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Abstract
We construct pairs of distributions µd, νd on Rd such that the quantity |Ex∼µd

[F (x)]−Ex∼νd
[F (x)]|

decreases as Ω(1/d2) for some three-layer ReLU network F with polynomial width and weights,
while declining exponentially in d if F is any two-layer network with polynomial weights. This
shows that deep GAN discriminators are able to distinguish distributions that shallow discrimina-
tors cannot. Analogously, we build pairs of distributions µd, νd on Rd such that |Ex∼µd

[F (x)] −
Ex∼νd

[F (x)]| decreases as Ω(1/(d log d)) for two-layer ReLU networks with polynomial weights,
while declining exponentially for bounded-norm functions in the associated RKHS. This confirms
that feature learning is beneficial for discriminators. Our bounds are based on Fourier transforms.
Keywords: Neural networks, depth, GANs, discriminators, three-layer, two-layer, RKHS.

1. Introduction

Wasserstein generative adversarial networks (WGANs, Arjovsky et al. (2017)) are a well-known
generative modeling technique where synthetic samples are generated as x = g(z), where g :
Rd0 → Rd is known as the generator and z is a sample from a d0-dimensional standard Gaussian
random variable. In order to make the generated distribution close to the data samples available, the
generator is a neural network trained by minimizing the loss maxf Ex∼pdata [f(x)]−Ez∼N (0,Id)[f(g(z))],
where the function f : Rd → R is the discriminator and it is also a neural network. Both the gener-
ator and the discriminator are typically deep networks (i.e. depth larger than two) with architectures
that are tailored to the task at hand. Given our loose understanding of the optimization of deep
networks and our better grasp of two-layer networks, a natural question to ask is the following: do
deep discriminators offer any provable advantages over shallow ones? This is the issue that we
tackle in this paper; namely, we showcase distributions that are easily distinguishable by three-layer
ReLU discriminators but not by two-layer ones.

The study of theoretical separation results between two-layer and three-layer networks began
with the works of Martens et al. (2013) and Eldan and Shamir (2016). The two papers show pairs of
a function f : Rd → R and a distribution D on Rd such that f can be approximated with respect to
D by a three-layer network of widths polynomial in d, but not by any polynomial-width two-layer
networks. That is, Eldan and Shamir (2016) show that if g is any two-layer network of width at
most cecd for some universal constant c > 0, then Ex∼D(f(x) − g(x))2 > c. Daniely (2017)
shows a simpler setting where the exponential dependency is improved to d log(d) and the non-
approximation results extend to networks with polynomial weight magnitude. Safran and Shamir
(2017) provide other examples where similar behavior holds, Telgarsky (2016) gives separation
results beyond depth 3, and Venturi et al. (2021) generalize the work of Eldan and Shamir (2016).
Note that all the results in these works concern function approximations in the L2(D) norm.
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Our work establishes separation results between two-layer and three-layer networks of a similar
flavor, for the task of discriminating distributions on high-dimensional Euclidean spaces. Our main
result (Sec. 3) can be summarised in the following theorem:

Theorem 1 (Informal) For any d ∈ Z+, there exist probability measures µd, νd ∈ P(Rd) and a
three-layer network F of widths O(d) and weight magnitude 1 such that |Ex∼µd

[F (x)]−Ex∼νd [F (x)]| =
Ω(1/d2), but such that for any two-layer network G of weight magnitude O(1), |Ex∼µd

[G(x)] −
Ex∼νd [G(x)]| = O(d2κd), where κ = 0.7698 . . .

That is, there exists a three-layer network F with polynomial widths and weights such that the
difference of expectations of F with respect to µd and νd decreases only quadratically with d,
but for all such two-layer networks, the difference of expectations decreases exponentially. We
formalize the vague notion weight magnitude as a specific path-norm of the weights, but the choice
of the weight norm does not alter the essence of the result. Unlike the separation result of Eldan
and Shamir (2016), which relies on radial functions, we build µd and νd using parity functions and
some additional tricks.

Our second contribution (Sec. 5) is to provide analogous separation results between two-layer
neural networks and functions in the unit ball of the associated reproducing kernel Hilbert space
(RKHS) H (see Sec. 2). While two-layer networks are feature-learning, functions in H are lazy;
they can be seen intuitively as infinitely wide two-layer networks for which the first layer features
are sampled i.i.d from a fixed distribution. Our result is as follows:

Theorem 2 (Informal) For any d ∈ Z+, there exist probability measures µd, νd ∈ P(Rd) and a
two-layer network F of weight magnitude 1 such that |Ex∼µd

[F (x)]−Ex∼νd [F (x)]| = Ω( 1
d log(d)),

but such that for any G ∈ H with ∥G∥H ≤ 1, |Ex∼µd
[G(x)]−Ex∼νd [G(x)]| = O(d exp(− (

√
d−1)2

16 )).

The recent work Domingo-Enrich and Mroueh (2021) provides similar results for probability mea-
sures µd, νd on the hypersphere Sd−1 such their difference of densities is proportional to a spherical
harmonic of order proportional to d, and they leave open the extension of the separation result to
densities on Rd with only high-frequency differences. Our theorem solves the issue, as our mea-
sures µd, νd have density difference proportional to sin(ℓ⟨x, e1⟩) times a Gaussian density, where
the frequency ℓ increases as

√
d. Experimentally, the superiority of feature-learning over fixed-

kernel discriminators has been observed for the CIFAR-10 and MNIST datasets (Li et al., 2017;
Santos et al., 2017).

2. Framework

Notation. Sd−1 denotes the (d− 1)-dimensional hypersphere (as a submanifold of Rd). For U ⊆
Rd measurable, P(U) is the set of Borel probability measures, M(U) is the space of finite signed
Radon measures (Radon measures for shortness). (x)+ denotes max{x, 0}.

Schwartz functions and tempered distributions. We denote by S(Rd) the space of Schwartz
functions, which contains the functions φ in C∞(Rd) whose derivatives of any order decay faster
than polynomials of all orders, i.e. for all k, r ∈ (N0)

d, pk,r(φ) = supx∈Rd |xk∂(r)φ(x)| < +∞.
We denote by S ′(Rd) the dual space of S(Rd), which is known as the space of tempered distributions
on Rd. Tempered distributions T can be characterized as linear mappings S(Rd) → R such that
given (φm)m≥0 ⊆ S(Rd), if limm→∞ pk,r(φm) = 0 for any k, r ∈ (Z+)2, then limm→∞ T (φm) =

2
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0. Functions that grow no faster than polynomials can be embedded in S ′(Rd) by defining ⟨g, φ⟩ :=∫
Rd φ(x)g(x) dx for any φ ∈ S(Rd).

Fourier transforms. For f ∈ L1(Rd), we use f̂ to denote the unitary Fourier transform with
angular frequency, defined as f̂(ξ) = 1

(2π)d/2

∫
Rd f(x)e

−i⟨ξ,x⟩dx, and the inverse Fourier transfom

as f̌(ξ) = 1
(2π)d/2

∫
Rd f(x)e

−i⟨ξ,x⟩dx. If f̂ ∈ L1(Rd) as well, we have the inversion formula

f(x) =
ˇ̂
f(x). The Fourier transform is a continuous automorphism on S(Rd), and it is defined for

a tempered distribution T ∈ S ′(Rd) as T̂ ∈ S ′(Rd) fulfilling ⟨T̂ , φ⟩ = ⟨T, φ̂⟩.

Convolutions. If f ∈ S ′(Rd), g ∈ S(Rd) the convolution of f and g is defined as the tempered
distribution f ∗ g ∈ S ′(Rd) such that for any Schwartz test function φ ∈ S(Rd), ⟨f ∗ g, φ⟩ =

⟨g(y), ⟨φ(x + y), f(x)⟩⟩. Moreover, it turns out that f ∗ g ∈ S(Rd), and we have that f̂ ∗ g =
(2π)d/2f̂ ĝ (Strichartz (2003), Sec. 4.3), a result known as the convolution theorem. Note that the
factor (2π)d/2 is specific to the unitary, angular-frequency Fourier transform.

Neural networks and path-norms. A generic three-layer neural network f : Rd → R with
activation function σ : R → R and weights W = ((θj , bj)j=1:m1

, (Wi,j)i=1:m2,j=0:m1
, (wi)i=1:m2

)
can be written as

fW(x) =

m2∑
i=1

wiσ

m1∑
j=1

Wi,jσ (⟨θj , x⟩ − bj) +Wi,0

+ w0. (1)

There are several ways of measuring the magnitude of the weights of a neural network (Neyshabur
et al., 2017, 2018; Bartlett et al., 2017). The classical view is that a particular weight norm is useful
if it gives rise to tight generalization bounds for the class of neural networks with bounded norm
(although the work Nagarajan and Kolter (2019) shows that this approach may be unable to provide
a complete picture of generalization). For the sake of convenience, in our work we make use of the
following path-norms with and without bias1:

PNb(W) =

m2∑
i=1

|wi|
( m1∑

j=1

|Wi,j | · ∥(θj , bj)∥2 + |Wi,0|
)
+ |w0|,

and PNnb(W) =

m2∑
i=1

|wi|
( m1∑

j=1

|Wi,j | · ∥θj∥2
)

respectively. Similarly, two-layer neural networks can be written as

fW =

m∑
i=1

wiσ(⟨θi, x⟩ − bi) + w0, where W = (w(i), θi, bi)i=0:m, (2)

and the path-norms read PNb(W) =
∑m

i=1 |wi| · ∥(θi, bi)∥2 + |w0|, PNnb(W) =
∑m

i=1 |wi| ·
∥(θi, bi)∥2.

1. Neyshabur et al. (2017) studies the l1 and l2 path-norms. Note that our choice is the l1 path-norm, but using the l2

norm for the first-layer weights, which defaults to the F1 norm introduced by Bach (2017) for two-layer networks.

3



DOMINGO-ENRICH

RKHS associated to two-layer neural networks. We define H as the RKHS of functions Rd →
R associated the kernel k(x, y) =

∫
Sd−1×R σ(⟨θ, x⟩−b)σ(⟨θ, y⟩−b) dτ(θ, b), where τ ∈ P(Sd−1×

R) is an arbitrary fixed probability measure. In our paper we will use τ = Unif(Sd−1) ⊗ N (0, 1),
but previous papers have studied and given closed forms for slightly different kernels (Roux and
Bengio, 2007; Cho and Saul, 2009). Functions in the space H may be written as (Bach, 2017)

fh(x) =

∫
Sd−1×R

σ(⟨θ, x⟩ − b)h(θ, b) dτ(θ, b), where h ∈ L2(τ). (3)

The RKHS norm of a function f ∈ H may be written as ∥f∥2H = inf{∥h∥2L2(τ) | ∀x ∈ Rd, f(x) =

fh(x)}, where ∥h∥2L2(τ) =
∫
Sd−1×R h(θ, b)2 dτ(θ, b). The characterization (3) showcases the con-

nection of H with neural networks; if we were two replace h(θ, b) dτ(θ, b) by a Radon measure of
the form

∑m
i=1w

(i)δ(θi,bi), we would obtain a two-layer network. It turns out that in general, two-
layer networks do not belong to H and can only be approximated by functions with an exponential
RKHS norm (Bach, 2017).

Integral probability metrics. Integral probability metrics (IPM) are pseudometrics on P(Rd) of
the form dF (µ, ν) = supf∈F |Ex∼µf(x) − Ex∼νf(x)|, where F is a class of functions from Rd

to R. IPMs may be regarded as an abstraction of WGAN discriminators; the class F can encode
a specific network architecture and parameter constraints or regularization. In this paper, we study
IPMs with the following three choices for F :

• F3L is the class of ReLU (or leaky ReLU) three-layer networks fW of the form (1) with
bounded path-norm with bias: PNb(W) ≤ 1. Upon simplification, the IPM takes the form

dF3L
(µ, ν) = sup∑m1

j=1 |wj |·∥(θj ,bj)∥2+|w0|≤1

∣∣∣∣∣∣
∫
Rd

σ

m1∑
j=1

wjσ(⟨θj , x⟩ − bj) + w0

 d(µ− ν)(x)

∣∣∣∣∣∣ .
(4)

• F2L is the class of two-layer ReLU networks fW of the form (2) with bounded path-norm
without bias: PNb(W) ≤ 1. The IPM takes the form

dF2L
(µ, ν) = sup

(θ,b)∈Sd−1×R

∣∣∣∣∫
Rd

σ (⟨θ, x⟩ − b) d(µ− ν)(x)

∣∣∣∣ . (5)

• FH is the class of functions in the RKHS H with RKHS norm less or equal than 1 (setting σ
as the ReLU or leaky ReLU). Upon simplification, the IPM takes the form

dFH(µ, ν) =

(∫
Sd−1×R

(∫
Rd

σ (⟨θ, x⟩ − b) d(µ− ν)(x)

)2

dτ(θ, b)

)1/2

. (6)

IPMs for RKHS balls are known as maximum mean discrepancies (MMD), introduced by
Gretton et al. (2007, 2012). They admit an alternative closed form in terms of the kernel k.
Just like neural network IPMs give rise to GANs, if we use the MMD instead, we obtain a
related generative modeling technique: generative moment matching networks (GMMNs, Li
et al. (2015); Dziugaite et al. (2015)).
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Figure 1: Left: Plot of the density ρd for d = 1 with σ = 0.1. Center: Plot of the density ρd for
d = 2 with σ = 0.1. Right: Plot of the measure of πd for d = 1. Arrows denote Dirac
delta functions; their length and sign denote the signed mass allocated at each position.

Note that the neural networks in (4), (5) are simpler than the respective generic form of three-layer
and two-layer networks; in fact, the last layers have just one neuron with weight 1 and no bias terms.
The reason behind this is that convex functions on convex sets attain their minima at extreme points.
App. A provides brief derivations of the expressions (4), (5), as well as pointers to the proof of (6).

3. Separation between three-layer and two-layer discriminators

The pair (µd, νd). Let σ > 0 and define the set B = {−3
2 ,−

1
2 ,

1
2 ,

3
2} ⊆ R, and the sets Bd

+ =

{x ∈ Bd |
∏d

i=1 xi > 0}, Bd
− = {x ∈ Bd |

∏d
i=1 xi < 0}. Define the probability measures

µd, νd ∈ P(Rd) with densities dµd
dx = ρ+d ,

dνd
dx = ρ−d defined as

ρ+d (x) =
2

(4
√
2πσ2)d

∑
β∈Bd

+

exp(−∥x− β∥2

2σ2
), ρ−d (x) =

2

(4
√
2πσ2)d

∑
β∈Bd

−

exp(−∥x− β∥2

2σ2
).

Remark that ρ+d and ρ−d are normalized because |Bd
+| = |Bd

−| = 4d

2 . The Radon measure µd − νd
has density

ρd(x) := ρ+d (x)− ρ−d (x) =
2

(4
√
2πσ2)d

∑
β∈Bd

d∏
i=1

χβi
exp(−∥x− β∥2

2σ2
),

where we use the short-hand χβi
= sign(βi).

3.1. Upper bound for two-layer discriminators

In this subsection we provide an upper bound on the two-layer IPM dF2L
(µd, νd) that decreases

exponentially with the dimension d, via a Fourier-based argument.
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The Fourier transform of ρd. Let πd = 2
4d

∑
β∈Bd

∏d
i=1 χβi

δβ = 2
⊗d

i=1(
1
4

∑
βi∈B χβi

δβi
),

where δx denotes the Dirac delta at the point x. Formally, πd is a tempered distribution. Let gd be
the density of the d-variate Gaussian N (0, σ2Id). The following lemma, proved in App. B, writes
the density ρd in terms of πd and gd.

Lemma 3 We can write ρd as a convolution of the tempered distribution πd with the Schwartz
function gd. That is, ρd = πd ∗ gd.

Thus, we have that ρ̂d = π̂d ∗ gd = (2π)d/2π̂d · ĝd. It is known (Bateman and Erdélyi, 1954; Kamm-

ler, 2000) that the (unitary, angular-frequency) Fourier transform of gd(x) = 1
(2πσ2)d/2

e−
∥y∥2

2σ2 is

ĝd(ω) =
1

(2π)d/2
e−

σ2∥ω∥2
2 . Also, since the Fourier transform of x 7→ sin(kx) is ω 7→

√
2π δ(ω−k)−δ(ω+k)

2i ,

we have that the Fourier transform of x 7→ δ(x−k)−δ(x+k)
4 is ω 7→ − i

2
√
2π

sin(kω). Thus,

π̂d(ω) = 2

d∏
i=1

( ̂1

4

∑
βi∈B

χβi
δβi

)
(ωi) = 2

d∏
i=1

(
−i

2
√
2π

(
sin
(ωi

2

)
+ sin

(
3ωi

2

)))

= 2

(
−i√
2π

)d d∏
i=1

cos (ωi) sin (2ωi) ,

where the last equality follows from the identity sin(α) + sin(β) = 2 sin(α+β
2 ) cos(α−β

2 ). Conse-
quently,

ρ̂d(ω) = 2

(
−i√
2π

)d d∏
i=1

e−
σ2ω2

i
2 cos (ωi) sin (2ωi) .

Expressing Ex∼µd
[σ(⟨θ, x⟩−b)]−Ex∼νd [σ(⟨θ, x⟩−b)] in terms of ρ̂d. Note that Ex∼µd

[σ(⟨θ, x⟩−
b)] − Ex∼νd [σ(⟨θ, x⟩ − b)] is equal to

∫
Rd σ(⟨θ, x⟩ − b)ρd(x) dx, for any (ω, b) ∈ Sd−1 × R. The

following proposition, which is proved in App. B and based on Lemma 3 of Domingo-Enrich and
Mroueh (2021), may be used to reexpress this in terms of ρ̂d.

Proposition 4 Take (θ, b) ∈ Sd−1×R arbitrary. For any φ ∈ S(Rd) and any activation φ : R → R
belonging to the space of tempered distributions S(R). Then, we have∫

Rd

φ(x)σ(⟨θ, x⟩ − b) dx = (2π)(d−1)/2⟨σ̂(t), φ̂(−tθ)e−itb⟩.

An application of Proposition 4 yields
∫
Rd ρd(x)σ(⟨θ, x⟩−b) dx = (2π)(d−1)/2⟨σ̂(t), ρ̂d(−tθ)e−itb⟩.

Note that

(2π)(d−1)/2ρ̂d(−tθ)e−itb = −
√

2

π
(−i)d e−

σ2t2

2
+itb

d∏
i=1

cos(tθi) sin(2tθi) (7)

The following lemma provides the expressions of the Fourier transforms σ̂ of the ReLU and leaky
ReLU activations, as tempered distributions on R.
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Lemma 5 (Domingo-Enrich and Mroueh (2021), App. B) Take σ : R → R of the form σ(x) =
c+(x)

α
+ + c−(−x)α+, where c+, c− ∈ R and α ∈ Z+. For α = 1, c+ = 1, c− = 0 corresponds to

the ReLU, and c+ = 1, c− ∈ (−1, 0) corresponds to the leaky ReLU. Then,

σ̂(ω) = A
dα

dωα

(
p.v.
[

1

iπω

])
+B

dα

dωα
δ(ω),

where A = iα−1 α!√
2π
(c+ − (−1)αc−) and B = iα

√
π
2 (c+ − (−1)αc−) + (−i)αc−.

Here p.v.
[
1
ω

]
is a Cauchy principal value, defined as p.v.

[
1
ω

]
(φ) = limε→0

∫
R\[−ε,ε]

1
ωφ(ω) dω =∫ +∞

0
φ(ω)−φ(−ω)

ω . Moreover, the derivative of a tempered distribution f ∈ S ′(R) is defined in the
weak sense: ⟨ df

dω , φ⟩ = −⟨f, dφdω ⟩. Applying Lemma 5 with α = 1 on equation (7), we have that∫
Rd

ρd(x)σ(⟨θ, x⟩ − b) dx = (2π)(d−1)/2⟨σ̂(t), ρ̂d(−tθ)e−itb⟩

= −
√

2

π
(−i)d

∫
R

(
A

d

dt

(
p.v.

[
1

iπt

])
+B

d

dt
δ(t)

)(
e−

σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi)

)
dt

We can compute this explicitly. First,

∫
R

d

dt
δ(t)

(
e−

σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi)

)
dt = − d

dt

(
e−

σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi)

)∣∣∣∣
t=0

= 0,

which holds because the factors sin(2tθi) are equal to 0 when t = 0. Second,

∫
R

d

dt

(
p.v.

[
1

iπt

])(
e−

σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi)

)
dt

= −p.v.
[

1

iπt

](
d

dt

(
e−

σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi)

)) (8)

The following lemma, proved in App. B, provides an upper bound strategy for Cauchy principal
values:

Lemma 6 For any δ > 0, |p.v.[ 1x ](u)| ≤ 2
(
supx∈(−1,1) |u′(x)|+ 1

δ supx∈R\[−1,1] |u(x) · xδ|
)

.

Let us set

u(t) =
d

dt

(
e−

σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi)

)

=

(
−σ2t− ib−

d∑
i=1

θi sin(tθi)

cos(tθi)
+ 2

d∑
i=1

θi cos(2tθi)

sin(2tθi)

)
e−

σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi).

(9)
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For ease of computation, in the last equality we introduced some removable singularities. Lemma
18 in App. B provides the following bounds:

sup
x∈R

|u′(x)| ≤ O
(
κd
(
d2 + d|b|+ b2

))
, and sup

x∈R
|u(x) · xδ| ≤ O

(
κd
(
d+ |b|

σ

))
. (10)

The key idea of the proof of Lemma 18 (and of the whole construction in this section) is the inequal-
ity supt∈R |

∏d
i=1 cos(tθi) sin(2tθi)| ≤ κd, where κ := supx∈R | cos(t) sin(2t)| = 0.7698 . . . (see

Figure 4). Since κ < 1, the factor |
∏d

i=1 cos(tθi) sin(2tθi)| is exponentially small in the dimension
d.

Plugging the bounds (10) into Lemma 6 yields an upper bound on the absolute value of (8). In
consequence, the following upper bound holds:

Proposition 7 We have
∣∣∫

Rd ρd(x)σ(⟨θ, x⟩ − b) dx
∣∣ ≤ O

(
κd
(
d2 + d|b|+ b2 + d+|b|

σ

))
for any

(θ, b) ∈ Sd−1 × R.

Concluding the upper bound. Proposition 7 shows that if |b| ≤ d +
√
d, then we can write∣∣∫

Rd ρd(x)σ(⟨θ, x⟩ − b) dx
∣∣ ≤ O

(
κd
(
d2 + d

σ

))
. That is, unless |b| is large,

∣∣∫
Rd ρd(x)σ(⟨θ, x⟩ − b) dx

∣∣
decreases exponentially with the dimension d. In the following, we show that for large d, this is also
the case. Namely,

Lemma 8 If |b| > d+
√
d, then

∣∣∫
Rd ρd(x)σ(⟨θ, x⟩ − b) dx

∣∣ ≤ σ√
2π
e−

d2

2σ2 .

Lemma 8, which is proved in App. B, allows us to conclude the upper bound.

Theorem 9 The following inequality holds for the IPM between µd and νd corresponding to the
class F2L of two-layer networks:

dF2L
(µd, νd) = sup

(θ,b)∈Sd−1

∣∣∣∣∫
Rd

ρd(x)σ(⟨θ, x⟩ − b) dx

∣∣∣∣ ≤ O

(
max

{
κd
(
d2 +

d

σ

)
, σe−

d2

2σ2

})
.

3.2. Lower bound for three-layer discriminators.

In order to provide a lower bound on the IPM dF3L
(µd, νd) we construct a specific three-layer

network F , and then show a lower bound on |Ex∼µd
[F (x)]− Ex∼νd [F (x)]| and an upper bound on

the path-norm of F .

Construction of the discriminator F . Let us fix 0 < x0 < 1/4 arbitrary. Define the two-layer
network f1 : R → R as

f1(x) =
∑
β∈B

sign(β)
x0

((x− (β − 2x0))+ − (x− (β − x0))+ − (x− (β + x0))+ + (x− (β + 2x0))+)

(11)

The function f1, which is plotted in Figure 2 (left), takes non-zero values only around points in B,
and it takes value 1 around positive β ∈ B, and value -1 around negative β ∈ B.

8
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Figure 2: Left: Plot of the function f1 defined in (11), for the value x0 = 0.1. Center: Plot of the
function f2 for d = 4 (defined in (12)). Right: Plot of the function f2 for d = 5 (defined
in (13)).

If d is even, we define the two-layer network f2 : R → R as

f2(x) = 1− (x)+ − (−x)+ − (−1)d/2((x− d)+ + (−x− d)+)

− 2

(d−2)/2∑
i=1

(−1)i((x− 2i)+ + (−x− 2i)+).
(12)

This function is plotted for d = 4 in Figure 2 (center), and it takes alternating values ±1 at even
integers. If d ≥ 3 is odd, we define f2 as

f2(x) = x+ (−1)(d−1)/2(−(x− d)+ + (−x− d)+)

+ 2

(d−3)/2∑
i=0

(−1)i(−(x− 2i− 1)+ + (−x− 2i− 1)+).
(13)

This function is plotted for d = 5 in Figure 2 (right), and it takes alternating values ±1 at odd
integers. We define the discriminator F : Rd → R as

F (x) = f2

(
d∑

i=1

f1(xi)

)
. (14)

Construction of random variables Z+, Z− with distributions µd, νd. If ξ+, ξ− are random vec-
tors distributed uniformly over Bd

+ and Bd
− respectively, and X is a d-variate Gaussian N (0, σ2Id),

the variables Z+ = ξ+ + X and Z− = ξ− + X are distributed according to µd and νd respec-
tively. To see this, note that in analogy with ρd = πd ∗ gd, we can write ρ±d = π±

d ∗ gd, where
π±
d = 2

4d

∑
β∈Bd

±

∏d
i=1 χβi

δβ . Since ξ± are distributed according to π±
d , and the law of a sum of

random variables is the convolution of their distributions, the result follows. Thus, we can reexpress∫
Rd F (x) d(µd − νd)(x) as E[F (Z+)]− E[F (Z−)].

Lower-bounding E[F (Z+)] − E[F (Z−)]. At this point, we take an arbitrary 0 < ε < 1, and
define the sequence (σd)d≥0 as the solutions of x2

0

2σ2
d
= log( dσd√

2πεx0
). The solution σd exists and is

9



DOMINGO-ENRICH

unique because the function σ 7→ x2
0

2σ2 is strictly decreasing and bijective from (0,+∞) to (0,+∞),
while the function σ 7→ log( dσ√

2πεx0
) is strictly increasing and bijective from (0,∞) to R. The

following result regarding the sequence (σd)d is shown in App. B.

Lemma 10 If (Xi)
d
i=1 are independent random variables with distribution N (0, σ2

d), we have
that P (∀i ∈ {1, . . . , d}, Xi ≤ x0) ≥ 1 − ε. The sequence (σd)d is strictly decreasing, and
σd = Ω(1/ log(d)).

This allows us to prove an instrumental proposition concerning the values of F at Z+ and Z−.

Proposition 11 With probability at least 1− 2ε, we have that simultaneously,

F (Z+) = 1 and F (Z−) = −1, when d ≡ 0, 1 (mod 4)

F (Z+) = −1 and F (Z−) = 1, when d ≡ 2, 3 (mod 4)
(15)

Consequently, |E [F (Z+)]− E [F (Z−)]| ≥ 2− 8ε.

Proof sketch. By the Lemma 10, with probability at least 1− 2ε, |Xi| ≤ x0 for all i ∈ {1, . . . , d}.
Equivalently, |Z+

i − ξ+i | ≤ x0 and |Z−
i − ξ−i | ≤ x0 for all i ∈ {1, . . . , d}. This implies that

f1(Z
+
i ) = sign(Z+

i ) = sign(ξ+i ) and f1(Z
−
i ) = sign(Z−

i ) = sign(ξ−i ) for all i ∈ {1, . . . , d}. The
statements (15) follow from the definitions of the functions f2 and the lower bound is a consequence
of (15) and the boundedness of |F | (see full proof in App. B). ■

Bounding the path-norm of the discriminator F . The following lemma, proved in App. B,
characterizes the discriminator F as a three-layer network and provides bounds on its path-norms.

Lemma 12 The function F defined in (14) can be expressed as a three-layer ReLU neural network
fW of the form (1) with widths m1 = 16d and m2 = d+ 2, with path-norms

PNb(W) ≤
(
64

x0
+ 1

)
d2 + 1 for d even, and PNb(W) ≤

(
64

x0
+ 1

)
d2 +

64d

x0
+ 2 for d odd.

PNnb(W) =
32d2

x0
for d even, and PNnb(W) =

32d2 + 32d

x0
for d odd.

We are in position to state the formal version of Theorem 1.

Theorem 13 Setting ε = 1/8 and x0 = 1/8, we obtain that

dF2L
(µd, νd) = O(κdd2), (16)

dF3L
(µd, νd) ≥

1

513d2 + 512d+ 1
. (17)

Proof To prove (16), we plugged the bound σd = Ω(1/ log(d)) from Lemma 10 into Theorem 9.
We also used that for ε = 1/8 and x0 = 1/8, σd ≤ 1/6 because at 1/6, the curve σ 7→ x2

0
2σ2 is below

σ 7→ log( dσ√
2πεx0

). Hence, σe−
d2

2σ2 = O(log(d)e−18d2), which is O(κdd2). To prove (17), we use
that by Proposition 11, F is a three-layer neural network such that |Ex∼µd

[F (x)]−Ex∼νd [F (x)]| ≥
1, and with path-norm with bias bounded by 513d2+512d+1. Dividing the outermost layer weights
by this quantity, we obtain a three-layer network with unit path-norm and the result follows.

Note that if we consider the discriminator class of three-layer networks with bounded path-norm
without bias, Lemma 12 gives a lower bound of order Ω(1/d2) as well.

10
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Figure 3: Left: Plot of the density ρd for d = 1 with σ = 0.2 and ℓ = 1. Right: Plot of the density
ρd for d = 2 with σ = 0.2 and ℓ = 1.

4. Separation between two-layer and RKHS discriminators

The pair (µd, νd). For any d ≥ 0, we define a pair of measures µd, νd ∈ P(Rd) with densities
dµd
dx = ρ+d , dνd

dx = ρ+d such that

ρd(x) :=
2σd

(2π)d/2
e−

σ2∥x∥2
2 sin (ℓx1) , where x1 = ⟨x, e1⟩.

Functions of this form are known as Gabor filters in image processing. Since
∫
Rd ρd(x) dx = 0

because ρd is odd with respect to x1, and
∫
Rd |ρd(x)| dx ≤ 2σd

(2π)d/2

∫
Rd e

−σ2∥x∥2
2 dx = 2, we have

freedom in specifying ρ+d , ρ
−
d . If ξ is the density of an arbitrary probability measure on Rd, setting

ρ+d (x) = (1− 1
2

∫
Rd |ρd(x)| dx)ξ(x) + max{0, ρd(x)} and ρ−d (x) = (1− 1

2

∫
Rd |ρd(x)| dx)ξ(x) +

max{0,−ρd(x)} works. Figure 3 shows plots of ρd for d = 1, 2. The following lemma provides
the Fourier transform of ρd. The prove in App. C involves using the convolution theorem; in this
case ρd is expressed as a product of functions and ρ̂d is proportional to the convolution of their
Fourier transforms.

Lemma 14 The Fourier transform of ρd reads ρ̂d(x) = i
(2π)d/2

(
e−

∥x+ℓe1∥
2

2σ2 − e−
∥x−ℓe1∥

2

2σ2

)
.

As in Sec. 3, an application of Proposition 4 shows that
∫
Rd ρd(x)σ(⟨θ, x⟩ − b) dx is equal to

(2π)(d−1)/2⟨σ̂(t), ρ̂d(−tθ)e−itb⟩. Analogously, we use the expression of σ̂ for the ReLU-like acti-
vations provided by Lemma 5, and we obtain an explicit expression for

∫
Rd ρd(x)σ(⟨θ, x⟩ − b) dx

from which the upper and lower bounds will follow:

i√
2π

∫
R

(
A

dα

dtα

(
p.v.

[
1

iπt

])
+B

dα

dtα
δ(t)

)((
e−

∥tθ−ℓe1∥
2

2σ2 − e−
∥tθ+ℓe1∥

2

2σ2

)
e−itb

)
dt, (18)

which can be simplified to (see Lemma 22 in App. C):√
2

π
i

(
−Aℓθ1

σ2
e−

ℓ2

2σ2 +B

∫ +∞

0

sin(tb)(exp(−∥tθ−ℓe1∥2
2σ2 )− exp(−∥tθ+ℓe1∥2

2σ2 ))

t2
dt

)
(19)

11
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Upper bound for RKHS discriminators. By equation (6), the IPM dFH(µd, νd) corresponding to

the unit ball of the RKHS H takes the form
(∫

Sd−1×R
(∫

Rd σ (⟨θ, x⟩ − b) ρd(x) dx
)2

dτ(θ, b)
)1/2

.

Armed with the expression (19) for
∫
Rd σ (⟨θ, x⟩ − b) ρd(x) dx, we proceed to upper-bound the

absolute value of this expression in the following proposition proved in App. C.

Proposition 15 We have that

dFH(µd, νd) = O

(
d1/4

(
1

2d/4
+ e−

ℓ2

4σ2

)
+

ℓ2

σ4
e−

(ℓ−1)2

2σ2 +

(
ℓ

σ2
+ 1

)
e−

ℓ2

2σ2

)
. (20)

Evidently, the upper bound depends on the choices of the parameters ℓ and σ as a function of d.

Lower bound for two-layer discriminators. Our approach to lower-bound the IPM dF2L
(µd, νd)

is to lower-bound
∫
Rd ρd(x)σ(⟨θ, x⟩ − b) dx for some well chosen (θ, b) ∈ Sd−1 × R, via the

expression (19). The result is as follows:

Proposition 16 Define the (ℓd)d≥0 as ℓd =
√
d and (σd)d≥0 as the sequence of solutions to x2

0
2σ2 =

log
(√

2d2σ√
πx0

)
, which fulfills σd ≥ K/ log(d). Then, dF2L

(µd, νd) = Ω
(

1
d log(d)

)
.

If we substitute the choices we made for (ℓd) and (σd) into (20), we obtain

dFH(µd, νd) = O

(
d1/4

(
1

2d/4
+ e−

d
16

)
+

de−
(
√
d−1)2

16

16
+

√
d+ 4

4
e−

d
8

)
= O

(
de−

(
√
d−1)2

16

)
,

which yields Theorem 2.

5. Discussion

Why small IPM values preclude discrimination of distributions from samples. Suppose that
F is a class of functions Rd → R, and µn, νn are empirical measures built from n samples from
µ, ν respectively. Let F̂µ = {f − Ex∼µ[f(x)] | f ∈ F} be the recentered function class according
to µ (analogous for ν). Letting Rn(F) = Eσi,xi supf∈F | 1n

∑n
i=1 σif(xi)| be the Rademacher

complexity of F , it turns out that 1
2Rn(F̂µ) ≤ E[supf∈F |Ex∼µ[f(x)]−Ex∼µn [f(x)]|] ≤ 2Rn(F)

(Proposition 4.11, Wainwright (2019)), and an application of McDiarmid’s inequality shows that
w.h.p. (with high probability), the IPM dF (µ, µn) = supf∈F |Ex∼µ[f(x)]−Ex∼µn [f(x)]| does not
lie far from these bounds.

F is a useful discriminator class if dF (µn, νn) is informative of the value of dF (µ, ν) for a
tractable data size n. This is not the case if dF (µ, ν) is negligible compared to dF (µ, µn), dF (ν, νn)
and their fluctuations, as the statistical noise dominates over the signal2. Since dF (µ, µn), dF (ν, νn)
are w.h.p. of the order of 1

2Rn(F̂µ), and the classes F3L,F2L,FH studied in our paper (as well as
their centered versions) have Rademacher complexities Θ(1/

√
n) (E and Wojtowytsch, 2020), we

need to take n of order Ω(1/dF (µ, ν)2) to get decent discriminator performance. The required n is
prohibitively costly when dF (µd, νd) is exponentially small in d, as in our cases.

2. Strictly speaking, if dF (µ, ν) was smaller than dF (µ, µn), dF (ν, νn) but greater or comparable to their fluctuations,
F could potentially be an effective discriminator in some settings, but this situation seems implausible. To discard it
formally, one may try to develop a kind of reverse McDiarmid inequality.

12
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Can we make µd and νd any simpler in Sec. 3? One might wonder whether a simpler ρd might
suffice to show a separation result. Specifically, one might think of replacing B = {±3

2 ,±
1
2} by

B = {±1}. The upper bound on two-layer networks would not go through because the factor∏d
i=1 cos (ωi) sin (2ωi) would become

∏d
i=1 sin (ωi), which does not admit a uniform exponen-

tially decreasing upper bound. Moreover, it can be seen that for σ = O(1/ log(d)), the two-layer
network f2(

∑d
i=1 xi) would be able to discriminate between µd and νd.

Do our arguments work for other activation functions and weight norms? Our proofs make
use of the specific form of the Fourier transform of the ReLU and leaky ReLU. One may try
to apply the same method for other activation functions via their Fourier transforms; intuitively
one should be able to obtain exponentially decreasing lower bounds as well, because the factor∏d

i=1 cos (ωi) sin (2ωi) will show up in some way or another. If we use different norms to define
the three-layer and two-layer IPMs, the results are unchanged up to polynomial factors because
weight norms are equivalent to each other up to polynomial factors in d (using that the width our
networks is polynomial in d). Finally, it would be interesting to adapt our upper bound for the MMD
to slightly different kernels such as the neural tangent kernel (NTK, Jacot et al. (2018)).

Are the results implied by known separation results on function approximation? A possi-
ble approach to leverage existing separation results on L2 approximation is to take distributions
µd, νd such that the difference of their densities is proportional to a function f that can be well ap-
proximated by a three-layer network, but not by a two-layer network; in this case |Ex∼µd

[F (x)] −
Ex∼νd [F (x)]| =

∫
F (x)f(x) dx. A naive candidate would be radial function f proposed by Eldan

and Shamir (2016). Looking at their Fourier-based upper bound argument we see that this func-
tion does not work because it has significant mass in the low frequency components, which allows
for discrimination with two-layer networks. It is probably possible to remedy this by filtering out
the low frequencies of f to obtain a function f̃ for which two-layer discrimination is precluded,
although special care must be taken when choosing the filter function to ensure that f̃ remains
absolutely integrable (e.g. the unit ball filter does not work because its Fourier transform is not
absolutely integrable). Even if it worked, the construction would be much more complicated than
ours and the quantitative bounds would be weaker (i.e. the upper bound on the width of three-layer
networks would be Cd19/4 for some universal constant C, while for us the widths are 16d and d+2,
and we provide an explicit bounds on the weights). We will add a more detailed comparison with
the separation results for approximation.

Can the distributions analyzed in the paper be generated by a neural network (of moderate
size)? The answer is positive: recall that the random variables Z+ = ξ+ + X,Z− = ξ− + X
have distributions µd, νd. The Gaussian variable X can be trivially generated, and ξ+, which is
uniformly distributed over Bd

+, can be generated by applying an appropriate three-layer network
with step activation functions to a Gaussian random variables: (i) the first d − 1 components are
sampled i.i.d. from B, which requires one-hidden-layer networks assuming that the base measure is
Gaussian, and (ii) the d-th component is obtained by adding the signs of the first d− 1 components
and applying the sawtooth functions f2 (equations (12) and (13)). Hence, ξ+ is the distribution of the
image of a multivariate Gaussian random variable by a three-layer network. ξ− can be constructed
analogously.
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H. Bateman and A. Erdélyi. Tables of integral transforms. McGraw-Hill, 1954.

Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems 22, pages 342–350. Curran Associates, Inc., 2009.

Amit Daniely. Depth separation for neural networks. In Proceedings of the 2017 Conference on
Learning Theory, volume 65 of Proceedings of Machine Learning Research, pages 690–696.
PMLR, 2017.

Carles Domingo-Enrich and Youssef Mroueh. Separation results between fixed-kernel and feature-
learning probability metrics. In Thirty-Fifth Conference on Neural Information Processing Sys-
tems, 2021.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. UAI, 2015.

Weinan E and Stephan Wojtowytsch. On the banach spaces associated with multi-layer relu net-
works: Function representation, approximation theory and gradient descent dynamics, 2020.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In 29th Annual
Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages
907–940. PMLR, 2016.

Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J Smola. A ker-
nel method for the two-sample-problem. In Advances in neural information processing systems,
pages 513–520, 2007.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773, 2012.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems, volume 31,
pages 8571–8580. Curran Associates, Inc., 2018.

David Kammler. A first course in Fourier analysis. Prentice Hall, 2000.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabas Poczos. Mmd gan:
Towards deeper understanding of moment matching network. In Advances in Neural Information
Processing Systems, volume 30, 2017.

14



DEPTH AND FEATURE LEARNING ARE PROVABLY BENEFICIAL FOR NEURAL NETWORK DISCRIMINATORS

Shengqiao Li. Concise formulas for the area and volume of a hyperspherical cap. Asian Journal of
Mathematics & Statistics, 4, 01 2011.

Yujia Li, Kevin Swersky, and Richard Zemel. Generative moment matching networks. In ICML,
2015.

James Martens, Arkadev Chattopadhya, Toni Pitassi, and Richard Zemel. On the representational
efficiency of restricted boltzmann machines. In Advances in Neural Information Processing Sys-
tems, volume 26. Curran Associates, Inc., 2013.

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain gener-
alization in deep learning. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring gener-
alization in deep learning. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learn-
ing Representations, 2018.

Nicolas Le Roux and Yoshua Bengio. Continuous neural networks. In Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics, volume 2 of Proceedings of
Machine Learning Research, pages 404–411, 2007.

Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating natural functions with neural
networks. In Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 2979–2987. PMLR, 2017.

Cicero Nogueira dos Santos, Kahini Wadhawan, and Bowen Zhou. Learning loss functions for semi-
supervised learning via discriminative adversarial networks. arXiv preprint arXiv:1707.02198,
2017.

R.S. Strichartz. A Guide to Distribution Theory and Fourier Transforms. Studies in advanced
mathematics. World Scientific, 2003.

Matus Telgarsky. Benefits of depth in neural networks. In 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research, pages 1517–1539. PMLR,
2016.

Luca Venturi, Samy Jelassi, Tristan Ozuch, and Joan Bruna. Depth separation beyond radial func-
tions. arXiv preprint arXiv:2102.01621, 2021.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

15



DOMINGO-ENRICH

Appendix A. IPM derivations

Define the function class G3L of ReLU neural networks of the form g(x) = ±σ(
∑m1

j=1wjσ(⟨θj , x⟩−
bj) + w0) such that

∑m1
j=1 |wj | · ∥(θj , bj)∥2 + |w0| ≤ 1.

Lemma 17 Any function in F3L may be written as a convex combination of functions in G3L and
the constant function 1.

Proof Let

fW(x) =

m2∑
i=1

wiσ

m1∑
j=1

Wi,jσ (⟨θj , x⟩ − bj) +Wi,0

+ w0.

belong to F3L, which means that PNb(W) =
∑m2

i=1 |wi|(
∑m1

j=1 |Wi,j |·∥(θj , bj)∥2+|Wi,0|)+|w0| ≤
1. We may renormalize the weights such that

∑m1
j=1 |Wi,j | · ∥(θj , bj)∥2 + |Wi,0| = 1 for all i, by

moving the appropriate factors outside of the ReLU activation thanks to the 1-homogeneity. Then,
PNb(W) =

∑m2
i=0 |wi| ≤ 1. We may further renormalize the weights such that

∑m2
i=0 |wi| = 1 and∑m1

j=1 |Wi,j | · ∥(θj , bj)∥2 + |Wi,0| ≤ 1 for all i.

Setting gi(x) = sign(wi)σ
(∑m1

j=1Wi,jσ (⟨θj , x⟩ − bj) +Wi,0

)
, we obtain the expression fW(x) =∑m2

i=1 |wi|gi(x)+ |w0|. That is, fW can be written as a convex combination of {gi}m2
i=1 and the con-

stant function 1. Note that gi belongs to G3L, which concludes the proof.

Since f 7→ ±(Ex∼µ[f(x)] − Ex∼ν [f(x)]) are concave mappings, their suprema over G3L is
equal to their suprema over the convex hull conv(G3L). Since Ex∼µ[f(x)]− Ex∼ν [f(x)] is 0 when
f is a constant function, by Lemma 17 the suprema over conv(G3L) are equal to the suprema over
F3L, which concludes the proof of equation (4). Equation (5) follows from a similar argument.
Equation (6) is derived using the proof of Lemma 2 of Domingo-Enrich and Mroueh (2021).

Appendix B. Proofs of Section 3

Proof of Lemma 3. If we take a Schwartz function φ ∈ S(Rd), we have

⟨πd ∗ gd, φ⟩ = ⟨gd(y), ⟨φ(x+ y), πd(x)⟩⟩

=

∫
Rd

1

(2πσ2)d/2
e−

∥y∥2

2σ2

〈
φ(x+ y),

2

4d

∑
β∈Bd

d∏
i=1

χβi
δβ

〉
dy

=
2

(4
√
2πσ2)d

∫
Rd

e−
∥y∥2

2σ2

∑
β∈Bd

d∏
i=1

χβi
φ(y + β) dy

=
2

(4
√
2πσ2)d

∑
β∈Bd

d∏
i=1

χbi

∫
Rd

e−
∥y∥2

2σ2 φ(y + β) dy

=
2

(4
√
2πσ2)d

∑
β∈Bd

d∏
i=1

χbi

∫
Rd

e−
∥ỹ−β∥2

2σ2 φ(ỹ) dỹ

=
2

(4
√
2πσ2)d

∫
Rd

∑
β∈Bd

d∏
i=1

χbie
− ∥ỹ−β∥2

2σ2 φ(ỹ) dỹ = ⟨ρd, φ⟩.
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■
Proof of Proposition 4. We adapt the argument of Lemma 3 of Domingo-Enrich and Mroueh
(2021). Define σb : R → R as the translation of σ by −b, i.e. σb(x) = σ(x − b). Note that
σ̂b(ω) = e−ibωσ̂(ω). We have∫
Rd

φ(x)σ(⟨θ, x⟩ − b) dx =

∫
Rd

φ(x)σb(⟨θ, x⟩) dx =

∫
Rd

(
1

(2π)d/2

∫
Rd

φ̂(ω)ei⟨ω,x⟩ dω

)
σb(⟨θ, x⟩) dx

=

∫
span(θ)

∫
span(θ)⊥

(
1

(2π)d/2

∫
span(θ)⊥

(∫
span(θ)

φ̂(ω)ei⟨ωθ,xθ⟩ dωθ

)
ei⟨ωθ⊥ ,x

θ⊥ ⟩ dωθ⊥

)
dxθ⊥σb(⟨θ, xθ⟩) dxθ

=
1√
2π

∫
span(θ)

(2π)(d−1)/2

∫
span(θ)

φ̂(ωθ)e
i⟨ωθ,xθ⟩ dωθ σb(⟨θ, xθ⟩) dxθ

= (2π)(d−1)/2

∫
R

1√
2π

∫
R
φ̂(tθ)eitx dt σb(x) dx = (2π)(d−1)/2

∫
R

1√
2π

∫
R
φ̂(tθ)eitx dt σ(x− b) dx

= (2π)(d−1)/2

∫
R

1√
2π

∫
R
φ̂(tθ)eit(x̃+b) dt σ(x̃) dx = (2π)(d−1)/2⟨σ̌(t), φ̂(tθ)eitb⟩.

In the third equality, we rewrite Rd = span(θ)+span(θ)⊥ and we use Fubini’s theorem twice. In the
fourth equality we use the following argument: denoting h(xθ⊥ , ωθ) =

∫
span φ̂(ωθ+ω⊥

θ )e
i⟨ωθ,xθ⟩ dωθ,

we have that∫
span(θ)⊥

(∫
span(θ)⊥

h(xθ⊥ , ωθ)e
i⟨ω

θ⊥ ,x
θ⊥ ⟩ dωθ⊥

)
dxθ⊥ = (2π)(d−1)/2

∫
span(θ)⊥

ĥ(−ωθ⊥ , ωθ) dωθ⊥

= (2π)d−1h(0, ωx) = (2π)d−1

∫
span(θ)

φ̂(ωθ)e
i⟨ωθ,xθ⟩ dωθ.

To conclude the proof, note that for any test function φ ∈ S(R), ⟨σ̌(x), φ(x)⟩ = ⟨σ(x), φ̌(x)⟩ =∫
R σ(x) 1√

2π

∫
R eitxφ(t) dt dx =

∫
R σ(x) 1√

2π

∫
R e−i(−t)xφ(t) dt dx =

∫
R σ(x) 1√

2π

∫
R e−itxφ(−t) dt dx =

⟨σ̂(x), φ(−x)⟩. ■

Proof of Lemma 6. Recall that p.v.
[
1
ω

]
(u) =

∫ +∞
0

u(ω)−u(−ω)
ω . On the one hand,∣∣∣∣∫ 1

0

u(x)− u(−x)

x
dx

∣∣∣∣ ≤ ∫ 1

0

|u(x)− u(−x)|
x

dx ≤
∫ 1

0

2x

x
sup

y∈(−1,1)
|u′(y)| dx = 2 sup

y∈(−1,1)
|u′(y)|.

On the other hand,∣∣∣∣∫ +∞

1

u(x)− u(−x)

x
dx

∣∣∣∣ ≤ ∫ +∞

1

(|u(x)|+ |u(−x)|)xδ

x1+δ
dx

≤
∫ +∞

1
2

(
sup

y∈R\[−1,1]
|u(y) · yδ|

)
1

x1+δ
dx =

2

δ

(
sup

y∈R\[−1,1]
|u(y) · yδ|

)
.

■
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Lemma 18 Let u : R → C defined by (9). Then,

sup
x∈R

|u′(x)| ≤ O
(
κd
(
d2 + d|b|+ b2

))
sup
x∈R

|u(x) · x| ≤ O

(
κd
(
d+ |b|

σ

))
Proof Note that

u′(t) =

(
−σ2t− ib−

d∑
i=1

θi sin(tθi)

cos(tθi)
+ 2

d∑
i=1

θi cos(2tθi)

sin(2tθi)

)2

e−
σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi)

+

(
−σ2 −

d∑
i=1

θ2i
cos2(tθi)

− 22
d∑

i=1

θ2i
sin2(2tθi)

)
e−

σ2t2

2
−itb

d∏
i=1

cos(tθi) sin(2tθi)

(21)

Remark that(
−θi sin(tθi)

cos(tθi)

)2

− θ2i
cos2(tθi)

= −θ2i ,

(
2
θi cos(2tθi)

sin(2tθi)

)2

− 22
θ2i

sin2(2tθi)
= −22θ2i

and that
∑

i θ
2
i = ∥θ∥2 = 1. Hence, equation (21) may be rewritten as e−

σ2t2

2
−itb∏d

i=1 cos(tθi) sin(2tθi)
times

σ4t2 + 2ibσ2t− b2 − 5 + 2(σ2t+ ib)

(
d∑

i=1

θi sin(tθi)

cos(tθi)
− 2

d∑
i=1

θi cos(2tθi)

sin(2tθi)

)

− 4

d∑
i,j=1

θiθj sin(tθi) cos(2tθj)

cos(tθi) sin(2tθj)
+

d∑
i,j=1
i ̸=j

θiθj sin(tθi) sin(tθj)

cos(tθi) cos(tθj)
+ 4

d∑
i,j=1
i ̸=j

θiθj cos(2tθi) cos(2tθj)

sin(2tθi) sin(2tθj)

The functions t 7→ | cos(tθi) sin(2tθi)| are upper-bounded by 0.77 on R regardless of the value of
θi. To see this, define x = tθi. Hence, | cos(tθi) sin(2tθi)| = | cos(x) sin(2x)|. Lemma 19 shows
that κ := supx∈R | cos(x) sin(2x)| = 0.7698 . . . . The following upper bounds hold for all t ∈ R:∣∣∣∣∣

d∏
i=1

cos(tθi) sin(2tθi)

∣∣∣∣∣ ≤ κd,

∣∣∣∣te−σ2t2

2
−itb

∣∣∣∣ ≤ max
x∈R

{xe−
σ2x2

2 } =
1

σ
√
e
,∣∣∣∣t2e−σ2t2

2
−itb

∣∣∣∣ ≤ max
x≥0

{xe−
σ2x
2 } =

2

eσ2
.

Thus, the following is a crude upper bound of |u′(t)| for any t ∈ R:

κd

((
2σ2

e
+ 5 + b2 +

6dσ

κ
√
e
+

4d2

κ2
+

d(d− 1)

κ2
+

4d(d− 1)

κ2

)2

+

(
2bσ√
e
+

6d|b|
κ

)2
)1/2

= O
(
κd
(
d2 + d|b|+ b2

))
18
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In the last O-notation expression we have only kept the relevant variables: σ is relevant because it
appears in the numerator and we will take it smaller than 1. Similarly, the following is an upper
bound on |t · u(t)| for any t ∈ R:

κd

((
2

e
+

2da

σκ
√
e
+

2d

σκ
√
e

)2

+

(
b

σ
√
e

)2
)1/2

= O

(
κd
(
d+ |b|

σ

))

Lemma 19 The function h(x) = cos(x) sin(2x) satisfies

max
x∈R

|h(x)| = 0.769800358917917...

Proof First note that h has period 2π, which means that we can restrict the search of maximizers to
[−π, π]. We have that h′(x) = − sin(x) sin(2x) + 2 cos(x) cos(2x). The condition h′(x∗) = 0 is
necessary for x∗ to be a local maximizer of |h|, and it may be rewritten as tan(x) = 2 cotan(2x).
Remark that x → tan(x) is increasing and bijective from (π(z − 1/2), π(z + 1/2)) to R, and that
x → 2 cotan(2x) is decreasing and bijective from (πz2 , π(z+1)

2 ) to R for any z ∈ Z. Thus, there
exist 6 solutions of h′(x) on [−π, π]: one for each interval (πz2 , π(z+1)

2 ) for z = −2, . . . , 1, and
additional solutions at −π

2 and at π
2 ), where both tan(x) and 2 cotan(2x) take value +∞ and −∞

respectively. With this information, any algorithm that finds local maximizers over intervals allows
us to compute the global maximum of |h|, which is equal to 0.769800358917917..., and is attained,
among other points, at 0.615478880595691...

−4 −2 0 2 4

−1

−0.5

0

0.5

1 y = 0.77

y = −0.77

Figure 4: Plot of the function x 7→ cos(x) sin(2x).

Proof of Lemma 8. Note that for all β ∈ {±1}d, ∥β∥ =
√
d. If b > d +

√
d, for any β we have

that b − ⟨θ, β⟩ ≥ b − ∥θ∥∥β∥ ≥ d +
√
d −

√
d = d. Thus, using the notation χβ =

∏d
i=1 χβi

we
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have that ∫
Rd

ρd(x)σ(⟨θ, x⟩ − b) dx

=
1(

2
√
2πσ2

)d ∑
β∈Bd

χβ

∫
Rd

e−
∥x−β∥2

2σ2 σ(⟨θ, x⟩ − b) dx

=
1(

2
√
2πσ2

)d ∑
β∈Bd

χβ

∫
Rd

e−
∥x̃∥2

2σ2 σ(⟨θ, x̃+ β⟩ − b) dx

=
1(

2
√
2πσ2

)d ∑
β∈Bd

χβ

∫ +∞

b−⟨θ,β⟩
(t− (b− ⟨θ, β⟩))e−

t2

2σ2 dt

∫
Rd−1

e−
∥x∥2

2σ2 dx

=
1

2d
√
2πσ2

∑
β∈Bd

χβ

∫ +∞

b−⟨θ,β⟩
(t− (b− ⟨θ, β⟩))e−

t2

2σ2 dt

≤ 1

2d
√
2πσ2

∑
β∈Bd

χβ

∫ +∞

d
(t− d)e−

t2

2σ2 dt

≤ σ√
2π

e−
d2

2σ2

(22)

In the second equality we used the change of variables x̃ = x − β. The first inequality holds

because b − ⟨θ, β⟩ ≥ d, and the second inequality holds because 1√
2πσ2

∫ +∞
d (t − d)e−

t2

2σ2 dt ≤
1√
2πσ2

∫ +∞
d te−

t2

2σ2 dt ≤ σ√
2π
e−

d2

2σ2 by Lemma 20. In the case b < −d −
√
d, the same argument

implies that
∫
Rd ρd(x)σ(⟨θ, x⟩ − b) dx is equal to

1

2d
√
2πσ2

∑
β∈Bd

χβ

(∫
R
(t− (b− ⟨θ, β⟩))e−

t2

2σ2 dt−
∫ b−⟨θ,β⟩

−∞
(t− (b− ⟨θ, β⟩))e−

t2

2σ2 dt

)
(23)

An application of Lemma 21 yields

1

2d
√
2πσ2

∑
β∈Bd

χβ

∫
R
(t− (b− ⟨θ, β⟩))e−

t2

2σ2 dt =

∫
Rd

ρd(x)(⟨θ, x⟩ − b) dx

=

〈
θ,

∫
Rd

xρd(x) dx

〉
− b

∫
Rd

ρd(x) dx = 0,

which means that (23) simplifies to

1

2d
√
2πσ2

∑
β∈Bd

χβ

∫ b−⟨θ,β⟩

−∞
(b− ⟨θ, β⟩ − t)e−

t2

2σ2 dt ≤ σ√
2π

e−
d2

2σ2 .

Here, the inequality follows from the same argument as equation (22). ■

Lemma 20 (Simple tail bounds for Gaussian distribution) If X ∼ N (0, σ2), for all x > 0 we

have P (X ≥ x) ≤ σ
x
√
2π
e−

x2

2σ2 , and E[X1X≥x] ≤ σ√
2π
e−

x2

2σ2 .
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Proof We write

P (X ≥ x) =
1√
2πσ2

∫ +∞

x
e−

t2

2σ2 dt ≤ 1√
2πσ2

∫ +∞

x

t

x
e−

t2

2σ2 dt =
2σ2

x
√
2πσ2

∫ +∞

x√
2σ2

ye−y2 dy

=
σ

x
√
2π

∫ +∞

x√
2σ2

2ye−y2 dy =
σ

x
√
2π

∫ +∞

x2

2σ2

e−ỹ dy =
σ

x
√
2π

e−
x2

2σ2

where we used the changes of variables y = t√
2σ2

(i.e. t =
√
2σ2y), and ỹ = y2. Similarly,

E[X1X≥x] =
σ√
2π
e−

x2

2σ2 .

Lemma 21 We have that
∫
Rd xρd(x) dx = 0 and

∫
Rd ρd(x) dx = 0.

Proof We use the short-hand ρ̃(x) = 1

4
√
2πσ2

∑
β∈B χβ exp(− (xi−β)2

2σ2 ). Note that ρd(x) = 2
∏d

i=1 ρ̃(xi).
By the definition of ρd,

∫
Rd

xρd(x) dx =

∫
Rd

 d∑
j=1

xjej

 ρd(x) dx = 2

∫
Rd

 d∑
j=1

xjej

 d∏
i=1

ρ̃(xi) dx

= 2
d∑

j=1

∫
R
xjej ρ̃(xj) dxj

∏
i ̸=j

∫
R
ρ̃(xi) dxi = 0,

which holds because
∫
R ρ̃(xi) dxi = 0 as ρ̃ is an odd function. Similarly, we have that

∫
Rd ρd(x) dx =

2
∏d

i=1

∫
R ρ̃(xi) dxi = 0.

Proof of Lemma 10. If (Xi)
d
i=1 are independent random variables with distribution N (0, σ2), the

union-bound inequality and an application of the Gaussian tail bound in Lemma 20 yields that for

all x ≥ 0, P (∀i ∈ {1, . . . , d}, Xi ≤ x) ≥ 1 −
∑d

i=1 P (Xi ≥ x) ≥ 1 − dσ
x
√
2π
e−

x2

2σ2 . For this to
hold with probability at least 1− ε when x = x0, we can impose

dσ

x0
√
2π

e−
x2

2σ2 = ε ⇐⇒ x2

2σ2
= log

(
dσ√
2πεx0

)
,

which is the defining equation of the sequence (σd)d.
Suppose that σd+1 ≥ σd. Then,

x20
2σ2

d+1

≤ x20
2σ2

d

= log

(
dσd√
2πεx0

)
< log

(
(d+ 1)σd+1√

2πεx0

)
=

x20
2σ2

d+1

,

which is a contradiction. Now, take the sequence (σ̃k)k defined as σ̃d = C/ log(d) for any C > 0.
We have that x2

0

2σ̃2
d
=

x2
0 log(d)

2

2C2 and log
(

dσ̃d√
2πε

)
= log

(
dC

log(d)
√
2πε

)
. Since log(d/ log(d)) is asymp-

totically smaller than log(d)2, there exists d0 ∈ Z+ such that for all d ≥ d0, x2
0

2σ̃2
d
> log

(
dσ̃d√
2πεx0

)
,

which implies that for d ≥ d0, we have σd > σ̃d = C/ log(d). ■
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Proof of Proposition 11. As argued in the main text, with probability at least 1−2ε,
∑d

i=1 f1(Z
+
i ) =∑d

i=1 sign(ξ+i ) and
∑d

i=1 f1(Z
−
i ) =

∑d
i=1 sign(ξ−i ). Since ξ+ and ξ− have an even (resp. odd)

number of components taking negative values, we have that

d∑
i=1

sign(ξ+i ) ≡


0 (mod 4) if d ≡ 0 (mod 4)

1 (mod 4) if d ≡ 1 (mod 4)

2 (mod 4) if d ≡ 2 (mod 4)

3 (mod 4) if d ≡ 3 (mod 4)

,
d∑

i=1

sign(ξ−i ) ≡


2 (mod 4) if d ≡ 0 (mod 4)

3 (mod 4) if d ≡ 1 (mod 4)

0 (mod 4) if d ≡ 2 (mod 4)

1 (mod 4) if d ≡ 3 (mod 4)

(24)

By the construction of f2 (see Figure 2(center, right)),

f2(x) =

{
1 if x ≡ 0 (mod 4)

−1 if x ≡ 2 (mod 4)
if d odd, f2(x) =

{
1 if x ≡ 1 (mod 4)

−1 if x ≡ 3 (mod 4)
if d even.(25)

The equations (24) together with (25) show the high-probability statements for F (Z+) and F (Z−).
To show the lower bound, note that F (Z+), F (Z−) are different from 1,−1 respectively with prob-
ability at most 2ε. Since |F | is upper-bounded by 1, when d ≡ 0, 1 (mod 4) have that

E[F (Z+)] ≥ P (F (Z+) = 1)− P (F (Z+) ̸= 1) ≥ 1− 2ε− 2ε = 1− 4ε

E[F (Z−)] ≤ −P (F (Z−) = −1) + P (F (Z−) ̸= −1) ≤ −(1− 2ε) + 2ε = −1 + 4ε,

When d ≡ 2, 3 (mod 4) the roles of Z+ and Z− get reversed. This concludes the proof. ■

Proof of Lemma 12. F can be expressed as a three-layer neural network because both f1 and f2
are two-layer networks. The path-norm with bias of F for d even is:

PNb(W) =

4 + 2

(d−2)/2∑
i=1

2

 d∑
i=1

∑
β∈B

2∑
j=−2

√
1 + (β + jx0)2

x0

+ 2d+ 2

(d−2)/2∑
i=1

(2i+ 2i) + 1

= 2d

 d∑
i=1

∑
β∈B

1

x0
(4 + 4|β|)

+ 2d+ 8

(d−2)/2∑
i=1

i+ 1

=
64d2

x0
+ d(d− 2) + 2d+ 1 =

(
64

x0
+ 1

)
d2 + 1

In the second equality we bounded
√
1 + (β + jx0)2 by 1+ |β+ jx0|, and in the third equality we

used that
∑

β∈B |β| = | − 3/2|+ | − 1/2|+ |1/2|+ |3/2| = 4 and that
∑(d−2)/2

i=1 i = d(d−2)
8 . The

path-norm without bias for d even is PNnb(W) =
(
4 + 2

∑(d−2)/2
i=1 2

)
16d
x0

= 32d2

x0
. For d odd, the
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path-norm with bias is:

PNb(W) =

4 + 2

(d−3)/2∑
i=0

2

 d∑
i=1

∑
β∈B

2∑
j=−2

√
1 + (β + jx0)2

x0

+ 2d+ 2

(d−3)/2∑
i=0

(2i+ 1 + 2i+ 1)

= (2d+ 2)

 d∑
i=1

∑
β∈B

1

x0
(4 + 4|β|)

+ 2d+ 8

(d−3)/2∑
i=0

i+ 4(1 + (d− 3)/2)

=

(
64

x0
+ 1

)
d2 +

64d

x0
+ 2

In the third equality we used that
∑(d−3)/2

i=0 i = (d−3)(d−1)
8 . The path-norm without bias for d odd

is PNnb(W) =
(
4 + 2

∑(d−3)/2
i=0 2

)
16d
x0

= 32d2+32d
x0

. ■

Appendix C. Proofs of section 5

Lemma 22 The expression for
∫
Rd ρd(x)σ(⟨θ, x⟩−b) dx in equation (18) can be simplified to (19).

Proof First, note that

i√
2π

(
e−

∥tθ−ℓe1∥
2

2σ2 − e−
∥tθ+ℓe1∥

2

2σ2

)
e−itb =

i√
2π

(
e−

t2−2ℓtθ1+ℓ2

2σ2 − e−
t2+2ℓtθ1+ℓ2

2σ2

)
e−itb

=
ie−

ℓ2

2σ2 e−
t2

2σ2

√
2π

(
e

ℓtθ1
σ2 − e−

ℓtθ1
σ2

)
e−itb =

√
2

π
ie−

ℓ2

2σ2 e−
t2

2σ2−itb sinh

(
ℓtθ1
σ2

)
.

And

∫
R

d

dt
δ(t)

(
e−

t2

2σ2−itb sinh

(
ℓtθ1
σ2

))
dt = − d

dt

(
e−

t2

2σ2−itb sinh

(
ℓtθ1
σ2

)) ∣∣∣∣
t=0

=

((
t

σ2
+ ib

)
e−

t2

2σ2−itb sinh

(
ℓtθ1
σ2

)
− ℓθ1

σ2
e−

t2

2σ2−itb cosh

(
ℓtθ1
σ2

)) ∣∣∣∣
t=0

= −ℓθ1
σ2

.

Let us set

u(t) = − d

dt

(
e−

t2

2σ2−itb sinh

(
ℓtθ1
σ2

))
= e−

t2

2σ2−itb

((
t

σ2
+ ib

)
sinh

(
ℓtθ1
σ2

)
− ℓθ1

σ2
cosh

(
ℓtθ1
σ2

))
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Since u(−t) = e−
t2

2σ2+itb
((

t
σ2 − ib

)
sinh

(
ℓtθ1
σ2

)
− ℓθ1

σ2 cosh
(
ℓtθ1
σ2

))
= u(t), we have that u(t)−

u(−t) = 2iIm(u(t)). And

2Im(u(t)) = 2e−
t2

2σ2

(
sin(tb)

(
− t

σ2
sinh

(
ℓtθ1
σ2

)
+

ℓθ1
σ2

cosh

(
ℓtθ1
σ2

))
+ b sinh

(
ℓtθ1
σ2

)
cos(tb)

)

= e−
t2

2σ2

((
b cos(tb)− t

σ2
sin(tb)

)(
e

ℓtθ1
σ2 − e−

ℓtθ1
σ2

)
+

ℓθ1
σ2

sin(tb)

(
e

ℓtθ1
σ2 + e−

ℓtθ1
σ2

))
= e

ℓ2

2σ2

(
b cos(tb) +

ℓθ1 − t

σ2
sin(tb)

)
e−

∥tθ−ℓe1∥
2

2σ2 +

(
−b cos(tb) +

ℓθ1 + t

σ2
sin(tb)

)
e−

∥tθ+ℓe1∥
2

2σ2

Hence, p.v.
[

1
iπt

]
(u) = 1

π

∫∞
0

2Im(u(t))
t dt is equal to

e
ℓ2

2σ2

π

∫ +∞

0

(
b cos(tb) + ℓθ1−t

σ2 sin(tb)
)
e−

∥tθ−ℓe1∥
2

2σ2 +
(
−b cos(tb) + ℓθ1+t

σ2 sin(tb)
)
e−

∥tθ+ℓe1∥
2

2σ2

t
dt.

(26)

We simplify this further via integration by parts:∫ +∞

0

sin(tb)

t

ℓθ1 − t

σ2
exp

(
−∥tθ − ℓe1∥2

2σ2

)
dt =

∫ +∞

0

sin(tb)

t

d

dt

(
exp

(
−∥tθ − ℓe1∥2

2σ2

))
dt

= −b exp

(
− ℓ2

2σ2

)
−
∫ +∞

0

(
b cos(tb)

t
− sin(bt)

t2

)
exp

(
−∥tθ − ℓe1∥2

2σ2

)
dt,∫ +∞

0

sin(tb)

t

ℓθ1 + t

σ2
exp

(
−∥tθ + ℓe1∥2

2σ2

)
dt = −

∫ +∞

0

sin(tb)

t

d

dt

(
exp

(
−∥tθ + ℓe1∥2

2σ2

))
dt

= b exp

(
− ℓ2

2σ2

)
+

∫ +∞

0

(
b cos(tb)

t
− sin(bt)

t2

)
exp

(
−∥tθ + ℓe1∥2

2σ2

)
dt

Using this, equation (26) becomes

e
ℓ2

2σ2

π

∫ +∞

0

sin(tb)

(
e−

∥tθ−ℓe1∥
2

2σ2 − e−
∥tθ+ℓe1∥

2

2σ2

)
t2

dt.

Putting everything together yields equation (19).

Lemma 23 Letting v(t) = sin(tb)
t2

(
exp(−∥tθ−ℓe1∥2

2σ2 )− exp(−∥tθ+ℓe1∥2
2σ2 )

)
, we have

∣∣∣∣ ∫ 2σ2

ℓθ1

0
v(t) dt

∣∣∣∣ ≤ |b|(e+ e−1)e−
ℓ2

2σ2 ,

∣∣∣∣ ∫ 1

2σ2

ℓθ1

v(t) dt

∣∣∣∣ ≤ ℓ2θ21 exp
(
− (ℓ−1)2

2σ2

)
4σ4

,∣∣∣∣ ∫ +∞

1
v(t) dt

∣∣∣∣ ≤ √
2πσ2 exp(−ℓ2(1− θ21)

2σ2
)

(27)
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Proof First, note that v(t) = 2e−
t2+ℓ2

2σ2 sin(tb)
t2

sinh
(
ℓtθ1
2σ2

)
. Then,

∣∣∣∣ ∫ 2σ2

ℓθ1

0
v(t) dt

∣∣∣∣ = 2

∣∣∣∣ ∫ 2σ2

ℓθ1

0
e−

t2+ℓ2

2σ2
sin(tb)

t2
sinh

(
ℓtθ1
2σ2

)
dt

∣∣∣∣
≤ 2

∫ 2σ2

ℓθ1

0
e−

ℓ2

2σ2
(e+ e−1)ℓθ1|b|

4σ2
dt ≤ |b|(e+ e−1)e−

ℓ2

2σ2

Here, we used that e−
t2+ℓ2

2σ2 ≤ e−
ℓ2

2σ2 and that by the mean value theorem,

∀t ∈
[
0,

2σ2

ℓθ1

]
,

∣∣∣∣sin(tb)t

∣∣∣∣ = |b cos(bt̃)| ≤ |b|, and
∣∣∣∣sinh

(
ℓtθ1
2σ2

)
t

∣∣∣∣ = ∣∣∣∣ℓθ1 cosh
(
ℓt̃θ1
2σ2

)
2σ2

∣∣∣∣ ≤ (e+ e−1)ℓθ1
4σ2

.

The second inequality in (27) holds because:

∣∣∣∣ ∫ 1

2σ2

ℓθ1

sin(tb)

(
e−

∥tθ−ℓe1∥
2

2σ2 − e−
∥tθ+ℓe1∥

2

2σ2

)
t2

dt

∣∣∣∣ ≤ ℓ2θ21e
− (ℓ−1)2

2σ2

4σ4
,

where we used that for any t ∈ [2σ
2

ℓθ1
, 1], ∥tθ ± ℓe1∥2 = t2 ± 2ℓθ1t+ ℓ2 ≥ t2 − 2ℓ+ ℓ2 = (ℓ− 1)2.

Now, without loss of generality, suppose that θ1 > 0. Then,∣∣∣∣∣∣∣∣
∫ +∞

1

sin(tb)

(
e−

∥tθ−ℓe1∥
2

2σ2 − e−
∥tθ+ℓe1∥

2

2σ2

)
t2

dt

∣∣∣∣∣∣∣∣ ≤
∫ +∞

1
e−

t2−2ℓθ1t+ℓ2

2σ2 dt

=

∫ +∞

1
e−

(t−ℓθ1)
2+ℓ2(1−θ21)

2σ2 dt ≤
√
2πσ2e−

ℓ2(1−θ21)

2σ2

The same bound is obtained if θ1 < 0 and this shows the third inequality in (27).

Lemma 24 (Li (2011)) Let θ ∈ (0, π/2] and consider the (d − 1)-spherical cap with colati-
tude angle θ, i.e. Cr,θ = {x ∈ Rd | ∥x∥ = r, ⟨x, e1⟩ ≥ cos(θ)}. The area of Cr,θ is Ar,θ =

2π(d−1)/2

Γ( d−1
2

)
rd−1

∫ θ
0 sind−2(t) dt = vol(Sd−1)

Γ( d
2
)

Γ( d−1
2

)Γ( 1
2
)
rd−1

∫ θ
0 sind−2(t) dt.

Proof of Proposition 15. Using the bounds from Lemma 23, we have that |
∫
Rd ρd(x)σ(⟨θ, x⟩ −

b) dx| =
√

2
π |

−Aℓθ1
σ2 e−

ℓ2

2σ2 +B
∫ +∞
0 v(t) dt| is upper-bounded by

√
2

π

 |A|ℓθ1
σ2

e−
ℓ2

2σ2 + |B|

√
2πσ2e−

ℓ2(1−θ21)

2σ2 + |b|(e+ e−1)e−
ℓ2

2σ2 +
ℓ2θ21e

− (ℓ−1)2

2σ2

4σ4

 .(28)
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To keep things simple, we use a crude upper bound on the square of (28) via the rearrangement
inequality and we integrate with respect to τ(θ, b):

2

π

∫
Sd−1×R

4|A|2ℓ2θ21
σ4

e−
ℓ2

σ2 + |B|2
8πσ2e−

ℓ2(1−θ21)

σ2 + 4b2(e+ e−1)2e−
ℓ2

σ2 +
4ℓ4θ41e

− (ℓ−1)2

σ2

16σ8

 dτ(θ, b)

=
2|B|2

π

(
8πσ2

∫
Sd−1

e−
ℓ2(1−θ21)

σ2 dτ(θ) +
4(e+ e−1)2e−

ℓ2

σ2

√
2π

∫
R
b2e−b2/2 db+

4ℓ4
∫
Sd−1 θ

4
1 dτ(θ) e

− (ℓ−1)2

σ2

16σ8

)

+
8|A|2ℓ2e−

ℓ2

σ2

πσ4

∫
Sd−1

θ21 dτ(θ).

(29)

Here, we use τ to denote the uniform probability over Sd−1 as well. By Lemma 24, we have that∫
Sd−1

exp(−ℓ2(1− θ21)

σ2
) dτ(θ) =

1

vol(Sd−1)

∫ π/2

0
e−

ℓ2(1−cos2(t))

σ2
dA1,t

dt
(t) dt

=
Γ(d2)

Γ(d−1
2 )Γ(12)

∫ π/2

0
e−

ℓ2(1−cos2(t))

σ2 sind−2(t) dt

≤
Γ(d2)

Γ(d−1
2 )Γ(12)

(∫ π/4

0
e−

ℓ2(1−cos2(t))

σ2 sind−2(t) dt+

∫ π/2

π/4
e−

ℓ2(1−cos2(t))

σ2 sind−2(t) dt

)

≤
π
4Γ(

d
2)

Γ(d−1
2 )Γ(12)

(
1

2(d−2)/2
+ e−

ℓ2

2σ2

)
(30)

Note that Γ(1/2) =
√
π, and by Stirling’s approximation, log Γ(z) ≤ z log(z) − z + 1

2 log(
2π
z ),

which means that

log
Γ(d2)

Γ(d−1
2 )

∼ 1

2
log

(
d

2

)
+

d− 1

2
log

(
1 +

1

d− 1

)
+

1

2
+

1

2
log

(
1− 1

d

)
∼ 1

2
log

(
d

2

)
+ 1− 1

2d
.

Thus, the right-hand side of (30) admits the upper bound O(
√
d( 1

2d/2
+ e−

ℓ2

2σ2 )). The other terms
in the right-hand side of (29) can be bound trivially. We take the square root and use that the square
root of a sum is less or equal than the sum of square roots, which yields equation (20). ■

Proof of Proposition 16. Let us set θ = e1 and b ∈ R such that sin(bℓ) = 1, which is equivalent
to bℓ = 2πk + π/2 for some k ∈ Z. Take x0 > 0 such that bx0 ≤ π/4, and 0 < ε < 1 fixed. We
take σ such that x2

0
2σ2 = log

(√
2d2σ√
πx0

)
. With probability at least 1 − ε, a Gaussian random variable

X ∼ N (ℓ, σ2
0) is in [ℓ− x0, ℓ+ x0]. Thus,

∫ ℓ+x0

ℓ−x0

sin(tb)e−
∥tθ−ℓe1∥

2

2σ2

t2
dt ≥ (1− ε)

√
2πσ2 sin(π4 )

(ℓ+ x0)2
= (1− ε)

√
πσ2

(ℓ+ x0)2
. (31)
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Moreover,

∫ ℓ+x0

ℓ−x0

sin(tb)e−
∥tθ+ℓe1∥

2

2σ2

t2
dt ≤ e−

(2ℓ−x0)
2

2σ2

(ℓ− x0)2
. (32)

Also, if we take v(t) as in Lemma 23,∣∣∣∣∣
∫
[1,+∞]\[ℓ−x0,ℓ+x0]

v(t) dt

∣∣∣∣∣ ≤
∫
[1,+∞]\[ℓ−x0,ℓ+x0]

| sin(tb)|e−
∥tθ−ℓe1∥

2

2σ2

t2
dt ≤ ε (33)

Putting together (31), (32), (33), and the first two inequalities in (27), we obtain that |
∫
Rd ρd(x)σ(⟨θ, x⟩−

b) dx| is lower-bounded by

√
2

π
|B|
(
(1− ε)

√
πσ2

(ℓ+ x0)2
− e−

(2ℓ−x0)
2

2σ2

(ℓ− x0)2
− |b|(e+ e−1)e−

ℓ2

2σ2 − ℓ2θ21e
− (ℓ−1)2

2σ2

4σ4
− ε

)
−
√

2

π

|A|ℓ
σ2

e−
ℓ2

2σ2

(34)

Taking ℓ =
√
d, x0 = 1 and ε = 1/d2, we can set b = π

2ℓ = π
2
√
d

, which is smaller or equal than
π/4 for d ≥ 4. By the argument of Lemma 10, σd ≥ K/ log(d) for some constant K. The only
asymptotically relevant terms of (34) are the two involving ε, which are the only ones not decreasing
exponentially in d. Thus, we lower-bound√

2

π

|B|K
√
π(1− 1/d2)

log(d)(
√
d+ 1)2

−O(1/d2) = Ω

(
1

d log(d)

)
−O(1/d2) = Ω

(
1

d log(d)

)
The only statement left to prove is the upper bound σd ≤ 2, which by the monotonicity of (σd)
follows from the upper bound on σ0. We have σ0 ≤ 2 because 1

2·22 = 1
8 is smaller than log

(
2
√
2√
π

)
=

1
2 log

(
8
π

)
= 0.467 . . . ; the two curves must intersect at a value of σ smaller than 2. ■
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