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Abstract
In real-world reinforcement learning applications the learner’s observation space is ubiquitously

high-dimensional with both relevant and irrelevant information about the task at hand. Learning
from high-dimensional observations has been the subject of extensive investigation in supervised
learning and statistics (e.g., via sparsity), but analogous issues in reinforcement learning are not well
understood, even in finite state/action (tabular) domains. We introduce a new problem setting for
reinforcement learning, the Exogenous Markov Decision Process (ExoMDP), in which the state
space admits an (unknown) factorization into a small controllable (or, endogenous) component and a
large irrelevant (or, exogenous) component; the exogenous component is independent of the learner’s
actions, but evolves in an arbitrary, temporally correlated fashion. We provide a new algorithm,
ExoRL, which learns a near-optimal policy with sample complexity polynomial in the size of the
endogenous component and nearly independent of the size of the exogenous component, thereby
offering a doubly-exponential improvement over off-the-shelf algorithms. Our results highlight for
the first time that sample-efficient reinforcement learning is possible in the presence of exogenous
information, and provide a simple, user-friendly benchmark for investigation going forward.

1. Introduction

Most applications of machine learning and statistics involve complex inputs such as images or text,
which may contain spurious information for the task at hand. A traditional approach to this problem
is to use feature engineering to identify relevant information, but this requires significant domain
expertise, and can lead to poor performance if relevant information is missed. As an alternative,
representation learning and feature selection methodologies developed over the last several decades
address these issues, and enable practitioners to directly operate on complex, high-dimensional inputs
with minimal domain knowledge. In the context of supervised learning and statistical estimation,
these methods are particularly well-understood (Hastie et al., 2015; Wainwright, 2019) and—in some
cases—can be shown to provably identify relevant information for the task at hand in the presence
of a vast amount of irrelevant or spurious features. As such, these approaches have emerged as the
methods of choice for many practitioners.

Complex, high-dimensional inputs are also ubiquitous in Reinforcement Learning (RL) appli-
cations. However, due to the interactive, multi-step nature of the RL problem, naive extensions of
representation learning techniques from supervised learning do not seem adequate. Empirically, this
can be seen in the brittleness of deep RL algorithms and, the large body of work on stabilizing these
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methods (Gelada et al., 2019; Zhang et al., 2020). Theoretically, this can be seen by the prevalence
of strong function approximation assumptions that preclude introducing spurious features (Wang
et al., 2021; Weisz et al., 2021). As a result, developing representation learning methodology for RL
is a central topic of investigation.

Recently, a line of theoretical works have developed structural conditions under which RL with
complex inputs is statistically tractable (Jiang et al., 2017; Jin et al., 2021; Du et al., 2021; Foster et al.,
2021), along with a complementary set of algorithms for addressing these problems via representation
learning (Du et al., 2019; Misra et al., 2020; Agarwal et al., 2020; Misra et al., 2021; Uehara et al.,
2021). While these works provide some clarity into the challenges of high-dimensionality in RL, the
models considered do not allow for spurious, temporally correlated information (e.g., exogenous
information that evolves over time through a complex dynamical system). On the other hand, this
structure is common in applications; for example, when a human is navigating a forest trail, the
flight of birds in the sky is temporally correlated, but irrelevant for the human’s decision making.
Motivated by the success of high-dimensional statistics in developing and understanding feature
selection methods for supervised learning, we ask:

Can we develop provably efficient algorithms for RL in the presence of a large number of dynamic,
yet irrelevant features?

Efroni et al. (2021b) initiated the study of this question in a rich-observation setting with function
approximation. However, their results require deterministic dynamics, and their approach crucially
uses determinism to sidestep many challenges that arise in the presence of exogenous information.

Our contributions. In this paper, we take a step back from the function approximation setting
considered by Efroni et al. (2021b), and introduce a simplified problem setting in which to study
representation learning and exploration with high-dimensional, exogenous information. Our model,
the Exogenous Markov Decision Process or ExoMDP, involves a discrete d-dimensional state space
(with each dimension taking values in {1, . . . , S}) in which an unknown subset of k � d dimensions
of the state can be controlled by the agent’s actions. The remaining d−k state variables are irrelevant
for the agent’s task, but may exhibit complex temporal structure.

Our main result is a new algorithm, ExoRL, that learns a policy which is (i) near-optimal and
(ii) does not depend on the exogenous and irrelevant factors, while requiring only poly(Sk, log(d))
trajectories. Here, the dominant Sk term represents the size of the controllable (or, endogenous)
state space, and the log(d) term represents the price incurred for feature selection (analogous to
guarantees for sparse regression (Hastie et al., 2015; Wainwright, 2019)). Our result represents
a doubly-exponential improvement over naive application of existing tabular RL methods to the
ExoMDP setting, which results in poly(Sd) sample complexity. Our algorithm and analysis involve
many new ideas for addressing exogenous noise, and we believe our work may serve as a building
block for addressing these issues in more practical settings.

2. Overview of Results

In this section we introduce the ExoMDP setting and give an overview of our algorithmic results,
highlighting the key challenges they overcome. Before proceeding, we formally describe the basic
RL setup we consider.
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Markov decision processes. We consider a finite-horizon Markov decision process (MDP) defined
by the tupleM = (S,A, T,R,H, d1), in which S is the state space, A is the action space, T : S ×
A → ∆(S) is the transition operatorR : S×A → [0, 1] is the reward function,H ∈ N is the horizon,
and d1 ∈ ∆(S) is the initial state distribution. Given a non-stationary policy π = (π1, . . . , πH),
where πh : S → A, an episode in the MDPM proceeds as follows, beginning from s1 ∼ d1: For
h = 1, . . . ,H: ah = πh(sh), rh = R(sh, ah), and sh+1 ∼ T (· | sh, ah). We let Eπ[·] and Pπ(·)
denote the expectation and probability for the trajectory (s1, a1, r1), . . . , (sH , aH , rH) when π is
executed, respectively, and define J(π) = Eπ

[∑H
h=1 rh

]
as the average reward.

The objective of the learner is to learn an ε-optimal policy online: Given N episodes to execute a
policy and observe the resulting trajectory, find a policy π̂ such that J(π̂) ≥ maxπ∈ΠNS

J(π)− ε,
where ΠNS denotes the set of all non-stationary policies π = (π1, . . . , πH).

2.1. The Exogenous MDP (ExoMDP) Setting

The ExoMDP is a Markov decision process in which the state space factorizes into an endogenous
component that is (potentially) affected by the learner’s actions, and an exogenous component that
is independent of the learner’s actions, but evolves in an arbitrary, temporally correlated fashion.
Formally, given a parameter d ∈ N (the number of factors), the state space S takes the form
S = ⊗di=1Si, so that each state s ∈ S has the form s = (s1, . . . , sd), with si ∈ Si; we refer
to Si (equivalently, i) as the ith factor. We take I? ⊂ [d] to represent the endogenous factors
and Ic

? := [d] \ I? to represent the exogenous factors, which are unknown to the learner. Letting
s[I] := (si)i∈I , we assume the dynamics and rewards factorize across the endogenous and exogenous
components as follows:

T
(
s′ | s, a

)
= Ten(s′ [I?] | s [I?] , a) · Tex(s′ [Ic

?] | s [Ic
?]),

R(s, a) = Ren(s [I?] , a),

d1(s) = d1,en (s [I?]) · d1,ex (s [Ic
?]) ,

(1)

for all s, s′ ∈ S and a ∈ A. That is, the endogenous factors I? are (potentially) affected by the agent’s
actions and are sufficient to model the reward, while the exogenous factors Ic

? evolve independently
of the learner’s actions and do not influence the reward.

In this paper, we focus on a finite-state/action (tabular) variant of the ExoMDP setting in which
Si = [S] and A = [A], with S ∈ N representing the number of states per factor and A ∈ N
representing the number of actions. We assume that |I?| ≤ k, where k � d is a known upper bound
on the number of endogenous factors.1 In the absence of the structure in Eq. (1), this is a generic
tabular RL problem with |S| = Sd, and the optimal sample complexity scales as poly(Sd, A,H, ε−1)
(Azar et al., 2017), which has exponential dependence on the number of factors d. On the other hand,
if I? were known a-priori, applying off-the-shelf algorithms for tabular RL to the endogenous subset
of the state space would lead to sample complexity poly(Sk, A,H, ε−1) (Azar et al., 2017; Jin et al.,
2018; Zanette and Brunskill, 2019; Kaufmann et al., 2021), which is independent of d and offers
significant improvement when k � d. This motivates us to ask: With no prior knowledge, can we
learn an ε-optimal policy for the ExoMDP with sample complexity polynomial in Sk and sublinear
in d?

1. Extending our results to settings in which different factors have different sizes (i.e., Si = [Si]) is straightforward.
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2.2. Challenges of RL in the Presence of Exogenous Information

Sample-efficient learning in the absence of prior knowledge poses significant algorithmic challenges.

(C1) Hardness of identifying endogenous factors. In general, the endogenous factors may not be
identifiable (that is, multiple choices for I? may obey the structure in Eq. (1)). Even when I?
is identifiable, certifying whether a particular factor i ∈ [d] is exogenous can be statistically in-
tractable (e.g., if the effect of the agent’s action on the state component si is small relative to ε).

(C2) Necessity of exploration. The agent’s action might have a large effect on an endogenous factor
i ∈ I?, but only in a particular state s ∈ S that requires deliberate planning to reach. As such,
any approach that attempts to recover the endogenous factors must be interleaved with explo-
ration, resulting in a chicken-and-egg problem. “Test-then-explore” approaches do not suffice.

(C3) Entanglement of endogenous and exogenous factors. The factorized dynamics in (1) lead to a
number of useful structural properties for ExoMDPs, such as factorization of state occupancy
measures (cf. Appendix B). However, these properties generally only hold for policies that act
on the endogenous portion of the state. When an agent executes a policy whose actions depend
on the exogenous state factors, the evolution of the endogenous and exogenous components
becomes entangled. This entanglement makes it difficult to apply supervised learning or
estimation methods to extract information from trajectories gathered from such policies, and
can lead to error amplification. As a result, significant care is required in gathering data.

Failure of existing algorithms. Existing RL techniques do not appear to be sufficient to address
the challenges above and generally have sample complexity requirements scaling with Ω(d) or
worse. For example, tabular methods do not exploit factored structure, resulting in Ω(Sd) sample
complexity, and we can show that complexity measures like the Bellman rank (Jiang et al., 2017)
and its variants scale as Ω(d), so they do not lead to sample-efficient learning guarantees. Moreover,
algorithms for factored MDPs (e.g., Rosenberg and Mansour (2020)) obtain guarantees that depend
on sparsity in the transition operator, but this operator is dense in the ExoMDP setting, leading to
sample complexity that is exponential in d. See further discussion in Section 5 and Appendix B.1.

2.3. Main Result

We present a new algorithm, ExoRL, which learns a near-optimal policy for the ExoMDP with
sample complexity polynomial in the number of endogenous states and logarithmic in the number of
exogenous components. Following previous approaches to representation learning in RL (Du et al.,
2019; Misra et al., 2020; Agarwal et al., 2020), our results depend on a reachability parameter.

Definition 2.1. The endogenous state space is η-reachable if for all h ∈ [H] and s[I?] ∈ S[I?], either

max
π∈ΠNS

Pπ (sh[I?] = s[I?]) ≥ η, or max
π∈ΠNS

Pπ (sh[I?] = s[I?]) = 0.

Crucially, this notation of reachability considers only the endogenous portion of the state space,
not the full state space. We assume access to a lower bound η on the optimal reachability parameter.

Our main result is as follows.

Theorem 4.1 (informal). With high probability, ExoRL learns an ε-optimal policy for the ExoMDP
using poly(Sk, A,H, log(d)) ·

(
ε−2 + η−2

)
trajectories.
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This constitutes a doubly-exponential improvement over the Sd sample complexity for naive
tabular RL in terms of dependence on the number of factors d, and it provides a RL analogue of
sparsity-dependent guarantees in high-dimensional statistics (Hastie et al., 2015; Wainwright, 2019).
Importantly, the result does not require any statistical assumptions beyond the factored structure in Eq.
(1) and reachability (for example, we do not require deterministic dynamics). Beyond polynomial
factors, the dependence on the size of the state space cannot be improved further.

2.4. Our Approach: Exploration with a Certifiably Endogenous Policy Cover

ExoRL is built upon the notion of an endogenous policy cover. Define an endogenous policy as
follows.
Definition 2.2 (Endogenous policy). A policy π = (π1, . . . , πH) is endogenous if it acts only on the
endogenous component of the state space: For all h ∈ [H] and s ∈ S, we have πh(s) = πh(s[I?]).

An endogenous policy cover is a (small) collection of endogenous policies that ensure each state
is reached with near-maximal probability.

Definition 2.3 (Endogenous policy cover). A set of non-stationary policies Ψ is an endogenous
(ε-approximate) policy cover for timestep h if:

1. For all s ∈ S, maxψ∈Ψ Pψ (sh[I?] = s[I?]) ≥ maxπ∈ΠNS
Pπ (sh[I?] = s[I?])− ε.

2. The set Ψ contains only endogenous policies.

While the coverage property of Definition 2.3 is stated in terms of occupancy measures for the
endogenous portion of the state space, the factored structure of the ExoMDP implies that this yields
a cover for the entire state space (cf. Appendix B.2):

max
ψ∈Ψ

Pψ (sh = s) ≥ max
π

Pπ (sh = s)− ε, ∀s ∈ S.

In particular, even though |S| = Sd, this guarantees that for each timestep h, there exists a small
endogenous policy cover with |Ψ| ≤ Sk. ExoRL constructs such a policy cover and uses it for sample-
efficient exploration in two phases. First, in Phase I (OSSR), the algorithm builds the policy cover
in a manner guaranteeing endogeneity; this accounts for the majority of the algorithm design and
analysis effort. Then, in Phase II (ExoPSDP), the algorithm uses the policy cover to optimize rewards.

Finding a certifiably endogenous policy cover: OSSR. The main component of ExoRL is an
algorithm, OSSR, which iteratively learns a sequence of endogenous policy covers Ψ(1), . . . ,Ψ(H)

with
max
ψ∈Ψ(h)

Pψ (sh[I?] = s[I?]) ≥ max
π

Pπ (sh[I?] = s[I?])− ε

for all s[I?] ∈ S[I?]. For each h ∈ [H], given the policy covers Ψ(1), . . . ,Ψ(h−1) for preceding
timesteps, OSSR builds the policy cover Ψ(h) using a novel statistical test. The test constructs a factor
set I ⊂ [d] which is (i) endogenous, in the sense that I ⊂ I?, yet (ii) ensures sufficient coverage,
in the sense that there exists a near-optimal policy cover operating only on s[I]. The analysis of
this test relies on a unique structural property of the ExoMDP setting called the restriction lemma
(Lemma B.2), which provides a mechanism to “regularize” the factor set under consideration toward
endogeneity in a data-driven fashion.
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This approach circumvents challenges (C1) and (C2): It does not rely on explicit identification of
the endogenous factors and instead iteratively builds a subset of factors that is certifiably endogenous,
but nonetheless sufficient to explore. Endogeneity of the resulting policy cover Ψ(h) ensures the
success of subsequent tests at rounds h+ 1, . . . ,H , and circumvents the issue of entanglement raised
in challenge (C3). To summarize, the following guarantee constitutes our main technical result.

Theorem 3.1 (informal). With high probability, OSSR finds an endogenous η
2 -approximate policy

cover using poly
(
Sk, A,H, log(d)

)
· η−2 trajectories.

2.5. Organization

The remainder of the paper is organized as follows. In Section 3, we introduce the OSSR algorithm,
highlight the key algorithm design techniques and analysis ideas, and state its formal guarantee
(Theorem 3.1) for finding a policy cover. Building on this result, in Section 4 we introduce the ExoRL
algorithm, and provide the main sample complexity guarantee for RL in ExoMDPs (Theorem 4.1).
We close with discussion of additional related work (Section 5) and open problems (Section 6).

2.6. Preliminaries

We let Π denote the set of all one-step policies π : S → A. We use the term t→ h policy to refer to
a non-stationary policy π = (πt, . . . , πh) defined over a subset of timesteps t ≤ h.

For a non-stationary policy π ∈ ΠNS, we define the state-action and state value functions:
Qπh(s, a) := Eπ

[∑H
h′=h rh′ | sh = s, ah = a

]
, and V π

h (s) := Qπh(s, πh(s)). We denote the ex-

pected value of a policy π from time step t to h by Vt,h (π) := Eπ
[∑h

t′=t rt′
]
. We adopt the

shorthand dh(s ; π) := Pπ(sh = s) for the induced state occupancy measure. Likewise, for I ⊆ [d],
we define dh(s[I] ; π) := Pπ(sh[I] = s[I]).

For algorithm design purposes, we consider mixture policies of the form µ ∈ Πmix := ∆(ΠNS).
To run a mixture policy µ ∈ Πmix, we sample π ∼ µ, then execute π for an entire episode. We
further denote Πmix[I] := ∆(ΠNS[I]) as the set of mixture policies over the policy set ΠNS[I],
where ΠNS[I] denotes the set of policies that act on the factor set I . We let Eµ[·] and Pµ(·) denote the

expectation and probability under this process, and we define J(µ) = Eπ∼µ[J(π)] = Eµ
[∑H

h=1 rh

]
and dh(s ; µ) := Pµ(sh = s) analogously. We say that µ ∈ Πmix is endogenous if it is supported
over endogenous policies in ΠNS. Finally, for µ ∈ Πmix and π ∈ Π we let µ ◦t π be the policy that
follows µ for the first t− 1 timesteps, and at the tth timestep it switches to π. For sets of policies Ψ1

and Ψ2 we let Ψ1 ◦t Ψ2 := {ψ1 ◦t ψ2 | ψ1 ∈ Ψ1, ψ2 ∈ Ψ2}.

ExoMDP notation. Recall that for a factor set I ⊆ [d], we define Ic := [d] \I as the complement,
and define s [I] := (si)i∈I and S [I] := ⊗i∈ISi as the corresponding components of the state
and state space. We make frequent use of the fact that for any pair of factors I1 and I2 with
I = I1 ∪ I2 and I1 ∩ I2 = ∅, any state s[I] ∈ S[I] can be uniquely split as s[I] = (s[I1], s[I2]),
with s[I1] ∈ S[I1] and s[I2] ∈ S[I2]. We use a canonical ordering when indexing with factor sets.

Any factor set I ⊆ [d] can be written as I = (I ∩ I?)∪ (I ∩ Ic
?). We denote these intersections

by Ien := I∩I? and Iex := I∩Ic
? , which represent the endogenous and exogenous components of I .

We say that a policy π acts on a factor set I if it selects actions as a measurable function of S[I].
We let Π[I] denote the set of all one-step policies π : S[I]→ A that act on I , and let ΠNS[I] denote
the set of all non-stationary policies that act on I.
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Lastly, if I ⊆ Ic
? , i.e., the factor I is a subset of the exogenous factors, we omit the dependence

in the policy π from its occupancy measure, dh(s[I] ; π) = dh(s[I]). Indeed, for any π, π′ ∈ ΠNS

it holds that dh(s[I] ; π) = dh(s[I] ; π′), and hence the occupancy measure of s[I] is independent
of the policy.

Collections of factor sets. For a factor set I ⊆ [d], we let I≤k(I) := {I ′ ⊆ [d] | I ⊆ I ′, |I ′| ≤ k}
denote a collection of all factor sets of size at most k that contain I , and analogously define Ik(I) :=
{I ′ ⊆ [d] | I ⊆ I ′, |I ′| = k}. We adopt the shorthand I≤k := I≤k (∅) and Ik := Ik (∅). With
some abuse of notation, for a given collection of factor sets I , we define Π[I ] := ∪I∈I Π[I] as
the set of all possible policies induced by factors in I .

We define [N ] := {1, 2, · · · , N}. Unf(X ) denotes the uniform distribution over a finite set X .

3. Learning a Near-Optimal Endogenous Policy Cover: OSSR

In this section, we present the first of our main algorithms, OSSR (Algorithm 8), which performs
reward-free exploration to construct an endogenous policy cover for the ExoMDP. OSSR constitutes
the main algorithmic component of ExoRL, and we believe it is of independent interest.

OSSR is a forward-backward algorithm. For each layer h ∈ [H], given previous policy covers
Ψ(1), . . . ,Ψ(h−1), the algorithm constructs an endogenous policy cover Ψ(h) in a backwards fashion.
Backward steps proceed from t = h − 1, . . . , 1, with each step consisting of (i) an optimization
phase, in which we find a (potentially large) collection of policies for choosing actions at step t that
lead to good coverage for all possible target factors sets I at layer h, and (ii) a selection phase, in
which we narrow the collection of policies from the first phase down to a small set of policies that
act on a single (endogenous) factor set I, yet still ensure coverage for all states at step h.

Instead of directly diving into OSSR, we build up to the algorithm through two warm-up exercises:

• In Section 3.1, we consider a simplified version of OSSR (OSSR.OneStep, or Algorithm 1)
which computes an endogenous policy cover under the assumption that (i) H = 2, and (ii)
certain occupancy measures for the underlying ExoMDP can be computed exactly.

• Building on this result, in Section 3.2 we provide another simplified algorithm (OSSR.Exact,
or Algorithm 2) which computes an endogenous policy cover for general H , but still requires
exact access to certain occupancy measures for the ExoMDP.

Finally, in Section 3.3 we present the full OSSR algorithm and its main sample complexity guarantee.

3.1. Warm-Up I: Finding an Endogenous Policy Cover with Exact Queries (H = 2)

Algorithm 1 presents OSSR.OneStep, a simplified version of OSSR that computes a (small) endoge-
nous policy cover for horizon two, assuming exact access to the state occupancies d2(s ; π). This
algorithm highlights the mechanism through which OSSR is able to simultaneously ensure both
endogeneity and coverage.

OSSR.OneStep learns an endogenous policy cover in two phases. In the optimization phase
(Lines 1 and 2) the algorithm computes a partial policy cover Γ[J ] for each factor set J ∈ I≤k,
which ensures that for all state factor values s[J ] ∈ S[J ] there exists a policy πs[J ] ∈ Γ[J ] which
maximizes the probability to reach the state factor value s[J ] at the 2nd timestep.
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Algorithm 1 OSSR.OneStep: Optimization-Selection State Refinement for ExoMDPs with H = 2

Phase I: Optimization

1: Find factor set Ĩ ∈ I≤k with minimal cardinality such that for all J ∈ I≤k and s[J ] ∈ S[J ],

max
π∈Π[I≤k]

d2 (s[J ] ; π) = max
π∈Π[Ĩ]

d2 (s[J ] ; π) .

2: For all J ∈ I≤k, define πs[J ] = arg max
π∈Π[Ĩ]

d2 (s[J ] ; π) for each s[J ] ∈ S[J ], then set

Γ [J ] :=
{
πs[J ] : s[J ] ∈ S[J ]

}
.

Phase II: Selection
3: Find factor set Î ∈ I≤k with minimal cardinality such that for all J ∈ I≤k and s [J ] ∈ S [J ],

max
π∈Π[I≤k]

d2 (s[J ] ; π) = d2

(
s[J ] ; π

s[J∩Î]

)
.

4: return
(
Î,Γ[Î]

)
All of the partial policy covers are induced by a single factor set Ĩ; existence of such a factor set

is guaranteed by Property 3.2. We show that by regularizing by cardinality, Ĩ is guaranteed to be
endogenous, and so the policy covers (Γ[J ])J∈I≤k are endogenous as well.

At this point, the only issue is size: The set
⋃
J∈I≤k

Γ[J ] is an exact policy cover for h = 2 (in
the sense of Definition 2.3), but its size scales as Ω(dk),2 which makes it unsuitable for exploration.
To address this issue, the selection phase (Line 3) identifies a single endogenous factor Î such that
Γ[Î] is an endogenous policy cover (note that choosing Γ[I?] would suffice, but I? is not known to
the learner). Since |Γ[Î]| ≤ Sk by construction, this yields a small policy cover as desired.

Proposition 3.1. The pair
(
Î,Γ[Î]

)
returned by OSSR.OneStep has the property that (i) Î is

endogenous (i.e., Î ⊆ I?), and (ii) Γ[Î] is an endogenous policy cover for h = 2: For all s ∈ S,

max
π∈Π

d2

(
s[I?] ; π

)
= d2

(
s[I?] ; π

s[Î]

)
, where π

s[Î]
∈ Γ[Î].

The ExoMDP transition structure further implies that maxπ∈Π d2

(
s ; π

)
= d2

(
s ; π

s[Î]

)
∀s ∈

S.
Proof of Proposition 3.1. We begin by highlighting two useful structural properties of the ExoMDP;
both properties are specializations of more general results, Lemmas B.1 and B.2 (Appendix B).

Property 3.1 (Decoupling for endogenous policies). For any endogenous policy π, we have
d2 (s[I] ; π) = d2 (s[Ien] ; π) · d2 (s[Iex]), for all I ⊆ [d] and s ∈ S.

Property 3.2 (Restriction lemma). For all factor sets I and J , we have

max
π∈Π[I]

d2 (s[J ] ; π) = max
π∈Π[Ien]

d2 (s[J ] ; π) ∀s[J ] ∈ S[J ]. (2)

2. The set Π[Ĩ] also gives a policy cover, but it is even larger.
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Property 3.2 is perhaps the most critical structural result used by our algorithms. It implies that
maxπ∈Π d2 (s[J ] ; π) = maxπ∈Π[I?] d2 (s[J ] ; π), which in turn implies that the optimization and
selection phases of Algorithm 1 are feasible (since we can show that I? is a valid choice). If Ĩ and Î
are endogenous, then since Î ⊂ I? the selection rule ensures that Γ[Î] is a policy cover for S[I?] (by
choosing J = I? in Line 3 and since Î ∩ I? = Î). We next show that both Ĩ and Î are endogenous.
Claim 1: Ĩ is endogenous. Observe that for any (potentially non-endogenous) factor set Ĩ = Ĩen∪Ĩex,
Property 3.2 implies that for all J ∈ I≤k and s[J ] ∈ S[J ],

max
π∈Π[Ĩ]

d2 (s[J ] ; π) = max
π∈Π[Ĩen]

d2 (s[J ] ; π) ,

For any factor set Ĩ that satisfies the constraints in Line 1 but has Ĩex 6= ∅, we can further reduce
the cardinality without violating the constraints, so the minimum cardinality solution is endogenous.
Claim 2: Î is endogenous. Consider a (potentially non-endogenous) factor set Î = Îen ∪ Îex. If Î
satisfies the constraint in Line 3, then for all J ∈ I≤k and s ∈ S, since Jen = J ∩ I? ∈ I≤k,

max
π∈Π[I≤k]

d2 (s[Jen] ; π) = d2

(
s[Jen] ; π

s[Jen∩Î]

)
= d2

(
s[Jen] ; π

s[Jen∩Îen]

)
. (3)

Next, using Property 3.2 and Property 3.1, we have

max
π∈Π[I≤k]

d2 (s[J ] ; π) = max
π∈Π[I?]

d2 (s[J ] ; π) = max
π∈Π[I?]

d2 (s[Jen] ; π) · d2(s[Jex]).

As a result, since π
s[Jen∩Îen]

satisfies

max
π∈Π[I?]

d2 (s[Jen] ; π) = d2

(
s[Jen] ; π

s[Jen∩Îen]

)
and it is an endogenous policy, we have

max
π∈Π[I≤k]

d2 (s[J ] ; π) = d2

(
s[Jen] ; π

s[Jen∩Îen]

)
· d2(s[Jex])

= d2

(
s[J ] ; π

s[Jen∩Îen]

)
= d2

(
s[J ] ; π

s[J∩Îen]

)
,

where the second relation holds by Property 3.1, applicable since π
s[Jen∩Îen]

is an endogenous policy,

and the third relatin holds since Jen ∩ Îen = J ∩ Îen.
Thus, Îen satisfies the constraint in Line 3, and if Îex 6= ∅, we can reduce the cardinal-

ity while keeping the constraints satisfied, so the minimum cardinality solution is endogenous.

3.2. Warm-Up II: Finding an Endogenous Policy Cover with Exact Occupancies (H ≥ 2)

Algorithm 2 describes OSSR.Exact, which extends the OSSR.OneStep method to handle ExoMDPs
with general horizon (rather than H = 2), but still requires exact access to occupancy measures.
When invoked with a layer h, OSSR.Exacth takes as input a sequence of endogenous policy covers
Ψ(1), . . . ,Ψ(h−1) for layers 1, . . . , h− 1 and uses them to compute an endogenous policy cover Ψ(h)

for layer h. The algorithm constructs Ψ(h) in a backwards fashion based on the dynamic programming
principle. To describe the approach in detail, we use the notation of t→ h policy cover.

9
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Algorithm 2 OSSR.Exacth: Optimization-Selection State Refinement with Exact Occupancies

1: require: Timestep h ∈ [H], policy covers {Ψ(t)}h−1
t=1 for steps 1, . . . , h− 1.

2: initialize: I(h,h) ← ∅ and Ψ(h,h) ← ∅.
3: for t = h− 1, . . . , 1 do

Phase I: Optimization

4: Let µ(t) := Unf(Ψ(t)).
5: Find Ĩ ∈ I≤k with minimal cardinality such that for all J ∈ I≤k (I(t+1,h)), s [J ] ∈ S [J ],

max
π∈Π[I≤k]

dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
= max

π∈Π[Ĩ]
dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
.

// Beginning from any state at layer t, π(t)

s[J ] ◦t+1 ψ
(t+1,h)

s
[
I(t+1,h)

] maximizes probability that sh[J ] = s[J ].

6: For each factor set J ∈ I≤k (I(t+1,h)) and s[J ] ∈ S[J ], let

πs[J ] ∈ argmax
π∈Π[Ĩ]

dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
,

and define Γ(t) [J ] :=
{
πs[J ] : s[J ] ∈ S[J ]

}
.

Phase II: Selection

7: Find Î ∈ I≤k (I(t+1,h)) with minimal cardinality s.t. for all J ∈ I≤k (I(t+1,h)), s [J ] ∈ S [J ],

max
π∈Π[I≤k]

dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
= dh

(
s[J ] ; µ(t) ◦t π(t)

s[J∩Î]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
.

Policy composition

8: Let I(t,h) ← Î, and for each s[I(t,h)] ∈ S[I(t,h)] define

ψ(t,h)

s[I(t,h)]
:= π(t)

s[I(t,h)]
◦t ψ(t+1,h)

s[I(t+1,h)]
.

// Recall that π(t)

s[I(t,h)]
∈ Γ(t)

[
I(t,h)

]
and ψ(t+1,h)

s[I(t+1,h)]
∈ Ψ(t+1,h).

9: Let Ψ(t,h) ←
{
ψ(t,h)

s[I(t,h)]
: s[I(t,h)] ∈ S[I(t,h)]

}
.

10: return Ψ(h) := Ψ(1,h)

Definition 3.1. For h ∈ [H] and t < h, a set of non-stationary policies Ψ is said to be a (ε-
approximate) t→ h policy cover with respect to a roll-in policy µ ∈ Πmix if for all s ∈ S,

max
ψ∈Ψ

dh (s[I?] ; µ ◦t ψ) ≥ max
π∈ΠNS

dh (s[I?] ; µ ◦t π)− ε.

If all policies in Ψ are endogenous, we say that Ψ is endogenous.

OSSR.Exacth performs a serious of “backward” steps t = h − 1, . . . , 1. In each step t, the
algorithm rolls in with the mixture policy µ(t) := Unf(Ψ(t)) and constructs a t → h policy cover
Ψ(t,h) with respect to µ(t). Ψ(t,h) acts on an endogenous factor set I(t,h) (with I(t,h) ⊇ I(t+1,h) ⊇

10
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· · · ⊇ I(h,h) = ∅), and is built from the next-step policy cover Ψ(t+1,h) via dynamic programming. In
particular, the algorithm searches for a collection of endogenous “one-step” policies for choosing the
action at time t that—when carefully composed with the (t+ 1)→ h policy cover Ψ(t+1,h)—result
in a t→ h policy cover. The algorithm ensures that the factor set I(t,h) (upon which Ψ(t,h) acts) is
endogenous using an optimization and selection phases analogous to those in OSSR.OneStep.

In more detail, OSSR.Exacth satisfies the following invariants for 1 ≤ t ≤ h− 1.
(i) I(h,h) ⊆ · · · ⊆ I(t,h) ⊆ · · · ⊆ I?. (“state refinement”)

(ii) The set Ψ(t,h) is an endogenous t→ h policy cover with respect to µ(t) = Unf(Ψ(t)):

dh
(
s[I?] ; µ(t) ◦t ψ(t,h)

s[I(t,h)]

)
= max

π∈ΠNS

dh
(
s[I?] ; µ(t) ◦t π

)
, ∀s[I?] ∈ S[I?].

This implies that Ψ(h) := Ψ(1,h) is an endogenous policy cover for layer h (Definition 2.3). In what
follows we show how OSSR.Exacth uses dynamic programming to satisfy these invariants.

Dynamic programming. Consider step t < h − 1, and suppose that (I(t+1,h),Ψ(t+1,h)) satisfies
invariants (i) and (ii). Because µ(t+1) uniformly covers all states in layer t+1 (recall Ψ(1), . . . ,Ψ(h−1)

are policy covers), the policy ψ(t+1,h)

s[I(t+1,h)]
maximizes the probability that sh[I?] = s[I?], starting from

any state in layer t+ 1. Hence, the Bellman optimality principle implies that to find a t→ h policy
to maximize this probability, it suffices to use the policy π(t) ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]
, where π(t) solves the

one-step problem:

π(t) ∈ argmax
π∈Π[I?]

dh

(
s[I?] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
. (4)

At first glance, it is not apparent whether this observation is useful, because the endogenous factor
set I? is not known to the learner, which prevents one from directly solving the optimization problem
in Eq. (4). Fortunately, we can tackle this problem using a generalization of the optimization-selection
approach of OSSR.OneStep. First, in the optimization phase (Line 5 and Line 6), we compute a
collection of one-step policy covers (Γ(t)[J ])J∈I≤k(I(t+1,h)), where Γ(t)[J ] consists of the policies
that solve Eq. (4) with I? replaced by J , for all possible choices of state in s[J ] ∈ S[J ]. Then, in the
selection phase (Line 7), we find a single factor I(t,h) ⊇ I(t+1,h) such that Γ(t)[I(t,h)] provides good
coverage (in the sense of Eq. (4)) for all factor sets J ∈ I≤k(I(t+1,h)) simultaneously. Both steps
ensure endogeneity by penalizing by cardinality in the same fashion as OSSR.OneStep. The success
of this approach critically relies on the assumption that the preceding policy covers Ψ(1), . . . ,Ψ(h−1)

are endogenous, which ensures that the occupancy measures induced by µ(1), . . . , µ(h−1) factorize
(due to independence of the endogenous and exogenous state factors). To summarize:

Proposition 3.2. If Ψ(1), . . . ,Ψ(h−1) are endogenous policy covers for layers 1, . . . , h−1, then the set
Ψ(h) returned by OSSR.OneSteph is an endogenous policy cover for layer h, and has |Ψ(h)| ≤ Sk.

We do not prove this result directly, and instead refer the reader to the proof of Theorem 3.1,
which proves the sample-based version of the result using the same reasoning.

3.3. OSSR: Overview and Main Result

The full version of the OSSR algorithm (OSSRε,δh ) is given in Algorithm 8 (deferred to Appendix G
due to space constraints). The algorithm follows the same template as OSSR.Exact: For each

11
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Algorithm 3 ExoRL: RL in the Presence of Exogenous Information
require: precision parameter ε > 0, reachability parameter η > 0, failure probability δ ∈ (0, 1).
initialize: Ψ(1) = ∅.
for h = 2, 3, · · · , H do

Ψ(h) ← OSSRη/2,δh

(
{Ψ(t)}h−1

t=1

)
. // Learn policy cover via OSSR (Algorithm 8 in Appendix G).

π̂ ← ExoPSDPε,δ
(
{Ψ(h)}Hh=1

)
. // Apply ExoPSDP (Algorithm 7 in Appendix F) to optimize rewards.

return π̂

h ∈ [H], given policy covers Ψ(1), . . . ,Ψ(h−1), the algorithm builds a policy cover Ψ(h) for layer h in
a backwards fashion using dynamic programming. There are two differences from the exact algorithm.
First, since the MDP is unknown, the algorithm estimates the relevant occupancy measures for each
backwards step using Monte Carlo rollouts. Second, the optimization and selection phases from
OSSR.Exact are replaced by error-tolerant variants given by subroutines EndoPolicyOptimization and
EndoFactorSelection (Algorithm 5 in Appendix D and Algorithm 6 in Appendix E, respectively).

Briefly, the EndoPolicyOptimization and EndoFactorSelection subroutines are based on approxi-
mate versions of the constraints used in the optimization and selection phase for OSSR.Exact (Line 5
and Line 7 of Algorithm 2), but ensuring endogeneity of the resulting factors is more challenging due
to approximation errors, and it no longer suffices to simply search for the factor set with minimum
cardinality. Instead, we search for factor sets that satisfy approximate versions of Line 5 and Line 7
with an additive regularization term based on cardinality. We show that as long as this penalty is
carefully chosen as a function of the statistical error in the occupancy estimates, the resulting factor
sets will be endogenous with high probability.

The main guarantee for Algorithm 8 is as follows.

Theorem 3.1 (Sample complexity of OSSR). Suppose that OSSRε,δh is invoked with {Ψ(t)}h−1
t=1 ,

where each Ψ(t) is an endogenous, η/2-approximate policy cover for layer t. Then with probability at
least 1− δ, the set Ψ(h) returned by OSSRε,δh is an endogenous ε-approximate policy cover for layer
h, and has |Ψ(h)| ≤ Sk. The algorithm uses at most O

(
AS4kH2k3 log

(
dSAH
δ

)
· ε−2

)
episodes.

By iterating the process Ψ(h) ← OSSRη/2,δh ({Ψ(t)}h−1
t=1 ), we obtain a policy cover for every layer.

4. Main Result: Sample-Efficient RL in the Presence of Exogenous Information

In this section we provide our main algorithm, ExoRL (Algorithm 3). ExoRL first applies OSSR
iteratively to learn an endogenous, η/2-approximate policy cover for each layer, then applies a
novel variant of the classical Policy Search by Dynamic Programming method of (Bagnell et al.,
2004) (ExoPSDP), which uses the covers to optimize rewards; the original PSDP method cannot be
applied to the ExoMDP setting as-is due to subtle statistical issues (cf. Appendix F for background).
The main guarantee for ExoRL is as follows; see Appendix H for a proof and overview of analysis
techniques.

Theorem 4.1 (Sample complexity of ExoRL). ExoRL, when invoked with parameter, ε ∈ (0, 1) and
δ ∈ (0, 1), returns an ε-optimal policy with probability at least 1 − δ, and does so using at most
O
(
AS3kH2(Sk +H2)k3 log

(
dSAH
δ

)
·
(
ε−2 + η−2

))
episodes.

12



REINFORCEMENT LEARNING IN THE PRESENCE OF EXOGENOUS INFORMATION

Recall that Sk = |S[I?]|may thought of as the cardinality of the endogenous state space so—up to
polynomial factors, logarithmic dependence on d, and dependence on the reachability parameter η, the
sample complexity of ExoRL matches the optimal sample complexity when I? is known in advance.

Remark 4.1 (Computational Complexity of ExoRL). The runtime for ExoRL scales with
∑k

k′=0

(
d
k′

)
=

Θ(dk) due to brute force enumeration over factors sets of size at most k. While this improves over
the Sd runtime required to run a tabular RL algorithm over the full state space, an interesting question
that remains is whether the runtime can be improved to O(dc) for some constant c independent of k.

5. Related Work

In this section we highlight additional related work not already covered by our discussion.

Reinforcement learning with exogenous information. The ExoMDP setting is a special case of
the Exogenous Block MDP (EX-BMDP) setting introduced by Efroni et al. (2021b), who initiated the
study of sample-efficient reinforcement learning with temporally correlated exogenous information.
In particular, one can view the ExoMDP as an EX-BMDP with S as the observation space and S[I?]
as the latent state space, and with the set Φ := {s 7→ s[I] | |I| ≤ k} as the class of decoders. Efroni
et al. (2021b) provide an EX-BMDP algorithm whose sample complexity scales with the size of
the latent state space and with log|Φ|, which translates to poly(Sk, log(d)) sample complexity for
the ExoMDP setting, but the algorithm requires that the endogenous state space has deterministic
transitions and initial state. The motivation for the present work was to take a step back and provide
a simplified testbed in which to study the problem of learning with stochastic transitions, as well as
other refined issues (e.g., minimax rates). Also related to this line of research is Efroni et al. (2021a),
which considers a linear control setting with exogenous observations. Unlike our work, Efroni et al.
(2021a) assumes that the inherent system noise induces sufficient exploration, and hence does not
address the exploration problem.

Empirical and theoretical works that aim to filter exogenous noise in RL include Pathak et al.
(2017); Zhang et al. (2020); Gelada et al. (2019) and Dietterich et al. (2018), but these methods do
not come with finite sample guarantees nor tackle the exploration problem.

Tabular reinforcement learning. As discussed earlier, existing approaches to tabular reinforce-
ment learning (Azar et al., 2017; Jin et al., 2018; Zanette and Brunskill, 2019; Kaufmann et al.,
2021) incur Ω(Sd) sample complexity if applied to the ExoMDP setting naively. One can im-
prove this sample complexity to poly(Sk, dk, A,H) using a simple reduction. This falls short of
the poly(Sk, A,H, log(d)) sample complexity our algorithms obtain, we sketch the reduction for
completeness.

• For each I ⊆ [d] with |I| ≤ k, run any optimal tabular RL algorithm with precision parameter
ε over the state space S[I], and let πI be the resulting policy.

• Evaluate each policy πI to precision ε using Monte-Carlo rollouts, and take the best one.

The first phase has poly(Sk, A,H) sample complexity for each set I, and there are at most
(
d
k

)
=

O(dk) subsets. The algorithm that runs on S[I?] will succeed in finding an ε-optimal policy with
high probability, so the policy returned in the second phase will be at least 2ε-optimal.
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Factored Markov decision processes. The ExoMDP setting is related to the Factored MDP
model (Kearns and Koller, 1999). Factored MDPs assume a factored state space whose transition
dynamics obey the following structure:

∀s, s′ ∈ Sd, a ∈ A, T (s′ | s, a) =
d∏
i=1

Ti(s
′[i] | s[pt(i)], a),

where pt : [d]→ 2d is a parent function and Ti : S |pt(i)| ×A → ∆(S) is the transition distribution
of the ith factor. Many algorithms have been proposed for Factored MDPs, including for the setting
where the parent function is unknown (Strehl et al., 2009; Diuk et al., 2009; Hallak et al., 2015; Guo
and Brunskill, 2017; Rosenberg and Mansour, 2020; Misra et al., 2021). These algorithms assume
that the parent factor size is bounded, i.e., |pt(i)| ≤ κ for all i ∈ [d], and their sample complexity
typically scales with O(|S|cκ) for a numerical constant c. The ExoMDP setting cannot be solved
using off-the-shelf factored MDP algorithms for two reasons. First, we do not assume that each
factor evolves independently of other factors given the previous state and action. Second, the size
of the parent set for an exogenous factor can be as large as d− k. Therefore, even if factors were
evolving independently, applying off-the-shelf Factored MDPs algorithms would lead to exponential
sample in d sample complexity.

6. Conclusion

We have introduced the ExoMDP setting and provided ExoRL, the first algorithm for sample-efficient
reinforcement learning in stochastic systems with high-dimensional, exogenous information. Going
forward, we believe that the ExoMDP setting will serve as a useful testbed to understand refined
aspects of learning with exogenous information. Natural questions we hope to see addressed include:

• Minimax rates. While our results provide polynomial sample complexity, it remains to
understand the precise minimax rate for the ExoMDP as a function on Sk, H , and so on.
Additionally, either removing the dependence on the reachability parameter or establishing a
lower bound remains for its necessity is an issue which deserves further investigation.

• Computation. Both ExoRL and OSSR rely on brute force enumeration over subsets, which
results in Ω(dk) runtime. While this provides an improvement over naive tabular RL, it remains
to see whether it is possible to develop an algorithm with runtime O(dc), where c > 0 is a
constant independent of k.

• Regret. Naively lifting our ε-PAC results to regret results in T 2/3-type dependence on the time
horizon T . Developing algorithms with

√
T -type regret will require new techniques.

• Parameter-free algorithms. The OSSR algorithm requires an upper bound on |I?| and a lower
bound on η. It is relatively straightforward to remove access to these quantities when the value
of the optimal policy (maxπ J(π)) is known, by an application of the doubling trick. However,
developing truly parameter-free algorithms is an interesting direction.

Finally, the problem of learning in the ExoMDP model is related to the notion of out-of-distribution
generalization and learning in the presence of acausal features (Peters et al., 2016; Arjovsky et al.,
2019; Kim et al., 2019; Wald et al., 2021). It would be interesting to explore these connections in
more detail. Beyond these questions, we hope that our techniques will find further use beyond the
tabular setting.
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Organization and Notation

The appendix contains three parts, Part I, Part II, and Part III.

Part I: Preliminaries. In Part I we provide basic technical results used in our analysis. Appendix A
contains technical lemmas for reinforcement learning (Appendix A.1), concentration inequalities
(Appendix A.2), and basic analysis tools (Appendix A.3). In Appendix A.4, we provide a simple, yet
useful result which shows that the collection I≤k (I) is a π-system for any factor set I with |I| ≤ k.

In Appendix B we present structural results for the ExoMDP model. We begin by establishing
a negative result (Appendix B.1) which shows that the Bellman rank (Jiang et al., 2017) of for the
ExoMDP model scales with the number of exogenous factors. In Appendix B.2 and Appendix B.3,
we prove key structural results for the ExoMDP model, including a decoupling property (Lemma B.1)
and restriction lemma (Lemma B.2) for occupancy measures, a restriction lemma for endogenous
rewards (Lemma B.7), and a performance difference lemma for endogenous policies (Lemma B.6).

In Appendix C, we present an algorithmic template, AbstractFactorSearch, which forms the basis
for the subroutines in OSSR.

Notation used throughout the main paper and appendix is collected in Table 1.

Part II: Omitted subroutines. In Part II, we describe and analyze subroutines used by OSSR and
ExoRL. Appendix D presents and analyzes the EndoPolicyOptimization subroutine used in OSSR
and ExoPSDP. Appendix E we presents and analyzes the EndoFactorSelection subroutine used in
OSSR. Finally, Appendix F presents and analyzes ExoPSDP algorithm, which is used by ExoRL.

Part III: Additional details and proofs for main results. In Part III, we present our main results
and their proofs. In Appendix G, we present and analyze the full version of the OSSR algorithm,
and in Appendix H, we combine the results for OSSR and ExoPSDP to establish the main sample
complexity bound for ExoRL.
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Notation Meaning
I an ordered set of factors (a set of distinct elements from [d]).
I≤k (I) {J ⊆ [d] : J ⊇ I, |J | ≤ k}.
Ik (I) {J ⊆ [d] : J ⊇ I, |J | = k}.
I≤k {J ⊆ [d] : |J | ≤ k}, or equivalently, I≤k = I≤k (∅) .
Ik {J ⊆ [d] : |J | = k}, or equivalently, Ik = Ik (∅).
Π[I] the set of policies that depend only on the factors specified in I.
Π[I ] the union of the set of policies ∪I∈I Π[I].
I? the set of endogenous factors.
Ic
? the set of exogenous factors.
S [I] the set of states induced by the factors in I.
s [I] the state s restricted to the set of factors I.
V π

1 value of a policy π measured with respect to an initial distribution.
V π
h (s) value of a policy π measured from state s at timestep h

Vt,h Vt,h (π) := Eπ
[∑h

t′=t rt

]
.

Qπh(s, a) Q-function for a policy π measured from state s at timestep h.
dh (s[I];π) shorthand for Pπ(sh[I] = s[I]).
dh(s[I] | st[I ′] = s[I ′];π) shorthand for Pπ(sh[I] = s[I] | st[I ′] = s[I ′]).
π1 ◦t π2 Policy that executes π1 until step t− 1 and executes π2 from then on.
Ien For a set of factors I, Ien := I ∩ I?.
Iex For a set of factors I, Iex := I ∩ Ic

? .

Table 1: Summary of notation.
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Part I

Preliminaries
Appendix A. Supporting Lemmas

A.1. Reinforcement Learning

Lemma A.1 (Performance difference lemma (Kakade and Langford (2002), Lemma 6.1)). Consider
a fixed MDPM = (S,A, T,R,H, µ). For any pair of policies π, π′ ∈ ΠNS,

J(π)− J(π′) = Eπ

[
H∑
t=1

Qπ
′
t (st, πt(st))−Qπ

′
t (st, π

′
t(st))

]
.

Lemma A.2 (Density ratio bound for policy cover). Let Ψ be an endogenous ε-approximate policy
cover for timestep t and µ(t) := Unf (Ψ). Then, for any s[I?] ∈ S [I?] such that maxπ∈ΠNS[I?] dt(s[I?] ; π) ≥
2ε, it holds that

max
π∈ΠNS[I?]

dt(s[I?] ; π)

dt(s[I?];µ(t))
≤ 2Sk.

Proof of Lemma A.2. Fix s[I?] ∈ S [I?]. Since Ψ is an endogenous ε-approximate policy cover,
there exists ψs[I?] ∈ Ψ such that

max
π∈ΠNS[I?]

dt(s[I?];π) ≤ dt(s[I?];ψs[I?]) + ε. (5)

Thus, we have that

max
π∈ΠNS[I?]

dt(s[I?];π)

dt(s[I?];µ(t))

(a)
= Sk max

π∈ΠNS[I?]

dt(s[I?];π)∑
s′[I?]∈S[I?] dt(s[I?];ψs′[I?])

(b)

≤ Sk max
π∈ΠNS[I?]

dt(s[I?];π)

dt(s[I?];πs[I?])

(c)

≤ Sk
maxπ∈ΠNS[I?] dt(s[I?];π)

maxπ∈ΠNS[I?] dt(s[I?];π)− ε
.

Here, (a) holds because µ(t) = Unf (Ψ), (b) holds because dt(s[I?];ψs′[I?]) ≥ 0 for all ψs′[I?] ∈ Ψ,
and (c) holds by Eq. (5). Finally, since x/(x− ε) ≤ 2 for x ≥ 2ε, we conclude the proof.

A.2. Probability

Lemma A.3 (Bernstein’s Inequality (e.g., Boucheron et al. (2013))). Let X1, .., XN be a sequence
of i.i.d. random variables with E [Xi] = µ, E

[
(Xi − µ)2] = σ2, and |Xi − µ| ≤ C almost surely.

Then for all δ ∈ (0, 1),

P

∣∣∣∣∣ 1

N

N∑
i=1

(Xi − µ)

∣∣∣∣∣ ≥
√

2σ2 log
(

2
δ

)
N

+
C log

(
2
δ

)
N

 ≤ δ.
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Lemma A.4 (Union bound for sequences). Let {Gt}ht=1 be a sequence of events. If P(Gt |
∩t−1
t′=1Gt′) ≥ 1− δ for all t ∈ [h], then P(∩ht=1Gt) ≥ 1− hδ.

Proof of Lemma A.4. We prove the claim by induction. The base case h = 1 holds by assumption.
Now, suppose the claim holds for some h′ ≤ h:

P(∩h′t=1Gt) ≥ 1− h′δ.

By Bayes’ rule, we have that

P(∩h′+1
t=1 Gt)

= P(Gh′+1 | ∩h
′
t=1Gt)P(∩h′t=1Gt)

(a)

≥ P(Gh′+1 | ∩h
′
t=1Gt)

(
1− h′δ

)
(b)

≥ (1− δ)
(
1− h′δ

)
≥ 1− (h′ + 1)δ,

where (a) holds by the induction hypothesis and (b) holds by assumption of the lemma. This proves
the induction step and concludes the proof.

A.2.1. CONCENTRATION FOR OCCUPANCY MEASURES

Definition A.1 (ε-approximate occupancy measure collection). Let D̂ =
{
d̂h (· ; π) | π ∈ Π

}
, be a

set of occupancy measures for timestep h. We say that D̂ is ε-approximate with respect to (Π,I , h)
if for all π ∈ Π, I ∈ I and s [I] ∈ S [I] it holds that∣∣∣d̂h (sh [I] = s [I] ; π)− dh (sh [I] = s [I] ; π)

∣∣∣ ≤ ε.
In the following lemma, we bound the sample complexity required to compute a set of ε-

approximate occupancy measures with respect to (µ ◦Π ◦Ψ,I , h), where µ is a fixed policy, Π is
a set of 1-step policies, and Ψ is a set of non-stationary policies. The proof follows from a simple
application of Bernstein’s inequality and a union bound.

Lemma A.5 (Sample complexity for ε-approximate occupancy measures). Let t, h ∈ N with t ≤ h
be given. Fix a mixture policy µ ∈ Πmix, a collection Γ ⊆ Π of 1-step policies, a set Ψ ⊆ ΠNS, and
a collection of factors I . Assume the following bounds hold:

1. |Ψ| ≤ Sk.

2. |Γ| ≤ O
(
dkAS

k
)

.

3. |I | ≤ O
(
dk
)
.

4. For any I ∈ I it holds that |S [I]| ≤ Sk.

Consider the dataset ZNt,h = {(st,n, at,n, ψn, sh,n)}Nn=1 generated by the following process:
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• Execute µ(t) := Unf(Ψ(t)) up to layer t (resulting in state st,n).

• Sample action at,n ∼ Unf(A) and play it, transitioning to st+1,n in the process.

• Sample ψ(t+1,h)
n ∼ Unf(Ψ(t+1,h)) and execute it from layers t+ 1 to h (resulting in sh,n).

Define a collection of empirical occupancies

D̂ =
{
d̂h
(
· ; µ ◦t π ◦t+1 ψ

(t+1,h)
)
| π ∈ Γ, ψ(t+1,h) ∈ Ψ

}
,

where d̂h (· ; µ ◦t π ◦t+1 ψ
(t+1,h)) is given by (see also Line 5 in Algorithm 8)

d̂h(s ; µ ◦t π ◦t+1 ψ
(t+1,h)) =

1

N

N∑
n=1

1
{
at,n = π(st,n), ψ(t+1,h)

n = ψ(t+1,h), sh,n = s
}

(1/|A|) · (1/|Ψ|)
. (6)

Then, whenever N = Ω

(
AS2kk log( dSAδ )

ε2

)
trajectories, with probability at least 1− δ it holds that

D̂ is ε-approximate with respect to (µ ◦t Γ ◦t+1 Ψ,I , h).

Proof of Lemma A.5. Denote ρ as the policy that generates the data ZNt,h. Fix π ∈ Γ, ψ ∈ Ψ, I ∈
I , s [I] ∈ S [I]. It holds that

d̂h(s [I] ; µ ◦t π ◦t+1 ψ)− dh(s [I] ; µ ◦t π ◦t+1 ψ)

(a)
=

∑
s[Ic]∈S[Ic]

d̂h(s ; µ ◦t π ◦t+1 ψ)− dh(s ; µ ◦t π ◦t+1 ψ)

=
1

N

N∑
n=1

1{at,n = π(st,n), ψn = ψ, sh,n [I] = s [I]}
(1/|A|) · (1/|Ψ|)

− dh(s [I] ; µ ◦t π ◦t+1 ψ)

=
1

N

N∑
n=1

(Xn (π, ψ, sh [I])− dh(s [I] ; µ ◦t π ◦t+1 ψ))

where

Xn (π, ψ, sh [I]) :=
1{at,n = π(st,n), ψn = ψ, sh,n [I] = s [I]}

(1/|A|) · (1/|Ψ|)
.

Note that (a) holds by definition: both d̂h(s [I] ; µ ◦t π ◦t+1 ψ) and dh(s [I] ; µ ◦t π ◦t+1 ψ) are
given by marginalizing all state factors in Ic. Observe that the estimator Xn is unbiased and bounded
almost surely:

Eρ[Xn (π, ψ, s [I])] = dh(s [I] ; µ ◦t π ◦t+1 ψ), and 0 ≤ Xn (π, ψ, s [I]) ≤ A |Ψ| . (7)

As a result, we can control the quality of approximation of d̂h(s [I] ; µ◦tπ◦t+1ψ) using Bernstein’s
inequality (Lemma A.3). First, observe that the variance of each term in the sum can be bounded as
follows:

σ2 := Eρ[(Xn (π, ψ, s [I])− dh(s [I] ; µ ◦t π ◦t+1 ψ))]
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(a)

≤ Eρ[Xn (π, ψ, s [I])2]

(b)

≤ A |Ψ|Eρ[Xn (π, ψ, s [I])]

(c)
= A |Ψ| dh(s [I] ; µ ◦t π ◦t+1 ψ)

≤ A |Ψ| . (8)

Here (a) holds since dh(s [I] ; µ ◦t π ◦t+1 ψ) ≥ 0, (b) holds since 0 ≤ Xn (π, ψ, s [I]) ≤ A|Ψ|,
and (c) holds by Eq. (7). As a result, using Bernstein’s inequality, we have that for any fixed
π ∈ Γ, ψ ∈ Ψ, I ∈ I , s [I] ∈ S [I], with probability at least 1− δ,∣∣∣d̂h(s [I] ; µ ◦t π ◦t+1 ψ)− dh(s [I] ; µ ◦t π ◦t+1 ψ)

∣∣∣
(a)

≤ O

√σ2 log
(

1
δ

)
N

+
A |Ψ| log

(
1
δ

)
N


(b)

≤ O

√A |Ψ| log
(

1
δ

)
N

+
A |Ψ| log

(
1
δ

)
N

 ,

where (a) holds byLemma A.3 and (b) holds by Eq. (8). Setting N = Θ
(
A|Ψ| log 1\δ

ε2

)
and using

that ε2 ≤ ε for ε ∈ (0, 1), we find that∣∣∣d̂h(s [I] ; µ ◦t π ◦t+1 ψ)− dh(s [I] ; µ ◦t π ◦t+1 ψ)
∣∣∣ ≤ O (ε+ ε2

)
≤ ε.

Finally, taking a union bound over all π ∈ Γ, ψ ∈ Ψ, I ∈ I , s [I] ∈ S [I] and using assumptions
(1)− (4), we conclude the proof.

A.3. Analysis

The following elementary result shows that if two functions f̂ , f : X → R are point-wise close, any
approximate optimizer for f̂ is an approximate optimizer for f .

Lemma A.6. Let X be a compact set, and let f, f̂ : X → R be such that

||f̂ − f ||∞ := max
x∈X

∣∣f̂(x)− f(x)
∣∣ ≤ ε.

Then, for any ε′ > 0, the following results hold:

1. If maxx∈X f̂(x) > minx∈X f̂(x) + ε′, then maxx∈X f(x) > minx∈X f(x) + ε′ − 2ε.

2. If maxx∈X f̂(x) ≤ minx∈X f̂(x) + ε′, then maxx∈X f(x) ≤ minx∈X f(x) + ε′ + 2ε.

3. For any x̂ ∈ X , if maxx∈X f̂(x) > f̂(x̂) + ε′, then maxx∈X f(x) > f(x̂) + ε′ − 2ε.

4. For any x̂ ∈ X , if maxx∈X f̂(x) ≤ f̂(x̂) + ε′, then maxx∈X f(x) ≤ f(x̂) + ε′ + 2ε.
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Proof of Lemma A.6. Denote the maximizer and minimizer of f by

xmin,f := arg min
x∈X

f(x), xmax,f := arg max
x∈X

f(x),

and denote the maximizer and minimizer of f̂ by

x
min,f̂

:= arg min
x∈X

f̂(x), x
max,f̂

:= arg max
x∈X

f̂(x).

Note that these points exist by compactness of X .
Observe that the following relations hold by the assumption that ||f̂ − f ||∞ ≤ ε:

max
x∈X

f̂(x) = f̂(x
max,f̂

) ≤ f(x
max,f̂

) + ε ≤ max
x∈X

f(x) + ε, (9)

min
x∈X

f̂(x) = f̂(x
min,f̂

) ≥ f(x
min,f̂

)− ε ≥ min
x∈X

f(x)− ε, (10)

max
x∈X

f̂(x) ≥ f̂(xmax,f ) ≥ f(xmax,f )− ε = max
x∈X

f(x)− ε, (11)

min
x∈X

f̂(x) ≤ f̂(xmin,f ) ≤ f(xmin,f ) + ε = min
x∈X

f(x) + ε. (12)

Proof of the first claim. Combining relations Eq. (9), Eq. (10) and rearranging, we have

max
x∈X

f̂(x) > min
x∈X

f̂(x) + ε′ =⇒ max
x∈X

f(x) > min
x∈X

f(x) + ε′ − 2ε.

Proof of the second claim. Combining relations Eq. (11), Eq. (12) and rearranging, we have

max
x∈X

f̂(x) ≤ min
x∈X

f̂(x) + ε′ =⇒ max
x∈X

f(x) ≤ min
x∈X

f(x) + ε′ + 2ε.

Proof of the third claim. By Eq. (9) and the assumption that ||f − f̂ ||∞ ≤ ε, we have

max
x∈X

f̂(x) > f̂(x̂) + ε′ =⇒ max
x∈X

f(x) > f(x̂) + ε′ − 2ε.

Proof of the fourth claim. By Eq. (11) and the assumption that ‖f − f̂‖∞ ≤ ε, we have

max
x∈X

f̂(x) ≤ f̂(x̂) + ε′ =⇒ max
x∈X

f(x) ≤ f(x̂) + ε′ + 2ε.

Lemma A.7 (Equivalence of Maximizers for Scaled Positive Functions). Let X , Y , and A be finite
sets. Let f : X × A → R and g : Y → R+ and let P be a probability measure over X × Y . Let
ΠX×Y and ΠX be the sets of all mappings from X × Y to A and X to A, respectively. Then,

max
π∈ΠX ,Y

Ex,y∼P [f(x, π(x, y))g(y)] = max
π∈ΠX

Ex,y∼P [f(x, π(x))g(y)] .
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Proof of Lemma A.7. By the skolemization lemma (Lemma A.9), we can exchange maximization
and expectation by writing

max
π∈ΠX ,Y

Ex,y∼P [f(x, π(x, y))g(y)] = Ex,y∼P
[
max
a∈A

(f(x, a)g(y))

]
. (13)

Let π?f ∈ ΠX be defined via
π?f (x) ∈ max

a
f(x, a).

Observe that for any x, y ∈ X × Y it holds that

max
a

(f(x, a)g(y))
(a)
= g(y) max

a
f(x, a) = g(y)f(x, π?f (x)), (14)

where (a) holds because g(y) ≥ 0. Plugging Eq. (14) back into Eq. (13) we find that

max
π∈ΠX ,Y

Ex,y∼P [f(x, π(x, y))g(y)]
(a)
= Ex,y∼P

[
f(x, π?f (x))g(y)

] (b)

≤ max
π∈ΠX

Ex,y∼P [f(x, π(x))g(y)] ,

(15)

where (a) holds by Eq. (14), and (b) holds since π?f ∈ ΠX . Finally, observe that we trivially have

max
π∈ΠX ,Y

Ex,y∼P [f(x, π(x, y))g(y)] ≥ max
π∈ΠX

Ex,y∼P [f(x, π(x))g(y)] , (16)

since ΠX ⊆ ΠX ,Y . Combining Eq. (15) and Eq. (16) yields the result.

Lemma A.8. Let k, k1, k2 ∈ N satisfying 1 ≤ k2 ≤ k1 − 1 ≤ k be given. Then, for all ε > 0,

(1 + 1/k)k−k1 ε+ ε/3k < (1 + 1/k)k−k2 ε.

This further implies that (1 + 1/k)k−k1 cε+ ε/3k < (1 + 1/k)k−k2 cε for all c ≥ 1.

Proof of Lemma A.8. We prove the result by explicitly bounding the difference:

(1 + 1/k)k−k1 ε+ ε/3k − (1 + 1/k)k−k2 ε =
(

(1 + 1/k)k2−k1 − 1
)

(1 + 1/k)k−k2 ε+ ε/3k

(a)

≤
(

(1 + 1/k)−1 − 1
)

(1 + 1/k)k−k2 ε+ ε/3k

= − (1 + 1/k)k−k2 ε/(1 + k) + ε/3k

(b)

≤ −ε/(1 + k) + ε/3k.

Here, relation (a) holds since k2 − k1 ≤ −1 and (1 + 1/k) ≥ 1, and relation (b) holds since
k − k2 ≥ 1 which implies that (1 + 1/k)k−k2 ≥ 1. Observe that 3k > 1 + k for k ≥ 1 which
implies that

−ε/(1 + k) + ε/3k < 0

for ε > 0. Thus, under the assumptions of the lemma, we have that (1 + 1/k)k−k1 ε + ε/3k −
(1 + 1/k)k−k2 ε < 0, which implies that

(1 + 1/k)k−k1 ε+ ε/3k < (1 + 1/k)k−k2 ε.
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The following result is standard, so we omit the proof.

Lemma A.9 (Skolemization). Let S and A be finite sets and Π be the set of mappings from S to A.
Then for any function f : S ×A → R, maxπ∈Π E[f(s, π(s))] = E[maxa f(s, a)].

A.4. I≤k (I) is a π-System

We now prove that I≤k (I) is a π-system (that is, a set system that is closed under intersection).
Importantly, this implies that if I? ∈ I≤k (I), then for any I ∈ I≤k (I), I? ∩ I := Ien ∈ I≤k (I).
This fact is repeatedly being in the design and analysis of OSSR in Section 3.3.

Lemma A.10 (I≤k (I) is a π system). For any I ∈ I≤k, I≤k (I) is a π-system:

1. I≤k (I) is non-empty.

2. For any I1, I2 ∈ I≤k (I), we have I1 ∩ I2 ∈ I≤k (I).

Proof of Lemma A.10. Since I ∈ I≤k, we have |I| ≤ k. Furthermore, it trivially holds that
I ⊆ I. Thus, I ∈ I≤k (I), which implies that I≤k (I) is non-empty.

We now prove the second claim. By definition, every J ∈ I≤k (I) has I ⊆ J . Thus, for any
I1, I2 ∈ I≤k (I),

I ⊆ I1 ∩ I2. (17)

Furthermore, since, both |I1| ≤ k and |I2| ≤ k, we have

|I1 ∩ I2| ≤ min{|I1| , |I2|} ≤ k. (18)

Combining Eq. (17) and Eq. (18) implies that I1 ∩ I2 ∈ I≤k (I).

Appendix B. Structural Results for ExoMDPs

B.1. Bellman Rank for the ExoMDP Setting

In this section we show that in general, the ExoMDP setting does not admit low Bellman rank (Jiang
et al., 2017), which is a standard structural complexity measure that enables tractable reinforcement
learning in large state spaces. We expect that similar arguments apply for the related complexity
measures (Jin et al., 2021; Du et al., 2021) and other variations. We note that Efroni et al. (2021b)
showed that the more general Exogenous Block MDP model does not admit low Bellman rank. Here,
we show that the same conclusion holds for the specialized ExoMDP model.

Recall that Bellman rank is a complexity measure that depends on the underlying MDP and on
a class of action-value functions F used to approximate Q?. For a policy π, denote the average
Bellman error of function f ∈ F by

Eh(π, f) := Esh∼π,ah∼πf [f(sh, ah)− rh − f(sh+1, πf (sh+1)] .

With ΠF := {πf : f ∈ F} we define Eh(ΠF ,F) = {Eh(π, f)}π∈ΠF ,f∈F as the matrix of
Bellman residuals indexed by policies and value functions. The Bellman rank is defined as
maxh rank(Eh(ΠF ,F)).
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Proposition B.1. For every d = 2i for i ∈ N, there exists (i) an ExoMDP with S = 3, A = 2,
H = 2, d exogenous factors and 1 endogenous factor, and (ii) a function class F containing of d
functions, one of which is Q? and the rest of which induce policies that are 1/8 sub-optimal, such
that such that the Bellman rank is at least d− 1.

Proof. We construct a ExoMDP with H = 2, A = {1, 2} (so that A = 2), a single endogenous
factor with values in {1, 2, 3}, and d binary exogenous factors with values in {0, 1}.

Let ei ∈ Rd denote the ith standard basis element. We take the first factor to be endogenous, and
construct the initial distribution, transition dynamics, and rewards as follows:

• d1 = Unif({(1, ei)}i∈[d]).

• T ((2, ei) | (1, ei), 1) = 1, and T ((3, ei) | (1, ei), 2) = 1.

• R((2, ei), ·) = 1/2, and R((3, ei), ·) = 3/4.

There is only a single, terminal action at states (2, ei), (3, ei), which we suppress from the notation.
It is straightforward to verify that this is an ExoMDP. Note that the optimal policy takes action 2 at
the initial state, and we have V ? = 3/4.

We first construct the class F . Since d is a power of 2, there exist subsets A1, . . . , Ad−1 ⊂ [d]
such that:3

∀j ∈ [d− 1] : |Aj | = d/2, ∀j 6= k ∈ [d− 1] : |Aj ∩Ak| = d/4.

We define F = {f0, f1, . . . , fd−1}, with f0 = Q? and each fj associated with subset Aj as follows:

fj((1, ei), 2) = 3/4, fj((3, ei), ·) = 3/4

fj((1, ei), 1) = 1{i ∈ Aj}, fj((2, ei), ·) = 1{i ∈ Aj}

Observe that since there is no reward, each function has zero Bellman error at the first timestep (that
is, E1(πfi , fj) = 0 ∀i, j ∈ {0, . . . , d− 1}). On the other hand for j, k ∈ [d− 1] we have

E2(πfj , fk) =
1

d

d∑
i=1

1{i ∈ Aj}(fk((2, ei), ·)− 1/2) + 1{i /∈ Aj}(fk((3, ei), ·)− 3/4)

=
1

d

d∑
i=1

1{i ∈ Aj}(fk((2, ei), ·)− 1/2)

=
1

d

d∑
i=1

1{i ∈ Aj ∩Ak}(1− 1/2) + 1{i ∈ Aj ∩ Āk}(0− 1/2)

=
1

2
1{j = k},

where we have used that |Aj ∩Ak| = |Aj ∩ Āk| = d/4 when j 6= k. This shows that we can embed
a (d− 1)× (d− 1) identity matrix in E2(ΠF ,F), so we have rank(E2(ΠF ,F)) ≥ d− 1.

3. This can be seen by associating the sets with rows of a Walsh matrix.
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B.2. Structural Results for State Occupancies

In this section we provide structural results concerning the state occupancy measures in the ExoMDP
model. These results refine certain results derived for the more general EX-BMDP model in Efroni
et al. (2021b).

For the first result, we adopt the shorthand

dπh (s[I]) := dh (s[I] ; π) := Pπ(sh[I] = s[I]).

Lemma B.1 (Decoupling of state occupancy measures). Fix t, h ∈ [H] such that t ≤ h. Let
π ∈ ΠNS[I?] be an endogenous policy and let I be any factor set. Then for any s′ [I] ∈ S [I] and
s ∈ S, a ∈ A the following claims hold.

1. dπh (s′[I] | st = s, at = a) = dπh (s′[Ien] | st[I?] = s[I?], at = a)·dh (s′[Iex] | st[Ic
?] = s[Ic

?]).

2. dπh (s′[I] | st = s) = dπh (s′[Ien] | st[I?] = s[I?]) · dh (s′[Iex] | st[Ic
?] = s[Ic

?]).

3. For any endogenous mixture policy µ ∈ Πmix[I?] and factor set I,

dµh(s[I]) = dµh(s[Ien]) · dh(s[Iex]).

Hence, the random variables (sh[Ien], sh[Iex]) are independent under µ.

Proof of Lemma B.1. The proof follows a simple backwards induction argument.

Proof of Claims 1 and 2. We prove the two claims by induction on t′ = h− 1, .., t.

Base case: t′ = h− 1. The base case holds as an immediate consequence of the ExoMDP structure.
In more detail, we have the following results.

1. Claim 1.

dπh
(
s′[I] | sh−1 = s, ah−1 = a

)
=

∑
s′[Ic]∈S[Ic]

T (s′[I] | s, a)

=
∑

s′[I?\Ien]∈S[I?\Ien]

∑
s′[Ic

?\Iex]∈S[Ic
?\Iex]

T (s′[I?] | s[I?], a)T (s′[Ic
?] | s[Ic

?])

=
∑

s[I?\Ien]∈S[I?\Ien]

T (s′[I?] | s[I?], a)
∑

s[Ic
?\Iex]∈S[Ic

?\Iex]

T (s′[Ic
?] | s[Ic

?])

= dπh
(
s′[Ien] | sh−1[I?] = s[I?], ah−1 = a

)
dh
(
s′[Iex] | sh−1[Ic

?] = s[Ic
?]
)
. (19)

2. Claim 2.

dπh
(
s′[I] | sh−1 = s

)
(a)
=
∑
a∈A

dπh
(
s′[I] | sh−1 = s, ah−1 = a

)
πh−1(a | s [I?])

(b)
=
∑
a∈A

dπh
(
s′[Ien] | sh−1[I?] = s[I?], ah−1 = a

)
dh
(
s′[Iex] | sh−1[Ic

?] = s[Ic
?]
)
πh−1(a | s [I?])
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= dh
(
s′[Iex] | sh−1[Ic

?] = s[Ic
?]
)∑
a∈A

dπh
(
s′[Ien] | sh−1[I?] = s[I?], ah−1 = a

)
πh−1(a | s [I?])

(c)
= dh

(
s′[Iex] | sh−1[Ic

?] = s[Ic
?]
)
dπh
(
s′[Ien] | sh−1[I?] = s[I?]

)
.

Here (a) holds by Bayes’ rule and because π ∈ Π[I?] is endogenous policy, (b) holds by Eq.
(19), and (c) holds by Bayes’ rule and the law of total probability.

Induction step Fix t′ < h− 1 and assume the induction hypothesis holds for t′ + 1.

1. Claim 1.

dπh
(
s′[I] | st′ = s, at′ = a

)
=
∑
s̄∈S

dπh
(
s′[I] | st′+1 = s̄

)
P(st′+1 = s̄ | st′ = s, at′ = a)

(a)
=
∑
s̄∈S

dπh
(
s′[I] | st′+1 = s̄

)
T (s̄[I?] | s[I?], a)T (s̄[Ic

?] | s[Ic
?])

(b)
=

∑
s̄[I?]∈S[I?]

dπh
(
s′[Ien] | st′+1[I?] = s̄[I?]

)
T (s̄[I?] | s[I?], a)

×
∑

s̄[Ic
?]∈S[Ic

?]

dh
(
s′[Iex] | st′+1[Ic

?] = s̄[Ic
?]
)
T (s̄[Ic

?] | s[Ic
?])

= dπh
(
s′[Ien] | st′ [I?] = s[I?], at′ = a

)
dh
(
s′[Iex] | st′ [Ic

?] = s[Ic
?]
)
, (20)

where (a) holds by the ExoMDP model assumption (Section 2), and (b) holds by the induction
hypothesis.

2. Claim 2.

dπh
(
s′[I] | st′ = s

)
(a)
=
∑
a∈A

dπh
(
s′[I] | st′ = s, at′ = a

)
πt′(a | s [I?])

(b)
=
∑
a∈A

dπh
(
s′[Ien] | st′ [I?] = s[I?], at′ = a

)
dh
(
s′[Iex] | st′ [Ic

?] = s[Ic
?]
)
πt′(a | s [I?])

= dh
(
s′[Iex] | st′ [Ic

?] = s[Ic
?]
)∑
a∈A

dπh
(
s′[Ien] | st′ [I?] = s[I?], at′ = a

)
πt′(a | s [I?])

(c)
= dh

(
s′[Iex] | st′ [Ic

?] = s[Ic
?]
)
dπh
(
s′[Ien] | st′ [I?] = s[I?]

)
.

Here (a) holds by Bayes’ rule and because π ∈ Π[I?] is endogenous policy, (b) holds by Eq.
(20), and (c) holds by Bayes’ rule and law of total probability.

This proves the induction step and both claims.
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Proof of Claim 3. We first prove the claim holds for π ∈ ΠNS[I?]. That is, for any π ∈ ΠNS[I?],
factor set I and s[I], we have

dπh(s[I]) = dπh(s[Ien]) · dh(s[Iex]). (21)

This yields the result, since for µ ∈ Πmix[I?], Eq. (21) implies that

dµh(s[I]) = Eπ∼µ[dπh(s[I])]

= Eπ∼µ[dπh(s[Ien]) · dh(s′[Iex])]

= Eπ∼µ[dµh(s[Ien])]dh(s[Iex]) = dµh(s[Ien]) · dh(s[Iex]).

We now prove Eq. (21). Fix π ∈ ΠNS[I?], and observe that

dπh(s)
(a)
= Es1∼d1 [dπh (s | s1)]

(b)
= Es1∼d1 [dπh (s[I?] | s1[I?] = s[I?]) dπh (s[Ic

?] | s1[Ic
?] = s[Ic

?])]

(c)
= Es1[I?]∼dh [dπh (s[I?] | s1[I?] = s[I?])]Es1[Ic

?]∼dh [dπh (s[Ic
?] | s1[Ic

?] = s[Ic
?])]

= dπh(s [I?])dh(s [Ic
?]). (22)

Relation (a) holds by the tower property, and relation (b) holds by the second claim of the lemma,
because π is an endogenous policy. Relation (c) holds because s1[I?] and s1[Ic

?] are independent (by
the ExoMDP model assumption, we have d1(s) = d1(s[I?])d1(s[Ic

?])).
The relation in Eq. (22) now implies the result:

dπh(s[I])
(a)
=

∑
s[I?\Ien]∈S[I?\Ien]

∑
s[Ic

?\Iex]∈S[Ic
?\Iex]

dπh(s)

(b)
=

∑
s[I?\Ien]∈S[I?\Ien]

∑
s[Ic

?\Iex]∈S[Ic
?\Iex]

dπh(s [I?])dh(s [Ic
?])

=
∑

s[I?\Ien]∈S[I?\Ien]

dπh(s [I?])
∑

s[Ic
?\Iex]∈S[Ic

?\Iex]

dh(s [Ic
?])

= dπh(s′[Ien])dh(s′[Iex]),

where (a) holds by the law of total probability and (b) holds by Eq. (22).

Lemma B.2 (Restriction lemma). Fix h, t ∈ [H] where t ≤ h − 1. Let µ ∈ Πmix[I?] and
ρ ∈ ΠNS[I?] be endogenous policies. Let J and I be two factor sets. Then, for all s [I] ∈ S [I] it
holds that

max
π∈Π[J ]

dh (s [I] ; µ ◦t π ◦t+1 ρ) = max
π∈Π[Jen]

dh (s [I] ; µ ◦t π ◦t+1 ρ) .

Let us briefly sketch the proof. To begin, we marginalize over the factor set J c := [d] \ J at
layer t. We then show that if µ and ρ are endogenous policies, then for all π ∈ Π and s [I] ∈ S[I],

dh (s [I] ; µ ◦t π ◦t+1 ρ) = Est∼dt(s[J ] ; π) [f(st [Jen] , π (st [J ]))ḡ(st [Jex])] (23)
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where both f and ḡ are maps to R+. We observe that the policy

πf (s [Jen]) ∈ argmax
a

f(s [Jen] , π (s [J ]))

also maximizes Eq. (23). The result follows by observing that πf ∈ Π[Jen].
Proof of Lemma B.2. Fix s [I] ∈ S [I]. The following relations hold.

dh (s [I] ; µ ◦t π ◦t+1 ρ)

(a)
= Es[J ]∼dt(· ; µ)

[
Es[J c]∼dt(·|st[J ]=s[J ] ; µ) [dh (s [I] | st = s ; µ ◦t π ◦t+1 ρ)]

]
(b)
= Es[J ]∼dt(· ; µ)

[
Es[J c]∼dt(·|st[J ]=s[J ] ; µ) [dh (s [I] | st = s ; µ ◦t π ◦t+1 ρ)]

]
, (24)

where (a) holds by the tower property, and (b) holds by the Markov assumption of the dynamics:
conditioning on the full state s at timestep t, the future is independent of the history.

(?) := dh (s [I] | st = s ; µ ◦t π ◦t+1 ρ) ,

(??) := Es[J c]∼dt(·|st[J ]=s[J ] ; µ) [dh (s [I] | st = s ; µ ◦t π ◦t+1 ρ)] .

Analysis of term (?). Let π ∈ Π[J ]. Fix s ∈ S at the tth timestep, and observe that a = π(s [J ])
is also fixed, since the policy π is a deterministic function of s [J ] .

dh (s [I] | st = s ; µ ◦t π ◦t+1 ρ)

(a)
= dh (s [I] | st = s, at = π (s[J ]) ; ρ)

(b)
= dh (s [Ien] | st[I?] = s[I?], at = π (s[J ]) ; ρ)︸ ︷︷ ︸

=:f̄(st[I?],π(s[J ]))

· dh (s [Iex] | st[Ic
?] = s[Ic

?])︸ ︷︷ ︸
=:ḡ(st[Ic

?])

. (25)

Relation (a) holds by the Markov property for the MDP, and relation (b) holds by the first statement
of Lemma B.1, which shows the the endogenous and exogenous state factors are decoupled; note
that the assumptions of Lemma B.1 hold because ρ is endogenous policy and a = π (s[J ]) is fixed.
In addition, both f̄(·) and ḡ(·) are mappings to R+.

Analysis of term (??). We consider term (??) and analyze it by marginalizing over the state factors
not contained in s [J ]. Observe that dt (s[J c] | st [J ] = s [J ] ; µ) also factorizes between the
endogenous and exogenous factors due to decoupling lemma (Lemma B.1, Claim 3):

dt (s[J c] | st [J ] = s [J ] ; µ)

= dt (s[I? \ Jen] | st [Jen] = s [Jen] ; µ) dt (Ic
? \ Jex | st [Jex] = s [Jex]) . (26)

Hence, we have

Es[J c]∼dt(·|st[J ]=s[J ] ; µ) [dh (s [I] | st = s ; µ ◦t π ◦t+1 ρ)]

(a)
= Es[J c]∼dt(·|st[J ]=s[J ] ; µ)

[
f̄(s [I?] , π (s [J ]))ḡ(s [Ic

?])
]
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(b)
= Es[I?\Jen]∼dt(·|st[Jen]=s[Jen] ; µ)

[
f̄(s [I?] , π (s [J ]))

]︸ ︷︷ ︸
=:f(s[Jen],π(s[J ]))

Es[Ic
?\Jex]∼dt(·|st[Jex]=s[Jex]) [ḡ(s [Ic

?])]︸ ︷︷ ︸
=:g(s[Jex])

,

(27)

where (a) holds by the calculation of term (?) in Eq. (25), and (b) holds by the decoupling of the
occupancy measure dt (s[J c] | st [J ] = s [J ] ; µ) in Eq. (26).

Combining the results. Plugging the expression in Eq. (27) back into Eq. (24) yields

dh (s [I] ; µ ◦t π ◦t+1 ρ) = Es[J ]∼dt(· ; µ) [f(st [Jen] , π (st [J ]))g(st [Jex])] . (28)

We conclude the proof by invoking Lemma A.7, which gives

max
π∈Π[J ]

dh (s [I] ; µ ◦t π ◦t+1 ρ)
(a)
= max

π∈Π[J ]
Es[J ]∼dt(· ; µ) [(f(s [Jen] , π (s [J ]))) g(s [Jex])]

(b)
= max

π∈Π[Jen]
Es[J ]∼dt(· ; µ) [(f(s [Jen] , π (s [Jen]))g(s [Jex]))]

(c)
= max

π∈Π[Jen]
dh (s [I] ; µ ◦t π ◦t+1 ρ) .

Relations (a) and (c) hold by Eq. (28). Relation (b) holds by invoking Lemma A.7 with X =
S[Jen], Y = S [Jex] ,X × Y = S[J ], f(x, a) = f(s[Jen], a), g(y) = g(s[Jex]), ΠX×Y = Π[J ]
and ΠX = Π[Jen].

The result is proven as a consequence of the restriction lemma (Lemma B.2).

Lemma B.3 (Existence of endogenous policy cover). Fix h, t ∈ [H] with t ≤ h−1. Let µ ∈ Πmix[I?]
and ρ ∈ ΠNS[I?] be endogenous policies. Let I be a factor set and I be a collection of factor sets
with I? ∈ I . Then for all s [I] ∈ S [I],

max
π∈Π[I ]

dh (s [I] ; µ ◦t π ◦t+1 ρ) = max
π∈Π[I?]

dh (s [I] ; µ ◦t π ◦t+1 ρ) .

Proof of Lemma B.3. For all J = Jen ∪ Jex ∈ I and s [I] ∈ S [I], we have

max
π∈Π[J ]

dh (s [I] ; µ ◦t π ◦t+1 ρ)
(a)
= max

π∈Π[Jen]
dh (s [I] ; µ ◦t π ◦t+1 ρ)

(b)

≤ max
π∈Π[I?]

dh (s [I] ; µ ◦t π ◦t+1 ρ) , (29)

where (a) holds by Lemma B.2, and (b) holds because Π[Jen] ⊆ Π[I?] (since Jen ⊆ I?). Since Eq.
(29) holds for all J ∈ I , we conclude that

max
π∈Π[I ]

dh (s [I] ; µ ◦t π ◦t+1 ρ) ≤ max
π∈Π[I?]

dh (s [I] ; µ ◦t π ◦t+1 ρ) . (30)

On the other hand, since Π[I?] ⊆ Π[I ] it trivially holds that

max
π∈Π[I ]

dh (s [I] ; µ ◦t π ◦t+1 ρ) ≥ max
π∈Π[I?]

dh (s [I] ; µ ◦t π ◦t+1 ρ) . (31)
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Combining Eq. (30) and Eq. (31) yields the result.

Consider the problem of finding a policy π that maximizes

dh (s [I] ; µ ◦t π ◦t+1 ρ) , (32)

where both µ and ρ are endogenous policies. Our next result (Lemma B.4) shows that if π̂ is an
endogenous policy that is approximately optimal for reaching s [Ien] in the sense that

max
π∈Π[I ]

dh (s [Ien] ; µ ◦t π ◦t+1 ρ) ≤ dh (s [Ien] ; µ ◦t π̂ ◦t+1 ρ) + ε, (33)

then it is also approximately optimal for Eq. (32), in the sense that

max
π∈Π[I ]

dh (s [I] ; µ ◦t π ◦t+1 ρ) ≤ dh (s [I] ; µ ◦t π̂ ◦t+1 ρ) + ε.

Lemma B.4 (Optimizing for endogenous factors is sufficient). Fix h, t ∈ [H] with t ≤ h− 1. Let
µ ∈ Πmix, π̂ ∈ Π and ρ ∈ ΠNS be given. Let I be a factor set and I be a collection of factor sets
such that I? ∈ I . Fix s[I] ∈ S[I] and assume that:

(A1) µ, ρ and π̂ are endogenous .

(A2) π̂ is approximately optimal for s [Ien]:

max
π∈Π[I ]

dh (s [Ien] ; µ ◦t π ◦t+1 ρ) ≤ dh (s [Ien] ; µ ◦t π̂ ◦t+1 ρ) + ε.

Then

max
π∈Π[I ]

dh (s [I] ; µ ◦t π ◦t+1 ρ) ≤ dh (s [I] ; µ ◦t π̂ ◦t+1 ρ) + ε.

Proof of Lemma B.4. By assumption (A1), µ and ρ are endogenous policies, so Lemma B.3 yields

max
π∈Π[I ]

dh (s [I] ; µ ◦t π ◦t+1 ρ) = max
π∈Π[I?]

dh (s [I] ; µ ◦t π ◦t+1 ρ) . (34)

Next, we observe that the following relations hold

max
π∈Π[I?]

dh (s [I] ; µ ◦t π ◦t+1 ρ)
(a)
=

(
max
π∈Π[I?]

dh (s [Ien] ; µ ◦t π ◦t+1 ρ)

)
dh (s [Iex])

(b)

≤ dh (s [Ien] ; µ ◦t π̂ ◦t+1 ρ) dh (s [Iex]) + ε

(c)
= dh (s [Ien] , s [Iex] ; µ ◦t π̂ ◦t+1 ρ) + ε

= dh (s [I] ; µ ◦t π̂ ◦t+1 ρ) + ε. (35)

Relation (a) holds by Lemma B.1, as µ ◦t π ◦t+1 ρ is an endogenous policy. Relation (b) holds
by assumption (A2) and because dh (s [Iex]) ≤ 1. Relation (c) holds by Lemma B.1; note that
assumptions of the lemma are satisfied because µ ◦t π̂ ◦t+1 ρ is endogenous. Combining Eq. (34)
and Eq. (35) concludes the proof.
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B.3. Structural Results for Value Functions

In this section we provide a structural results concerning the values functions for endogenous
policies in the ExoMDP model. These results leverage the assumption that the rewards depend
only on endogenous components. We repeatedly invoke the notion of an endogenous MDP
Men = (S[I?],A, Ten, Ren, H, d1,en), which corresponds to the restriction of an ExoMDPM to
the endogenous component of the state space. Note that only endogenous policies are well-defined in
the endogenous MDP. We also denote the state-action and state value functions of an endogenous
policy measured inMen as Qπh,en(s[I?], a), and V π

h,en(s[I?]).
Our first result is a straightforward extension of Proposition 5 in Efroni et al. (2021b). It shows

that the value function for any endogenous policy in an ExoMDP is an endogenous function in the
sense that it only depends on the endogenous state factors.

Lemma B.5 (Value functions for endogenous policies are endogenous). Let π ∈ ΠNS[I?] be an
endogenous policy, and assume that the reward function is endogenous. Then, for any t ∈ [H] and
s ∈ S, we have

V π
t (s) = V π

t,en(s[I?]) and Qπt (s, a) = Qπt,en(s[I?], a),

where V π
t,en andQπt,en are value functions for π in the endogenous MDPMen = (S[I?],A, Ten, Ren, H, d1,en).

Proof of Lemma B.5. Let R = {Rh}Hh=1 denote the reward function. We prove the result via
induction. The base case t = H holds by the assumption that the reward is endogenous. Next,
assume the claim is correct for t+ 1, and let us prove it for t. Since Rt is endogenous, the inductive
hypothesis yields

V π
t (s)

= Eπ
[
Ren,t(s[I?], πt(s[I?])) + V π

t,en+1(st+1[I?])|st = s, a = πt+1(s[I?])
]

(a)
= Ren,t(s[I?], πt(s[I?]))

+
∑

s′[I?]∈S[I?]

Ten

(
s′[I?] | s[I?], πt+1(s[I?])

)
V π
t,en+1(s′[I?])

∑
s′[Ic

?]∈S[Ic
?]

Ten

(
s′[Ic

?] | s[Ic
?]
)

(b)
= Ren,t(s[I?], πt(s[I?])) +

∑
s′[I?]∈S[I?]

Ten

(
s′[I?] | s[I?], πt+1(s[I?]))

)
V π
t,en+1(s′[I?]), (36)

where (a) holds by the factorization of the transition operator (see Eq. (1)), and (b) holds by
marginalizing the exogenous factors, since

∑
s′[Ic

?]∈S[Ic
?] Ten (s′[Ic

?] | s[Ic
?]) = 1. Finally, ob-

serve that Eq. (36) is the precisely the value function for π in the endogenous MDP Men =
(S[I?],A, Ten, Ren, H, d1,en), which concludes the proof.

Lemma B.6 (Performance difference lemma for endogenous policies). Let π, π′ ∈ ΠNS[I?] be
endogenous policies. Then

J(π)− J(π′) = Eπ

[
H∑
t=1

Qπ
′
t (st[I?], πt(st[I?]))−Qπ

′
t (st[I?], π′t(st[I?]))

]
.
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Proof of Lemma B.6. For any endogenous policy π, observe that

J(π) := Es1∼d1 [V π
1 (s1)]

(a)
= Es1∼d1 [V π

1 (s1[I?])]
(b)
= Es1[I?]∼d1,en

[V π
1 (s1[I?])] = Jen(π), (37)

Relation (a) holds by Lemma B.5, since Jen(π) is the averaged value of V π
1 (s1) with respect to the

initial endogenous distribution. Relation (b) holds by marginalizing out s1[Ic
?], since V π

1 (s1[I?])
does not depend on this quantity. Using (37) and applying the standard performance difference
lemma to the endogenous MDPMen now yields

J(π)− J(π′) = Jen(π)− Jen(π′) = Eπ

[
H∑
t=1

Qπ
′
t (st[I?], πt(st[I?]))−Qπ

′
t (st[I?], π′t(st[I?]))

]
.

Lemma B.7 (Restriction lemma for endogenous rewards). Fix t ≤ h. Let µ ∈ Πmix[I?] and
ρ ∈ ΠNS[I?] be endogenous policies. Define

Vt,h (µ ◦t π ◦t+1 ρ) := Eµ◦tπ◦t+1ρ

[
h∑
t′=t

rt′

]
. (38)

Assume that R is an endogenous reward function. Then for any factor set I, we have

max
π∈Π[I]

Vt,h (µ ◦t π ◦t+1 ψ) = max
π∈Π[Ien]

Vt,h (µ ◦t π ◦t+1 ψ) .

To prove this result, we generalize the proof technique used in the restriction lemma for state
occupancy measures (Lemma B.2).
Proof of Lemma B.7. Since µ ∈ Πmix[I?] is an endogenous policy, the occupancy measure at the
tth timestep factorizes. That is, by the third statement of Lemma B.1, we have that

dt (s[I] ; µ) = dt (s[Ien] ; µ) dt (s[Iex]) .

For each s[I] ∈ S[I], the conditional state occupancy measure factorize as well:

dt (s[Ic] | st[I] = s[I] ; µ)

= dt (s[I? \ Ien] | st[Ien] = s[Ien] ; µ) dt (s[Ic
? \ Iex] | st[Iex] = s[Iex]) . (39)

Let Qρt,en be the Q function on the endogenous MDPMen = (S[I?],A, Ten, Ren, h, d1,en) when
executing policy ρ starting from timestep t+ 1. We can express the value function as follows:

Vt,h (µ ◦t π ◦t+1 ρ)

= Eµ[Qρt (st[[d]], πt (st[I]))]

(a)
= Eµ

[
Qρt,en(st[I?], πt (st[I]))

]
= Es[I]∼dt(· ; µ)

[
Es[Ic]∼dt(·|st[I]=s[I] ; µ)

[
Qρt,en(s[I?], πt (s[I]))

]]
(b)
= Es[I]∼dt(· ; µ)

[
Es[[I?\Ien]∼dt(·|st[Ien]=s[Ien] ; µ)

[
Qρt,en(s[I?], πt (s[I]))

]]
. (40)
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Relation (a) holds by Lemma B.5, since ρ is an endogenous policy. Relation (b) holds by decoupling
of conditional occupancy measure (Eq. (39)), and because Qρt,en (s[I?], πt (s[I])) does not depend
on state factors in Ic

? \ Iex, which are marginalized out.
To proceed, define

f(st[Ien], πt (s[I])) := Es[[I?\Ien]∼dt(·|st[Ien]=s[Ien] ; µ)

[
Qρt,en(s[I?], πt (s[I]))

]
.

With this notation, we can rewrite the expression in Eq. (40) as

Vt,h (µ ◦t π ◦t+1 ρ) = Es[I]∼dt(· ; µ)[f(st[Ien], πt (s[I]))]. (41)

We now invoke Lemma A.7, which shows that

max
π∈Π[I]

Vt,h (µ ◦t π ◦t+1 ρ)
(a)
= max

π∈Π[I]
Es[I]∼dt(· ; π)[f(s[Ien], π(s[I]))]

(b)
= max

π∈Π[Ien]
Es[I]∼dt(· ; π)[f(s[Ien], π(s[I]))]

(c)
= max

π∈Π[Ien]
Es[I]∼dt(· ; π)[f(s[Ien], π(s[I]))]

Relations (a) and (c) holds by Eq. (41). Relation (b) holds by invoking Lemma A.7, with
X = S[Ien], Y = S [Iex] ,X × Y = S[I], f(x, a) = f(s[Jen], a), g(y) = 1, and ΠX×Y = Π[I]
and ΠX = Π[Ien].

Appendix C. Noise-Tolerant Search over Endogenous Factors: Algorithmic
Template

In this section we provide a general template for designing error-tolerant algorithms that search over
endogenous factors sets. This template is used in both EndoPolicyOptimizationεt,h and EndoFactorSelectionεt,h
(subroutines of OSSR).

Our algorithm design template, AbstractFactorSearch is presented in Algorithm 4. Let us describe
the motivation. Let Z be an abstract “dataset” (typically, a collection of trajectories), let ε > 0 be
a precision parameter, and let Condition(Z, ε, I) ∈ {true, false} be an abstract function defined
over factor sets I. AbstractFactorSearch addresses the problem of finding an endogenous factor set
Î ⊆ I? such that

Condition(Z, C · ε, Î) = true (42)

for a numerical constant C ≥ 1, assuming that the endogenous factors I? satisfy the condition
themselves:

Condition(Z, ε, I?) = true. (43)

For example, within EndoPolicyOptimizationεt,h, Condition(Z, ε, I) checks whether policies that
act on the factor set I lead to ε-optimal value for a given reward function (approximated using
trajectories in Z).

AbstractFactorSearch begins with an initial set of endogenous factors I0 ⊆ I?. Naturally, since
I? ∈ I≤k (I0) and I? is known to satisfy Eq. (43), a naive approach would be to enumerate over
the collection I≤k (I0) to find a factor set Î ∈ I≤k (I0) that satisfies Eq. (42). For example,
considering the following procedure:
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Algorithm 4 AbstractFactorSearch
1: require: abstract dataset Z , precision ε, initial endogenous factor I0 ⊆ I?.
2: for k′ = |I0| , |I0|+ 1, . . . , k do
3: Set εk′ = (1 + 1/k)k−k

′
ε.

4: for I ∈ Ik′ (I0) do
5: if Condition(Z, εk′ , I) = true then return Î ← Î.
6: return fail.

• For each I ∈ I≤k (I0), check whether Condition(Z, Cε, I) = true.

• If so, return Î ← I.

It is straightforward to see that this approach returns a factor set Î ∈ I≤k (I0) that satisfies Eq. (42),
but the issue is that there is nothing preventing Î from containing exogenous factors. AbstractFactorSearch
resolves this problem by searching for factors in a bottom-up fashion. The algorithm begins by
searching over factor sets with minimal cardinality (k′ = |I0|), and gradually increases the size until
a factor set satisfying (42) is found.

In more detail, observe that we have

I≤k (I0) = ∪kk′=|I0|Ik (I0) ,

where

Ik (I0) :=
{
I ′ ⊆ [d] | I0 ⊆ I ′,

∣∣I ′∣∣ = k
}
.

Starting from k′ = |I0|, AbstractFactorSearch checks whether exists a set of factors I ∈ Ik′ (I0)

that satisfies Condition(· · · ) with respect to an accuracy parameter εk′ = (1 + 1/k)k−k
′
ε; this

choice allows for larger errors for smaller k′. When a set of factors I satisfies Eq. (42) AbstractFactorSearch
halts and returns this set; otherwise, k′ is increased. For this approach to succeed, we assume that
Condition satisfies the following property.

Assumption C.1. For any set of factors I = Ien ∪ Iex with |Iex| ≥ 1, it holds that

Condition(Z, ε|I|, I) = true =⇒ Condition(Z, ε|Ien|, Ien) = true. (44)

We now describe three key steps used to prove that this scheme succeeds.

1. AbstractFactorSearch does not return fail. This follows immediately from the assumption that
(43) is satisfied.

2. AbstractFactorSearch returns an endogenous set of factors. Observe that the assumption
I? ∈ I≤k (I0) implies that for any I ∈ I≤k (I0), Ien := I? ∩ I ∈ I≤k (I0); this follows
from Lemma A.10. Hence, if I satisfies Eq. (42), Assumption C.1 implies that Ien satisfies Eq.
(42) as well. Since AbstractFactorSearch scans I≤k (I0) in a bottom-up fashion, this means it
must return an endogenous factor set, since it will verify that Ien satisfies Eq. (42) prior to I.

3. AbstractFactorSearch is near-optimal. Since (1 + 1/k)k−k
′
ε ≤ 3ε for all k′ ∈ [k], the factor

set Î returned by AbstractFactorSearch satisfies Condition(Z, 3ε, Î) = true.

38



REINFORCEMENT LEARNING IN THE PRESENCE OF EXOGENOUS INFORMATION

Part II

Omitted Subroutines
Appendix D. Finding a Near-Optimal Endogenous Policy: EndoPolicyOptimization

Algorithm 5 EndoPolicyOptimizationεt,h: One-Step Endogenous Policy Optimization
// Find an endogenous policy π ∈ Π[I≤k] that approximately maximizes Vt,h (µ ◦t π ◦t+1 ψ), where µ ∈ Πmix

and ψ ∈ ΠNS are fixed policies.

1: require:

• Starting timestep t, end timestep h, and target precision ε ∈ (0, 1).

• Collection
{
V̂t,h (µ ◦t π ◦t+1 ψ)

}
π∈Π[I≤k]

of estimates for Vt,h (µ ◦t π ◦t+1 ψ) for all
π ∈ Π[I≤k].

2: for k′ = 0, 1, · · · , k do
3: Let εk′ = (1 + 1/k)k−k

′
ε.

4: for I ∈ Ik′ do
5: Set is_cover = true if

max
π∈Π[I≤k]

V̂t,h (µ ◦t π ◦t+1 ψ) ≤ max
π∈Π[I]

V̂t,h (µ ◦t π ◦t+1 ψ) + εk′ .

6: if is_cover = true then return: π̂ ∈ argmaxπ∈Π[I] V̂t,h (µ ◦t π ◦t+1 ψ).

7: return: fail.

In this section, we introduce and analyze the EndoPolicyOptimizationεt,h algorithm (Algorithm 5),

which is used in the optimization phase of OSSRε,δh (Appendix G) and in ExoPSDP (Appendix F).
In Appendix D.1 we give a high-level description and intuition for the algorithm, and in Appendix D.2
we prove the main theorem regarding its correctness and sample complexity.

D.1. Description of EndoPolicyOptimization.

The goal of EndoPolicyOptimizationεt,h is to return a policy π̂ ∈ Π[I] such that:

1. π̂ is endogenous in the sense that π̂ ∈ Π[I] for some I ⊆ I?.

2. π̂ is near-optimal in the sense that

max
π∈Π[I≤k]

Vt,h (µ ◦t π ◦t+1 ψ) ≤ Vt,h (µ ◦t π̂ ◦t+1 ψ) +O (ε) ,

where Vt,h (π) := Eπ
[∑h

t′=t rt

]
for a given reward function R.

EndoPolicyOptimization assumes access to approximate value functions V̂t,h (µ ◦t π ◦t+1 ψ) that
are ε-close to the true value functions Vt,h (µ ◦t π ◦t+1 ψ). Given these approximate value func-
tions, finding a near-optimal policy is trivial; it suffices to take the empirical maximizer π̂ ∈
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argmaxπ∈Π[I≤k] V̂t,h (µ ◦t π ◦t+1 ψ). However, finding a near-optimal endogenous policy is a more
challenging task. For this, EndoPolicyOptimization applies the abstract endogenous factor search
scheme described in Appendix C (AbstractFactorSearch), which regularizes toward factors with
smaller cardinality.

EndoPolicyOptimizationεt,h splits the set I≤k as I≤k = ∪kk′=0Ik′ , where Ik′ is the collection
of factor sets with cardinality exactly k′ ∈ [k], and follows the bottom-up search strategy in
AbstractFactorSearch. Beginning from k′ = 0, . . . , k, the algorithm checks whether there exists
a near-optimal policy in the class Π[Ik′ ]. If such a policy is found, the algorithm returns it, and
otherwise it proceeds to k′ + 1.

Intuition for correctness. We prove the correctness of the EndoPolicyOptimizationεt,h procedure
by following the general template in Appendix C. In particular, we view EndoPolicyOptimizationεt,h
as a special case of the AbstractFactorSearch (Algorithm 4) scheme with

Condition(Z, ε, I) = 1

{
max

π∈Π[I≤k]
V̂t,h (µ ◦t π ◦t+1 ψ) ≤ max

π∈Π[I]
V̂t,h (µ ◦t π ◦t+1 ψ) + ε

}
.

Most the effort in proving the correctness of the algorithm is in showing that this condition satisfies
Assumption C.1. In particular, we need to show that if some I ∈ I≤k satisfies the condition
in Line 5,

max
π∈Π[I≤k]

V̂t,h (µ ◦t π ◦t+1 ψ) ≤ max
π∈Π[I]

V̂t,h (µ ◦t π ◦t+1 ψ) + ε|I|,

then Ien := I ∩ I? also satisfies the condition in the sense that

max
π∈Π[I≤k]

V̂t,h (µ ◦t π ◦t+1 ψ) ≤ max
π∈Π[Ien]

V̂t,h (µ ◦t π ◦t+1 ψ) + ε|Ien|.

This can be shown to hold as a consequence of assumptions (A1) and (A2) in Theorem D.1.
Assumption (A1) asserts the following restriction property holds: For any I,

max
π∈Π[I]

Vt,h (µ ◦t π ◦t+1 ψ) = max
π∈Π[Ien]

Vt,h (µ ◦t π ◦t+1 ψ) .

Hence, optimizing over a larger policy class that acts on exogenous factors does not improve the
value. Assumption (A2) asserts that the estimates for Vt,h (µ ◦t π ◦t+1 ψ) are uniformly ε-close, so
that optimizing with respect to these estimates is sufficient.

Importance of the decoupling property. We emphasize that assumption (A1) is non-trivial. We show
it holds for several choices for the reward function in the ExoMDP (Lemma B.2 and Lemma B.7),
which are used when we invoke the algorithm within OSSR. However, the condition my not hold if
the endogenous and exogenous factors are correlated. In this case, optimizing over exogenous state
factors may improve the value, leading the algorithm to fail.

Formal guarantee for EndoPolicyOptimization. The following result shows that EndoPolicyOptimizationεt,h
returns a near-optimal endogenous policy.

Theorem D.1 (Correctness of EndoPolicyOptimizationεt,h). Fix h ∈ [H] and t ∈ [h]. Let µ ∈ Πmix

and ψ ∈ ΠNS be fixed policies. Assume the following conditions hold:
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(A1) Restriction property: For any set of factors I,

max
π∈Π[I]

Vt,h (µ ◦t π ◦t+1 ψ) = max
π∈Π[Ien]

Vt,h (µ ◦t π ◦t+1 ψ) .

(A2) Quality of estimation. For all π ∈ Π[I≤k],∣∣∣Vt,h (µ ◦t π ◦t+1 ψ)− V̂t,h (µ ◦t π ◦t+1 ψ)
∣∣∣ ≤ ε/12k.

Then the policy π̂ output by EndoPolicyOptimizationεt,h satisfies the following properties:

1. π̂ is endogenous: π̂ ∈ Π [I], where I ⊆ I?.

2. π̂ is near-optimal: maxπ∈Π[I≤k] Vt,h (µ ◦t π ◦ ψ) ≤ Vt,h (µ ◦t π̂ ◦ ψ) + 4ε.

D.2. Proof of Theorem D.1

We use the three-step proof recipe described in Appendix C to prove correctness of EndoPolicyOptimization.

Step 1: EndoPolicyOptimizationεt,h does not return fail. By definition, there exists I ∈ I≤k
such that

max
π∈Π[I≤k]

V̂t,h (µ ◦t π ◦t+1 ψ) = max
π∈Π[I]

V̂t,h (µ ◦t π ◦t+1 ψ) .

Thus, Line 5 is satisfied, since εk′ ≥ 0.

Step 2: EndoPolicyOptimizationεt,h returns an endogenous policy. Since EndoPolicyOptimizationεt,h
does not return fail, it returns a policy π̂ ∈ Π[I] for some factor set I. We prove that I is an endoge-
nous factor set, which implies that π̂ is an endogenous policy. We show this by proving the following
claim:

Claim 1. If I satisfies the condition in Line 5 (is_cover = true for I), then Ien satisfies the condition
as well (is_cover = true for Ien).

Given this claim, it is straightforward to see that EndoPolicyOptimizationεt,h returns an endoge-
nous policy. First, observe that for any I ∈ I≤k, we have Ien := I∩I? ∈ I ∈ I≤k by Lemma A.10
(since I? ∈ I≤k). If |Ien| < |I|, then EndoPolicyOptimizationεt,h verifies that Ien ∈ I≤k satis-
fies Line 5 prior to verifying whether I ∈ I≤k satisfies the condition. It follows that the factor set
returned by the algorithm must be endogenous.

Proof of Claim 1. Assume that I contains at least one exogenous factor, so

|Ien| ≤ |I| − 1. (45)

Suppose that is_cover = true for I. By construction, it holds that for k1 := |I| ≤ k,

max
π∈Π[I≤k]

V̂t,h (µ ◦t π ◦t+1 ψ) ≤ max
π∈Π[I]

V̂t,h (µ ◦t π ◦t+1 ψ) + εk1 . (46)
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This statement, which holds for the approximate value V̂t,h (µ ◦t π ◦t+1 ψ) implies a similar state-
ment on the true value Vt,h (µ ◦t π ◦t+1 ψ). Specifically, Eq. (46) together with Lemma A.6 (which
can be applied using assumption (A2)), implies that

max
π∈Π[I≤k]

Vt,h (µ ◦t π ◦t+1 ψ) ≤ max
π∈Π[I]

Vt,h (µ ◦t π ◦t+1 ψ) + εk1 + ε/6k

(a)
= max

π∈Π[Ien]
Vt,h (µ ◦t π ◦t+1 ψ) + εk1 + ε/6k, (47)

and (a) holds by the restriction property in assumption (A1).
We now relate the inequality in Eq. (47), which holds for the true values Vt,h (µ ◦t π ◦t+1 ψ),

back to an inequality on the approximate values. Using Lemma A.6 and assumption (A2) on Eq.
(47), we have htat

max
π∈Π[I≤k]

V̂t,h (µ ◦t π ◦t+1 ψ) ≤ max
π∈Π[Ien]

V̂t,h (µ ◦t π ◦t+1 ψ) + εk1 + ε/3k

(a)

≤ max
π∈Π[Ien]

V̂t,h (µ ◦t π ◦t+1 ψ) + εk2 , (48)

where (a) holds for all k1, k2 ∈ [k] such that k2 ≤ k1 − 1, since

εk1 + ε/3k := (1 + 1/k)k−k1 ε+ ε/3k ≤ (1 + 1/k)k−k2 ε := εk2 ,

by Lemma A.8. Setting k2 = |Ien| ≤ k1− 1 = |I| (the cardinality of Ien is strictly smaller than that
of I by Eq. (45)) and plugging this value into Eq. (48) yields

max
π∈Π[I≤k]

V̂t,h (µ ◦t π ◦t+1 ψ) ≤ max
π∈Π[Ien]

V̂t,h (µ ◦t π ◦t+1 ψ) + ε|Ien|. (49)

Hence, Ien also satisfies the conditions in Line 5.

Step 3: EndoPolicyOptimizationεt,h returns a near-optimal policy. When the condition of EndoPolicyOptimizationεt,h
at Line 5 holds and is_cover = true, the factor set I satisfies

max
π∈Π[I≤k]

V̂t,h (µ ◦t π ◦t+1 ψ) ≤ max
π∈Π[I]

V̂t,h (µ ◦t π ◦t+1 ψ) + ε|I|

= V̂t,h (µ ◦t π̂ ◦t+1 ψ) + ε|I|

≤ V̂t,h (µ ◦t π̂ ◦t+1 ψ) + 3ε, (50)

where the last relation holds because ε|I| ≤ (1 + 1/k)k ε ≤ 3ε. Applying Lemma A.6 with (A2)
then gives

max
π∈Π[I≤k]

Vt,h (µ ◦t π ◦t+1 ψ) ≤ Vt,h (µ ◦t π̂ ◦t+1 ψ) + 3ε+ ε/6k︸ ︷︷ ︸
≤4ε

.
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Appendix E. Selecting Endogenous Factors with Strong Coverage:
EndoFactorSelection

Algorithm 6 EndoFactorSelectionεt,h: Simultaneous Policy Cover for all Factors

// Find I such that reaching I implicitly leads to good coverage for all J ∈ I≤k(I(t+1,h)).

1: require:

• Starting timestep t and end timestep h, target precision ε ∈ (0, 1).

• Set of endogenous factors I(t+1,h) ⊆ I?.
• Collection of policy sets {Γ(t) [I]}I∈I≤k(I(t+1,h)), where

Γ(t)[I] =
{
π(t)

s[I] | s[I] ∈ S[I]
}
.

• Set of (t+ 1→ h) policies

Ψ(t+1,h) =
{
ψ(t+1,h)

s[I(t+1,h)]
| s[I(t+1,h)] ∈ S[I(t+1,h)]

}
.

• Collection D̂ of approximate occupancy measures for layer h under the sampling process
µ(t) ◦t π ◦t+1 ψ

(t+1,h).

// Pick Ψ ∈ Γ(t)
[
I
]
◦t+1 Ψ(t+1:h) that explores I ⊆ I? and sufficiently explores other factors.

2: for k′ = |I(t+1,h)|, |I(t+1,h)|+ 1, .., k do
3: Define εk′ = (1 + 1/k)k−k

′
5ε.

4: for I ∈ Ik′(I(t+1,h)) do
// Test whether reaching states in I leads to good coverage for all factors J ∈ I≤k(I(t+1,h)).

5: Set sufficient_cover = true if for all J ∈ I≤k(I(t+1,h)) and for all s [J ] ∈ S [J ] :

max
π∈Π[I≤k]

d̂h

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ d̂h

(
s [J ] ; µ(t) ◦t π(t)

s[J∩I] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ εk′ , (51)

where π(t)

s[J∩I] ∈ Γ(t)[J ∩I]. // Recall π(t)

s[J∩I] ≈ argmax
π∈Π[I≤k]

d̂h
(
s [J ∩ I] ; µ(t) ◦t π ◦t+1ψ

(t+1,h)

s[I(t+1,h)]

)
.

6: if sufficient_cover = true then
7: Î ← I.
8: return (Î,Γ(t)[Î]).
9: return: fail. // Low probability failure event.

In this section, we describe and analyze the EndoFactorSelectionεt,h algorithm (Algorithm 6).

EndoFactorSelectionεt,h is a subroutine used in the selection phase of OSSRε,δh , and generalizes the
selection phase used in OSSR.Exacth to the setting where only approximate occupancy measures are
available. In Appendix E.1, we give a high-level description EndoFactorSelectionεt,h, give intuition,
and state the main theorem concerning its performance. Then, in Appendix E.2 we prove this result.
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E.1. Description of EndoFactorSelection

To motivate EndoFactorSelectionεt,h, let us first recall the selection phase of OSSR.Exacth (Line 7 of
Algorithm 2). The selection phase assumes access to a collection of policy sets {Γ(t)[I]}I∈I≤k(I(t+1,h)),
which are calculated in the optimization step. In particular, for each set I and each s[I] ∈ S[I],
π(t)

s[I] ∈ Γ(t)[I] is an endogenous policy that maximizes the probability of reaching s[I] at layer h in
the following sense:

π(t)

s[I] ∈ argmax
π∈Π[I≤k]

dh

(
s[I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
.

The selection phase of OSSR.Exacth find the factor set Î ∈ I≤k (I(t+1,h)) of minimal size such that
for all J ∈ I≤k (I(t+1,h)) and s[J ] ∈ S[J ],

max
π∈Π[I≤k]

dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
= dh

(
s[J ] ; µ(t) ◦t π(t)

s[J∩Î]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
.

(52)

At the end of the selection step, OSSR.Exacth outputs the tuple (Î,Γ(t)[Î]). Since Î is chosen as the
minimal factor set that satisfies Eq. (52) it can be shown it is an endogenous factors set. Furthermore,
Γ(t)[Î] satisfies condition Eq. (52).

EndoFactorSelectionεt,h is similar to OSSR.Exacth, but only requires access to approximate

state occupancy measures. Analogous to OSSR.Exacth, the algorithm outputs a tuple (Î,Γ(t)[Î]),
where Î is an endogenous factors set and Γ(t)[Î] ensures good coverage at layer h.However, since
EndoFactorSelectionεt,h has only has access to approximate state occupancy measures, the policy set
Γ(t)[Î] returned by the algorithm is only guaranteed to satisfy an approximate version of Eq. (52):

max
π∈Π[I≤k]

dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ dh

(
s[J ] ; µ(t) ◦t π(t)

s[J∩Î]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
+O(ε), (53)

where π(t)

s[J∩Î]
∈ Γ(t)[Î].

To ensure find an endogenous factor set Î such that Γ(t)[Î] satisfies Eq. (53), EndoFactorSelectionεt,h
follows the AbstractFactorSearch scheme described in Appendix C. It enumerates the collection of
factor sets I≤k (I(t+1,h)) in a bottom-up fashion—starting from factor sets of minimimal cardinality—
and checks whether each factor set approximately satisfies the optimality condition.

Intuition for correctness. To establish the correctness of EndoFactorSelectionεt,h, we view the
algorithm as an instance of AbstractFactorSearch with

Condition(Z, ε, I)

= 1


max

π∈Π[I≤k]
d̂h

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ d̂h

(
s [J ] ; µ(t) ◦t π(t)

s[J∩I] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ ε,

∀J ∈ I (I(t+1,h)), s[J ] ∈ S[J ]

 ,

and recall that π(t)

s[J∩I] ∈ Γ(t)[J∩I] is the output from the optimization step at EndoPolicyOptimization.
The analysis of EndoFactorSelectionεt,h follow the recipe sketched in Appendix C. Most of our
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efforts are devoted to proving that the condition in Eq. (44) required by AbstractFactorSearch
holds for EndoFactorSelectionεt,h. In particular, we wish to prove the following claim: If I sat-
isfies the condition in Line 5 (sufficient_cover = true for I), then Ien satisfies the condition
as well (sufficient_cover = true for Ien). To show that the statement is true, we use a key
structural result, Lemma B.4, which generalizes certain structural results used in the analysis of
OSSR.Exact (Proposition 3.1). Let µ and ρ be endogenous policies, and consider a fixed state factor
s[I] ∈ S[I]. Lemma B.4 asserts that if an endogenous policy πs[Ien] approximately maximizes the
probability of reaching the endogenous part of s[I], which is given by

dh
(
s[Ien] ; µ ◦t πs[Ien] ◦t+1 ρ

)
,

then the policy also approximately maximizes the probability of reaching s[I], which is given by

dh
(
s[I] ; µ ◦t πs[Ien] ◦t+1 ρ

)
.

Hence, to approximately maximize the probability of reaching s[I], it suffices to execute a policy that
approximately maximizes the probability of reaching the endogenous part of the state, s[Ien]. We use
this observation to show that exogenous factors are redundant in the sense that if sufficient_cover =
true for I, then sufficient_cover = true for Ien; this proves the claim

Formal guarantee for EndoFactorSelection The following result is the main guarantee for
EndoFactorSelectionεt,h.

Theorem E.1 (Success of EndoFactorSelectionεt,h). Fix h ∈ [H] and t ∈ [h]. Assume the following
conditions hold:

(A1) Endogeneity of arguments. µ(t) ∈ Πmix[I?] is endogenous, Ψ(t+1,h) contains only endogenous
policies, and Γ(t)[I] contains only endogenous policies for all I ∈ I≤k (I(t+1,h)). In addition,
I(t+1,h) ⊆ I?.

(A2) Quality of estimation. D̂ is a collection of ε/12k-approximate state occupancy measures with
respect to (µ(t) ◦Π[I≤k] ◦Ψ(t+1,h),I≤k (I(t+1,h)) , h) (Definition A.1).

(A3) Optimality for Γ(t)[I]. For any factor setI ∈ I≤k (I(t+1,h)) and any s[I] ∈ S[I], the policy
π(t)

s[I] ∈ Γ(t) [I] satisfies the following optimality guarantee:

max
π∈Π[I≤k]

dh

(
s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ dh

(
s [I] ; µ(t) ◦t π(t)

s[I] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ 4ε.

Then EndoFactorSelectionεt,h does not output fail, and the tuple (Î,Γ(t)[Î]) output by the algorithm
satisfies the following guarantees:

1. Î ⊆ I?.

2. For all s [I?] ∈ S [I?], we have

max
π∈Π[I?]

dh

(
s [I?] ;µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
− dh

(
s [I?] ;µ(t) ◦t π(t)

s[Î]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ 16ε,

where we note that we can write s [I?] = (s
[
Î
]
, s
[
I? \ Î

]
) = (s [I(t+1,h)] , s [I? \ I(t+1,h)])

because I(t+1,h), Î ⊆ I?.
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E.2. Proof of Theorem E.1

We use the three-step proof strategy described in Appendix C to prove correctness for EndoFactorSelectionεt,h.

Step 1: EndoFactorSelectionεt,h does not return fail. We show that given assumptions (A1) −
(A3) EndoFactorSelectionεt,h does not return fail. First, observe that I? ∈ I≤k (I(t+1,h)), since
I(t+1,h) ⊆ I? by (A1) and |I?| ≤ k by assumption. We prove that EndoFactorSelectionεt,h halts for
I ← I?; meaning that I? satisfies the condition at Line 5 of EndoFactorSelectionεt,h.

Fix I ∈ I≤k (I(t+1,h)) and s[I] ∈ S[I]. Let Ien ∈ I≤k (I(t+1,h))4 be the endogenous compo-
nent of I, so that s[I] = (s[Ien], s[Iex]). Consider the policy π(t)

s[Ien] ∈ Γ(t)[Ien]. By assumption

(A3), π(t)

s[Ien] is endogenous and satisfies

max
π∈Π[I≤k]

dh

(
s [Ien] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ dh

(
s [Ien] ; µ(t) ◦t π(t)

s[Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ 4ε. (54)

Eq. (54) shows that π(t)

s[Ien] has near-optimal probability for the endogenous component of s[I] near

optimally (when the rollout policy ψ(t+1,h)

s[I(t+1,h)]
is fixed). Combined with the fact that both π(t)

s[Ien] and

ψ(t+1,h)

s[Ien] are endogenous (by (A1)), this allows us to apply Lemma B.4, which asserts that π(t)

s[Ien]

reaches the any state factor s[I] with Ien ⊆ I near-optimally as well. In particular,

max
π∈Π[I≤k]

dh

(
s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ dh

(
s [I] ; µ(t) ◦t π(t)

s[Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ 4ε. (55)

Now, observe that since D̂ is ε/12k-approximate with respect to (Π [I≤k (I(t+1,h))] ,I≤k (I(t+1,h)) , h)
(cf. (A2)), Eq. (55) and Lemma A.6 imply that

max
π∈Π[I≤k]

d̂h

(
s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ d̂h

(
s [I] ; µ(t) ◦t π(t)

s[Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ 5ε. (56)

Since Ien = I ∩ I?, and since

5ε ≤ (1 + 1/k)k−k
′+1 5ε := εk′

for all k′ ∈ [k], this implies that the condition at Line 5 of EndoFactorSelectionεt,h is satisfied by I?.

Step 2: Proof of first claim (Î ⊆ I? is a set of endogenous factors). Since EndoFactorSelectionεt,h
does not return fail, it necessarily returns a pair (Î,Γ(t)[Î]). We now show that Î is endogenous. To
do so, we prove the following claim.

4. Ien ∈ I≤k
(
I(t+1,h)

)
since I? ∈ I≤k

(
I(t+1,h)

)
and I≤k

(
I(t+1,h)

)
is a π-system by Lemma A.10.
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Lemma E.1. If I ∈ I≤k (I(t+1,h)) satisfies the condition in Line 5 (sufficient_cover = true for I),
then Ien satisfies the condition as well (sufficient_cover = true for Ien).

Conditioned on Lemma E.1, the result quickly follows. Observe that for any I ∈ I≤k (I(t+1,h)),
we have Ien ∈ I≤k (I(t+1,h))4. Furthermore, if |Ien| > |I|, then EndoFactorSelection will
check whether Ien satisfies the condition in Line 5 prior to checking whether I satisfies it. Thus,
EndoFactorSelection necessarily returns a set of endogenous factors; it remains to prove Lemma E.1.
Proof of Lemma E.1. Fix I ∈ I≤k (I(t+1,h)) with Iex 6= ∅. Assume that I satisfies the conditions
in Line 5. That is, for k1 := |I| ≤ k, it holds that for all J ∈ I≤k(I(t+1,h)) and all s [J ] =
(s [I] , s [J \ I]) ∈ S [J ],

max
π∈Π[I≤k]

d̂h

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ d̂h

(
s [J ] ; µ(t) ◦t π(t)

s[J∩I] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ εk1 , (57)

where π(t)

s[J∩I] ∈ Γ(t)[J ∩ I]. We will show that this implies that Ien also satisfies the conditions
in Line 5.

Ien satisfies the conditions in Line 5. Since I satisfies Eq. (57) for all J ∈ I≤k(I(t+1,h)), it must
also satisfy the condition for all Jen ⊆ J . Fix J ∈ I≤k(I(t+1,h)). Then for all s[Jen] ∈ S[Jen], we
have

max
π∈Π[I≤k]

d̂h

(
s[Jen] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ d̂h

(
s [Jen] ; µ(t) ◦t π(t)

s[Jen∩I] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ εk1

(a)

≤ d̂h

(
s [Jen] ; µ(t) ◦t π(t)

s[Jen∩Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ εk1 , (58)

where (a) follows because Jen ∩ I = Jen ∩ Ien.
Since (A2) asserts that D̂ is ε/12k-approximate with respect to (Π [I≤k (I(t+1,h))] ,I≤k (I(t+1,h)) , h),

we can relate the inequality above to the analogous inequality for the true occupancies using Lemma A.6.
After multiplying both sides by dh (s[Jex]) ∈ [0, 1], this yields

dh (s[Jex]) max
π∈Π[I≤k]

dh

(
s[Jen] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ dh (s[Jex]) dh

(
s[Jen] ; µ(t) ◦t π(t)

s[Jen∩Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ εk1 + ε/6k. (59)

We now manipulate both sides Eq. (58) to relate these quantities to the occupancy measure for s[J ].
This is done by appealing to the decoupling property for occupancy measures of endogenous policies
(Appendix B.2). To begin, for the left-hand side of Eq. (59), we have

dh (s[Jex]) max
π∈Π[I≤k]

dh

(
s[Jen] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
(a)
= dh (s[Jex]) max

π∈Π[I?]
dh

(
s[Jen] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
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(b)
= max

π∈Π[I?]
dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
(c)
= max

π∈Π[I≤k]
dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
, (60)

where relations (a) and (c) hold by Lemma B.3 and relation (b) holds by Lemma B.1; note that the
assumptions of these lemmas hold because µ(t) and ψ(t+1,h)

s[I(t+1,h)]
are assumed to be endogenous, and

because π ∈ Π[I?] is also endogenous. Moving on, we analyze the right-hand side of Eq. (59). We
have

dh (s[Jex]) dh

(
s[Jen] ; µ(t) ◦t π(t)

s[Jen∩Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
= dh

(
s[J ] ; µ(t) ◦t π(t)

s[Jen∩Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
, (61)

by Lemma B.1 (the assumptions of the lemma hold because µ(t), π(t)

s[Jen∩Ien] and ψ(t+1,h)

s[I(t+1,h)]
are

endogenous). Plugging Eq. (61) and Eq. (60) back into Eq. (59), we have that

max
π∈Π[I≤k]

dh

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ dh

(
s[J ] ; µ(t) ◦t π(t)

s[Jen∩Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ εk1 + ε/6k. (62)

It remains to relate this to the analogous inequality for the approximate occupancy measures. Since D̂
is ε/12k-approximate with respect to (Π [I≤k (I(t+1,h))] ,I≤k (I(t+1,h)) , h) by (A2), Lemma A.6,
and Eq. (62) imply that

max
π∈Π[I≤k]

d̂h

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ d̂h

(
s[J ] ; µ(t) ◦t π(t)

s[J∩Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ εk1 + ε/3k

(a)

≤ d̂h

(
s[J ] ; µ(t) ◦t π(t)

s[J∩Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ εk2 , (63)

where (a) holds for all k1, k2 ∈ [k] such that k2 ≤ k1 − 1, since

εk1 + ε/3k := (1 + 1/k)k−k1 5ε+ ε/3k ≤ (1 + 1/k)k−k2 5ε := εk2

by Lemma A.8 (with c = 5). Since |Ien| < |I| := k1, we can set k2 = |Ien| in Eq. (63), which
implies that

max
π∈Π[I≤k]

d̂h

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ d̂h

(
s[J ] ; µ(t) ◦t π(t)

s[J∩Ien] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ ε|Ien|.

(64)

Since Eq. (64) holds for all J ∈ I≤k(I(t+1,h)) and s [J ] ∈ S[J ], this yields the result.
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Step 3: Proof of second claim (Γ(t)[Î] is near-optimal). This claim is a direct consequence of
the condition in Line 5. Let Î be the output of EndoFactorSelectionεt,h. Since sufficient_cover =
true, then the conditions at Line 5 are satisfied, and for all J ∈ I≤k(I(t+1,h)), for all s [J ] =
(s [I(t+1)] , s [J \ I(t+1,h)]) ∈ S [J ] :

max
π∈Π[I≤k]

d̂h

(
s[J ] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ d̂h

(
s [J ] ; µ(t) ◦t π(t)

s[J∩Î]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
+ 15ε, (65)

where π(t)

s[J∩I] ∈ Γ(t)[J ∩ I]; the upper bound holds because εk′ := (1 + 1/k)k−k
′
5ε ≤ 15ε for

all k′ ∈ [k]. Applying Eq. (65) with J ← I? ∈ I≤k(I(t+1,h)), and using Lemma A.6 (which is
admissible by assumption (A2)), we have that for all s [I?] ∈ S [I?],

max
π∈Π[I≤k]

dh

(
s[I?] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ dh

(
s [I?] ; µ(t) ◦t π(t)

s[I?∩Î]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
+ 16ε

(a)

≤ dh

(
s [I?] ; µ(t) ◦t π(t)

s[Î]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
+ 16ε,

where (a) holds because I? ∩ Î = Î, since Î ⊆ I? by the first claim.
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Appendix F. PSDP with Exogenous Information: ExoPSDP

Algorithm 7 ExoPSDP: PSDP with Exogenous Information
1: require:

• Target precision ε ∈ (0, 1) and failure probablitity δ ∈ (0, 1).

• Collection {Ψ(h)}Hh=2 of endogenous η/2-approximate policy covers.

2: initialize:

• Let N = C · AS4kH2k3 log
(
dSAH
δ

)
ε−2 for sufficiently large constant C > 0 and ε0 =

ε
2SkH

.

• For all t ∈ [H], define µ(t) := Unf (Ψ(t)).

• Let π̂(H,H) = ∅.

3: for t = H − 1, .., 1 do
/* Estimate average value functions via importance weighting. */

4: Get dataset
{

(st,n, at,n,
{
rt′,n

}H
t′=1

)
}N
n=1

by executing µ(t) ◦t Unf(A) ◦t+1 π̂
(t+1,H).

5: Estimate the (t→ H) value for all π ∈ Π[I≤k] via importance weighting:

V̂t,H
(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
=

1

N

N∑
n=1

1 {at,n = π (st,n)}
1/A

(
H∑
t′=t

rt′,n

)
.

/* Apply policy optimization with estimated value functions. */

6: π̂(t) ← EndoPolicyOptimizationε0t,h

({
V̂t,H (µ(t) ◦t π ◦t+1 π̂t+1:H)

}
π∈Π[I≤k]

)
.

7: π̂(t,H) = π̂(t) ◦t+1 π̂
(t+1,H).

8: return: π̂(1,H).

In this section we present and analyze the ExoPSDP algorithm (Algorithm 7). ExoPSDP is based
on the classical PSDP algorithm (Bagnell et al., 2004), but incorporates modifications to ensure that
the policies produced are endogenous. In Appendix F.1, we motivate ExoPSDP and state the main
guarantee concerning its performance (Theorem F.1). Then, in Appendix F.2, we prove this result.

F.1. Description of ExoPSDP

The ExoPSDP algorithm solves the following problem:

Given a collection of endogenous policy covers {Ψ(t)}Ht=1 for an ExoMDPM, find a
policy π̂ that is ε-optimal in the sense that J(π̂) ≥ maxπ J(π)− ε.

To motivate the approach behind the algorithm, we first remind the reader of the classical PSDP
algorithm.

Background on PSDP. Suppose we have a set of mixture policies {µ(h)}Hh=1 that ensure good
coverage at every layer for an MDPM, and our goal is to optimize the MDP’s reward function. The
PSDP algorithm (Bagnell et al., 2004) addresses this problem by using the dynamic programming
principle to learn a near-optimal policy through a series of backward steps t = H, . . . , 1. Assume
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access to a policy class Π.At each step t, assuming that step t+1 has already produced a near-optimal
(t+ 1)→ H policy π̂(t+1,H), the algorithm estimates the value function Vt,H (µ(t) ◦t π ◦t+1 π̂t+1:H)
for all π ∈ Π where (see also Eq. (38))

Vt,H
(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
:= Eµ(t)◦tπ◦t+1π̂t+1:H

[
H∑
t′=t

rt′

]
.

The estimates are calculated via importance-weighting by

V̂t,H
(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
=

1

N

N∑
n=1

1 {at,n = π (st,n)}
1/A

(
H∑
t′=t

rt′,n

)

where the data is generated by rolling in with µ(t), taking random action on the tth time-step and
rolling out with π̂t+1:H using N trajectories. Then, PSDP computes

π(t) ∈ argmax
π∈Π

V̂t,H
(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
, (66)

and sets π̂(t,h) = π(t) ◦t π̂(t+1,H). The final policy π̂ := π̂(1,H) is guaranteed to be near-optimal as
long as {µ(h)}Hh=1 have good coverage.

Insufficiency of vanilla PSDP. The first issue with applying PSDP to the ExoMDP model is that,
if we want the policy class Π to contain all possible policies, we will have |Π| = Θ(AS

d
), which

leads to sample complexity scaling with log|Π| = Ω(poly(Sd)); this is prohibitively large. An
alternative policy class one my hope can address this issue is Π[I≤k]. Indeed, this class has much
smaller cardinality: |Π[I≤k]| = Θ(dkAS

k
). However, for an ExoMDP, naively optimizing over

this class via Eq. (66) may lead to roll-out policies π̂t+1:H that depend on the exogenous state
factors, since there is no mechanism in place to ensure endogeneity. This in turn may invalidate the
realizability assumption needed to apply standard PSDP (see Misra et al. (2020), Assumption 2). In
particular, PSDP requires that the policy class Π contains the optimal policy in the sense that

max
π∈ΠNS

Vt,H
(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
= max

π∈Π
Vt,H

(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
. (67)

If the roll-out policy π̂t+1:H depends on the exogenous state factors, then the optimal policy that
maximizes Vt,H (µ(t) ◦t π ◦t+1 π̂t+1:H) may depend on exogenous state factors as well. Then, Eq.
(67) may be violated when instantiating PSDP with the policy class Π[I≤k].

A solution: ExoPSDP. To address the issues above, ExoPSDP applies an alternative to the
optimization step in (66). In particular, ExoPSDP uses the sub-routine EndoPolicyOptimization
(see Line 6), which finds an endogenous near-optimal policy. In particular, as long as π̂(t+1,H) is
endogenous, which can be guaranteed inductively, EndoPolicyOptimization, will succeed in find-
ing an endogenous policy at step t. Importantly, since (i) the reward in a ExoMDP depends
only on the endogenous factors, and (ii) the policy π̂(t+1,H) is endogenous (by the guarantees of
EndoPolicyOptimization), π̂(t) can be shown to be near-optimal with respect to the entire policy
class Π. Hence, in spite of optimizing over the restricted policy class I≤k, we are able to find a
near-optimal policy with respect set of all policies. Using this argument inductively allows us to
prove that π̂(1,H) is near-optimal and endogenous.
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Theorem F.1 (Main guarantee for ExoPSDP). Suppose that the sets {Ψ(t)}Ht=1 passed into ExoPSDP
are endogenous η/2-approximate policy covers for all t. Then, for any ε, δ > 0, with probability at
least 1− δ,

1. π̂(1,H) is endogenous.

2. π̂(1,H) is ε-optimal in the sense that

max
π∈ΠNS

J(π) ≤ J(π̂(1,H)) + ε.

Furthermore, the algorithm uses at most N = O
(
AH4k3S3k log( dAHδ )

ε2

)
trajectories.

F.2. Proof of Theorem F.1

Fix a pair of endogenous policies π, π̂ ∈ ΠNS[I?]. Further, letMen =
(
S,A, Ten, Rs[I?], H, d1,en

)
denote the restriction of the ExoMDP to its endogenous component, and let Qπt,en(s[I?], a) denote
the associated state-action value function forMen.

We decompose the difference in performance as follows.

J(π)− J(π̂)

(a)
=

h∑
t=1

Eπ
[
Qπ̂t,en(st [I?] , πt(st [I?])−Qπ̂t,en(st [I?] , π̂t(st [I?]))

]
≤

h∑
t=1

Es[I?]∼dt(· ; π)

[
max
a

Qπ̂t,en(s [I?] , a)−Qπ̂t,en(s [I?] , π̂t(s [I?]))
]

≤
h∑
t=1

∑
s[I?]∈S[I?]

max
π∈Π[I?]

dt(s [I?] ; π)
(

max
a

Qπ̂t,en(s [I?] , a)−Qπ̂t,en(s [I?] , π̂t(s [I?]))
)
.

(b)

≤ 2Sk
h∑
t=1

∑
s[I?]∈S[I?]

dt(s [I?] ; µ(t))
(

max
a

Qπ̂t,en(s [I?] , a)−Qπ̂t,en(s [I?] , π̂t(s [I?]))
)
.

= 2Sk
h∑
t=1

Eµ(t)

[
max
a

Qπ̂t,en(st [I?] , a)−Qπ̂t,en(st [I?] , π̂t,en(st [I?]))
]
.

(c)
= 2Sk

h∑
t=1

max
π′∈Π[I?]

Eµ(t)

[
Qπ̂t,en(st [I?] , π′ (st [I?]))−Qπ̂t,en(st [I?] , π̂t(st [I?]))

]
.

= 2Sk
h∑
t=1

max
π′∈Π[I?]

Vt,H
(
µ(t) ◦t π′ ◦t+1 π̂

)
− Vt,H

(
µ(t) ◦t π̂(t) ◦t+1 π̂

)
. (68)

The key steps above are justified as follows:

• Relation (a) holds by the performance difference lemma for endogenous policies (Lemma B.6),
since both π, π̂ ∈ ΠNS[I?] by assumption.
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• Relation (b) holds because

maxπ∈Π[I?] dt (· ; π)

dt (· ; µ(t))
≤ 2Sk,

which is a consequence of Lemma A.2. In particular, we use that (i) {Ψ(t)}h−1
t=1 are endogenous

η/2-approximate policy covers, (ii) for all states, either maxπ∈Π[I?] dt (s[I?] ; π) ≥ η or
maxπ∈Π[I?] dt (s[I?] ; π) = 0 (by the reachability assumption), and (iii)

max
a

Qπ̂t,en(s [I?] , a)−Qπ̂t,en(s [I?] , π̂t(s [I?])) ≥ 0.

• Relation (c) holds by the skolemization principle (Lemma A.9).

Let GExoPSDP denote the success event for Lemma F.1 (stated and proven in the sequel), which is the
event in which for all t ∈ [H], EndoPolicyOptimizationε0t,h returns a policy π̂(t) such that

1. π̂(t) is endogenous.

2. π̂(t) is near-optimal in the following sense:

max
π′∈Π[I?]

Vt,H
(
µ(t) ◦t π′ ◦t+1 π̂

(t+1,H)
)
− Vt,H

(
µ(t) ◦t π̂(t) ◦t+1 π̂

(t+1,H)
)
≤ ε0. (69)

Lemma F.1 asserts that GExoPSDP holds with probability at least 1−δ wheneverN = Ω
(
AH2k3Sk log( dAHδ )

ε20

)
.

Conditioning on GExoPSDP, it follows immediately that π̂(1,H) is endogenous. To show that the policy
is near-optimal, we apply Eq. (68) with π̂ = π̂(1,H) and bound each term in the sum using Eq. (69).
Maximizing over π ∈ ΠNS[I?] yields

max
π∈Π[I?]

J(π)− J(π̂) ≤ 2SkHε0 = ε,

by the choice ε0 := ε/2SkH . Finally, by the fact that maxπ∈Π[I?] J(π) = maxπ∈ΠNS
J(π), which

holds because the reward is endogenous (Efroni et al. (2021b), Proposition 5), we conclude the proof.

F.3. Computational Complexity of ExoPSDP

We now show that ExoPSDP can be implemented with computational complexity of

O
(
dkNSkAH

)
,

where N is the number of trajectories. The main computational bottleneck of ExoPSDP occurs at
Line 5 of EndoPolicyOptimizationε0t,h. There, we need to optimize over V̂t,H (µ(t) ◦t π ◦t+1 π̂t+1:H)
estimated by the empirical averages (Line 5) for all I ∈ Ik. Meaning,

max
π∈Π[I]

V̂t,H
(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
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To sketch how to do this efficiently, we first show how to optimize over the set Π[I] when a
factor set I is fixed. We show that instead of enumerating over all policies, one can optimize
V̂t,H (µ(t) ◦t π ◦t+1 π̂t+1:H) as follows. Observe that

V̂t,h
(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
=

∑
s[I]∈S[I]

Q̂
µ(t)◦tπ◦t+1π̂t+1:H

t,h (s[I], π (s[I])) ,

where we note that |S[I]| ≤ Sk, and where

Q̂
µ(t)◦tπ◦t+1π̂t+1:H

t,h (s[I], a) :=
1

N

N∑
n=1

1{st[I] = s[I], at = a}

(
h∑
t′=t

rn,t′

)
.

To maximize V̂t,h (µ(t) ◦t π ◦t+1 π̂t+1:H) it suffices to maximize each individual function

Q̂
µ(t)◦tπ◦t+1π̂t+1:H

t (s[I], a). Letting

π̂I (s[I]) ∈ argmax
a

Q̂
µ(t)◦tπ◦t+1π̂t+1:H

t (s[I], a) ,

we have that

max
π∈Π[I]

V̂t,h
(
µ(t) ◦t π ◦t+1 π̂t+1:H

)
= V̂t,h (µ ◦t π̂I ◦t+1 ψ) .

Furthermore, observe that π̂I (s[I]) ∈ Π[I].
This shows that it is possible to solve maxπ∈Π[I] V̂t,h (µ(t) ◦t π ◦t+1 π̂t+1:H) with computational

complexity O
(
NSkA

)
. Since EndoPolicyOptimizationεt,h optimizes over all possible factor sets I ∈

I≤k where |I≤k| = O
(
dk
)

for H times the total computational complexity is O
(
dkNSkAH

)
.

F.4. Application of EndoPolicyOptimization within ExoPSDP

In this section we state and prove Lemma F.1, which shows that the application of EndoPolicyOptimization
within ExoPSDP (Line 6) is admissible, in the sense that the preconditions required by the algorithm
are satisfied.

Lemma F.1 (Guarantees of EndoPolicyOptimization for ExoPSDP). Let precision parameter ε ∈
(0, 1) and failure probability δ ∈ (0, 1) be given. Assume that the mixture policies µ(t) ∈ Πmix used

in Algorithm 7 are endogenous for all t. Then, if N = Ω
(
AH2k3Sk log( dAHδ )

ε2

)
trajectories are used

for each layer, we have that with probability at least 1− δ, for all t:

1. π̂(t) is an endogenous policy.

2. π̂(t) is near-optimal in the sense that

max
π′∈Π[I?]

Vt,H
(
µ(t) ◦t π′ ◦t+1 π̂

(t+1,H)
)
− Vt,H

(
µ(t) ◦t π̂(t) ◦t+1 π̂

(t+1,H)
)
≤ 4ε.

Proof of Lemma F.1. Let G(t) denote the event in which

1. π̂(t) is an endogenous policy.
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2. π̂(t) is near optimal:

max
π′∈Π[I?]

Vt,H
(
µ(t) ◦t π′ ◦t+1 π̂

(t+1,H)
)
− Vt,H

(
µ(t) ◦t π̂(t) ◦t+1 π̂

(t+1,H)
)
≤ 4ε.

We will prove that for any δ > 0,

P
(
G(t) | ∩Ht′=t+1G(t′)

)
≥ 1− δ, . (70)

as long at least Ω
(
AH2k3Sk log( dAHδ )

ε2

)
trajectories are used at layer t. Whenever Eq. (70) holds, Lemma A.4

implies that

P
(
∩Ht=1G(t′)

)
≥ 1−Hδ, (71)

and scaling δ ← δ/H concludes the proof.
We now prove that Eq. (70) holds. To do so, we apply Theorem D.1 and verify that assumptions

(A1) and (A2) required by it hold.

(A1) Conditioning on the event ∩Ht′=t+1G(t′), we have that π̂(t+1,H) is an endogenous policy. In
addition µ(t) is an endogenous policy and the reward function is endogenous by assumption.
Thus, the conditions of Lemma B.7 are satisfied, and the restriction property holds:

max
π∈Π[I]

Vt,h (µ ◦t π ◦t+1 ψ) = max
π∈Π[Ien]

Vt,h (µ ◦t π ◦t+1 ψ) .

(A2) The proof of this result uses similar arguments to Lemma A.5 . Fix π ∈ Π[I≤k] and observe
that V̂t,H (µ(t) ◦t π ◦t+1 π̂t+1:H) is an unbiased estimator for Vt,H (µ(t) ◦t π ◦t+1 π̂t+1:H),
and is bounded by AH . Using Lemma A.3 and following the same steps as in the proof
of Lemma A.5, we have that with probability at least 1− δ,∣∣∣V̂t,H (µ(t) ◦t π ◦t+1 π̂t+1:H

)
− Vt,H

(
µ(t) ◦t π ◦t+1 π̂t+1:H

)∣∣∣
≤ O

√AH2 log
(

1
δ

)
N

+
AH log

(
1
δ

)
N

 .

Taking a union bound over all π ∈ Π[I≤k] and using that |Π[I≤k]| ≤ O
(
dk+1AS

k
)

, we
have that with probability at least 1− δ,∣∣∣V̂t,H (µ(t) ◦t π ◦t+1 π̂t+1:H

)
− Vt,H

(
µ(t) ◦t π ◦t+1 π̂t+1:H

)∣∣∣
≤ O

√AH2kSk log
(
dA
δ

)
N

+
AHkSk log

(
dA
δ

)
N

 .

Hence, setting N = Ω
(AH2k3Sk log( dAδ )

ε2

)
and using that ε2 ≤ ε for ε ∈ (0, 1), we have that

with probability at least 1− δ, for all π ∈ Π[I≤k],∣∣∣V̂t,H (µ(t) ◦t π ◦t+1 π̂t+1:H

)
− Vt,H

(
µ(t) ◦t π ◦t+1 π̂t+1:H

)∣∣∣ ≤ ε

12k
.
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Part III

Additional Details and Proofs for Main Results
Appendix G. OSSR Description and Proof of Theorem 3.1

In this section we present and analyze the full OSSRε,δh algorithm (Algorithm 8). The algorithm may
be thought of as a sample-based version of the OSSR.Exact algorithm described in Section 3.2. While
OSSR.Exact assumes exact access to state occupancy measures, OSSRε,δh estimates the occupancy
measures in a data-driven fashion, which introduces the need to account for statistical errors.

This section is organized as follows. First, in Appendix G.1 we give a high-level overview of
the algorithm design principles behind OSSRε,δh . Then, in Appendix G.2, we prove the main result
concerning its performance, Theorem 3.1. Appendices G.3 and G.4 contain proofs for supporting
results used in the proof of Theorem 3.1.

G.1. OSSR: Algorithm Overview

The OSSRε,δh algorithm follows the same template as OSSR.Exact: For each h ∈ [H], given
policy covers Ψ(1), . . . ,Ψ(h−1), the algorithm builds a policy cover Ψ(h) for layer h in a backwards
fashion using dynamic programming. There are two differences from the exact algorithm. First,
we only have sample access to the underlying ExoMDP, the algorithm estimates the relevant
occupancy measures for each backward step using Monte Carlo rollouts. Second, the optimization
and selection phases from OSSR.Exact are replaced by error-tolerant variants given by the subroutines
EndoPolicyOptimization and EndoFactorSelection (Algorithm 5 in Appendix D and Algorithm 6 in
Appendix E, respectively).

State occupancy estimation. In order to apply dynamic programming in the same fashion as
OSSR.Exact, each backward step 1 ≤ t ≤ h − 1 of OSSRε,δh proceeds by building estimates
for the layer-h occupancies dh(s[I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)) for all I ∈ I≤k, π ∈ Π[I≤k] and
ψ(t+1,h) ∈ Ψ(t+1,h). This is accomplished through Monte Carlo: We gather trajectories by running
µ(t) up to layer t, sampling at ∼ Unf(A) uniformly, then sampling ψ(t+1,h) ∼ Unf(Ψ(t+1,h)) and
using it to roll out from layer t + 1 to h. We then build estimates by importance weighting the
empirical frequencies. We appeal to uniform convergence to ensure that the estimated occupancies are
uniformly close for all I ∈ I≤k and π ∈ Π[I≤k]; this argument critically uses that |Ψ(t+1,h)| ≤ Sk
and log|Π[I≤k]| ≤ O

(
kSk log (dA)

)
, as well as the fact that we only require convergence for

factors of size at most k.

Error-tolerant backward state refinement. Given the estimated state occupancy measures above,
each backward step 1 ≤ t ≤ h− 1 of OSSRε,δh follows the general optimization-selection template
used in OSSR.Exact. For the optimization step (Line 7), it applies the subroutine EndoPolicyOptimizationεt,h
(Algorithm 5 in Appendix D), which finds a collection of endogenous “one-step” policy covers
(Γ(t)[I])I∈I≤k(I(t+1,h)), which have the property that for all I ∈ I≤k (I(t+1,h)) and s ∈ S, the

t→ h policy π(t)

s[I] ◦ ψ
(t+1,h)

s[I(t+1,h)]
(approximately) maximizes the probability that sh[I] = s[I]. Then,

at selection step (Line 9), OSSRε,δh applies the subroutine EndoFactorSelectionεt,h (Algorithm 6 in
Appendix E), which selects a single factor set I(t,h) ⊆ I? such that—by choosing Ψ(t,h) to be the
composition of Γ(t)[I(t,h)] and Ψ(t+1,h)—we obtain an (approximate) t→ h policy cover.

56



REINFORCEMENT LEARNING IN THE PRESENCE OF EXOGENOUS INFORMATION

Algorithm 8 OSSRε,δh : Optimization-Selection State Refinement
1: require:

• Timestep h, precision parameter ε > 0, failure probability δ ∈ (0, 1).

• Policy covers {Ψ(t)}h−1
t=1 for steps 1, . . . , h− 1.

• Upper bound k ≥ 0 on the cardinality of I?.

2: initialize:

• Let I(h,h) ← ∅ and Ψ(h,h) ← ∅.

• Define N = CAS4kH2k3 log
(
dSAH
δ

)
ε−2 for sufficiently large constant C > 0, and let

ε0 := ε
2SkH

.

3: for t = h− 1, h− 2, .., 1 do
Estimate occupancy measures

4: Collect dataset
{

(st,n, at,n, ψ
(t+1,h)
n , sh,n)

}N
n=1

by drawing N trajectories from the process:

• Execute µ(t) := Unf(Ψ(t)) up to layer t (resulting in state st,n).

• Sample action at,n ∼ Unf(A) and play it, transitioning to st+1,n in the process.

• Sample ψ(t+1,h)
n ∼ Unf(Ψ(t+1,h)) and execute it from layers t+ 1 to h (resulting in sh,n).

5: For each I ∈ I≤k, π ∈ Π[I≤k], and ψ(t+1,h) ∈ Ψ(t+1,h), define

d̂h
(
s[I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)
)

=
1

N

N∑
n=1

1
{
at,n = π(st,n), ψ(t+1,h)

n = ψ(t+1,h), sh,n[I] = s[I]
}

(1/|A|) · (1/|Ψ(t+1,h)|)
.

6: Let D̂(t,h) :=
{
d̂h(· ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)) | π ∈ Π(I≤k), ψ
(t+1,h) ∈ Ψ(t+1,h))

}
.

Phase I: Optimization (Algorithm 5 in Appendix D)

// Beginning from any state at layer t, π(t)

s[I] ◦t+1 ψ
(t+1,h)

s
[
I(t+1,h)

] maximizes probability that sh[I] = s[I].

7: For each I ∈ I≤k(I(t+1,h)) and s [I] ∈ S [I], let

π(t)

s[I] ← EndoPolicyOptimizationε0t,h

({
d̂h

(
s[I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[It+1,h]

)}
π∈Π[I≤k]

)
.

8: Let Γ(t)[I] :=
{
π(t)

s[I] | s[I] ∈ S[I]
}

.

Phase II: Selection (Algorithm 6 in Appendix E)

// Find factor set I(t,h) ⊆ I? such that Γ(t)
[
I(t,h)

]
has good coverage for all factors in I≤k

(
I(t+1,h)

)
.

9: (I(t,h),Γ(t)[I(t,h)])← EndoFactorSelectionε0t,h

(
{Γ(t) [I]}I∈I≤k(I(t+1,h)) ; I(t+1,h),Ψ(t+1,h), D̂(t,h)

)
.

Policy composition // Recall that π(t)

s[I(t,h)]
∈ Γ(t)

[
I(t,h)

]
and ψ(t+1,h)

s[I(t+1,h)]
∈ Ψ(t+1,h).

10: Let I(t,h) ← Î , then for each s[I(t,h)] ∈ S[I(t,h)] define ψ(t,h)

s[I(t,h)]
:= π(t)

s[I(t,h)]
◦t ψ(t+1,h)

s[I(t+1,h)]
.

11: Let Ψ(t,h) ←
{
ψ(t,h)

s[I(t,h)]
: s[I(t,h)] ∈ S[I(t,h)]

}
.

12: return Ψ(h) := Ψ(1,h). // Policy cover for timestep h.
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Full descriptions and proofs of correctness for EndoPolicyOptimizationεt,h and EndoFactorSelectionεt,h
are given in Appendix D and Appendix E. Briefly, both subroutines are based on approximate versions
of the constraints used in the optimization and selection phase for OSSR.Exact (Line 5 and Line 7 of
Algorithm 2), but ensuring endogeneity of the resulting factors is more challenging due to approxi-
mation errors, and it no longer suffices to simply search for the factor set with minimum cardinality.
Instead, we search for factor sets that satisfy approximate versions of Line 5 and Line 7 with an
additive regularization term based on cardinality. We show that as long as this penalty is carefully
chosen as a function of the statistical error in the occupancy estimates, the resulting factor sets will
be endogenous while inducing sufficient amount of exploration (with high probability).

In Appendix C, we provide a general template for designing error-tolerant algorithms that
search for endogenous factors using the approach described; both EndoPolicyOptimizationεt,h and
EndoFactorSelectionεt,h are special cases of this template.

G.2. Proof of Theorem 3.1

We now restate and prove Theorem 3.1, which shows that OSSRε,δh learns an endogenous ε-optimal
policy cover with sample complexity depending only logarithmically on the number of factors d.

Theorem 3.1 (Sample complexity of OSSR). Suppose that OSSRε,δh is invoked with {Ψ(t)}h−1
t=1 ,

where each Ψ(t) is an endogenous, η/2-approximate policy cover for layer t. Then with probability at
least 1− δ, the set Ψ(h) returned by OSSRε,δh is an endogenous ε-approximate policy cover for layer
h, and has |Ψ(h)| ≤ Sk. The algorithm uses at most O

(
AS4kH2k3 log

(
dSAH
δ

)
· ε−2

)
episodes.

Proof of Theorem 3.1. We begin by defining a success event for ExoRL.

Definition G.1 (Success of OSSR at the layer h). G(h) is defined as the event in which the following
properties hold:

1. Ψ(h) is an endogenous η/2-approximate policy cover for layer h.

2. I(h) contains only endogenous factors.

In addition, we define G(<h) = ∩h−1
h′=1G

(h′). The following intermediate result—proven in the
sequel (Appendix G.3)—serves as our starting point.

Theorem G.1 (Success of State Refinement). Fix h ∈ [H] and condition on G(<h). Then, for any
ε > 0 (recalling that ε0 := ε

2SkH
), by setting

N = Θ
(
AS2kk3 log

(
dSAH

δ

)
· ε−2

0

)
,

OSSRε,δh guarantees that with probability at least 1− δ, for all t ≤ h,

1. I(t,h) ⊆ I?, and Ψ(t,h) contains only endogenous policies.

2. For all s ∈ S,

max
π∈Π[I?]

dh

(
s[I?];µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
− dh

(
s[I?];µ(t) ◦t ψ(t,h)

s[I(t,h)]

)
≤ ε0, (72)

where we recall that ψ(t,h)

s[I(t,h)]
∈ Ψ(t,h) and ψ(t+1,h)

s[I(t+1,h)]
∈ Ψ(t+1,h).
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We now show that conditioned on the event in Theorem G.1, the set Ψ(h) is an endogenous,
ε-approximate policy cover (as long as ε0 is chosen to be sufficiently small). In particular, we will
show that for all s[I?] ∈ S[I?] there exists a policy ψ ∈ Ψ(h) such that

max
π∈ΠNS[I?]

dh(s[I?];π) ≤ dh(s[I?];ψ) + ε. (73)

Fix s[I?] ∈ S[I?]. From first part of Theorem G.1, we have that I(1,h) ⊆ I?, so we can write
s[I?] = (s[I(1,h)], s[I? \ I(1,h)]) . We will show that the policy ψ(1,h)

s[I(1,h)]
∈ Ψ(h) = Ψ(1,h) maximizes

the probability of reaching s[I?] ∈ S[I?] in the sense of Eq. (73).
Define a endogenous “reward function” Rs[I?], with

Rs[I?],h(sh [I?]) := 1 {sh [I?] := s [I?]}

and Rs[I?],t(·) := 0 for t 6= h. Letting rs[I?],t := Rs[I?],t(st [I?]), we can write

dh(s [I?] ;π) := Eπ

[
h∑
t=1

rs[I?],t

]
. (74)

That is, we can view the state occupancy dh(s [I?] ;π) as the state value function for the ExoMDP
M :=

(
S,A, T,Rs[I?], H, d1

)
. Let π ∈ ΠNS[I?] be an endogenous policy. We let Men =(

S,A, Ten, Rs[I?], H, d1,en

)
denote the endogenous component of this MDP, and let Qπt,en(s[I?], a)

denote the associated state-action value function forMen.
To proceed, we use the representation above within the performance difference lemma (Lemma B.6)

to bound the suboptimality of ψ(1,h)

s[I(1,h)]
by a sum of "per-step" errors for each of the backward steps.

In particular for any pair of endogenous policies π, ψ ∈ ΠNS[I?], Lemma B.6 implies that

dh(s [I?] ;π)− dh(s [I?] ;ψ)

(a)
=

h∑
t=1

Eπ
[
Qψt,en(st [I?] , πt(st [I?])−Qψt,en(st [I?] , ψt(st [I?]))

]
≤

h∑
t=1

Es[I?]∼dt(· ; π)

[
max
a

Qψt,en(s [I?] , a)−Qψt,en(s [I?] , ψt(s [I?]))
]

≤
h∑
t=1

∑
s[I?]∈S[I?]

max
π′∈ΠNS[I?]

dt(s [I?] ; π′)
(

max
a

Qψt,en(s [I?] , a)−Qψt,en(s [I?] , ψt(s [I?]))
)
.

(b)

≤ 2Sk
h∑
t=1

∑
s[I?]∈S[I?]

dt(s [I?] ; µ(t))
(

max
a

Qψt,en(s [I?] , a)−Qψt,en(s [I?] , ψt(s [I?]))
)

= 2Sk
h∑
t=1

Es[I?]∼dt(· ; µ(t))

[
max
a

Qψt,en(s [I?] , a)−Qψt,en(s [I?] , ψt(s [I?]))
]

(c)
= 2Sk

h∑
t=1

(
max

π′∈Π[I?]
dh(sh [I?] ;µ(t) ◦t π′ ◦t+1 ψ)− dh(sh [I?] ;µ(t) ◦t ψ)

)
. (75)

We justify the steps above as follows:
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• The equality (a) follows from Lemma B.6).

• Relation (b) holds because

maxπ∈Π[I?] dt (· ; π)

dt (· ; µ(t))
≤ 2Sk

which is a consequence of Lemma A.2. In particular, we use that (i) {Ψ(t)}h−1
t=1 are endogenous

η/2-approximate policy covers, (ii) either maxπ∈Π[I?] dt (s[I?] ; π) ≥ η or maxπ∈Π[I?] dt (s[I?] ; π) =
0 for all s[I?] ∈ S[I?] by the reachability assumption, and (iii) nonnegativity:

max
a

Qψt,en(s [I?] , a)−Qψt,en(s [I?] , ψt(s [I?])) ≥ 0.

• Relation (c) holds by the skolemization principle (Lemma A.9) and the tower rule for condi-
tional probabilities.

Recall that the event defined in Theorem G.1 (Eq. (72)) implies that for all t ≤ h,

max
π′∈Π[I?]

dh(sh [I?] ;µ(t) ◦t π′ ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]
− dh(sh [I?] ;µ(t) ◦t ψ(t,h)

s[I(t,h)]
) ≤ ε0.

Plugging this bound into Eq. (75) with ψ ← ψ(1,h)

s[I(1,h)]
, we have that for all endogenous policies π,

dh(s [I?] ;π)− dh(s [I?] ;ψ(1,h)

s[I(1,h)]
) ≤ 2SkHε0.

By using that ε0 := ε/2SkH and taking the maximum with respect to π ∈ Π[I?], we conclude that
for all s [I?] = (s [I(1,h)] , s [I? \ I(1,h)]), the policy ψ(1,h)

s[I(1,h)]
satisfies

max
π∈Π[I?]

dh(s [I?] ;π)− dh(s [I?] ;ψ(1,h)

s[I(1,h)]
) ≤ ε. (76)

This establishes that the set Ψ(h) is an endogenous ε-approximate policy cover. With this choice
for ε0, the total sample complexity is O

(
AS4kH2k3 log

(
dSAH
δ

)
· ε−2

)
. Finally, we note that as a

consequence of Theorem G.1, we have I(1,h) ⊆ I? as desired. We have |Ψ(h)| ≤ Sk by construction.

G.3. Proof of Theorem G.1 (Success of State Refinement Step)

In this section we prove Theorem G.1, a supporting result used in the proof of Theorem 3.1. The
result shows for each step t, the optimization and selection phases in OSSRε,δh lead to a set of
endogenous t→ h policies Ψ(t,h), as long as certain preconditions are satisfied.

Theorem G.1 (Success of State Refinement). Fix h ∈ [H] and condition on G(<h). Then, for any
ε > 0 (recalling that ε0 := ε

2SkH
), by setting

N = Θ
(
AS2kk3 log

(
dSAH

δ

)
· ε−2

0

)
,

OSSRε,δh guarantees that with probability at least 1− δ, for all t ≤ h,
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1. I(t,h) ⊆ I?, and Ψ(t,h) contains only endogenous policies.

2. For all s ∈ S,

max
π∈Π[I?]

dh

(
s[I?];µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
− dh

(
s[I?];µ(t) ◦t ψ(t,h)

s[I(t,h)]

)
≤ ε0, (72)

where we recall that ψ(t,h)

s[I(t,h)]
∈ Ψ(t,h) and ψ(t+1,h)

s[I(t+1,h)]
∈ Ψ(t+1,h).

Proof of Theorem G.1. The event G(<h) (Definition G.1) holds by assumption, which implies that
the policy sets Ψ(t) for t ∈ [h− 1] contain only endogenous policies. As a result,

µ(t) := Unf
(
Ψ(t)

)
. (77)

is an endogenous mixture policy. To proceed, we define some intermediate success events which will
be used throughout the proof. First, for t ≤ h define

G(t,h)

1 :=
{

Ψ(t,h) contains only endogenous policies, and I(t,h) ⊆ I?
}
.

Observe when G(t,h)

1 holds, we can express all states s[I?] ∈ S[I?] as

s[I?] =
(
s[I(t,h)], s[I? \ I(t,h)]

)
=
(
s[I(t+1,h)], s[I? \ I(t+1,h)]

)
,

since I(t+1,h) ⊆ I(t,h) ⊆ I?. Next, we define an event G(t,h)

2 via

G(t,h)

2 :={
∀s[I?] ∈ S[I?] : max

π∈Π[I?]
dh(s[I?];µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]
)− dh(s[I?];µ(t) ◦t ψ(t,h)

s[I(t,h)]
) ≤ ε0

}
,

where we recall that ψ(t+1,h)

s[I(t+1,h)]
∈ Ψ(t,h) and ψ(t,h)

s[I(t,h)]
∈ Ψ(t,h). Finally, let G(t,h) := G(t,h)

1 ∩ G(t,h)

2 .
We will prove that for all t ≤ h,

P
(
G(t,h) | ∩ht′=t+1G(t′,h),G(<h)

)
≥ 1− δ/H. (78)

Taking a union bound (Lemma A.4), this implies that P
(
∩ht′=1G(t′,h) | G(<h)

)
≥ 1 − δ, which

establishes Theorem G.1.

Proving Eq. (78). Let t < h be fixed, and condition on ∩ht′=t+1G(t′,h) and G(<h). We will show that
whenever these events hold and the estimated occupancy measures have sufficiently high accuracy,
G(t,h) holds. Formally, recalling Definition A.1, define an event

G(t,h)

stat =
{
D̂ is

ε0
12k

-approximate with respect to
(
µ(t) ◦t Π[I≤k] ◦t+1 Ψ(t+1,h),I≤k

(
I(t+1,h)

)
, h
)}
.

(79)

Our goal is to show that conditioned on ∩ht′=t+1G(t′,h) and G(<h), G(t,h)

stat =⇒ G(t,h), so that

P
(
G(t,h) | ∩ht′=t+1G(t′,h),G(<h)

)
≥ P

(
G(t,h)

stat | ∩ht′=t+1G(t′,h),G(<h)

) (a)

≥ 1− δ.
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Here (a) is a consequence of Lemma A.5, which asserts that by setting

N = Ω
(
AS2kk3 log

(
dSA

δ

)
· ε−2

0

)
, (80)

the estimated state occupancies D̂ produced in Line 5 of OSSRε,δh are ε0/12k-approximate with
respect to (µ(t) ◦t Π[I≤k] ◦t+1 Ψ(t+1,h),I≤k (I(t+1,h)) , h), in the sense of Definition A.1. We
formally verify that the preconditions required to apply Lemma A.5 are satisfied at the end of the
proof for completeness.

We now prove that conditioned on ∩ht′=t+1G(t′,h) and G(<h), G(t,h)

stat =⇒ G(t,h). This relies on
two claims: Success of EndoPolicyOptimization and success of EndoFactorSelection.

Success of EndoPolicyOptimizationε0t,h. We appeal to Lemma G.1, verifying that the assumptions it
requires, (A1) and (A2), are satisfied (conditioned on ∩ht′=t+1G(t′,h) and G(<h)).

(A1) µ(t) is an endogenous policy when G(<h) holds (see Eq. (77)) and Ψ(t+1,h) contains only
endogenous policies whenever G(t+1,h) holds.

(A2) D̂ is ε0/12k-approximate with respect to (Π[I≤k],I≤k (I(t+1,h)) , h) whenever G(t,h)

stat holds.

Thus, Lemma G.1 implies that for all I ∈ I≤k (I(t,h)) and s[I] ∈ S[I], the respective invocation
of the sub-routine EndoPolicyOptimizationε0t,h outputs a policy π(t)

s[I] ∈ Γ(t)[I] that is (i) endogenous,
and (ii) near-optimal in the following one-step sense:

max
π∈Π[I≤k]

dh

(
s[I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[It+1,h]

)
≤ dh

(
s[I] ; µ(t) ◦t π(t)

s[I] ◦t+1 ψ
(t+1,h)

s[It+1,h]

)
+ 4ε0.

(81)

Success of EndoFactorSelectionε0t,h. We appeal to Theorem E.1, verifying that the assumptions
(A1)-(A3) required by it are satisfied.

(A1) µ(t) is endogenous whenever G(<h) holds. Whenever G(t+1,h) holds, we are guaranteed that
Ψ(t+1,h) contains only endogenous policies, so that ψ(t+1,h)

s[It+1,h]
∈ Ψ(t+1,h) is endogenous in

particular.

(A2) D̂ is ε0/12k-approximate with respect to (Π[I≤k],I≤k (I(t+1,h)) , h) by G(t,h)

stat .

(A3) Due to the success of EndoPolicyOptimizationε0t,h (verified above), the condition in Eq. (81) is
satisfied.

Hence, by Theorem E.1, EndoFactorSelectionε0t,h returns a tuple (I(t,h),Ψ(t,h)[I(t,h)]) such that

1. I(t,h) ⊆ I?.

2. For all s ∈ S,

max
π∈Π[I?]

dh

(
s [I?] ;µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
−dh

(
s [I?] ;µ(t) ◦t π(t)

s[I(t,h)]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ 16ε0,

where we recall that ψ(t+1,h)

s[I(t+1,h)]
∈ Ψ(t+1,h) and π(t)

s[I(t,h)]
∈ Γ(t)[I(t,h)].
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Wrapping up. Scaling ε0 ← ε0/16 and δ ← δ/H , and recalling that ψ(t,h)

s[I(t,h)]
∈ Ψ(t,h) is given by

ψ(t,h)

s[I(t,h)]
:= π(t)

s[I(t,h)]
◦t+1 ψ

(t+1,h)

s[I(t+1,h)]
,

we have that for all t < h,

P
(
G(t,h) | ∩ht′=t+1G(t′,h),∩h−1

h′=1G
(h′)
)
≥ 1− δ/H,

proving the result.

Verifying conditions of Lemma A.5. We conclude by verifying that the four conditions required
by Lemma A.5 hold, conditioned on ∩ht′=t+1G(t′,h) and G(<h); this justifies the application in the
prequel.

1. By construction, Ψ(t+1,h) =
{
ψ(t+1,h)

s[I(t,h)]
| s [I(t+1,h)] ∈ S [I(t+1,h)]

}
. Thus, |Ψ(t+1,h)| =

|S [I(t,h)]| ≤ Sk, since |I(t+1,h)| ≤ k.

2. We have |Π[I≤k]| ≤ O
(
dkAS

k
)

, since the number of factor sets of size at most k is

k∑
k′=0

(
d

k′

)
≤
(
ed

k

)k
≤ O

(
dk
)
, (82)

and for any factor set I with |I| ≤ k we have |Π[I]| ≤ ASk .

3. |I≤k (I(t+1,h))| ≤ |I≤k| ≤ O
(
dk
)

by Eq. (82),

4. For any fixed set I with |I| ≤ k, we have |S [I]| ≤ Sk.

G.4. Application of EndoPolicyOptimization in OSSR

The main guarantee for the EndoPolicyOptimizationεt,h subroutine (Theorem D.1) implies that the
policy π(t)

s[I] returned in Line 7 of OSSR is endogenous, as well as near-optimal in the following this
sense:

max
π∈Π[I≤k]

dh

(
s[I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[It+1,h]

)
≤ dh

(
s[I] ; µ(t) ◦t π(t)

s[I] ◦t+1 ψ
(t+1,h)

s[It+1,h]

)
+O(ε).

In this subsection we state and prove Lemma G.1, which shows that the preconditions (A1) and (A2)
required to apply Theorem D.1 are satisfied, so that the claim above indeed holds.

Lemma G.1. Fix h ∈ [H] and t ≤ h. Suppose that the following conditions hold:

(C1) µ(t) ∈ Πmix[I?] is endogenous and Ψ(t+1,h) contains only endogenous policies.

(C2) The collection D̂ of occupancy measures is ε/12k-approximate with respect to
(µ(t) ◦Π[I≤k] ◦Ψ(t+1,h),I≤k (I(t+1,h)) , h) .

63



EFRONI FOSTER MISRA KRISHNAMURTHY LANGFORD

Then assumptions (A1) and (A2) of Theorem D.1 are satisfied when EndoPolicyOptimizationεt,h is
invoked within OSSR, and for all I ∈ I≤k (I(t+1,h)):

1. The set Γ(t) [I] =
{
π(t)

s[I] | s[I] ∈ S[I]
}

contains only endogenous policies.

2. For all s [I] ∈ S[I], the policy π(t)

s[I] ∈ Γ [I] satisfies

max
π∈Π[I≤k]

dh

(
s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
≤ dh

(
s [I] ; µ(t) ◦t π(t)

s[I] ◦t+1 ψ
(t+1,h)

s[I(t+1,h)]

)
+ 4ε.

Proof of Lemma G.1. Toward proving the result, we begin with a basic observation. Fix I ∈
I≤k (I(t+1,h)) and s [I] ∈ S [I]. Define an MDP

(
S,A, T,Rs[I], h

)
whereRs[I],h = 1 {sh[I] = s[I]}

and Rs[I],h′ = 0 for all h′ 6= h. Observe that the occupancy measure for s[I] at layer h is equivalent
to the (t, h) value function in this MDP:

Vt,h

(
µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
= dh

(
s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
. (83)

We now show that assumptions (A1) and (A2) of Theorem D.1 hold when the theorem is invoked
with this value function, from which the result will follow.

Verifying assumption (A1) of Theorem D.1. The policies µ(t) and ψ(t+1,h)

s[I(t+1,h)]
∈ Ψ(t+1,h) are

endogenous by condition (C1). Hence, the assumptions of the restriction lemma (Lemma B.2) are
satisfied, which gives

max
π∈Π[I]

dh

(
s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
= max

π∈Π[Ien]
dh

(
s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
⇐⇒ max

π∈Π[I]
Vt,h

(
µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
= max

π∈Π[Ien]
Vt,h

(
µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
.

Verifying assumption (A2) of Theorem D.1. By condition (C2), we have that D̂ is ε/12k-approximate
with respect to (µ(t) ◦Π[I≤k] ◦Ψ(t+1,h),I≤k (I(t+1,h)) , h), and hence∣∣∣∣d̂h(s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
− dh

(
s [I] ; µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)∣∣∣∣ ≤ ε/12k

⇐⇒
∣∣∣∣V̂t,h(µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)
− Vt,h

(
µ(t) ◦t π ◦t+1 ψ

(t+1,h)

s[I(t+1,h)]

)∣∣∣∣ ≤ ε/12k.
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Appendix H. Proof of Theorem 4.1 (Correctness of ExoRL)

In this section we formally prove Theorem 4.1, which shows that ExoRL (Algorithm 3) learns an ε-
optimal policy for a general ExoMDP. The correctness of ExoRL is essentially a direct corollary of the
results derived for OSSR and PSDP in Appendix G and Appendix F. The high probability guarantee
for OSSR (Theorem 3.1) implies that iteratively applying OSSRη/2,δh results in an endogenous
η/2-approximate policy covers for every layer h ∈ [H]. Conditioning on this event, ExoPSDP is
guaranteed to find an ε-optimal policy with high probability (Theorem F.1).

Theorem 4.1 (Sample complexity of ExoRL). ExoRL, when invoked with parameter, ε ∈ (0, 1) and
δ ∈ (0, 1), returns an ε-optimal policy with probability at least 1 − δ, and does so using at most
O
(
AS3kH2(Sk +H2)k3 log

(
dSAH
δ

)
·
(
ε−2 + η−2

))
episodes.

Proof of Theorem 4.1. We first show that OSSR results in a near-optimal (endogenous) policy
cover, then show that the application of ExoPSDP is successful.

Application of OSSR. Let G(h) denote the event in which OSSRη/2,δh ({Ψ(t)}h−1
t=1 ) returns an endoge-

nous η/2-approximate policy cover Ψ(h) with |Ψ(h)| ≤ Sk, and let G(<h) := ∩h−1
h′=1G

(h). Theorem 3.1

states that for all h ≥ 2, if we condition on G(<h), then given N = O

(
AS4kH2k3 log( dSAHδ )

η2

)
sam-

ples, OSSRη/2,δh ensures that G(h) holds probability at least 1− δ . Furthermore, G(1) holds trivially
for h = 1. By Lemma A.4, this implies that P

(
∩Hh=1G(h)

)
≥ 1 − Hδ. Scaling δ ← δ/2H , we

conclude that given

NOSSR = O

(
AS4kH2k3 log

(
dSAH
δ

)
η2

)
samples across all applications of OSSRη/2,δh , the collection {Ψ(h)}Hh=1 is a set of endogenous η/2-
approximate policy covers with probability at least 1− δ/2. We denote this event by GOSSR, so that
P (GOSSR) ≥ 1− δ/2.

Application of PSDP. Conditioned on the event GOSSR, the conditions of Theorem F.1 hold, so that
the application of ExoPSDP is admissible. As a result, given

NExoPSDP = O

(
AS3kH4k3 log

(
dSAH
δ

)
ε2

)
samples, ExoPSDP finds an endogenous ε-optimal policy. We denote this event by GExoPSDP, so that
P (GExoPSDP | GOSSR) ≥ 1− δ/2.

Concluding the proof. ExoRL returns an endogenous ε-optimal policy when GOSSR and GExoPSDP

hold, and by the union bound P (GOSSR ∩ GExoPSDP) ≥ 1− δ. The total number of samples is

N = NOSSR +NExoPSDP ≤ O

(
AS4kH2k3 log

(
dSAH
δ

)
η2

+
AS3kH4k3 log

(
dSAH
δ

)
ε2

)
.
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H.1. Computational Complexity of ExoRL

The ExoRL procedure can be implemented with O(dkNSkAH) runtime. In Appendix F.3, we
show that ExoPSDP can be implemented in runtime O(dkNSkAH). Similarly, OSSRε,δh can be
implemented with runtime O(dkNSkA). The most computationally demanding aspect of OSSR
is optimizing the function V̂t,H (µ(t) ◦t π ◦t+1 π̂t+1:H) over the policy class Π[I≤k]. As shown in
Appendix F.3, this procedure can be implemented with runtime O(dkNSkA), which is repeated for
H times in ExoRL.
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