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Abstract
We develop the first fast spectral algorithm to decompose a random third-order tensor over Rd

of rank up to O(d3/2/ polylog(d)). Our algorithm only involves simple linear algebra operations
and can recover all components in time O(d6.05) under the current matrix multiplication time.

Prior to this work, comparable guarantees could only be achieved via sum-of-squares [Ma,
Shi, Steurer 2016]. In contrast, fast algorithms [Hopkins, Schramm, Shi, Steurer 2016] could only
decompose tensors of rank at most O(d4/3/ polylog(d)).

Our algorithmic result rests on two key ingredients. A clean lifting of the third-order tensor
to a sixth-order tensor, which can be expressed in the language of tensor networks. A careful
decomposition of the tensor network into a sequence of rectangular matrix multiplications, which
allows us to have a fast implementation of the algorithm.
Keywords: Overcomplete tensor decomposition, spectral algorithms, tensor networks

1. Introduction

Tensor decomposition is a widely studied problem in statistics and machine learning Rabanser et al.
(2017); Sidiropoulos et al. (2017); Bacciu and Mandic (2020). Techniques that recover the hidden
components of a given tensor have a wide range of applications such as dictionary learning Barak
et al. (2015); Ma et al. (2016), clustering Hsu and Kakade (2013), or topic modeling Anandkumar
et al. (2012). From an algorithmic perspective, third-order tensors –which do not admit a natural
unfolding1– essentially capture the challenges of the problem. Given

T =
∑
i∈[n]

a⊗3
i ∈ (Rd)⊗3 , (1.1)

we aim to approximately recover the unknown components {ai}. While, in general, decomposing
Eq. (1.1) is NP-hard Hillar and Lim (2013), under natural (distributional) assumptions, polynomial
time algorithms are known to accurately recover the components. When n 6 d, the problem is
said to be undercomplete and when n > d it is called overcomplete. In the undercomplete settings,
a classical algorithm Harshman (1970); Leurgans et al. (1993) called simultaneous diagonaliza-
tion can efficiently decompose the input tensor when the hidden vectors are linearly independent.
In stark difference from the matrix settings, tensor decompositions remain unique even when the

1. That is, a natural mapping to squared matrices
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number of factors n is larger than the ambient dimension d, making the problem suitable for ap-
plications where matrix factorizations are insufficient. This observation has motivated a flurry of
work Lathauwer et al. (2007); Barak et al. (2015); Ge and Ma (2015); Anandkumar et al. (2015);
Ma et al. (2016); Hopkins et al. (2016, 2019) in an effort to design algorithms for overcomplete
tensor decompositions.

When the hidden vectors are sampled uniformly from the unit sphere2, the best guarantees in
terms of number of components with respect to the ambient dimension, corresponding to Ω̃(n2/3) 6
d,3 have been achieved through semidefinite-programming Ma et al. (2016). The downside of this
algorithm is that it is virtually impossible to be effectively used in practice due to the high order
polynomial running time. For this reason, obtaining efficient algorithms for overcomplete tensor
decomposition has remained a pressing research question. This is also the focus of our work.

For Ω̃(n2/3) 6 d, the canonical tensor power iteration Anandkumar et al. (2015, 2017) is known
to converge to one of the hidden vectors –in nearly linear time4– given an initialization vector with
non-trivial correlation to one of the components Anandkumar et al. (2015). Unfortunately, this
does not translate to any speed up with respect to the aforementioned sum-of-squares algorithm,
as that remains the only efficient algorithm known to obtain such an initialization vector. Inspired
by the insight of previous sum-of-squares algorithms Ge and Ma (2015); Hopkins et al. (2016)
proposed the first subquadratic spectral algorithm for overcomplete order-3 tensor decomposition.
This algorithm, successfully recovers the hidden vectors as long as Ω̃(n3/4) 6 d, but falls short of
the Ω̃(n2/3) 6 d guarantees obtained via sum-of-squares.

In the related context of fourth order tensors, under algebraic assumptions satisfied by random
vectors, Lathauwer et al. (2007); Hopkins et al. (2019) could recover up to n 6 Õ(d2) components
in subquadratic time. Given an initialization vector satisfying very mild condition, under weak
assumption on the components, recent work Batselier and Wong (2016); Kileel and Pereira (2019);
Kileel et al. (2021) develops improved fast power methods which can work for Õ(d2) components.
These results and approaches, however, are inherently hard to generalize to third-order tensors. 5

A natural question arises:

Question For third-order random overcomplete tensor decomposition, can we develop a fast spec-
tral algorithm which recovers when Ω̃(n2/3) > d?

In this work, we present the first fast spectral algorithm that provably recovers all the hidden
components as long as Ω̃(n2/3) 6 d, under natural distributional assumptions. To the best of
our knowledge, this is the first algorithm with a practical running time that provides guarantees
comparable to SDP-based algorithms. More concretely we prove the following theorem.

Theorem 1 (Fast overcomplete tensor decomposition) Let T ∈
(
Rd
)⊗3 be a tensor of the form

T =
∑
i∈[n]

a⊗3
i ,

2. It is understood that similar reasoning applies to i.i.d. Gaussian vectors and other subgaussian symmetric distribu-
tions.

3. We hide constant factors with the notation O(·),Ω(·) and multiplicative polylogarithmic factors in the ambient di-
mension d by Õ(·), Ω̃(·).

4. Hence it requires Õ(n · d3) time to recover all components.
5. For general tensor decomposition, there are some other algorithm methods Kolda (2015); Nie (2014) which achieve

recovery empirically or under certain practical assumptions. But they do not provably give comparable guarantees in
random overcomplete tensor decomposition to our knowledge.
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where a1, . . . , an are i.i.d. vectors sampled uniformly from the unit sphere in Rd and Ω̃
(
n2/3

)
6 d.

There exists a randomized algorithm that, given T, with high probability recovers all components

within error Õ(
√
n/d) in time Õ

(
d

2ω
(

1+ logn
2 log d

))
, where dω(k) is the time required to multiply a

(dk × d) matrix with a (d× d) matrix.6

In other words, Theorem 1 states that there exists an algorithm that, in time Õ
(
d

2ω
(

1+ logn
2 log d

))
,

outputs vectors b1, . . . , bn ∈ Rd such that

∀i ∈ [n] ,
∥∥ai − bπ[i]

∥∥ 6 Õ

(√
n

d

)
,

for some permutation π : [n]→ [n].
The distributional assumptions of Theorem 1 are the same of Hopkins et al. (2016); Ma et al.

(2016). In contrast to Hopkins et al. (2016), our result can deal with the inherently harder settings
of Ω̃(n2/3) 6 d 6 Õ(n3/4). In comparison to the sum-of-squares algorithm in Ma et al. (2016),
which runs in time Õ(nd)C , for a large constant C > 12, our algorithm provides significantly better
running time. For Ω̃(n2/3) 6 d, it holds that ω

(
1 + logn

2 log d

)
6 ω(1.75). Current upper bounds on

rectangular matrix multiplication constants show that ω(1.75) 6 3.021591 and thus, the algorithm
runs in time at most Õ

(
d6.043182

)
. Moreover, with the current upper bounds on ω(5

3), the algorithm
even runs in subquadratic time for Ω̃(n3/4) 6 d.

2. Preliminaries

Organization The paper is organized as follows. We present the main ideas in Section 3. In
Section 4 we present the algorithm for fast overcomplete third-order tensor decomposition. We
prove its correctness through Appendix A, Appendix B, and Appendix C. In section Appendix D
we analyze the running time of the algorithm. Finally, Appendix B contains a proof for robust
order-6 tensor decomposition which is essentially standard, but instrumental for our result.

Notations for matrices Throughout the paper, we denote matrices by non-bold capital letters
M ∈ Rd×d and vectors v ∈ Rd by lower-case letters. Given a matrix M ∈ Rd2×d2 , at times we
denote its entries with the indices i, j, k, ` ∈ [d]. Mi,j,k,` is the (i · j)-(k · `)-th entry of M . We
then write M{1,2,3}{4} for the d3-by-d matrix obtained reshaping M , so that

(
M{1,2,3}{4}

)
i,j,k,`

=

Mi,j,k,`. Analogously, we express reshapings of matrices in Rd3×d3 . We denote the identity matrix
in Rm×m by Idm. For any matrix M , we denote its Moore-Penrose inverse as M+, its spectral
norm as ‖M‖ and its Frobenius norm as ‖M‖F.

Notations for tensors Throughout the paper we denote tensors by boldface capital letters T ∈(
Rd
)⊗t. For simplicity, for a vector v ∈ Rd, we denote by v⊗t ∈

(
Rd
)⊗t both the tensor v⊗ . . .⊗︸ ︷︷ ︸

t times

v

and its vectorization v⊗t ∈ Rdt , we also write
(
v⊗`
) (
v⊗t−`

)
T ∈ Rd`×dt−`

for the d`-by-dt−` matrix
flattening of v⊗t. If this is denoted by a boldface capital letter it is taken to be a tensor and if it is
denoted by a non-bold capital letter as a matrix. We expect the meaning to be clear from context.

6. In Appendix I we provide a table containing current upper bounds on rectangular matrix multiplication constants.
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For a tensor T ∈
(
Rd
)⊗t and a partition of its modes into ordered sets S1, . . . , S` ⊆ {1, . . . , t} we

denote by TS1,...,S`
its flattening into an `-th order tensor. For example, for A,B ⊆ {1, . . . , t} with

A ∪ B = {1, . . . , t} and A ∩ B = ∅, TA,B is a d|A|-by-d|B| matrix flattening of T. We remark
that the order of the modes matter. For a tensor T ∈ (Rd)⊗3 and a vector v ∈ Rd, we denote by
T(v, ·, ·) or (v ⊗ Idd ⊗ Idd)T the matrix obtain contracting the first mode of T with v. A similar
notation will be used for higher order tensors. Given a tensor T ∈ (Rd)⊗6, we sometimes write
T{1,2}{3,4}{5,6} as its reshaping to a d2 × d2 × d2 tensor.

Notations for probability and asymptotic bounds We hide constant factors with the notation
O(·),Ω(·) and multiplicative polylogarithmic factors in the ambient dimension d by Õ(·), Ω̃(·).

We denote the standard Gaussian distribution byN(0, Idm). We say an event happens with high
probability if it happens with probability 1 − o(1). We say an event happens with overwhelming
probability (or w.ov.p) if it happens with probability 1− d−ω(1).

Tensor networks There are many different ways one can multiply tensors together. An expressive
tool that can be used to represent some specific tensor multiplication is that of tensor networks. A
tensor network is a diagram with nodes and edges (or legs). Nodes represent tensors and edges
between nodes represent contractions. Edges can be dangling and need not be between pairs of
nodes. Thus a third order tensor T ∈ (Rd)⊗3 corresponds to a node with three dangling legs.
Further examples are shown in the picture below. For a more detailed discussion we direct the
reader to Moitra and Wein (2019).

(a) (b) (c)

vTT
T

T

Figure 1: Fig 1.(a) represents a single third-order tensor. Fig 1.(b) depicts two tensor contracted via
one mode. Fig 1.(c) represents a tensor contracted on one mode with a vector.

3. Techniques

Here we present the main ideas behind our result. Throughout the section we assume to be given
a tensor T =

∑
i∈[n]

a⊗3
i ∈ (Rd)⊗3 with components a1, . . . , an ∈ Rd independently and uniformly

sampled from the unit sphere.

From Ω̃(n3/4) 6 d to Ω̃(n2/3) 6 d: a first matrix with large spectral gap To understand how
to recover the components for Ω̃

(
n2/3

)
6 d, it is useful to revisit the spectral algorithm in Hopkins

et al. (2016). For a random vector g ∼ N(0, Idd), the matrix can be described by the tensor network
in Fig. 2(a), and is a contraction between (g ⊗ Id⊗ Id)T and T ⊗ T up to reshaping. It can be
written as:
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T

g

T

T

TT

(a) (b)

Figure 2: (a ) The tensor network for the algorithm in Hopkins et al. (2016) where g ∼ N(0, Idd).
(b) A simple tensor network with signal-to-noise ratio Ω̃

(
d3/2/n

)
.

∑
i,j∈[n]

〈g ⊗ ai ⊗ aj ,T〉 (ai ⊗ aj) (ai ⊗ aj)T =
∑
i∈[n]

〈g, ai〉
(
a⊗2
i

) (
a⊗2
i

)
T

+
∑

i,j∈[n] ,i 6=j

〈g,T(ai ⊗ aj)〉 (ai ⊗ aj) (ai ⊗ aj)T︸ ︷︷ ︸
:=E

(3.1)

Roughly speaking, the algorithm amounts to computing the n leading eigenvectors of such matrices.
Since

∥∥∥∑i∈[n]〈g, ai〉
(
a⊗2
i

) (
a⊗2
i

)
T
∥∥∥ = Θ̃(1), as long as the spectral norm of the noise E is signif-

icantly smaller, the signal-to-noise ratio stays bounded away from zero and we can hope to recover
the components. By decoupling inequalities similar to those in Ge and Ma (2015), w.h.p., it holds
that 〈g ⊗ ai ⊗ aj ,T〉 6 Õ(

√
n/d), and the derivations in Hopkins et al. (2016) further show that

‖E‖ 6 Õ(n3/2/d2). Hence, this algorithm can recover the components as long as Õ(n3/4) 6 d.
To improve over this result, the first key observation to make is that the term 〈g,T(ai ⊗ aj)〉 is

unnecessarily large. In fact, for n > d, it is significantly larger (in absolute value) than the inner
product |〈ai, aj〉| 6 Õ(1/

√
d), which appears to be a reasonable yardstick for the scalar values at

play in the computation, as we try to exploit the near orthogonality of the components. This suggest
that even simply replacing 〈g⊗ ai⊗ aj ,T〉 by the inner product 〈ai, aj〉 could increase the spectral
gap between the components we are trying to retrieve and the noise. Indeed, this can be achieved
by considering the tensor network in Fig. 2(b), corresponding to the matrix∑
i,j∈[n]

〈ai, aj〉 (ai ⊗ aj) (ai ⊗ aj)T =
∑
i∈[n]

(
a⊗2
i

) (
a⊗2
i

)
T +

∑
i,j∈[n],i 6=j

〈ai, aj〉 (ai ⊗ aj) (ai ⊗ aj)T︸ ︷︷ ︸
:=E

.

On the one hand, with high probability, the spectral norm of the signal part satisfies∥∥∥∑i∈[n]

(
a⊗2
i

) (
a⊗2
i

)
T
∥∥∥ = Ω(1). On the other hand by (Ge and Ma, 2015, Lemma 13), with
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high probability, the spectral norm of E is Õ(n/d3/2). Thus, this simple tensor network provides
the noise with the spectral norm we are looking for, i.e., o(1) as long as n 6 Õ(d3/2).7

The problem with the fourth order tensor network above is that it is not clear how one could
directly extract even a single component. The canonical recipe, namely: (i) apply a random con-
traction g ∼ N(0, Idd2), (ii) recover the top eigenvector; does not work as after contracting the
tensor we would end up with a rank d matrix, while we wish to recover n > d vectors. A natural
workaround to this issue consists of lifting the fourth order tensor to a higher dimensional space and
then applying the canonical recipe.

Lifting to a higher order using tensor networks It is straightforward to phrase lifting to higher
orders in the language of tensor networks. For example, consider the following network (Fig. 3):

T

TT

T

1

24

36

5

Figure 3: Lifting of the tensor network in Fig. 2(b). The numbers attached to the dangling edges
can be used to keep track of the flattenings we will use throughout the paper.

In a similar spirit to Fig. 2(b), this tensor network can be flattened as the d3-by-d3 matrix

T6 =
∑
i∈[n]

(
a⊗3
i

) (
a⊗3
i

)
T +

∑
{i ,j ,k ,`}∈[n]4

i,j,k,` not all equal

〈ai, aj〉〈ai, ak〉〈ai, a`〉(aj ⊗ ak ⊗ ak)(aj ⊗ a` ⊗ a`)T

︸ ︷︷ ︸
=:E

.

HereE is a sum ofO
(
n4
)

dependent random matrices and thus, a priori, it is not clear how to study
its spectrum. In particular there are many different terms in E with distinct, but possibly aligning,
spectra. To overcome this obstacle, we partition the terms in E based on their index patterns.
Mapping each index to a color, this essentially amounts to considering all the non-isomorphic 2-, 3-
or 4-colorings of the tensor network in Fig. 3 (picking one arbitrary representative per class). Since
the number of such non-isomorphic colorings is constant, we can bound each set in the partition
separately, knowing that this triangle inequality will be tight up to constant factors.

To build some intuition consider as an example the case in which i 6= j = k = l. This
corresponds to the coloring in which we assign a given color to the center node and a different

7. We remark that the tensor network in Fig. 2(b) was implicitly considered in Ge and Ma (2015) in the analysis of their
quasi-polynomial time SoS algorithm.
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one to all the leaves. Let E′ denote the error matrix corresponding to this case. Then, using a
decoupling inequality similar to the one used for the analysis of the networks in Fig. 2 and standard
Matrix Rademacher bounds, we obtain

∥∥E′∥∥ =

∥∥∥∥∥∥
∑

i,j∈[n],i 6=j

〈ai, aj〉3(a⊗3
j )(a⊗3

j )>

∥∥∥∥∥∥ 6 Õ

(√
n · 1√

d3

)
·

∥∥∥∥∥∥
∑
j∈[n]

(a⊗3
j )(a⊗3

j )>

∥∥∥∥∥∥ ,
where we also used again that for i 6= j it holds that |〈ai, aj〉| 6 Õ(1/

√
d). Since the spectral norm

of the sum on the right-hand side can be bounded by Õ(1), it follows that ‖E′‖2 = Õ(
√
n/d3) =

Õ(
√
n2/d3). Using arguments in a similar spirit, we can also bound the spectral norm of the other

colorings by Õ(
√
n2/d3) as desired. This allows us to show that overall the noise has also spectral

norm bounded by Õ(
√
n2/d3), implying that the signal-to-noise ratio has not increased.

Recovering one component from the tensor network To recover a single component form this
network, we can do the following: Contracting (an appropriately flattened version of) T6 with a
random vector g ∼ N(0, Idd2) results in the matrix∑

i∈[n]

〈g, a⊗2
i 〉

(
a⊗2
i

) (
a⊗2
i

)
T +

∑
i,j∈[n]

gijEij . (3.2)

Compared to Eq. (3.1), the good news is that the contraction has broken the symmetry of the signal.
However, well-known facts about Gaussian matrix series assert that the spectral norm of the ran-
domly contracted error term behaves like the norm of a d4-by-d2 flattening of E, which necessarily
satisfies the inequality

∥∥E{1,2,3,4}{5,6}∥∥2
>

‖E‖2F
rank(E{1,2,3,4}{5,6})

> Ω̃(n/d) ,

thus jeopardizing our efforts of having a large spectral signal-to-noise ratio. We can overcome this
issue with two preprocessing steps. (i) Truncate T6 to its best rank-n approximation T6n

6 recovering
its n leading eigenvectors, so to have ‖E‖F 6

√
n · Õ(n/d3/2). (ii) Project the truncated matrix

onto the space of matrices with bounded spectral norm after rectangular reshapings8∥∥∥(T6n
6

)
{1,2,3,4}{5,6}

∥∥∥ 6 1 ,
∥∥∥(T6n

6

)
{1,2,5,6}{3,4}

∥∥∥ 6 1 .

After this sequence of projections, we can take a random contraction. In the resulting matrix

T̃4 =
∑
i∈[n]

〈g, a⊗2
i 〉

(
a⊗2
i

) (
a⊗2
i

)
T + Ẽ ,

the noise satisfies
∥∥∥Ẽ∥∥∥ 6 Θ(1) and

∥∥∥Ẽ∥∥∥
F
6 ‖E‖ ·

√
n 6 Õ

(
n2

d3
·
√
n
)

. We can thus approxi-
mately recover the components not hidden by the noise. This approach for partially recovering the
components is similar in spirit to Schramm and Steurer (2017). However, for recovering all of
the components, additional steps and a finer analysis are needed compared to Schramm and Steurer
(2017), since the input tensor is overcomplete.

8. It can be observed that each of these projection does not destroy the properties ensured by the others. In other words
two projections are enough to ensure the resulting matrix is in the intersection of the desired subspaces.
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Recovering all components from the tensor network While the noise in T̃4 is not adversarial,
it has become difficult to manipulate after the pre-processing steps outlined above. The issue is
that, without looking into E, we cannot guarantee that its eigenvectors are spread enough and do
not cancel out a fraction of the components, making full recovery impossible. Nevertheless the
above reasoning ensures we can obtain Õ(n/d3/2)-close approximation vectors b1, . . . , bm ∈ Rd of
components a1, . . . , am for some Ω(n) 6 m < n.

Now, a natural approach to recover all components would be that of subtracting the learned
components

T ′6 = T6 −
∑
i∈[m]

(
b⊗3
i

) (
b⊗3
i

)
T

and repeat the algorithm on T ′6. The approximation error here is∥∥∥∥∥∥
∑
i∈[m]

(
a⊗3
i

) (
a⊗3
i

)
T −

∑
i∈[m]

(
b⊗3
i

) (
b⊗3
i

)
T

∥∥∥∥∥∥ ≈ Õ
(√

m · (n/d3/2)3
)

and so if indeed n = o(d8/7) we could simply rewrite

T ′6 =
∑

m+16i6n

(
a⊗3
i

) (
a⊗3
i

)
T + E′ , where

∥∥E′∥∥ 6 O(1/ polylog(d)) .

For n = ω(d(8/7)), however the approximation error of our estimates is too large and this strategy
fails.

We work around this obstacle boosting the accuracy of our estimates. We use each bi has a
warm start and perform tensor power iteration Anandkumar et al. (2015). For each estimate this
yield a new vector b̃i satisfying

1− 〈ai, b̃i〉 6 Õ(
√
n/d) .

Since now ∥∥∥∥∥∥
∑
i∈[m]

(
a⊗3
i

) (
a⊗3
i

)
T −

∑
i∈[m]

(
b̃⊗3
i

)(
b̃⊗3
i

)
T

∥∥∥∥∥∥ ≈ O (√m · (√n/d)3
)
,

as Ω̃(n2/3) 6 d and m 6 n, we can subtract these estimates from T6 and repeat the algorithm.

Speeding up the computation via tensor network decomposition The algorithm outlined above
is particularly natural and streamlined, however a naı̈ve implementation would require running time
significantly larger than the result in Theorem 1. For example, naı̈vely computing the first n eigen-
vectors of T6 already requires timeO(n·d6). To speed up the algorithm we carefully compute an im-
plicit (approximate) representation of T6 in terms of its n leading eigenvectors. Then use Gaussian
rounding on this approximate representation of the data. Since the signal part

∑
i∈[n]

(
a⊗3
i

) (
a⊗3
i

)
T

has rank n, this approximation should loose little information about the components. This implicit
representation is similar to the one used in Hopkins et al. (2019), however our path to computing it
presents different challenges and thus differs significantly from previous work.

8
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T

v

v

Step (a) Step (b)

Step (c) Step (d)

v

v

T

T

T

T T T

TT

T

T

T

T

T

Figure 4: Step a and b can be seen as (d2×d) times (d×d) matrix multiplications. Similarly, step c
(the bottleneck) and step d can be computed respectively as (d2×d2) times (d2×d2) and (d2×d2)
times (d2 × d) matrix multiplications.

Our strategy is to use power iteration over T6. The running time of such an approach is bounded
by the time required to contract T6 with a vector v in Rd3 . However, since we have access to T,
by carefully decomposing the tensor network we can perform this matrix-vector multiplication in a
significantly smaller number of operations. In particular, as shown in Fig. 4, we may rewrite

T6v =
∑

{i ,j ,k ,`}∈[n]4

〈ai, aj〉〈ai, ak〉〈ai, a`〉(aj ⊗ ak ⊗ ak)(aj ⊗ a` ⊗ a`)Tv

=
[(
T{1,2}{3}T{3}{1,2}

) (
T{1,2}{3}v{3}{1,2}

)]
{1,3}{2,4}T{1,2}{3} .

9
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In other words we may compute T6v using only a constant number of rectangular matrix multipli-
cations, each of which has at most the complexity of a d× d2 times d2 × d matrix multiplication!9

This approach can be even parallelized to compute the top n eigenvectors of T6 at the same time.

Upon obtaining this representation, we can perform basic operations (such as tensor contrac-
tions) required in the second part of the algorithm more quickly, further reducing the running time
of the algorithm. Indeed, using the speed up described above, the algorithm based on the tensor net-

work in Fig. 3 can be implemented in time Õ
(
d

2ω
(

1+ logn
2 log d

))
, which for n = Θ(d3/2/ polylog(d))

can be bounded by Õ
(
d6.043182

)
.

Remark 2 We observe that applying the robust fourth-order tensor decomposition algorithm in
Hopkins et al. (2019) on the tensor network in Fig. 2(b) can recover “a constant fraction, bounded
away from 1,” of the components, but not all of them, in Õ(d6.5) time; see Appendix E. In con-
trast, our algorithm based on the tensor network in Fig. 3 can recover “all” the components in
Õ(d6.043182) time.

4. Fast and simple algorithm for third-order overcomplete tensor decomposition

In this section, we present our fast algorithm for overcomplete tensor decomposition, which will be
used to prove Theorem 1. Formally the algorithm is the following.

9. Rectangular matrix multiplications of the form dk × dk times dk × d can be reduced to rectangular matrix multipli-
cation with dimension dk × d Gall and Urrutia (2018).
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Algorithm 3 (Fast order-3 overcomplete tensor decomposition)

Input: Tensor T =
∑
i∈[n]

a⊗3
i .

Output: Unit vectors b1, . . . , bn ∈ Rd .

1. Lifting: Compute (as in Algorithm 33) the best rank-n approximation M̂ of the flattening
M{1,2,3},{4,5,6} of the tensor network (Fig. 3)

M =
∑

i,j,k,`∈[n]

〈ai, aj〉 · 〈ai, ak〉 · 〈ai, a`〉 · (ajajT)⊗ (akak
T)⊗ (a`a`

T) .

2. Recovery: Repeat O(log n) times:

(a) Pre-processing: Project M̂ into the space of matrices in Rd3×d3 satisfying∥∥∥M̂{1,2,3,4}{5,6}∥∥∥ 6 1 ,
∥∥∥M̂{1,2,5,6}{3,4}∥∥∥ 6 1 .

(b) Rounding: Run Õ(d2) independent trials of Gaussian Rounding on M̂ contract-
ing its first two modes to obtain a set of 0.99n candidate vectors b1, . . . , b0.99n

(see Algorithm 12).

(c) Accuracy boosting: Boost the accuracy of each candidate bi via tensor power
iteration.

(d) Peeling of recovered components:

– Set M̂ to be the best rank-0.01n approximation of M̂−
∑

i60.99n

(
b⊗3
i

) (
b⊗3
i

)>
– Update n← 0.01n.

3. Return all the candidate vectors b1, . . . , bn obtained above.

As discussed before, the goal of the Lifting step is to compute an approximation of the sixth-
order tensor

∑n
i=1 a

⊗6
i and the goal of the Recovery step is to use this to recover the components.

To prove Theorem 1, we will first prove that these two steps are correct and then argue about their
running time. Concretely, regarding the correctness of Algorithm 3 we prove the following two
theorems:

Theorem 4 (Correctness of the Lifting step) Let a1, . . . , an be i.i.d. vectors sampled uniformly
from the unit sphere in Rd and consider

M =
∑

i,j,k,`∈[n]

〈ai, aj〉 · 〈ai, ak〉 · 〈ai, a`〉 · (ajajT)⊗ (akak
T)⊗ (a`a`

T) .

Then, if n 6 O(d3/2/ polylog d) with overwhelming probability

M{1,2,3},{4,5,6} =
∑
i∈[n]

a⊗3
i

(
a⊗3
i

)>
+ E, where ‖E‖ 6 1

polylog d
.

11
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Moreover, let M̂ be the best rank-n approximation of M{1,2,3},{4,5,6} then

M̂ =
∑
i∈[n]

a⊗3
i

(
a⊗3
i

)>
+ Ê, where ‖Ê‖F 6

√
8n · ‖E‖, and ‖Ê‖ 6 2 · ‖E‖.

Remark 5 Note that in the first display we identify M as a tensor and in the second display M as
a matrix. This should not lead to confusion as it should be clear from context which is meant and
also from whether we use a bold or non-bold letter to denote it which is meant.

Theorem 6 (Correctness of the Recovery step) Let a1, . . . , an be i.i.d. vectors sampled uni-
formly from the unit sphere in Rd. Given as input

T =
n∑
i=1

a⊗3
i and M̂ =

n∑
i=1

a⊗3
i

(
a⊗3
i

)>
+ E ,with ‖E‖ 6 ε and ‖E‖F 6 ε

√
n ,

the Recovery step of Algorithm 3 returns unit norm vectors b1, b2, . . . , bn satisfying

‖ai − bπ(i)‖ 6 Õ

(√
n

d

)
,

for some permutation π : [n]→ [n].

Regarding the running time of the algorithm, we prove the result below.

Theorem 7 Algorithm 3 can be implemented in time Õ
(
d

2ω
(

1+ logn
2 log d

)
+ nd4

)
, where dω(k) is the

time required to multiply a (dk × d) matrix with a (d× d) matrix.

Combining the above three results directly yields a proof of Theorem 1. We will prove The-
orem 4 in Appendix A and Theorem 6 over the course of Sections B and C, where Appendix B
analyzes Steps 2(a) and 2(b) and Appendix C the rest. Finally, in Appendix D we will prove Theo-
rem 7.
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Appendix A. Lifting via tensor networks

In this section, we analyze the lifting part of our algorithm using tensor networks. More precisely,
we prove that the tensor network in Fig. 3 has a large signal-to-noise ratio in the spectral norm sense,
and that the noise of its corresponding top-n eigenspace has a small Frobenius norm. Recall that
our goal is to prove Theorem 4:

Theorem 8 (Restatement of Theorem 4) Let a1, . . . , an be i.i.d. vectors sampled uniformly from
the unit sphere in Rd and consider

M =
∑

i,j,k,`∈[n]

〈ai, aj〉 · 〈ai, ak〉 · 〈ai, a`〉 · (ajajT)⊗ (akak
T)⊗ (a`a`

T) .

Then, if n 6 O(d3/2/polylog d) with overwhelming probability

M{1,2,3},{4,5,6} =
∑
i∈[n]

a⊗3
i

(
a⊗3
i

)>
+ E, where ‖E‖ 6 1

polylog d
.

Moreover, let M̂ be the best rank-n approximation of M{1,2,3},{4,5,6} then

M̂ =
∑
i∈[n]

a⊗3
i

(
a⊗3
i

)>
+ Ê, where ‖Ê‖F 6

√
8n · ‖E‖, and ‖Ê‖ 6 2 · ‖E‖.

In Appendix A.1 we will prove its first part and in Appendix A.2, we analyze the best rank-n
approximation of M to prove the second part.

A.1. Spectral gap of the ternary-tree tensor network

In this section, we will prove the first part of Theorem 4.

Lemma 9 Consider the setting of Theorem 4: If n 6 O(d3/2/ polylog d), then with overwhelming
probability

M{1,2,3},{4,5,6} =
∑
i∈[n]

a⊗3
i

(
a⊗3
i

)>
+ E, where ‖E‖ 6 1

polylog d
.

Proof For ease of notation we denote by M = M{1,2,3},{4,5,6}. To proof the theorem, we will
split the sum into the part where some of the indices disagree and the part where all are equal. This
second term (where i = j = k = l) gives exactly

∑
i∈[n] a

⊗3
i

(
a⊗3
i

)>. Hence, E is the remaining
part of the quadruple sum where not all indices are equal. We will analyze the spectral norm of
this by further splitting the sum into parts where only some of the indices are equal. A clean way
to conceptualize how we do this is as follows: Notice that each index in the sum comes from one
node in the tensor network. Hence, we can think of coloring the four nodes of the ternary tree
tensor network using four colors. We map a giving coloring to a part of the sum as follows: If
two nodes share the same color, we will take this to mean that the corresponding indices in the
sum are equal, whereas if they have different colors, this should mean that the indices are different.
For example, the coloring that all the four nodes share the same color corresponds to the matrix
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(a) (b)

Figure 5: All leaves have a different color.

∑
i∈[n] a

⊗3
i

(
a⊗3
i

)>. Whereas the one where say the middle node and one of the leaves have the
same color and the remaining two leaves have two different colors (cf. Fig. 5 (b)) corresponds to∑

i∈[n]

‖ai‖2aia>i ⊗
∑
k 6=i
〈ai, ak〉aka>k ⊗

∑
`6=k,i
〈ai, a`〉a`a>`

Therefore, each coloring corresponds to a matrix, and if we ignore permutations of colors (e.g.
all nodes blue or all nodes red are identified as the same), since there are a constant number of
colorings of the four nodes, the error matrix E can be represented as a sum of a constant number
of matrices, each of which corresponds to one coloring - again ignoring permutations of the colors.
To bound the spectral norm of E, we can then bound each of the colorings independently. The
colorings fall into three categories which we will analyze one by one.

1. All leaves have different colors (see Fig. 5)

2. Two leaves share the same color, but the other leaf doesn’t (see Fig. 6)

3. All leaves share the same color, but the internal note has a different color

First category. We start with a detailed analysis for the coloring that all the four tensor nodes
have different colors (Fig. 5(a)). This coloring corresponds to the following matrix

Mdiff =
∑
i∈[n]

∑
j∈[n], j 6=i

〈ai, aj〉·aja>j ⊗

 ∑
k∈[n], k 6=i, j

〈ai, ak〉 · aka>k ⊗

 ∑
`∈[n], ` 6=i, j, k

〈ai, a`〉 · a`a>`

 .

To bound its spectral norm, we will use a decoupling argument: Let s1, . . . , sn be n independent
random signs. Since ai and si · ai share the same distribution, analyzing Mdiff is equivalent to
analyzing

∑
i∈[n]

si·
∑

j∈[n], j 6=i

sj ·〈ai, aj〉·aja>j ⊗

 ∑
k∈[n], k 6=i, j

sk · 〈ai, ak〉 · aka>k ⊗

 ∑
`∈[n], ` 6=i, j, k

s` · 〈ai, a`〉 · a`a>`

 .
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To decouple the random signs in the above matrix, let ti,j for 1 6 i 6 4 and 1 6 j 6 n be 4n
independent random signs, and define the following matrix

M̃diff =
∑
i∈[n]

t1,i·
∑

j∈[n], j 6=i

t2,j ·〈ai, aj〉·aja>j ⊗

 ∑
k∈[n], k 6=i, j

t3,k · 〈ai, ak〉 · aka>k ⊗

 ∑
`∈[n], ` 6=i, j, k

t4,` · 〈ai, a`〉 · a`a>`

 .

By Theorem 57, w.ov.p.,
‖Mdiff‖ = Õ

(∥∥∥M̃diff

∥∥∥) . (A.1)

It hence suffices to analyze
∥∥∥M̃diff

∥∥∥. To simplify notation, define the following matrices

Ni,j,k :=
∑

`∈[n], ` 6=i, j, k

t4,` · 〈ai, a`〉 · a`a>`

Ni,j :=
∑

k∈[n], k 6=i, j

t3,k · 〈ai, ak〉 · aka>k ⊗Ni,j,k

Ni :=
∑

j∈[n], j 6=i

t2,j · 〈ai, aj〉 · aja>j ⊗Ni,j

First, by a Matrix Rademacher bound (Theorem 54) and by Triangle inequality we get

∥∥∥M̃diff

∥∥∥ =
∑
i∈[n]

t1,i ·Ni

w.ov.p
6 Õ

∥∥∥∥∥∥
∑
i∈[n]

N2
i

∥∥∥∥∥∥
1/2

6 Õ
(√
n
)
·max
i∈[n]
‖Ni‖ . (A.2)

Second, by Theorem 55 and by Theorem 48(a)-(b) we have that for all i,

‖Ni‖ =

∥∥∥∥∥∥
∑

j∈[n], j 6=i

t2,j · 〈ai, aj〉 · aja>j ⊗Ni,j

∥∥∥∥∥∥
w.ov.p.
6 Õ

( max
j∈[n], j 6=i

‖Ni,j‖
)
·

∥∥∥∥∥∥
∑

j∈[n], j 6=i

(
〈ai, aj〉 · aja>j

)2

∥∥∥∥∥∥
1/2


= max
j∈[n], j 6=i

‖Ni,j‖ · Õ


∥∥∥∥∥∥
∑

j∈[n], j 6=i

〈ai, aj〉2 · aja>j

∥∥∥∥∥∥
1/2


6 max
j∈[n], j 6=i

‖Ni,j‖ · Õ

 max
j∈[n], j 6=i

|〈ai, aj〉| ·

∥∥∥∥∥∥
∑

j∈[n], j 6=i

aja
>
j

∥∥∥∥∥∥
1/2


w.ov.p.
6 max

j∈[n], j 6=i
‖Ni,j‖ · Õ

(√
n

d2

)
(A.3)

By the same reasoning as above we get that for all i 6= j,

‖Ni,j‖
w.ov.p.
6 Õ

(√
n

d2

)
· max
k∈[n], k 6=i, j

‖Ni,j,k‖
w.ov.p.
6 Õ

(√
n2

d4

)
(A.4)
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where the last inequality follows from a Matrix Rademacher bound, similar steps as above, and a
union bound over all k 6= i, j.

Combining Eq. (A.1), Eq. (A.2), Eq. (A.3) and Eq. (A.4) and two more union bounds over i and
j 6= i (i.e., max in Eq. (A.2) and Eq. (A.3)), we finally obtain,

‖Mdiff‖
w.ov.p.
6 Õ

(√
n
)
· Õ
(√

n

d2

)
· Õ

(√
n2

d4

)
= Õ

(√
n4

d6

)
=

1

polylog d
(A.5)

Next, we discuss the second coloring in the first category. As seen before the matrix correspond-
ing to Fig. 5(b) looks as follows:∑

i∈[n]

‖ai‖2aia>i ⊗
∑
k 6=i
〈ai, ak〉aka>k ⊗

∑
`6=k,i
〈ai, a`〉a`a>`

Again considering siai instead of ai for independent random signs and invoking Theorem 57 it
suffices to bound the spectral norm of∑

i∈[n]

aia
>
i ⊗

∑
k 6=i

t1,k〈ai, ak〉aka>k ⊗
∑
` 6=k,i

t2,`〈ai, a`〉a`a>`

where ti,j for i = 1, 2, j ∈ [n] are independent random signs. Similarly as before and overloading
notation, we defineNi,k :=

∑
6̀=k,i t2,`〈ai, a`〉a`a>` andNi :=

∑
k 6=i t1,k〈ai, ak〉aka>k ⊗Ni,k. First,

using Lemma 56 with the fact that aia>i is a psd matrix we get that the spectral norm of this is at
most ∥∥∥∥∥∥

∑
i∈[n]

aia
>
i ⊗Ni

∥∥∥∥∥∥ 6

(
max
i∈[n]
‖Ni‖

)
·

∥∥∥∥∥∥
∑
i∈[n]

aia
>
i

∥∥∥∥∥∥
1/2

6 Õ

(√
n

d

)
·max
i∈[n]
‖Ni‖

where the last inequality follows by Lemma 47 (b). Using the same reasoning as in Eq. (A.3) and a
union bound over all i we get that

max
i∈[n]
‖Ni‖ 6 Õ

(√
n

d2

)
· max
k∈[n],k 6=i

‖Ni,k‖ 6 Õ

(√
n

d2

)
· Õ
(√

n

d2

)
= Õ

(√
n2

d4

)
=

1

polylog d

where the last inequality again uses a Matrix Rademacher bound (and a union bound over all k).
Putting things together, we get that the spectral norm we wanted to bound originally is at most
Õ( n

d3/2
).

For completeness we will also supply the proofs for the second and third category although they
are very similar to the above.

Second category. Since we will always first multiply the ai’s by random sign and then apply the
decoupling theorem we will omit this step below. We will also us analogous notation. Fig. 6 shows
the three cases for the second category with which we will start. For (a), the matrix looks as follows:∑

i∈[n]

t1,i
∑

j∈[n],j 6=i

t2,j〈ai, aj〉ajaj ⊗
∑

k∈[n],k 6=i,j

〈ai, ak〉2(a⊗2
k )(a⊗2

k )>

18
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(a) (b) (c)

Figure 6: Two leaves share the same color but the other leaf does not.

Define Ni,j :=
∑

k∈[n],k 6=i,j〈ai, ak〉2(a⊗2
k )(a⊗2

k )> and Ni :=
∑

j∈[n],j 6=i t2,j〈ai, aj〉ajaj ⊗ Ni,j .
Then similarly as before, we get∥∥∥∥∥∥

∑
i∈[n]

t1,iNi

∥∥∥∥∥∥ 6 Õ
(√
n
)
·max
i∈[n]
‖Ni‖ 6 Õ

(√
n
)
· Õ
(√

n

d2

)
· max
i,j∈[n],i 6=j

‖Ni,j‖

To bound the last term, we notice that for each i 6= j we have that w.ov.p.

‖Ni,j‖ 6 max
k∈[n],k 6=i,j

〈ai, ak〉2
∥∥∥∥∥∥

∑
k∈[n],k 6=i,j

(a⊗2
k )(a⊗2

k )>

∥∥∥∥∥∥ 6 Õ

(
1

d
· n
d

)
= Õ

( n
d2

)
Using a last union bound, we get that the spectral norm of the term corresponding to this coloring
is at most Õ

(
n2

d3

)
= 1

polylog d .
For Fig. 6 (b) the matrix looks like∑

i∈[n]

aia
>
i ⊗

∑
j∈[n],j 6=i

〈ai, aj〉2(a⊗2
j )(a⊗2

j )>

Defining Ni :=
∑

j∈[n],j 6=i〈ai, aj〉2(a⊗2
j )(a⊗2

j )> and using Lemma 56 we can bound the spectral
norm of this as∥∥∥∥∥∥

∑
i∈[n]

aia
>
i

∥∥∥∥∥∥ ·max
i∈[n]
‖Ni‖ 6 Õ

(n
d

)
·
(

max
i,j∈[n],i 6=j

〈ai, aj〉2
)
·

∥∥∥∥∥∥
∑

j∈[n],j 6=i

(a⊗2
j )(a⊗2

j )>

∥∥∥∥∥∥
6 Õ

(
n

d
· 1

d
· n
d

)
= Õ

(
n2

d3

)
=

1

polylog d

For Fig. 6 (c) the matrix resulting matrix is∑
i∈[n]

(a⊗2
i )(a⊗2

i )> ⊗
∑

j∈[n],j 6=i

t1,j〈ai, aj〉aja>j
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Again using Lemma 56 and a Matrix Rademacher bound we bound the spectral norm of this term
as follows:∥∥∥∥∥∥
∑
i∈[n]

(a⊗2
i )(a⊗2

i )>

∥∥∥∥∥∥ ·max
i∈[n]

∥∥∥∥∥∥
∑

j∈[n],j 6=i

t1,j〈ai, aj〉aja>j

∥∥∥∥∥∥ 6 Õ
(n
d

)
·
(

max
i,j∈[n],i 6=j

〈ai, aj〉
)
·max
i∈[n]

∥∥∥∥∥∥
∑

j∈[n],j 6=i

aja
>
j

∥∥∥∥∥∥
1/2

6 Õ

(
n

d
· 1√

d
·
√
n

d

)
= Õ

(√
n2

d3

)
=

1

polylog d

Third category. The last missing case is the one in the third category, where all three leaves have
the same color but the internal node has a different one. In this case, the matrix we consider is∑

i∈[n]

t1,i
∑

j∈[n],j 6=i

〈ai, aj〉3(a⊗3
j )(a⊗3

j )>

Using a Matrix Rademacher bound, Triangle Inequality, and Lemma 47 (c) we bound its spectral
norm by

Õ(
√
n) ·max

i∈[n]

∥∥∥∥∥∥
∑

j∈[n],j 6=i

〈ai, aj〉6(a⊗3
j )(a⊗3

j )>

∥∥∥∥∥∥
1/2

6 Õ(
√
n) · max

i,j∈[n],i 6=j
|〈ai, aj〉|3 ·max

i∈[n]

∥∥∥∥∥∥
∑

j∈[n],j 6=i

(a⊗3
j )(a⊗3

j )>

∥∥∥∥∥∥
6 Õ

(√
n · 1√

d3
· 1
)

= Õ

(√
n

d3

)
=

1

polylog d

A.2. From spectral norm error to frobenius norm error

In this section our goal is to prove the second part of Theorem 4. More precisely, we will show the
following lemma:

Lemma 10 Let M =
∑

i∈[n] a
⊗3
i

(
a⊗3
i

)>
+ E, where a1, . . . , an are i.i.d. vectors uniformly

sampled from the unit sphere in Rd and ‖E‖ 6 ε. Let M̂ be the best rank-n approximation of M ,
i.e., M̂ =

∑
i∈[n] λiviv

>
i where λi’s are the top n eigenvalues of M and vi’s are the corresponding

eigenvectors. Then

M̂ =
∑
i∈[n]

a⊗3
i

(
a⊗3
i

)>
+ Ê, where ‖Ê‖F 6

√
8n · ‖E‖ and ‖Ê‖ 6 2 · ‖E‖

Proof Define S =
∑

i∈[n] a
⊗3
i

(
a⊗3
i

)>, then M = S +E. Also, define Ê = M̂ − S, then our goal

will be to bound ‖Ê‖ and ‖Ê‖F. Since M̂ is the best rank-n approximation of M we know that
‖M − M̂‖ 6 ‖M − S‖ = ‖E‖. We hence get

‖Ê‖ = ‖M̂ − S‖ 6 ‖M̂ −M‖+ ‖M − S‖ 6 2 · ‖E‖

Further, since both S and M̂ have rank n, the rank of M̂ − S is at most 2n, and it follows that

‖Ê‖F = ‖M̂ − S‖F 6
√

2n · ‖M̂ − S‖ 6
√

8n · ‖E‖
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Appendix B. Recovering a constant fraction of the components using robust order-6
tensor decomposition

The goal of this section is to prove that in each iteration of the Recovery step in Algorithm 3,
Steps 2(a) and 2(b) recover a 0.99 fraction of the remaining components up to constant correlation.
More precisely, we will show the following theorem:

Theorem 11 (Recovery for constant fraction of component vectors) Let n 6
O
(
d3/2/ polylog(d)

)
, let a1, a2, . . . , an ∈ Rd be independently and uniformly sampled from

the unit sphere, and let ε 6 1
polylog(d) . There exists an algorithm (Algorithm 12 below) that with

high probability over a1, a2, . . . , an, for d 6 n′ 6 n, for any subset S0 ⊆ [n] of size n′ and for a
matrix M̂ satisfying

∥∥∥∥∥∥M̂ −
∑
i∈S0

a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥∥
F

6 ε
√
n′ =

√
n′

polylog d
,

returns unit vectors b1, b2, . . . , bm ∈ Rd for m > 0.99n′ such that for each j ∈ [m] there exists a
unique i ∈ S0 with 〈bj , ai〉 > 0.99.

The algorithm looks as follows:
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Algorithm 12 (Rounding step)
Input: A matrix M̂ ∈ Rd3×d3 such that∥∥∥∥∥∥M̂ −

∑
i∈S0

a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥∥ 6 ε
√
n

where a1, . . . , an are i.i.d. sampled uniformly from the unit sphere, S0 ⊆ [n] of size n′, and
ε = 1

polylog(d) .
Output: A set S of unit vectors b1, . . . , bm where m > 0.99n′

Spectral truncation (Corresponds to Step 2(a) of Algorithm 3)

(1). Compute M̂ ′ the projection of M̂{1,2,3,4}{5,6} into the set of d4 × d2 matrices with
spectral norm bounded by 1.

(2). Compute M61 the projection of M̂ ′{1,2,5,6}{3,4} into the set of d4 × d2 matrices
with spectral norm bounded by 1.

Gaussian rounding

Initialize C ← ∅. Repeat Õ(d2) times:

(1). Sample g ∼ N(0, Idd2) and compute Mg = (g ⊗ Idd2 ⊗ Idd2)M61
{1,2}{3,4}{5,6}.

(2). Compute the top right singular vector of Mg denoted by u ∈ Rd2 and flatten it into
square matrix U ∈ Rd×d.

(3). Compute the top left and right singular vectors of U denoted by vl, vr ∈ Rd.

(4). For b ∈ {±vL,±vR}:
If 〈T, b⊗3〉 > 1− 1

polylog(n)

Add b to C

(5). For b ∈ C:
if 〈b, b′〉 > 0.99 for all b′ ∈ S

add b to S

Output S

We will prove Theorem 11 in several steps. Our strategy will be to apply so-called Gaussian
rounding, a version of Jennrich’s algorithm. However, to make this succeed in the presence of the
noise matrix E, we will need control the spectral norm of this reshaping. In Appendix B.1 we
will show that this can be done by truncating all large singular values of the respective reshapings,
Concretely, we will show the following:

Lemma 13 (Spectral truncation) Let n 6 O
(
d3/2/polylog(d)

)
, let a1, a2, . . . , an ∈ Rd be

independently and uniformly sampled from the unit sphere, and let ε 6 1
polylog(d) . Then, for

d 6 n′ 6 n, for every S0 ⊆ [n] of size n′ and for a matrix M̂ ∈ Rd3×d3 satisfying
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‖M̂ −
∑

i∈S0
a⊗3
i

(
a⊗3
i

)>‖F 6 ε
√
n′, the Spectral truncation step of Algorithm 12 transforms

M̂ into tensor M61 such that

– the spectral norm of rectangular flattening is bounded by 1:∥∥∥M61
{1,2,3,4}{5,6}

∥∥∥ 6 1 and
∥∥∥M61

{1,2,5,6}{3,4}

∥∥∥ 6 1,

– and forR =
√

2·
(
Ea∼N(0,Idd)(aa

>)⊗2
)+1/2, with high probability over a1, a2, . . . , an, M61

is close to S =
∑

i∈S0

(
Ra⊗2

i

)⊗3
in Frobenius norm:

∥∥M61 − S
∥∥
F
6 3ε

√
n′.

Given this, we will prove the correctness of the rounding part in Appendix B.2 and prove the
following lemma:

Lemma 14 Letn 6 O
(
d3/2/polylog(d)

)
, let a1, a2, . . . , an ∈ Rd be independently and uniformly

sampled from the unit sphere, and let ε 6 1
polylog(d) . Then, with high probability over a1, a2, . . . , an,

for d 6 n′ 6 n and for any S0 ⊆ [n] of size n′, given any M61 ∈ Rd2×d2×d2 such that

‖M61 −
∑
i∈S0

(
(Ra⊗2

i

)⊗3‖F 6 ε
√
n′ and

∥∥∥M61
{1,2,3,4}{5,6}

∥∥∥ ,∥∥∥M61
{1,2,5,6}{3,4}

∥∥∥ 6 1,

the Gaussian rounding step of Algorithm 12 outputs unit vectors b1, b2, . . . , bm ∈ Rd for m >
0.99n′ such that for each j ∈ [m] there exists a unique i ∈ S0 with 〈bj , ai〉 > 0.99.

Combining the two above theorems directly proves Theorem 11. However, there are two technical
subtleties in the proof.

Subsets of components need not be independent. Second, it might be the case that a selected
subset of the algorithm of independent random vectors are not independent. To overcome this
difficulty, we instead introduce the following more general definition:

Definition 15 (Nicely-separated vectors) Let R =
√

2
(
Ea∼N(0,Idd)

(
aa>

)⊗2
)+1/2

. The set of

vectors a1, a2, . . . , a
′
n is called (n, d)-nicely-separated if all of the following are satisfied.

1.
∥∥∥∑i∈[n′] a

⊗3
i

(
a⊗3
i

)>∥∥∥ = 1± o(1)

2.
∥∥∥∑i∈[n′] a

⊗2
i

(
a⊗2
i

)>∥∥∥ = Õ
(
n
d

)
3.
∥∥∥∑i∈[n′] aia

>
i

∥∥∥ = Õ
(
n
d

)
4. For any S ⊆ [n′] with size at least d,∥∥∥∥∥∑

i∈S
Ra⊗2

i

(
Ra⊗2

i

)> −Π

∥∥∥∥∥ = 1± Õ
( n

d3/2

)
, where Π is the projection matrix into the span of

{
Ra⊗2

i : i ∈ S
}
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5. For each j ∈ [n′],
∑

i∈[n′]\{j}

〈
Ra⊗2

i , Ra⊗2
j

〉2
6 Õ

(
n
d2

)
6. For i ∈ [n′],

∥∥Ra⊗2
i − a

⊗2
i

∥∥2
= Õ

(
1
d

)
7. For i ∈ [n′], ‖ai‖ = 1± Õ

(
1√
d

)
8. For i, j ∈ [n′], 〈ai, aj〉2 6 Õ

(
1
d

)
It can be verified that with high probability, when the component vectors are independently

and uniformly sampled from the unit sphere, with high probability any subset of them is nicely-
separated. In fact, we prove the following lemma in Appendix J.2.

Lemma 16 (Satisfaction of separation assumptions) With probability at least 1 − o(1) over the
random vectors a1, a2, . . . , an ∈ Rd independently and uniformly sampled from the unit sphere, for
every S ⊆ [n], the set of vectors {ai : i ∈ S} is (n, d)-nicely separated.

It is hence enough to proof Theorem 11 for the case when the subset of components indexed by S0

is (n, d)-nicely separated.

Isotropic components. First, for this analysis to work we need to assume that the squared com-
ponents (a⊗2

i ) are in isotropic position. That is, we would like to rewrite the tensor
∑

i∈S0
a⊗6
i as∑

i∈S0
(Ra⊗2

i )⊗3 where
√

2 ·
(
Ea∼N(0,Idd) a

⊗2
(
a⊗2
)>)+1/2

. The following theorem shows that
we can do this without loss of generality.

Lemma 17 Let n 6 O
(
d3/2/ polylog(d)

)
, let n′ 6 n, let a1, a2, . . . , an′ ∈ Rd be (n, d)-nicely-

separated, and let R =
√

2 ·
(
Ea∼N(0,Idd) a

⊗2
(
a⊗2
)>)+1/2

. For any tensor M̂ =
∑n

i=1 a
⊗6
i + E

with ‖E‖F 6 Õ
(

n
d3/2

)
·
√
n′, we have∥∥∥∥∥M̂−

n′∑
i=1

(
Ra⊗2

i

)⊗3

∥∥∥∥∥
F

6 Õ
( n

d3/2

)
·
√
n′ .

We will give a proof in Appendix J.1

B.1. Spectral truncation

The goal of this section is to prove Lemma 13 which we restate below:

Lemma 18 (Restatement of Lemma 13) Let n 6 O
(
d3/2/ polylog(d)

)
, let a1, a2, . . . , an ∈ Rd

be independently and uniformly sampled from the unit sphere, and let ε 6 1
polylog(d) . Then, for

d 6 n′ 6 n, for every S0 ⊆ [n] of size n′ and for a matrix M̂ ∈ Rd3×d3 satisfying ‖M̂ −∑
i∈S0

a⊗3
i

(
a⊗3
i

)>‖F 6 ε
√
n′, the Spectral truncation step of Algorithm 12 transforms M̂ into

tensor M61 such that

– the spectral norm of rectangular flattening is bounded by 1:∥∥∥M61
{1,2,3,4}{5,6}

∥∥∥ 6 1 and
∥∥∥M61

{1,2,5,6}{3,4}

∥∥∥ 6 1,
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– and forR =
√

2·
(
Ea∼N(0,Idd)(aa

>)⊗2
)+1/2, with high probability over a1, a2, . . . , an, M61

is close to S =
∑

i∈S0

(
Ra⊗2

i

)⊗3
in Frobenius norm:

∥∥M61 − S
∥∥
F
6 3ε

√
n′.

Proof W.l.o.g. assume that S0 = [n′]. By Lemma 16 we know that the set {a1, . . . , an′} is (n, d)-
nicely separated. For each i ∈ [n′], we denote bi := Ra⊗2

i . First by Lemma 17, we have∥∥∥∥∥M̂−
n′∑
i=1

bi
(
b⊗2
i

)>∥∥∥∥∥
F

6 2ε
√
n

Then by Theorem 52, with high probability we have

‖S{1,2},{3}‖ =

∥∥∥∥∥
n′∑
i=1

bi
(
b⊗2
i

)>∥∥∥∥∥ 6 1 + Õ
( n

d3/2

)
We denote S′ := S

‖S{1,2},{3}‖ . Since the square flattenings of S′ and S both have rank n′ it follows

that
‖S− S′‖F 6 Õ

( n

d3/2

)
·
√
n′

and
∥∥∥S′{1,2}{3}∥∥∥ =

∥∥∥S′{1,3}{2}∥∥∥ = 1.

We denote E′ := M̂− S′, then we have

T = S + E = S′ + E′

and further
‖E′‖F 6 ‖E‖F +

∥∥S′ − S
∥∥

F
6 2ε

√
n′

Denote O as the set of d2 × d4 matrices with singular values at most 1. Since S′{1,2}{3} ∈ O,
and S′{1,3}{2} ∈ O, we have∥∥M61 − S′

∥∥
F
6
∥∥∥M̂′ − S′

∥∥∥
F
6
∥∥∥M̂− S′

∥∥∥
F
6 2ε

√
n′.

And thus
∥∥∥M̂′ − S

∥∥∥
F
6 ‖S− S′‖F + 2ε

√
n′ 6 3ε

√
n′

Trivially, we then have ‖M61
{1,3}{2}‖ 6 1 so what remains to show is that the second pro-

jection didn’t increase the spectral norm of the {1, 2} {3}-flattening: I.e., that ‖M61
{1,2}{3}‖ =

‖M61
{1,2}{3}‖ 6 1 as well. To see this, we notice the following: Let UΣV > be a SVD of M̂ ′{1,3}{2}

and P = VΘV >, where Θi,i = 1/Σi,i if Σi,i > 1 and 1 otherwise. Clearly, we have that
M61
{1,3}{2} = M̂ ′{1,3}{2}P . So M61

{1,2}{3} is obtained by starting with M̂ ′{1,3}{2}, switching modes
2 and 3, right-multiplying by P and switching back modes 2 and 3. This is in fact equivalent to left-
multiplying (Id ⊗ P ) and hence we have ‖M61

{1,2}{3}‖ = ‖M61
{1,2}{3}‖ = ‖(Id ⊗ P )M̂ ′‖ 6 ‖M̂ ′‖

since the spectral norm of P is at most 1. To see why this is equivalent, write M̂ ′ as an Rd2×d matrix
with d blocks B1, . . . , Bd ∈ Rd×d. Exchanging modes 2 and 3 then yields the matrix with blocks
B>1 , . . . B

>
d . So that right-multiplying with P and exchanging back modes 2 and 3 yields the matrix

with PB1, . . . PBd which equals (P ⊗ Id)M̂ ′ (note that P is symmetric).
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B.2. Gaussian rounding

The goal of this section is to prove Lemma 14 which we restate below.

Lemma 19 (Restatement of Lemma 14) Let n 6 O
(
d3/2/ polylog(d)

)
, let a1, a2, . . . , an ∈ Rd

be independently and uniformly sampled from the unit sphere, and let ε ∈ 1
polylog(d) . Then, with

high probability over a1, a2, . . . , an, for d 6 n′ 6 n and for any S0 ⊆ [n] of size n′, given any
M61 ∈ Rd2×d2×d2 such that

‖M61 −
∑
i∈S0

(
(Ra⊗2

i

)⊗3‖F 6 ε
√
n′ and

∥∥∥M61
{1,2,3,4}{5,6}

∥∥∥ ,∥∥∥M61
{1,2,5,6}{3,4}

∥∥∥ 6 1,

the Gaussian rounding step of Algorithm 12 outputs unit vectors b1, b2, . . . , bm ∈ Rd for m >
0.99n′ such that for each j ∈ [m] there exists a unique i ∈ S0 with 〈bj , ai〉 > 0.99.

We also restate the relevant part of Algorithm 12 here:

Algorithm 20 (Restatement of Gaussian Rounding step of Algorithm 12)

– Initialize C ← ∅

– Repeat Õ(d2) times:

1. Sample g ∼ N(0, Idd2) and compute d2 × d2 matrix Mg =
(g ⊗ Idd2 ⊗ Idd2)M61

{1,2}{3,4}{5,6}.

2. Compute the top right singular vector of Mg denoted by u ∈ Rd2 and flatten it into
square matrix U ∈ Rd×d.

3. Compute the top left and right singular vectors of U denoted by vl, vr ∈ Rd.

4. For b ∈ {±vL,±vR}:
If 〈T, b⊗3〉 > 1− 1

polylog(n)

Add b to C

5. For b ∈ C:
if 〈b, b′〉 6 0.99 for all b′ ∈ S

add b to S

– Output S.

To prove Lemma 14 we will proceed in several steps. For the sake of presentation we will only
outline the proofs and move the more technical steps to Appendix J. First, we will show that the
subroutine in Step 1 in Algorithm 20 recovers one of the components up to constant correlation with
probability at least Θ̃(d−2). Concretely, we will show the following lemma:

Lemma 21 Consider the setting of Lemma 14. Let S0 ⊆ [n] be of size d 6 n′ 6 n and assume
that the set {ai | i ∈ S0} is (n, d)-nicely separated. Consider vl and vr in Algorithm 20, then there
exists a set S ⊆ S0 of size m > 0.99n′ such that for each i ∈ S it holds with probability Θ̃(d−2)
that maxv∈{±vl,±vr}〈v, ai〉 > 1− 1

polylog(d) .
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This will follow by the following sequence of lemmas. The first one show that the top singular
vector of the matrix Mg in Algorithm 20 is correlated with one of the components and that it further
admits a spectral gap.

Lemma 22 Consider the setting of Lemma 14. Let R =
√

2 ·
(
Ea∼Idd

(
aa>

)⊗2
)+1/2

, let S0 ⊆ [n]

be of size n′ where d 6 n′ 6 n, and assume that the set {ai | i ∈ S0} is (n, d)-nicely separated.
Further, let M̂ be such that

‖M61 −
∑
i∈S0

(Ra⊗2
i )⊗3‖F 6 ε

√
n′ and

∥∥∥M61
{1,2,3,4}{5,6}

∥∥∥ ,∥∥∥M61
{1,2,5,6}{3,4}

∥∥∥ 6 1.

Consider the matrix Mg = (g ⊗ Idd2 ⊗ Idd2)M61
{1,2}{3,4}{5,6} in Algorithm 20. Then there exists a

subset S ⊆ S0 of size m > 0.99n′, such that for each i ∈ S, and v = Ra⊗2
i , with probability at

least 1/d2(1+1/ logn) over g, we have M = cvv> +N where

– ‖cvv>‖ > (1 + 1
log d)‖N‖

– ‖Nv‖, ‖vN‖ 6 εc‖v‖2

The proof of this lemma resembles Lemma 4.6 in Schramm and Steurer (2017), and we defer to
J.3.1.

Next, we will show how to use this spectral gap to recover one of the components up to accuracy
1− 1

polylog d :

Lemma 23 Consider the setting of Lemma 14. Let R =
√

2 ·
(
Ea∼Idd

(
aa>

)⊗2
)+1/2

, let S0 ⊆ [n]

be of size d 6 n′ 6 n, and assume that the set {ai | i ∈ S0} is (n, d)-nicely separated. Consider
the matrix Mg and its top right singular vector ur ∈ Rd2 obtained in one iteration of Algorithm 20.
Then, there exists a set S ⊆ S0 with size at least 0.99n′, such that for each i ∈ S, it holds with
probability Θ̃(d−2) that

– 〈ur, Ra⊗2
i 〉 > 1− 1

polylog d .

– the ratio between largest and second largest singular values of Mg is larger than 1 + 1
polylog d

Lemma 24 Consider the setting of Lemma 14. Suppose for some unit norm vector a ∈ Rd and
some unit vector u ∈ Rd2 , 〈u,Ra⊗2〉 > 1− 1

polylog(d) . Then flattening u into a d× d matrix U , the

top left or right singular vector of U denoted by v will satisfy 〈a, v〉2 > 1− 1
polylog(d) .

The proof of Lemma 23 is essentially the same as Lemma 4.7 in Schramm and Steurer (2017). The
proof of Lemma 24 essentially the same as Lemma 19 in Hopkins et al. (2019). We defer the proofs
of these two lemmas to section J.3.2.

With this in place, it follows that the list of vectors C = {b1, . . . , bL} for L = Õ(d2) obtained
by Algorithm 20 satisfies the following where S is the subset of components of Lemma 21:

∀i ∈ S : max
b∈C
|〈b, ai〉| > 1− 1

polylog(d)
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and

∀b ∈ C : max
i∈S
|〈b, ai〉| > 1− 1

polylog(d)

The first equation follows by the Coupon Collector problem, Lemma 21, and the fact that we repeat
the inner loop of Algorithm 20 Õ(d2) times. The second equation follows since by Lemma 58, we
have 〈T, v⊗3〉 > 1− 1

polylog(d) if and only if 〈v, ai〉 > 1− 1
polylog(d) .

Finally, the following lemma (proved in section J.3.3) states that Step 3 of Algorithm 20 outputs
a set of vectors satisfying the conclusion of Lemma 14:

Lemma 25 Let S0 ⊆ [n] be of size n′ > 0.99n and assume that the set {ai | i ∈ S0} is (n, d)-
nicely separated. Further, let S be the set of vector computed in Step 3 of Algorithm 20 and let S′

be the subset of components of Lemma 21. Then, for each b ∈ S, there exists a unique i ∈ S′ such
that 〈b, ai〉 > 1− 1

polylog d .

Appendix C. Full recovery algorithm

In the previous section, we proved that the Gaussian Rounding subroutine (Step 2(a) and Step 2(b))
in the Recovery step of Algorithm 3 recovers a 0.99 fraction of the components. In this section, we
will show how to build on this to recover all components. More precisely, we will prove Theorem 6
which we restate below.

Theorem 26 (Restatement of Theorem 6) Let a1, . . . , an be i.i.d. vectors sampled uniformly from
the unit sphere in Rd. For ε = 1

polylog(d) , given as input

T =
n∑
i=1

a⊗3
i and M̂ =

n∑
i=1

a⊗3
i

(
a⊗3
i

)>
+ E ,with ‖E‖ 6 ε and ‖E‖F 6 ε

√
n ,

Algorithm 3 returns unit norm vectors b1, b2, . . . , bn satisfying

‖ai − bπ(i)‖ 6 Õ

(√
n

d

)
,

for some permutation π : [n]→ [n].

For completeness, we also restate the relevant part of Algorithm 3 here:’
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Algorithm 27 (Restatement of the Recovery step in Algorithm 3)

Input: A matrix M̂ such that for some ε = 1
polylog(d) :

‖M̂ −
n∑
i=1

(a⊗3
i )(a⊗3

i )>‖ 6 ε and ‖M̂ −
n∑
i=1

(a⊗3
i )(a⊗3

i )>‖F 6 ε ·
√
n

Output: Unit vectors b1, . . . , bn ∈ Rd .

– Repeat O(log n) times:

(a) Pre-processing: Project M̂ into the space of matrices in Rd3×d3 satisfying∥∥∥M̂{1,2,3,4}{5,6}∥∥∥ 6 1 ,
∥∥∥M̂{1,2,5,6}{3,4}∥∥∥ 6 1 .

(b) Rounding: Run Õ(d2) independent trials of Gaussian Rounding on M̂ contracting
its first two modes (as in Algorithm 12) to obtain a set of 0.99n candidate vectors
b1, . . . , b0.99n.

(c) Accuracy boosting: Boost the accuracy of each candidate bi via tensor power
iteration.

(d) Peeling of recovered components:

– Set M̂ to be the best rank-0.01n approximation of M̂−
∑

i60.99n

(
b⊗3
i

) (
b⊗3
i

)>
– Update n← 0.01n.

– Return all the candidate vectors b1, . . . , bn obtained above.

Our main goal will be to show that in each iteration the matrix M̂ satisfies the assumption
of Theorem 11 and then use an induction argument. To show this, we will proceed using following
steps:

– By Theorem 11 we recover at least a 0.99 fraction of the remaining components up to accuracy
0.99.

– We will show that using tensor power iteration we can boost this accuracy to 1− Õ
(√

n
d

)
.

– In a last step we prove that after the removal step (Step 2(d)) the resulting matrix satisfies the
assumptions of Theorem 11.

We will discuss the boosting step in Appendix C.1 and the removal step in Appendix C.2. In Ap-
pendix C.3 we will show how to combine the two to prove Theorem 6.

C.1. Boosting the recovery accuracy by tensor power iteration

Given the relatively coarse estimation of part of the components, we use tensor power iteration
in Anandkumar et al. (2015) to boost the accuracy.
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Lemma 28 (Lemma 2 in Anandkumar et al. (2015)) Let T =
∑n

i=1 a
⊗3
i , where a1, a2, . . . , an

are independently and uniformly sampled from d-dimensional unit sphere. Then with high proba-
bility over a1, a2, . . . , an, for any unit norm vector v such that 〈v, a1〉 > 0.99, , the tensor power
iteration algorithm gives unit norm vector b1 such that 〈a1, b1〉 > 1 − Õ

(
n
d2

)
and runs in Õ(d3)

time.

By running tensor power iteration on the vectors obtained in the last subsection, we thus get the
following guarantee:

Corollary 29 Given tensor T =
∑n

i=1 a
⊗3
i , where a1, a2, . . . , an are independently and uniformly

sampled from d-dimensional unit sphere. Suppose for a set S ⊆ [n] with size m, we are given
vectors b1, b2, . . . , bm such that for each i ∈ S,

max
j∈[m]
〈ai, bj〉 > 0.99

Then in Õ(nd3) time, we can get unit norm vectors c1, c2, . . . , cm s.t for each i ∈ S,

max
j∈[m]
〈ai, cj〉 > 1− Õ

( n
d2

)
.

C.2. Removing recovered components

In this part, we mainly prove that we can remove the recovered components as in Step 2(d) of Al-
gorithm 3, without increasing spectral norm of noise by more than poly

(
n
d3/2

)
.

Lemma 30 Let m > d and d 6 n = O
(
d3/2/polylog(d)

)
. Let a1, a2, . . . , an ∈ Rd be i.i.d ran-

dom unit vectors sampled uniform from the sphere. Then with high probability over a1, a2, . . . , an,
for any S = {s1, s2, . . . , sm} ⊆ [n], and b1, b2, . . . , bm satisfying ‖asi − bi‖ 6 Õ (

√
n/d), we have∥∥∥∥∥∥

∑
i∈S

(
a⊗3
i

) (
a⊗3
i

)> − ∑
i∈[m]

(
b⊗3
i

) (
b⊗3
i

)>∥∥∥∥∥∥ 6
1

polylog(d)

We first prove the same result under the deterministic assumption that {ai : i ∈ S} are (n, d)
nicely-separated. Then combining with Lemma 16, the Lemma 30 follows as a corollary.

Lemma 31 Let m > d and d 6 n = O
(
d3/2/ polylog(d)

)
. Let a1, a2, . . . , am ∈ Rd be vec-

tors satisfying the (n, d) nicely-separated assumptions of Theorem 15. Suppose unit norm vectors
b1, b2, . . . , bm satisfies that ‖ai − bi‖ 6 O (

√
n/d). Then we have∥∥∥∥∥∥

∑
i∈[m]

(
a⊗3
i

) (
a⊗3
i

)> − ∑
i∈[m]

(
b⊗3
i

) (
b⊗3
i

)>∥∥∥∥∥∥ 6
1

polylog(d)

Proof We denote the matrix U ∈ Rd3×m with the i-th column given by a⊗3
i , and the matrix

V ∈ Rd3×n with the i-th column given by b⊗3
i . Then∥∥∥∥∥∥

∑
i∈[m]

(
a⊗3
i

) (
a⊗3
i

)> − ∑
i∈[m]

(
b⊗3
i

) (
b⊗3
i

)>∥∥∥∥∥∥ =
∥∥∥UU> − V V >∥∥∥
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Now since
∥∥UU> − V V >∥∥ =

∥∥(U − V )U> + V (U − V )>
∥∥ and ‖U‖ 6 1 with high probability,

it’s suffcient to show that ‖U − V ‖ 6 n2

d3
, which is equivalent to

√
‖(U − V )>(U − V )‖.

We denote W := (U − V )>(U − V ), and let W = W1 + W2 where W1 be the diagonal part
of the matrix W and W2 be the non-diagonal part. Then for i ∈ [n], the diagonal entries of W are
given by

Wii =
(
a⊗3
i − b

⊗3
i

)> (
a⊗3
i − b

⊗3
i

)
=
∥∥a⊗3

i − b
⊗3
i

∥∥2

Now since

∥∥a⊗3
i − b

⊗3
i

∥∥2
6 2− 2〈ai, bi〉3 = 2− 2 ·

(
2− ‖ai − bi‖2

)3
8

6 2− (2− 6 · ‖ai − bi‖) = 6 · ‖ai − bi‖2

it follows that
∥∥a⊗3

i − b
⊗3
i

∥∥ 6 Õ(
√
n/d). Since W1 is a diagonal matrix, we have ‖W1‖ 6

Õ(
√
n/d).

Next we bound ‖W2‖F . We denote ci = ai − bi. Then by assumption we have ‖ci‖ 6
O (
√
n/d). Now we have

〈a⊗3
i − b

⊗3
i , a⊗3

j − b
⊗3
j 〉 = 〈a⊗3

i − (ai + ci)
⊗3, a⊗3

j − (aj + cj)
⊗3〉

=
∑

g
(1)
i ,g

(2)
i ,g

(3)
i

g
(4)
j ,g

(5)
j ,g

(6)
j

〈g(1)
i , g

(4)
j 〉〈g

(2)
i , g

(5)
j 〉〈g

(3)
i , g

(6)
j 〉

where for k ∈ [6] and i ∈ [m], g(k)
i ∈ {ai, ci}. Now we rewrite W2 =

∑
gMg, where

Mg,i,j = 〈g(1)
i , g

(4)
j 〉〈g

(2)
i , g

(5)
j 〉〈g

(3)
i , g

(6)
j 〉. Since there are less than 23 choices for g ={

g(1), g(2), . . . , g(6)
}

, By Lemma 75, for every choice of g, we have ‖Mg‖F 6 Õ
(√

n
d3/2

)
6

1
polylog(d) . By applying triangle inequality, we have ‖W2‖F 6 1

polylog(d) .
It follows that∥∥∥(U − V )>(U − V )

∥∥∥ = ‖W‖ 6 ‖W1‖+ ‖W2‖ 6
1

polylog(d)
,

which concludes the proof.

C.3. Putting things together

Proof [Proof of Theorem 6] We show that, if the events in Theorem 11, Theorem 29, and Lemma 30
happen, then Algorithm 3 returns unit norm vectors b1, b2, . . . , bn satisfying

‖ai − bπ(i)‖ 6 Õ

(√
n

d

)
,

for some permutation π : [n] → [n]. Since by Theorem 11, Theorem 29, and Lemma 30, these
events happen with high probability over random unit vectors a1, a2, . . . , an, the theorem thus fol-
lows.

31



DING D’ORSI LIU STEURER TIEGEL

Let δ = 1
log10(n)

, and n 6 d3/2/ log10000 n. For t 6 O(log n), we prove by mathematical
induction that after t-th iteration of the Recovery step in Algorithm 3, for a subset St ⊆ [n], we
have ∥∥∥∥∥M −∑

i∈S
a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥ 6 (t+ 1)δ .

Further we have St+1 6 0.01St
As base case after the Lifting step of Algorithm 3, we have∥∥∥∥∥M −

n∑
i=1

a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥ 6 Õ
( n

d3/2

)
6 δ .

For induction step, we suppose for some St ⊆ [n],∥∥∥∥∥M −∑
i∈St

a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥ 6 tδ .

Since we condition that the statement in Theorem 11 holds, for some m > 0.99 |St| and S′t ⊆ n
with size m, Step 2(b) of Algorithm 3 outputs unit norm vectors b1, b2, . . . , bm such that for each
i ∈ S′t,

max
j∈[m]
〈ai, bj〉 > 1− 1

polylog(d)

Then combining Theorem 29 and Lemma 30, before Step 2(d) of t-th iteration of the Recovery step,
we have ∥∥∥∥∥∥

∑
i∈S′t

a⊗3
i

(
a⊗3
i

)> − ∑
i∈[m]

b⊗3
i

(
b⊗3
i

)>∥∥∥∥∥∥ 6 δ

By triangle inequality, after removal step (d), it follows that∥∥∥∥∥∥M −
∑

i∈St\S′t

a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥∥ 6 (t+ 1)δ

By setting St+1 = St \ S′t, we have |St+1| 6 0.01 |St|, and∥∥∥∥∥∥M −
∑
i∈St+1

a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥∥ 6 (t+ 1)δ

The induction step is thus finished.
Now putting the recovery vectors obtained in all the iterations, we finish the proof.
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Appendix D. Implementation and running time analysis

We prove here Theorem 7 concerning the running time of Algorithm 3.

Remark 32 (On the bit complexity of the algorithm) We assume that the vectors a1, . . . , an ∈
Rd have polynomially (in the dimension) bounded norm. We can then represent each of the vectors,
matrices and tensor considered to polynomially small precision with logarithmically many bits (per
entry). This representation does not significantly impact the overall running time of the algorithm,
while also not invalidating its error guarantees (with high probability). For this reason we ignore
the bit complexity aspects of the problem.

D.1. Running time analysis of the lifting step

For a matrix A ∈ Rd×d, we say that L is the best rank-m approximation of A if

L = arg min
{
‖A− L‖F

∣∣∣ L ∈ Rd×d , rank(L) 6 m
}
.

We will consider the following algorithm:

Algorithm 33 (Compute implicit representation)

Input: Tensor T =
∑
i∈[n]

a⊗3
i .

Output: U, V ∈ Rd3×n.

1. Use the n-dimensional subspace power method Hardt and Price (2014) on the
{1, 2, 3} {4, 5, 6} flattening of

M =
∑

i,j,k,`∈[n]

〈ai, aj〉 · 〈ai, ak〉 · 〈ai, a`〉 · (ajajT)⊗ (akak
T)⊗ (a`a`

T) , (D.1)

decomposing contractions with M{1,2,3}{4,5,6} as shown in Fig. 4 and using the fast
rectangular matrix multiplication algorithm of Gall and Urrutia (2018).

2. Return U, V ∈ Rd3×n computed from the resulting (approximate) n eigenvectors and
eigenvalues.

Lemma 34 Let a1, . . . , an be i.i.d. vectors uniformly sampled from the unit sphere in Rd. Consider
the flattening M{1,2,3}{4,5,6} of M as in Eq. (D.1). Let U ′Σ′U ′T with U ′ ∈ Rd3×n ,Σ′ ∈ Rn×n,
be its best rank-n approximation. Then, there exists an algorithm (Algorithm 33) that, given T,
computes U, V ∈ Rd3×n such that∥∥∥UVT − U ′ΣU ′T

∥∥∥
F
6 d−100 .

Moreover, the algorithm runs in time Õ
(
d2·ω(1+logn/2 log d)

)
, where ω(k) is the time required to

multiply a (dk × d) matrix with a (d× d) matrix.10

10. See Fig. 7 in Appendix I.
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Proof It suffices to show how to approximately compute the top n eigenvectors and eigenvalues of
M{1,2,3}{4,5,6} as then deriving U, V from there is trivial.

We start by explaining how to use the structure of the tensor network to multiply M by a vector
v more efficiently, then extend this idea to the subspace power method Hardt and Price (2014), and
finally apply the rectangular matrix multiplication method Gall and Urrutia (2018).

To efficiently multiply a vector v ∈ Rd3 by M{1,2,3}{4,5,6}, we partition the multiplication into
four steps by cutting the tensor network “cleverly.” Fig. 4 presents the four-step multiplication. The
multiplication time is O(d2w) as explained as following. Step (a) multiplies a d2 × d matrix with
a d × d2 matrix, and thus takes O

(
d1+ω

)
time. Step (b) multiplies a d2 × d matrix with a d × d2

matrix, and thus takes O
(
d1+ω

)
time. Step (c) multiplies a d2 × d2 matrix with a d2 × d2 matrix,

and thus takes O
(
d2ω
)

time. Step (d) multiplies a d2× d2 matrix with d2× d matrix, and thus takes
O
(
d2+ω

)
time.

Each iteration of the subspace power method Hardt and Price (2014) multiplies n vectors by
M{1,2,3}{4,5,6} simultaneously. Therefore, v in the above 4-step multiplication is replaced with a
d3 × n matrix. Then, Step (a) becomes multiplying a nd2 × d matrix with a d× d2 matrix, Step (c)
becomes multiplying a nd2 × d2 matrix with a d2 × d2 matrix, and Step (d) becomes multiplying a
nd2 × d2 matrix with d2 × d matrix.

The rectangular multiplication algorithm Gall and Urrutia (2018) takesO(dw(k)) time to multi-
ply a dk×dmatrix by a d×dk matrix. Note that the time complexities of the following three problems
are the same: multiplying a dk×d matrix by a d×dk matrix, multiplying a d×d matrix by a dk×d
matrix, and multiplying a d× dk matrix by a d× d matrix. By the rectangular multiplication algo-
rithm, Step (a) takesO

(
n · d2·ω(0.5)

)
= O

(
n · d4.093362

)
time, Step (c) takesO

(
d2·ω(logd2 (d2n))

)
=

O
(
d2·ω(1+logn/ log d2)

)
time, and Step (d) takesO

(
nd · dω(2)

)
= O

(
n · d4.256689

)
time.

Since the time of Step (c) dominates that of Step (a), Step (b) and Step (d), one iteration of
the subspace power method takes O

(
n · d2·ω(1+logn/ log d2)

)
time. By Lemma 9, λn+1/λn 6

1/ polylog d, so the subspace power method takes polylog d iterations. To conclude, computing
the top n eigenvectors of M{1,2,3}{4,5,6} takes Õ

(
d2·ω(1+logn/ log d2)

)
time.

D.2. Running time analysis for the pre-processing step

In this section we show that the implicit representation of tensorM61 in Lemma 13 can be computed
in a fast way. By Lemma 17 we may assume our matrix UVT is close to a matrix flattening of∑n

i=1

(
Ra⊗2

i

)⊗3, where R =
√

2 ·
(
Ea∼N(0,Idd) a

⊗2
(
a⊗2
)>)+1/2

.

Lemma 35 (Running time of the pre-processing step) Let a1, . . . , an be a subset of i.i.d. vectors

uniformly sampled from the unit sphere in Rd. Let R =
√

2 ·
(
Ea∼N(0,Idd) a

⊗2
(
a⊗2
)>)+1/2

and

denote S3 =
∑n

i=1

(
Ra⊗2

i

)⊗3
. There exists an algorithm that, given matrices U, V ∈ Rd3×n

satisfying

‖UVT − (S3){1,2,3}{4,5,6}‖F 6 ε
√
n ,

computes matrices U ′, V ′ ∈ Rd3×2n satisfying

‖U ′V ′T − (S3){1,2,3}{4,5,6}‖F 6 ε
√
n , ‖(U ′V ′T){5,6}{1,2,3,4}‖ 6 1 , ‖U ′V ′T{3,4}{1,2,5,6}‖ 6 1 .
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Moreover, the algorithm runs in time Õ(d · nω
(

2 log d
logn

)
+ nd4) 6 Õ(d5.05 + nd4).

The algorithm used to compute these fast projections consists of two subsequent application of
the following procedure (symmetrical with respect to the two distinct flattenings).

Algorithm 36 (Fast projection)

Input: Matrices U, V ∈ Rd3×n.
Output: Matrices U ′, V ′ ∈ Rd3×n.

1. Denote N = (UVT){5,6}{1,2,3,4}.

2. Compute the nd× d2 reshaping Z and the d2 × nd reshaping Ṽ of V .

3. Compute W = ZT(UTU ⊗ Idd)Z.

4. Compute H = (Idd2 −W−1/2)>0.

5. Compute L = ṼTH .

6. Reshape L and compute N61 = U ′V ′T = UVT − U(L⊗ Idd).

7. Return the resulting matrices U ′, V ′.

Before presenting the proof, we first introduce some notation:

Definition 37 For arbitrary matrix M ∈ Rd×d with eigenvalue decomposition M = UΣU>, we
denote M>t := UΣ>tU>, where Σ>t is same as Σ except for truncating entries larger than t to 0.

Next we prove that the spectral truncation can be done via matrix multiplication.

Lemma 38 Consider matrices N ∈ Rd4×d2 and M := N>N . Then N61 :=
N
(

Idd2 −
(
Idd2 −M−1/2

)>0
)

is the projection ofN into the set of d4×d2 matrices with spectral
norm bounded by 1

Proof Indeed supposeN has singular value decompositionN = PΣQ>, thenM−1/2 = QΣ̃−1Q>,
where Σ is a d4 × d2 diagonal matrix and Σ̃ = (Σ>Σ)1/2. It follows that

N

(
Idd2 −

(
Idd2 −M−1/2

)>0
)

= PΣQ>
(

Idd2 −Q
(

Idd2 − Σ̃−1
)>0

Q>
)

= PΣ

(
Idd2 −

(
Idd2 − Σ̃−1

)>0
)
Q>

= PΣ′Q>

where Σ′ := Σ

(
Idd2 −

(
Idd2 − Σ̃−1

)>0
)

. Now we note that for each i, if Σii > 1, then Σ′ii =

Σii · Σ−1
ii = 1; otherwise Σ′ii = Σii. Therefore PΣ′Q> is exactly the projection of N into the set

of d4 × d2 matrices with spectral norm bounded by 1.
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We are now ready to prove Lemma 35.
Proof [Proof of Lemma 35] Without loss of generality, we consider the flattening M̂{5,6},{1,2,3,4}.
For simplicity, we denote N := M̂{1,2,3,4},{5,6}. Let Z be an appropriate nd × d2 reshaping of
V . Since for any vector y ∈ Rd2 , we have that Ny is the flattening of UV >(y ⊗ Idd) into a d4

dimensional vector and Ny = (U ⊗ Idd)Zy, it follows that N = (U ⊗ Idd)Z. Further, we denote
W := N>N = Z>

(
U>U ⊗ Idd

)
Z. Then the i-th singular value of W is given by the square of

the i-th singular value of N .
We show that matrix W can be computed in a fast way. Since U ∈ Rd3×n, we can compute

U>U in time nω
(

3 log d
logn

)
. When n 6 d3/2, this is bounded by d

3
2
ω(2) 6 d5. Then since U>U is an

n × n matrix, and Z is a nd × d2 matrix,
(
U>U ⊗ Idd

)
Z requires d distinct multiplications each

between an n× n and an n× d2 matrices. Each of these multiplications takes time O
(
n
ω( 2 log d

logn
)
)

.

When n 6 d3/2, this is bounded by O(d5.05).
By Lemma 38, the projection matrix is given by N61 = N

(
Idd2 −

(
Idd2 −W−1/2

)>0
)

. Now

we claim that with high probability the matrix
(
Idd2 −W−1/2

)>0
has rank at most n. Indeed

since matrix N has Frobenius norm at most 2
√
n, it has at most 2n eigenvalues at least 1. Since

W = N>N , it has at most 2n eigenvalues at least 1 as well. We then can compute the eigenvalue
decomposition H :=

(
Idd2 −W−1/2

)>0
= PΛ−1/2P> in time O(nd4).

Using this low rank representation, we show that we can compute matrices U ′, V ′ ∈ Rd3×n
such that N61 = UV > − U ′V ′>. Indeed, since N61 = UV > − UV >(H ⊗ Idd), it’s sufficient
to calculate VT(H ⊗ Idd). For this, we first reshape V into a d2 × nd matrix Ṽ and then do the
matrix multiplication Ṽ >H = Ṽ >PΛ−1/2P>. Tthen we can reshape Ṽ >H into an appropriate
d3 × n matrix V ′. For U ′ = U we then have UV >(H ⊗ Idd) = U ′V ′>. Since P ∈ Rd2×n and
Ṽ ∈ Rd2×nd, when n 6 d3/2, it takes time O(d · nω(4/3)) 6 d5.

All in all, the total running time is bounded by O(d5.05 + nd4).

D.3. Running time analysis of Gaussian rounding

Lemma 39 (Running time of the rounding step) In each iteration of the recovery step in algo-

rithm Algorithm 3, the rounding step takes time at most O
(
n · d4 + d

ω
(

1
2

+ logn
2 log d

))
6 O(n · d4 +

d5.25).

Proof We divide the discussion in three steps.

Running time for a random contraction and taking top eigenvectors We sample ` = Õ(d2)
independent random Gaussian vectors g1, g2, . . . , g` ∼ N(0, Idd2). In Algorithm 12, we use power
method to obtain the top right singular vectors of Mt(g) for all t ∈ [`]. We first take random
initialization vectors x1, x2, . . . , x`. Then we do Õ(1) power iterations. In each iteration, we update
xi ← (xi ⊗ Id⊗ gi)M̂.

Since for arbitrary vectors x1, x2, . . . , x` ∈ Rd2 , by Lemma 61, we can obtain (xi⊗ Id⊗ gi)M̂

for i ∈ [`] inO
(
n · d4 + d

2ω
(

1+logd n

2

))
time. Thus combining all iterations, the total running time

is bounded by Õ
(
n · d4 + d2ω(5/4)

)
6 Õ

(
n · d4 + d5.25

)
time.
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Next we show it’s sufficient to run Õ(1) power iterations to get accurate approximation of top
singular vectors. Consider the setting of Lemma 23. Suppose the matrix (Idd2⊗Idd2⊗gi)M̂ satisfy
the conditions that

– the top singular vector u recovers some component vector ai:
∣∣〈u, a⊗2

i 〉
∣∣ > 1− 1

polylog d

– the ratio between the largest and second largest singular value of Mg is larger than
1/ log logn.

Then by the second condition, after polylog(n) power iterations, we will get |〈xi, u〉| > 1 −
1

polylog(n) .

Then for these top eigenvectors, we flatten them into d× d matrices B1, B2, . . . , B` ∈ Rd2 , and
then take top singular vectors of these matrices. This takes time at most Õ

(
` · d2

)
= Õ

(
d4
)
. As a

result, we obtain O(`) candidate recovery vectors.

Running time for checking candidate recovery vectors In Algorithm 12 for each of the ` can-
didate recovery vectors v, we check the value of 〈T, v⊗3〉. This requires Õ(` · d3) = Õ(d5) time.

Running time for removing redundant vectors We consider the running time of , which is a
detailed exposition of the relevant step in Algorithm 12. In each of the Õ(d2) iterations, we need
to check the correlation of bi with each vector in S′. Since S′ has size at most n, this takes time at
most O(nd). Therefore the total running time is bounded by Õ(nd3).

Thus in all the running time is given by Õ
(
n · d4 + d5.25

)
.

D.4. Running time analysis of accuracy boosting

Lemma 40 In each iteration of the Recovery step in algorithm Algorithm 3, the accuracy boosting
step takes time at most Õ(n · d3).

Proof In each iteration we perform the accuracy boosting step for at most 0.99n vectors. For each
such vector we need to run O(log d) rounds of tensor power iterationsAnandkumar et al. (2015).
Since each round of tensor power iteration takes Õ(d3) time, the total running time is bounded by
Õ(n · d3).

D.5. Running time analysis of peeling

The last operation in each iteration of Recovery step in algorithm Algorithm 3 consists of ”peeling
off” the components just learned and obtain an implicit representation of the modified data. UV >−∑0.99n

i=1 b⊗3
i

(
b⊗3
i

)>, and obtain the implicit representation.

Lemma 41 Let ε, δ > 0 and let m < n be positive integers. Let a1, . . . , an ∈ Rd be any subset of
i.i.d. vectors uniformly sampled from the unit sphere in Rd. Let U, V ∈ Rd3×n be such that∥∥∥∥∥∥UVT −

∑
i∈[n]

(a⊗3
i )(a⊗3

i )T

∥∥∥∥∥∥ 6 ε .
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Let b1 . . . , bm ∈ Rd be such that

∀i ∈ [m] , 〈ai, bi〉 > 1− 1/polylog(d) .

Then there exists an algorithm (a slight variation of Algorithm 33) that, given b1 , . . . , bm , U, V ,
computes U ′, V ′ ∈ Rd3×n−m satisfying∥∥∥∥∥U ′(V ′)T −

n∑
i>m

(a⊗3
i )(a⊗3

i )T

∥∥∥∥∥ 6 O(ε) .

Moreover, the algorithm runs in time Õ
(
d2·ω(1+logn/ log d2)

)
, where ω(k) is the time required to

multiply a (dk × d) matrix with a (d× d) matrix.11

Proof
∑

i∈[m](b
⊗3
i )(b⊗3

i )T can be written as tensor networks as in Fig. 3. On the other
hand multiplying UVT by a d3-dimensional vector takes time at most Õ(nω(2)) 6 Õ(d4.9).
Thus, as in Lemma 34, we can compute the top n − m eigenspace of their difference in time
Õ
(
d2·ω(1+logn/2 log d)

)
. By Lemma 30 the result follows.

D.6. Putting things together

We are now ready to prove Theorem 7.
Proof [Proof of Theorem 7] By lemma Lemma 34, the lifting step of Algorithm 3 can done
in Õ

(
d2·ω(1+logn/2 log d)

)
time. Combining Lemma 35, Lemma 39 Lemma 40, and Lemma 41,

each iteration of the step 2 in Algorithm 3 can be done in time O
(
n · d4 + d2·ω(1+logn/2 log d)

)
.

There are at most O(log n) iterations, and thus the total running time of the loop is bounded by
Õ
(
d2·ω(1+logn/2 log d) + nd4

)
.

Appendix E. Partial recovery from reducing to robust fourth-order decomposition

We observed that the tensor network in Fig. 2(b) allows us to partially reduce the problem of third-
order tensor decomposition to the problem of robust fourth-order tensor decomposition. A natural
idea would thus be to apply existing algorithms, e.g., Hopkins et al. (2019), to this latter problem.
However, such a black-box reduction faces several issues: First, the spectral norm of the noise of
the network in Fig. 2(b) can only be bounded by 1/ polylog(d). For this amount of noise, the
algorithm in Hopkins et al. (2019) can only recover a constant fraction, bounded away from 1,
of the components, but not all of them. It is unclear, if their analysis can be adapted to handle
larger amount of noise, since they deal with the inherently harder setting of adversarial instead of
random noise. Second, the running time of this black-box reduction would be Õ(n · d5),12 which is
Õ(d6.5) for n = Θ(d3/2/polylog(d)). This is even slower than our nearly-quadratic running time
of Õ

(
d6.043182

)
. Lastly, their analysis is quite involved and we argue that the language of tensor

networks captures the essence of the third-order problem and thus yields a considerably simpler
algorithm than this black-box reduction.

11. See Fig. 7 in Appendix I.
12. We remark that the main result in Hopkins et al. (2019) contains a minor imprecision concerning the running time. In

particular, their algorithm runs in time Õ(n · d5) while their result states Õ(n2d3) time. In the context of our interest
this is a meaningful difference as n/d2 = o(1/

√
d).
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Appendix F. Boosting to arbitrary accuracy

Given good initialization vector for every component, it is shown in Anandkumar et al. (2015)
that we can get arbitrarily accurate estimation of the components by combining the tensor power
iteration algorithm and residual error removal:

Theorem 42 (Theorem 1 in Anandkumar et al. (2015)) Suppose we are given tensor T =∑n
i=1 a

⊗3
i , where n = O

(
d3/2/ polylog(d)

)
and a1, a2, . . . , an are independent and uniformly

sampled from the unit sphere and λi = 1±o(1). Then given vectors b1, b2, . . . , bn s.t 〈ai, bi〉 > 0.99,
there is a polynomial time algorithm outputting unit norm vectors c1, c2, . . . , cn s.t

〈ci, ai〉 > 1− ε

Combining with Theorem 6 in this section, we thus get the following corollary

Corollary 43 Suppose we are given tensor T =
∑n

i=1 a
⊗3
i , where n = O

(
d3/2/ polylog(d)

)
and a1, a2, . . . , an are independently and uniformly sampled from the dimension d unit sphere,
then there is a poly(d)-time algorithm outputting unit norm vectors b1, b2, . . . , bn ∈ Rd such that
probability 1− o(1) over a1, a2, . . . , an, for each i ∈ [n], maxj∈[n]〈ai, bj〉 > (1− 2−n)‖ai‖.

Appendix G. Concentration bounds

G.1. Concentration of Gaussian polynomials

Fact 44 [Lemma A.4 in Hopkins et al. (2016)] Let X ∼ N (0, 1). Then for t > 0,

P(X > t) 6
e−t

2/2

t
√

2π

and

P(X > t) >
e−t

2/2

√
2π
·
(

1

t
− 1

t3

)

Proof We record their proof for completeness. For the first statement, we have

P(X > t) =
1√
2π

∫ ∞
t

e−x
2/2dx

6
1√
2π

∫ ∞
t

x

t
e−x

2/2dx

=
e−t

2/2

t
√

2π
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For the second statement, we have

P(X > t) =
1√
2π

∫ ∞
t

e−x
2/2dx

=
1√
2π

∫ ∞
t

1

x
· xe−x2/2dx

=
1√
2π

[
−1

x
e−x

2/2·
]∞
t

− 1√
2π

∫ ∞
t

1

x2
· e−x2/2dx

>
1√
2π

[
−1

x
e−x

2/2·
]∞
t

− 1√
2π

∫ ∞
t

x

t3
· e−x2/2dx

=
1√
2π

(
1

t
− 1

t3

)
e−t

2/2

Lemma 45 (Lemma A.5 in Hopkins et al. (2016)) For each ` > 1 there is a universal constant
c` > 0 such that for every f a degree- ` polynomial of standard Gaussian random variables
X1, . . . , Xm and t > 2

P(|f(X)| > tE|f(X)|) 6 e−c`t
2/`

The same holds (with a different constant c` ) if E|f(x)| is replaced by
(
Ef(x)2

)1/2.

Lemma 46 (Fact C.1 in Hopkins et al. (2016)) Suppose a1, a2, . . . , an are independently sam-
pled from N(0, 1

d Idd), then with probability 1− n−ω(1), we have

(a) for each i ∈ n, ‖ai‖2 = 1± Õ
(

1√
d

)
(b) for each i, j ∈ n, i 6= j, we have 〈ai, aj〉2 = Õ

(
1
d

)
G.2. Concentration of random matrices

Lemma 47 For n 6 d3/2/ polylog d, let a1, · · · , an be n i.i.d. random unit vectors

(a) For any i 6= j,

|〈ai, aj〉|
w.ov.p

= Õ

(
1√
d

)
.

(b) ∥∥∥∥∥
n∑
i=1

aia
>
i

∥∥∥∥∥ w.ov.p
= Õ

(n
d

)
.

(c) ∥∥∥∥∥
n∑
i=1

a⊗2
i

(
a⊗2
i

)>∥∥∥∥∥ w.ov.p
= Õ

(n
d

)
.
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(d) ∥∥∥∥∥
n∑
i=1

a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥ w.ov.p
= 1± Õ

( n

d3/2

)
.

Proof

(a) We rewrite ai = bi
‖bi‖ , where b1, b2, . . . , bn ∼ N(0, 1

d Idd) are independent. Then 〈ai, aj〉 =
〈bi,bj〉
‖bi‖‖bj‖ . Now using lemma 46, we have the claim.

(b) We rewrite ai = bi
‖bi‖ , where b1, b2, . . . , bn ∼ N(0, 1

d Idd) are independent. Then by fact C.2

in Hopkins et al. (2016), with overwhelming probability, we have
∥∥∑n

i=1 bib
>
i

∥∥ 6 Õ
(
n
d

)
. Now

by lemma 46, we have ∥∥∥∥∥
n∑
i=1

aia
>
i

∥∥∥∥∥ 6 Õ
(n
d

)
(c) Let U ∈ Rd2×n be a matrix with i-th row given by a⊗2

i , then we have∥∥∥∥∥
n∑
i=1

a⊗2
i

(
a⊗2
i

)>∥∥∥∥∥ =
∥∥∥UU>∥∥∥ =

∥∥∥U>U∥∥∥
Now we have (U>U)ii = 〈ai, ai〉2 = 1, and by (a) (U>U)ij = 〈ai, aj〉2 = Õ

(
1
d

)
. Thus by

Gershgorin circle theorem, we have

‖U>U‖ 6 max
i∈[d2]

∑
j∈[d2]

∣∣∣(U>U)ij

∣∣∣ = Õ
(n
d

)

(d) Let U ∈ Rd3×n be a matrix with i-th row given by a⊗3
i , then we have∥∥∥∥∥

n∑
i=1

a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥ =
∥∥∥UU>∥∥∥ =

∥∥∥U>U∥∥∥
Now we have (U>U)ii = 〈ai, ai〉3 = 1, and by (a) with overwhelming probability (U>U)ij =

〈ai, aj〉3 = Õ
(

1
d3/2

)
. Thus by Gershgorin circle theorem, we have

‖U>U‖ 6 max
i∈[d3]

∑
j∈[d3]

∣∣∣(U>U)ij

∣∣∣ = Õ
( n

d3/2

)

Corollary 48 For n 6 d3/2/ polylog d, let a1, · · · , an be n i.i.d. random unit vectors, and let
s1, . . . , sn be independent random signs.
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(a) ∥∥∥∥∥
n∑
i=1

si · aia>i

∥∥∥∥∥ w.ov.p
= Õ

(√
n

d
+ 1

)
.

(b) ∥∥∥∥∥
n∑
i=1

si · a⊗2
i

(
a⊗2
i

)>∥∥∥∥∥ w.ov.p
= Õ

(√
n

d

)
.

(c) ∥∥∥∥∥
n∑
i=1

si · a⊗3
i

(
a⊗3
i

)>∥∥∥∥∥ w.ov.p
= Õ(1).

Lemma 49 (Lemma 5.9 in Hopkins et al. (2016)) For R =
√

2
(
Ea∼N(0,Idd)(aa

>)⊗2
)+1/2, de-

note Φ =
∑

i e
⊗2
i ∈ Rd2 , (a) we have ‖R‖ = 1 and moreover

R =
√

2
(
Σ+
)1/2

= Πsym −
1

d

(
1−

√
2

d+ 2

)
ΦΦ>

(b) for any v ∈ Rd,

‖R(v ⊗ v)− v ⊗ v‖22 =

(
1

d+ 2

)
· ‖v‖4

Proof (a) has been proved in Lemma 5.9 of Hopkins et al. (2016). For (b), without loss of generality,
we assume ‖v‖ = 1. Then we have

R(v ⊗ v)− v ⊗ v = −1

d

(
1−

√
2

d+ 2

)
〈Φ>, v ⊗ v〉Φ

Since ‖Φ‖ =
√
d and 〈Φ>, v ⊗ v〉 =

∑d
i=1〈v, ei〉2 = 1, we have

‖R(v ⊗ v)− v ⊗ v‖2 =
1

d+ 2

which concludes the proof.

Lemma 50 [Similar to Lemma 5.11 in Hopkins et al. (2016)] Let a1, . . . , an ∈ Rd independently
and uniformly sampled from the unit sphere. Let R =

√
2 ·
(
E
(
(aa>)⊗2

))+1/2. Let ui = ai ⊗
ai. With overwhelming probability, every j ∈ [n] satisfies (a)

∑
i 6=j
〈
uj , R

2ui
〉2

= Õ
(
n/d2

)
(b)

‖Ruj − uj‖2 6 Õ
(

1
d

)
.
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Proof (a) We follow the same proof as in the lemma 5.11 of Hopkins et al. (2016) (which is for
a1, . . . , an ∼ N(0, Idd)):∑

i 6=j

〈
uj , R

2ui
〉2

=
∑
i 6=j

〈
uj ,

(
Πsym −

1

d+ 2
ΦΦ>

)
ui

〉2

=
∑
i 6=j

(
〈aj , ai〉2 −

1

d+ 2
‖uj‖2 ‖ui‖2

)2

=
∑
i 6=j

Õ(1/d)2

= Õ
(
n/d2

)
.

(b) This follows directly from Lemma 5.9(b) by replacing v with ai.

Lemma 51 (Lemma 5.9 in Hopkins et al. (2016)) For n 6 Õ
(
d3/2

)
, let R =

√
2
(
E a⊗2

(
a⊗2
)>)−1/2

where a ∼ N(0, Id), and a1, a2, . . . , an ∈ Rd be i.i.d random

vectors sampled uniformly from the unit sphere. Then with probability at least 1 − Õ
(

n
d3/2

)
, we

have ∥∥∥∥∥
n∑
i=1

Ra⊗2
i

(
Ra⊗2

i

)> −Π

∥∥∥∥∥ 6 Õ
( n
d2

)
where Π is the projection matrix to the span of

{
Ra⊗2

i

}
.

Lemma 52 For vectors a1, a2, . . . , an ∈ Rd sampled uniformly at random from unit sphere, and

R =
√

2
(
E a⊗2

(
a⊗2
)>)+1/2

, we have∥∥∥∥∥
n∑
i=1

Ra⊗2
i

(
(Ra⊗2

i )⊗2
)>∥∥∥∥∥ 6 1 + Õ

( n

d3/2

)
Proof Let U ∈ Rn×d2 be a matrix with the i-th row vector given By Ra⊗2

i , and let V ∈ Rn×d4 be
a matrix with the i-th row vector given by

(
Ra⊗2

i

)⊗2. Then we have
∑n

i=1Ra
⊗2
i

(
(Ra⊗2

i )⊗2
)>

=
UV top. Our strategy is then to bound ‖U‖ and ‖V ‖.

First with high probability we have

‖U‖ =
√
‖UU>‖ =

√√√√∥∥∥∥∥
n∑
i=1

Ra⊗2
i

(
Ra⊗2

i

)>∥∥∥∥∥ 6 1 + Õ
( n

d3/2

)
Second with high probability have

‖V ‖ =
√
‖V V >‖ =

√√√√∥∥∥∥∥
n∑
i=1

(
Ra⊗2

i

(
Ra⊗2

i

)>)⊗2
∥∥∥∥∥ 6 1 + Õ

( n

d3/2

)
It then follows that ‖UV >‖ 6 ‖U‖‖V ‖ 6 1 + Õ

(
n
d3/2

)
.
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Lemma 53 (Concentration of random tensor contractions Ma et al. (2016)) Let g be a stan-
dard Gaussian vector in Rk, g ∼ N (0, Idk) . Let A be a tensor in

(
Rk
)
⊗
(
R`
)
⊗ (Rm), and

call the three modes of Aα, β, γ respectively. Let Ai be a `×m slice of A along mode α. Then,

P

[∥∥∥∥∥
k∑
i=1

giAi

∥∥∥∥∥ > t ·max
{∥∥A{αβ}{γ}∥∥ ,∥∥A{αγ}{β}∥∥}

]
6 (m+ `) exp

(
− t

2

2

)

G.3. Rademacher bounds on general matrices

Theorem 54 (Follows directly from (Tropp, 2015, Theorem 4.6.1)) Let A1, . . . , An be a sequence
of symmetric matrices with dimension dΘ(1) and let s1, . . . , sn be a sequence of i.i.d. Rademacher
random variables. Let Y =

∑n
i=1 si · Ai and v(Y ) =

∥∥∑n
i=1A

2
i

∥∥
2
. Then with overwhelming

probability

‖Y ‖2 6 Õ
(√

v(Y )
)
.

Lemma 55 ((Hopkins et al., 2016, Corollary 5.5)) Let s1, . . . , sn be independent random signs.
Let A1, . . . , An and B1, . . . , Bn be Hermitian matrices. Then, w.ov.p.,∥∥∥∥∥∥

∑
i∈[n]

si ·Ai ⊗Bi

∥∥∥∥∥∥ 6 Õ

(max
i∈[n]
‖Bi‖

)
·

∥∥∥∥∥∥
∑
i∈[n]

A2
i

∥∥∥∥∥∥
1
2

 .

The next lemma doesn’t contain any randomness but it’s very similar to the one above and used
in the same context, so we will also list it here.

Lemma 56 For i = 1, . . . , n let Ai, Bi be symmetric matrices and suppose that for all i we have
that Ai is psd. Then ‖

∑n
i=1Ai ⊗Bi‖ 6

(
maxi∈[n] ‖Bi‖

)
· ‖
∑n

i=1Ai‖.

Proof Let b = maxi∈[n] ‖Bi‖. For each i we have thatAi⊗Bi � Ai⊗b · Id sinceAi and b · Id−Bi
are psd and the Kronecker product of two psd matrices is also psd. By summing over all i we get
that

∑n
i=1Ai ⊗Bi � b · (

∑n
i=1Ai)⊗ Id which implies the claim.

Finally we use a decoupling lemma from probability theory. A special version of this lemma
has been used in Hopkins et al. (2016).

Theorem 57 (Theorem 1 in de la Peña and Montgomery-Smith (1995)) For any constant k,
let s,

{
s(1)
}
,
{
s(2)
}
, . . . , s(`) ∈ {±1}d be independent Rademacher vectors. Let

{Mi1,i2,...,i` : i1, i2, . . . , i` ∈ [d]} be a family of matrices. Then there is constant C which depends
only on k, so that for every t > 0,

P

∥∥∥∥∥∥
∑

06i1 6=i2 6=... 6=i`6d
si1si2 . . . si`Mi1,i2,...,i`

∥∥∥∥∥∥
op

> t

 6 C·P

C
∥∥∥∥∥∥

∑
06i1 6=i2 6=... 6=i`6d

s
(1)
i1
s

(2)
i2
. . . s

(`)
i`
Mi1,i2,...,i`

∥∥∥∥∥∥
op

> t


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G.4. Optimizer of tensor injective norm

Lemma 58 (Lemma 5.20 in Hopkins et al. (2016)) Let T =
∑

i∈[n] ai ⊗ ai ⊗ ai for normally
distributed vectors ai ∼ N

(
0, 1

d Idd
)
. For all 0 < γ, γ′ < 1,

– With overwhelming probability, for every v ∈ Rd such that
∑

i∈[n] 〈ai, v〉
3 > 1− γ

max
i∈[n]
|〈ai, v〉| > 1−O(γ)− Õ

(
n/d3/2

)
– With overwhelming probability over a1, . . . , an, if v ∈ Rd with ‖v‖ = 1 satisfies 〈v, aj〉 >

1− γ′ for some j then
∑

i 〈ai, v〉
3 > 1−O (γ′)− Õ

(
n/d3/2

)
Appendix H. Linear algebra

In this section, we record some linear algebra facts and results used in the paper.

Lemma 59 For n′ = Õ(d3/2) and d 6 n 6 n′, suppose vectors b2, . . . , bn satisfy ‖M −Π‖ 6

Õ
(

n′

d3/2

)
, where M =

∑n
i=1 bib

>
i and Π is the projection matrix to the span of {bi : i ∈ [2, n]}.

Then we have
∥∥M>M −M∥∥ 6 Õ

(
n′

d3/2

)
.

Proof Since Π2 = Π, we have M>M − Π = M>M −M>Π + M>Π − Π = M>(M − Π) +

(M − Π)>Π. Since ‖Π‖ = 1 and ‖M‖ 6 ‖Π‖ + ‖Π − M‖ 6 1 + Õ
(

n
d3/2

)
, it follows that

‖M>(M −Π) + (M −Π)>Π‖ 6 ‖M −Π‖
(
‖M>‖+ ‖Π‖

)
6 Õ

(
n
d3/2

)
and we have the claim.

H.1. Fast SVD algorithm

For implementation, we use the lazy SVD algorithm from Allen-Zhu and Li (2016).

Lemma 60 (Implicit gapped eigendecomposition; Lemma 7 in Hopkins et al. (2019), Corollary 4.4 in Allen-Zhu and Li (2016))
Suppose a symmetric matrix M ∈ Rd×d has an eigendecomposition M =

∑
j λjvjv

>
j , and that

Mx may be computed within t time steps for x ∈ Rd. Then v1, . . . , vn and λ1, . . . , λn may be
computed in time Õ

(
min

(
n(t+ nd)δ−1/2, d3

))
, where δ = (λn − λn+1) /λn. The dependence

on the desired precision is polylogarithmic.

Appendix I. Fast matrix multiplications and tensor contractions

To easily compute the running time of Theorem 1 under a specific set of parameters n, d, we include
here a table (Fig. 7) from Gall and Urrutia (2018) with upper bounds on rectangular matrix multi-
plication constants. We remind the reader that basic result in algebraic complexity theory states that
the algebraic complexities of the following three problems are the same:

– computing a (dk × d)× (d× d) matrix multiplication,

– computing a (d× dk)× (dk × d) matrix multiplication,

– computing a (d× d)× (d× dk) matrix multiplication.

45



DING D’ORSI LIU STEURER TIEGEL

Figure 7: ω(k) denotes the exponent of the multiplication of an(d × dk) by a (dk × d) matrix, so
that the running time is O(dω(k)).

I.1. Fast algorithms for low rank tensors

We state the running time for some common tensor operations given implicit representation. The
proofs are very similar to the lemma 8 in Hopkins et al. (2019).

The first lemma is about computing tensor contraction.

Lemma 61 (Time for computing tensor contraction) Let ` ∈ Õ(d2). Suppose we are given
U, V ∈ Rd3×n. Consider vectors x1, x2, . . . x` ∈ Rd2 ,g1, g2, . . . , g` ∈ Rd2 , and ten-
sor T ∈

(
Rd
)⊗6 satisfying T{1,2,3}{4,5,6} = UV >. Then there is an algorithm comput-

ing
(
x>i ⊗ Idd2 ⊗ g>i

)
T for all i 6 `, in O

(
n · d4 + d2(ω( 1

2
(1+logd n)))

)
time. When n =

O
(
d3/2/ polylog(d)

)
, this is bounded by Õ(n · d4 + d5.25) time.

Proof Since
(
x>i ⊗ Idd2 ⊗ g>i

)
T = (xi ⊗ Idd)

> UV >(gi ⊗ Idd), we only need to obtain Yi =
V >(gi ⊗ Idd) and Zi = U> (xi ⊗ Idd) for all i ∈ [`], and then compute Z>i Yi for all i ∈ [`]. Since
Yi ∈ Rn×d and Zi ∈ Rn×d, the last step takes time n · d2 · ` = Õ(n · d4).

To obtain Yi for all i ∈ [`], we construct a d2 × ` matrix G, whose i-th column is given by gi.
Then Yi can all be obtained as sub-matrix of M1 = V >(G ⊗ Idd). We write V as a block matrix:
V > = (V >1 , V >2 , . . . , V >d ) where V1, V2, . . . , Vd ∈ Rn×d2 . Then M1 is equivalent to a reshaping of
(V ′)>G where V ′ = (V1, V2, . . . , Vd). Since V ′ ∈ Rd2×nd, G ∈ Rd2×`, and ` = Õ(d2), this matrix
multiplication takes time at most O

(
d2(ω( 1

2
(1+logd n)))

)
. By the same reasoning, it takes time at

most O
(
d2(ω( 1

2
(1+logd n)))

)
to obtain Zi for all i ∈ [`].

In conclusion, the running time of is bounded by O
(
n · d4 + d2(ω( 1

2
(1+logd n)))

)
. Since

ω(5/4) 6 2.622, this is bounded by O(n · d4 + d5.25).

The second lemma is about computing singular value decomposition for rectangular flattening
of a low rank order-6 tensor. The proof has already appeared in the proof of lemma 8 in Hopkins
et al. (2019).
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Lemma 62 (Time for computing singular value decomposition) Suppose we are given matrices
U ∈ Rd3×n and Z ∈ Rnd×d2 . Then for matrix M := Z>(UU> ⊗ Idd)Z and k = O(n), there is a
Õ(n2d3δ−1) time algorithm obtaining P ∈ Rd3×k and diagonal matrix Λ ∈ Rk×k such that∥∥∥M1/2 − PΛ1/2P>

∥∥∥ 6 (1 + δ)ρk

where ρk is the k-th largest eigenvalue of M1/2.

Proof We first claim that matrix-vector multiplication by M can be implemented in O
(
nd3
)

time,
with O

(
n2d3

)
preprocessing time for computing the product U>U . The matrix-vector multipli-

cations by Z and Z> take time O
(
nd3
)
, and then multiplying Zy by U>U ⊗ Idd is reshaping-

equivalent to multiplying U>U into the n × d matrix reshaping of Zy, which takes O
(
n2d
)

time
with the precomputed n × n matrix U>U . Therefore, by Lemma 60, it takes time Õ

(
n2d3δ−1/2

)
to yield a rank-k eigendecomposition PΛP> such that

∥∥M1/2 − PΛ1/2P>
∥∥ 6 (1 + δ)ρk

Appendix J. Missing proofs

In this section we will give the proofs we omitted in the main body of the paper.

J.1. Reducing to isotropic components

In this section, we prove that the components a⊗2
i are nearly isotropic in the sense of Frobenius

norm. Concretely we prove the following theorem.

Lemma 63 (Restatement of Lemma 17) For n = O
(
d3/2/ polylog(d)

)
and n′ 6 n, let

a1, a2, . . . , an′ ∈ Rd be (n, d)-nicely-separated. Let R =
√

2 ·
(
Ea∼N(0,Idd) a

⊗2
(
a⊗2
)>)+1/2

,

for any tensor M̂ =
∑n

i=1 a
⊗6
i + E with ‖E‖F 6 Õ

(
n′

d3/2

)
·
√
n, we have∥∥∥∥∥M̂−

n′∑
i=1

(
Ra⊗2

i

)⊗3

∥∥∥∥∥
F

6 Õ

(
n′

d3/2

)
·
√
n .

This will allow us to rewrite M̂ =
∑n′

i=1

(
Ra⊗2

i

)⊗3
+ E′ where ‖E′‖ 6 1

polylog(d) . The

advantage is that the component vectors Ra⊗2
i now become isotropic, and the spectral norm of∑n′

i=1Ra
⊗2
i

(
Ra⊗2

i

)> is tightly bounded.
The lemma follows as a corollary of the statement below:

Lemma 64 For n = O
(
d3/2/ polylog(d)

)
and d 6 n′ 6 n, let a1, a2, . . . , an′ ∈ Rd be (n, d)-

nicely-separated. Let R =
√

2 ·
(
Ea∼N(0,Idd) a

⊗2
(
a⊗2
)>)+1/2

. Let vectors bi := Ra⊗2
i for

i ∈ [n′]. Then we have ∥∥∥∥∥
n′∑
i=1

b⊗3
i − a

⊗6
i

∥∥∥∥∥
F

6 10δ
√
n′

where δ = Õ
(

n
d3/2

)
.
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Proof We decompose the square of Frobenius norm into the sum of two parts:∥∥∥∥∥
n′∑
i=1

b⊗3
i −

n′∑
i=1

a⊗6
i

∥∥∥∥∥
2

F

=
∑

i,j∈[n′]

〈
b⊗3
i − a

⊗6
i , b⊗3

j − a
⊗6
j

〉
=
∑
i∈[n′]

∥∥b⊗3
i − a

⊗6
i

∥∥2
+
∑

i,j∈[n′]
i 6=j

〈
b⊗3
i − a

⊗6
i , b⊗3

j − a
⊗6
j

〉

For the first part, by (n, d) nicely-separated assumption(Theorem 15), we have ‖bi − a⊗2
i ‖2 6

Õ(1/d) and thus 〈bi, a⊗2
i 〉 6 1 − Õ(1/d). It follows that 〈bi, a⊗2

i 〉3 > 1 − Õ(1/d) and∥∥b⊗3
i − a

⊗6
i

∥∥2
6 Õ(1/d). By summation, we have

n′∑
i=1

∥∥b⊗3
i − a

⊗6
i

∥∥2
6 Õ(1/d) · n 6 δ2n

For the second part, we have∑
i,j∈[n′]
i 6=j

〈
b⊗3
i − a

⊗6
i , b⊗3

j − a
⊗6
j

〉
=

∑
i,j∈[n′]
i 6=j

〈bi, bj〉3 − 2
∑

i,j∈[n′]
i 6=j

〈a⊗2
i , bj〉3 +

∑
i,j∈[n′]
i 6=j

〈ai, aj〉6

For the first term, by assumption, for each j ∈ [n]∣∣∣∣∣∣
∑

i∈[n′]\{j}

〈bi, bj〉3
∣∣∣∣∣∣ 6

∑
i∈[n′]\{j}

|〈bi, bj〉| 〈bi, bj〉2 6 Õ
( n
d2

)
thus we have ∣∣∣∣∣∣∣∣

∑
i,j∈[n′]
i 6=j

〈bi, bj〉3

∣∣∣∣∣∣∣∣ 6 (1 + o(1))
∑

i,j∈[n′]
i 6=j

〈bi, bj〉2 6 n′ · Õ
( n
d2

)
6 δ2 · n′

For the second term, denote ci = a⊗2
i −bi, using the (n, d)-nicely-separated assumption that ‖ci‖2 6

Õ(1/d) and
∥∥∥∑j∈[n′] bjb

>
j

∥∥∥ 6 1 + o(1), we have∣∣∣∣∣∣∣∣
∑

i,j∈[n′]
i 6=j

〈a⊗2
i , bj〉3

∣∣∣∣∣∣∣∣ 6 (1 + o(1))
∑

i,j∈[n′]
i 6=j

〈a⊗2
i , bj〉2

= (1 + o(1))
∑

i,j∈[n′]
i 6=j

〈ci + bi, bj〉2
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6 2(1 + o(1))
∑

i,j∈[n′]
i 6=j

〈ci, bj〉2 + 2(1 + o(1))
∑

i,j∈[n′]
i 6=j

〈bi, bj〉2

6 2(1 + o(1))
∑
i∈[n′]

c>i

 ∑
j∈[n]\{i}

bjb
>
j

 ci + 2(1 + o(1))n′ · Õ(n/d2)

6 2(1 + o(1))
∑
i∈[n′]

‖ci‖2 + Õ(nn′/d2)

6 Õ
(
nn′/d2 + n/

√
d
)

6 o(δ2 · n′)

For the third term, by the (n, d)-nicely-separated property, we have 〈ai, aj〉6 6 1
d3/2

. Therefore
we have ∑

i,j∈[n′]
i 6=j

〈ai, aj〉6 6
1

d3/2
· n′2 6 δ2n′

Therefore in all, we have
∥∥∥∑n′

i=1 b
⊗3
i −

∑n′

i=1 a
⊗6
i

∥∥∥2

F
6 2δ2n′ and thus we have the claim.

Proof [Proof of Lemma 17] By Lemma 64, we have
∥∥∥∑n′

i=1 b
⊗3
i −

∑n′

i=1 a
⊗6
i

∥∥∥
F
6 Õ

(
n
d3/2

)√
n′.

Since
∥∥M −∑n

i=1 a
⊗6
i

∥∥
F
6 Õ

(
n
d3/2

)√
n′, by triangle inequality, we have the claim.

J.2. Satisfaction of nice-separation property by independent random vectors

In this section, we prove Lemma 16 using the concentration results from Appendix G.
Proof [Proof of Lemma 16] Property (i),(ii),(iii) follows from lemma Lemma 47. Property (iv)
follows from the lemma Lemma 51. Property (5),(6) follows from the lemma Theorem 50. Property
(7),(8) follows from the lemma Lemma 46.

J.3. Gaussian rounding

J.3.1. SPECTRAL GAP FROM RANDOM CONTRACTION

In this section, we will prove the spectral gap of diagonal terms.

Lemma 65 (Restatement of Lemma 22) Consider the setting of Lemma 14. Let R =
√

2 ·(
Ea∼Idd

(
aa>

)⊗2
)+1/2

. Let S0 ⊆ [n] be of size n′ where d 6 n′ 6 n and assume that the set

{ai | i ∈ S0} is (n, d)-nicely separated. Further, let M̂ be such that

‖M61 −
∑
i∈S0

(Ra⊗2
i )⊗3‖F 6 ε

√
n′ and

∥∥∥M61
{1,2,3,4}{5,6}

∥∥∥ ,∥∥∥M61
{1,2,5,6}{3,4}

∥∥∥ 6 1.

Consider the matrix Mg = (g ⊗ Idd2 ⊗ Idd2)M61
{1,2}{3,4}{5,6} in Algorithm 20. Then for every

α > 1 + 10 log log n/ log n, there exists a subset S ⊆ S0 of size m > 0.99n′, such that for each
i ∈ S, and v = Ra⊗2

i , with probability at least 1/d2α over g, we have M = cvv> +N where
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– ‖cvv>‖ > (1 + 1
log d)‖N‖

– ‖Nv‖, ‖vN‖ 6 εc‖v‖2

The proof of this lemma involves a simple fact from standard Gaussian tail bound:

Lemma 66 Given any unit norm vector v ∈ Rd2 , for standard random Gaussian vector g ∼
N(0, Idd2), we have

P
{
|〈g, v〉| >

√
2α log n

}
= Θ̃(n−α)

Proof Since the distribution of 〈g, v〉 is given by N(0, 1). By taking t =
√

2α log n in the fact 44,
we have the claim.

We will also use the following simple fact(a similar fact appears in Schramm and Steurer
(2017)):

Fact 67 If P1, . . . , Pn ∈ Rd2×s s.t ∥∥∥∥∥
n∑
i=1

PiP
>
i

∥∥∥∥∥ 6 1 + o(1)

and E ∈ Rd2×d2 s.t ‖E‖F 6 ε
√
n , then for a 1− δ fraction of i ∈ [n]∥∥∥P>i E∥∥∥

F
6 ε/δ

Proof This follows from the fact that
n∑
i=1

∥∥∥P>i E∥∥∥2

F
=

n∑
i=1

〈
E,PiP

>
i E

〉
=

〈
E,

(
n∑
i=1

PiP
>
i

)
E

〉

6 ‖E‖F

∥∥∥∥∥
(

n∑
i=1

PiP
>
i

)
E

∥∥∥∥∥
F

6 ‖E‖2F

∥∥∥∥∥
n∑
i=1

PiP
>
i

∥∥∥∥∥
6 ‖E‖2F

Now we prove the Lemma 22:
Proof [Proof of Lemma 22] For notation simplicity, for j ∈ [d2] we denote matrices Tj as the j-th
slice in the first mode of M61

{1,2}{3,4}{5,6} ∈ Rd2×d2×d2 . Further we denote X =
∑

i∈S0
(Ra⊗2

i )⊗3,

E = M61
{1,2}{3,4}{5,6} −X and Ej as the j-th slice in the first mode.
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W.l.o.g. assume that S0 = [n′]. For each i ∈ [n′], we denote bi = Ra⊗2
i . We first prove that for

each i ∈ [n′] s.t
∥∥(bib>i ⊗ Idd2

)
E
∥∥
F
6 100ε and ‖E (bi ⊗ Idd3)‖F 6 100ε, we have i ∈ S. By

Lemma 51, we have
∥∥∥∑n′

i=1 bib
>
i

∥∥∥ 6 1 + Õ
(

n
d3/2

)
, and∥∥∥∥∥

n′∑
i=1

(bib
>
i )(bib

>
i )>

∥∥∥∥∥ =

∥∥∥∥∥
n′∑
i=1

‖bi‖2bib>i

∥∥∥∥∥ 6 1 + Õ
( n

d3/2

)
. Thus by Fact 67, the assumptions

∥∥(bib>i ⊗ Idd2
)
E
∥∥
F
6 100ε and ‖E (bi ⊗ Idd3)‖F 6 100ε are

satisfied for at least 0.99n′ of the component vectors. The lemma thus follows.
Without loss of generality, we suppose ‖(bi ⊗ Idd2)E‖F 6 100ε and

∥∥(bib>i ⊗ Idd2
)
E
∥∥
F
6

100ε. We denote g‖ = 1
‖bi‖2 〈g, bi〉 bi and g⊥ = g − g‖ .Then by the property of Gaussian distribu-

tion, g‖, g⊥ are independent. Then we have

M = 〈g, b1〉b1b>1 +

d2∑
j=1

(
g‖ + g⊥

)
j
·
(
X− b⊗3

1 + E
)
j

= 〈g, b1〉b1b>1 +N

where N =
∑d2

j=1

(
g‖
)
j
·
(
X− b⊗3

1 + E
)
j

+
∑d2

j=1 g
⊥
j · Tj .

First by Lemma 66, with probability at least Θ(d−2α), 〈g, b1〉 = ‖b1‖‖g‖‖ >
√

4α log d. We
denote this event as G1(α). On the other hand, we denote

E>1(ρ)
def
=


∥∥∥∥∥∥
d2∑
j=1

g⊥j · Tj

∥∥∥∥∥∥ 6
√

4(1 + ρ) log d


By Lemma 53 and the independence between g⊥ and g‖ , we have

P
g

[E>1(ρ) | G1(α)] > 1− d−ρ

Next we bound g ·
(
X− b⊗3

1

)
and

∑
j g
‖
jEj separately. For the first one, by the nicely-separated

assumption, we have maxi>2|〈bj , b1〉| 6
√
n/d and ‖

∑n
i=2 bjb

>
j ‖ 6 2. It follows that∥∥∥∥∥∥

∑
j

g
‖
j

(
X− b⊗3

1

)∥∥∥∥∥∥ =
‖g‖‖
‖b1‖

·

∥∥∥∥∥
n∑
i=2

〈bj , b1〉bjb>j

∥∥∥∥∥ 6 2‖g‖‖ ·max
i>2
|〈bj , b1〉| 6 Õ

(√
n

d
)

)
‖g‖‖

For the second one we have∑
j

g
‖
jEj =

〈g, b1〉
‖b1‖

·
∑
j

b1(j) · Ej =
〈g, b1〉
‖b1‖

· (b1 ⊗ Idd2)E

Since by assumption, we have ‖(b1 ⊗ Idd2)E‖F 6 100ε. We have∥∥∥∥∥∥
∑
j

g
‖
jEj

∥∥∥∥∥∥ 6 100ε‖g‖‖
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Combining both parts, the event G1(α) and E>1(ρ) implies

‖N‖ 6

∥∥∥∥∥∥
∑
j

g
‖
jEj

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j

g⊥j Tj

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j

g
‖
j ·
(
X− b⊗3

1

)∥∥∥∥∥∥ 6

(
100ε+

√
1 + ρ

α

)
‖g‖‖

Finally, we consider the event

Eb1,E(θ)
def
=


∥∥∥∥∥∥
 d2∑
j=1

g⊥j · Tj

 b1

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥∥
 d2∑
j=1

g⊥j · Tj

> b1
∥∥∥∥∥∥∥

2

6 100ε ·
√

2(1 + θ)


First we consider the following decomposition d2∑

j=1

g⊥j · Tj

 b1 =
d2∑
j=1

g⊥j ·
(
X− b⊗3

1

)
j
b1 +

d2∑
j=1

g⊥j · Ejb1

For the first term, let X⊥ =
∑n′

i=1 bib
>
i and X⊥g =

∑n′

i=1〈bi, g⊥〉bib>i . Then since X⊥g �(
max16i6n

∣∣〈bi, g⊥〉∣∣) ·X⊥, we have∥∥∥∥∥∥
d2∑
j=1

g⊥j ·
(
X− b⊗3

1

)
j
b1

∥∥∥∥∥∥
2

=

∥∥∥∥∥
n′∑
i=1

〈bi, g⊥〉bib>i b1

∥∥∥∥∥
2

= 〈b1, (X⊥g )2b1〉

6

(
max
16i6n

∣∣∣〈bi, g⊥〉∣∣∣2) 〈b1, (X⊥)2b1〉

By Lemma 59 and the (n, d)-nicely-separated property, with probability 1 − o(1) we have
‖(X⊥)2 −X⊥‖ 6 Õ

(
n
d3/2

)
. It then follows that

〈b1, (X⊥)2b1〉 6 〈b1, (X⊥)b1〉+ Õ
( n

d3/2

)
6

n′∑
i=2

〈bi, b1〉2 + Õ
( n

d3/2

)
6 Õ

( n
d2

)
+ Õ

( n

d3/2

)
6 Õ

( n

d3/2

)
The last step follows from the fact that

∑n′

i=2〈bi, b1〉2 > Õ
(

n
d3/2

)
.Since with probability 1 −

n−Ω(logn) over g,

max
16i6n′

∣∣∣〈bi, g⊥〉∣∣∣ 6√2 log2 n

we have ∥∥∥∥∥∥
d2∑
j=1

g⊥j ·
(
X− b⊗3

1

)
j
b1

∥∥∥∥∥∥ 6 Õ
( n

d3/2

)
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For the second term, by assumption we have

P

∥∥∥∥∥∥
d2∑
j=1

g⊥j · Eja

∥∥∥∥∥∥
2

6 100ε
√

2(1 + θ)

 > 1− d−θ

It follows that
P [Ea1,E(θ)] > 1− 2d−θ

Now since

P
g

[E>1(ρ) ∩ Eb1,E(θ) | G1(α)] > 1− d−ρ − 2d−θ − n−Ω(logn)

by the independence between Eb1,E(θ) and G1(α), we have

P
g

[E>1(ρ) ∩ Eb1,E(θ) ∩ G1(α)] = P
g

[E>1(ρ) ∪ Ea1,E(θ) | G1(α)]P
g

[G1(α)] > (1−d−ρ−2d−θ)Θ(n−α)

Now we write Mg = cb1b
>
1 + N . By setting ρ, θ = log logn

logn , and α = (1 + 2ρ) >

(1 + 1
logn)2(1 + ρ), we have all three conditions are satisfied when E>1(ρ) ∩ Eb1,E(θ) ∩ G1(α)

holds. Indeed, by event G1(α) and E>1(ρ), we have c = ‖b1‖‖g‖‖ >
√

4α log d and ‖N‖ 6(
100ε+

√
1+ρ
α

)
‖g‖‖ 6 (1 + 1

logn)c; By event Eb1,E(θ), ‖Nb1‖, ‖N>b1‖ 6 100ε ·
√

2(1 + θ) +∥∥∥∑j g
‖
jEj

∥∥∥+
∥∥∥∑j g

‖
j ·
(
X− b⊗3

1

)∥∥∥ 6 c
polylog(d) .

J.3.2. RECOVERING CONSTANT FRACTION OF COMPONENTS

Lemma 68 (Restatement of Lemma 23) Consider the setting of Lemma 14. Let S0 ⊆ [n] be of
size n′ 6 n and assume that the set {ai | i ∈ S0} is (n, d)-nicely separated. Consider the matrix
Mg and its top right singular vector ur ∈ Rd2 obtained in one iteration of Algorithm 20. Then there
exists a set S ⊆ S0, such that for each i ∈ S, it holds with probability Θ̃(d−2) that

– 〈u,Ra⊗2
i 〉 > 1− 1

polylog(d) .

– the ratio between largest and second largest singular values ofMg is larger than 1+ 1
polylog(d)

To prove the lemma above we will use a lemma on getting estimation vector from the spectral
gap, which already appears in the previous literature:

Lemma 69 (Lemma 4.7 in Schramm and Steurer (2017)) Let Mg be a Rn×n symmetric matrix
s.t Mg = cvv>+N where v has unit norm, c > (1 + δ)‖N‖, and ‖Nv‖, ‖vN‖ 6 γ‖v‖2. Suppose
γ 6 δ

polylog(d) , then the top eigenvector of Mg denoted by u satisfies:

〈u, v〉2 > 1− 1

polylog(d)

Further the ratio between largest and second largest singular values of Mg is larger than 1 +

O
(

1
polylog(d)

)
.
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Proof [Proof of Lemma 23] W.l.o.g assume that S0 = [n′]. For i ∈ [n′], we denote bi := Ra⊗2
i .

Combining Lemma 69, Lemma 22, for some S ⊆ [n′] with size at least 0.99n′, for each i ∈ S,
with probability Θ̃(d−2) over g, we have Mg = cbib

>
i + N , where ‖bi‖ = 1 ± Õ

(
1√
d

)
and

|c| > (1 + 1
log(d))‖N‖ , and ‖Nv‖, ‖vN‖ 6 1

polylog(d) .

Now by Lemma 69, there exists unit norm vector u ∈ {uL, uR} s.t 〈u,Ra⊗2
i 〉2 > 1− 1

polylog(d) .

Since
∥∥Ra⊗2

i − a
⊗2
i

∥∥ 6 Õ
(

1√
d

)
, it follows that

∣∣〈u,Ra⊗2
i 〉
∣∣ > 1− 1

polylog(d) .

Lemma 70 (Restatement of Lemma 24) Consider the setting of Lemma 14. Suppose for some
unit norm vector a ∈ Rd, and unit vector u ∈ Rd2 , 〈u,Ra⊗2〉 > 1 − 1

polylog(d) . Then flattening u
into a d × d matrix U , the top left or right singular vector of U denoted by v will satisfy 〈a, v〉2 >
1− 1

polylog(d) .

Proof Since ‖Ra⊗2
i − a⊗2

i ‖2 6 Õ( 1√
d
), we have 〈u, a⊗2〉 > 1 − 1

polylog(d) . Let the singular

value decomposition of U be U =
∑d

i=1 σiwiv
>
i , where σi are singular vectors. Then by the best

rank-1 approximation property of σ1w1v
>
1 , we have ‖σ1w1v

>
1 −U‖F 6 ‖aa> −U‖F . By triangle

inequality, we have ‖σ1w1v
>
1 − aa>‖F 6 2‖aa> −U‖F. Since 〈u, a⊗2〉 > 1− 1

polylog(n) , we have
‖U − aa>‖F 6 1

polylog(d) . It follows that ‖σ1w1v
>
1 − aa>‖F 6 1

polylog(d) . Since σ1 6 1, we have
2σ1〈w1, a〉〈v1, a〉 > 1 + σ2

1 − 1
polylog(d) , which implies that 〈w1, a〉〈v1, a〉 > 1 − 1

polylog(d) . Now
since w1, v1, a has unit norm, we have 〈w1, a〉2, 〈v1, a〉2 > 1− 1

polylog(d) .

Lemma 71 (Restatement of Lemma 21) Let S0 ⊆ [n] be of size d 6 n′ 6 n and assume that the
set {ai | i ∈ S0} is (n, d)-nicely separated. Consider vl and vr in Algorithm 20, then there exists
a set S ⊆ S0 of size m > 0.99n′ such that for each i ∈ S it holds with probability Θ̃(d−2) that
maxv∈{±vl,±vr}〈v, ai〉 > 1− 1

polylog(d) .

Proof Combining Lemma 23 and Lemma 24, we have the claim.

J.3.3. PRUNING LIST OF COMPONENTS

Lemma 72 (Restatement of Theorem 25) Let S be the set of vector computed in Step 3 of Algo-
rithm 20 and S′ be the subset of components of Lemma 21 then for each b ∈ S there exists a unique
i ∈ S′ such that 〈b, ai〉 > 1− 1

polylog d .

In order to prove this we will use the following two facts.

Fact 73 Let a, b1, b2 ∈ Rd be unit norm vectors. If 〈a, b1〉 > 1 − δ and 〈a, b2〉 > 1 − δ, then
〈b1, b2〉 > 1− 2δ

Proof Since we have ‖a− b1‖2 = 2− 2〈a, b1〉 6 2δ and same for ‖a− b1‖, it follows that

〈b1, b2〉 = 〈a, a〉+ 〈b1, b2 − a〉+ 〈b1 − a, b2〉

> 1− 2
√

2δ
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Fact 74 Let a1, a2, b1, b2 ∈ Rd be unit norm vector such that 〈a1, b1〉 > 1− δ1, 〈a2, b2〉 > 1− δ1,
and |〈a1, a2〉| 6 δ2. Then 〈b1, b2〉 6 δ2+8δ1

2 .

Proof Since 〈a1, b1〉 = 2−‖a1−b1‖2
2 and 〈a2, b2〉 = 2−‖a2−b2‖2

2 , we have ‖a1 − b1‖ 6
√

2δ1 and
‖a2 − b2‖ 6

√
2δ1. For the same reason, ‖a1 − a2‖2 = 2 − 2〈a1, a2〉 > 2 − 2δ2 By triangle

inequality, we then have ‖b1 − b2‖ >
√

2− δ2 − 2
√

2δ1. It then follows that

〈b1, b2〉 =
2− ‖b1 − b2‖2

2
>
δ2 + 8δ1

2

Now we are ready to prove Theorem 25.
Proof [Proof of Theorem 25] By the discussion above Theorem 25 we know that for C computed
in Step 1 of Algorithm 20 it holds that

∀i ∈ S′ : max
b∈C
|〈b, ai〉| > 1− 1

polylog(n)

and
∀b ∈ C : max

i∈S
|〈b, ai〉| > 1− 1

polylog(n)

To prove the lemma it is sufficient to show that

– for each bj ∈ S′ there exists a unique i ∈ S such that

〈bj , ai〉 > 1− δ

– for each i ∈ S there exists a unique bj ∈ S′ such that

〈bj , ai〉 > 1− δ

Regarding the first point: By the first condition in equation J.3.3, for each j ∈ S′, there exists
i ∈ S such that 〈bj , ai〉 > 1− δ. For the sake of contradiction assume that there exists k ∈ S, k 6= i
such that 〈bj , ak〉 > 1 − δ. By our assumptions on the components (cf. Theorem 15) we have
|〈ai, ak〉| 6 δ. Thus, invoking Fact 74 with b1, b2 = bi, a1 = ai, and a2 = ak, we get that
1 = 〈bj , bj〉 6 9

2 · δ < 1. Hence, for each bj ∈ S′, there is exactly one i ∈ [n] such that
〈bj , ai〉 > 1− δ.

Regarding the second point: By Fact 73, for any two vectors bj1 , bj2 s.t 〈bj1 , a〉 > 1 − δ and
〈bj2 , a〉 > 1− δ, we must have 〈bj1 , bj2〉 > 1− 2δ > 0.99. Thus by the construction of S′, for each
ai there is at most one bj ∈ S′, such that 〈ai, bj〉 > 1 − δ. On the other hand suppose there exists
i ∈ S such that maxj∈S′〈bj , ai〉 6 1− δ. Then for each bj ∈ S′, we have 〈bj , a`〉 > 1− δ for some
` 6= i. Further by the list recovery guarantee, there exist k ∈ [L] s.t 〈bk, ai〉 > 1 − δ. This means
that by Fact 74, for any vector b in S′, 〈bk, b〉 6 O(δ). By construction, such vector bk should be
contained in the set S′, which leads to contradiction.
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J.4. Full recovery

In this section, we prove a technical lemma used for the proof of Theorem 6.

Lemma 75 For d 6 n 6 O
(
d3/2/polylog(d)

)
and m > d, suppose vectors a1, a2, . . . , am are

(n, d) nicely-separated, and c1, c2, . . . , cm ∈ Rd has norm bounded by Õ
(√

n
d

)
. Suppose for each

j ∈ [6], either for each i ∈ [m], g(j)
i = ai, or for each i ∈ [m], g(j)

i = ci. Further suppose that for
at least one of j ∈ {1, 2, 3} and at least one of j ∈ {4, 5, 6} , g(j)

i = ci. Suppose M ∈ Rm×m has
entries.

Mi,j = 〈g(1)
i , g

(4)
j 〉〈g

(2)
i , g

(5)
j 〉〈g

(3)
i , g

(6)
j 〉

Then the frobenius norm of Mi,j is bounded by Õ
(√

n
d
√
d

)
Proof We divide the choices of g(1), g(2), . . . , g(6) into 4 different cases, according to the inner
product in 〈g(1)

i , g
(4)
j 〉, 〈g

(2)
i , g

(5)
j 〉, 〈g

(3)
i , g

(6)
j 〉. Particularly if g(t)

i = ai and g(t+3)
j = cj , or g(t)

i = ci

and g(t+3)
j = aj , then we call 〈g(t)

i , g
(t+3)
j 〉 a cross inner product pair.

(1). There are no cross inner product pairs, i.e∣∣∣{k ∈ [3] : {g(k)
i , g

(k+3)
j } ∈ {ai, aj} , {ci, cj}

}∣∣∣ = 3 .

Since ai satisfies the (n, d) nicely-separated assumption, 〈ai, aj〉2 6 Õ
(

1
d

)
. Since ‖ci‖ 6

√
n
d ,

〈ci, cj〉2 6 Õ
(

1
d

)
. In this case we have

‖M‖2F =
∑
i,j∈[n]
i 6=j

〈g(1)
i , g

(4)
j 〉

2〈g(2)
i , g

(5)
j 〉

2〈g(3)
i , g

(6)
j 〉

2 6 n2 · (1

d
)3 =

n2

d3

(2). There is one cross inner product pair, i.e∣∣∣{k ∈ [3] : {g(k)
i , g

(k+3)
j } ∈ {{ai, aj}, {ci, cj}}

}∣∣∣ = 2 .

Since ai satisfies (n, d) nicely-separated assumption , we have 〈ai, aj〉2 6 Õ
(

1
d

)
, and∥∥∥∥∥∥

∑
j∈[n]

aja
>
j

∥∥∥∥∥∥ 6
n

d

Further ‖ci‖ 6
√
n
d and 〈ci, cj〉2 6

(
n
d2

)2
6 Õ

(
1
d

)
. Thus we have

‖M‖2F =
∑
i,j∈[n]
i 6=j

〈g(1)
i , g

(4)
j 〉

2〈g(2)
i , g

(5)
j 〉

2〈g(3)
i , g

(6)
j 〉

2

6
∑
i,j∈[n]
i 6=j

1

d2
· 〈ci, aj〉2
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=
1

d2

∑
i∈[n]

c>i

∑
j∈[n]
j 6=i

aja
>
j

 ci

6
1

d2

∑
i∈[n]

‖ci‖2

∥∥∥∥∥∥∥∥
∑
j∈[n]
j 6=i

aja
>
j

∥∥∥∥∥∥∥∥
6

1

d2
· n · n

d2
· n
d

6 o
(
n2/d3

)
(3). There are 2 cross inner product pairs, i.e,∣∣∣{k ∈ [3] : {g(k)

i , g
(k+3)
j } ∈ {{ai, aj}, {ci, cj}}

}∣∣∣ = 1 .

Since ai satisfies (n, d) nicely-separated assumption , we have 〈ai, aj〉2 6 Õ
(

1
d

)
. Further

‖ci‖ 6
√
n
d and 〈ci, cj〉2 6

(
n
d2

)2
6 Õ

(
1
d

)
. We consider two different sub-cases:

– Mi,j = 〈ai, cj〉2〈aj , ci〉2〈ci, cj〉2 or Mi,j = 〈ai, cj〉2〈aj , ci〉2〈ai, aj〉2. By the (n, d)
nicely-separated assumption on aj , we have∥∥∥∥∥∥

∑
j∈[n]

aja
>
j

∥∥∥∥∥∥ 6
n

d

Thus in this case we have

‖M‖2F 6
1

d

∑
i,j∈[n]
i 6=j

〈ai, cj〉2〈aj , ci〉2

=
1

d
· 1√

d

∑
i,j∈[n]
i 6=j

c>j aia
>
i cj

6
1

d
· 1√

d
·

∑
j

‖cj‖2
 ·

∥∥∥∥∥∥∥∥
∑
i∈[n]
i 6=j

aia
>
i

∥∥∥∥∥∥∥∥
6

1

d
· 1√

d
· n√

d
· n
d

6 Õ

(
n2

d3

)
– Mi,j = 〈ai, cj〉4〈ci, cj〉2 or Mi,j = 〈ai, cj〉4〈ai, aj〉2. By the (n, d) nicely-separated

assumption on aj , we have ∥∥∥∥∥∥
∑
j∈[n]

(aja
>
j )⊗2

∥∥∥∥∥∥ 6
n

d
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In this case we have

‖M‖2F 6
1

d

∑
i 6=j
〈ai, cj〉4

6
1

d
·

 n∑
j=1

‖cj‖4
 · ∥∥∥∥∥∑

i

a⊗2
i

(
a⊗2
i

)>∥∥∥∥∥
6 Õ(

1

d
· n
d
· n
d

)

6 Õ
(
n2/d3

)
(4). For the final case, we have three cross inner product pairs, i.e∣∣∣{k ∈ [3] : {g(k)

i , g
(k+3)
j } ∈ {{ai, aj}, {ci, cj}}

}∣∣∣ = 0 .

Then w.l.o.g let Mi,j = 〈ai, cj〉2〈aj , ci〉.
In this case, we use the fact that

‖M‖2F =
∑
i,j∈[n]
i 6=j

〈ai, cj〉4〈aj , ci〉2

=
∑
i,j∈[n]
i 6=j

〈a⊗2
i −Ra

⊗2
i +Ra⊗2

i , c⊗2
j 〉

2〈aj , ci〉2

6 2
∑
i,j∈[n]
i 6=j

〈a⊗2
i −Ra

⊗2
i , c⊗2

j 〉
2〈aj , ci〉2 + 2

∑
i,j∈[n]
i 6=j

〈Ra⊗2
i , c⊗2

j 〉
2〈aj , ci〉2

For the first term, by the (n, d) nicely-separated property, we have
∥∥Ra⊗2

i − a
⊗2
i

∥∥2
6 Õ

(
1
d

)
,

Thus ∑
i,j∈[n]
i 6=j

〈a⊗2
i −Ra

⊗2
i , c⊗2

j 〉
2〈aj , ci〉2 6 Õ

(
1

d2

) ∑
i,j∈[n]
i 6=j

〈aj , ci〉2

= Õ

(
1

d2

) ∑
i,j∈[n]
i 6=j

c>i aja
>
j ci

6 Õ

(
1

d2

)
· n ·max

i
‖ci‖2 ·

∥∥∥∥∥∥
∑

j∈[n]\{i}

aja
>
j

∥∥∥∥∥∥
6 Õ

(
1

d2

)
· n · Õ

( n
d2

)
· Õ
(n
d

)
6 Õ

(
n3

d5

)
= o(n2/d3)
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For the second term, by the (n, d) nicely-separated property of ai, we have∥∥∥∑iRa
⊗2
i

(
Ra⊗2

i

)>∥∥∥ 6 2. We then have

∑
i,j∈[n]
i 6=j

〈Ra⊗2
i , c⊗2

j 〉
2〈aj , ci〉2 6

1√
d

∑
i,j∈[n]
i 6=j

〈Ra⊗2
i , c⊗2

j 〉
2

6
1√
d
·

 n∑
j=1

‖cj‖4
 · ∥∥∥∥∥∑

i

Ra⊗2
i

(
Ra⊗2

i

)>∥∥∥∥∥
6 Õ

(
1√
d
· n
d

)
· 2

6 Õ

(
n

d
√
d

)

Thus overall we can conclude that for each choice of g, ‖M‖F 6 Õ

(√
n
d
√
d

)
.
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