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Abstract

We study the problem of high-dimensional sparse mean estimation in the presence of an e-fraction
of adversarial outliers. Prior work obtained sample and computationally efficient algorithms for this
task for identity-covariance subgaussian distributions. In this work, we develop the first efficient
algorithms for robust sparse mean estimation without a priori knowledge of the covariance. For
distributions on R? with “certifiably bounded” ¢-th moments and sufficiently light tails, our algorithm
achieves error of O(e!~1/t) with sample complexity m = (klog(d))°*) /e2=2/t. For the special
case of the Gaussian distribution, our algorithm achieves near-optimal error of O(e) with sample
complexity m = O(k*polylog(d))/e2. Our algorithms follow the Sum-of-Squares based, proofs
to algorithms approach. We complement our upper bounds with Statistical Query and low-degree
polynomial testing lower bounds, providing evidence that the sample-time-error tradeoffs achieved
by our algorithms are qualitatively the best possible.

Keywords: robust statistics, sparse estimation, sum of squares, statistical query model

1. Introduction

High-dimensional robust statistics Hampel et al. (1986); Huber and Ronchetti (2009) aims to design
estimators that are tolerant to a constant fraction of outliers, independent of the dimension. Early
work in this field, see, e.g., Tukey (1960); Huber (1964); Tukey (1975), developed sample-efficient
robust estimators for various basic tasks, alas with runtime exponential in the dimension. During the
past five years, a line of work in computer science, starting with Diakonikolas et al. (2016); Lai et al.
(2016), has developed the first computationally efficient robust high-dimensional estimators for a
range of tasks. This progress has led to a revival of robust statistics from an algorithmic perspective,
see, e.g., Diakonikolas and Kane (2019); Diakonikolas et al. (2021a) for recent surveys.
Throughout this work, we focus on the following standard contamination model.

Definition 1 (Strong Contamination Model) Fix a parameter 0 < € < 1/2. We say that a set of
m points is an e-corrupted set of samples from a distribution D if it is generated as follows: First, a
set S of m points is sampled i.i.d. from D. Then an adversary observes S, replaces any em of points
in S with any vectors they like to obtain the set T'. We say that T is an e-corrupted version of S.
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Here we study high-dimensional robust statistics tasks in the presence of sparsity constraints.
Leveraging sparsity in high-dimensional datasets is a fundamental and practically important problem
(see, e.g., Hastie et al. (2015) for a textbook on the topic). We focus on arguably the most fundamental
such problem, that of robust sparse mean estimation. Specifically, we are given an e-corrupted set
of samples from a structured distribution D, whose unknown mean p = Ex.p[X] € R? is k-
sparse (i.e., supported on at most k coordinates), and we want to compute a good approximation
1 of p. Importantly, in the sparse setting, we have access to much fewer samples compared to the
dense case — namely poly(k, log d) instead of poly(d). Consequently, the design and analysis of
algorithms for robust sparse estimation requires additional ideas, as compared to the standard (dense)
setting Diakonikolas et al. (2016).

Prior work on robust sparse mean estimation Balakrishnan et al. (2017); Li (2018); Diakonikolas
etal. (2019a); Cheng et al. (2021) focused on the case that the covariance matrix of the inliers is known
or equal to the identity. For identity covariance distributions with sufficiently good concentration
(specifically, subgaussian concentration), the aforementioned works give efficient algorithms for
robust k-sparse mean estimation that use poly(k,log(d), 1/¢) samples and achieve near-optimal
{a-error of O(e) On the other hand, if the covariance matrix of the inlier distribution is unknown and
spectrally bounded by the identity, the techniques in these works can at best achieve error of O(+/¢),
even for the special case of the Gaussian distribution. One can of course use a robust covariance
estimation algorithm to reduce the problem to the setting of known covariance. The issue is that the
covariance matrix is not necessarily sparse, and therefore naive attempts of robustly estimating the
covariance (e.g., with respect to Frobenius or Mahalanobis distance) would require poly(d) samples.

Motivated by these drawbacks of prior work, in this paper we aim to design computationally
efficient algorithms for robust sparse mean estimation, using poly(k,log(d), 1/¢) samples, that
achieve near-optimal error guarantees without a priori knowledge of the covariance matrix. Our main
contribution is a comprehensive picture of the tradeoffs between sample complexity, running time,
and error guarantee for a range of inlier distributions. In more detail, for distributions with appropriate
tail bounds and “certifiably bounded” ¢-th moments in sparse directions (see Definition 13), we give
an efficient algorithm that achieves error O (e'~1/*). For the special case of the Gaussian distribution,
we give an algorithm with near-optimal error of O(e) For both settings, we establish Statistical
Query (SQ) lower bounds (and low-degree polynomial testing lower bounds) which give evidence
that the error-sample-time tradeoffs achieved by our algorithms are qualitatively the best possible.

1.1. Our Results

We start by recalling prior results for the dense robust mean estimation of bounded moment distribu-
tions. We say that a distribution D on R? with mean y has ¢-th central moments bounded by M if for
all unit vectors v it holds Ex..p [(v, X — uﬂ < M. Although it is information-theoretically possi-
ble to robustly estimate the mean of such distributions, in the £5-norm, up to error O (M /el =1/%)
using O(d/ €22/ t) samples (see Appendix G for the proof), all known efficient algorithms require
the following stronger assumption.

Definition 2 (Certifiably (M, t)-Bounded Central Moments) We say that a distribution D on R?
with mean i has t-th central moments certifiably bounded by M if M |[v]|s — Ex~p [(v, X — p)!]
can be written as a sum of square polynomials in v = (v1, .. .,vq) of degree O(t).
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Prior works Kothari and Steurer (2017); Hopkins and Li (2018) gave efficient algorithms for
dense robust mean estimation of distributions with certifiably bounded central moments. Their
algorithms incur sample complexities at least m = poly(d’)/e?, have running times poly((md)?),
and guarantee fo-error of O(M/tel=1/t) 1

We now turn our attention to the sparse setting, which is the focus of the current work. In prior
work, the term “sparse mean estimation” refers to the task of computing a zi such that jz — p is small
in fo-norm, assuming that p is k-sparse. We note that estimating a sparse vector in the £3-norm is a
special case of estimating an arbitrary vector in the (2, k)-norm, defined below (see Fact 9).
Definition 3 ((2, k)-norm) We define the (2, k)-norm of a vector x to be the maximum correlation
xHZ,k déf maxX|\y||,=1,v:k—sparse <’U, .’B>
We henceforth focus on this more general formulation; we will use the term “sparse mean estimation’
to mean that the error guarantees are defined with respect to the (2, k)-norm.

For distributions with (M, t)-bounded central moments, the information-theoretically optimal er-
ror for robust sparse mean estimation is O( M /*¢' =1/ and can be obtained with (k log(d/k))/e>~2/*
samples (see Appendix G for the simple proof).

Our first result is a computationally efficient robust sparse mean estimation algorithm that applies
to any distribution D with certifiably bounded ¢-th moments in k-sparse directions (Definition 13)
and light tails. In particular, we assume that D has subexponential tails, i.e., for some universal
constant ¢, for all unit vectors v and all p € Nit holds Ex.p [|(v, X — Ex.p[X]) |p]1/p < ¢p. (In
fact, our algorithmic result holds as long the distribution D has bounded poly (¢ log d) moments along
coordinate axes; see Section 3.1 and Appendix B.2.) Our algorithm achieves error O (M 1tel=1/ %)
with m = poly((klog d)!)/e>~2/* samples and poly((md)*) running time.

with any k-sparse unit vector, i.e.,

’

Theorem 4 (Robust Sparse Mean Estimation for Certifiably Bounded Moments) Lett be a power
of two, D be a distribution on R?® with unknown mean 1, and € < € for a sufficiently small constant

€o > 0. Suppose that D has t-th moments certifiably bounded in k-sparse directions by M (cf. Defini-
tion 13) and subexponential tails. There is an algorithm which, given €, M, t, k, and an e-corrupted
set of m = (tklog d)®® max(1, M~2)/e>~2/t samples from D, runs in time poly((md)'), and
returns a vector [i satisfying ||ji — pul[5 }, < O (MY el =Yt with high probability.

It is natural to ask which distributions have such “certifiably bounded moments in k-sparse
directions”. In the dense case, Kothari and Steinhardt (2017) showed that Definition 2 is satisfied
by o-Poincaré distributions. (A distribution D is o-Poincaré if for every differentiable f : R — R,
Varxp[f(X)] < 02 Expl||Vf(X)]|3]). We show in Appendix B.1 that this class also has certifi-
ably bounded moments in k-sparse directions, in the sense of Definition 13. Combining this with the
fact that the tails of o-Poincaré distributions are inherently subexponential, Theorem 4 is applicable.

We complement our upper bound with a Statistical Query (SQ) lower bound (and low-degree
testing lower bound), which gives evidence that the factor EO®) in the sample complexity of
Theorem 4 might be necessary for efficient algorithms.

We remind the reader that SQ algorithms Kearns (1998) do not draw samples from the data
distribution, but instead have access to an oracle that can return the expectation of any bounded
function (up to a desired additive error). Specifically, an SQ algorithm is able to perform adaptive
queries to a STAT(7) oracle, which we define below.

1. For simplicity of the exposition, we will not account for bit complexity. In essence, we assume that the bit complexity
of all relevant parameters is bounded by poly(md).
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Definition 5 (STAT Oracle) Let D be a distribution on R%. A statistical query is a bounded
function f : RY — [—1,1]. For T > 0, the STAT(7) oracle responds to the query f with a value v
such that |v — Ex.p[f(X)]| < 7. We call T the tolerance of the statistical query.

An SQ lower bound is an unconditional lower bound showing that for any SQ algorithm, either
the number of queries ¢ must be large or the tolerance of some query, 7, must be small. The standard
interpretation of SQ lower bounds hinges on the fact that simulating a query to STAT(7) using
i.i.d. samples may require £2(1/72) many samples. Thus, an SQ lower bound stating that any SQ
algorithm either makes 7 queries or needs tolerance 7 is interpreted as a tradeoff between runtime
Q(r) and sample complexity Q(1/72).

Recall that a distribution D is subgaussian if there exists an absolute constant ¢ such that for all
unit vectors v it holds that Exp [|{(v, X — Ex..p[X]) ]p]l/p < ¢/p. We show the following (see
Theorem 75 for a detailed formal statement).

Theorem 6 (SQ Lower Bound for Subgaussian Distributions, Informal Statement) Fixt € N
with t > 2 and assume that d > k? for k sufficiently large. Any SQ algorithm that obtains
error 0(61*1/ t) for robust sparse mean estimation of a subgaussian distribution (with t-th moments

certifiably bounded in k-sparse directions) either requires AR statistical queries or makes at
least one query with tolerance k=),

For the statement of our low-degree testing lower bound, see Appendix F.3. Informally speaking,
Theorem 6 shows that any SQ algorithm that returns a fi satisfying ||fi — |25 = o(e!~'/*) requires
runtime exponential in k, unless it uses queries of tolerance k~2() — requiring £(!) samples for
simulation. We briefly remark that Theorem 6 also has implications for the dense setting: By taking
k = v/d, Theorem 6 suggests that d*(!) samples may be necessary to efficiently obtain 0(61*1/ t)
error in the dense setting; this qualitatively matches the algorithmic results of Kothari and Steurer
(2017).

Interestingly, Theorem 6 does not apply when the inlier distribution is Gaussian, i.e., the SQ-hard
instance of Theorem 6 is not a Gaussian distribution. In fact, our next result shows that it is possible
to achieve the near-optimal error of O(e) /|| X[, for N(u, ), using (k*/€?)polylog(d/e) samples.

Theorem 7 (Robust Sparse Gaussian Mean Estimation) Let k,d € Z, with k < dand € < ¢
for a sufficiently small constant ey > 0. Let n € R and ¥ € R¥? be a positive semidefinite
matrix. There exists an algorithm which, given €k, and an e-corrupted set of samples from N (1, X)
of sizem = O((k*/e?)log®(d/(¢))), runs in time poly(md), and returns an estimate [i such that

I — ptl|2 < O(€) \/|[E]|2 with high probability.

Information-theoretically, O(klog(d/k))/e? samples suffice to obtain O(e) error (see The-
orem 87). Prior work has given evidence that Q(k?) samples might be necessary for efficient
algorithms to obtain dimension-independent error Diakonikolas et al. (2017b); Brennan and Bresler
(2020). Perhaps surprisingly, here we establish an SQ lower bound suggesting that the Q(k*) sample
complexity of our algorithm might be inherent for efficient algorithms to achieve error o(e'/2) (see
Theorem 73 for a formal statement):

Theorem 8 (SQ Lower Bound for Gaussian Sparse Mean Estimation, Informal Statement) Let
0 < ¢ < 1 and assume that d > k? for k sufficiently large. Any SQ algorithm that performs robust
sparse mean estimation of Gaussians with ¥ < I up to error o(\/€) does one of the following: It
either requires dM*°) queries or makes at least one query with tolerance O(k=2+2%¢),



ROBUST SPARSE MEAN ESTIMATION

The intuitive interpretation of Theorem 8 is that any SQ algorithm for this task either has
runtime dP°Y(*) or uses Q(k*) samples (a similar hardness holds for low-degree polynomial tests;
see Theorem 85).

1.2. Overview of Techniques

To establish Theorems 4 and 7, we use the sum-of-squares framework, i.e., solve a sum-of-squares
(SoS) SDP relaxation of a system of polynomial inequalities.

1.2.1. ROBUST SPARSE MEAN ESTIMATION WITH BOUNDED MOMENTS

Identifiability in the Presence of Outliers Similar to Kothari and Steurer (2017), our starting
point is a set of polynomial constraints (Definition 17) in which the variables try to identify the
uncorrupted samples. The program has a vector of variables for each sample in the set (we will refer
to these variables as “ghost samples”), and enforces that these ghost samples match a (1 — €)-fraction
of the data. The constraints also enforce that the uniform distribution over the ghost samples has
t-th moments certifiably bounded by M in k-sparse directions (Definition 13). A key property of an
SoS relaxation is that it satisfies any polynomial inequality that is true subject to the constraints of
the original polynomial system, as long as this inequality has an “SoS proof” of degree ¢ (i.c., the
difference of the two sides is a sum of square polynomials, where each polynomial has degree at
most t). We give an SoS proof of the fact that the mean of the ghost samples is close to the true mean
in k-sparse directions (proof of identifiability; see Section 4.1).

Sampling Preserves Certifiably Bounded Moments For our identifiability proof (and to ensure
feasibility of our program), we require that the uniform distribution over the uncorrupted samples
satisfies certifiably bounded ¢-th moments in k-sparse directions. However, we initially know only
that the distribution from which these samples are drawn has ¢-th moments certifiably bounded by
M in k-sparse directions. Given that the underlying inlier distribution satisfies certifiably bounded
moments, we need to show that the property transfers to the empirical distribution. In the dense case,
it is relatively easy to prove such a concentration result, using poly(d) samples for all v € R?, via
spectral concentration inequalities. On other other hand, establishing the analogous statement in the
sparse setting with poly (k) samples requires an alternate approach.

The first step towards showing this is Lemma 15, which states that for all polynomials r(v) =
> reqay 1 [Lje vi; and k-sparse vectors v, the inequality r(v)? < k' max;c(ge 77 has an SoS
proof. Applying this to the true and empirical moments, p(v) := Ex~p [(v,X — p)'] and p(v) =
E; ) [(v, Xi — )"], we see that there is an SoS proof of the following statement (p(v) — p(v))? <
K| By (X5 — )] = Exop[(X — 1)**]|1%.

In Appendix B.2, we establish concentration of the £,,-norm of the aforementioned tensor. We
note that our result only requires O(log(d)) moments to be bounded for concentration; prior work
in the sparse setting assumes that the distribution has known covariance and is additionally either
subgaussian or subexponential.

1.2.2. ACHIEVING NEAR-OPTIMAL ERROR FOR GAUSSIAN INLIERS

The first polynomial-time algorithm for robustly learning an arbitrary Gaussian (in the dense setting)
was given in Diakonikolas et al. (2016). Specifically, that work showed how to robustly estimate the
mean in fo-norm and the covariance in Mahalanobis norm up to an error of O(¢) using O(d?/¢?)
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samples. It is not clear how to directly adapt the approach of Diakonikolas et al. (2016) to the sparse
setting, while achieving the desired sample complexity of poly(k,log(d), 1/¢). Instead, our starting
point will be the recent work Kothari et al. (2022), which gave nearly matching guarantees for the
dense Gaussian setting using the SoS method. The difficulty of matching the Diakonikolas et al.
(2016) guarantees using sum-of-squares lies in the fact that standard SoS approaches typically require
concentration of degree-¢ polynomials to obtain error 0(61_1/ t); the parameter ¢ would need to be
roughly +/log(1/€) to get error of O(¢). Kothari et al. (2022) was able to achieve this result using
SoS certifiability of bounded moments only up to degree four.

We now explain how we adapt the approach of Kothari et al. (2022) to the sparse setting. Assume
that the covariance of the inliers is spectrally bounded, namely that ||X||2 < 1. For the dense result
obtained in Kothari et al. (2022), it suffices to show SoS proofs of multiplicative concentration
inequalities for Gaussian polynomials of degree up to four. In the absence of sparsity constraints, this
is achieved by standard spectral matrix concentration. Unfortunately, the technique from the previous
section only gives us an additive concentration inequality. This qualitative difference is significant
and makes it challenging to obtain a guarantee scaling with ||3||,. To circumvent this issue, we add
independent noise to each sample generated as N (0, I'), which ensures that I < 3 < 21, while
keeping the mean unaffected. We thus obtain an efficient estimator with O(e) error for the case that
I <3 < 2] (Section 5.2). On the other hand, if ||| is much smaller than 1, then the right error
guarantee is O(€) y/||Z[2. In Appendix D.4, we use Lepskii’s method Lepskii (1991) to obtain an
error guarantee that scales with || X||,, as desired. This is done roughly as follows: We first obtain
a rough estimate of ||X|| that is within poly(d) factor away from the true value (by taking the
median of || X; — X||2, where the X; are samples). We next run our robust estimation algorithm
after convolving the data with noise at various scales ¢ and getting a corresponding estimate. With
high probability, whenever our candidate upper bound, o, is bigger than /||X||2, we get a point
within distance O(e)o of the true mean. We then find the smallest value of o such that the output is
consistent with the larger values of o and return the corresponding estimate.

1.2.3. STATISTICAL QUERY AND LOW-DEGREE TESTING LOWER BOUNDS

Our SQ lower bounds leverage the framework of Diakonikolas et al. (2017b) which showed the
following: Let A be a one-dimensional distribution matching its first m moments with A/(0, 1). Then
the task of distinguishing between (i) N'(0, I') and (ii) the d-dimensional distribution that coincides
with A in an unknown k-sparse direction but is standard Gaussian in all perpendicular directions,
requires either ¢ = dP°Y(¥) queries or tolerance 7 < W in the SQ model. The robust sparse
mean estimation problems that we consider can be phrased in this form; the challenge is to construct
the appropriate moment-matching distributions.

In Theorem 8, we establish a lower bound of (k%) on the sample complexity of any efficient
SQ algorithm that robustly estimates a sparse mean within ¢g-error o(+/€). Interestingly, this
lower bound nearly matches the sample complexity of our algorithm (Theorem 7). We view this
information-computation tradeoff as rather surprising. Recall that in the (easier) case where the
covariance of the inliers is known to be the identity, O(k? log d) samples are sufficient for efficient
algorithms Balakrishnan et al. (2017), and there is evidence that this sample size is also necessary for
efficient algorithms Diakonikolas et al. (2017b); Brennan and Bresler (2020).

To prove our SQ lower bound in this case, we need to construct a univariate density A that matches
(i) m = 3 moments with AV/(0, 1), and (ii) A is e-corruption of A (©(y/€), 1). To achieve this, we
leverage a lemma from Diakonikolas et al. (2019b) that lets A have a Gaussian inlier component
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with mean ©(4/¢€) and variance slightly smaller than 1. A suitable outlier component can then correct
the first three moments of the overall mixture, so that they match the first three moments of A/(0, 1).

A more sophisticated choice of A is required to establish our Theorem 6. Specifically, we need
to select A = (1 — €)G + eB, where (i) A matches its first ¢ moments with N'(0, 1), (ii) G is an
explicit subgaussian distribution, and (iii) Exq[X] = Q(e'~1/*). For G, we start with a shifted
Gaussian, N (©(e' /%), 1), that we modify by adding a degree-t polynomial p(z) in [—1, 1]. Since
we modify the Gaussian only on [—1, 1], the distribution continues to be subgaussian. By imposing
the moment-matching conditions and expanding p(z) in the basis of Legendre polynomials, we show
that such a p(+) exists, so that (i)-(iii) above hold. We also show that the constructed distributions
have SoS certifiable bounded ¢-th moments, and hence fall into the class of distributions for which
our upper bounds apply (see Appendix F.2).

Finally, by exploiting the relationship between the SQ model and low-degree polynomial tests
from Brennan et al. (2021), we also obtain quantitatively similar lower bounds against low-degree
polynomial tests. The information-theoretic characterization of error and sample complexity appear
in Appendix G.

1.3. Prior and Related Work

After the early works Diakonikolas et al. (2016); Lai et al. (2016), the field of algorithmic robust
statistics has seen a plethora of research activity. Focusing on the dense setting, prior work has
obtained computationally-efficient algorithms for a variety of problems, including mean estima-
tion Diakonikolas et al. (2017a); Cheng et al. (2018); Depersin and Lecue (2019); Dong et al. (2019);
Diakonikolas et al. (2020c), covariance and higher moment estimation Diakonikolas et al. (2016);
Kothari and Steurer (2017); Cheng et al. (2019), linear regression Klivans et al. (2018); Diakonikolas
et al. (2019¢); Pensia et al. (2020); Bakshi and Prasad (2021), learning with a majority of outliers and
clustering mixture models Kothari and Steinhardt (2017); Hopkins and Li (2018); Diakonikolas et al.
(2018b, 2020a); Bakshi et al. (2020a); Liu and Moitra (2020); Bakshi et al. (2020b); Diakonikolas
et al. (2020b, 2021b,c), and stochastic convex optimization Prasad et al. (2020); Diakonikolas et al.
(2018a). We remark that some of these algorithms also leverage the SoS method.

Finally, we discuss results that leverage sparsity to improve sample complexity for computationally-
efficient algorithms. Balakrishnan et al. (2017) presented the first computationally-efficient algo-
rithms for a range of sparse estimation tasks including mean estimation. However, their estimation
algorithm crucially relies on the fact that the inlier distribution is Gaussian with identity covariance.
As opposed to the convex programming approach of Balakrishnan et al. (2017), Diakonikolas et al.
(2019a) proposed a spectral algorithm for sparse robust mean estimation of identity-covariance
Gaussians. Recently, Cheng et al. (2021) proposed a non-convex formulation and showed that any
approximate stationary point (that can be obtained by efficient first-order algorithms) suffices. We
reiterate that none of these algorithms give o(+/€) error when the covariance of the inliers is unknown.

Finally, we mention that median-of-means preprocessing has been applied to achieve O(+/¢)
error for robust mean estimation in near-linear time Depersin and Lecue (2019); Diakonikolas et al.
(2020c); Hopkins et al. (2020); Lei et al. (2020). However, median-of-means preprocessing does
not obtain o(+/€) error, even when the inliers are Gaussian with identity covariance, and is thus not
applicable to our setting.
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1.4. Organization

The structure of this paper is as follows: In Section 2, we define the necessary notation and record
basic facts about the SoS framework. In Section 3, we define the notion of certifiably bounded
central moments in k-sparse directions, and show that this property is preserved under sampling. In
Section 4, we give an SoS algorithm for robust sparse mean estimation under certifiably bounded
central moments in sparse directions, establishing Theorem 4. In Section 5, we give an efficient
estimator that achieves near-optimal error for Gaussian distributions with unknown covariance,
establishing Theorem 7. Due to space constraints, we prove our SQ lower bounds for the previous
two settings in Appendix E, establishing Theorems 6 and 8. For clarity of the exposition, some
technical proofs are deferred to the appendix.

2. Preliminaries

Basic Notation. We use I; to denote the d x d identity matrix. We use N to denote natural numbers

and Z to denote positive integers. For n € Z we denote [n] &f {1,...,n} and use S~ for the
d-dimensional unit sphere. We denote by 1(€) the indicator function of the event .

For a random variable X, we use E[X] for its expectation. We use N (u,X) to denote the
Gaussian distribution with mean p and covariance matrix Y. We let ¢ denote the pdf of the one-
dimensional standard Gaussian. When D is a distribution, we use X ~ D to denote that the random
variable X is distributed according to D. For a vector v, we let ||v||2 denote its £2-norm. We use (v, u)
for the inner product of the vectors u, v. For a matrix A, we use || A||2, || A]| to denote the spectral
and entry-wise infinity-norm respectively. We denote the fact that A is PSD (positive semidefinite)
by A > 0. We write A < B when B — A is PSD. We will use ® to denote the standard Kronecker
product. For any sequence a1, ..., a;, € R", we will also use E;.[;,j[a;] to denote % Zie[m] a;.
For any vector (ay, ..., aq) and an ordered tuple T' € [d]' we define ar := [],c, a;. We will use
Uy, (d) := {v € R?: |Jv]|2 = 1, |[v[|o = k} to denote the set of unit k-sparse vectors of dimension
d. We will omit the dimension from this notation when it is clear from the context. R[z1, ..., zq]<¢
will denote the set of all degree ¢ polynomials in 1, . . . , x4 which have degree at most ¢.

The following fact (proved in Appendix A for completeness) can be used to translate bounds
from the (2, k)-norm to the usual />-norm when the underlying mean y is sparse:

Fact9 Let hy, : R? — R? denote the function where hy(x) is defined to truncate x to its k largest
coordinates in magnitude and zero out the rest. For all i € Uy, ||hi(x) — pll2 < 3|z — |2,k

SoS Preliminaries. The following notation and preliminaries are specific to the SoS part of this
paper. We refer the reader to Barak and Steurer (2016) for a complete treatment of basic definitions
about the SoS hierarchy and SoS proofs. Here, we review the basics.

Definition 10 (SoS Proof) Let x1,...,x4 be indeterminates and let A be a set of polynomial
inequalities {p1(x) > 0,...,pm(z) > 0}. An SoS proof of the inequality r(x) > 0 from axioms
A is a set of polynomials {Ts(x)}sg[m] such that each rg is a sum of square polynomials and
(@) = X scpm (@) [Lies pi(@). If the polynomials rg(x) - [;c 5 pi(x) have degree at most t for
all S C [m] and the bit complexity of the coefficients of rs(x) and p;(x) is bounded by B, we say
that this proof is of degree t and bit complexity B and denote it by A l? r(x) > 0. We omit the bit
complexity from our notation.
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When we need to emphasize what indeterminates are involved in a particular SoS proof, we
denote it by A l% r(xz) > 0. When A is empty, we directly write l? r(z) > 0and l% r(xz) > 0. We
also often refer to A containing polynomial equations q(x) = 0, by which we mean that A contains
both q(x) > 0 and q(z) < 0.

We frequently compose SoS proofs without comment — see Barak and Steurer (2016) for basic
facts about composition of SoS proofs and bounds on the degree of the resulting proofs. Our
algorithm also uses the dual objects to SoS proofs, pseudoexpectations.

Definition 11 (Pseudoexpectation) Let x1,...,x, be indeterminates. A degree-t pseudoexpec-
tation E is a linear map E : R[z1,...,z4)<t — R from degree-t polynomials to R such that
E [p(z)?] > 0 for any p of degree at most t/2 and E[l]=1IfA={pi(z)>0,...,pu(x) >0}
is a set of polynomial inequalities, we say that E satisfies A if for every S C [d), the following holds:
E[s(z)? [Tics pi(z)] > 0 for all squares s(x)? such that s(z)? [],cq pi(z) has degree at most d.

Pseudoexpectations satisfy several basic inequalities some of which are Cauchy-Schwartz, Holder
and a modified version of the triangle inequality. We will use these extensively. For details, please
look at Appendix A.1.

We will also rely on the algorithmic fact that given a satisfiable system .4 of m polynomial
inequalities in d variables, there is an algorithm which runs in time (d + m)°®) and computes a
pseudoexpectation of degree ¢ satisfying .A. More details can be found in Appendix A.1.

3. Certifiably Bounded Moments in Sparse Directions

Our algorithm succeeds whenever the uncorrupted samples have certifiably bounded moments. To
define this property, we first need to capture the sparsity of vectors using polynomial equations,
which we do as follows:

Definition 12 We use Aj._sparse to denote the following system of equations over vy, . .., vV, 21, - - ., Zd’

-Ak—sparse = {212 = Zi}ie[d] U {Uizi = Ui}z'e[d] U {Z;lzl zj = k} U {Z?:l vz'Q = 1} :

A vector v = (v1,...,vq) is k-sparse if and only if there exist z = (z1, ..., z4) such that v, z satisfy
Ali-sparse- Here, the 2;’s correspond to the support of the vector v. We will also need the notion of the
t-th moment of a distribution being certifiably bounded.

Definition 13 ((//, t) Certifiably Bounded Moments in k-sparse Directions) For an M > 0
and even t € N, we say that the distribution D with mean p satisfies (M, t) certifiably bounded
moments in k-sparse directions if Ay _sparse % Ex-p [(v, X - ,u)t] 2 < M?2.

An example of such a distribution is implicit in Theorem 1.1 from Kothari and Steinhardt
(2017). Their result says that if a distribution D is o-Poincare, i.e., for all differentiable functions
f:RY = R, Vary.p [f(X)] < 02 Ex~pl[||Vf(X)||3], then it has certifiably bounded moments in
every direction v, i.e., the appropriate inequality follows even ignoring the z constraints in Aj_sparse-
It can be seen (see Appendix B.1) that this class also satisfies Definition 13.
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3.1. Sampling and Certifiably Bounded Moments in Sparse Directions

In this section we show that sampling from distributions with not too heavy tails preserves the
property of certifiably bounded moments. The correctness of the algorithm we develop later will rely
solely on this property of the samples. We show the following in Appendix B.3.

Lemma 14 Let D be a distribution over R® with mean 11 and covariance ¥ < 1. Suppose that
D satisfies Ap.-sparse % Ex.p [(v, X - ,u>t]2 < M? and D has c-subexponential tails, where
c is an absolute constant c¢. Let S = {X1,..., X} be a set of m i.i.d. samples from D with
m = (tk(logd))°®) max(1, M~2)/e%. Let D' be the uniform distribution over S and Ti :=
Exp/[X]. Then, with probability 0.9, we have that Aj._sparse I% Ex-p/ [(v, X — ﬁ)t] 2 < 8M?
and [ = pllo. < MVIEI1L,

As a remark, the core concentration lemma used to prove this theorem (Appendix B.2) is in fact
applicable to all distributions with bounded (¢ log d) moments, not only subexponential distributions.

In the rest of the section, we give an overview of the proof of Lemma 14. The claim ||7z — p|2,5 <
MYtel=1/t follows from a standard Markov inequality. We thus focus on the first claim. A crucial
part of this proof is that polynomials over Aj_gparse are bounded by the square of the maximum
coefficient times k', i.e., the following:

Lemma 15 (Polynomials of k-sparse vectors are bounded) Lez p(vy,...,v5) = ZTGW arur
be a polynomial of degree t, where the coefficients {GT}Te[d]t C R are real numbers (not variables

of the SoS program), then Aj,_parse 1}27: p(v1,...,v4)? < ktmax{d% | T € [d]'}.

Since D has subexponential tails, with m samples the ¢, norm of the difference between the
expected and empirical central moments is M/ Vkt. We can show that in the setting of Lemma 14,
with probability 0.9, || B [(Xi — 7)®'] — Ex~p[(X — 1)®][oe < M /V/kt. An application
of Lemma 15 to p(v) = > peigp (Bipm) [Xi — Blp — Ex~p [X — 1)) vr and the SoS triangle
inequality completes the proof.

4. Robust Sparse Mean Estimation with Unknown Covariance

Given that the inliers have certifiably bounded moments in k-sparse directions (which happens with
high probability because of Lemma 14), we show that our SoS algorithm finds a vector that is within
O(M*/te!=1/t) of the empirical mean of the inliers. In this section, we show the following theorem,
which when combined with Lemma 14 shows Theorem 4.

Theorem 16 Lett be a power of 2 and € < € for a sufficiently small constant eq. Let X1, . . ., X, €R?
such that the uniform distribution { X1, . . ., X, } has (M, t) certifiably bounded moments in k-sparse
directions (see Definition 13). Given ¢, k, M, t and any e-corruption of X1, ..., Xy, Algorithm 1
runs for time (md)°® and returns a vector fi with ||fi — Ejopm)[Xi]ll2x = O(MYte =1/,

Additional Notation. To avoid confusion, we fix the following notation for the rest of the paper.
We use X1, ..., X, to denote the inlier points. Their empirical mean and covariance is denoted by
71 and ¥ respectively. The points Y7, . .., Y,, are the e-corrupted set of samples. We use X1, ..., X/
to denote vector-valued variables of length d for the SoS program and ./, ¥/ to denote their empirical

10
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mean and covariance. Finally, wy, ..., w,, will be scalar-valued variables of the SoS program.

Our algorithm is based on the system of polynomial inequalities defined in Definition 17 below,
which capture the following properties of the uncorrupted samples: (i) X/ = Y; for all but emn indices,
and (ii) The ¢-th moment of the uniform distribution on { X/}, is certifiably bounded in every
k-sparse direction. Although the last constraint seems complicated, we show in Appendix A.2 that it
can be expressed as d°(*) polynomial constraints. Finally, our algorithm SPARSE-MEAN-EST will
solve a semidefinite programming (SDP) relaxation of the polynomial system Agparse-mean-est-

Definition 17 (Sparse Mean Estimation Axioms Agparse-mean-est) Let Y1,...,Y, € RY. Lett €
N be even and let 0, € > 0. Agparse-mean-es: denotes the system of the following constraints.

L Lety/ = LY™ X/
2. Let Acorruptions = {UJ? = wz}ze[m] U {wz(Y; - XZ,) = O}le[m} U {Zze[m] Wy = (1 - E)m}
3. X1,..., X}, satisfy (M, t) certifiably bounded moments in k-sparse directions (Definition 13).

Algorithm 1 Robust Sparse Mean Estimation
1: function SPARSE-MEAN-EST(Y7, ..., Y, t, M, e, k)
2 Find a pseudo-expectation E of degree 10¢ which satisfies the system of Definition 17.
3 return /i := E [/].
4: end function

4.1. Proof of Theorem 16

We first show that the system given in Definition 17 is feasible: Observe that the following assign-
ments satisfy the constraints: X{ = X;, w; = 1(}/1.: X;) = % Zl X;. Itis easy to check that the
first two constraints are satisfied. The final constraint is satisfied because of the assumption in the
theorem and Fact 39.

In what follows, we assume that v is a fixed sparse vector. The proof consists of first showing
that (v, 77 — i/)?* < O(MZ?€*~2) has an SoS proof and then showing that E[/] also satisfies the
same inequality as p’ does. We start with the first step. The program variables X/ have constraints
which ensure that a (1 — ¢) fraction of these will match the data, Y;. The following standard claim
(shown in Appendix C) shows that the program variables match a (1 — 2¢) fraction of the uncorrupted
samples X;. Note that in the claim below the r; are constants, even though they are not known to the
algorithm.

Claim 18 Let r; := 1x,—y, and W; := w;r;. There exists an SoS proof of {VVZ-2 = WZ}Zl U
{3 (1 = W) < 2em}U{W; (X; — X[) = 0}, from the axioms {W; = w;r; }1™ 1 U Acorruptions-

We now work towards an upper bound on (v, i — p/ >2t. Let r; := 1x,—y, and W; := w;r; as above.
We first show that there is an SoS proof for (v, 7z — p//)* < (2€)*72 By [(v, Xi — X])'] %

2t
Asparse-mean-est lm <U7ﬁ - )u/>2t = ( . E [(1 - Wi)<vv X’L - Xz,>] )

i~[m]

11
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< (202 E [(v,X; - X)?, (1)

where we used SoS Holder (Fact 36) and Claim 18. Now, to bound E; _j,,,) [(v, X; — X])'] ? first
observe that (v, X; — X[) = (v, X; — @) + (v, — ') + (v, i/ — X]). Applying SoS triangle
inequality (Fact 37) twice, we see that there is an O(t)-degree SoS proof of the following inequality
from axioms Asparse—mean—est-

B [xi- XN1? < 3242 < B[ —m P+ -+ B[ - X;>t]2) -

The first and last term above can be bounded by M 2. To see this, note that the uniform distributions
on {X;};c[m) as well as the program variables { X;};c[,,] have (M, t) certifiable bounded central
moments in k-sparse directions. Putting these together, thus far we have shown that

-Aspa.rse-mean-est lm <’U>ﬂ - ,U/>2t < (26)2t_2 e (2M2 + <Uaﬁ - /u/>2t)
62042 22 (M2 4 (o, — i) |

IN

Rearranging and using the assumption that ¢ < 3/1000 implies 6212 - ¢2=2 < 1/2, we get that

B B 62t+2 . M2 B
-Asparse—mean—est lm <U7 w— :u/>2t < th 2. 1 g2t+2 . c2t—2 < 62t+3M2 €2t 2- (2)

Finally, taking pseudoexpectations on both sides of Equation (2) and using Fact 35 (pseudoexpectation
Cauchy-Schwartz), we see that (v, i — E[1/]) < O(M'/*e!=1/*) for all k-sparse unit vectors, or
equivalently ||i — Eg/||2x = O(M/te!=1/%). This completes the proof of Theorem 16.

5. Achieving Near-optimal Error for Gaussian Inliers

In this section, we show Theorem 7 by exhibiting a (k*/€2)polylog(d/¢) sample, polynomial time
algorithm to estimate the mean of a multivariate Gaussian distribution in k-sparse directions. This
follows from a modification of the main result of Kothari et al. (2022).

An important component of the algorithm for the sparse setting is the SoS program given by
Definition 19. Our notation is as before, with the addition of X', which is a d x d matrix-valued
indeterminate. Additionally, define fi = E[i'],S = B[X'],7i = Ei ([ Xi], T = Eip[(Xi —
(X =), Yy = 5(Yi = Y)Y = V)T, Xy = 5(Xs — X)) (Xi — X;)T

Definition 19 (Gaussian Sparse Mean Estimation Axioms Ag.sparse-mean-est) Let Y1,...,Y,, €
R Let0<e< 1 /2. We define AG-sparse-mean-est to be the following constraints.

Loy =5 X Xjand 3 = L 570 (X] — p)(X] = u)T.

2. Acormprions = {w} = witiepm) U {wi(Yi — X]) = 0}iepm) U {Diepm wi = (1 — €)m}.
3. Apsparse b (Bipn) [(0, X[ = 1)*] = 3(07%/0)2)* < O(e2) (" S'v)™.

4. Apsparse |5 (0TS'0)2 < 9.

12
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More simply, AG_sparse-mean-est cOnsists of constraints that capture the following: (1) X/ =Y; for
all but em indices; and (2) The fourth moment of the uniform distribution on { X7 };c,,) is bounded in
‘k-sparse’ directions. The algorithm (Algorithm 2) consists of finding a degree-12 pseudo-expectation
that satisfies AG_sparse-mean-est> and estimates the sparse mean up to an error of O(e)

Algorithm 2 Robust Sparse Mean Estimation
1: function SPARSE-MEAN-EST(Y7,..., Y, €, k)
2 Find a pseudo-expectation E of degree-12 that satisfies the program of Definition 19.
3: Let i = E[x/] and output fi.
4: end function

As in Kothari et al. (2022), our result will rely on the notion of ‘resilience’ from Diakonikolas
et al. (2016). However, instead of proving the result for all directions, we will instead require this
only for k-sparse directions.

5.1. Deterministic Conditions on Inliers

We require a set of deterministic conditions similar to that in Kothari et al. (2022). However, instead
of proving the relevant conditions for all directions, we will instead require that they hold only for
k-sparse directions. We show that, with high probability, a set of (k*/e?)polylog(d/e) samples
drawn from N (u, X) satisfy the following set of conditions.

Lemma 20 Let T denote the set of all a € [0, 1]™*™ such that (i) a;; = aj; for all i,j € [m], (ii)
Eijlaij] > 1 — 4e, and (iii) Ej[a;;] > a;(1 — 2¢€) for all i € [m] and a;; < a; for all i,j € [m)].
Let X1,...,Xm ~ N(u,X) for p € R? and a positive definite matrix I; < ¥ < 2I;. Denote
Xii = (1/2)(X; — X;)(Xi — X;)T and ¥ := E;[X;5]. If m > (k*/e?)polylog(d/ev), then, with
probability 1 — v we have that the following hold for all v € Uj,:

(0,7 — )| < O(e)VoT Sw.

N B lai (v, X —@)]] < O(e)VoTxw.

By [ai (v, Xi — )% — 07'S0) ]| < O(e)v” Sw.

. JoT(E = 2] < O(e)vT Bw.

N Es jpm (a3 (0" Xijo — 0T 50)]| < O(e)o” T,

| B g (a3 (0 X = 0T80)% = 2(07E0)?)]| < O(e) (v Ew)”.

~

A L AW

The proof of this lemma is provided in Appendix D.1. In order to show that the program of
Definition 19 is feasible, we first need to argue that after taking enough samples, the empirical fourth
moment of Gaussian is certifiably close to its distributional value. This is a consequence of the results
of Section 3 and the assumption that > > I. For the proof, see Appendix D.

Lemma 21 Let X1,...,X,, ~ N(p,X) for a k-sparse vector i € R% and a d x d symmetric
matrix Iy = ¥ < 21,. Let [t and 3 be the empirical mean and covariance respectively. If the number
of samples m > (k*/e?)poly log(d, 1/7,1/€) , then, with probability at least 1 — -y, we have that

-Ak’—sparse véz (Ezw[m] [<Ua X — ﬁ>4] - B(UTEU)2)2 < 0(62)(UTEU)4'

As a corollary, we establish the feasibility of the system of Definition 19 in Appendix D.1.3.

13
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5.2. Proof of Theorem 7

In this section we prove Theorem 7 under the assumption that [ < ¥ < 2], since we have to use
Lemmata 20 and 21. As explained in Section 1.2.2, this assumption is removed in Appendix D.4,
where the proof of Theorem 7 for arbitrary 3 is completed.

We now outline the proof for the case I <X 3 < 27 (Theorem 59 in Appendix), deferring proofs
of intermediate lemmata to Appendix D.2. We first condition on the conclusion of Lemma 20,
which holds high probability. Further, by the discussion at the end of Section 5.1, we know that
the program is feasible. The first step is to show that our theorem holds given that E[E’ ] is a good
enough approximation of 3.

Lemma 22 LetY:,...,Y,, be an e-corruption of the set X1, ..., X, satisfying Items 2 and 3 of
Lemma 20. Let E be a degree-6 pseudo-expectation in variables w;, X!, X', i/ satisfying the system of
Definition 19. Denote by i, 3 the empirical mean and covariance of X1, . . ., X,, and let 3 := E[Y/].

Then, for allv € Uy, it holds | (v, i—)| < O(e)VvTiv—i—\/O(e)vT(f] —T)v + O(2)T(E + T)o.

It now suffices to show that [v7'(2 — S)v| < (~ e)vT' L since Lemma 22 combined with Items 1
and 4 of Lemma 20 implies that |(v, i — )| < O(e)VoTZv < O(e) and thus proves our main
theorem. Thus, we focus on showing that |v” (X — Z)v| < O(e)v” Lo for all v € Uy,

Lemma 23 LetYi,..., Yy beane-corruption of X1, ..., Xy, satisfying Items 5 and 6 of Lemma 20.
Let E be a degree-12 pseudo-expectation in variables w;, X[, X', i/ satisfying the system of Def-
inition 19. Define Y;; = (1/2)(Y Yi)(Y; — Y)T, Xij = (1/2)(X; — X;)(X; — X;)T, X[, =
(1/2)(X) — X)X, — X)T, & = B[], w);, = ww;1(X;; = Yij), and R = E[E[(1
wi;)v T(X/ — X)), Then, for every v € Uy, = oT(E = S)| < O(e)vTSv + VR and
R< O(e) (E[(v"'T'v)?] = (v7'E0)?) + O(e) (E[(v"Z'v)? } + (vT30)?).

J

The final part of the proof (for the setting I < > < 27) is identical to Kothari et al. (2022) and is
provided in Appendix D.3 for completeness. It consists of showing that R = O(€2)(vSv)2. Finally,
we remove the condition I < ¥ < 2] in Appendix D.4 and obtain the result for general X with the
error scaling as O(e+/[[Z]|2).
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Appendix A. Omitted Background

Basic Notation We use N to denote natural numbers and Z to denote positive integers. For
n € Z4 we denote [n] := {1,...,n}. We denote by 1(£) the indicator function of the event
E. For ay(z), ..., aq(x) polynomials in x and an ordered tuple T € [d]', we use ar(z) to define
the polynomial ar(x) := [[,cpai(x). We denote by R[z1,...,z4]<; the class of real-valued
polynomials of degree at most ¢ in variables z1, . .., z4. We use poly(+) to indicate a quantity that
is polynomial in its arguments. Similarly, polylog(-) denotes a quantity that is polynomial in the
logarithm of its arguments. For an ordered set of variables V' = {z1, ..., z,}, we will denote p(V)
to mean p(z1, ..., T,).

Linear Algebra Notation We use [, to denote the d x d identity matrix. We will drop the subscript
when it is clear from the context. We typically use small case letters for deterministic vectors and
scalars. We will specify the dimensionality unless it is clear from the context. We denote by e, . .., eq
the vectors of the standard orthonormal basis, i.e., the j-th coordinate of e; is equal to 1y, for
i,7 € [d]. We use S~ to denote the d-dimensional unit sphere. For a vector v, we let ||v||2 denote
its £5-norm. We call a vector k-sparse if it has at most k£ non-zero coordinates. We define the set of
k-sparse d-dimensional unit-norm vectors as U := {z € R? : z is k-sparse, [|z||2 = 1}. We will
often drop the superscript when it is clear from the context. We use (v, u) for the inner product of
the vectors u, v. For a matrix A, we use || A7, || A||2, || A]|c to denote the Frobenius, spectral, and
entry-wise infinity-norm. We denote the trace of A by tr(A) and the number of nonzero entries in
Aby ||Al|o. For two matrices A, B € R™*%, we define the inner product (A4, B) := tr(AT B). For
a matrix A € R4 we use A° to denote the flattened vector in ]Rdz, and forav € Rdz, we use v*
to denote the unique matrix A such that A> = v?. We say a symmetric matrix A is PSD (positive
semidefinite) and write A = 0 if 27 Az > 0 for all vectors z. We write A < B when B — A is PSD.
We will use -©* to denote the standard Kronecker product.

Probability Notation We use capital letters for random variables. For a random variable X, we
use E[X] for its expectation. We use N (p, ) to denote the Gaussian distribution with mean p and
covariance matrix Y. We let ¢ denote the pdf of the one-dimensional standard Gaussian. When D is
a distribution, we use X ~ D to denote that the random variable X is distributed according to D.
When S is a set, we let Ex..g[-] denote the expectation under the uniform distribution over S. For
any sequence ay, . . ., ay € R%, we will also use E;_j, [a;] to denote - > _ie[m] %i- For areal-valued
random variable X and p > 1, we use || X||z, to denote its L, norm, i.e., || X||L, := (E[|X|P))!/».

The following fact can be used to translate bounds from the (2, k)-norm to the usual /2-norm
when the underlying mean p is sparse:

Fact9 Let hy, : R? — RY denote the function where hy(x) is defined to truncate x to its k largest
coordinates in magnitude and zero out the rest. For all p € Uy, ||hi(x) — pll2 < 3|z — pf]2,5-

Proof Let ||z — pu]|2x = b. Let S* := supp(p) and S” := supp(hy(z)). Then, ||(1 — hi(z))s= |2 <
Band [[(z)sns+ll2 = [I(n = ha(z)) sns- |2 < b.

If hy(z) = z, then we are done because [|(11 — ) g1\ s+)us+|l2 < 2b. If not, then |S’| = k.
Since |S*| < k, |S"\ S*| > |S*\ S’|. Since S’ contains the indices for the k largest in magnitude
entries of z, forany i € S"\ S* and j € S*\ ', |z;| > |x;]. Since ||(x)gn g+[]2 < b, at least one
coordinate j € S’ \ S* must satisfy (x;)? < b?/|S"\ S*|. Therefore, for every i € S* \ S’ we have
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(zi)? < b*/|S"\ S*|. Adding these up we get the following upper bound on [|(z) g\ g ||2-
l@ssli= 3 @< ST <
€S\ S
Finally, we have that
e = i (@) 3 = 11 = 2) 55+ 113 + (1) s\ 113 + 1 (@) 55 13 < 607,

where the bound on ||(1) g+\ s ||* follows by a triangle inequality and the fact [|(; — ) g+

2<b. 1

A.1. SoS Preliminaries

The following notation and preliminaries are specific to the SoS part of this paper. We refer the reader
to Barak and Steurer (2016) for a complete treatment of basic definitions about the SoS hierarchy
and SoS proofs. Here we review the basics. Our algorithms will work under the condition that the
numerical precision of all the numbers involved is controlled. To describe these conditions formally,
we use the standard notion of bit complexity, defined below for completeness.

Definition 24 (Bit complexity) The bit complexity of an integer z € Z is 1 + [log, z|. The bit
complexity of a rational number r /t is the sum of the individual bit complexities of r and t. The bit
complexity of a vector is the sum of the bit complexities of its coordinates and the bit complexity of a
set of vectors is the sum of the bit complexities of the set’s elements.

Definition 25 (Symbolic polynomial) A degree-t symbolic polynomial p is a collection of indetermi-
nates p(«), one for each multiset o« C [d] of size at most t. We think of it as representing a polynomial
p : RY — R whose coefficients are themselves indeterminates via p(z) = > aCld) <t P()T*.

Definition 26 (SoS Proof) Let x1, ..., x4 be indeterminates and let A be a set of polynomial
inequalities {p1(x) > 0,...,pm(z) > 0}. An SoS proof of the inequality r(x) > 0 from axioms
A is a set of polynomials {rs(x)}scm) such that each rg is a sum of square polynomials and
(@) = X scpm) (@) [Lies pi(@). If the polynomials rg(x) - ] [;c 5 pi(x) have degree at most t for
all S C [m), we say that this proof is of degree t and denote it by A l? r(x) > 0. The bit complexity
of the SoS proof'is the sum of the bit complexities of the coefficients of the polynomials rg and p;.

When we need to emphasize what indeterminates are involved in a particular SoS proof, we
denote it by A l% r(xz) > 0. When A is empty, we directly write l; r(z) > 0and l% r(xz) > 0. We
also often refer to A containing polynomial equations q(x) = 0, by which we mean that A contains
both q(x) > 0 and q(z) < 0.

We frequently compose SoS proofs without comment — see Barak and Steurer (2016) for basic
facts about composition of SoS proofs and bounds on the degree of the resulting proofs.
Our algorithm also uses the dual objects to SoS proofs, commonly called pseudoexpectations.

Definition 27 (Pseudoexpectation) Let x1,...,xq be indeterminates. A degree-t pseudoexpec-
tation E is a linear map E Rlz1, ..., zd)<t — R from degree-t polynomials to R such that
E [p(x)?] > 0 for any p of degree at most t/2 and E[1] = 1. If A = {p1(z) > 0, ..., pm(x) > 0}
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is a set of polynomial inequalities, we say that E satisfies A if for every S C [m], the following holds:
E[s(z)? [Tics pi(z)] > 0 for all squares s(z)? such that s(z)? [],cq pi(z) has degree at most t.

We say that a pseudoexpectation is T-approximate if it satisfies all the conditions up to slack T, i.e.,
E[p(z)? > —7|p||3 for any p of degree atmost t /2 and E[s(2)? [ [, pi(2)] > —7|5%|12 [L;cs ||pi]
for all sets S and polynomials s(z) such that s(x)? [];cq pi(x) has degree at most t, where ||p|2
denotes the {5-norm of the vector of coefficients of p.

2

We will also rely on the algorithmic fact that given a satisfiable system A of m polynomial
inequalities in d variables, there is an algorithm which runs in time (dm)o(t) and computes a
pseudoexpectation of degree ¢ approximately satisfying .A.

Theorem 28 (The SoS Algorithm Shor (1987); Lasserre (2001); Nesterov (2000); Bomze (1998))
Let A be a satisfiable system of m polynomial inequalities in variables x1, . . ., xq4, each with coeffi-
cients having bit complexity at most B and degree at most t. Suppose that A contains an inequality
of the form ||x||3 < M, with M having bit complexity at most B. There is an algorithm which takes

t € Z, 7, and B and returns in time poly(B,log(1/7),d', m?) a degree-t pseudo-expectation E
which satisfies A up to error T.

All of our SoS proofs will be of bit complexity poly(m?, d'). We thus apply Theorem 28 with
B = poly(m!, d") and 7 = 27P°(5) (o ensure that the total error that we incur is at most O(2~"%),
Since this error is negligible, we will not treat it explicitly in the remainder of the paper.

Pseudoexpectations satisfy several basic inequalities, some of which are Cauchy-Schwartz,
Holder and a modified version of the triangle inequality. We will use these extensively. See Ap-
pendix A.1 for details.

Fact 29 (Moments of Gaussian) For any v € R? and any s € N, the moments of N'(u, X) are

S
Exn(us) [(v; X = 1)*] = (25 = DN Exnus) [(v, X — )?]"
For two polynomials p, q, the notation p < q means that ¢ — p is a sum of square polynomials.

Fact 30 Any degree-t polynomial r(z) in d variables which is a sum of square polynomials, can
always be written as a sum of at most d*/? square polynomials.

Proof Let r(z) = 3_; qj(x)% Observe that q;(z) = (uj,m(x)) where m(z) is the vector of all
possible monomials up to degree t/2 of the variables x1, . .., x4 and u; is the vector containing
the coefficients used for each of them in the polynomial q;. Let Zj uju]T = U, then r(z) =

m(x)TU m(x). Note U is a positive semidefinite matrix. It therefore has an eigen-decomposition of

at most d*/? vectors vy, . . . , Uge/2 with eigenvalues A1, ..., A2 > 0. This means that we can write
dt/2 dqt/2
r(z) = 3255 Aym(a) v m(z) = 32575 hy(@)? where hj(z) = \/X; (vj, m(z)). u

Definition 31 (Symbolic polynomial) A degree-t symbolic polynomial p is a collection of indetermi-
nates p(«), one for each multiset o« C [d] of size at most t. We think of it as representing a polynomial
p : RY — R whose coefficients are themselves indeterminates via p(z) = > aCld), o<t P(@)T*.

The following fact is a simple corollary of the fundamental theorem of algebra:

Fact 32 For any univariate degree d polynomial p(z), with p(xz) > 0 for all z € R, Ii {p(z) > 0}.
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This can be extended to univariate polynomial inequalities over intervals of R.

Fact 33 (Fekete and Markov-Lukacs, see Laurent (2009)) For any univariate degree d polyno-
mial p(x) > 0 for x € [a,b], {x > a,z < b} l% {p(x) > 0}.

We will rely on the following algorithmic fact (Lasserre, 2001; Nesterov, 2000; Bomze, 1998;
Kothari and Steurer, 2017).

Theorem 34 (The SoS Algorithm) There is an algorithm which takes a natural number t and a
satisfiable system of m polynomial inequalities A in variables x1, . . . , xq with coefficients having
at most poly(m, d) bit complexity, containing an inequality of the form ||x||3 < M for some real
number M also having bit complexity poly(m,d) and returns in time (d + m) O 4 degree-t
pseudo-expectation E which satisfies A up to error 274,

We did not define what it means for E to satisfy A up to error 2~¢. The idea is that 2~¢ slack is
added to each constraint. Since the coefficients in all the SoS proofs in this paper have magnitude
at most d°(1), these 2 errors are negligible and we will not treat them explicitly. See Barak and
Steurer (2016) for further discussion. We will also need the following facts about SoS proofs:
We record some additional facts that we will use in our proofs.

Fact 35 (Cauchy-Schwarz for Pseudoexpectations) Ler f, g be polynomials of degree at most t.
Then, for any degree-2t pseudoexpectation E, E[ fg] < \/E[ JRIRY. E[gQ}. Consequently, for every
squared polynomial p of degree t, and k a power of two, E[p’ﬂ > (E [p))* for every E of degree-2tk.

Fact 36 (SoS Cauchy-Schwartz and Holder (see, e.g., Hopkins (2018))) Let f1,91,---, fn, gn be
indeterminates over R. Then,

Hrfnnengn ( Zm) _(iz;f@?) (;Z;g"')

The total bit complexity of the SoS proof is poly(n). Moverover, if p1, ..., p, are indeterminates, for
any t € 7.y that is a power of 2, we have that

t—1
{wfzwﬁie{n}}l%(Zwmi) dowi| ) v and

i€[n] 1€[n]
t—1
. P1yeensPn
fw? = g | € ]} {250 (Z“’”’Z) Sowi| D wl
i i€[n] i€[n]

The total bit complexity of the SoS proof is poly(nt).

Fact 37 (SoS Triangle Inequality) Ifk is a power of two, W {(Zl a;)" <nk (3, af)} .
The total bit complexity of the SoS proof is poly(n*).

We will apply the above facts in a way so that the final bit complexity of these SoS proofs will be
bounded by poly(m?, d).

22



ROBUST SPARSE MEAN ESTIMATION

A.2. Quantifier Elimination

In this section, we describe a set of constraints that guarantee that the variables of a given SoS
program satisfy a certain polynomial inequality for all (possibly infinite) values of some subset of
the given variables, i.e., essentially leave a desired subset of the variables free. This is particularly
useful to us since we would like to ensure that our samples have certifiably bounded moments in a/l
k-sparse directions. Concretely, let V' be the set of variables, let ' C V be the set of free variables, A
be a set of polynomial constraints on F', and let b € R[V']. Suppose we like to ensure that b(V') > 0
for all values of F' that satisfy 4. The basic idea here is to observe that it is enough to ensure that
there is an SoS proof of this inequality in the variables F', and that this proof can be obtained by
ensuring that a certain list of polynomials exist whose coefficients satisfy specific equalities. Hence
it is sufficient to add a list of polynomial equality constraints. These constraints will become clearer
in the following discussion.

We will need the following notation: if a1(z), ..., aq(z) are polynomials in z and T' € [d]*
is an ordered tuple, ar(x) is defined to be ar(x) := [[;cp ai(x). Also, let d,t € Nand V' :=
{x1,..., x4} be formal variables and let b € R[zq, ..., x4 of degree at most ¢.

We are now ready to provide the details below. Define the following:
1. Let F' C V denote the subset of variables that we would like to leave free.

2. Let A= {ay,...,a,} C R[F]be a set of polynomials in F' of degree at least 1. Suppose the
variables F satisfy {a(F) =0 |a € A}.

Consider an assignment 7 to the variables V' \ F. We define b, (F’) to be the polynomial that is
obtained by assigning the variables in V' \ F' in b(V") according to the assignment 7. We know from

Definition 26 that {a > 0 | a € A} =~ b, (F) > 0, if and only if

be(F)= > ar(Flr(F),

TClr],|T|<t

where each ¢p is a sum of D square polynomials, where by Fact 30 we can assume that D < |F \O(t).
If the constraints are instead {a = 0 | a € A}, then the condition can be changed to

br(F) = Zai(F)pi(F)+Q(F)7 3)

1€]r]

where each p; is an arbitrary polynomial in F' and g is a sum of at most D square polynomials in ¥’
for D < |F|°®), and the degree of each term on the right-hand side is at most . In the context of
our paper, A above will be a set of polynomial equalities which are satisfied only by sparse vectors.

Definition 38 (Quantifier Elimination) Letd,t € Nand V := {z1,..., x4} be formal variables
andletb € Rxy, ..., x4) of degree at mostt. Let F C V and A = {ay,...,a,} C R[F] polynomial
axioms of degree at least 1. We define consp(A,{b},t) to be the set of equality constraints that
equate the coefficients of F' of the polynomials in Equation (3), where the coefficients may involve
polynomials of V' \ F. This is done by introducing variable vectors { P; | i € [r|} for the coefficients
of p; and {Q; | j € (D]} for the coefficients of q in Equation (3) (where D < |F|°®)) and equating
the coefficients of the LHS and RHS when both sides are interpreted to be polynomials in F'. This
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leads to at most | F|°®) many equality constraints in the variables {x; | i € V \ F}, {P; | i € [r]},
{Q; | j € |D]}, and each P; and Q; is of dimension at most |F|°®). 2

The following fact from Kothari and Steurer (2017) allows us to effectively use the constraints
defined above.

Fact 39 In the setting of Definition 38, for any fixed F' C V and fixed assignment wto V' \ F, we can
extend this assignment to a solution of cons (A, {b},t) iff A I% {bx(F) > 0}, where b, € R[F] is
obtained by assigning the variables in V' \ F in b(V') according to the assignment T.

Fact 40 Consider the setting in Definition 38. Let V! = {P; | i € [r]} U{Q; | j € [D]}. Let
be an assignment to F that satisfies a; € A, i.e., a;(m(F)) = 0 for eachi € [r]. Let by(V \ F') be
the polynomial in V' \ F that is obtained by assigning the variables in F in b(V') according to the

V\F,V’
assignment 7. Then consp(A,{b},t) I\f br(V\F)>0.

Proof Consider the polynomial h(F, V') = >"7_, a;(F)p;i(F) +Zf:1 qJQ- (F'), where {P;} and {Q;}
are coefficients of p; and ¢; respectively. Note that consy (A, {b}, ) is a set of polynomial equality
constraints in the variables (V'\ F')UV” that enforce the coefficients of the two polynomials b(F, V\ F')
and h(F, V'), when expanded in the monomial basis in F, to be equal. That is, for each S € [|F'|"],
consp (A, {b},t) contains the constraint cg(V \ F,V') = 0, where b(F,V \ F) — h(F,V') =
> serp es(V\ F, V) Fgand cg(V'\ F, V') is a polynomial in V' \ " and V".

Our goal is to show that the inequality b, (V' \ F') > 0 has an SoS proof subject to cons (A, {b},t).
We show this below. Observe that,

B(F,V\F)=OF,V\F)=h(F V) +h(F V)= > cs(V\FV)Fs+h(FV).
Se(|F]t

Let f = m(F'). Since the assignment 7 satisfies the a;’s, we see that h(f, V') = >0, ai(f)pi(f) +
2?21 Q?(f) = Ejpzl q?(f) Hence,

D
b, V\F) = Y fses(V\EV)+> g3 (f).
Jj=1

Se[lF|)

This is a valid SoS proof from the axioms consy (A, {b}, ). [ |

Appendix B. Omitted Proofs from Section 3

Lemma 15 (Polynomials of k-sparse vectors are bounded) Let p(vy,...,v5) = ZTGW arur
be a polynomial of degree t, where the coefficients {CLT}TE[d]t C R are real numbers (not variables

of the SoS program), then Aj,_parse U; p(v1,...,v4)? < ktmax{d% | T € [d]'}.

2. Note that if there is an SoS proof of b subject to A having bounded bit-complexity, then there is a solution to
consr (A, {b},t) which has bounded ¢2 norm.
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Proof

v,z
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where the first line uses {v;z; = vi}ie[d], the second line uses SoS Cauchy-Schwartz (Fact 36),

the third line uses that 0 = 37y (maxyeqg)e (ar)? — a%)22, the fourth line uses the rewriting

> oret 2T = el 2;)! and the same equality for the v7’s, and the last line uses the axioms
d d
{Zz2 = Zi}ie[d} U{D iz =k U{d> i, Uz‘2 =1} u

B.1. Certifiability for o-Poincaré Distributions

Previous work has shown that o-Poincaré distributions have certifiably bounded moments. In this
section we show that this implies that o-Poincaré distributions also have certifiably bounded moments
in k-sparse directions. At the end of the section, we demonstrate that certifiability of the moments in
k-sparse directions does not always imply the same condition for all (possibly dense) directions.

Lemma 41 If D is a o-Poincaré distribution over R® with mean y, then for some constant Cy
depending on t, we have that Ay sparse l% Ex.p [(v, X - ,u}t] 2 < C?0™. The bit complexity
of the proof is a factor of at most some poly(t) more than the bit complexity of the polynomial
Ex~p [(v, X — N)t]Q — Cio™.

Proof Previous work focused on the notion of certifiably bounded moments in the absence of sparsity
constraints, i.e., {3, v2 = 1} - M2 > Ex..p [(v, X — p)!] ?. The following claim implies that if
a distribution has certifiably bounded moments, then it also satisfies Definition 13.

Claim 42 (Proofs transfer to unit k-sparse vectors) For every polynomial p : R* — R, if there
is a proof of {ZZ v? = 1} l% p(vi,...,vq) > 0 with bit complexity B, then there is a proof of
Ab-sparse v;z p(v1,...,vq) > 0 with bit complexity at most B.

Proof To show Ay _sparse I% p(v1,...,vq) > 0, it suffices to demonstrate that there exists a set of
polynomials {7c(v, 2) } ce 4y, g @nd @ sum of square polynomials Q(-) such that:

p(v1,...,0q) = Z re(v, 2)c(v, 2) + Q(v, 2),

CEAk-sparse
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where the polynomials (v, z) - ¢(v, z) and Q(v, z) have degree at most . However, we know that
p(v) =q(v,2) + (3, v?. —1)¢/ (v, z) for some polynomial ¢’ of degree ¢ and some sum of square
polynomials ¢ also of degree ¢. Setting Ty, ey = ¢,Q =g andr. = 0forallc# {3, v]2~ -1}
proves our claim. |

The following lemma, implicit in Theorem 1.1 from Kothari and Steinhardt (2017), says that
if a distribution D is o-Poincaré, i.e., it holds Vary.p [f(X)] < o2 Exp [Hv F(X) y;} for all

differentiable functions f : R? — R, then it has certifiably bounded moments in every (possibly
dense) direction.

Lemma 43 (Kothari and Steinhardt (2017)) If D is a o-Poincaré distribution over R? with mean
1, then there exists some constant Cy depending only on t, such that

d
{3 =1 oty B, [0 x -] = i

Moreover; the bit complexity of this proof is at most poly(t,b), where b is the bit complexity of the
coefficients of the polynomial Cyo' — Ex..p [(v, X — u>t].

Combining Claim 42 and Lemma 43, and using the fact that for any polynomials A, B, {0 <
A < B} l— A% < B2, completes the proof of Lemma 41. |

Regarding the difference between the two definitions of certifiably bounded moments, one for
the dense setting (Definition 2) and one for the sparse setting (Definition 13), we note that there
exist distributions that satisfy Definition 13 but do not have certifiably bounded moments in every
direction (with a dimension-independent M ): Let ¢ be the Rademacher random variable and define
D to be the distribution of the random variable X = (X3,..., Xy), where each X; = £. Let i
and X be the mean and covariance matrix of D. Since the operator norm of ¥ is Vd, it follows
that there exists a unit vector v* (we can take v* = (1/4/d,...,1/+/d)) such that for any even
t, Ex~p[(v*, X — u)!]? > d'. Thus the distribution D does not satisfy Definition 2 with any
dimension-independent bound. However, we have that Aj,_parse l% Exp[{(v,X — u)]?> < k! by

noting that Ex..p[(v, X — pu)] = E[(}; v:€)"] = (3, vi)" and applying Lemma 15.

B.2. Concentration Inequalities for SoS-sparse-certifiability

The goal of this section is to understand the sample complexity required for the result of Section 3.1.
Throughout this section, we let || X ||, denote the L,-norm of the real-valued random variable X,
which is defined as (E[| X [P])'/P. We begin by showing the following concentration result that will
be useful in the subsequent proofs.

Lemma 44 Let P be a random variable over R? with mean u and suppose that for all s € [1,00),
P has its s moment bounded by (f(s))® for a non-decreasing function f : [1,00) — R, in the
direction ej, i.e., suppose that for all j € [d] and X ~ P: |[(ej, X — p)||r, < f(s). Let S be a set
of m i.i.d. samples of P. For some sufficiently large absolute constant C' > 0, we have the following:
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1. (t-th moment tensor) If m > 6‘52 (tlogd +log(1/v)) (f(t*logd +t log(l/’y)))% then, with
probability 1 — =, the t*" central moment tensor of P is bounded in {~, by §, i.e.

H%HX—M}— E [(X-un™]|| <o )

X~P

[e.e]

2. (Absolute moments) If m > C'log(d/~)(f(tlog(d/v))/f(t))*, then, with probability 1 — =,
foralli € [d] and for all v € [t):

[EH(X - um] " <o), )

S

3. (Sample Mean) If m > C(1/6%)log(d/~)(f(log(d/¥)))?, then, with probability 1 — -,

IELX] — pllc < 0. (6)

Proof It suffices to consider the case when pu = 0.

Part 1 For any ordered tuple 7' € [d]’, we define pr : R — R as pr(x) := [] jer Tj- LetY ~ P.
It suffices to show the following:

1 m
vT — .
' |3 (r(X:) ~ Blpr(V)])| < 7
i=1
Define Zr; := pr(X;) — E[pr(Y)] fori € [m] and Zp = 23", Zp;. Let s € Z;. We will
control the s-th moment of Z7 using the bound on the s-th moment of Z7; and independence of
(Z71,;)™ . Recall that X; has the same distribution as Y.

1Zrillz. = lpr(Xi) — Elpr(Y)lllz. < 2[lpr(Y)llL,,

where we use triangle inequality and Jensen’s inequality. We use Y; to denote the j-th coordinate of
Y. Using the moment bounds on py(Y) and Holder inequality, we get the following:

s

lpr;, =B || T[Y ] | =B |I] )| <] ® ;)" <] (f(st)™,

JjeT JeET JjeT JjeT
(7

where the first inequality above uses the Cauchy-Schwarz inequality for products of ¢ variables and
the second inequality uses the assumption on the moments of Y. Thus, | Z7;||1, < 2||pr(Y)||z, <
2(f(st))".

We will use the following inequalities:

Jun

Fact 45 (Marcinkiewicz-Zygmund’s inequality) Let W1, ..., Wy, W be identical and independent
centered random variables on R with a finite s-th moment for s > 2. Then,

1 & 3y/s
m;Wz <

< S We..
L \/7
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X - E[X]| < e[| X - E[X]

Fact 46 For a random variable X, we have that w.p. 1 — 7, I Liog(1/4)"
Proof Let Y = X — E[X]. We have the following:
E[|Y[lee(1/7)] 1
Pr [IYI = e”Y”Llog(l/w} = Cog(/) B[y [0s0/)] — glos(/m) 1
|
Using Fact 45 and the moment bounds in (7), we get that for any T € [d]?,
Vs :
Z < = =(f(st))".
1211, < 2= (4(a1)
Using Fact 46 with the above claim, we have that with probability 1 — +/,
log(1/) IYY
20) < el Zrl ., 5 S (01081
Taking a union bound over 7' € [d]* ordered tuples and taking 7 = ~/d’, we get that with probability
1—7,
tlogd + log(1
T e 0] £ S i og a4 1o /)'

This completes the proof of the first claim.

Part2 LetY := (Y1,...,Y}) be distributed as P. Using monotonicity of L, norms, it suffices to
1
bound, for all i € [d], [Es[|(X — p)i|"]] .
Recall that we assume p = 0 without loss of generality. For ani € [d], j € [m], let Z; ; :=
|(X;)il'and Z; == L Y71 Zi,j- By assumption, we have the following for all » > 1:
E(|Zi;") = E[|Yi["] < (f(rt)" .

Thus ||Z; j||1, < f(rt)". In particular, for all » > 1, we have | E[Z;]| = |E[Z; ;]| < ||[Zi;llL, <
(f(rt))t, where the first inequality follows from the monotonicity of L;,-norms. Thus we have that
1Zi.; — ElZijllL, < 2(f(rt))".

Applying Fact 45, we have that for all » > 1

1 - BlZllu, S /(7).

Applying Fact 46, we have that, with probability 1 — +/, we have that

PN Uz

Taking 7' = y/d with a union bound, we have the following:

vield: Z <(f() (1+o log(d/7) (f<“°g<d/”)t>7

m f(t)

o=

where C'is a large enough constant. The bound follows by noting that Zil/ = [Es[|(X — w)il] .
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Part3 Fori e [d], j € [m],let Zi; := (X;)iand Z; := = > Z; ).
We have that || Z; ||, < f(s). Applying Fact 45, we get the following: with probability 1 —-/d,

log(d
PR Vlog(d/v)
NG

Applying a union bound, we get the following: with probability 1 — -,

I B0X) - i 5 Y2

1Zi — E[Zi] f(log(d/7)).

f(log(d/7)).
n

Using the above result, we are now ready to prove the concentration result that was required in
Section 3.1.

Lemma 47 Let D be a distribution over R? with mean pi. Suppose that for all s € [1,00), D has
it’s s'" moment bounded by (f(s))* for some non-decreasing function f : [1,00) — Ry, in the
direction ej, i.e. suppose that for all j € [d] and X ~ D:

I{ej, X = m . < f(s).

Let X1,..., X, be mi.id. samples from D and define 1t := Y ;- X;. Then with probability 1 — ~,
we have that

B =)~ B (X =)

<5

)

o0

when

m > max <512 1> C (tlog(d/)) (2/(£2 log(d/)))* max (1, f(i)%> .

Proof We can safely assume that 6 < 1. Let S := {X1,...,X,,}. The goal is to bound the

following:

| B foc - - B, [ -7

o0

We first add and subtract p in the first term. To prove our lemma, we will bound each entry indexed by
an ordered tuple 7" € [d]? of the resulting tensor. We will use the following guarantees on our samples:
() [|Es [(X — p)®'] = Ex~p [(X — pn)®] HOO < 8y, (i) max;eq max,q <t (Bg | X; — 1;|")V7 < 8a,
and (iii) || — I1]|co < J3, Which appear in Lemma 44, for some values of d1, d2, d3 to be defined later.

We begin with the following decomposition:

XES [(X —pt = E)®t]T - X:EJD [(X - :u)®t]T

frd E — — 77 —
E & —ntn—m,
qeT

_ ®t
B (X =)l (8)
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We can expand quT(X — =)y = ZQQT quQ(X - N)f] quT.\Q(/‘ - g = HqGT(X -
wq+ 2 ocr [eq(X — wq Il e o (1 — 1)q. and apply the triangle inequality to get

E [(X-m)%],— B [(X-pn*],

SH E [(X-p®] - E [(X -]

X~S T  x~D X~S X~D ~
B (TTE =wa [T w=ma| || ©
QCT | q€eQ qeT\Q

By assumption, the first term in upper bounded by §;. We will now focus on the second term. For a
particular Q C T', we get the following using Holder’s inequality:

XES H(X — Wq H (1 — t)q
q€Q 9€T\Q

<lu—al L B | TTIX =)
qeQ

1

< (5)T\Q] _ el

< (6" T | B, 10X =, 9]
qeQ

X achcl

Using the fact that [{Q : Q C T'}| < 2'and |T'\ Q| > 1, we get the following bound on the second
term in (9),

X]ES Z H(X_M)q H (N_ﬁ)q §2t53max(1,5§_1,5§_1),

QCT [q€Q q€T\Q

This leads to the following bound on the expression in (8):

‘X]ES (X —p+p—m%], - £ (X — w)®"] .| <614 652 max(1,65", 6571, (10)
We can choose 61 = 6/2, o = 2f(t) and 63 = 27t max(1, d2) "¢*15/2, we get that the expression
in (10) is upper bounded by § by noting that 3 < 1 (since § < 1) and 2?53 max(1, 52, d3)"~! <
2163 max(1,d2) ~t*1) < (6/2). By Lemma 44, we get that the total sample complexity is at most

m = ; (tlog(d/)) (Cf(* og(d/~))) " max (1, f(i)) ) (h

where we perform the following crude upper bounds on the sample complexity guarantee in
Lemma 44 for the ease of presentation:

f(log(d/7)) ) .

g (tlox(d/2)) (P oz d )+ togta) (T4

+ = (log(d/))f(logd/7)*2" (max(1, 2f(1)) 2
1 1 1 1 \*2
< (tlogd/v)(10f(t*logd/v))* (? + O + 52 nax (1, f(t)> )
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i2(75 log d/~)(10f(t* log d/,y))%(

< L (tlogd/7)(10f(t log d/))?

< L(tlogd/7)(10f (log d/))?

<,

1 \2t- 2
—l—max(l,f(t >

£)2t’ t)2t 2

)

O«)

<,

B.3. Proof of Lemma 14

Lemma 14 Let D be a distribution over R® with mean 1 and covariance ¥ < I. Suppose that
D satisfies Ap.-sparse I% Ex.p [(v, X - u>t]2 < M? and D has c-subexponential tails, where
c is an absolute constant c. Let S = {X1,..., X} be a set of m i.i.d. samples from D with
m = (tk(logd))®®) max(1, M~2)/e%. Let D' be the uniform distribution over S and i :=
Ex..p/|X]. Then, with probability 0.9, we have that A sparse l% Ex.p [(v, X — )] 2 < 8?2
and i = pllox < ML

Proof Suppose for now that with m samples, the ¢, norm of the difference between the expected
and empirical ¢-th tensors of D is M/\/ﬁ, ie.,

M
E [(X;i—-p)®]- E [(X-p®| <-—=.
B [K=m) = B < s
Let p(vy,...,vq) = ZTe[d]f(EiN[M] [Xi — @lr — Exop[X — ,u]T)vT. An easy corollary of
Lemma 15 is its application to p(vy, ..., v4). Combining these two steps we have that:

2
Ak—sparse l? (zN]f—)m] [<’U, Xz' - ﬁ>t] - X]EJD [<U7 X - M>t]>
2

< M?*. (12)

oo

<K E [(Xi—7)% - E [(X - )]

ir~[m] X~D

To prove bounded central moments of the uniform distribution over the samples, observe that,

Ap.- sparse l% E [<U7 Xi— ﬁ>t]2

~[m]

2
= (B, [ X=m)] - B, [0.X ~ )] + B [(0.X - )]

2
<2 (B [0X-7)- B loX-i]) +2 B, (X -0

~

where the third line uses SoS triangle inequality (Fact 37), the fourth line uses Equation (12) and the
last one uses our assumption that D has certifiably bounded moments.
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We now calculate the sample complexity for the first claim. Since the distribution is sub-
exponential, we have that for Y = (Y1,...,Yy) ~ D, ||Y||, < c¢s,ie., f(z) = O(z). Lemma 47
with 6 = M/v/k! and f(z) = O(z) implies that the sample complexity is at most the following:

t

C' max (1, ]\]22> (tlog(d/v))(ct*log(d/v))* max (1, (ctl)Qt) < (ktlog(d/~))°® max(1, M~2).

We now focus on the second claim. It suffices to show that |7 — ul|cc < MYtel=Vt/\/k
since this implies the desired |7 — jullox < M'Yte!=1/t. Part 3 of Lemma 44 implies that this
requires samples at most CkM —2/te2=2/t1og(d/~)? since f(z) = O(xz). Finally, we note that
max(M~2, M~%/* 1) = max(M~2,1). [

Appendix C. Omitted Proof from Section 4

We provide the proof of Claim 18 below that was omitted from Section 4.

Claim 18 Let r; := 1x,—y;, and W; := w;r;. There exists an SoS proof of {Wf = WZ}Zl U
50, (1= Wy) < 2em}PU{W; (X; — X]) = 0}, from the axioms {W; = w;r; }™ 1 U Acorruptions-

Proof Since r; = 1x,_y;, then > . r; = (1 — e)m,r? = r; and r;(X; — Y;) = O for all i € [m]. We
see that

1. W2 =wir? = wir; = W,.

2. -Acorruptions l_ W1<Xz _Xz/) = wzrz(Xz -Y;+Y; _Xl/) = Tzwz(E_Xz) +wzrz(Y; _Xz) =0.

3. Additionally, since {W? = W;} |— (1-W;)?2 =1-2W,;+ W2 =1-W,, and using the fact
2 _
that {z* = z} lTl) {z > 0,2 < 1}, we see

Acorruptions lm 1-W; < 2(1 - Wz) =1-wir;+1—-wir; < (1 - wi) + (1 - ri)-

A sum over i € [m] gives us Im Yo, (1=W;) < 2em.

Appendix D. Omitted Proofs from Section 5§

This section contains the omitted proofs from Section 5. We begin by proving that inliers satisfy
deterministic conditions with high probability in Appendix D.1. We prove the proofs of estimation
lemmata (Lemmata 22 and 23) in Appendix D.2. Remaining technical details are provided in
Appendix D.3.

D.1. Deterministic Conditions on Inliers

In this section, we prove that the deterministic conditions required in Section 5.1 hold with high
probability. In particular, we provide the proofs of Lemmata 20 and 53.
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D.1.1. PROOF OF LEMMA 20

We prove Lemma 20 in this section. To this end, we need the series of lemmata below.

Lemma 48 (Li (2018)) Letk € Z, withk < d,0<e<1/2and0 <~y < 1. Let X1,..., X, ~
N (0,3). There exists an absolute constant C' such that, if

(min(d, k) + log (%) +log(1/7)
€?log(1/e)

then, with probability at least 1 — -, we have that for any choice of weights a; € [0,1] with
Ej<m[ai] > 1 — € the following two inequalities hold for all vectors v € Uy:

LB lai(v, X3)]| < ( V1og(1/e) ) VoT o,
2. ‘EiN[m} [ai(v, Xi)?] — vTSv| < O(elog(1/€))v! Sw.

The result in Li (2018) is for > = 1. This version follows by taking a union bound over the support
and re-normalizing the distribution. We also require a similar property for the fourth moment of the
inliers.

Lemmad49 Letk € Z, withk <d, 0<e<1/2,0<~ <1 Letm > C(k*/e?)log*(d/(eY))
for a sufficiently large constant C and X1, . .., X, ~ N(0,X). Then, with probability at least 1 — -,
for any weights a; € [0, 1] with E;_jyj[ai] > 1 — € it holds

E {ai <(<v, X;)? — ’UTE’U)Q - 2(UTEU)2)] ' < O(e) (v Lw)?

i~[m]

for all vectors v € Uy,

Proof We first show the condition in the case where there are no weights (a; = 1, for all i € [m)]).
Lemma 50 Ifm > C(k*/e?)log*(d/v) for a sufficiently large constant C, then a set of m samples
Sfrom N(0,%) for I; < ¥ < 21, with probability at least 1 — +, satisfies least 1 — v

< O(e) (v Lw)?

E {((v, X;)? — UTEU)Q - 2(UTEU)2]

i~ [m]

Sforall v € Uy,

Proof We want to show concentration of polynomials of the form ({v, z)? —vT Xv)? for v, a k-sparse
vector. Let S be a set of m samples from A (0, ). First, let u = (voT)” (i.e., the vector having as
elements all the products v;v;). This is a k2-sparse vector. Define M as the d?> x d? matrix with
M(ij),(kﬂ) = EXNS[(Xin — EU)(X]CXg — Zkg)] — 22@'2]% for all 4, 5, k., ¢ € [d] We note the
rewriting:

X}ES[(<U’X>2 —vT%0)?] = 20T 20)?

- B[ ity 5)] 2 3 )

i,j€[d] i,5€[d]
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Xog Z Uzv]( iy z]) Z Ukvé( kAL kf) Z ViVj 245 Z VgV 245

i,j€[d] k.leld] i,j€[d] k.le(d]
:XES[ D ug(XiX; —%i) Y wre(XXe —She) =2 Y wiSy Y Ukezij}
1,5€[d] ke(d] 1,j€[d] kLeld]
=ul Mu

Hence, it is sufficient to show that u” Mu < O(€) for all u € Uy2(d?). For a Q C [d?], we denote
by Mg the @) x ) submatrix of M. We have that

sup u' Mu= sup |Mglla < sup ||Mgllr,
uellya (d?) QI<k? QI<k?

Thus, it suffices for every element of Mg to be O(e), which holds if

E [p(x)] - E _[p@)] <5

1
X~S X~N(0,5) k2’ (13)

for the polynomial p(z) = (z;z; — Xij)(xrxe — Xge) — 22X ke. To this end, we use the following
concentration inequality, which is a consequence of Gaussian Hypercontractivity:

Fact 51 (see, e.g., Corollary 5.49 in Aubrun and Szarek (2017)) Let Z1, ..., Z,, be independent
N(0,1) variables and let X = h(Z1, ..., Zy), where h is a polynomial of total degree at most q.
Then, for any t > (26)‘1/2,

Pr[|X — E[X]| > t\/Var[X]} < exp (—%ﬁ/q) .
Note that we can still apply this lemma for polynomials h(Z’) of Gaussians Z’ ~ N (0, X)) with
covariance Y. # I by noting that Z' = v/ Z where Z ~ N(0, I) and replacing h(Z;, ..., Z!,) by
W(Ziy...,Zm) =h(Z},...,Z!) = M((VEZ)1,...,(VEZ)y) in Fact 51.

We apply the above to the appropriate degree ¢ = 4 polynomial of Equation (13),i.e., h(X1,..., X},) =
LS (p(Xs) — Ex-n0,n) [p(X)]). We note that in our case Var[h(X)] = Var[p(X)]/m =
O(1/m). Var[p(X)] is bounded by a constant since it is a degree 4 polynomial with constant coeffi-
cients of Gaussian variables with bounded covariance. We thus obtain that for m > C(k*/€?) log*(1/+/)
samples Equation (13) holds with probability 1 — ~/. Using 7/ = ~/d* and a union bound over
(4,7, k, ¢) yields the final sample complexity. We have thus shown Lemma 50 with O(e) in the RHS.
Assuming I; < ., this implies the final claim.

|

Having Lemma 50 in hand, we use it to complete the proof of Lemma 49. By convexity, it suffices
to assume a; € {0,1}. Let I be the set of indices such that a; = 1. For a given v € Uy, define
po(z) = ((v,2)2 —vT20v). Let J* be the set of 2em indices with greatest (p2(X;) — 2(v! $v)?) and
define Jf = {i : p2(X;) > clog?(1/€)(vTXv)?}. If m > C'log(1/7')/€?, with probability 1 — +/,
we have the following:

1. || X;]l2 = O(y/dlog(m/+")) forall i € [m).

2. LI{p?(X;) > clog?(1/e)(vTLv)?} < 2e.
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3. Jr CJ.

4 | Yiggr (P (X)) = 2(v"20)%)| = O(elog?(1/e)) (v" v).

The above claims can be shown like in Appendix B.1 of Diakonikolas et al. (2016) (see Equations
(44), (45), (46) of the first arxiv version of that paper; concretely, the second item follows from
Fact 51, the third follows from the second, and the last is shown in Claim B.4 of Diakonikolas et al.
(2016)).

Fix any I C [m] with [I| = (1 — 2¢)m. Partition [m] \ [ into J* U J~, where J* =
{ig1I:pX ) > 2(vT%0)?}, and J- = {i ¢ I : p*(X;) < 2(vT2v)?}. We will show that
(/DY ies (P2(X0) — 2(0T20)?)| = O(€)(vTLv)2. We first show the upper bound

7B —20720%) < 30 R — 20750 — 1 3 R — 272
‘ el ’ | cIuJ+ |I‘ ieJ—
i 2007 20)%)| +2 i<pv<x>—2< T50)?)
=1 ieJ—
< 0w + ’I,‘ (50?)
= O(e) (vl 2v)?

where we used Lemma 50. We now focus on the other direction. We note that the lower bound is
achieved when I = [m] \ J*. Thus we obtain the following using Items 3 and 4:

il Z po(Xi) = 20" %0)?)

el

> (1—126)77% < (pZ(Xz) — 2(UTE'U>2) _ Z(pi(Xz) _ 2(’UTE’U)2)>
iem ieJ*
1 —126 (Z(pg(X") —20"0)?) = Y (X)) - 2(07Z0)?)
gy i€ J\Jp
2 - (%0 —20Ts?) | [~ AN Y e
7 ‘] ie\J;
> — 610g2(1/6 ) O(;Mdogz(l/e)(vTZv)z

> —O(elog?(1/€)) (v TEU)

Note that this holds for a fixed v, and all subsets I with |I| = (1 — 2¢)m. The last step is a cover
argument. To that end, we first state that the desired expression is Lipschitz with respect to v:

Claim 52 Conditioned on the event of Item 1, for any unit-norm u,v € R? and i € [m] we
have that |p,(X;)? — 2(vT20)? — (pu(X;)? — 2(u?Zu)?)| < Jlu — vl||l2(R? + ||X]|3)%, where
R = O(y/dlog(m/v)).
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Proof We first claim the following for the difference between the polynomials without the squares:
[Pu(X3) = pu(X0)| < (v, X2)? = (u, X3)?] + [0 2o — u? Bu| < 2/jv — ull2(R? + [|Z]2) -

The first line uses the triangle inequality. For the second term of the following line we use that

0750 — uTSu| = T30 — ) = (u = v)"Zul < [Sa(lvll2llv = ullz + Jull2lv - ull2) <

|2]|2]lw — v]|2. The second term is bounded using the same argument but with X;(X;)? in place of

¥ and using that | X;||2 = O(R).

We can now complete our proof.

Po(X0)2-2(0750)? — (pu(Xe)? — 2(7T0)] < Ipo(X0)? — pul(X0)?] + 2(07S0)? + (uT Tu)?|
< max{|py (X;)|, [pu (X)) [Hpo (X3) — pu(X3)| + max{v v, v’ Su}oT Lo — ! Su|
S llv = ull2(R* + [|2]2)?

where the first line uses the triangle inequality, the second line uses |a? —b?| < 2 max{|al, |b|}|a—b],

and the last one uses the bound [p,(X;)| < || X;|1> + [|Z]]2 < B2 + ||Z]|2- [

Recalling that ||X||o < 2, the RHS of Claim 52 is essentially ||v — u||oR*. In order for it to become
O(¢), we would like our cover S of k-sparse unit vectors to have accuracy O(e/R*), which results
in a set of size |S| = (Z)O(R4 /€)¥ vectors. We thus choose the probability of failure 7/ = ~/|S],
which means that we need

_ olos(IS1/7) _ log (i) + klog(dlog(m/)/e) +1og(1/7)

The sample complexity of Lemma 50 scales with k% and dominates the sample complexity of this
paragraph. This completes the proof of Lemma 49. |

We now have all the ingredients to prove Lemma 20, which we restate below for convenience.

Lemma 20 Let T' denote the set of all a € [0, 1™ such that (i) a;; = aj; for all i, j € [m], (ii)
Eijlaij] > 1 — 4e, and (iii) Ej[a;;] > a;i(1 — 2¢€) for all i € [m] and a;; < a; for all i,j € [m)].
Let X1,..., Xm ~ N(u,X) for u € R and a positive definite matrix I; = ¥ < 2I,. Denote
Xii = (1/2)(X; — X;)(Xi — X;)T and S = E;j[Xy5]. If m > (k*/e?)polylog(d/ev), then, with
probability 1 — ~ we have that the following hold for all v € Uj,:

1 [{o. 7 — )] < O(QVaTSn:

2. | Epoplai(v, Xi — @)]| < O(e)VoT T

: ‘EiN[m] [ai (v, Xi — @)? — vTS0)] ’ < O(e)vTSw.
4. T (2 = 2)v| < O(e)vT2w.

5. 1B jopmlaij (0! Xijo — oT50)]| < O(e)vTSw.
6. | E; jnim] [ai; (v X0 — vT80)? = 2(0TTw)?)]| < O(e) (v Sw)2

W

Proof Without loss of generality, we assume 1 = 0. We let Z; = X; — . We condition on
the events of Lemmata 48 and 49. For simplicity, we also assume that the a;’s are scaled so that
E;jla;;] = E;[a]] = 1 (since this consists of only a scaling of 1 4+ O(e), it is without loss of
generality). We show the individual claims below:
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. Proof of |(v,71)| < O(e)VvTSv: Use Lemma 48 with a; = 1.

. Proof of | E;p[aj (v, X; — @)]| < O(€)VvTSv: By Item 1 and Lemma 48, we have that

B laitom] < O vaTm < S

1—0(e)

E [a;(v, X; —u>]‘ <|

i~[m]

where the last inequality uses Item 4.

. Proof of ‘Eiw[m} [a} (v, Xi — ) — vT50) ] ! < O(e)vTSv: We have the following inequal-
ities.

, }[3 | [a; (v, X; —m? - ’UTEU)]‘
=| E [ <U X> + a’;<v7ﬁ>2 - 2ag<UaXi><Uaﬁ> - CLQ’UTS’U}

zw[m]

‘ (1+0()v'Sv+ O0()vT2v+2 E [ai(v, Xi)]O(e)VuTZv — v Tw

irv[m]

| Y)v |+O( Jv TEU+O(62)UTEU
( ) TEU

where the second line uses Lemma 48 along with Item 1 and E; [a;] = 1, the next line uses
Lemma 48 and the last line relates v7 $v to v7 $v using Item 4.

. Proof of [vT'(¥ — Z)v\ < O(e) Ts: Repeating the steps from the proof of Item 3, we can
show |E;pm [a] (v, X; — )2 — T S0) ]| < O(e)v" Y. Taking a} = 1 gives Item 4.

. Proof of | E; jpm[ai; (vT Xijv — vT'S0)]| < O(e)v” Sv: We clarify that we will often use
the following: Whenever we have a term of the form E;;[a;;b;] with b; > 0, we will use that
E;jla;jbi] < E;[alb;] (since 0 < a;; < al).

E [aij(vTXijv - UTEU)] ‘

i,5~[m]
1 B . _

= ijN[m][ai@@in — = (X — @) — v

;1 1 = 1 1
< Y A = =2 _ =T
< E[ 2(1} X; —1)? 50 Yv| + lf[aj2<v,X] u>] 5Y Yv
HE[%(U Xi = m v, X; —m]|
< O(e)v'Sv

since each of the first two terms is O(e ) using Items 2 to 4 and the same holds for the
last term: Using Cauchy—Schwarz, this term becomes | E;;[a;; (v, X; — @) (v, X; — [@)]| <
V] Ei;| aw (v, X; — 1)?] Eyjlai; (v, X; — [1)?]] and then applying again Items 2 to 4 bounds it
by O(e)v' Zv.
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6. Proof of | E; jpmlai;(v7 Xijv — vTS0)? — 2(vTSv)?)]| < O(e)(v'Sv)%: Using that
E; j[a;;] = 1 and some algebraic manipulations, we have that:

E [a;((v Xijv —vTS0)? — 2(0v7S0)?)]

i,j~[m]
N2 9T\ 2
T ((v,XZ X)) —2v EU) _ 9T 5)?
= 1E [a-- <(<U X)) — 0TS0 + (v, X,)? — 0T Su—2(v, X;) ﬂ (vT¥w)?
4’£,j () 9 1 b J
1 ~
— ZHEE, }[aij (A% + B* + C* + 2AB + 2AC + 2BC)| —2(v"Sv)* £ O(e)| , (14)
ij~[m

where we replaced (v! $v)? bUUTiv)Q + O(e) using Item 4 and the fact that I < ¥ <21
and we let A := (v, X;)2 — 0TS0, B := (v, X;)? — 0TS0, C = 2(v, X;) (v, X;). We work
with each term individually. We have that

E [4AY]= E [d((v,X))? —vTE0)?

ij~[m] i~[m]
= ? ][ag(@, X)) — 0T %o + 07 (2 - D))
< ]f? ][a;(@,Xi)Q —vTXv)H + }[3 ][a;](vT(E —¥)w)?

+ 2 'N]%) ][a;((v, X;)? - ’UTE’U)KUT(E — X))
< 2wT20)? + O(e) (v Lv)?

since the first term is (2 4+ O(e))(v” £v)? and the other two O(e)(vT Xv)?: the first term is
bounded because of Lemma 49, the second because of Item 4 and the last one because of both
(an application of Cauchy-Schwarz is needed there). Similarly, we have that E;; [, [B?] <
(2 4+ O(e))(v"2w)2. Furthermore, Eijum[C? = (4 £ O(€))(vT¥v)? and that all cross
terms involving AB, AC, BC are O(e). Putting these together we get that the right-hand
side of Equation (14) is O(e) Using Lemma 49 one last time we have that this is at most
O(e)(vTTw)2.

This completes the proof of Lemma 20. |

D.1.2. PROOF OF LEMMA 21

Lemma 21 Let X1,..., X, ~ N(u,X) for a k-sparse vector i € R? and a d x d symmetric
matrix I; < ¥ < 2I;. Let [t and X be the empirical mean and covariance respectively. If the number
of samples m > (k*/e®)poly log(d, 1/v,1/€) , then, with probability at least 1 — +y, we have that

Ak—sparse véz (EZN[m] [<Ua Xz - ﬁ>4] - 3(UT§U)2)2 < 0(62)(11712?})4.

Proof We have the following by the SoS triangle inequality (Fact 37):

2
Avps 5 (B [0~ '] 307 50)?)

ir~[m]
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2
_ . —\4 4 4 TS, ,\2
_<iN]E]}[<v,X,—,u>]— Nﬁu,z) [(v, X — '] + NA%,@ [(v, X — '] =3(v Ev))

E [(v,X - u>4])2 +4 < E _[(v,X—-w' - 3(szv)2)2 :

<4 E [(v,X; —m)? —
N (iN[m] i za XN (1,5) XN (1,5)

We will bound from above each of the two terms above separately. Focusing on the first term, we first
define &’ := ¢. Then, similarly to Equation (12), we use Lemma 15 and Lemma 47 with § = &' /k?
and t = 4 to get that

2
Ak-sparse l% < E [(vai _ﬁ>4] - E [<U7X - /’L>4]>

i~ [m) X~N(1,%)

2
<K' E [(X;,—-0)%—- E X — u)®
< Mm][( )] XNN(M)[( 1) }Oo

< k4?2 < (6)2 < (8 (0TSu)t = O() (vTZ0)?

where in the last line we used X > I; combined with Item 4 from Lemma 20. The sample complexity
of (k*/€?)1og®(d/(e7)) comes from Lemma 20 and Lemma 47, with f(s) < +/C's and § = ¢/k>.
We similarly bound the second term:

2
Ak—sparse Uéz ( E [<U,X - [L>4] — 3(’UTE’U)2>

X~N(1,2)
2
= E v, X—-pwi - E v, X — )4
<X~ E ( )] s ( i) ])
2
= E v, Y- E v, Y)4
<Y~N(072) [< ) ] Y ~N(0,X) [< ) ]>
2
<K E [Y®- E [Y® |,
Y~N(0,%) Y~N(0,%)

where we used the specific form of Gaussian moments (Fact 29) for the first equality. In order to
bound all elements of the tensor, we use the following lemma, which is shown in Appendix D.1.4.

Lemma 53 Let Xi,..., X, ~ N(p, %) where I <= X = 21, and denote i = E; [ Xi],
Y= Eiw[m][(Xi—ﬁ)(Xi—ﬁ)T]. For any even integert and T < 1, if m > C(1/72)t?"* 14t log(d/~)
for some absolute constant C, it holds

E V¥ - E _[y¥

<T
Y~N(0,%) Y~N(0,%)

)

o0

with probability 1 — .
Using the above with ¢ = 4 and 7 = 8 /k? with & = O(e), we get that
2
Apsparse [ 5 < E [(0,Xx - - 3(UT§;U)2> < (62 < (820 T0)* = O(2) (VT Sw)? .
XNN(:Lsz)

This completes the proof of Lemma 21. |

39



DIAKONIKOLAS KANE KARMALKAR PENSIA PITTAS

D.1.3. FEASIBILITY OF DEFINITION 19

Corollary 54  Under the conditions of Lemma 21, Ag-sparse-mean-est in Definition 19 is feasible with
high probability.

Proof The pseudo-distribution that is defined to be the uniform distribution on inliers (i.e., X! = X;)
satisfies the constraints of the program. The first three conditions are trivially satisfied by choosing
the w;’s to be the indicators of whether the ¢-th sample is an inlier. The second to last constraint is
satisfied if and only if the inequality (E; ) [(v, X; — m)*] — 3(1}va)2)2 < O(?)(vTSv)* has
an SoS proof. By Lemma 21, we know that this is indeed the case.

We now focus on the last constraint. We need to show an SoS proof of (v ¥v)? < 9. We
will show an SoS proof of (v'Lv — v 2v)? < O(€?). By techniques similar to the ones used in
Lemma 21, we see that

Apsparse - (0TS0 = 0750)2 < B[S = 200 -

Since m > C(k*/€?)log®(d/v) for large enough constant C, we have the following with high
probability:
Apspare [ (0750 —0720)? < [T~ Lo < O(e) -

Finally, to get an upper bound on (v?'¥v)2, we apply the SoS triangle inequality, as shown below

Al-sparse I— (vT20)? = (vISv — v 2w + 0T 8w)?
< 20T Sw)? + 20T 8w — 0T 8w)2 < 84+20(e?) <8+ O(%) <9,

where we use that > < 27 and ¢ is chosen to be small enough. |

D.1.4. PROOF OF LEMMA 53

This section contains the proof of the following result that was used in Section 5.1.

Lemma 53 Let Xi,..., X, ~ N(u,X) where I <X ¥ =X 21, and denote i = B, [Xi,
Y = B [(Xi—0) (Xs—n)T]. Forany even integert and T < 1, ifm > C(1/72)t** 14" log(d/~)
for some absolute constant C, it holds

<rT

— )

E [Y®t] o E B [Y®t]
Y~N(0,X) Y~N(0,3)

oo
with probability 1 — .
Our proof uses the following standard concentration inequality and Isserlis’ theorem.
Claim 55 Ler XU, ..., X(N) ~ N(0,2) and Sy := & SN XD X" Let ', § € (0,1). Then,

with probability at least 1 — 9, it holds that |2 N —X||e < €'||X||2 provided that N > C'log(d/5) /€™
for a sufficiently large universal constant C.
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Proof For k,¢ € [d], the random variable + Zle X ,gi)X Z(i) is sub-exponential with Orlicz norm

||%X,9Xéi) |y, < (C/N)||3]|2 for some C' > 0. Therefore, by Bernstein’s inequality, if NV is a
large enough multiple of log(1/4")/€’?, we have that

I () (i
Pr UNX,E:)XIS) - zw‘ < e’uzug} <o

By using &’ = §/d? and taking a union bound over all d? elements of the matrix, the result follows.
[ |

Fact 56 (Isserlis’ theorem) Let (X1,...,X;) ~ N(0,%). Then,

EX: - X =Y ][ EXX,
peP? {i.j}€p

where P? is the set of all pairings of [t].

We are now ready to prove Lemma 53.
Proof [Proof of Lemma 53] We fix /1, . .., ¢, € [d] and examine the ({1, . .., {;)-thentry (Ey 0,5 [Y®t])z
= Ey. n(0,5)[Ye, - - - Ye,]. Using Fact 56, we can write it as a sum of products of elements of X:

E [y = Yo
<Y~N(O,Z)[ ]>gl7,,,,gt Z H b

peP2 {i,j}ep

1ye-eslt

We note that each product has at most (¢/2)-many factors. The same decomposition holds for each
entry of the tensor Ey,_ - [Y®*] by replacing ¥ with 3. Therefore,

<YNA]/E%O’E)[Y®t]_ EOvE)[Y@)t])el , < Z’ H Yot — H EMJ,’. (15)

Y~N ht e
( ole|  peP? {id)ep {ij}ep

We now focus on a single term of the right-hand side. Assuming that we have an approximation
| — Xjoc < 6 for some § < 1 to be defined later, we can write ¥;; = X;; + &;; with |§;;] < 4.
Plugging this gives

| TT Sae— TT Ses| <ol
tier {i.d}ep

where we used that [ | (i} ep(zgigj + d¢,¢;) produces one term which cancels out with [ {i.j}ep Y0,

and every one of the (2!/2 — 1) remaining ones, is at most 5\|E||toé271, because 0 < 1, and ||X||oc > 1.

Combining the above with Equation (15), we have that

E [Y®- E _[Y¥

< )32
Y~N(0,%) Y~N(0,%)

o0
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since a crude upper bound on the number of matchings of [¢] is t!. Imposing that the right-hand side
18 at most 7, we find that it is sufficient to have

_
<—
t2t/2|| S

which is indeed less than 1 since 7 < 1 and ||X||o > 1.
Therefore, we use Claim 55 with ¢ < §/||2||2 and § = ~/d", in order to do a union bound over
the d' elements of the tensor. Substituting these parameters yields the claimed sample complexity. Hl

D.2. Proof of Estimation Lemmata

We recall the following general result from prior work (note that our theorem statement is slightly
different from the one in Kothari et al. (2022), this is a minor correction and doesn’t change the
overall correctness of the proof).

Lemma 57 (Lemma 22 in Kothari et al. (2022)) Let X1,..., X, € R and i = Ej ) [Xi]. Let
V (@i, v), V(i ,v) be degree-2 polynomials in v and Ti and v and 1/ respectively and let S C R?
be a set such that V (fi,v) > 0 forallv € S and i € R%. Let T C [0,1]™. Suppose that for every
v € Sanda €T suchthat)’, a; > (1 — €)m, we have the following two

B oo X )| < OV ”
. %ﬂ][ai(@,xi W V(g v))]‘ <O0(e)\V(z,v) . an
Let Y1, ..., Yy, be any e-corruption of X1, . .., X, let E be a degree-6 pseudo-expectation in the

variables X!, ..., X! € RYandwy, ..., w, € R. Let i’ = E;m)[X]]. Suppose that
« E satisfies w? = w; for all i € [m).
« E satisfies Dicfm Wi = (1 —€)m.
« E satisfies w; X! = w;Y; forall i € [m).
. E[Eiw[m][@,X{ — )2 < (1 + O(e))E[V! (1!, v)] for every v € S.
« a € T, where a is the vector with a; = E[w;]1(X; = Y;) for i € [m]

Then, for every v € S, the following hold:

Bl(v, 1/ — )% < 0(e) (EV' (1, 0)] + V(@)

o, = B < O/ V(7 0) VE[E[G—MMmM—uWy

i~[m]
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+0(e) (BIV/ (1, 0)] + V(7,v) )
where w, = w;1(Y; = X;).
We now prove how Lemma 22 and Lemma 23 follow from Lemma 57.

Lemma 22 LetY1,..., Yy, be an e-corruption of the set X1, ..., Xy, satisfying Items 2 and 3 of
Lemma 20. Let E be a degree-6 pseudo-expectation in variables w;, X], X', ji/ satisfying the system of
Definition 19. Denote by Ji, ¥ the empirical mean and covariance of X1, . . ., X, and let 3 := E[Y].

Then, for all v € Uy, it holds | (v, i—Ti)| < O(e)V vTiv—i—\/O(e)vT(i — ) 4 O(2)T(E + D).

Proof This is a corollary of Lemma 57 with V (7, v) := v" By [(Xi—70) (Xi =) o, V! (i, v) =
VU By [(X] — 1) (X] — 1) ]v, and the set S chosen to be the set of all k-sparse unit vectors of
R,

We now check that the assumptions of Lemma 57 are true. The assumption of Equations (16)
and (17) holds because of Items 2 and 3 of Lemma 20. The first three conditions about the pseudo-
expectation E hold because E satisfies the program of Definition 19 and the last one holds trivially
since E[Eiw[m][@, X! — p)?)] = EpTY] = E[V'(i/,v)]. Finally, a} € [0,1] since E satisfies
w? =w;and Y w; > 1—e. [ |

i =

Lemma 23 LetY1, ..., Yy bean e-corruption of X1, ..., Xy, satisfying Items 5 and 6 of Lemma 20.
Let E be a degree-12 pseudo-expectation in variables w;, X], ¥/, i/’ satisfying the system of Def-
inition 19. Define Yij = (1/2)(Y; — Y;)(Y; - Y;), Xi5 = (1/2)(X; — X)) (X; — X;)T, X}; =
(1/2)(X] — X)(x] - X))T, S = E[Y] wi; = waw;1(X;; = Yy), and R = B[Eg[(1 -
ng)vT(XZ(j —X)v]2). Then, for every v € Uy, we have that, [v7 (3 — Z)v| < O(e)v"Sv + VR and
R < O(e)(E[(vTE'0)%] — (vT'0)?) 4 O(e)(E[(vT£0)?] + (vTZv)?).

Proof We use Lemma 57 with the following substitutions: S := {(vvT)" | v € Uy}, that is, let S
be the set of all d2-dimensional vectors that are obtained by flattening matrices vv” for v k-sparse
unit vectors. We let the differences of pairs (X;;)" := (3(X; — X;)(X; — X;)T) fori,j € [m]
play the role of the vectors X, ..., X that appear in the statement of Lemma 57 and E;;[(X; )]
play the role of 7i. We choose V(E;;[(X;;)’], (vvT)’) = (vTZv)? = (uT Ejjim] [Xi5]v)? =
(w0, Ei;[(Xi5)°])? (from this re-writing it is seen that this is a degree-2 polynomial in its
arguments). Similarly, we let V'’ be as V' but where X; are replaced with X/, i.e., the program
variables. Thus, the assumption of Equations (16) and (17) now corresponds to Items 5 and 6
of Lemma 20. For example, to see the correspondence for the case of Item 5, we note that for
u = (voT)’ € S, the LHS in Equation (16) becomes

Elai;(u, (Xi;)" — E[(Xi;)'])] = Elag; (v0"), ((1/2)(X; — X;)(X; — X;)7)" — E[(X)])]

%) ] ij ij
= E[aij(vTXijv — UTSU)] ,

%)

which is equal to the LHS in Item 5 of Lemma 20.

43



DIAKONIKOLAS KANE KARMALKAR PENSIA PITTAS

It remains to show that the rest of the assumptions used in Lemma 57 hold. We use w;; := w;w
in place of the w;’s appearing in Lemma 57. Note that by requiring E to be degree-12 pseudo-
expectation in the variables X/, w;, it follows that E is degree-6 in the new variables X/ > wij. We
want to check that

1. E satisfies wizj = w;j forall i, j € [m].
2. E satisfies Dijepm Wii = (1— €)?m?2.

3. E satisfies w;; X; = w;;Y;; for every i, 5 € [m].

4. E[E; j (v (X} = X)0)*]] < (2 + O(e) E[(v"T'v)?].

The first three follow immediately from the constraints of the program of Definition 19. The last one
is verified below.

Claim 58 Let E be a degree-4 pseudo-expectation in XZ(]., Y (as defined in Lemma 23) satisfying
Definition 19. Then

B B 070 - )07 < (24 0B [ ='0p)

[i,jN[m}
Proof Since E satisfies the system of Definition 19, by taking pseudoexpectations on the second to
last constraint of the program, we see,

E < O()E [(vTZ'0)1] .

i~[m]

( E [(v,X]— )" - 3(UTE,’U)2>2

Applying Cauchy-Schwarz for pseudoexpectations (Fact 35), we get,

(E [ E } [(v, X} — p/)*] — 3(UT2’U)2D2 < O(HE [(vZ'v)Y] .

i~[m

We know from Fact 33 that {0 < z < 9} l— {8122 — x > 0}. Letting z = (v’ ¥'v)? we see that
Iy = > (X = X5, v)2 > 0 and the last constraint of the program implies z < 9. Taking
pseudoexpectations, we see that E[(v2/'v)Y] < O(1) - E[(vT2v)?] < O(1)E[(vT%'v)?]?, where
the final inequality follows from the fact that E[(v” ¥'v)?] is bounded between constants. Taking
square roots of the previous inequality, since all terms involved are powers of two, and hence positive,
this implies

E [ E [(v,X] - ,u’>4]} < (3+0(e))E [(vT2'0)?] .

i~[m]

Hence, we have that
B| B (0.~ )] < 3+ ORI 0P, (18)

We also have the following polynomial equality

DN | =

-AG-sparse-mean-est lZ . E [(UT(Xz{j - Z/)U)Q] =

(.?}K%X{—MVH(UTZ%V) )
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Taking pseudo-expectations in Equation (19) and combining with Equation (18), yields that

B B 6700 - 007 =5 (B] B o Xi -0 + Bl wo))
<5 (4+00) Bl sy,
which is the claimed bound. |
This completes the proof of Lemma 23. |

D.3. Omitted Details from Section 5.2

We first state the guarantees of our algroithm under the case Iy < 3 < 21,.

Theorem 59 Let k,d € Z4 with k < d and € < €q for a sufficiently small constant ey > 0. Let
p € R and ¥ € R such that I; < ¥ < 2I4. Let m > C(k*/€%)log®(d/(ve)) for a sufficiently
large constant C' > 0. There exists an algorithm which, given ¢k, and an e-corrupted set of
samples from N (u, X2) of size m, it runs in time poly(md), and returns an estimate [i such that, with
probability 1 — v, [ satisfies ||t — |26 < O(e).

We complete the proof of Theorem 59 as in Kothari et al. (2022) by using the estimation lemmata
proved above. By Lemma 23 we have that

(8 = 5, wT)] < O(eoTSov + VR,
and additionally
R:=E[ E [1-w)) v (X;—E*)]?

ij~[m] K
< 0(e) (E[(UTz’v)z] - @Tz*v)) +0(e?) (E((UTEW) + (sz*u)2> .

We can write ¥’ = A + B with B = E;;[(1 — wj;) X[,] and A = E;;[w;; X;;] = E;j[w; X[;]. The
latter equality follows by the definitions of the quantities. We will use the notation M,, := v Mv for
any matrix M (in particular, we will use this for M € {A, B, ¥*}). We have that

E[A] =E[( E [w,v'X;jv]))= E E Ew

T T
. S v Xiljlv v XinQU
ij~[m] 11,71 12,J2

/ /
11J1 wi2j2]

< E E E[w’ . ]E[U]/ ] . UTXi1jlv : UTXi2j2U

— 12J2

11,71 12,72
2
~ (B, [VBugh x| ) <0+ o2,
i.j~[m] !
where the final inequality follows from the resilience condition (Lemma 20) with a;; = /E[w} il

(note that (a;;); ; satisfy the required properties of that lemma with a; = E[wi]l(Xi =Y;) for all 7).
We can now rewrite upper bound R in terms of A, B, 3.

R=E[B, - B[l - wj] 20)?)
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< O(e)(E[(Ay + Bu)*] — X2) + O()(B[(Ay + B,)?] + £2).
By expanding the square, we can also lower bound R as follows:

E[(Bv —E[1- ng] : ZU)Q] > E[Bg] - 4€EUE[Bv]7
ij

as ¥, > 0 and E satisfies B, > 0. As E[42] < (14 O(¢))X2 and E[A,B,] < \/E[A2]E[B2] by
pseudoexpectation Cauchy-Schwartz (Fact 35),

E[(A, + B,)’] < E[B]] + /E[A}E[B2] + (1+ O(e))%3
< E[B]] + 25,/ E[B3] + (1+ O())%;.

Thus we can combine upper and lower bounds on R to get,

E[B?] — 4e2,E[B,] < O(e) (E[Bﬁ] +2%,\/E[B2] + O(e)z,%> + O(2)x2,

Rearranging, applying E[B,] < \/E[B2] and solving for E[B?] yields E[B2] < O(e?)%2. This

implies an upper bound on R of O(e )¥2. This, in turn implies
WT(E = 9| < O()v'S*v + VR = O(e)vT T*v.

This is the desired guarantee with >* instead of . Using property 4 in Lemma 20 and the triangle
inequality, we get the desired spectral norm guarantee in terms of . This finishes the proof (we have
already shown in the main body that [ satisfies this property given that 3 does).

D.4. Achieving Error Scaling with /||X||2

In this section, we complete the proof of Theorem 7, which we restate below:

Theorem 60 Let k,d € Z with k < d and € < € for a sufficiently small constant ey > 0. Let
€ R and ¥ € R¥*? pe a positive semidefinite matrix. There exists an algorithm which, given €.k,
and an e-corrupted set of samples from N (u, ) of size m = O((k*/e?)log®(d/(¢))), runs in time
poly(md), and returns an estimate fi such that ||fi — ||, < O(€) \/||Z |2 with high probability.

Thus far, we have obtained an estimator that is O(e)-accurate given samples from N (i, 3) with
Iy = X < 21,. Note that the assumption /; < X can trivially be removed by having a pre-processing
step that adds a zero-mean identity covariance Gaussian noise to all samples (since a zero-mean
noise does not affect the mean). However, when 2 < a2l 4 with o much smaller than 1, the optimal
error rate is O(e)a, which is much better than O(e). If o is known to the algorithm in advance, the
simple normalization step that is shown in Algorithm 3 with 6 = o suffices to yield the desired
error of 70 (€). In other words, we have so far obtained an estimator RobustMean(S, 7, €, k) that is
guaranteed to return a vector within 50(6) from the true mean with probability 1 — ~y (given that the
number of samples is as specified in Theorem 59), so long as ¢ > o.

Theorem 61, known as Lepskii’s method Lepskii (1991); Birgé (2001), states that even in the
case where the only known bounds for o are o € [A, B] for some A, B, a near-optimal error can still
be achieved by running RobustMean(S, 7, €, k) below.
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Algorithm 3 Improved estimator when ¢ is known.

1: function ROBUSTMEAN(S = {x1,...,Zm}, 0, € k)

2 Leteq,...,em ~N(0,Iy).

3 Let S = {z;/6 + ¢ : i€ [m]}.

4: i < GAUSSIAN-SPARSE-MEAN-EST(S, €, k). > Algorithm 2
5: return oji

6: end function

Theorem 61 Ler p € R% A B>0,0¢ [A, B], and a non-decreasing function r : Rt — R,
Suppose Alg(a,~') is a black-box algorithm which is guaranteed to return a vector [i such that
|l — wlle < (&), with probability at least 1 — +/, whenever & > o. Then, Algorithm 4, returns ﬁ(j)
such that, with probability at least 1 — ~y, it holds Hﬁ(j) — pll2 < 3r(20). Moreover, Algorithm 4
calls Alg at most O(log(B/A)) times.

Proof For j = 0,1,...,log(B/A), denote by &; the event that ||i/) — || < 7(5;). Let J be the
index corresponding to the value of the unknown parameter o, i.e., 65+1 < 0 < 7. Conditioned
on the event N:_,&;, we have that Hﬁ(j) — pll2 < 7(65) forall j =0,1,...,J. Using the triangle
inequality, this gives that || i) — i()||y < r(6 ;) +r(5;). This means that the stopping condition of

the while loop in Algorithm 4 is satisfied during round .J and thus, if 7i”) denotes the vector returned
by the algorithm, we have that J > J and

15D — 2|y < r(67) +r(6s) <2r(3s) <2r(20),

where the first inequality uses the condition of the while loop, the second uses that r is non-
decreasing and o 7 < o, and the last one uses that J was defined to be such that 5711 <o < gy
so multiplying o by 2 makes it greater than ¢,;. Using the triangle inequality once more, we get
|2¢”) — pl2 < 3r(20). Finally, by a union bound on the events &;, the probability of error is upper
bounded by Z}]:o v <. [ |

Algorithm 4 Adaptive search for o

Input: A, B, r(-)

Denote 6; := B/2/ for j = 0,1,...,log(B/A) and sety := ~/log(B/A).

v =~/ log(B/A).

J < 0.

while 5; > A and ||p") — a9 ||y < 7(6;) +7(5;) forall j = 0,1,...,J — 1 do
J <~ J+ 1.
i) Alg(5,7).

end
J—J -1
return /i(/)

In our setting, we use the following claim to get estimates for A and B such that B/A is at most
polynomial in d.
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Claim 62 Ler S = {Y1,...,Y,,} be an e-corrupted set from N (p, ). Then we can obtain estimates
A and B such that B/A = poly(d) and with probability 1 — exp(—m), ||X|2 € [A, B.

Proof Suppose that m is even and define m’ := m/2. Let T = {Z1,...,Z}, where Z; =
(Y; — Y1) /v/2. Note that T is an 2¢-corrupted set of m/ points from N'(0, ). Let X ~ N(0,%).
We know that there exist constants 0 < ¢; < cg such that Pr(|| X||3 € [c1tr(2)/d, eatr(X)]) > 3/4,
which follows by anti-concentration of the Gaussian and Markov’s inequality. Thus, the Chernoff
bound implies that with probability at least 1 — exp(—cm), at least 60% percent of the points have
squared norm lying in [c1tr(X)/d, cotr(X)]. Since € < 0.1, we have that with same probability, the
empirical median of squared norms also lies in the same range. Assume that this event holds for the
remainder of the proof. Let D = Median,c7(||z|3). We have that ¢1||X||2/d < e1tr(3)/d < D <
CQU‘(E) < CQdHZHQ. Let A = D/(ng) and B = dD/Cl. |

Putting everything together, we get our final theorem for Gaussian sparse mean estimation with
unknown covariance.
Proof (Proof of Theorem 60) Let S be an e-corrupted set from N (i, ) of size m as specified in
the theorem statement. The algorithm is the following: We first obtain rough bounds A, B for || X||2
using the estimator of Claim 62. We then use the procedure of Algorithm 4 with Alg(&, ) being
the RobustMean(S, 7, €, k) from Algorithm 3, which is guaranteed to succeed with probability
1 —~/, where 4/ = ~/(c logd) for a large enough constant ¢’. By Theorem 59, it suffices to
use C'(k*/€?)1og®(d/(ve)) samples for a large constant C. By Theorem 59, the black-box mean
estimator RobustMean satisfies the guarantees required by Theorem 61 with o = /|| X||2, 7(6) =
&O(e), and A, B given by those found using the estimator of Claim 62. Therefore, the final guarantee
is that Algorithm 4 attains error 37(20) = +/||2[20(¢) with probability at least 1 — ~. Since
Lepskii’s method only calls the black-box estimator log(B/A) = O(log(d)) times, the computational
complexity increases only by a logarithmic factor. |

Appendix E. Statistical Query Lower Bounds

We begin by summarizing the necessary background and then move to showing our results on
Gaussians and distributions with bounded ¢-th moments in Appendices E.2 and E.3 respectively. We
refer the reader to Appendix F.3 for the implications of the lower bounds of this section to hardness
against low-degree polynomial tests.

E.1. Background
STATISTICAL QUERY LOWER BOUNDS FRAMEWORK

We start with the basic definitions and facts from Feldman et al. (2013); Diakonikolas et al. (2017b)
that we will use later. Although we are interested in proving hardness of estimation problems, we
will focus on simpler hypothesis testing (or decision) problems.

Definition 63 (Decision Problem over Distributions) Let D be a fixed distribution and D be a
Sfamily of distributions. We denote by B(D, D) the decision (or hypothesis testing) problem in which
the input distribution D' is promised to satisfy either (a) D' = D or (b) D' € D, and the goal is to
distinguish between the two cases.
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Definition 64 (Pairwise Correlation) The pairwise correlation of two distributions with probabil-

ity density functions D1, Dy : R — R with respect to a distribution with density D : R — R,

where the support of D contains the supports of D1 and Dy, is defined as xp(D1, D2) def

Jga D1(2)Da(x)/D(x)dx — 1.

Definition 65 We say that a set of s distributions D = {D1, ..., D} over R% is (v, B)-correlated
relative to a distribution D if |xp(D;, D;)| < v forall i # j, and |xp(D;, D;)| < B fori = j.

Definition 66 (Statistical Query Dimension) For 3,7y > 0, a decision problem B(D, D), where
D is a fixed distribution and D is a family of distributions, let s be the maximum integer such that
there exists a finite set of distributions Dp C D such that Dp is (7, B)-correlated relative to D and
|Dp| > s. The statistical query dimension with pairwise correlations (v, 3) of B is defined to be s,
and is denoted by SD(B,~, 3).

A lower bound on the SQ dimension of a decision problem implies a lower bound on the
complexity of any SQ algorithm for the problem via the following standard result.

Lemma 67 Let B(D, D) be a decision problem, where D is the reference distribution and D is a
class of distributions. For v, 3 > 0, let s = SD(B,~, 3). For any v > 0, any SQ algorithm for B
requires queries of tolerance at most \/~y + ~' or makes at least s7' /(8 — ) queries.

SPARSE NON-GAUSSIAN COMPONENT ANALYSIS

We will focus on a specific kind of decision problem given by Problem 68 below.

Problem 68 (Sparse Non-Gaussian Component Analysis) Let A be a distribution on R. For a
unit vector v, we denote by Py ,, the distribution with the density Pa ,(z) :== A(vz)¢ (), where
¢1o(z) = exp (—|lz — (vTz)v|3/2) /(2m)4=1/2 j e, the distribution that coincides with A on
the direction v and is standard Gaussian in every orthogonal direction. We define the following
hypothesis testing problem:

 Hy: The underlying distribution is N'(0, I).

» Hy: The underlying distribution is Py ,, for some unit vector v that is k-sparse.

Specializing the result of Lemma 67 for the sparse non-Gaussian component analysis, gives the
following SQ lower bound. The proof is standard and is deferred to Appendix F.

Corollary 69 Ler k,d,m € Z with k < \/d. For any distribution A on R that matches its first m
moments with N'(0, 1), any constant 0 < ¢ < 1, and any SQ algorithm A that solves the hypothesis
testing Problem 68, A either makes Q(dec/ 8k_(m+1)(1_c)) many queries or makes at least one

query with tolerance at most 20/>+ 1) =(m+1)(1/2=¢/2) /3 2(A N(0,1)).

When proving our main results, we will apply Corollary 69 to different choices of A to get
Theorem 8 and Theorem 6.
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FROM ESTIMATION TO HYPOTHESIS TESTING

Our lower bounds will be for estimating the unknown sparse mean in /5-error’. To establish these
results, we prove a stronger claim: We consider a hypothesis testing version of the robust sparse mean
recovery (Problem 71). We first prove that this is an easier task than the corresponding estimation
problem (Problem 70) in Claim 72. We then show hardness of the hypothesis testing problem in the
SQ model.

Problem 70 (Robust Sparse Mean Estimation) Fix p > 0. Let D be a family of distributions such
that the mean of each distribution D in D is k-sparse and has norm at most p. Given access to the
mixture distribution (1 — €)D + €B, for some (unknown) D € D and some arbitrary distribution B,
the goal is to find a vector u € R? such that ||u — Exp[X]|l2 < p/2.

Problem 71 (Robust Sparse Mean Hypothesis Testing) Fix p > 0. Let D be a family of distribu-
tions such that the mean of each distribution D in D is k-sparse and has norm exactly p. We define
the following hypothesis testing problem:

* Hy: The underlying distribution is N'(0, I).
* Hy: The underlying distribution is (1 — €) D+€B, for a DED and an arbitrary distribution B.

Claim 72 (Reduction) Given an algorithm A that solves Problem 70 for some D, then there exists
another algorithm that solves Problem 71 for D', where D' is the set of all distributions in D that
have norm exactly p.

Proof The algorithm is the following: Let u be the estimate returned by A. If |jul|2 < p/2, then
return Hy, otherwise return H. Since, in both the null and alternative hypothesis, v is guaranteed to
be within p/2 of the true mean, the correctness follows.

|

E.2. SQ Lower Bound for Robust Gaussian Sparse Mean Estimation with Unknown
Covariance

We consider the task of robust sparse mean estimation of a Gaussian distribution, A/ (p, ), where 4
is k-sparse and ¥ is unknown and bounded, 3. < I. Information-theoretically O((klog(d/k))/€?)
samples suffice to obtain an estimate i such that ||i — /|2 = O(€). The polynomial-time algorithm
of Balakrishnan et al. (2017) uses O((k? log d) /€?) samples and can be shown to achieve error O(+/e)
for robust sparse mean estimation in this setting. The main result of this section is an SQ lower bound
roughly stating that any SQ algorithm that achieves error o(1/e) either uses super-polynomially many
number of queries or uses a single query that requires k&% samples to simulate.

Theorem 73 (Formal version of Theorem 7) Let k,d € 7 with k < Vd 0<e< 1,0<e<
1/2, and ¢y = 1/10001. Let A be an SQ algorithm that is given access to a distribution of the form
(1 — )N (e1v/ev, Iy — (1/3)vvT) + eB, where v is some unit k-sparse vector of R® and B is some
arbitrary noise distribution. If the output of A is a vector u such that ||u — c1\/ev||2 < c1+/€/4, then
A does one of the following:

3. Recall that estimating a k-sparse vector in ¢2-norm is an easier problem than estimating an arbitrary vector in
(2, k)-norm.
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o Makes Q(dec/gk*”%) queries,
« or makes at least one query with tolerance O (k~212¢e9(1/€)),

Proof First, we note that there exists a one-dimensional distribution which is an e-corrupted version
of a Gaussian with mean c¢; /€ and matches the first three moments with A/(0,1).

Lemma 74 (Lemma E.2 of Diakonikolas et al. (2019b)) Let 1 = ¢1+/€ with ¢; = 1/10001. For
any 0 < € < 1, there exists a distribution B on R such that the mixture A = (1 — €)N(u,2/3) + B
matches the first three moments with N'(0, 1) and x?(A, N'(0,1)) = 91/,

We now follow the argument of Appendix E.1. We consider Problems 70 and 71 specialized to
the case where D is the family of distributions D = {(1 — €)N (c1v/ev, Iy — (1/3)vvT) + €B'}yeu, »
where U, is the set of k-sparse unit vectors and B’ denotes a distribution whose one-dimensional
projection along v coincides with B and every orthogonal projection is standard Gaussian, i.e.,
B = Ppg . Given the reduction of Claim 72, in order to prove Theorem 73, it remains to show that
Problem 71 is hard in the SQ model. To this end, we note that this is the same problem as Problem 68
with the distribution A being that of Lemma 74. An application of Corollary 69 completes the proof
of Theorem 73.

|

E.3. SQ Lower Bound for Robust Sparse Mean Estimation of Distributions with Bounded ¢-th
Moment

In this section, we will show that any SQ algorithm to obtain error 0(61_1/ t) either uses super-
polynomially many queries or uses queries with tolerance k(). In order to state our results
formally, we define the following distribution class: let Py ; be the class of all distributions P that
satisfy the following:

1. The mean of the distribution P, p, is k-sparse, and ||u||2 < 1.

2. P has subgaussian tails, i.e., there is a constant ¢ such that for for all unit vectors v and ¢ € N,
(Ex~p[[oT (X — p) DV < c/i.

3. For a large constant C, there is an SoS proof of the following inequality:
(Il = 1} gy E X — p0)P2 < (Ot
We prove the following:

Theorem 75 (Formal version of Theorem 6) Let d, k,t € Z, with k < Vd, let 0 < € =
(O@)™ 0 < C < 1/2000,0 < ¢ < 1, and 6 = Ce'=Vt/t. Let A be an SQ algorithm that,
given access to a distribution of the form (1 — €) P + €B, where P € Py, (defined above) and B is
arbitrary, A is guaranteed to find a vector [i such that |1 — Ex..p[X]||2 < J. Then A does one of
the following:

« Makes Q(d* /3= gueries.
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* Makes at least one query with tolerance O (kz_(t“‘l)(l/z_c/g)2(t/2+1)60(52/62)).

The rest of the section is dedicated to proving Theorem 75. We first show the existence of a
one-dimensional distribution A that matches the first ¢ moments with A/(0, 1) and is an e-corruption
of a distribution with mean Q(%el_l/ %) and bounded ¢-th moments. At a high level, we follow the
structure of (Diakonikolas et al., 2017b, Proposition 5.2) and (Diakonikolas et al., 2018b, Lemma 5.5).
In particular, (Diakonikolas et al., 2018b, Lemma 5.5) establishes an analogous result to Lemma 76
below but in the large € setting, i.e., ¢ — 1, and thus it is not applicable here. We also show that the
family of hard distributions in Theorem 75 has certifiably bounded moments. We defer this analysis
to Appendix F.2.

Lemma76 Fixant € Z and ¢ = O(t)~"'. There exists a distribution A over R such that the
following holds:

1. There exist two distributions Q)1 and Q2 such that A = (1 — €)Q1 + €Qa.
2. A matches first t moments with N'(0, 1).

3. Exq,[X] =6, where 6 = ﬁ%el_”t.

4. Foralli> 1, (Ex.o,[|X — 6[1)"" = O(\/i).

5. X3(A,N(0,1)) < exp (O(6%/€2)).

Proof Let G(x) be the pdf of the standard normal A (0,1). Thus G(z — §) represents the pdf of
N (8,1). We will choose A of the following form:

Qi) = Gla— ) + ———p() 11y (@), @ola) = Gla ),

where p(-) is a degree ¢ polynomial (to be chosen below) and ¢’ = —(1 — €)d/e. To ensure that Q1
is a valid distribution and has mean ¢, the following suffices since |§| < 0.1 and € < 0.1:

1. fil p(z)dx =0,

2. masyeq 1 ()] < 0.1,
3. f_llp(x)a;dx =0.

Let P; be the i-th Legendre polynomial. We will choose p to be of the following form for a; € R:

where ag = a1 = 0.
Fact 77 Let P; be the i-th Legendre polynomial. We have the following:

L1 Py(x) =1and P(z) = x.
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1
L2 f—l PZ($)P7(x>d$ = ﬁéi’j.

L.3 maxge;_q1) |P(z)| < L.
L4 {Pi}fzo form a basis of polynomials of degree up to k.

Fact 78 Let h; be the i-th normalized probabilist’s polynomials and let X ~ N(0,1).
H.1 E[hi(X)h;(X)] = i ;.
H2 Blhi(X +p)] = 5 BlH, (X +p)] = 2

H.3 {h;}F_, form a basis of polynomials of degree up to k.

Using L.1 and L.2 we have that f_ll p(z)dx = 0 and f_ll p(z)zdz = 0. Using L.3, we have that
max,e—1 1] [p(z)| < St |ai|l. We will now ensure that it is possible to match moments while
keeping >, |a;| small.

Recall that in order to match the first ¢ moments of A with N'(0, 1), we need to ensure the
following holds for all ¢ € {0,...,t}:

[e.o]

(1—¢) /oo Gz — 8)dx + /1 z'p(x)dx + e/oo 2'G(x — 8')dr = / 2'G(x)dx.

—oo -1 —oo —oo
Equivalently, letting X ~ AN(0, 1), we need the following for all ¢ € {0,...,t}:

1
/1 z'p(x)dr = X~J\Ef)(0,1)[Xi — (1= (X +6)" —e(X + ).

By L.4, it suffices to ensure the following for all ¢ € {0, ..., t}:

1
| P = B R)-(0-9RX 5 - RX+5) 0)

Since f_ll p(z)dz = 0, Py(z) = 1, and P;(z) = =, we have that Equation (20) holds for ¢ = 0
and 7 = 1 as both sides are zero. Note that for any ¢ € {0, ..., t}, the left-hand side above can be
calculated using L.2:

2ai

1 ¢ 1
/ Pi(z)p(x)dx = jgo /1 a;Pi(xz)Pj(x) = 1 (21)

-1

We will now bound the expression on the right-hand side in Equation (20) to show that a; are
small. Let h; be the i-th normalized probabilist’s Hermite polynomials. Using H.3, we can write
Pi(x) = 37%_ bi,jhj(z) for some b; ; € R. We now calculate the right-hand side of Equation (20)
as follows for a fixed i € {0, ...,t}:

XNEJ(OJ)[B'(X) — (1= e)P(X + ) — eP(X + )]
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- =0 & (XN/\];](OJ)[hj(X)] —(1=e) XNJ\E/)(O,l)[hj(X +0) —eh; (X + 5')])
. ‘ N B . 57] B 6(5/)j
- bi; (0 (-6 ﬁ)
i |
R b (- )5 + ¢(8')7)

where the second line uses H.2. From the proof of (Diakonikolas et al., 2018b, Claim 5.6), we
have that } % _ b? = = O((2i)"). We are now ready to calculate the upper bound on |a;| using
Equation (21):

7

A_Mz;lu —OF + (Y
|a,y—( 2 ) = b1 =) +e(@))
- 1 j ari
§21j§m|bi,j|((1—e)|5| +€d'})

i
1 .
§47, 7“77‘6 6/J
> Sl
< 8i%emax(|¢'], |¢'|) max |b; ;|
Jeli]
< (20)emax(|9'], |0']") ,
where the third line uses that & = —(1 — €)&/e thus (1 — €)|5) = [0 e(e/(1 — €))I~1 < |§e.
Thus, we get the following:
< <) (29)H 5,18 2t)t+? 5|, 10|
[ax p(z)| Z\azl Z i) Memax(|o'], |6']") < (2t)"Pemax(|0'], |0']")

< e|1()07f|75 max(|5'|, 161, (22)

where we bounded the sum by ¢ times its last term. We would like to show that the last expression in
Equation (22) is less than 0.1 when ¢ = Cel—1/t /t for some constant C'. Note that this choice of &
implies that |¢'| > 0.5(5/€) = 0.5C(¢~'/*/t), which is larger than 1 when € = (O(t))~*. Thus the
last expression in Equation (22) is at most €(100¢|d’|)! < 1006 /et < 1001 Cl et =1/ (€lt!) =
(100C)t, which is less than 0.1 if C' < 0.0005.

Finally, the bound on the ¢t-moment of ()1 centered around § follows by combining the moment
bounds of A/(, 1) and noting that p(-) modifies the Gaussian only on the interval [—1, 1].

It remains to bound the X2—divergence between our distribution A and N(0, 1).

14 x2(A,N(0,1)) / G (1 = VG = 8)+ pla) 110y + Gl )P

=Y (/ G2 R +/ fo /OOGE@)&/)“)‘
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Working with each term separately, the first one is bounded as
* G?(x—0
/ Ce <y N(6,1),M(0,1)) = €,
o G(2)

the last one is similarly bounded above by e2e® * and for the first one we have that

' pP(2) 1 _
e = (s b)) o, o5 =00

= O(6%/€%), all three terms are at most exp(O(62/€2) , therefore we have that
= ex

p (O(6%/€%)). [

Given (&')?
XA(A,N(0,1))

E.3.1. PROOF OF THEOREM 75

Proof [Proof of Theorem 75] We will prove Theorem 75 using Lemma 76 with the argument of
Appendix E.1. Let A be the distribution from Lemma 76. We consider Problems 70 and 71 with
D = {Pa}veu, (using the notation from Problem 68). Using the notation of Lemma 76, we see
that every Py, in this choice of D is of the following form P4, = (1 — €)Pg, , + €Pg, ,, where
Py, » belongs to Py, ; as defined in the beginning of this section: (i) its mean is k-sparse (since v is
k-sparse), (ii) it satisfies subgaussian tail bounds (since ()1 has subgaussian tails, see Lemma 76),
and (iii) it has ¢-certifiably bounded moments (Claim 81). Problem 70 is then the same as Problem 68.
By the reduction of Claim 72, it remains to show the SQ-hardness of the latter problem. We then use
Corollary 69. |

As a note, by simply replacing the set .S of the k-sparse direction of Fact 80 by an analogous set
of dense 2% vectors (see, e.g., (Diakonikolas et al., 2017b, Lemma 3.7)) we can get an analog of the
previous theorem for the dense case.

Theorem 79 (SQ Lower Bound in Dense Case) Lett € Z,, 0 < ¢ = (O(t))%, C < 1/2000,
0<c<1/2andé= Cel_l/t/t. Any SQ algorithm that, given access to a distribution of the form
(1 — €)P + eN where P is a distribution with Ex . p[[vT X|]'/? = O(\/4) for every i < t and every
v € 8% and finds a vector i such that ||i — Ex~p[X]|2 < 8 does one of the following:

 Makes 204°) g~ (t+1)(1/2=¢) gyeries.

* Makes at least one query with tolerance (O(d)_(t+1)(1/4_c/2)60(62/62)).

Appendix F. Omitted Details from Appendix E

We start by providing additional background of Appendix E. In Appendix F.2, we show that the hard
instance in Theorem 75 has SoS-certifiable bounded moments. Finally, we present the lower bounds
against low-degree polynomial tests in Appendix F.3.
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F.1. Omitted Background

We provide the proof of Corollary 69 below.

Proof [Proof of Corollary 69] Problem 68 is a decision problem in the sense of Definition 63, where
D = N(0, 1) and D = { P4, }veu, » Where Uj, is the set of all k-sparse unit vectors. We calculate
the SQ-dimension of B(D, D) as follows: Let Dp be the subset of D defined as Dp = {Pa  }ves.
for S being the set from the following fact:

Fact 80 (Lemma 6.7 in Diakonikolas et al. (2017b)) Fix a constant 0 < ¢ < 1 and let k < \/d.
There exists a set S of k-sparse unit vectors on R of cardinality |S| = |d°*‘/3 | such that for each
pair of distinct vectors v,v' € S we have that [vTv'| < 2k¢~1.

Using Lemma 3.4 from Diakonikolas et al. (2017b), for v, v’ € S we have that
XD(Paw, Paw) < [0T0" (A N(0,1)) = (265713 (A,N(0,1))

therefore the statistical dimension is SD(B, v, 3) = Q(d**/®) for y = 2m+1gle=Dm+1)y2(A N(0,1))
and 8 = x%(A,N(0,1)). An application of Lemma 67 with 7/ = ~ yields that any SQ algorithm,
either makes at least one query of tolerance at most 2(7/2+1) g=(m+1)(1/2=¢/2) | /32( A N(0,1)) or
makes at least the following number of queries:

oMl ple=Dm+1)3 24 N(0,1)) > Q(d°/8)gmH p(e=1)(m+1)
2(A,N(0,1)) — 2m+ (=D m+1)y 2 (A, N(0,1)) =
>0 ( gk /8 k—(m+1>(1—c>> ,

Q(dckc/S)

This completes the proof. n

F.2. SoS Certifiability of Hard Instances

In this section, we will show that the hard instances in our proof have SoS certifiable bounded ¢-th
moments.

Claim 81 Fix at € N such that t is a power of 2. Denote by G(x) the pdf of N(0,1). Let
Q1(x), Qa2(x) be the distributions from the proof of Lemma 76, and define Q := (1 — €)Q1 + €Q2
where § = 1/(2000t)e' =1/t §' = —(1—€)d /e, and |§'| > 1. Recall that the first t moments of Q has
moments match with N'(0,1). Let Py, Py, P the distributions that have Q1, Q2, and Q, respectively,
in the u direction and are standard Gaussian in all perpendicular directions. Let A := {3, v? = 1},
and define p := Ex..p, [X]. Then Py has SoS certifiably bounded moments, i.e., there exists a
constant C' > 0 such that

t12 t
Algar (B, [(0.X = )P < (C1)".
Proof We will use the following claim that depends on the SoS triangle inequality (Fact 37).
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Claim 82 Let P be a distribution over R% with mean p and define p;(v) = E[(v, X )] and pl(v) =

E[(v, X — u)¥]. Let A = {3 ,v? = 1}. There exists a C > 0 such that the following holds:
2 .

Let t be a power of 2. If A W pi(v)* < R for some R > 0 and all i € [t], then A W

pi(v)? < C*Rmax(1,||u|3). Similarly, if A o0 pi(v)? < R for some R > 0 and all i € [t], then

'A O(t) pf‘,(v)2 S CtRmaX(lv ||:U’||%t)

Proof For i € {0,1,...,t},let C; = (¥). We have the following polynomial equalities:

t

ph(v) = (1) Cipi(v){u, v)" ",

=0

pi(v) = 3 Capl(o)pn,v)' .
=0

Applying SoS triangle inequality (Fact 37), using the fact that A |2LZ (v, p)y# < ||u)|3, and C; < 2°,
we get the desired claim. |

Note that the mean of P is ud and ||ud]|2 < 1, and thus Claim 82 implies that it suffices to show
that A IW Ex.p [(v, X)]|2 < (O(t))! forall i € [t].

Note that P, is A (ud’, I) and P matches the moments of A(0, ) up to degree t in every
direction. Thus Fact 29 implies the following: for all i € [t]

Afgg (€)' - (XEP[<U7X>i])2 >0, (23)
Algw (€0 = ((E, ({0, X) = &'(w, o)) 2 0. 4

Suppose for now that P satisfies the following, which we will establish shortly: there exists a
constant C” such that for all i € [t],

Algw @ (B, [.X)? < (0" os)

To show A IW Ex~p,[(v, X)]? < (O(t))!, we proceed as follows:

Alsw (B, [0, X)T? = (1/(1 = )*((E [(v, X)'] —¢ E [(v,X)])*

X~ 1 X~ XNPZ

<2/ - 0 (B0 XV + & B, [0 X))

< (0@)",

where the first inequality uses SoS triangle inequality (Fact 37) and the second inequality uses
Equation (23) for the first term and Equation (25) for the second term. Thus it only remains to show
that Equation (25) holds to complete the proof.

Note that the mean of P, has norm ¢’ and |§’| > 1. Claim 82 and Equation (24) imply the
following:

Alom € (B, v, X)T* < (CCy o).
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By definition, €2|¢|?* < €2(§/€)?* < €2(e~ /%)%t = 1. This completes the proof.

F.3. Implications for Low-Degree Polynomial Algorithms

We can get quantitatively similar lower bounds in the low-degree model of computation using its
connection with the SQ model Brennan et al. (2021). The result of this section, roughly speaking, is
that any polynomial algorithm for sparse non-Gaussian component analysis where the non-Gaussian
component matches m moments with AV'(0, 1), either uses more than k™! samples or has degree
more than £2(1) (which in the worst case requires d** monomial terms that need to be computed).
Plugging m = 3 yields an analog of Theorem 73 and letting m be equal to the number of bounded
moments of the inliers’ distribution, i.e., £, gives an analog of Theorem 75.

Brennan et al. (2021) uses a slightly different version of hypothesis testing problems, where in
the alternative hypothesis, the ground truth is chosen according to a probability measure.

Problem 83 (Non-Gaussian Component Hypothesis Testing with Uniform Prior) Let a distri-
bution A on R. For a unit vector v, we denote by P4, the distribution with density Py ,(x) :=
A(Tz)¢ (), where ¢ 1, (z) = exp (—[|z — (vTz)v||3/2) /(2m)4=V/2 j e, the distribution that
coincides with A on the direction v and is standard Gaussian in every orthogonal direction. Let
S be the set of nearly orthogonal vectors from Fact 80. Let S = {Pa , }ucs. We define the simple
hypothesis testing problem where the null hypothesis is N (0, I;) and the alternative hypothesis is
Py, for some v uniformly selected from S.

We now describe the model in more detail. We will consider tests that are thresholded polynomials
of low-degree, i.e., output H; if the value of the polynomial exceeds a threshold and H( otherwise.
We need the following notation and definitions. For a distribution D over X, we use D" to denote
the joint distribution of n i.i.d. samples from D. For two functions f : X - R, g : X — R and
a distribution D, we use (f, g) p to denote the inner product Ex.p[f(X)g(X)]. We use || f||p to
denote \/(f, f)p. We say that a polynomial f(x1,...,z,) : R"*¢ — R has sample-wise degree
(r, ) if each monomial uses at most ¢ different samples from z1, . .., z, and uses degree at most r
for each of them. Let C, ; be linear space of all polynomials of sample-wise degree (r, £) with respect
to the inner product defined above. For a function f : R"*¢ — R, we use f=<"* to be the orthogonal
projection onto C,. o with respect to the inner product (-, -) pen- Finally, for the null distribution Dy

and a distribution P, define the likelihood ratio P*" (z) := P®"(2)/D§" ().

Definition 84 (n-sample 7-distinguisher) For the hypothesis testing problem between two distribu-
tions Dg (null distribution) and D (alternate distribution) over X, we say that a function p : X™ —

R is an n-sample T-distinguisher if | EX~D8§’” [p(X)] — EXND?” [p(X)]| > T\/VarXNDggn [p(X)].
We call T the advantage of the polynomial p.

Note that if a function p has advantage 7, then the Chebyshev’s inequality implies that one can
furnish a test p’ : X™ — { Dy, D1} by thresholding p such that the probability of error under the null
distribution is at most O(1/72). We will think of the advantage T as the proxy for the inverse of the
probability of error (see Theorem 4.3 in Kunisky et al. (2019) for a formalization of this intuition
under certain assumptions) and we will show that the advantage of all polynomials up to a certain
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degree is O(1). It can be shown that for hypothesis testing problems of the form of Problem 83, the
best possible advantage among all polynomials in C, 4 is captured by the low-degree likelihood ratio
(see, e.g., Brennan et al. (2021); Kunisky et al. (2019)):

B [(sz)@,e] B

where in our case Dy = N(0, I).

To show that the low-degree likelihood ratio is small, we use the result from Brennan et al.
(2021) stating that a lower bound for the SQ dimension translates to an upper bound for the low-
degree likelihood ratio. Therefore, given that we have already established in previous section
that SD(B({Pa }ves, N'(0,14)), 7, B) = Qd*/3) for y = 2m+1g(e=m+1)\2(4 A7(0,1)) and
B = x%(A,N(0,1)), we obtain the corollary:

)
n
DO

Theorem 85 Let 0 < ¢ < 1. Consider the hypothesis testing Problem 83 where A matches m
moments with N'(0,1). For any d,k,m € 7, such that k < /d and ck® > Q(mlogk), any
n < k(=A0m+1) j(om+132( A N(0,14)) and any even integer { < (ck®logd)/(32mlogk), we
have that

2

B[]

<1.
N(0,1g)%m

The interpretation of this result is that unless the number of samples used n is greater than
E(=e)(m+1) /(om+132( A N(0,1;)), any polynomial of degree roughly up to k¢ log d fails to be a
good test (note that any polynomial of degree ¢ has sample-wise degree at most (¢, ¢)). Using the
lower bounds for the SQ dimension, we also obtain lower bounds for the low-degree polynomial
tests for problems in Theorems 73 and 75 with qualitatively similar guarantees.

Finally, the connection to the estimation problem is again done via the reduction of Claim 72,
which also works in the low-degree model family of algorithms.

Remark 86 (Reduction within low-degree polynomial class) Let A be a low-degree polynomial
algorithm for Problem 70 with degree (. Then the reduction in Claim 72 gives us an algorithm A’ for
Problem 71 which can be implemented as a polynomial test of degree 2/.

Appendix G. Information-Theoretic Error and Sample Complexity

Theorem 87 (Sample Complexity of Robust Sparse Mean Estimation with Bounded Moments)

Let C be a sufficiently large constant and ¢ a sufficiently small positive constant. There is
a (computationally inefficient) algorithm that, given any ¢ < c and an e-corrupted set of size
n > C(klogd)/ €22/ from any distribution with k-sparse mean and t-th moments bounded by M,
finds a [i, such that ||fi — Ex~p[X]|ls = O(MYte'=Y/*), with probability at least 0.9.

Proof Let S be the given data set of cardinality n and y = Ex..p[X]. For a unit vector v, let S, be
the projection of the points along v, that is S, = {vTz : 2 € S}. Note that we have assumed that in
any k-sparse direction v, the {-th moment is at most M.

Let C be a 1/2-net of the unit-norm k-sparse vectors (which we denote by Uy,). The cardinality
of C is bounded by (£)5" since there are at most (%) ways to select the non-zero coordinates and a
(1/2)-net of R* has size at most 5.
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For 7 < 1, let f; be the real-valued function on univariate sets that computes the 7-trimmed
mean of the given data set as in Lugosi and Mendelson (2021). From that, it is implied that for
any unit vector v and 7 = ©(e + log(1/4")/n) (where the parameters are such that 7 < 1), with
probability 1 — " we have that

[f7(S0) = u"o] = O (M 4 V/log(1/7) /n)) -

Setting v/ = ~v/|C| and n > C(klogd + log(1/7))/€>~2/* and using a union bound, we have
that with probability 1 — =, for each v € C, | f-(S,) — u"v| < &, where § = O(M/tel=1/t). We
denote this event by £. We will assume that £ holds for the remainder of the proof. For each v € C,
define i, := f,(S,) and let the estimate /i’ to be any point with the property |v? i’ — 7i,| < 6 for all
v € C (such a point always exists, since the true mean satisfies that property on £). For that 1/, we
have that

o (@ = )| < o0 = Fio| + [ — 0"l <26,

for every v € C. We claim that [v7 (' — p)| < 46 for all v € Uy,. To see this, let vy :=
arg maxy ey, [v! (' — p)| and w := arg mingec ||vo — z|]2. We have that

N N N N 1 N
[ (' = w < [w" &' = )]+ [(w = o) (@ = )| < " @ = ]+ 5lvg @ = p)] -

Solving for |vd (77’ — p)| shows the claim. Let the final estimate be 7i = hy (i), where hy, is
the operator that truncates a vector to its largest k£ coordinates. Applying Fact 9, we get that

11— pll2 = O(9). |

Theorem 88 (Sample Complexity of Robust Sparse Mean Estimation of Gaussian) Ler C be a
sufficiently large constant and c a sufficiently small positive constant. There is a (computationally
inefficient) algorithm that, given any € < c and any e-corrupted set of size n. > Ck(log d)/e? from
N (u, X) with k-sparse p, finds a fi, such that |z — p|l2 = O(\/||X||2€), with probability at least
0.9.

Proof We will use the same notation as the proof of Theorem 87. For each v € C, define i, :=
Median(S, ). Standard results (see, for example, (Lai et al., 2016, Lemma 3.3)) imply that with
probability 1 — exp(—ne?), [vTp — i,| < 8, where § = O(ey/||X|2). Let € be the event where
for each v € C, |fi, — " v| < 6. By a union bound, £ happens with probability at least 1 — v, if
n > C(klogd + log(1/v))/€?) for a large enough constant C. Following the same argument as the
proof of Theorem 87, we get the desired result. |

We now state the following folklore results for the information-theoretic lower bound. Although
we present the results for univariate distributions, it is easy to see that the same lower bounds also
hold for k-sparse distributions for any k£ > 1.

Fact 89 (Information-theoretic Lower Bounds) The following hold:

o There exist univariate distributions Dy, Dy such Dy = (1 — €)Dy + €N for some N, the t-th
moments of both Dy, Dy are at most M, and |Ex p,[X] — Exp,[X]| = Q(MYte =174
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o There exist Gaussian distributions D1 = N (1, 0?), Do = N (2, 02) such that |j11 — po| =
Q(ec) and (1 — €)Dy + eNy = (1 — €) D2 + €No.

Proof By scaling, we focus on the M = 1 case. Let D; be the Dirac delta at zero and let Dy =
(1 — €)Dy + €N, where N has all its mass at e~ /¢, Then, the means are indeed separated by ¢! ~1/¢,
For the ¢-th moment of Dy we have that Ex.p, [(X — u2)!] = (1 — €)e! ™1 + (e M/t — 71/t <
ete(et1—e)<e+(1—e <1
For the Gaussian distributions, the claim is based on the fact that dtv(N (1, 02), N (2, 02)) =
©(e) whenever |1 — p2| = o€, thus an additive adversary can make the two distributions look the
same. A version of the lower bound can also be found in (Lai et al., 2016, Observation 1.4) and
(Chen et al., 2018, Theorem 2.2).
|

61



	Introduction
	Our Results
	Overview of Techniques
	Robust Sparse Mean Estimation with Bounded Moments
	Achieving Near-optimal Error for Gaussian Inliers
	Statistical Query and Low-Degree Testing Lower Bounds

	Prior and Related Work
	Organization

	Preliminaries
	Certifiably Bounded Moments in Sparse Directions
	Sampling and Certifiably Bounded Moments in Sparse Directions

	Robust Sparse Mean Estimation with Unknown Covariance
	Proof of thm:mainsparsemeanestimation

	Achieving Near-optimal Error for Gaussian Inliers
	Deterministic Conditions on Inliers
	Proof of thm:main-gaussian-informal

	Omitted Background
	SoS Preliminaries
	Quantifier Elimination

	Omitted Proofs from sec:cert-bdd-moments
	Certifiability for -Poincaré Distributions
	Concentration Inequalities for SoS-sparse-certifiability
	Proof of lem:pop-to-empirical

	Omitted Proof from sec:sparse-mean-est
	Omitted Proofs from sec:Gaussian-O-eps
	Deterministic Conditions on Inliers
	Proof of lem:resilienceintegrated
	Proof of lem:certifiable4th
	Feasibility of def:gaxioms
	Proof of lem:similar-tensor-bound

	Proof of Estimation Lemmata
	Omitted Details from sec:proofofmainthmrighterror
	Achieving Error Scaling with  2

	Statistical Query Lower Bounds
	Background
	SQ Lower Bound for Robust Gaussian Sparse Mean Estimation with Unknown Covariance
	SQ Lower Bound for Robust Sparse Mean Estimation of Distributions with Bounded t-th Moment
	Proof of thm:boundedmomentsparse


	Omitted Details from sec:sq-lowerbd
	Omitted Background
	SoS Certifiability of Hard Instances
	Implications for Low-Degree Polynomial Algorithms

	Information-Theoretic Error and Sample Complexity

