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Abstract

We construct pairs of distributions 14, 74 on R? such that the quantity |E,~,,, [F ()] —Egp, [F(2)]|
decreases as Q(1/d?) for some three-layer ReLU network F with polynomial width and weights,
while declining exponentially in d if F' is any two-layer network with polynomial weights. This
shows that deep GAN discriminators are able to distinguish distributions that shallow discrimina-
tors cannot. Analogously, we build pairs of distributions 44, vq on R? such that |E,,,[F(z)] —
Ey~u, [F ()] decreases as ©(1/(dlog d)) for two-layer ReLU networks with polynomial weights,
while declining exponentially for bounded-norm functions in the associated RKHS. This confirms
that feature learning is beneficial for discriminators. Our bounds are based on Fourier transforms.

Keywords: Neural networks, depth, GANS, discriminators, three-layer, two-layer, RKHS.

1. Introduction

Wasserstein generative adversarial networks (WGANSs, Arjovsky et al. (2017)) are a well-known
generative modeling technique where synthetic samples are generated as © = ¢(z), where g :
R% — R? is known as the generator and z is a sample from a dy-dimensional standard Gaussian
random variable. In order to make the generated distribution close to the data samples available, the
generator is a neural network trained by minimizing the loss max s By~ py,, [f (2)]—E.pr0,10) [f (9(2))],
where the function f : R? — R is the discriminator and it is also a neural network. Both the gener-
ator and the discriminator are typically deep networks (i.e. depth larger than two) with architectures
that are tailored to the task at hand. Given our loose understanding of the optimization of deep
networks and our better grasp of two-layer networks, a natural question to ask is the following: do
deep discriminators offer any provable advantages over shallow ones? This is the issue that we
tackle in this paper; namely, we showcase distributions that are easily distinguishable by three-layer
ReLU discriminators but not by two-layer ones.

The study of theoretical separation results between two-layer and three-layer networks began
with the works of Martens et al. (2013) and Eldan and Shamir (2016). The two papers show pairs of
a function f : R? — R and a distribution D on R? such that f can be approximated with respect to
D by a three-layer network of widths polynomial in d, but not by any polynomial-width two-layer
networks. That is, Eldan and Shamir (2016) show that if g is any two-layer network of width at
most ce“ for some universal constant ¢ > 0, then E,.p(f(z) — g(z))?> > c. Daniely (2017)
shows a simpler setting where the exponential dependency is improved to dlog(d) and the non-
approximation results extend to networks with polynomial weight magnitude. Safran and Shamir
(2017) provide other examples where similar behavior holds, Telgarsky (2016) gives separation
results beyond depth 3, and Venturi et al. (2021) generalize the work of Eldan and Shamir (2016).
Note that all the results in these works concern function approximations in the L?(D) norm.
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Our work establishes separation results between two-layer and three-layer networks of a similar
flavor, for the task of discriminating distributions on high-dimensional Euclidean spaces. Our main
result (Sec. 3) can be summarised in the following theorem:

Theorem 1 (Informal) For any d € 77, there exist probability measures jiq,vqy € P(R?) and a
three-layer network F of widths O(d) and weight magnitude 1 such that |E,,,,[F(x)|=Egz~y, [F(2)]]| =
Q(1/d?), but such that for any two-layer network G of weight magnitude O(1), |Ey,,[G(z)] —
Ezmuy [G(2)]] = O(d?k%), where k = 0.7698 . ...

That is, there exists a three-layer network F' with polynomial widths and weights such that the
difference of expectations of F' with respect to g and vy decreases only quadratically with d,
but for all such two-layer networks, the difference of expectations decreases exponentially. We
formalize the vague notion weight magnitude as a specific path-norm of the weights, but the choice
of the weight norm does not alter the essence of the result. Unlike the separation result of Eldan
and Shamir (2016), which relies on radial functions, we build 14 and v, using parity functions and
some additional tricks.

Our second contribution (Sec. 5) is to provide analogous separation results between two-layer
neural networks and functions in the unit ball of the associated reproducing kernel Hilbert space
(RKHS) H (see Sec. 2). While two-layer networks are feature-learning, functions in ‘H are lazy;
they can be seen intuitively as infinitely wide two-layer networks for which the first layer features
are sampled i.i.d from a fixed distribution. Our result is as follows:

Theorem 2 (Informal) For any d € 7%, there exist probability measures j14,v4 € P(R?) and a

two-layer network F' of weight magnitude 1 such that |E,,,,[F(x)] — Ezey, [F(x)]| = Q(ﬁg(d)),

but such that for any G € Hwith |G|y < 1, |Egmpy [G(2)]—Eznn, [G(2)]| = O(dexp(—(\/;llgl)2)).

The recent work Domingo-Enrich and Mroueh (2021) provides similar results for probability mea-
sures /14, Vg on the hypersphere S?~! such their difference of densities is proportional to a spherical
harmonic of order proportional to d, and they leave open the extension of the separation result to
densities on R with only high-frequency differences. Our theorem solves the issue, as our mea-
sures /14, Vg have density difference proportional to sin(¢(x, e1)) times a Gaussian density, where
the frequency ¢ increases as v/d. Experimentally, the superiority of feature-learning over fixed-
kernel discriminators has been observed for the CIFAR-10 and MNIST datasets (Li et al., 2017;
Santos et al., 2017).

2. Framework

Notation. S?~! denotes the (d — 1)-dimensional hypersphere (as a submanifold of RY). For U C
R? measurable, P(U) is the set of Borel probability measures, M(U) is the space of finite signed
Radon measures (Radon measures for shortness). () denotes max{x,0}.

Schwartz functions and tempered distributions. We denote by S(RY) the space of Schwartz
functions, which contains the functions ¢ in C>(R%) whose derivatives of any order decay faster
than polynomials of all orders, i.e. for all k,r € (No)%, pr.,(p) = sup,epa [P0 p(z)| < +oc.
We denote by S’ (R?) the dual space of S(R?), which is known as the space of tempered distributions
on R?. Tempered distributions 7" can be characterized as linear mappings S(RY) — R such that
given (©m),,>0 S S(RY), if lim,y, 500 Pk (om) = 0forany k,r € (Z7)2, then limyy, 00 T(om) =
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0. Functions that grow no faster than polynomials can be embedded in S’(R?) by defining (g, ¢) :=
Jra o(@)g(z) dx for any ¢ € S(RY).

Fourier transforms. For f € L'(R%), we use f to denote the unitary Fourier transform with

angular frequency, defined as f(£) = W Jga f (z)e~“&%) dz, and the inverse Fourier transfom

as f(&) = wa f(x)e & dz. If f € L'(R?) as well, we have the inversion formula

f(x) = f(x). The Fourier transform is a continuous automorphism on S(R%), and it is defined for
a tempered distribution 7 € S'(R%) as T' € S'(R?) fulfilling (7', @) = (T, $).

Convolutions. If f € S'(RY), g € S(R?) the convolution of f and g is defined as the tempered
distribution f x g € S'(R?) such that for any Schwartz test function o € S(RY), (f * g, ) =

—

(g(y), (p(z + 1), f(x))). Moreover, it turns out that f * g € S(R?), and we have that f x g =

(27r)d/ 2 f (Strichartz (2003), Sec. 4.3), a result known as the convolution theorem. Note that the
factor (27r)d/ 2 is specific to the unitary, angular-frequency Fourier transform.

Neural networks and path-norms. A generic three-layer neural network f : R — R with
activation function o : R — R and weights W = ((6;,b;) Wi )
can be written as

j=limy’ ( i=1img,j=0:m1’ (wi)z:l:mg)

mo mi
fw(z) = Zwm Z Wi jo ((8,z) —b;) + Wio | + wo. (1)
=1 =

There are several ways of measuring the magnitude of the weights of a neural network (Neyshabur
etal., 2017, 2018; Bartlett et al., 2017). The classical view is that a particular weight norm is useful
if it gives rise to tight generalization bounds for the class of neural networks with bounded norm
(although the work Nagarajan and Kolter (2019) shows that this approach may be unable to provide
a complete picture of generalization). For the sake of convenience, in our work we make use of the
following path-norms with and without bias':

mo mi
PN, OV) = 3 (Z W,
i=1 j=1

mo mi
and PNY) = D (301116512
i=1 j=1

11065, 6) 2 + |Wz-,o|) + lwol,

respectively. Similarly, two-layer neural networks can be written as
m .
fW - Z wig(<9i7 x> - bz) + wo, where W = (w(Z)a 97:7 bi)i:o:ma (2)
i=1

and the path-norms read PN,(W) = > Jwi| - [|(0i,0:)]|2 + Jwo|, PNppy(OWV) = >0 |wl -
(63, i) ||2-

1. Neyshabur et al. (2017) studies the I! and [ path-norms. Note that our choice is the I* path-norm, but using the
norm for the first-layer weights, which defaults to the /7 norm introduced by Bach (2017) for two-layer networks.
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RKHS associated to two-layer neural networks. We define 7{ as the RKHS of functions R% —
R associated the kernel k(z,y) = [ca—1,5 0((0, ) —b)a((6, y) —b) dr(6,b), where T € P(S4! x
R) is an arbitrary fixed probability measure. In our paper we will use 7 = Unif(S~!) @ N(0, 1),
but previous papers have studied and given closed forms for slightly different kernels (Roux and
Bengio, 2007; Cho and Saul, 2009). Functions in the space H may be written as (Bach, 2017)

fu(z) = /SleRa(w, z) — b)h(0,b) dr(0,b), where h € L*(7). ©))

The RKHS norm of a function f € H may be written as || f||3, = inf{HhH%Q(T) Vo € RY, f(x) =
Jn(z)}, where HhH%Q(T) = Jaa—1, P(6,b)*d7(0,b). The characterization (3) showcases the con-
nection of # with neural networks; if we were two replace h(6,b) dr(6,b) by a Radon measure of
the form )", w(i)d(giybi), we would obtain a two-layer network. It turns out that in general, two-

layer networks do not belong to H and can only be approximated by functions with an exponential
RKHS norm (Bach, 2017).

Integral probability metrics. Integral probability metrics (IPM) are pseudometrics on P(R%) of
the form dz(u,v) = sup e r [Exnpf () — Eznw f(2)], where F is a class of functions from R?
to R. IPMs may be regarded as an abstraction of WGAN discriminators; the class F can encode
a specific network architecture and parameter constraints or regularization. In this paper, we study
IPMs with the following three choices for F:

» F3r is the class of ReLU (or leaky ReLU) three-layer networks fy of the form (1) with
bounded path-norm with bias: PN, (V) < 1. Upon simplification, the IPM takes the form

mi
dpyy (1) = sup Lo [ S wotta) -+ un | du - @)
S5 [w;l-[1(85.,05)ll2+|wo <1 |/ RY j=1

“

» For is the class of two-layer ReLLU networks fjy of the form (2) with bounded path-norm
without bias: PN, (W) < 1. The IPM takes the form

dry), (n,v) = sup o)

(0,b)€S—1 xR

/ o ((6,2) — b) d(p— 1) (z).
Rd

* Fy is the class of functions in the RKHS #H with RKHS norm less or equal than 1 (setting o
as the ReLU or leaky ReLU). Upon simplification, the IPM takes the form

A (11,7) = ( /S L ( /R o ({6,2) ) d( - u><x>)2 drw,b)) T

IPMs for RKHS balls are known as maximum mean discrepancies (MMD), introduced by
Gretton et al. (2007, 2012). They admit an alternative closed form in terms of the kernel k.
Just like neural network IPMs give rise to GANSs, if we use the MMD instead, we obtain a
related generative modeling technique: generative moment matching networks (GMMN:s, Li
et al. (2015); Dziugaite et al. (2015)).
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Figure 1: Left: Plot of the density pg for d = 1 with 0 = 0.1. Center: Plot of the density p, for
= 2 with ¢ = 0.1. Right: Plot of the measure of 74 for d = 1. Arrows denote Dirac
delta functions; their length and sign denote the signed mass allocated at each position.

Note that the neural networks in (4), (5) are simpler than the respective generic form of three-layer
and two-layer networks; in fact, the last layers have just one neuron with weight 1 and no bias terms.
The reason behind this is that convex functions on convex sets attain their minima at extreme points.
App. A provides brief derivations of the expressions (4), (5), as well as pointers to the proof of (6).

3. Separation between three-layer and two-layer discriminators

The pair (114,74). Let o > 0 and define the set B = {—3, -3, 1.3} C R, and the sets B =
{z € BY T, 2 > 0}, B = {a: e B |T[, = < 0}. Define the probability measures

i, vq € P(R?) with densities dé‘ = pd , % = p, defined as

Fa e 2 N B 2 o =B
Pa (1‘) - <4W)d ﬁGZBde p( 20.2 )7 Pq (1.) - (4@)‘1 BGZBde p( 20.2 )
1 -

Remark that p;; and p,; are normalized because \Bi\ = |BY| = %. The Radon measure pg — v4
has density

z— B2
) = )~ i) = S [T e L22 218

BeBd =1

where we use the short-hand x5, = sign(/3;).

3.1. Upper bound for two-layer discriminators

In this subsection we provide an upper bound on the two-layer IPM dr,, (ia, v4) that decreases
exponentially with the dimension d, via a Fourier-based argument.
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The Fourier transform of p;. Let 75 = 4% > pesd Hle X508 = 2 ®?:1(% > pieB XB:0B; )
where ¢, denotes the Dirac delta at the point x. Formally, 7, is a tempered distribution. Let g4 be
the density of the d-variate Gaussian N (0, o%Id). The following lemma, proved in App. B, writes
the density pq in terms of 74 and g4.

Lemma 3 We can write pg as a convolution of the tempered distribution mg with the Schwartz
function gq. That is, pg = T4 * gq.

Thus, we have that py = 74 * gy = (27)%?7y- gy. It is known (Bateman and Erdélyi, 1954; Kamm-

_lwl®

ler, 2000) that the (unitary, angular-frequency) Fourier transform of g4(z) = 207 s

(271.0.2)(1/2 €

. o2 lwl®
ga(w) = (27561/2 e . Also, since the Fourier transform of 2z — sin(kx) isw — 27‘(%,
we have that the Fourier transform of x +— % iSw— — 2\/’% sin(kw). Thus,

Aw>=2ﬁ< 5%"6’%) v ‘2H<2r (o (5) - ()

—9 (@) Hcos (w;) sin (2w;) ,

=1

where the last equality follows from the identity sin(a/) + sin(5) = 2 sin(#) cos(o‘Q;ﬁ)

quently,

. Conse-

2 2
bt}

) =2 (o) 1j £ cos (i) sin (2wr).

Expressing E,. ., [0((0, 2)—b)|—Ez~y, [0 ({0, x)—b)] in terms of p;. Note that E,.,,,[0((0, z)—
b)] — Egmry[o((0, ) — b)] is equal to [pq ({0, 2) — b)pa(x) dz, for any (w,b) € S*! x R. The
following proposition, which is proved in App. B and based on Lemma 3 of Domingo-Enrich and
Mroueh (2021), may be used to reexpress this in terms of pg.

Proposition 4 Take (0,b) € S*~! xR arbitrary. For any ¢ € S(R?) and any activation ¢ : R — R
belonging to the space of tempered distributions S(R). Then, we have

/Rd o(z)o((0,z) — b) dz = (20) T V/2(5(), p(—th)e ).

An application of Proposition 4 yields [, pa(z)o((0, 2)—b) dx = (2m)@V/2(5(t), pu(—t0)e ).
Note that

d
. o242 .
(2m) @025 (—th)e 1 = _\/5 (—i) e "2 T [ cos(t6;) sin(2t6;) (7)
e

i=1

The following lemma provides the expressions of the Fourier transforms 6 of the ReLU and leaky
ReLU activations, as tempered distributions on R.
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Lemma 5 (Domingo-Enrich and Mroueh (2021), App. B) Take 0 : R — R of the form o(x) =
cy ()% + c—(—x)%, where cy,c. € Rand a € ZT. Fora =1, ¢, = 1, c_ = 0 corresponds to
the ReLU, and cy = 1, c_ € (—1,0) corresponds to the leaky ReLU. Then,

oo ad” 1 d
(w) = Adwo‘ <p.v. [Z’mu]) +Bdw°‘6(w)’

where A = ia_lj—Q!?(c+ —(=1)%c_) and B = i®\/5(cy — (—1)%c_) + (—i)%c_.

Here p.v. [%] is a Cauchy principal value, defined as p.v. [%] (¢) = lim._,¢ fR\[—s g %g@(w) dw =

f0+oo elw)—e(zw) Moreover, the derivative of a tempered distribution f € S’(R) is defined in the

w
weak sense: (%, o) = —(f, %). Applying Lemma 5 with « = 1 on equation (7), we have that

/}Rd pa(z)o((0,z) — b) dz = (21) @ V/2(5(2), py(—t0)e )

_ i(—i)d/R <Ajt (p.v. L;D +Bjt<5(t)> <e

We can compute this explicitly. First,

Aoy (o2 i . d (o T .
/Rdté(t) e 2 Hcos(t@i)sm(%ﬁi) dt = g le Hcos(t@i) sin(2t6;)

S22 d
5 —ith H cos(t6;) sin(2t9i)> dt

=1

i=1 i=1 t=0
which holds because the factors sin(2t6;) are equal to 0 when ¢ = 0. Second,
d 1 IEER :
/IR p <p.v. Lwt] ) (e 2 11:11 cos(t6;) sm(2t€z~)> dt N
= —p.V. [ert] (jt <ea22t2”b ﬁCOS(tQi) sin(%&)))
i=1

The following lemma, proved in App. B, provides an upper bound strategy for Cauchy principal
values:

Lemma 6 Forany§ >0, |p.v.[1](u)] <2 (SUPxe(fm) |u'(x)] + %supxeR\[,Ll] |u(zx) - 1‘5|).

Let us set

d a2t2 . d
u(t) = 7 e*T*”bHcos(wi) sin(2t6;)

ge (18.) , 5y~ Oicosih) ) o2 i T "
. 9 . i sin(t6; ; cos(2t0; _o%? .
= <—O' t—1ib— W +2 5111(2t61)> e 2 COS(tGi) Sln(2t0i).
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For ease of computation, in the last equality we introduced some removable singularities. Lemma
18 in App. B provides the following bounds:

d+|b
sup |[u'(z)] <O (Hd (d* + d|b] + b2)> , and sup |u(z) - 2°] < O </<;d <+ | |>) . (10)
z€eR z€R g
The key idea of the proof of Lemma 18 (and of the whole construction in this section) is the inequal-
ity sup;cp | Hle cos(t0;) sin(2t0;)| < k<, where K := sup,cp | cos(t) sin(2t)| = 0.7698... (see
Figure 4). Since x < 1, the factor | Hle cos(t6;) sin(2t6;)| is exponentially small in the dimension
d.

Plugging the bounds (10) into Lemma 6 yields an upper bound on the absolute value of (8). In
consequence, the following upper bound holds:

Proposition 7 We have | [q pa(z)o((0,2) — b) dz| < O (Fad (d2 + d|b] + v + d%“")) for any
(0,b) € S x R.

Concluding the upper bound. Proposition 7 shows that if [b| < d + v/d, then we can write

| [ga pa(@)o((0, ) — b) dz| < O (k¢ (d* + £)) . Thatis, unless |b| is large, | [pa pa(z)o ({0, z) — b) da|
decreases exponentially with the dimension d. In the following, we show that for large d, this is also

the case. Namely,

a2
g T 952
—=—€ 20°,
V2

Lemma 8, which is proved in App. B, allows us to conclude the upper bound.

Lemma 8 [f|b| > d +/d, then | [pa pa(z)o((8,x) — b) d| <

Theorem 9 The following inequality holds for the IPM between g and v, corresponding to the

class Fay, of two-layer networks:
i 2, 4 L
dr,, (fa,va) = sup <O | max<k®|d + e RLL 202 .

(0,b)eSd—1

/ pa(x)o ({6, ) — b) da
R4

3.2. Lower bound for three-layer discriminators.

In order to provide a lower bound on the IPM dr,, (14, vq) We construct a specific three-layer
network £, and then show a lower bound on |E; ., [F(x)] — Ez~u, [F'(2)]] and an upper bound on
the path-norm of F'.

Construction of the discriminator . Let us fix 0 < z¢p < 1/4 arbitrary. Define the two-layer
network f1 : R — R as

file) =3 980 (0 (5 9wg)), — (2~ (8- 20))s — (@ — (B+ )y + (x — (B + 2m0))s)

X
e 0

an

The function f;, which is plotted in Figure 2 (left), takes non-zero values only around points in B,
and it takes value 1 around positive 5 € I3, and value -1 around negative 5 € B.
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Figure 2: Left: Plot of the function f; defined in (11), for the value x¢g = 0.1. Center: Plot of the
function f5 for d = 4 (defined in (12)). Right: Plot of the function f; for d = 5 (defined
in (13)).

If d is even, we define the two-layer network fo : R — R as

folz) =1—(2)4 — (—2)4 — (-1)"?*((x — d)+ + (—2 — d)4)
(d—2)/2 (12)
-2 Z (= 20)y + (—z — 2i)4).

This function is plotted for d = 4 in Figure 2 (center), and it takes alternating values +1 at even
integers. If d > 3 is odd, we define f, as

fole) =2+ (1) V2 (—(z —d)y + (—2 —d)4)
(d-3)/2 (13)
+2 Z —(z—2i— 1) + (—x—2i—1)4).

This function is plotted for d = 5 in Figure 2 (right), and it takes alternating values £1 at odd
integers. We define the discriminator F' : R — R as

d
= f2 <Z f1(w¢)> : (14)

Construction of random variables Z*, Z~ with distributions ;i4, v4. If £T, £ are random vec-
tors distributed uniformly over Bﬁlr and B? respectively, and X is a d-variate Gaussian A/ (0, o%1d),
the variables ZT = ¢T + X and Z— = £~ + X are distributed according to jq and v, respec-
tively. To see this, note that in analogy with p; = 74 * g4, we can write pélt = 71';;: * g4, Where
w;t = 4% > BeBl ngl X;03. Since £* are distributed according to wzlt, and the law of a sum of

random variables is the convolution of their distributions, the result follows. Thus, we can reexpress
Jia (&) d(j1a — va) (x) as E[F(27)] — E[F(Z7)].
Lower-bounding E[F'(Z1)] — E[F(Z7)]. At this point, we take an arbitrary 0 < ¢ < 1, and

2
define the sequence (04)ax0 as the solutions of ; 0, = log( \/d;gx ). The solution o4 exists and is
0
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2
unique because the function o — 5% is strictly decreasing and bijective from (0, +00) to (0, +-00),

while the function o — log( \/%"Ex ) is strictly increasing and bijective from (0,00) to R. The
0

following result regarding the sequence (04)4 is shown in App. B.

Lemma 10 If (X;)% | are independent random variables with distribution N (0,02), we have
that P(Vi € {1,...,d}, X; < x9) > 1 — e. The sequence (04)q is strictly decreasing, and
oq = (1/log(d)).

This allows us to prove an instrumental proposition concerning the values of F at Z and Z~.

Proposition 11 With probability at least 1 — 2¢, we have that simultaneously,

F(Zt)=1 and F(Z )= -1, whend=0,1(mod4)

F(Zt)=—-1 and F(Z7)=1, whend=2,3(mod4)
E[F(ZNH]-E[F(Z7)]| > 2 — 8.
Proof sketch. By the Lemma 10, with probability at least 1 — 2¢, | X;| < zo foralli € {1,...,d}.
Equivalently, |Z;" — &| < mo and |Z; — &| < xo forall i € {1,...,d}. This implies that
f1(Z") = sign(Z;") = sign(¢&) and f1(Z;) = sign(Z;") = sign(¢;) foralli € {1,...,d}. The
statements (15) follow from the definitions of the functions fo and the lower bound is a consequence
of (15) and the boundedness of | F'| (see full proof in App. B). [ |

15)

Consequently,

Bounding the path-norm of the discriminator F'. The following lemma, proved in App. B,
characterizes the discriminator F' as a three-layer network and provides bounds on its path-norms.

Lemma 12 The function F defined in (14) can be expressed as a three-layer ReLU neural network
fw of the form (1) with widths my = 16d and mo = d + 2, with path-norms

64 64 64d

PNy(W) < (m + 1) d? + 1 for d even, and PN,(W) < (m + 1) d? + P + 2 for d odd.
0 0 0

32d?  32d* +32d

for d even, and PN,,;,( W)
X0 Zo

PN,,(W) = for d odd.

We are in position to state the formal version of Theorem 1.
Theorem 13 Setting ¢ = 1/8 and xo = 1/8, we obtain that
dr,, (4, va) = O(k'd?), (16)

> L .
~ 513d%? +512d + 1

Proof To prove (16), we plugged the bound o4 = ©(1/log(d)) from Lemma 10 into Theorem 9.

drs;, (s Va) )

2
We also used that for e = 1/8 and 29 = 1/8, 54 < 1/6 because at 1/6, the curve o — 5% is below
2

d
o log(\/%"m0 ). Hence, oe” 2.2 = O(log(d)e™'8%"), which is O(k%d?). To prove (17), we use
that by Proposition 11, F' is a three-layer neural network such that [E,.,,, [F'(2)] — Ez, [F(2)]| >
1, and with path-norm with bias bounded by 513d%+512d+ 1. Dividing the outermost layer weights

by this quantity, we obtain a three-layer network with unit path-norm and the result follows. |

Note that if we consider the discriminator class of three-layer networks with bounded path-norm
without bias, Lemma 12 gives a lower bound of order €2(1/d?) as well.

10
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Figure 3: Left: Plot of the density pq for d = 1 with ¢ = 0.2 and ¢ = 1. Right: Plot of the density
pq ford =2 witho =0.2and ¢ = 1.

4. Separation between two-layer and RKHS discriminators

The pair (y4,v4). For any d > 0, we define a pair of measures 4,4 € P(R?) with densities

% = pl, % = p,} such that

204 _ Pl
pa(x) == W@ z sin (lx1), wherex; = (x,eq).

Functions of this form are known as Gabor filters in image processing. Since fRd pi(x)dx = 0
. . o?||z|?
because pg is odd with respect to x1, and [pq |pa(z)|dz < % Jga€” 2z dx = 2, we have

freedom in specifying P;, py - If £ is the density of an arbitrary probability measure on RY, setting
P (@) = (1=} Jeu lpal@)| d2)é(x) + max{0, pa(x)} and py (2) = (1~ } foa [pa()| de)e(x) +
max{0, —pq(x)} works. Figure 3 shows plots of p; for d = 1,2. The following lemma provides
the Fourier transform of py. The prove in App. C involves using the convolution theorem; in this
case pg is expressed as a product of functions and p, is proportional to the convolution of their
Fourier transforms.

R . _ llztee))? _llz—tey |
Lemma 14 The Fourier transform of pq reads pg(x) = W <e 202 —e 202 )

As in Sec. 3, an application of Proposition 4 shows that [p4 pa(z)o((6,z) — b) dz is equal to
(2m)d=D/2(5(t), py(—t0)e~). Analogously, we use the expression of & for the ReLU-like acti-
vations provided by Lemma 5, and we obtain an explicit expression for [p4 pq(x)o((0,z) — b) dz
from which the upper and lower bounds will follow:

' d” 1 d” _lo—teq )2 oteey|? ,
\/,;7 <Adta <pV |:‘[/':|> + Bdta(s(t)> <(6 : 20—21 —e : j2L¢721 ) eltb) dt, (18)
T Jr i

which can be simplified to (see Lemma 22 in App. C):

0 [[t0—¢teq|? [[t0+¢€eq|?
\ﬁi (_Ae§16_52+ 5 /+ sin(th) (exp(— 1 5H0) — exp(— 123510 dt) 19
T g

0 t2

11
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Upper bound for RKHS discriminators. By equation (6), the IPM dz,, (114, v4) corresponding to

1/2
the unit ball of the RKHS H takes the form (fsdflxR (fgao ((0,2) —b) pa(x) dﬂc)2 dr (9, b)) :

Armed with the expression (19) for [pq 0 ((0,x) — b) pg(x) dz, we proceed to upper-bound the
absolute value of this expression in the following proposition proved in App. C.

Proposition 15 We have that

1 _2 2 _e=n? 1 _2
dr,, (td,va) = O <d1/4 <2d/4 +e 4o2> + i€ 202 + <a2 + 1> e 2o2> . (20)

Evidently, the upper bound depends on the choices of the parameters ¢ and ¢ as a function of d.

Lower bound for two-layer discriminators. Our approach to lower-bound the IPM dr,, (4, Va)
is to lower-bound [ pa(2)o ({0, ) — b) dz for some well chosen (6,b) € S~! x R, via the

expression (19). The result is as follows:
g

Proposition 16 Define the ({4) ;> as tq = Vd and (o) d>0 as the sequence of solutions to 55 =

log (*ﬁgj(‘)’), which fulfills cq > K /log(d). Then, dz,, (jtd, Va) = €2 (

=)
dlog(d) )*
If we substitute the choices we made for (¢4) and (o) into (20), we obtain
(Vd-1)?
1 de” 16 d+4 Vvi-1?
A (1> va) = O(dl/4 <2d/4 +e‘f'fs> T f; e ) - O<de_( o )

which yields Theorem 2.

oola,

5. Discussion

Why small IPM values preclude discrimination of distributions from samples. Suppose that
F is a class of functions R¢ — R, and j,,, v,, are empirical measures built from n samples from
1, v respectively. Let ]:'u = {f — Ezul[f(x)]| f € F} be the recentered function class according
to 4 (analogous for v). Letting R, (F) = Eg, 4, SUpfer \% Yo, 0if(z;)| be the Rademacher
complexity of F, it turns out that %Rn(]}u) < E[sup ez [Exmplf(@)] = Egnp, [f(@)]] < 2R (F)
(Proposition 4.11, Wainwright (2019)), and an application of McDiarmid’s inequality shows that
w.h.p. (with high probability), the IPM dz (i, 1) = sup e 7 [Exmpu[f(7)] — Eznp, [f (2)]] does not
lie far from these bounds.

F is a useful discriminator class if dr(fn, ) is informative of the value of dz(u,v) for a
tractable data size n. This is not the case if dx (1, v) is negligible compared to d £(u, pn, ), dx (v, vy,)
and their fluctuations, as the statistical noise dominates over the signal®. Since (i, pin), dr (v, vy)
are w.h.p. of the order of %Rn (.73“) and the classes F3r,, For,, F studied in our paper (as well as
their centered versions) have Rademacher complexities ©(1/+/n) (E and Wojtowytsch, 2020), we
need to take n of order Q(1/dx(u, v)?) to get decent discriminator performance. The required n is
prohibitively costly when dx(pq, 4) is exponentially small in d, as in our cases.

2. Strictly speaking, if dx(u, v) was smaller than dx(u, ), dr (v, vy, ) but greater or comparable to their fluctuations,
F could potentially be an effective discriminator in some settings, but this situation seems implausible. To discard it
formally, one may try to develop a kind of reverse McDiarmid inequality.

12
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Can we make 14 and v4 any simpler in Sec. 3?  One might wonder whether a simpler pz might
suffice to show a separation result. Specifically, one might think of replacing B = {j:%, i%} by
B = {£1}. The upper bound on two-layer networks would not go through because the factor
H?Zl cos (w;) sin (2w;) would become ngl sin (w;), which does not admit a uniform exponen-
tially decreasing upper bound. Moreover, it can be seen that for 0 = O(1/log(d)), the two-layer
network fg(z;i:l x;) would be able to discriminate between 14 and vg.

Do our arguments work for other activation functions and weight norms? Our proofs make
use of the specific form of the Fourier transform of the ReLU and leaky ReLU. One may try
to apply the same method for other activation functions via their Fourier transforms; intuitively
one should be able to obtain exponentially decreasing lower bounds as well, because the factor
H?Zl cos (w;) sin (2w;) will show up in some way or another. If we use different norms to define
the three-layer and two-layer IPMs, the results are unchanged up to polynomial factors because
weight norms are equivalent to each other up to polynomial factors in d (using that the width our
networks is polynomial in d). Finally, it would be interesting to adapt our upper bound for the MMD
to slightly different kernels such as the neural tangent kernel (NTK, Jacot et al. (2018)).

Are the results implied by known separation results on function approximation? A possi-
ble approach to leverage existing separation results on L? approximation is to take distributions
1d, Vg such that the difference of their densities is proportional to a function f that can be well ap-
proximated by a three-layer network, but not by a two-layer network; in this case |Ej~,, [F(z)] —
By, [F(2)]| = [ F(z)f(x) dz. A naive candidate would be radial function f proposed by Eldan
and Shamir (2016). Looking at their Fourier-based upper bound argument we see that this func-
tion does not work because it has significant mass in the low frequency components, which allows
for discrimination with two-layer networks. It is probably possible to remedy this by filtering out
the low frequencies of f to obtain a function f' for which two-layer discrimination is precluded,
although special care must be taken when choosing the filter function to ensure that f remains
absolutely integrable (e.g. the unit ball filter does not work because its Fourier transform is not
absolutely integrable). Even if it worked, the construction would be much more complicated than
ours and the quantitative bounds would be weaker (i.e. the upper bound on the width of three-layer
networks would be C'd"%/* for some universal constant C, while for us the widths are 16d and d +2,
and we provide an explicit bounds on the weights). We will add a more detailed comparison with
the separation results for approximation.

Can the distributions analyzed in the paper be generated by a neural network (of moderate
size)? The answer is positive: recall that the random variables ZT = T + X, 7~ = £~ + X
have distributions 114, 74. The Gaussian variable X can be trivially generated, and £*, which is
uniformly distributed over B¢, can be generated by applying an appropriate three-layer network
with step activation functions to a Gaussian random variables: (i) the first d — 1 components are
sampled i.i.d. from B, which requires one-hidden-layer networks assuming that the base measure is
Gaussian, and (ii) the d-th component is obtained by adding the signs of the first d — 1 components
and applying the sawtooth functions f5 (equations (12) and (13)). Hence, £ is the distribution of the
image of a multivariate Gaussian random variable by a three-layer network. £~ can be constructed
analogously.

13
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Appendix A. IPM derivations

Define the function class G, of ReLU neural networks of the form g(z) = £ (3 w;o((0;, ) —
bj) + wo) such that 3 7%, [wy| - [|(6;, ;)2 + |wo| < 1.
Lemma 17 Any function in Fs1, may be written as a convex combination of functions in Gsy, and

the constant function 1.
Proof Let

m2 mi1
fw(x) = Zwia Z Wi jo ((05,2) —bj) + Wio | + wo.
i=1 j=1

belong to F31,, which means that PN, (W) = > 1% wil (3272 Wi 51+ 105, b5) |2+ Wi ol) +|wol <
1. We may renormalize the weights such that > ™% [W; ;| - [|(6;,b;)[2 + [Wio| = 1 for all 4, by
moving the appropriate factors outside of the ReLU activation thanks to the 1-homogeneity. Then,
PNy(W) = >4 |w;| < 1. We may further renormalize the weights such that "% |w;| = 1 and
D521 (Wil - 11085, b5) |2 + [Wip| < 1 forall 4.

Setting g;(x) = sign(w;)o (E;”:ll Wi jo ((8;,2) —bj) + Wi,o), we obtain the expression fyy(x) =

Yo |wilgi(x) + |wo|. Thatis, fyy can be written as a convex combination of {g;};"% and the con-
stant function 1. Note that g; belongs to G'31,, which concludes the proof. |

Since f +— £(Ez~u[f(x)] — Ez~u[f(2)]) are concave mappings, their suprema over Gy, is
equal to their suprema over the convex hull conv(G3y,). Since Epp[f(2)] — Exu[f(2)] is O when
f is a constant function, by Lemma 17 the suprema over conv((G'sz,) are equal to the suprema over
F351, which concludes the proof of equation (4). Equation (5) follows from a similar argument.
Equation (6) is derived using the proof of Lemma 2 of Domingo-Enrich and Mroueh (2021).

Appendix B. Proofs of Section 3
Proof of Lemma 3. If we take a Schwartz function ¢ € S(R?), we have
(ma* ga, 0) = (9a(y), {p(x +y), ma(x)))

1 _ lwli? 2 d
:/Rd WG 202 <<P(95+y)a4d Z HXBi56> dy

BeBd i=1

) _lwl? d
:m/we w2 Y [ xeely +8)dy

BeBd i=1

2

9 d Ly
:m ZHXZH/ e 202 SD(y-i-/B)dy

pepii=t R
2 d lg—2112
T (1Wano?)d ) bei/Rde 272 p(y) dy
BeBd i=1

eBdi=1

d a2
= (42\/%2)61/]1@1 Z HXbie_%SO(g) dy = (pd p)-
B
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[
Proof of Proposition 4. We adapt the argument of Lemma 3 of Domingo-Enrich and Mroueh
(2021). Define o5, : R — R as the translation of o by —b, i.e. op(z) = o(xz — b). Note that
ay(w) = e 5 (w). We have

[ et —nde= [ c@anieonds = [ (s [ o a) as.a) s
/span /span ( 2m)%2 Jspan(o) - </Span(0) Pljeter dw@) ei@gh%nd“’%) dzgroy((0,z9)) dxg

(2m)(d-1)/2 /
V2 /span (0) span(6)

— (97)(d=1)/2 SN db or () da — (25)(d—1/2 1 SN dt oz — b) da
en 0 [ [ gt dtone)do =m0V [ 2 [ gt dtoto )
_ (o) (@-1)/2 iHE) 3t () d — (20 D215 6(10) b
=m0 [ [ ) () de = (2 5(0), G(10)e™

(wp)e“%0) duwg 03,((6, x9)) dg

ASY

In the third equality, we rewrite R? = span(6) +span(6)~ and we use Fubini’s theorem twice. In the
fourth equality we use the following argument: denoting h(xg.,wy) = fspan P(wotwy ) et worro) duyg,
we have that

/ / h(zpe,wp)e ol ®ol) duwyy | dagy = (27r)(d_1)/2/ h(—wps , wp) dwg.
span(6)-+ span(6)+ span(6)-+

— (2m)Lh(0,w,) = (27)0! / (wp) 1070 gy,
span(6)

To conclude the proof note that for any test function ¢ € S(R), (5(x), p(z )> (o(x), @(w)> =
( —ztx t)

Jpo(z) f Jg €™ p(t) dt dx = [ of W JpeT TVTo(t) dt de = [ o(x) \/ﬂ Jre
(6(2), p(=2)). "
Proof of Lemma 6. Recall that p.v. [1] (u) = ;7 M. On the one hand,
1 o 1
[(HD ) gl [ gy ¢ 2y ulaz =2 s W)
0 T 0 ye(—1,1) ye(=1,1)
On the other hand,
+oo oo +oo — g
/ u(@) —u(=a) </ (u@) + JuCz2)Da”
: - ) 2140
</+002 sup  |u(y) -4 de—g sup  |u(y) - |
N yER\[—1,1] a1 +o 0 yeR\[-1,1] '
[ |
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Lemma 18 Let u : R — C defined by (9). Then,

sup [/ (z)] < O (fid (d* + d|b| + b2)>
z€eR

gl <0 (« (7))

Proof Note that

d : d 2 d
) 0; sin(t0;) 0; cos(2t0;) 22 . .
I _ 2 ith . .
u'(t) = (—a t—ib— E “cos(lfy) +2 E (267 e 2 | | cos(t6;) sin(2t6;)
i=1 i—1

= Q1)
2 : 0 2 : 07 22 it :
—0" — —t—2 —t—— e z ' t0;) sin(2t0;
T ; cos?(t6;) ; sin?(2t6;) ¢ I[lcos( ) sin(216;)
Remark that
0; sin(t6;)\ > 02 ) 0;cos(2t0;)\> ., 62 50
cos(t0;) cos?(t0;) sin(2t6;) sin®(2t6;)

2242 .
and that . 62 = ||0||? = 1. Hence, equation (21) may be rewritten as e~ Tz ith H?:l cos(t6;) sin(2t6;)
times

d . d
, , 0; sin(t6;) 0; cos(2t0;)
42 4 2ibo%t — b? — 2(0%t + ib —_— 2 _
o t” + 2ibo 5+ 2(c%t +ib) ; cos(t6;) ; sin(2t6;)

d .
6;0; sin(t6;) cos(2t6;) 0;0; sin(t0;) sin(t6;) 0;0; cos(2t;) cos(2t6;)
—4 2 i) +4
Z cos(t0;) sin(2t6;) z_: cos(t0;) cos(t0;) Z sin(2t6;) sin(2t6;)
i
The functions ¢ — | cos(t6;) sin(2t0;)| are upper-bounded by 0.77 on R regardless of the value of

6;. To see this, define x = t6;. Hence, | cos(t6;) sin(2t6;)| = | cos(x) sin(2x)|. Lemma 19 shows
that x := sup,cp | cos(z) sin(2z)| = 0.7698 . . .. The following upper bounds hold for all ¢ € R:

d . d 70'2t2 —ith 0'2:1,‘2 ].
ECOS(tHi) sin(2t0;)| < k%, |te” 2 < rggﬁ({me 2} = e
t2e” 7 ith < max{ze~ %} = i
z>0 eo?

Thus, the following is a crude upper bound of |u/(t)| for any ¢ € R:

1/2
20° o e Odo A d(d—1)  dd(d-1) 2+ 2o 6l 2\
! e kye K2 K2 K2 Ve K

= O (K (@ + dlp| + 7))
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In the last O-notation expression we have only kept the relevant variables: ¢ is relevant because it
appears in the numerator and we will take it smaller than 1. Similarly, the following is an upper
bound on |t - u(t)| for any t € R:

((Ee e ) () -ole('5)

Lemma 19 The function h(x) = cos(x) sin(2z) satisfies

max ()| = 0.769800358017917...

Proof First note that h has period 27, which means that we can restrict the search of maximizers to
[—7, 7]. We have that 1/ (x) = — sin(z) sin(2z) + 2 cos(z) cos(2z). The condition h'(z*) = 0 is
necessary for x* to be a local maximizer of |h|, and it may be rewritten as tan(z) = 2 cotan(2x).
Remark that z — tan(x) is increasing and bijective from (7(z — 1/2),7(z + 1/2)) to R, and that

r — 2cotan(2z) is decreasing and bijective from (%7, ”(Z; 1)) to R for any z € Z. Thus, there
exist 6 solutions of A’(x) on [—, 7]: one for each interval (%, @) for z = —2,...,1, and

additional solutions at = and at 5 ), where both tan(z) and 2 cotan(2x) take value 400 and —oo
respectively. With this information, any algorithm that finds local maximizers over intervals allows
us to compute the global maximum of |h|, which is equal to 0.769800358917917..., and is attained,

among other points, at 0.615478880595691... |
L y =077 i
0.5 R
ol |
—0.5 i
N y=—0.77 |
2 o 2 4

Figure 4: Plot of the function x — cos(z) sin(2x).

Proof of Lemma 8. Note that for all 3 € {+1}, ||8]| = Vd. If b > d + V/d, for any 3 we have
thatb — (0,8) > b— [|0]||8]| > d + V/d — v/d = d. Thus, using the notation x5 = H?Zl X3; We
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have that

1
= X e 220((0, T+ B) —b)dx
(21 /27m.2)d B%d o /]Rd

+oo 2 2112
- LY e a [ e e
(wm) gepa Jb-(0.8) Ri-1

1 +o0o 2
T od A —(b— (0 2.7
i 0 [ e

peBd

1 /'H’O _ 2
< — t—d)e 202 dt
T 24/ 272 Z X d ( )

BeBd

In the second equality we used the change of variables £ = = — (. The first inequality holds
2

because b — (A, 3) > d, and the second inequality holds because \/2;? e - d)e_2t7 dt <
2

2 d
1 fjoo te” 202 dt < \/%6_272 by Lemma 20. In the case b < —d — V/d, the same argument

V2ro?
implies that [pq pa(x)o((0,z) — b) dx is equal to

2 b—(6,6) 2
A ( La=@=wmesma— [ a-0- <9,B>))e‘%2dt>(23)

Bend -

An application of Lemma 21 yields

2

1 _
PN > Xs /R(t— (b—(0,5)))e 2> dt:/Rd pa(x)((0, x) — b) d

BeBd

— <9, /Rd zpg(x) dx> - b/Rd pa(z) dz =0,

which means that (23) simplifies to

Ly Tewsnetas ot

— X —{0,6) —t)e 202 dt < e 207,

24/ 2752 e ?) V2T

Here, the inequality follows from the same argument as equation (22). |

Lemma 20 (Simple tail bounds for Gaussian distribution) If X ~ N(0,0?), for all x > 0 we
2 2

have P(X > x) < x\;ﬂe_;’j’ and E[ X1 x>,] < \/%6_2%2.
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Proof We write

too +oo 4 42 o too 2
P(X >x) = / e 202 dt < / - T20% dt = / ye ¥ dy
( ) V2ro? Jg vV 2%02 xV2mo? N
20
“+o00 “+00 p 22
— g 2yefy2 dy — / = g e 202
V2T @ V2T 2T

= V202y), and § = y%. Similarly,
e 202, |

where we used the changes of variables y =

E[X1xs] = 5=

Lemma 21 We have that [pq xpq(x) dz = 0 and [zq pa(z) dz = 0.

Proof We use the short-hand p(z) = \/ﬁ > pen XB exp(— u) Note that pg(z) = 2 Hle px;).
By the definition of pg,

/Rda:,od( dm—/ ije] pa(zx :B—Q/ Zazjej Hp x;)
—22/1']6]/) Zj deH/ (i) dz; =0,

i#j

which holds because [, p(x;) dz; = 0as jis an odd function. Similarly, we have that [, pg(x) dz =
QHlIfR x;)dx; = 0. [ |

Proof of Lemma 10. If (X;)?_, are independent random variables with distribution A/(0, o?), the
union-bound inequality and an application of the Gaussian tail bound in Lemma 20 yields that for
12
allz > 0, P(Vi € {1,...,d}, X; <2) > 1= 3L, P(X; > 2) > 1 - ~92_¢722. For this to
hold with probability at least 1 — € when z = x(, we can impose
do 2% x?
202 =g <—

do
— e — =log | —— |,
oV 2T 202 8 <\/ 271'53:0)

which is the defining equation of the sequence (o).
Suppose that 04,1 > 04. Then,

2 2
x5 x5 dog ) ( (d+1)og41 ) z§
< _— = 10 pp——— < 10 - 9
205, ~ 205 s ( V2mexg & V2mexg 2054
which is a contradiction. Now, take the sequence () defined as 64 = C/log(d) for any C' > 0.
2 2] d . :
23% =% 2"32 ” and log (\jﬂ ) = log (@%)' Since log(d/ log(d)) is asymp-

. x? dég
totically smaller than log(d) , there exists dy € Z such that for all d > dp, ﬁ > log ( \/ﬂaxo)’
which implies that for d > dp, we have o4 > 64 = C/ log(d). [
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Proof of Proposition 11. As argued in the main text, with probability at least 1—2¢, Zle f1(ZF) =

Zgzl sign(¢;") and 25:1 hz;) = Zgzl sign(&;7). Since &1 and £~ have an even (resp. odd)
number of components taking negative values, we have that

0 (mod 4) ifd=0 (mod4) 2 (mod4) ifd=0 (mod4
d . d .
1 d4) ifd=1 d 4 d4) ifd=1 d4
Zsign(ﬁj) _ (mod 4) 1 (mod 4) 7 Zsign(fi_) _ 3 (mod 4) 1 (mo
— 2(mod4) ifd=2(mod4) = 0 (mod4) ifd=2(mod4
3 (mod4) ifd=3(mod4) 1 (mod4) ifd=3(mod4

(24)
By the construction of f> (see Figure 2(center, right)),

1 ifz=1(mod4)

fa(z) = —1 ifz =3 (mod4)

{1 if =0 (mod 4) if d even.(25)

if d odd, =
—1 ifx =2 (mod4) nae fa(@) {

The equations (24) together with (25) show the high-probability statements for F/(Z1) and F(Z~).
To show the lower bound, note that F/(Z ), F/(Z ™) are different from 1, —1 respectively with prob-
ability at most 2¢. Since |F'| is upper-bounded by 1, when d = 0, 1 (mod 4) have that

E[F(ZY)]>P(F(ZY)=1)-P(F(Z*)#1)>1—-2 -2 =1—4¢
E[F(Z7)]<—-P(F(Z7)=-1)+P(F(Z7)# —-1) < —(1 —2¢) + 2e = —1 + 4e,
When d = 2,3 (mod 4) the roles of Z+ and Z~ get reversed. This concludes the proof. |

Proof of Lemma 12. F' can be expressed as a three-layer neural network because both f; and fo
are two-layer networks. The path-norm with bias of F' for d even is:

(d—2)/2 \/— (d—2)/2
PN,(W) = |4+ 2 Z ZZZ (B ) | og s > @i+2i)+1

i=1 BEB j=—2 i=1
(d—2)/2
=2d ZZ (A+48) | +2d+8 >
i= 1668 i=1

64d> 64
= ——+d(d- 2)~|—2d+1—<+1>d2+1
Zo Zo

In the second equality we bounded +/1 + (8 + jxo)? by 1 4|8 + jxo|, and in the third equality we
used that 355 18] = | — 3/2] + | — 1/2| + [1/2] + [3/2| = 4 and that 317 ?/% i = 4%2) The
path-norm without bias for d even is PN,,;,(W) = <4 +2 Z (d- 2 /2 > 16¢ _ 32d . For d odd, the

o
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path-norm with bias is:

(d—3)/2 d 2 \/B—HZE)Q (d—3)/2
PNOW) = (4+2 > 2] (XN 2 o o) +2d+2 Y @i+1+2i+1)
=0 i=1 BeB j=—2 i=0

(d-3)/2
(2d +2) Z Z

(A+48) | +2d+8 > i+4(1+(d—3)/2)
i= 1565’

i=0
64 64d
< + 1> &+ —+2

i) i)

In the third equality we used that 3°(%03/?; = (d=3)d=1)

- 3 . The path-norm without bias for d odd
is PN, (W) = <4+2Zd 3)/2.4 >%:%§32d .

Appendix C. Proofs of section 5

Lemma 22 The expression for [gq pa(x)o((0,z)—b) dx in equation (18) can be simplified to (19)

Proof First, note that

7 _ lte—teq | _ lltoteeq|? —ith i 122016 +£2 242010, 02 —ith
5 e 2052 —e 202 e = T e 2052 —e 202 e
V2T V2T
£2 t2
o 202 £t0 0t ) 2 2
_ e e 2t eo? —e ot | it = \/5i€2€r262tcr?ltb sinh 4&921 :
V2 T o
And
d fto d _1% /to
— e 202 “ginh | =t dt = —— (e 22 ginh [ —L
d o? dt o? +=0
t t2 /to 001 _ > o 0
((2 ) ™22 7 ginh (21) — —216 202 7% cosh (;)) ——21.
o o o
t=0
Let us set

2 2
u(t) = 4 <62021tb sinh (@)) it <(Ut2 +¢b> o (ff;) Uy (@))
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Since u(—t) = e 20 B tith ((ﬁ — ib) sinh (€t91> 691 cosh (ftm)) = u(t), we have that u(t) —
u(—t) = 2iIm(u(t)). And

2
2Im(u(t)) = %¢” 207 <sin(tb) (—2 sinh <€t621> + 6021 cosh <€t621>> + bsinh <€t921> cos(tb))
o o o o o

2 t woy  _we\ (0 woy o
— 57 <(b cos(th) — — sin(tb)) (e 2 e 021) + —21 sin(tb) (e R ))
o o

2 _ I1t0—teq |12 l[t0+¢eq 11
= 62[; <b cos(tb) + £, 5 t sin(tb)) e S + (—b cos(tb) + £, ;L t sin(tb)> e o
o o
Hence, p.v. [%] (u) = 1 [;° QIm(“(t)) dt is equal to
1t0—teq |12 llt0+eeq |12
622722 (b cos(tb) + sm(tb)) =7 4 (—b cos(tb) + wl“ sm(tb)) 27
]/ dt.
s 0 t
(26)

We simplify this further via integration by parts:

0 sin(th) €61 —t |t0 — Leq]? T sin(th) d |t0 — Leq]?
_IT Al g = e _IRTE A ) g
/0 t o2 P ( 202 ) /0 t o dt <exp ( 202 >)
2 oo : _ 2
— bexp _% _/ beos(th)  sin(bt) exp |[t0 — Led| n
20 0 t t2 202
0 sin(th) €61 +t 1t6 + Leq]|? o0 sin(th) d (1t6 + Ceq ||?
_ITTRA) g = e _IRTTEEAUR Y ) g
/0 t o2 P < 202 > /0 tdt <exp ( 202 ))
2 +eo bceos(th)  sin(bt) ([t0 + Ceq|?
=bexp <_%t2> —I—/O < ; — ) exp <_202 > dt
Using this, equation (26) becomes

) N _ 1t0+eeq |2
£ o sin(th) 202 —e 207
dt

(& 202
s 0 t2

Putting everything together yields equation (19). |

Lemma 23 Letting v(t) = m;& (exp(—%) - exp(—%)), we have

2
a2 263 exp (-5
'/ o(®) '<|b|(e+e Je 7 ‘/ ‘
0

404 ’

27

[ vttt < VaroFenai- “12;"2>
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) —2242 ) 00
Proof First, note that v(t) = 2 202 =~ sinh ( 1) Then,

2,02 o3
/891 dt’ _ 2‘ / e sm(2tb) sinh <€t01> dt’
0 t 20'

2
< 2/“’1 S Gk o L) | LI AT I
0

402

_ 2402 _ 42
Here, we used thate” 202 < e 202 and that by the mean value theorem,

; 14471 0164
202 sin(tb) - sinh (P) 001 cosh (W) (e + e~ 1)06;
vt € [0, wl] ) r ‘ |bcos(bt)| < |b], an 53 < g
The second inequality in (27) holds because:
_lito—rey|)? _ lito+ee |
1 sin(tb) (e 202 —¢ 202 ) 242 _(52712)2
dt| < #’
202 t2 4ot

£01

where we used that for any ¢ € [40 L ([t0 £ Loy |2 =12 £ 2001t + 02 > 12 — 20+ 02 = (£ — 1),
Now, without loss of generality, suppose that §; > 0. Then,

) _lto—eeq )2 _ lito+eeq |
sin(th) (e 207 —e 252

too > +00 209 t402
/ dt S/ e 202 dt
$2
1 1

_2a-6%)

~+oo (t— /91)2+e2(1 0?)
= / e dt < V2mwo2e 202
1

The same bound is obtained if #; < 0 and this shows the third inequality in (27). |

Lemma 24 (Li (2011)) Let 0 € (0,7/2] and consider the (d — 1)-spherical cap with colati-
tude angle 0, i.e. Crg = {x € R? | ||z|| = r, (x,e1) > cos(0)}. The area of Crg is A,y =

rd=1/2 g 1 00 . d— _ r(g 10 . d—
21“(%) rd=L S sin®=2(t) dt = vol(S* 1)%7“1 N sin?=2(t) dt.

Proof of Proposition 15. Using the bounds from Lemma 23, we have that | [p4 pa(z)o((0, ) —
ZZ
b) dx| = \/g]%e_ﬁ +B f t) dt| is upper-bounded by

(e~ 1>2

2 [ |Al€6 _i _a-ep 2 0 e
z 7’ 1461 -+ 2 + |B| | V2ro2e 207 + |bl(e +e Ye 22024-7 (28)

T o2 404
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To keep things simple, we use a crude upper bound on the square of (28) via the rearrangement
inequality and we integrate with respect to 7(6, b):

(6—1)2
2 41A20%02 _ 2 5 , _fa-ep) 5 g 2 A0te
P /24_1XR ——g ¢ T HIBI 8rote T fdbi (et e e + ——g— | | dr(0,D)
_1)2
2| B? _fae) Ao+ ey 2 404 [ B dr(@) e ot
= — 87702/ e 2 dr(f)+ bPe /2 db + 5
™ Sd—-1 V2T R 1608
2
8| A202e 0 ,
+ - 1 91 dT(Q)
o §d—1
(29)

Here, we use 7 to denote the uniform probability over S*~! as well. By Lemma 24, we have that

21— 6?) 1 ™2 2o ) dA
_ YNdr() = ————— o2 = (t) dt
/Sd—l exp( o? Jdr(9) vol(S4-1) /0 c dt ®)

r /2 2(1—cos?(1)
= % / e st () dt
L(ZH)0(3) Jo 0
r(§) A 2ases?@) g, T2 Paseotw) 4,
S Sy / € o sin" " (t) dt+/ 2 o2 sin®"*(t) dt
L(5)I(3) \Jo x/4
ir(9) < 1 2
<42 +e 202>
TN} \2@or

Note that I'(1/2) = /7, and by Stirling’s approximation, log I'(z) < zlog(z) — z + 1 log(%Z),
which means that

r(4 1 d\ d-1 1 11 1 1 d 1
1 20 Clog(S)+ S tog (14— totlog(1—=)~zlog( o) +1— .
BT T2 Og(2>+ 2 Og( +d—1>+2+2 °g< d) 2 Og<2>+ 2d

22
Thus, the right-hand side of (30) admits the upper bound O(\/&(Zd% + e~ 252)). The other terms
in the right-hand side of (29) can be bound trivially. We take the square root and use that the square
root of a sum is less or equal than the sum of square roots, which yields equation (20). |

Proof of Proposition 16. Let us set § = e; and b € R such that sin(b¢) = 1, which is equivalent
to bl = 27k + 7 /2 for some k € Z. Take x¢ > 0 such that bzg < 7/4,and 0 < € < 1 fixed. We

2
take o such that =% = log V2d’o ) yith probability at least 1 — ¢, a Gaussian random variable
20 N2

X ~N(t,0)isin [¢ — zg,¢ + x0]. Thus,

l[t0—¢eq |12
l+xo 3 - -2 Imosin(T 2
/ sin(tb)e : 2 it > (1 5)\/ o smg4) _(1-o) o N 31)
020 t (£ + xo) (£ + xo)
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Moreover,
2 a2
40 Sin(tb)e_ HtG;Lj? I o (252020)
/ dt < . (32)
{—x0 t2 (ﬁ - 1'0)2
Also, if we take v(¢) as in Lemma 23,
l[t6—teq ||
i T 202
/ u(t)dt| < / | Sm(tb)’% Y dt<e (33
[1,4-00]\[{— 0, ¢-+0] [1,4-00]\ [{—0,¢+0] t

Putting together (31), (32), (33), and the first two inequalities in (27), we obtain that | [54 pa(x)o((0,z)—
b) dz| is lower-bounded by

_(2t—zp)? (6—1)2

2 Vro? e 257 2 (20 27
—|B ((1—6) — — b(€+€_1)€_262 —1—6>
\/; ’ (ﬂ + $0)2 (6 - 170)2 ’ ’ 404 (34)

\F]AE _ 2
_ Z T T 252
T o2

Taking ! = \/a, rg=1land e = 1/d2, we can set b = % = QL\/E’ which is smaller or equal than
7 /4 for d > 4. By the argument of Lemma 10, o4 > K/log(d) for some constant K. The only
asymptotically relevant terms of (34) are the two involving €, which are the only ones not decreasing

exponentially in d. Thus, we lower-bound

SIBIKVA - ) o 1 N
\[r log(d) (Va + 1)2 O(l/d)_Q<dlog(d)) ot/ d>_9<dlog<d>>

The only statement left to prove is the upper bound o, < 2, which by the monotonicity of (o)

follows from the upper bound on 0. We have oy < 2 because ﬁ = % is smaller than log (%‘/g) =
log (2) = 0.467...; the two curves must intersect at a value of o smaller than 2. [ |
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