with M > m. Let S C [M] with |S| < m. Then for any sufficiently
S,L
small 6 > 0, dpvy <UM, UMm) > Q(6), where Uy is the uniform distribution over {0,1}M,
The main result of this section is the following theorem:

Theorem 24 (SQ Lower Bound for Robustly Testing a Binary Product) Fix 0 < ¢ < 1/2 and
k to be a sufficiently large integer. Let m, M € 7 with M = 3m5/*. Let 0 < ¢ < 1/2 and m >
C'(log(1/€))? for some sufficiently large constant C' > 0. Let § be a sufficiently small constant
multiple of e\/log(1/€)/k? and 7 = O(M~*+V/58). Then any SQ algorithm which is given

S,L
access to a distribution P over {0,1}M so that either Hy: P = Uy, or Hy: dry (P, UM‘/m> <e

for some unknown subset S C [M] with |S| = m, and correctly distinguishes between these two

cases with probability at least 2/3, must either make queries of accuracy better than /21 or must
2/5 . . .

make at least 22M*°) \=(R+1)/5 gyaristical queries.

Theorem 24 will follow by applying our generic discrete SQ lower bound construction in Sec-
tion 3 along with the following proposition.

Proposition 25 Fix § > 0 to be sufficiently small and k to be a sufficiently large integer. Let integer
q 2
m > max (C’O (log(1/6))3, log?ﬁ) for some universal constant Cy > 0 sufficiently large. Then

there exists a distribution A over [m] U {0} satisfying the following conditions: (i) Exa[X'] =
By wpin(m.1/2)[X7] for all 1 < i < k, (ii) dpy (A, Bin(m, 1/2 + §/y/m)) < 0(%), and
(iii) x*(A, Bin(m, 1/2)) = O(6).
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In Section 6, we give a technical overview of the proof. The detailed proof of Proposition 25 is
deferred to Appendix B.1.
Proof [Theorem 24] We can assume without loss of generality that ¢ > 0 is smaller than a suffi-
ciently small universal constant. Let § be a sufficiently small constant multiple of ¢4/log(1/¢)/k>.
From Proposition 25, there is a distribution A over [m] U {0} such that (i) A and Bin(m,1/2)
agree on the first k moments. (ii) drv(4,Bin(m,1/2 + §//m)) < O(5k?/\/log(1/5)). (iii)
X2(A, Bin(m, 1/2)) = O(6). In this way, for any subset S C [M] with |S| = m, it holds that

drv (Pé‘, U]Swﬁ> = (1/2) Xoxeqoym
= (1/2) Xoxeqoym 2 MM A (Pies i) (Z:”; ﬂﬁz) -
oM (179 4 5\ fm) ks T (172 — o) ies ®

A S I
PY(x) — Uy /" ()

= (12 5 [AG) ~ () (/2 +8/vm)! (/2= 6/vim)™ |
= drv(A,Bin(m,1/2 + 6/v/m)) = O(6k*//log(1/8)) < e .

By Claim 20, there exists a collection C of 2™ subsets S C [M] with |S| = m such that for
any pair S, 5’ € C, with S # S, satisfies |S N S’| < m3/4. Applying Proposition 21, we de-
termine that any SQ algorithm which, given access to a distribution P so that either P = Uy,
or P is given by P4 for some unknown subset S C [M] with |S| = m, correctly distinguish
between these two cases with probability at least 2/3 must either make queries of accuracy better

than v/27 or must make at least )(2(142,;;(111—% > 2fUM %) M—(k+1/5 gtatistical queries, since
m~F+D/432(A, Bin(m, 1/2)) < O(M~*+1/55) < 7. This completes the proof of Theorem 24.

5. SQ Lower Bound for Robustly Learning a Ferromagnetic High-Temperature
Ising Model

In this section, we prove our super-polynomial SQ lower bound for robustly learning a ferromagnetic
high-temperature Ising model. We start by transforming the support of Ising models to {0, 1}:

Definition 26 Given a real symmetric matrix (0;;); je[m) with zero diagonal, the Ising model distri-
bution Py is defined as follows: Foranyx € {0, 1}, Py(x) = % exp ((1/2) YijelM] (—1)%it250;5),
where the normalizing factor Z(0) is called the partition function. We call the matrix (0;5); jem) €
RMXM the interaction matrix.

Definition 27 (Hard Instances) Let m, M € Z with M > m. Let 0 < § < ﬁ For every subset
S C [M] with |S| = m, define fo to be the Ising model with parameter 0, where for every pair
i # j € [M] we have that 0;; = 6,Vi,j € S and 6;; = 0 otherwise. Note that by our choice of
parameter 6, the Ising models fo are both high-temperature and ferromagnetic.

The following lemma states that the distributions in our hardness family are far from the uniform
distribution U}y in total variation distance. We defer the proof to Appendix C.2.

10
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Lemma 28 Let m, M € Z, with M > m. Let S C [M] with |S| < m. Then, for any sufficiently
5
small 6 > 0, we have that d1v (UM, i/”) > Q(0).

The main result of this section is the following theorem:

Theorem 29 (SQ Lower Bound for Robustly Testing Ising Models) Fix 0 < ¢ < 1 and k to be

a sufficiently large integer. Let m,M € Z, with M = 3mS/4 Let 0 < € < 1/2 and m >

C'(log(1/€))? for some sufficiently large constant C' > 0. Let § be a sufficiently small multiple

of elog(1/€)/k® and 7 = O(M~*+D/58). Then any SQ algorithm which is given access to a
3

distribution P over {0,1}M so that either Hy: P = Uy, or Hy: drv (P, QZ’") < ¢ for some

unknown subset S C [M] with |S| = m, and correctly distinguishes between these two cases with

probability at least 2 /3 must either make queries of accuracy better than \/ 2T or must make at least
QM) N r=(k+1)/5 syatistical queries.

Definition 30 Fix n to be a positive integer. Let IS(n, ) be the distribution over [n] U {0} with
IS(n 8)(z) = (7)) exp (h(n, x)0) / Zy(6) for some parameter —1/n < § < 1/n, where h(n,x) =
222 — 2nx + n(n Y and Zn(6) =30 () exp(h(n, z)d).

By Definition 26, Z,,(9) is the partition function of the Ising model over {0, 1}", where every
entry outside of the diagonal of the interaction matrix is . Intuitively, IS(n,d)(z) denotes the
contribution of the configurations containing x 1’s in the Ising model.

Theorem 29 will follow by applying our generic discrete SQ lower bound construction of Sec-
tion 3 along with the following proposition.

Proposition 31 Fix § > 0 fo be sufficiently small and k to be an arbitrary positive integer.
Let integer m > max (Co(log(1/6))?, %) for some universal constant Cy > 0 sufficiently
large. Then there exists a distribution A over [m] U {0} satisfying the following conditions: (i)
Exoa[X] = Ex pin(m.1/2) X forall 1 < i <k, (ii) drv(A,1S(m,d/m)) < O(52E ;(’33'/5)) in
addition, (iii) x*(A, Bin(m, 1/2)) = O(9).

In Section 6, we give a technical overview of the proof. The detailed proof of Proposition 31 is
deferred to Appendix C.1.
Proof [Theorem 29] We can assume without loss of generality that € > 0 is smaller than a suffi-
ciently small universal constant. Let & be a sufficiently small constant multiple of € log(1/¢)/k3.
From Proposition 31, there is a distribution A over [m]U{0} such that (i) Ex~4[X"] = Ex pin(m,1/2)[X"]

forall 0 < i < k, (i) dpv (A, IS(m, 6 /m)) < O (%) < O(e), and (iii) (A, Bin(m, 1/2)) =

O(9). Note that for any subset S C [M] with |\S| = m, it holds that
3,3 S5
drv (P4,@0" ) = (1/2) Deqoyn [PEG) - Q4 ()]

= (1/2) Cxeqoryy 27" A (Ties @) (Em )*1 — g Mtm (exp(h( , 32 23)8/m) ] Zn(5/m) )'
<e

ics i i€s

<1/2>z AG) = ("7) explh(m. 3)3/m) 2,(3/m)| = dry(A,18(m. 5/m)) = O(6k° /10g(1/3))

11
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By Claim 20, there exists a collection C of 2°(™) subsets S C [M] with |S| = m such that for
any pair S, S’ € C, with S # &', satisfies |S N S’| < m?/*. Applying Proposition 21, we de-
termine that any SQ algorithm which, given access to a distribution P so that either P = Uy,
or P is given by Pg‘ for some unknown subset S C [M] with |S| = m, correctly distinguish
between these two cases with probability at least 2/3 must either make queries of accuracy better

Q(v/m . . . .
than +/27 or must make at least WJM > 20(M 2/5)M —(k+1)/5 gtatistical queries, since

m~k+1/432(A Bin(m, 1/2)) < O(M~(*+1D/55) < 7. This completes the proof of Theorem 29.
|

6. Proof Sketch of Proposition 25 and Proposition 31

The construction of the distribution A in both cases is similar in spirit to the technique in Di-
akonikolas et al. (2017) for constructing a distribution that matches moments with N(0, 1) but is
close in total variation distance to N (d, 1), for an appropriate § > 0. Specifically, we start from
some appropriate one-dimensional version of either a binary product distribution or Ising model,
H(x), over [m] U {0}, and then modify it in order to match the first ¥ moments with Bin(m, 1/2).
We achieve this by modifying the probability mass function of A by adding a polynomial g over
some appropriately chosen interval I = [(1/2 — C)m, (1/2 + C)m)], for some carefully selected
(log(1/9)/m). In particular, for any integer point x € I, we let ¢(x) = f;f“ (t)dt, for
some real polynomial p of degree-k and then modify the probability mass function by adding ¢(z)
to H(x). The moment-matching condition amounts to a system of linear equations on the coeffi-
cients of p. We show that this system has a unique solution. Then the rest of our analysis focuses
on showing that this modification leaves the probability mass function of A still non-negative and
sufficiently close to H in total variation distance.
In particular, we express the polynomial p as a linear combination of appropriately scaled Legen-

dre polynomials, i.e., p(t) = Zf:o a; P; (tznfr{Q), where P; denotes the i-th Legendre polynomial
and a; € Ris a coefficient. Then we show, by analogy to the proof in Diakonikolas et al. (2017), that
the L; and L, norms of p within the interval I are sufficiently small. In particular, the Diakoniko-
las et al. (2017) result on the hardness of robustly learning unknown-mean or covariance Gaussians
essentially solves the limiting version of this problem (that is achieved as m — c0). As their anal-
ysis shows that this limiting case works, we need to show that when m is sufficiently large, we are
sufficiently close to that limiting case that our construction will also succeed. To achieve this, we
require some new proof ideas in order to show that with sufficiently large but finite m, our analysis
will be close enough to that of the limiting case, so that the results of Diakonikolas et al. (2017) can
still be applied. In more detail, by our construction of the polynomial p and the moment-matching
condition, we are able to bound from above the coefficients a; as follows:

2 1 2 (26 4+ 1) (4 ;
ail = (2 ]/ L)y < PIEVOEB) vy cic,
2Cm eI 2Cm
where we have that v; = ‘ZmGZNP-(QCE;Z/Q) ff“p — Jier (1) P(t mﬂ)dt‘ and 3; =

! St o(H(z) — Bin(m, 1/2)(z)) Pi(“5a m/ 2 ‘ Intuitively speaking, the quantity 3; represents the
answer to the continuous version of the problem and the quantity ~; inherently captures the error
between the discrete and limiting continuous versions of our problems. Since the absolute value

12
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of the derivative of the i-th Legendre polynomial is at most O(i?) in the interval [—1,1], by the
last property of Fact 4, we are able to apply the mean-value theorem to obtain an upper bound
for ~; in terms of the Li-norm of p within the interval /. For the quantity 3;, we borrow ideas
from Diakonikolas et al. (2017) to view H () —Bin(m, 1/2)(x) as a function of some appropriately
chosen parameter, and apply Taylor’s theorem to expand this difference up to second order terms.
Then we can show that both the first order and second order terms are sufficiently small. In summary,
we prove the following technical result.

Theorem 32 Fix0 > 0,0 < C < 1/2andk € Z,. Let integer m > k/(2C) such that both (1/2—
C)m and (1/2 4 C)m are integers. Consider the interval I¢ ,,, = [(1/2 —C)m, (1/24+ C)m —1].
Let {Hp 2 ()} oem)uqoy be a family of real functions. Then there is a unique real polynomial p of
degree at most k such that

) x+1
1
DRI BCE

In addition, we can write p(t) = Zle a; P; (t—g&/?) where

I
=
3
8
S
=
3
8
=
T
|
&
<C
(e}
A
A
-
g

2 (1/2+C)m

= () o) [ o)

forall 1 <i <k, where 8; = | > (Hne(0) — Hy 2 (8)) Po(Z2212)).

Proof We first show that there is a unique real polynomial p of degree at most k satisfying (1). Let
p(t) = S8 pit? and g(z) = ["*' p(t)dt. We note that each value of i implies a single linear
condition on ¢g. This suggests that as long as the support domain I¢ ,, is sufficiently large, we can
simply solve a system of linear equations to find it. In more detail, we start by establishing the
relationship between p and ¢. By definition, we have that

_ Pl )T et pi i+1\
alr) =2 i+l =2 (1) 2 i )"
1=0 i=0 7=0
k k . k
Z Z i 1+ 1 Z
N v <14:1> < >: G
i=0 i J =0

whete q; = 4 () (4.

This gives us a linear equation to solve for p; in terms of ¢; that is upper triangular and thus has
a unique solution. For any two polynomials 7 (x), ro(z) of degree at most k, we consider the inner
product (r1,72) € R given by (r1,72) := > 7., 71(2)r2(z). To show that this inner product
is non-degenerate as long as m is sufficiently large, we need to show that for any polynomial r(x)
of degree at most k, it holds that 3,/ r?(z) = 0 = r = 0. By our assumptions of C, k, m,

> weznlc,, r2(x) = 0 will imply that the polynomial r(x) of degree at most k has at least 2Cm > k
different roots, which implies 7 = 0. Therefore, we can write the LHS of (1) as

(v',q(x)) =b;, 0<i<k. 3)

13
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Since 1,z,- - - ,x" are linearly independent polynomials of degree at most k, there exists a unique
polynomial ¢ of degree at most k satisfying the system of equations (3).

To show inequality (2), we first express p as a linear combination of scaled Legendre polynomi-
als whose coefficients are explicitly given by integrals. In particular, since p has degree at most k

and the set of polynomials {B (tE”:r{Q) }0< < contains a polynomial of each degree from O to k,
7

there exist a; € R such that p(t) = Zf:o a; P; <t Cm/ 2) It follows from Fact 4 (ii) that

ptg<>dt: o | B<>P-<>dt
/(1/2—C)m 0 Cm ; ’ (1/2=C)m Cm ’ Cm

=Cm z;;o aj [1, Pi(t)Pj(t)dt = (2Cma;)/(2i + 1),

which implies that a; = (35:}) f(ll//22+g t)P,; (t m/ 2) dt, for all 0 < ¢ < k. In addition, by
Equation (1), we have that ag = 55— | (gl//Qng))m p(t)dt = 0. We now bound |a;| as follows. Let

T

B x—m/? z+1 (1/24C)ym t—m/2

By Fact 4 (viii) and the mean-value theorem, we have that

5= [ [ (P 2) - () yota
_ (&)\Zmem@n / IH(:U—t)P’( 02/2) (t)dt‘

2 9 (1/2+C)m

z+1 i
= O(Cm) erzmqm /x [p(t)ldt = O(%) /(1/2_C)m Ip(t)|dt

where &; is some real number between x and ¢ for each ¢ € [z, z + 1). Therefore, by Equation (1),
we have that

1= |G o e MR

= (22+ 1)( )erzmmn l(:L;’an) /:Hp(t)dt‘)

- (o) o+ < (o) (i +0( ) /((//z;m p(0)1dt)

where the last equality follows from Equation (1) and

2 vcantcn <W) /:Hp(t)dt = i(Hm,xm) — Hpn(0)) P (“/’;”mW),

=0

since F; (w_cn%/ 2) is a polynomial in x of degree 7. This completes the proof. |
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Appendix
Appendix A. Omitted Technical Preliminaries

In this section, we record the required definitions and technical facts.

A.1. Basic Facts

22n+1

Fact33 (%) < 22, vn e Z, \ {0} and (') < 225 Vn € Zy.

Fact 34 (Cover and Thomas (1991)) Let n, k € Z. Then, we have that

T ol < (P o [ onH ()
8k:(n—k)2 “\k) Wk(n—k:)z ’

where H(p) = —plogp — (1 — p) log(1 — p) is the binary entropy function.
We will use the following fact to bound from below the expectation of a real random variable.

Fact 35 Let X be a real random variable with E[X*] > 0. Then, we have that E[| X|] > %

A.2. Sub-Gaussian and Sub-Exponential Distributions

Here we present basic facts about sub-Gaussian and sub-exponential distributions. The reader is
referred to Vershynin (2018).

Definition 36 (Sub-Gaussian Distribution) A randomvariable X over R is sub-Gaussian if | X ||y, :=
inf{t > 0 : Elexp(X?/t?)] < 2} is finite.

Definition 37 (Sub-Exponential Distribution) A random variable X over R is sub-exponential if
| X ||, == inf{t > 0: Elexp(|X|/t)] < 2} is finite.

Fact 38 Let X be a real random variable. Suppose there is a real number K > 0 such that
Pr[|X| > t] < 2exp(—t?/K?). Then X is sub-Gaussian with || X ||y, < cK for some universal
constant ¢ > 0. In addition, we have that E[| X |P] < min (pr L%J !, (c’K\/ﬁ)p) where ¢ > 0

is a universal constant.

Fact39 Let X be a real random variable. Suppose there is a real number K > 0 such that
Pr(|X| > t] < 2exp(—t/K). Then X is sub-exponential with || X ||y, < cK for some universal
constant ¢ > 0. In addition, we have that E[| X |P] < 2KPp! < 2(Kp)P.

Fact 40 || - ||y, is a norm on the space of sub-Gaussian random variables. || - ||, is a norm on the
space of sub-exponential random variables.

Fact 41 Let X be sub-Gaussian and Y be sub-exponential with E[X] = E[Y] = 0. Then there
exists universal constants Cy,Cy > 0 such that E[exp(AX)] < exp(C?A\?|| X Hfh),v}\ € R and

Elexp(\Y)] < exp(C3N[V]3,), 1A < e

Fact 42 Let X be sub-Gaussian and Y be sub-exponential. Then, there exists universal constants
1. ¢ > O such that | X — BIX]|ly, < 1| X|ly, and [Y — B[Y ], < 2]V g
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A.3. Dobrushin’s Uniqueness Condition

Here we introduce the original definition of Dobrushin’s condition through the influence between
points in general graphical model.

Definition 43 (Influence in Graphical Models) Let D be a distribution over some set of points
V. Let S; denote the set of state pairs (X,Y") which differ only at point j. Then the influence of
point j € V on point i € V is defined as

I(j,7) = max drv(D;(-| X=;),Di(- | Y_;)),
(] ) (X.Y)es, TV( z( | z) z( | z))
where D;(- | X_;), D;(- | Y_;) denote the marginal distribution of point i conditioning on X _; and
Y_; respectively.

Definition 44 (Dobrushin’s Uniqueness Condition) Let D be a distribution over some set of points
V. Then D is said to satisfy Dobrushin’s uniqueness condition if max;cy » Jev I(5,7) < 1.

For Ising models, Chatterjee (2005) proves that max;ecy 3, ,; |0i;| < 1implies the Dobrushin’s
uniqueness condition.

A.4. Concentration of Ising Models

Several recent works have studied the concentration and anti-concentration of functions of Ising
models (Gheissari et al., 2018; Gotze et al., 2019; Daskalakis et al., 2017; Adamczak et al., 2019).
Here we record some results which will be used throughout this article.

The following two facts state that for an Ising model satisfying Dobrushin’s condition, for some
constant 7 > 0, the linear form and the quadratic form of Ising models are sub-Gaussian and sub-
exponential respectively.

Fact 45 (Gotze et al. (2019)) Let Py be an Ising model satisfying Dobrushin’s condition, i.e.,
maxie(q Y4 0ij] < 1 —n, for some constant 0 < n < 1. Then there is a constant c(n) > 0
such that for any b € R and any t > 0, we have that Prx.p, HbTX —Ex~ p, [bTX] ‘ > t] <

t2 . . T T
2 exp (—W) This implies that Hb X—-E [b X] sz < (n)||bl|2 for some constant ¢ (n) >

Fact 46 (Gotze et al. (2019)) Let Py be an Ising model satisfying Dobrushin’s condition, i.e.,
maxie(q Y4 0i5] < 1 —mn, for some constant 0 < n < 1. Then there is a constant c(n) > 0
such that for any symmetric matrix A € R with zero diagonal and any t > 0, we have that
Pry.p, [| XTAX = Exop, [XTAX]| > 1] < 2exp (— gytaps ). This implies that

| XTAX — Ex.p, [XTAX] le < d(n)||A|| F for some constant ¢ (n) > 0.

A.5. Basic Facts about the Hypergeometric Distribution

Letk,n, N € Z,. Consider an urn consisting of NV balls in total among which k are red, and N — k
are blue. Let X denote the number of red balls obtained by sampling n balls from the urn without
replacements. In this way, we say that X ~ Hypergeom (K, N,n). We will also use the following
standard fact:
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Fact 47 Let X ~ Hypergeom(K, N,n) and p = K/N. Then for any t > 0, we have that
Pr[X > np+1t] <exp (—2t*/n).

A.5.1. PROOF OF CLAIM 20

Let S and S’ be independent uniformly random subsets from [M] with |S| = |S’| = m. Note that
|S N S’| ~ Hypergeom(m, M, m), by Fact 47, we know that

—c 1-2¢
"N'>ml= < > m,m < _m .
Pr[|SNS|>m ]_Pr[]SﬂS\_m(MJr 5 < exp 5

Therefore, by the union bound,

ml—2c ml—2c
PrE[S| =S| =m:|SNS|>m!"]<2" 2z -exp <_ ) <1

A.6. Reduction of Testing to Learning

We have the following simple claim:

Claim 48 Suppose there exists an SQ algorithm to learn an unknown distribution in D to total
variation distance € using at most N statistical queries of tolerance T. Suppose furthermore that for
each D' € D we have that drvy (D, D’) > 2(7 + €). Then there exists an SQ algorithm that solves
the testing problem B(D, D) using at most n + 1 queries of tolerance T.

Proof We begin by running the learning algorithm under the assumption that the unknown dis-
tribution in question is Dy € D to get a hypothesis distribution D’. We let S be a subset so
that dpy (D, D’) = |D(S) — D'(S)|, and use an additional statistical query to get an estimate
v of the expectation of I[S], the indicator function of S. If the original distribution was D, we
have that [v — D(S)| < 7. If the original distribution was Dy, we have that |[v — D'(S)| <
|v — Do(S)| + |Do(S) — D'(S)| < 7 + e. However, we have that

|D(S) - D,(S)‘ = dTv(D,D/) > dTV(D>DO) - dTv(Do,D/) > 2(7’ + 6) —€e=27+¢€.

Therefore, our distribution is in D if and only if the expectation of I[S] is within 7 + € of D’(.9).
Thus, determining which of these cases holds will solve our decision problem. |

Appendix B. Omitted Statements and Proofs from Section 4

Definition 49 Fix 0 < ¢ < 1/2 to be a constant. We say that a binary product distribution is
c-balanced if every coordinate of the mean vector is in [c, 1 — c|.

For c-balanced binary product distributions, we have the following lemma.

Lemma 50 Let P and () be c-balanced binary product distributions with mean vectors i, and [i,.
Then, drv (P, Q) < O(l[1p — pgll2/ V).
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We provide the result for hardness of robust learning of an unknown binary product distribution
here. In order to make the distributions in our family far from the reference distribution Uy, in total
variation distance, we need higher dimension m, M compared with the hardness result for robust
hypothesis testing.

Theorem 51 (SQ Lower Bound for Robust Learning of a Binary Product Distribution) Fix0 <
¢ < 1 and k to be a sufficiently large integer. Let m, M € Z, with M = 3mS/4 Let0 < € < 1/2
and ¢ be a suﬁ‘iciently small multiple of e\/log(1/€)/k?. Let 7 = ©(M~ +t1V/55). Assume that

m > max <C/ /€, Toa( 1 / 5 > for some sufficiently large constant C' > 0. Then any SQ algorithm

which is given access to a distribution P over {0, 1} which satisfies drv <P U M‘ﬁ> < € for
some unknown subset S C [M] with |S| = m, outputs a hypothesis Q with drv(Q,P) < O(0)
with probability at least 2/3 must either make queries of accuracy better than /21 or must make at
least 2¥M*/°) N p=(R+1)/5 gatistical queries.

Proof We need to show that for any subset S C [M] with |S| = m, Pg‘ is far from U)y in total
variation distance. In particular, by Lemma 23, we have that

)

S, S,

dry (Upr, P4) > dTv<UM, UMW) —drv (Pg‘, UMﬁ) > Q(6) — O(e) = Q6).

In addition, by our choice of m, we have that /27 < O(0). Therefore, we have that dpy (Ups, P4) >
2v/271 + Q(6). Applying Claim 48 and Theorem 24 yields Theorem 51. |

Theorem 52 (SQ Lower Bound for Robust Mean Estimation of a Binary Product Distribution)
Fix 0 < ¢ < 1 and k to be a sufficiently large integer. Let m, M € 7. with M = 3mb5/*. Let
0<e<1/2anddbea suﬁ‘lciently small multiple of ex/1og(1/€) /k?. Let 7 = ©(M~k+1/55). As-

sume that m > max (C”/e

) Tog( 1/5 ) for some sufficiently large constant C' > 0. Then any SQ al-

gorithm which is given access to a distribution P over {0, 1M which satisfies drv (P U ‘m) <e€

7 \/*

] < 0(6)

with probability at least 2/3 must either make queries of accuracy better than /2T or must make at
2/5 o .
least 2¥M*/%) N p=(k+1)/5 gatistical queries.

for some unknown subset S C [M] with |S| = m, outputs an estimate [i with Hu Koy

S,
Proof Assume there is an algorithm that outputs an estimate z such that H = W M\/m

< 0(9)
for some unknown subset S C [M] with |[S| = m. Let Q be the correspondlng bmary product

distribution with mean vector jz. Note that by our construction, both Q and UM are ¢/-balanced
binary product distributions for some universal constant d > 0. Therefore by Lemma 50, we have

5
that dpv (Q, P4) < dTV(Q,UM )+dTv<UM PA> < O(H“ o 2)+O(e) < 0().
Applying Theorem 51 yields the result. |
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B.1. Proof of Proposition 25

In this section, we prove Proposition 25. We first introduce the following notation which will be
used throughout this section. For some fixed positive integer n and x € [n] U {0}, we consider the
function F,, ;(6) = (1)(1/2+46)"(1/2—6)""*,—1/2 < 6 < 1/2. The first and second derivatives
of F;, »(6) are given by the following fact:

Fact 53 For any positive integer n and x € [n] U {0}, we have that

Fpo(6)(z = (1/2+ 6)n)
1/4—o° ’

F,(8) = (Z) (1/2+8)" 1 (1/2 = )"z — (1/2 + 8)n) =

Fy L (6) = (Z) (1/246)"72(1/2 = &) 2(2* — (26 + 1)n — 28)z + (1/2 + 6)*(n* — n))

Fro(8) (. — (6 +1/2)n)% 4+ 26(z — (6 + 1/2)n) + n(6% — 1/4))
(1/4 —62)? '

We now pick C' = O(/(log(1/d)/m)), where the hidden constant is sufficiently small. Con-
sider the interval I, = [(1/2 — C)m, (1/2 4+ C)m — 1]. Without loss of generality, we assume
that the two endpoints of I, are integers. We define the one-dimensional distribution A to be:

* Forz ¢ Icm, we define A(z) = Bin(m, 1/2 4+ 6//m)(z).

* For z € I, we define A(z) = Bin(m,1/2 + 6/v/m)(x) + fm+1 t)dt, where p is a
polynomial of degree at most k satisfying

el m |
S / p(t)dt = 3 (Bin(m, 1/2)(x) — Bin(m, 1/2 + §/ym)(@))a’, @)

x€ZNIcm x =0
for0 < <k.

Applying Theorem 32 with the family of functions {F;, +(0)}zemjufo}» We know that there is a
unique polynomial p of degree at most k satisfying the above properties. Then we need to show that
with sufficiently large m (depending on 4), both the L and L, norms of pon [(1/2—C)m, (1/2+
C')m] are sufficiently small in order to make A(x) non-negative and close to Bin(m, 1/2+4/y/m).
The main technical result of this section is the following lemma, which provides upper bounds on
the L; and L, norms of p on the interval [(1/2 — C')m, (1/2 4+ C)m).

Lemma 54 Let k,m € Z,. Suppose 1 < k? < CoC?*m for some universal constant Cy > 0 suffi-
ciently small and m > C1(log(1/6))3 for some universal constant Cy > 0 sufficiently large. Then

* / *
f((ll//;jg;) Ip(t)|dt < O ( f) and |p(t*)| < O (%) where t* = arg maxy.;_p, /2/<Cm Ip(t)].

Before we prove Lemma 54, we first use it to prove our main Proposition 25. The following
claim gives the upper bound of the ratio between the mass of Bin(m,1/2) and Bin(m,1/2 +

5//m).

Claim 55 Letm € Z4 and x € [m] U {0}. For any 6 > 0, we have that

Py <ow (i - vim).
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Proof By the fact 1 + x < e”,Vx € R, we have that

G 108 () 2o ().

We now bound from above the desired y2-divergence:

Lemma 56 We have that

(A, Bin(m, 1/2)) < O (52+5’“2€Xp(4‘50\/ﬁ) +< 0k? > L et )

Cvm Cm ) wcihiv, Bin(m,1/2)(z)

Proof Recalling Fy, »(6) = () (1/2+6)*(1/2—6)™* = Bin(m, 1/2+6)(z), —1/2 < § < 1/2,
we have the following:

(P 6/3/0) + 1o € Ie] 74 pl0)d)

1+ x2(A, Bin(m, 1/2)) = i A@? _ ¥
’ ’ — Fa(0) = Frn2(0)
F2 . 5/f Foa(8//) [54 p(t)dt (o pleyar)”
Z 2%2;0 Frs (0) +er;€ )

For the first term, we have that

B0 () (- )

=277 <<1+;%>2+ <1— 5%)2>m: <1+4§>m <140(8%) .

For the second term, by Claim 55, we have that

r+1
5 Fnz(6/vm) [, pt)dt _ 3 exp<4‘sx—25m)

T€ZNIC,m Fme (0) T€ZNIC m Vm

z+1 '
< exp (460\/7%) IEZ;CM /x p(t)dt'

(1/24+C)m

< exp(46C/m) / Ip(t)]dt

(1/2—C)m
2
<0 (5k: exp(450\/m)> 7
- Cy/m
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where the last inequality follows from Lemma 54. Finally for the third term, we have that

[FH ). apeom 241
Z <me(0)) S/( Ip(z)|dx - max m

X
T€ZNIc,m 1/2-C)m €Z0lcm  Fina(0)
k2 “H p(t)|dt
o Y e L0
Cvym) zeinlc, Fpz(0)

where the last inequality follows from Lemma 54. Combining the above results together completes
the proof. |

We are now ready to prove Proposition 25. We need to pick C' appropriately and check the
bounds on & needed for A(z) to satisfy the necessary properties.
Proof [Proof of Proposition 25] Let C' = ©(y/log(1/J)/m) with the hidden constant sufficiently
small. If k? > Cy/m, we pick A = Bin(m, 1/2) and obtain drv (4, Bin(m,1/2 + §//m)) <
000) <0 (\/lfgz{ﬁ) Thus, we assume that k2 < C'y/m. In this way, to apply Lemma 54, we
need k? < CyC?m for some universal constant C sufficiently small, which will be satisfied as long
as 6 < exp(—1/C2).

We first show that A(x) is indeed a distribution over [m] U {0}. By definition, A(x) is nonneg-
ative outside the interval /¢ ,,. For x € Z N I¢,,, we apply Lemma 54 to obtain

M) = Fnao) + [ pl0hit > Fono/40) ")
_ 2m(m) <1 ; 5%) <1 _ j‘%)m ~ p(e)]
> (10" ) (14 75) o (-7 "o (Cﬂ)

cr (") () (B o ().

Let H(z) = —xlogz — (1 — x)log(1 — x) denote the binary entropy function. Now applying
Fact 34 and the fact e=%* < 1 — z,Vz € [0, 22] yields

om(H(1/2+C)1) , 5k/?
A($) > m : eXp(*85 (1/2 - C)) ’ exp(f85C\/ﬁ) -0 02m3/2
om(H(1/2+C)~1) 8k5/2
2 . —45% — 86C -0\ =5
o (st i o (S
exp (—O(C%*m) — 85C/m) o 5k5/2
> T ~ Y\ CEmr
exp(-=O((Cym +0)%) [ k>
= \/TTL C2m3/2 )’
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where the third inequality follows from the Taylor expansion of H(1/2+C')— H(1/2) up to second
order terms. Note that k2 < C\/m, where C' = ©O(,/log(1/)/m) for some sufficiently small

hidden constant in ©, we have that %14251/; < 0(6(log(1/6))~3/8) and exp(—O((Cy/m + 6)?)) >
exp (= (v/1og(1/6)/2 + 5)2) > ¢. Therefore, we have that

A(x) > eXP(—O((C\/ﬁ-F (5>2)) —-0 <W> Z O}vx c ZmIC,m'

= vm O2m3/2

In addition, by equation (4), we know that

m m x+1
> e = Y (Fualdfvim + T € fe] [ pi0at)
x=0 =0 r
m (1/2+C)m
= 3 Fna 5/ 4 /( ey, POIE=1

which implies that the distribution A is well-defined. Furthermore, by Equation (4), we can show
that A matches the first £ moments of Bin(m, 1/2) as follows:

m

. m . z+1 ]
Exa[X'] = ZA(ac)x’ = Z <me(5/\/ﬁ) +1I[z € Ic,m]/ p(t)dt) x
=0 T
= Z o
=0

=0

+(8/v/m)a’ +$EZ%:CM /

m

= Z me(O)wi = ExBin(m,1/2) [X7].
=0

From previous calculation, we have that A(z) > Fy, »(6/y/m) — [p(t*)] > 0,Vz € Z N Icm,
which implies that for every x € Z N Ic .,

Ip(t )\<me(5/\/>)<exp<\r—2(5\/>> ()<exp(45C\/>) 2(0),

where the second inequality follows from Claim 55. Therefore, by Lemma 56, we have that

x*(A,Bin(m,1/2)) <O <(52 + Ok exp(46C+/m) + < L ) . m W)

Cym (VD err%)ém Bin(m, 1/2)(z)
<0 (52 +6 <exp(450\/r%) + IL]; (i*()()')» < O (6% + 25 exp (46C/m))

<0 (82 + (1+0(6/10g(1/9)) ) = 0(6),
where we apply the fact e” < 14 2z,Vz € [0,1n2].
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To bound the total variation distance dpy (A, Bin(1/2+4d/1/m)), we apply Lemma 54 to obtain
drv(A,Bin(1/2+6/v/m)) = )

o+1 (1/24C)m
/ p(t)dt' </ p()ldt
w€lom VT (1/2—C)m

ok? 5k?
<0(zym) = ( 10g<1/5>> |

This completes the proof of Proposition 25. |

Proof of Lemma 54 By Theorem 32, we have that

2i+1> <i2 >/(1/2+C)m
a;| < Bi + O p(t)|dt |,
ol < (G < i) Lo O

forall 1 < i < k, where 3; = ’ZZLO(Fm,x( ) = Frnz(6//m)) P (x mﬂ)‘. To get an upper
bound for the L; and L., norms of the polynomial p over I¢ ,,, we only need to upper bound the
quantity S;.

Lemma 57 If k* < CyC?m for some universal constant Coy > 0 sufficiently small, then B; <
5 /i ,
O<C TZ),V].SZSIC

We assume k2 < CyC?m for some universal constant Cy > 0 sufficiently small. First, we apply
Taylor’s theorem to expand F,, ;,(d/v/m) — Fy, »(0) up to second order terms:

NE

Bi =S (Fina(0) = Fpno(8//m)) P <W>‘

5Fa0) | Fpal6:)8? (5= m)2
0( vm + 2m )R( Cm >

8
Il
o

I
NE

T

= (OF}, .(0) x —m/2 L (E L (62)07 T —m/2
< mal) p (2 m/2 ’ P G
< () r (e ) () e @
B; By
where for any z € [m] U {0}, 6, = &, /+/m for some &, € [0, ].
Hence, in order to bound /3;, it suffices to bound the terms 3} := —= ’Zx 0 Frn.(0)P; (%)’

x=0"m,r

and B/ := Z F! (62)P; (%Lmﬂ) ’ This is done in the following lemmas.

Lemma 58 We have that 5} < O <max (g'\/rﬁw %gﬁ)) V1 <i<k
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Proof If 7 is odd, we can rewrite Fact 4 (v) in ascending order of terms, by using change of variables
to obtain

(x — m/2>' i L0/ i > <z+2] - 1> z—m/2|7 "
P; <2
Cm ot (1—1)/2+ 2j—1 Cm
z—m/2|% 1

where the second inequality follows from Fact 33. Note that || X — m/2[y, < O(y/m) for X ~
Bin(m, 1/2), applying Fact 38 and Fact 53 yields

- B () < S (M ()

o (1) (A 5 (oo

=0

45 (i+1)/2 1 (Z + 2] — 1)2j71EX~Bin(m 1/2)[(X - m/2)2j]
O ! .
- o () )

Vi (2j — DI(Cm)2 1
co( ) 3 oLy
so<i>§<o<am>>2j‘20<é 5.
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If 7 is even, applying Fact 53 and Fact 4 (v) by using change of variables yields

= [ or (5 2) B ()= mn (3”‘02/2)|
S S e S ()7 ()
-2 z<> P> SOCH
_ 4 S 0 (1) <(i + 2j)2jEX~(1;i§)(r(zé/2))[|2X - m/2|2j“]>
m < i )I(Cm)%
ol E e
<o(5)% 0 em)) =0 ()

where the second inequality follows from Fact 33 and the third inequality follows from Fact 38 and

the fact that [| X — m/2|y, < O(y/m) for X ~ Bin(m, 1/2).

For the quantity 3;', we have the following lemma.

Lemma 59 We have that B! = O(6%),V1 <i < k.

Proof By Fact 53, we have that

(

m

x=0

/!

B = z—m/2

Cm

)

m

1
- (1/4-02)?

:0<
x=0

=0

m,z((s

28

> Frw(6s) (2 = (0 + 1/2)m)? + 26, (2 — (52 + 1/2)m) + m(8

) (2 — (65 + 1/2)m)? + 20, (x — (6, + 1/2)m) + m(57 — 1/4)) P; (

x—m/2
Cm

)

~ )

)

xr—m/2
Cm
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We separate the above sum into z € Z N ¢, and « € [m] U {0} \ I¢ ,,. We are able to use Fact 4
(iii) to bound the sum for x € Z N I¢ yy,, as follows:

Z Fm,m(éz) ((1' - (5z + 1/2)m)2 + 2533(1' — (596 + 1/2)m) + m(ég o 1/4)) P, <£L'—7TL/2)

Cm
CCEZﬂIC,m
< Z Fm,x((SI) ’(QZ - (590 + 1/2)m)2 - VarXNBin(m,1/2+§z)[X] + 255,;(I - (550 + 1/2)m)|
=0

< 2Varx gin(m,1/2+6,) [ X] + 20 Ex  Bin(m,1/2+6.) [|[ X — Ex~Bin(m,1/248,) [X]]]

<0 (VaerBin(m,1/2+6z)[X] + 0y \/VaerBin(m,1/2+51)[X])
<O (m+46) <O(m).

Now we bound the sum over x € Ic,y,, where Ic,, = [m] U {0} \ Ic,,. Note that for
X ~ Bin(m, 1/2 + ¢,), by Fact 40, we have that

e
Cm

0 <HX - (1é2+5z)m

+ |6x/0||¢2> =0 (HX - <1é3n+ mm‘

P2 P2 b2

+W)

IN

v+ ovm) ~© (ovm)
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Therefore, applying Fact 4 (vi) yields

Z Fm,x(éx)(x_(5z+1/2)m)2+25m(1'—(5m+1/2)m)+m(5§_1/4)Pi (.%'—m/2>

= Cm
<ZFM o) - |(@ = (62 +1/2)m)? +26x(x—(6x+1/2)m)+m(5§—1/4>\-‘WZ

< O(m) - 22 AN+ (8 + 1/2)m)? - | D2 D)
=otm) X~Bin(m,1/2+6;) ‘ Cm X~Bin(m,1/2+65) ( /2m) Cm
4(X —m/2)|
+ 20, E X — (6, 4+ 1/2)m| - |~2 12
X~Bin(m,1/2+6,) [' ( /2ml ' Cm ]

<O0(m) ]
X ~Bin(m,1/244,)

w B [(X-(G.+1/2mY- E
X ~Bin(m,1/2+6) X ~Bin(m,1/2+6)

Cm

)4(){ —m/2)

‘4(){ —m/2)
Cm

21
+ 26354 E (X = (0p 4+ 1/2)m)?] - E
X~Bin(m,1/2+5,) X~Bin(m,1/2+5,)

<o (o2 ;))Z Jour- (o)) 2 oom- (0( )

where the third inequality follows from Cauchy-Schwarz and the fourth inequality follows from
Fact 38. Combine the above results together, we have that

m

= o Pratin (T ) = () - 0m =0

Proof [Proof of Lemma 57] Since k? < C?m, by Lemma 58, Lemma 59 and equation (5), we have

thatﬁi§ﬂ§+6§’§0< [+52>— <\/7> [ |

We are now ready to prove Lemma 54.
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Proof [Proof of Lemma 54] By Theorem 32, we have that

k k . .

21+ 1 2+ 1 i2 (1/2+C)m

<> Jad < ( ) ( )o( )/ p())dt

; ; ; 20m ) \&m/ Jaz-cym
k )
21+ 1 21+ 1 7
t* —_
< ) il '2( )o(em)

_Z(”“) +0 () (e

where the first inequality follows from Fact 4 (iii). Similarly, by Theorem 32, we have that

(1/2+C)m (1/2+C)m t—m/2
< . EEVEN g
/( ()]t < Z|a|/ < = >‘d

1/2—C)m (1/2—C)m

2i+1 ‘2 (1/24C)m 1
< A
—Cm;@cm) <@+o(0m) Lo 01 ) [ 1P

k ;2 (1/24+C)ym
Vi)Bi+) OWi < ) / p(t)|dt
; Z ) Jurcyn "
k
17/2 (1/24+C)m
<Y OoWi)Bi+0 / p(t)|dt,
; (Vi) <Cm> s om (1))

where the third inequality follows from Fact 4 (vii). By our assumption on k, C, m, §, we know that
B2 < KL < 1/2. Therefore, by Lemma 57, we have that

2i+1 2i+1 § [i 5k5/2
< < 4= < —
)‘_QZ<2Cm>52_Z<QCm>O<C m>_0<02m3/2 ’
(1/2+C)m i ok?
Jdt <25 0B <23 00 | 2] - go( )
/(1/2—C)m o) Z Z ( m) Cym

This completes the proof. u

B.2. Proof of Lemma 23

S,
Let n = |S| < m. Define f(x) = >_;cq 7i, Vx € {0,1}M. For X ~ Upy and Y ~ U™, by the
data processing inequality, we have that

dry (Uyr Uﬂi’ﬁ) > doy(F(X), £(Y)) = doy(Bin(n, 1/2), Bin(n, 1/2 + 8/y/m)).
Recalling that F;, () = (1) (1/2 4 6)*(1/2 — §)"~*, we can write

5F7/L,z (O) Frlzl,x (555)52
Jm T om |

dry(Bin(n, 1/2), Bin(n, 1/2 + 8//m)) Zwm (5/v/m) — Fra(0)] = 53

=0
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where for any = € [m] U {0}, 6, = &,/+/m for some &, € (0,8). Applying Fact 53 and Fact 35
yields

n

Z |—4Zan |$_n/2|_4EX~B1nnl/2 HX_n/Q”
=0

- 4EX~Bin(n,1/2)[(X —n/2)%]3/?
= Ex Bin(n,1/2)[(X —n/2)4]1/2

_ 4(n/4)*"
V(n/4) 1+ (3n - 6)/4)
= 0(v/n).
In addition, by Fact 53, we have that
Z |EY (0 1/4 e Z | Foe(82) ((x — (62 + 1/2)n)? + 20, (x — (5, + 1/2)n) +n(62 — 1/4)) |
= (1/4i5) (2Varx~Bm<né+ax> X] 20 i 40.) [|X ~ B o) X))

1
< m <2VarX~Bin(n,;+6m) [X] + 26, \/VarXNBin(n7%+5x) [X]>

<0 <n+ 5\/Z> < 0(n).

Therefore, we have that

drv(Bin(n,1/2),Bin(n,1/2 + §/v/m)) = % Z

> 2\%;%@( Z |F) o (62)] > © < \/Z> -0 (ﬁ) = Q(6) — 0(5%) = Q(9).

Appendix C. Omitted Statements and Proofs from Section 5

5F’ Fn’gg(ém)d2
2m

We provide the hardness result for robust learning of an unknown ferromagnetic high temperature
Ising model here. In order to make the distributions in our family far from the reference distribution
U in total variation distance, we need higher dimension m, M compared with the hardness result
for robust hypothesis testing.

Theorem 60 (SQ Lower Bound for Robust Learning of an Unknown Ising Model) Fix0 < ¢ <
1 and k to be a sufficiently large integer. Let m, M &€ Z, with M = 3mS/% Let0 < € < 1/2
and ¢ be a suﬁ?ciently small multiple of elog(1/€)/k%. Let 7 = O(M~*+1/58). Assume that

m > max (C"/e, Toa( 1/5 ) for some sufficiently large constant C' > 0. Then any SQ algorithm

which is given access to a distribution P over {0,1}YM which satisfies drv (P, Q M"‘) < € for

some unknown subset S C [M] with |S| = m, outputs a hypothesis Q with drv(Q,P) < O(6)
with probability at least 2/3 must either make queries of accuracy better than /27 or must make at
least 2¥M*/°) Np=(k+1)/5 apistical queries.
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Proof We need to show that for any subset S C [M] with |S| = m, P4 is far from Uy, in total
variation distance. In particular, by Lemma 28, we have that

dry (U, P2) > dry (UM, Qiﬁ) —dty (PéaQ}qﬁ) > Q(6) — O(e) = Q(9) .

In addition, by our choice of m, we have that /27 < O(J). Therefore, we have that dpv (U M, P‘g) >
2v/27 + Q(6). Applying Claim 48 and Theorem 29 yields Theorem 60. |

C.1. Proof of Proposition 31

In this section, we prove Proposition 31. We first introduce the following notations which will be
used throughout this section. For some fixed positive integer n and x € [n] U {0}, we consider
the function Gy, ;(0) = IS(n,0)(z), —1/n < § < 1/n. By definition, we have that IS(n, §)(z) =
IS(n,d)(n—2) and G, »(6) = Gppn—z(0),z € [n]U{0},—1/n < ¢ < 1/n. In particular, IS(n, 0)
is exactly the binomial distribution Bin(n, 1/2).

Claim 61 Letn € Z, and X ~ 1S(n,0). Then, Ex . ig(n,0)[h(n, X)] = 0.
Proof By definition, we have that

Ex15(n,0) (1, X)] = Ex Bin(n,1/2) [2X* — 2nX + n(n — 1)/2]
= 2 (ExBin(n,1/2)[X]* + Varx.pinm.1/2)[X]) — 2nEx Bin(n,1/2)[X] + n(n —1)/2
=2 (n2/4—|—n/4) —n’4+n(n-1)/2=0.

The first and second derivatives of Gy, ,,(9) are given by the following claim:

Claim 62 Letn € Z, and x € [n] U {0}. For any —1/n < 6 < 1/n, we have that

G2 (0)
Gz (9)

nz(0) (h(n, ) — By g8 [h(n,Y)])

G )
Gra(6) ((h(n, @) — By gn.g) [h(n,Y)])? = Vary. g [h(n,Y)]) .

Proof By definition, we have that Z,, () = >."_, (%) exp(h(n,z)d) and Z},(6) = >_0_ (%) h(n, z) exp(h(n, z)4).

=0 \z z=0
Therefore,
, (n h(n,z)exp(h(n,z)) exp(h(n,x)d)Z] (0)
G = () (g - S )
_ (n> h(n,z) exp(h(n,z)) <exp(h(n, x)d)) 2 y=0 (Z)h(”a y) exp(h(n, y)d)
T Zn(8) Zn(8) Zn(8)
= Gn,x(é) (h(n’ l’) - EYNIS(n,5) [h(nv Y)]) :
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For the second derivative, applying the above result for the first derivative yields

G 2(5) = Gy (5) (R, ) ~ By s, Y))) + G (8) = (Bt y [, V)
( — Ey s, Y)) + Y h(n, y)G%,y(fs))
y=0
( — Ey1sms)lh “ ¥ Z h(n,y)Gny(8) (h(n,y) — By cism.s)[h(n, Y)]) >
= n,x 6 ( EYNIS(n d) [h(n? Y)D + EYNIS(n,5) [h(n7 Y) ] - EYNIS(TL,J) [h(nv Y)]2)
n,m 6 ( EYNIS(n ) [h(n7 Y)])2 - VarYNIS(n,(S) [h(n7 Y)D :

The following claim states that for any sufficiently small parameter § > 0, X —n/2 and h(n, X)
have sharp sub-Gaussian and sub-exponential tail, respectively.

Claim 63 Let n € Z. There exists universal constants C, Co > 0 such that, for any 0 < § < 2L
we have that || X — n /2|y, < Ciy/nand |[h(n, X)|y, < Con, where X ~ 1S(n, 6).

Proof We consider the Ising model P, where 0;; = §,Vi,j € [n],i # j. Since 0 < § < %,
we have that 3. - |0ij| < 1/2,Vi € [n]. Let X ~ IS(n, ). By definition, we know that X
denotes the number of 1’s in the random vector of P. Therefore, applying Fact 45 by taking b to
be the all-ones vector, we have that || X — n/2|, < C1y/n for some universal constant C; > 0.
Similarly, applying Fact 46 by taking A to be the all-ones matrix, we have that ||h(n, X )|y, < Con

for some universal constant Cy > 0. |

We pick C = O(4/(log(1/d)/m)), where the hidden constant is sufficiently small and consider
the interval Ic,,, = [(1/2 — C')m, (1/2 4 C)m — 1]. Without loss of generality, we assume that the
two endpoints of ¢, are integers. We define the one-dimensional distribution A to be:

» Forz ¢ Ic ., we define A(z) = IS(m, §/m)(z).

* Forz € Ic,y,, we define A(x) = IS(m,d/m)(z) + fzﬂ t)dt, where p is a polynomial of
degree at most £ satisfying

> o [ 0w =3 S0 - stmamEs. ©

JZEZﬂIC m =0
for0 <i <k

Applying Theorem 32 with the family of functions {G .(0) }zefmjuto}» We know that there is a
unique real polynomial p of degree at most k satisfying the above properties. Then we need to
show that with sufficiently large m (depending on 0), both the L; and L, norms of p on [(1/2 —
C)m, (1/2 + C)m] are sufficiently small in order to make A(x) non-negative. The main technical
result of this section is the following lemma, which provides upper bounds on the L; and L., norms
of p on the interval [(1/2 — C)m, (1/2 4+ C)m].
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Lemma 64 Let 1 < k% < CoC?m for some universal constant Co > 0 sufficiently small and m >
C1(log(1/6))3 for some universal constant Cy > 0 sufficiently large. Then f(1/2+c)m Ip(t)|dt <

(1/2—C)m
* 7/2 *
O (C‘Eé“;) and |p(t*)| < O (%), where t* = arg maxy,_p, ;2<cm Ip(t)].

Before we prove Lemma 64, we first use it to prove our main Proposition 31. The follow-

ing lemma gives both the lower and upper bound of the ratio between the mass of IS(m,0) and
IS(m,d/m).

Lemma 65 Let m € Z and x € [m] U {0}. There is a universal constant 6y > 0 such that for
any 0 < § < dg, we have that

1% - exp(hm, )5 m) < S5 CH < exp(hon, )5 )
Proof By definition, we have that
Gm.a(d/m) _ exp(h(m,z)d/m) _ exp(h(m, z)6/m)
Gmal0) 27 Zu(6/m) 27 (7 exp(h(m, y)5/m)

_ exp(h(m,z)d/m)
Ey ~15(m,0)lexp(h(m, Y )d/m)]’

The upper bound is due to Claim 61 and Jenson’s inequality that

Ey 1s(m.0)lexp(h(m, Y)d/m)] > exp (By wig(m,0)[h(m, Y)d/m]) = 1.

To prove the lower bound, by Claim 63, we have that ||h(m,Y)|y, < O(m). Therefore, by
Fact 41, there is a universal constant J5 > 0 such that for every 0 < § < Jg, we have that
Ey 15(m,0)lexp(h(m, Y)d/m)] < exp((m?/53)(6?/m?)) = exp(6?/57).- u

We now bound from above the desired x2-divergence:

Lemma 66 We have that

§k3 exp(26C2%m) N < ok3 >

C?m C?m

z+1

£)|dt

o (o | Jo_Ip(ldt
Y2(A, Bin(m, 1/2)) < O (5 + €ZNie  Goma(0)

Proof We have the following:

G (6/m) + 1o € To]) [ plt)at)

x=0 Gm,x (O> =0 Gm’x(o)
m x+1 z+1 t)dt ?
s Crad/m)? |, 5 Goma(8/m) [ pl)dt > Jo o)
- G (0) Grm.(0) Gmw(0)
=0 ’ z€ZNlc,m ’ z€ZNIcm ’
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For the first term, by Lemma 65, we have that

TN G (6/m)? &
Z T Ga(0) < Z%Gm,m(()) exp(2h(m, 2)d/m) = Ex 1s(m,0)lexp(2h(m, X)d/m)]
x=0 ’ =

< exp(0O(6?)) < 1+ 0(6%).

For the second term, by Lemma 65 and Lemma 64, we have that

G (8/m) [ZF p(t)dt A
) €T < .
Z G (0) < Z exp(h(m,x)d/m) /m p(t)dt
xEZr‘IIan ’ xEZﬁIcym
x+1 (1/24+C)m
<exp ((2C%m —1/2)8) > / p(t)dt‘ < exp(20C%m) / Ip(t)|dt
w€Znlc,m T (1/2—C)m
5k3 exp(26C%m)
<
<o (B amicm)

where the second inequality follows from the fact that h(m, ) = 222 — 2max + w attains its
maximum at = (1/2 — C')m over the interval I¢ ,,. For the third term, by Lemma 64, we have
that

(f;+1 p(t)dt>2 (1/2+C)m fft+1 Ip(t)|dt
- 7 < t)|dt- max FE——7"——
Z Gm,x(o) —/( \p( )| t

X
_ ezZnI, G 0
T€ZNIC 1/2-C)m z cm m,z(0)

k3 JE p(t)|dt
< . =z -
=0 <02m> me%aj)c(‘,m Gm,x(o)

Combining the above results together completes the proof. |

We are now ready to prove Proposition 31. We need to pick C' appropriately and check the
bounds on & needed for A(z) to satisfy the necessary properties.
Proof [Proof of Proposition 31] Let C' = O(y/log(1/8)/m). If k¥ > C?m, we pick A =
Bin(m, 1/2) and obtain drv (A, Gy, 5/m) < O(0) < O (%). Thus, we assume that k3 <
C?m. In this way, to apply Lemma 54, we need k? < CyC?m for some universal constant Cg
sufficiently small, which will be satisfied as long as § < exp(—1/C).

We first show that A(x) is indeed a distribution over [m] U {0}. By definition, A(x) is nonneg-
ative outside the interval I¢ ,,,. For v € Z N I¢,y,, we apply Fact 34, Lemma 54 and Lemma 65 to
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obtain

z+1
A@)—GWA&W0+MxehMJ/ p(t)dt

x

(7;) exp (h(m,z)d/m)

> 6_0(52) eXp(h(mvx)é/m)Gm,z(O) - ’p(t*)’ - om eXp(O’((SQ)) - ‘p(t*)‘
- M omH(/m) | <P ((22%/m — 2z 4+ (m — 1)/2)4) B (5k7/2>
—\ 8z(m — ) 2m exp(0(62?)) C3m?

2 _ _ 7
L gmat)  SP ((2mg® —2mq + (m — 1)/2)8) [ ok""2
2m 2m exp(0(62?)) C3m?

o ( 1) g (H@RE=071) g (m — 1)5/2) — O (Wz ) ’

m C3m?2

where we let ¢ = x/m and apply the fact z(m — x) < m?/4 in the third inequality. Let f(q) =

H(q) + Mq® — q) — 1, where A\ = 25. We have that f'(q) = log, (%) + (2¢ — 1)\ and
"(q) =21 — ﬁ <2\ —4 < 0aslong as A < 2, which implies that f(q) is strictly concave
over [0, 1] and attains its maximum at ¢ = 1/2. Therefore, we have that

s ( 1) 2T e (i~ 1)5/2) = O (%)

m
1 mf(1/2+C 5k7/2
29( m>-2 FA/2+ )-exp((m—1)5/2)—0(C,gm2

Y

ol JL) . gmuazie)-1) gemcz-1/2s _ oK™/
m C3m?

[1 ) SkT/?

where the last inequality follows from the Taylor expansion of H(1/2 + C') — H(1/2) up to sec-
ond order terms. Note that k3 < C?m, by our choice of C, where C = ©(y/log(1/5)/m) for

some sufficiently small hidden constant in ©, we have that % < O(8(log(1/6))~/3) and
exp(—O(C?m)) > 6. Therefore, we have that

1 ) 0K/

In addition, by Equation (6), we know that

m m x+1
> aw) = - (Gl + T € e [ pit)ar)
=0 =0 T
m (1/24C)m
= 3 Gt/ + /( ey POI=1
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which implies that the distribution A is well-defined. Furthermore, by Equation (6), we can show
that A matches the first £ moments of Bin(m, 1/2) as follows:

A Liis , m z+1 ,
Exa[X'] = ZA(:I:):gZ = Z (sz(a/\/ﬁ) + 1z € Io ] / p(t)dt) x'
=0 =0 x
= Guma(d/v/m)zi+ Y o / p(t)dt

=0 r€ZNIc m z

= Z Grm,2(0)2" = Ex pinm,1/2)[X"]-
=0

From the previous calculations, we have that A(z) > =90 exp(h(m, x)d/m)Gpm z(0)—|p(t*)] >
0,Vx € Z N Ic,m, which implies that for every x € Z N I¢ y,,

Ip(t*)] < e~00) exp(h(m,z)0/m)G, 2 (0) < exp(2(502m)vax(0).
Therefore, by Lemma 66, we have that

5k3 exp(20C?m) [ ok L (o)l
9 . < 2 . x -7
x~(4,Bin(m,1/2)) <O (5 + 2m, + <02m> xerZI}WaI}é,m G (0)

p(t")]
G (0)
<O (6% +38(1+ O(81og(1/5)))) = O(9),

<0 (52 +6 (exp(2502m) + )) < O (6% + 25 exp(26C2m))

where the last inequality follows from the fact e* < 1 4 2z, Vx € [0, 1n 2].
Finally, to bound the total variation distance drv (A, IS(m,d/m)), we apply Lemma 64 to ob-

tain
x+1 (1/24+C)m
/ mww‘s/’ Ip(t)\de
T (1/2—C)m

dry(A,IS(m,6/m))) = )

Z’EZQIC,M

<0(e) = (morm)

Proof of Lemma 64 By Theorem 32, we have that

2i—|—1> (@'2 >/(1/2+C)m
a;| < Bi+ O | p(t)ldt |,
i < (5o ( i) Lo 0

forall 1 < i < k, where 3; = ’Z;”ZO(Gm@(O) — Gz (6/m))P,; (%) ‘ To get an upper
bound for the L; and L, norms of the polynomial p over [(1/2—C)m, (1/2+ C)m], we only need

to upper bound the quantity ;.
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Lemma 67 If k*> < CyC?m for some universal constant Coy > 0 sufficiently small, then B; <

O(%SZ),Vlgigk:.

We assume k2 < CyC?m for some universal constant Cy > 0 sufficiently small. Note that
by our definition G, »(6) = Gmm—2(0),V —1/2 < § < 1/2, by Fact 4 (iv), we have that
B; = IZ?ZO(GW@(O) — Gme(6/m))P; (sz/Q)‘ = 0 for any odd . Hence, we only need to
bound f; for every even i. We apply Taylor’s theorem to expand Gy, 5 (0/m) — Gy, 2(0) up to
second order terms:

Bi =

NE

Cm

5G;n,m(0) G,T/n,:p((sx)(sz T — m/2
( D * 2m ) F ( Cm )

(Gino(0) = G (6/3/m)) P, <x_m/2) ‘

8
Il
=)

I
NE

0

8
Il

™/ 8Gh, 4(0) z—m/2 I (G (82)0° x—m/2
5 8

where for any z € [m] U {0}, 6, = &, /+/m for some &, € [0, ].

Hence, in order to bound £3;, it suffices to bound the terms 3, := ﬁ ’Z;”ZO G;Tw (0)F; ( x_c’z;‘l/ 2) ‘
and B := 2— Z o G, 2 (02) Py (I_Crzl/ 2) ‘ This is done in the following lemmas.

Lemma 68 For every even i, we have that 5} < O (5’3/2)

Proof By Claim 61 and Claim 62, we have that G7,, .(0) = Gy, +(0)h(m, z). Applying Claim 61
and Fact 4 (v) by using the change of variables yields

i(“@ﬁ@))a(%)\ g mromin o (*31%)

=

m

e S0 A
- gGm(mh(m,m //2 () () ()
<5 oo 3 () (37 PR
: ﬁim;Gm (0) [B(m, 2)(z = m/2)%| O (&) m
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Since || X —m/2||y, < O(y/m) for X ~ Bin(m, 1/2), applying Fact 38 and Fact 33 yields

5 42 m w1 (i + 25)%
Bi < EZZGm,x(O) |h(m, z)(z —m/2)¥| O <ﬁ> (WW)

j=12=0

i/2 m ' i )27
= %Z Z Gm,z(0) ‘(2:62 —2mx +m(m —1)/2)(x — m/Q)QJ’ 0] <1> <(2(j)_:_(éjﬂ)’b)2j>

j=12=0 \ﬁ
5 42 m yiio ”: 1 (i + 25)%
< 22 Ym0 @l = /2% e =m0 (22 (s )

i/2

> (i + 27) Y Ex Bin(m,1/2)[2(X — m/2)212 + m(X —m/2)% /2]
(25)(Cm)%

? )2 ‘ ‘
=0 (m(iﬂ) (2(3)_:—(2’]77)1)21 ((2j + 2)(j!)(0(m))3+1 + (j!)(o(m))]-H)
j=1

<o(R)E 0 (em) <o (&)

<

|
Lemma 69 For every even i, we have that B! < O(52).
Proof By Claim 62, we have that
g — ;’:;J (G%;ﬁ;ﬁ?) P <a: —Cz/2>|
- 5 (3 Gl ((h<m, - B BmY)) - Var(hm, Y)]) R (") ‘ .

We separate the above sum into x € Z N I¢,, and z € [m] U {0} \ I¢c,,. We are able to use
Fact 4 (iii) to bound the sum for x € Z N I¢ p,, as follows:

? x—m/2
EZ%I: Cmal02) (h(m, =)= YNIS]EJm,éz)[h(m’Y)]) B YNI‘S[%,dx)[h(m’ Y)]) b < Cm >‘
z C,m
S 2
< - —
< ;Gm,x(&c) (h(m, x) mgm’m[h(m,yﬂ) le\ﬁﬁz)[h(m,m)

< 2Vary ig(m,s,) [h(m, Y)] < O(m?),

where the last inequality follows from Fact 39, Fact 42 and Claim 63.
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Now we bound the sum over x € Ic,y,, where Ic,,, = [m] U {0} \ Ic,. Note that for
X ~IS(m,d,), we have that H%HW <0 (#) and [|h(m, X)|[,,, < O(m). Therefore,

Cyvm
applying Fact 4 (vi) yields
x—m/2
P:
()|

;Gm,x(&c)

(hm.2)~ B [(m.Y)]) ~  Var (. V)|

2€Tom Y~Gmsy Y ~IS(m,65)
: iGm,z(dx) (h(m’ o Y~18%n,5x>[h(m’ Y)])2 - yq‘sfﬂ,az)[h(m’ Y)]‘ (W)
S ((m, X) - vuB Inm, Y)])2 <‘W>]

+0(m?) - XNIS]%m,JI) [(4\)(0—7:&/%) z]
- JXNIS]?W,@) <h(m7X) - YNIS]E)W,(SE)[}L(m’ Y)])4 XNIS]?m,éz) <W>21

+ O(m?) - E
X~IS(m,0z)

()]
< \/O(m4) (0( ) + 00 (o (é m)) < o).

where the third inequality follows from Cauchy-Schwarz and the fourth inequality follows from
Fact 38, Fact 39, Fact 42 and Claim 63. Combine the above results together, we have that

1" 52 = 1" x—m/? 52 2y 2
= g |2 a6 (T ) | < () -0ty = 0%

Now we are ready to prove Lemma 64.
Proof [Proof of Lemma 64] By Theorem 32, we have that

o roiiq k. roii1 9 (1/24+C)m
) <Yl <Y (5o ) 5 X (Gom ) 0 () [ e 0

i—1 1/2—C)m

gzl@ignj)mrp(mé(2i§1)0<cfn>
(20)
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where the first inequality follows from Fact 4 (iii). Similarly, by Theorem 32, we have that

(1/2+C)m (1/2+C)m t—m/2
< ;
/( (t)|dt < Z|al|/ ’ < o >‘dt

1/2—C)m (1/2-C)ym

2 1 i2 (1/24+C)m 1
= Z<ngm><ﬁz+o<cz'm> Lime Ip<t>\dt> [ 1Ry
42 (1/24C)ym

1/2—C)m

k?/z (1/24+C)m
<Zo Doi+0 (& /( (O,

1/2—-C)m

where the third inequahty follows from Fact 4 (vii). By our assumption on &k, C, m, §, we know that
’W 2 < k4 < 1/2. Therefore, by Lemma 57, we have that

2i + 1 2i + 1 §i%/2 k")
< A
22( ) z(gom)o(cgm <0 gz )
(1/2+C)m §i3/2 ok3
/( |d1:<220 Bz§220 ( m>§o<c2m>.

1/2—C)m

This completes the proof. n

C.2. Proof of Lemma 28

Let n = |S|. Recalling that Gy, (6) = (7) exp (h(n, %)) /Zy(5), where h(n,z) = 22% — 2nz +
@ and Z,(6) = Y., (7) exp(h(n,z)d). By Claim 63, for any 0 < § < 5-, we have that
|h(n, X) ||y, < O(n)and || X —n/2|y, < O(/n)for X ~IS(n,d).

5
Define f(x) = Y ;cq2i, Vx € {0,1}M. For X ~ Upf and Y ~ Qf/’[m, by the data processing
inequality, we have that

v (U, @) 2 drv(F(X), £(Y)) = drv (1S(n,0),15(n,6/m).

By the mean value theorem, we have that

n

dov (IS(n, 0), 1(n, 6 /m)) Z\Gm 5/m) — Goa (0] = ;Z
=0

Gg,x(él)(SQ
2

G2 (0)(6/m) +

2m ’

where for any z € [m] U {0}, 8, = &, /m for some &, € (0,4).
By elementary calculation, we have that

EXNIS(n,O) [h(n,X) | = 4EX~Bm(n 1/2) [(( - n/Q) - EXNBin(n,l/Q)[(X - n/2)2])2]

=4 (EXNBIH (n,1/2) [ - n/2 ] EXNBin(n,l/Z) [(X - n/2)2]2>
_ 3n? ony n? _ n?—n
4 2 Z T2
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By Fact 39, we have that E x_1g(,,,0)[2(7, X)4 < O(n*). Therefore, by Fact 35, we have that

n

> 1G 2 0)] =D Gna(0)|h(n, 2)| = Bx pinn,1/2)[h(n, X)|] >
=0 =0

EXNBin(n,l/Q) [h(n, X)z]
47172 > §)(n).

Ex < Bin(n,1/2)[R(n, X)

In addition, by Fact 39, we have that

Z |Gg,x(5m)| = Z Gn,m((sx) ’(h(na .’E) - EYNIS(n,éx) [h(nv Y)])2 - VarYNIS(n,éw) [h(’I’L, Y)] ’
=0 =0
< 2VarXNIS(n751)[h(n,X)] <0 (nQ) .

Therefore, we have that

n

dTV(UM,Qiﬁ) > %Z

=0

" 5:(: 52
G328 |

G2 (0)(6/m) + 5

2m
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