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Abstract

In real-world reinforcement learning applications the learner’s observation space is ubiquitously
high-dimensional with both relevant and irrelevant information about the task at hand. Learning
from high-dimensional observations has been the subject of extensive investigation in supervised
learning and statistics (e.g., via sparsity), but analogous issues in reinforcement learning are not well
understood, even in finite state/action (tabular) domains. We introduce a new problem setting for
reinforcement learning, the Exogenous Markov Decision Process (ExoMDP), in which the state
space admits an (unknown) factorization into a small controllable (or, endogenous) component and a
large irrelevant (or, exogenous) component; the exogenous component is independent of the learner’s
actions, but evolves in an arbitrary, temporally correlated fashion. We provide a new algorithm,
ExoRL, which learns a near-optimal policy with sample complexity polynomial in the size of the
endogenous component and nearly independent of the size of the exogenous component, thereby
offering a doubly-exponential improvement over off-the-shelf algorithms. Our results highlight for
the first time that sample-efficient reinforcement learning is possible in the presence of exogenous
information, and provide a simple, user-friendly benchmark for investigation going forward.

1. Introduction

Most applications of machine learning and statistics involve complex inputs such as images or text,
which may contain spurious information for the task at hand. A traditional approach to this problem
is to use feature engineering to identify relevant information, but this requires significant domain
expertise, and can lead to poor performance if relevant information is missed. As an alternative,
representation learning and feature selection methodologies developed over the last several decades
address these issues, and enable practitioners to directly operate on complex, high-dimensional inputs
with minimal domain knowledge. In the context of supervised learning and statistical estimation,
these methods are particularly well-understood (Hastie et al., 2015; Wainwright, 2019) and—in some
cases—can be shown to provably identify relevant information for the task at hand in the presence
of a vast amount of irrelevant or spurious features. As such, these approaches have emerged as the
methods of choice for many practitioners.

Complex, high-dimensional inputs are also ubiquitous in Reinforcement Learning (RL) appli-
cations. However, due to the interactive, multi-step nature of the RL problem, naive extensions of
representation learning techniques from supervised learning do not seem adequate. Empirically, this
can be seen in the brittleness of deep RL algorithms and, the large body of work on stabilizing these
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methods (Gelada et al., 2019; Zhang et al., 2020). Theoretically, this can be seen by the prevalence
of strong function approximation assumptions that preclude introducing spurious features (Wang
etal., 2021; Weisz et al., 2021). As a result, developing representation learning methodology for RL
is a central topic of investigation.

Recently, a line of theoretical works have developed structural conditions under which RL with
complex inputs is statistically tractable (Jiang et al., 2017; Jin et al., 2021; Du et al., 2021; Foster et al.,
2021), along with a complementary set of algorithms for addressing these problems via representation
learning (Du et al., 2019; Misra et al., 2020; Agarwal et al., 2020; Misra et al., 2021; Uehara et al.,
2021). While these works provide some clarity into the challenges of high-dimensionality in RL, the
models considered do not allow for spurious, temporally correlated information (e.g., exogenous
information that evolves over time through a complex dynamical system). On the other hand, this
structure is common in applications; for example, when a human is navigating a forest trail, the
flight of birds in the sky is temporally correlated, but irrelevant for the human’s decision making.
Motivated by the success of high-dimensional statistics in developing and understanding feature
selection methods for supervised learning, we ask:

Can we develop provably efficient algorithms for RL in the presence of a large number of dynamic,
yet irrelevant features?

Efroni et al. (2021b) initiated the study of this question in a rich-observation setting with function
approximation. However, their results require deterministic dynamics, and their approach crucially
uses determinism to sidestep many challenges that arise in the presence of exogenous information.

Our contributions. In this paper, we take a step back from the function approximation setting
considered by Efroni et al. (2021b), and introduce a simplified problem setting in which to study
representation learning and exploration with high-dimensional, exogenous information. Our model,
the Exogenous Markov Decision Process or ExoMDP, involves a discrete d-dimensional state space
(with each dimension taking values in {1, ..., S}) in which an unknown subset of k < d dimensions
of the state can be controlled by the agent’s actions. The remaining d — k state variables are irrelevant
for the agent’s task, but may exhibit complex temporal structure.

Our main result is a new algorithm, ExoRL, that learns a policy which is (i) near-optimal and
(ii) does not depend on the exogenous and irrelevant factors, while requiring only poly(S*, log(d))
trajectories. Here, the dominant S* term represents the size of the controllable (or, endogenous)
state space, and the log(d) term represents the price incurred for feature selection (analogous to
guarantees for sparse regression (Hastie et al., 2015; Wainwright, 2019)). Our result represents
a doubly-exponential improvement over naive application of existing tabular RL methods to the
ExoMDP setting, which results in poly(S%) sample complexity. Our algorithm and analysis involve
many new ideas for addressing exogenous noise, and we believe our work may serve as a building
block for addressing these issues in more practical settings.

2. Overview of Results

In this section we introduce the ExoMDP setting and give an overview of our algorithmic results,
highlighting the key challenges they overcome. Before proceeding, we formally describe the basic
RL setup we consider.
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Markov decision processes. We consider a finite-horizon Markov decision process (MDP) defined
by the tuple M = (S, A, T, R, H,d,), in which S is the state space, A is the action space, 7" : S X
A — A(S) is the transition operator R : S X A — [0, 1] is the reward function, H € N is the horizon,
and d; € A(S) is the initial state distribution. Given a non-stationary policy 7 = (71,...,7x),
where 7, : S — A, an episode in the MDP M proceeds as follows, beginning from s; ~ dy: For
h=1,...,H: ap = mp(sp), rn = R(sp,an), and sp1q1 ~ T(- | sp,ap). We let Ex[-] and P ()
denote the expectation and probability for the trajectory (s1,a1,71), ..., (Sg,am,rg) when 7 is
executed, respectively, and define J(7) = E [Z th1 rh} as the average reward.

The objective of the learner is to learn an e-optimal policy online: Given N episodes to execute a
policy and observe the resulting trajectory, find a policy 7 such that J(7) > maxX ey J(7) — €,
where IIng denotes the set of all non-stationary policies 7 = (71, ..., 7).

2.1. The Exogenous MDP (ExoMDP) Setting

The ExoMDP is a Markov decision process in which the state space factorizes into an endogenous
component that is (potentially) affected by the learner’s actions, and an exogenous component that
is independent of the learner’s actions, but evolves in an arbitrary, temporally correlated fashion.
Formally, given a parameter d € N (the number of factors), the state space S takes the form
S = ®§l:1$i, so that each state s € S has the form s = (s1,...,54), with s; € S;; we refer
to S; (equivalently, 4) as the i'" factor. We take Z, C [d] to represent the endogenous factors
and Z¢ := [d] \ Z to represent the exogenous factors, which are unknown to the learner. Letting
S|Z] := (si)iez, we assume the dynamics and rewards factorize across the endogenous and exogenous
components as follows:

T (s'|s,a) = Ten(s' [T.] | s [T.] s a) - Tex(s" [ZE] | 5 [Z3)),
R(s,a) = Ren(s[Z4] , a), (D
di(s) = dien (5 [Z4]) - diex (s[Z1])

forall s, s’ € S and a € A. That is, the endogenous factors Z, are (potentially) affected by the agent’s
actions and are sufficient to model the reward, while the exogenous factors Z; evolve independently
of the learner’s actions and do not influence the reward.

In this paper, we focus on a finite-state/action (tabular) variant of the ExoMDP setting in which
S, = [S] and A = [A], with S € N representing the number of states per factor and A € N
representing the number of actions. We assume that |Z, | < k, where k < d is a known upper bound
on the number of endogenous factors.! In the absence of the structure in Eq. (1), this is a generic
tabular RL problem with |S| = S¢, and the optimal sample complexity scales as poly(S?, A, H, e !)
(Azar et al., 2017), which has exponential dependence on the number of factors d. On the other hand,
if Z, were known a-priori, applying off-the-shelf algorithms for tabular RL to the endogenous subset
of the state space would lead to sample complexity poly(S*, A, H, e~ 1) (Azar et al., 2017; Jin et al.,
2018; Zanette and Brunskill, 2019; Kaufmann et al., 2021), which is independent of d and offers
significant improvement when k& < d. This motivates us to ask: With no prior knowledge, can we
learn an e-optimal policy for the ExoMDP with sample complexity polynomial in S* and sublinear
ind?

1. Extending our results to settings in which different factors have different sizes (i.e., S; = [S;]) is straightforward.
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2.2. Challenges of RL in the Presence of Exogenous Information

Sample-efficient learning in the absence of prior knowledge poses significant algorithmic challenges.

(C1) Hardness of identifying endogenous factors. In general, the endogenous factors may not be
identifiable (that is, multiple choices for Z, may obey the structure in Eq. (1)). Even when Z,
is identifiable, certifying whether a particular factor ¢ € [d] is exogenous can be statistically in-
tractable (e.g., if the effect of the agent’s action on the state component s; is small relative to €).

(C2) Necessity of exploration. The agent’s action might have a large effect on an endogenous factor
1 € Z,, but only in a particular state s € S that requires deliberate planning to reach. As such,
any approach that attempts to recover the endogenous factors must be interleaved with explo-
ration, resulting in a chicken-and-egg problem. “Test-then-explore” approaches do not suffice.

(C3) Entanglement of endogenous and exogenous factors. The factorized dynamics in (1) lead to a
number of useful structural properties for ExoMDPs, such as factorization of state occupancy
measures (cf. Appendix B). However, these properties generally only hold for policies that act
on the endogenous portion of the state. When an agent executes a policy whose actions depend
on the exogenous state factors, the evolution of the endogenous and exogenous components
becomes entangled. This entanglement makes it difficult to apply supervised learning or
estimation methods to extract information from trajectories gathered from such policies, and
can lead to error amplification. As a result, significant care is required in gathering data.

Failure of existing algorithms. Existing RL techniques do not appear to be sufficient to address
the challenges above and generally have sample complexity requirements scaling with (d) or
worse. For example, tabular methods do not exploit factored structure, resulting in ©(S¢) sample
complexity, and we can show that complexity measures like the Bellman rank (Jiang et al., 2017)
and its variants scale as (2(d), so they do not lead to sample-efficient learning guarantees. Moreover,
algorithms for factored MDPs (e.g., Rosenberg and Mansour (2020)) obtain guarantees that depend
on sparsity in the transition operator, but this operator is dense in the ExoMDP setting, leading to
sample complexity that is exponential in d. See further discussion in Section 5 and Appendix B.1.

2.3. Main Result

We present a new algorithm, ExoRL, which learns a near-optimal policy for the ExoMDP with
sample complexity polynomial in the number of endogenous states and logarithmic in the number of
exogenous components. Following previous approaches to representation learning in RL (Du et al.,
2019; Misra et al., 2020; Agarwal et al., 2020), our results depend on a reachability parameter.

Definition 2.1. The endogenous state space is n)-reachable if for all h € [H] and s[Z,] € S|Z,], either

max Pr (sp[Zi] = s[Z]) > m, or max Pr(sp[Z] = s[Zs]) = 0.
ﬂ'EHNS TI'EHNS
Crucially, this notation of reachability considers only the endogenous portion of the state space,
not the full state space. We assume access to a lower bound 7 on the optimal reachability parameter.
Our main result is as follows.

Theorem 4.1 (informal). With high probability, ExoRL learns an e-optimal policy for the ExoMDP
using poly(S*, A, H,log(d)) - (6_2 + 7]_2) trajectories.
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This constitutes a doubly-exponential improvement over the S% sample complexity for naive
tabular RL in terms of dependence on the number of factors d, and it provides a RL analogue of
sparsity-dependent guarantees in high-dimensional statistics (Hastie et al., 2015; Wainwright, 2019).
Importantly, the result does not require any statistical assumptions beyond the factored structure in Eq.
(1) and reachability (for example, we do not require deterministic dynamics). Beyond polynomial
factors, the dependence on the size of the state space cannot be improved further.

2.4. Our Approach: Exploration with a Certifiably Endogenous Policy Cover

ExoRL is built upon the notion of an endogenous policy cover. Define an endogenous policy as
follows.

Definition 2.2 (Endogenous policy). A policy m = (71, ..., 7) is endogenous if it acts only on the
endogenous component of the state space: For all h € [H] and s € S, we have my,(s) = 7, (s[Z4]).

An endogenous policy cover is a (small) collection of endogenous policies that ensure each state
is reached with near-maximal probability.

Definition 2.3 (Endogenous policy cover). A set of non-stationary policies ¥ is an endogenous
(e-approximate) policy cover for timestep h if:

1. Forall s € S, maxycw Py (sp[Zy] = s[Z.]) > maxremyg Pr (sn[Zi] = s[Z4]) — €
2. The set V contains only endogenous policies.

While the coverage property of Definition 2.3 is stated in terms of occupancy measures for the
endogenous portion of the state space, the factored structure of the ExoMDP implies that this yields
a cover for the entire state space (cf. Appendix B.2):

Iq?é\ffcpw (sp=138) > IIl;iX]P)W (sh=15)—¢€ VseS.

In particular, even though |S| = S¢, this guarantees that for each timestep h, there exists a small
endogenous policy cover with |¥| < S*. ExoRL constructs such a policy cover and uses it for sample-
efficient exploration in two phases. First, in Phase I (OSSR), the algorithm builds the policy cover
in a manner guaranteeing endogeneity; this accounts for the majority of the algorithm design and
analysis effort. Then, in Phase II (ExoPSDP), the algorithm uses the policy cover to optimize rewards.

Finding a certifiably endogenous policy cover: OSSR. The main component of ExoRL is an
algorithm, OSSR, which iteratively learns a sequence of endogenous policy covers U™V ... ¢
with
max Py (sp[Z.] = s[Z,]) > max Py (s [Z,] = s[Z.]) — €
1[J€\I’(h) ™

for all s[Z,] € S[Z,]. For each h € [H], given the policy covers ¥ ... W=D for preceding
timesteps, OSSR builds the policy cover ¥ using a novel statistical test. The test constructs a factor
set Z C [d] which is (i) endogenous, in the sense that Z C Z,, yet (ii) ensures sufficient coverage,
in the sense that there exists a near-optimal policy cover operating only on s[Z]. The analysis of
this test relies on a unique structural property of the ExoMDP setting called the restriction lemma
(Lemma B.2), which provides a mechanism to “regularize” the factor set under consideration toward
endogeneity in a data-driven fashion.
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This approach circumvents challenges (C1) and (C2): It does not rely on explicit identification of
the endogenous factors and instead iteratively builds a subset of factors that is certifiably endogenous,
but nonetheless sufficient to explore. Endogeneity of the resulting policy cover ¥ ensures the
success of subsequent tests at rounds A+ 1, ..., H, and circumvents the issue of entanglement raised
in challenge (C3). To summarize, the following guarantee constitutes our main technical result.

Theorem 3.1 (informal). With high probability, OSSR finds an endogenous 3-approximate policy
cover using poly(Sk, A H, log(d)) -n~2 trajectories.

2.5. Organization

The remainder of the paper is organized as follows. In Section 3, we introduce the OSSR algorithm,
highlight the key algorithm design techniques and analysis ideas, and state its formal guarantee
(Theorem 3.1) for finding a policy cover. Building on this result, in Section 4 we introduce the ExoRL
algorithm, and provide the main sample complexity guarantee for RL in ExoMDPs (Theorem 4.1).
We close with discussion of additional related work (Section 5) and open problems (Section 6).

2.6. Preliminaries

We let 11 denote the set of all one-step policies 7 : S — A. We use the term ¢t — h policy to refer to
a non-stationary policy m = (7, ..., ) defined over a subset of timesteps ¢ < h.
For a non-stationary policy m € Ilng, we define the state-action and state value functions:

Qr(s,a) = Eg [Zgzh T | sn=s,an =al, and V" (s) := Qf(s,mn(s)). We denote the ex-

pected value of a policy 7 from time step ¢t to h by V;j, (1) := Ex [Z?,:t fr’t/] We adopt the

shorthand dy, (s ; ) := Pr(sp = s) for the induced state occupancy measure. Likewise, for Z C [d],
we define dj, (s[Z] ; ) := Pr(sp[Z] = s[Z]).

For algorithm design purposes, we consider mixture policies of the form p € Il := A(Ilng).
To run a mixture policy p € Ilix, we sample m ~ p, then execute 7 for an entire episode. We
further denote I1,,ix[Z] := A(IIxs[Z]) as the set of mixture policies over the policy set IIng[Z],
where ITng[Z] denotes the set of policies that act on the factor set Z. We let E,,[-] and P,,(-) denote the
expectation and probability under this process, and we define J () = E,[J(7)] = E, [Ethl rh]
and dp,(s ; p) := P,(sp = s) analogously. We say that 1 € Il,ix is endogenous if it is supported
over endogenous policies in IIng. Finally, for p € Il and m € 1I we let i o4 7 be the policy that

follows . for the first ¢ — 1 timesteps, and at the ¢' timestep it switches to 7. For sets of policies ¥
and Wy we let W1 oy Uy 1= {¢1 ot Yo ’ ¢1 S \111,1/12 € \I/Q}.

ExoMDP notation. Recall that for a factor set Z C [d], we define Z¢ := [d] \ Z as the complement,
and define s [Z] := (s;);ez and S [Z] := ®;e7S; as the corresponding components of the state
and state space. We make frequent use of the fact that for any pair of factors Z; and Z» with
I =17, UIyand I; NIy = @, any state s[Z] € S[Z] can be uniquely split as s[Z] = (s[Z1], s[Z2]),
with s[Z;]| € S[Z;] and s[Z3] € S[Z2]. We use a canonical ordering when indexing with factor sets.

Any factor set Z C [d] can be written as Z = (Z N Z,) U (Z N ZY). We denote these intersections
by Zen := ZNZ, and Zox := ZNZ, which represent the endogenous and exogenous components of Z.

We say that a policy 7 acts on a factor set T if it selects actions as a measurable function of S[Z].
We let I1[Z] denote the set of all one-step policies 7 : S[Z] — A that act on Z, and let IIxg[Z] denote
the set of all non-stationary policies that act on Z.
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Lastly, if Z C Z¢, i.e., the factor Z is a subset of the exogenous factors, we omit the dependence
in the policy 7 from its occupancy measure, dp,(s[Z] ; m) = dp(s[Z]). Indeed, for any 7, 77’ € TINg
it holds that dj,(s[Z] ; m) = dp(s[Z] ; 7'), and hence the occupancy measure of s[Z] is independent
of the policy.

Collections of factor sets. ForafactorsetZ C [d], welet < (Z) :={Z' C [d| |Z C T, |7'| < k}
denote a collection of all factor sets of size at most k that contain Z, and analogously define .7, (Z) :=
{Z' C[d] | T C T, |T'| = k}. We adopt the shorthand <}, := I« (@) and .7}, := F, (). With
some abuse of notation, for a given collection of factor sets .#, we define II[.#] := Uzc #II[Z] as
the set of all possible policies induced by factors in ..

We define [N] := {1,2,--- , N}. Unf(X") denotes the uniform distribution over a finite set X

3. Learning a Near-Optimal Endogenous Policy Cover: OSSR

In this section, we present the first of our main algorithms, OSSR (Algorithm 8), which performs
reward-free exploration to construct an endogenous policy cover for the ExoMDP. OSSR constitutes
the main algorithmic component of ExoRL, and we believe it is of independent interest.

OSSR is a forward-backward algorithm. For each layer h € [H], given previous policy covers
U w1 the algorithm constructs an endogenous policy cover ¥ in a backwards fashion.
Backward steps proceed from ¢t = h — 1,..., 1, with each step consisting of (i) an optimization
phase, in which we find a (potentially large) collection of policies for choosing actions at step ¢ that
lead to good coverage for all possible target factors sets Z at layer h, and (ii) a selection phase, in
which we narrow the collection of policies from the first phase down to a small set of policies that
act on a single (endogenous) factor set Z, yet still ensure coverage for all states at step h.

Instead of directly diving into OSSR, we build up to the algorithm through two warm-up exercises:

* In Section 3.1, we consider a simplified version of OSSR (OSSR.OneStep, or Algorithm 1)
which computes an endogenous policy cover under the assumption that (i) H = 2, and (ii)
certain occupancy measures for the underlying ExoMDP can be computed exactly.

* Building on this result, in Section 3.2 we provide another simplified algorithm (OSSR.Exact,
or Algorithm 2) which computes an endogenous policy cover for general H, but still requires
exact access to certain occupancy measures for the ExoMDP.

Finally, in Section 3.3 we present the full OSSR algorithm and its main sample complexity guarantee.

3.1. Warm-Up I: Finding an Endogenous Policy Cover with Exact Queries (H = 2)

Algorithm 1 presents OSSR.OneStep, a simplified version of OSSR that computes a (small) endoge-
nous policy cover for horizon two, assuming exact access to the state occupancies da(s ; 7). This
algorithm highlights the mechanism through which OSSR is able to simultaneously ensure both
endogeneity and coverage.

OSSR.OneStep learns an endogenous policy cover in two phases. In the optimization phase
(Lines 1 and 2) the algorithm computes a partial policy cover I'[[J] for each factor set J € I<y,
which ensures that for all state factor values s[J] € S[J] there exists a policy 7,7 € I'[J] which
maximizes the probability to reach the state factor value s[7] at the 2°¢ timestep.
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Algorithm 1 OSSR.OneStep: Optimization-Selection State Refinement for ExoMDPs with H = 2
Phase I: Optimization

1: Find factor set Z € &<}, with minimal cardinality such that for all 7 € .Y« and s[J] € S[J],

do (s|T|; m) = do (s|T]; 7).
Trerlgllﬁ;{gk] 2(8[ ] 7T) :élg[)%] 2(8[ ] 7T)

2. Forall J € Iy, define 7, 7] = arg max da (s[J] ; m) for each s[J] € S[J], then set

nell[Z]
F[j] = {Ws[J] 18[:7] ES[j]}

Phase II: Selection
3: Find factor set Z € J<}; with minimal cardinality such that for all 7 € Y« and s [J] € S [J],

L o (s[5 ) = o <s[j s ”s[Jnﬁ)'

~ ~

4: return (Z,T'[Z))

All of the partial policy covers are induced by a single factor set Z; existence of such a factor set
is guaranteed by Property 3.2. We show that by regularizing by cardinality, Tis guaranteed to be
endogenous, and so the policy covers (I'|J]) 7c.s., are endogenous as well.

At this point, the only issue is size: The set U}e T I'[7] is an exact policy cover for h = 2 (in
the sense of Definition 2.3), but its size scales as €2(d*),? which makes it unsuitable for exploration.
To address this issue, the selection phase (Line 3) identifies a single endogenous factor 7 such that

~

I'[Z] is an endogenous policy cover (note that choosing I'[Z,] would suffice, but Z, is not known to

~

the learner). Since |T'[Z]| < S* by construction, this yields a small policy cover as desired.

Proposition 3.1. The pair (i’, F[f]) returned by OSSR.OneStep has the property that (i) T is
endogenous (i.e., 7 C 7,), and (ii) F[f] is an endogenous policy cover for h = 2: Forall s € S,

rgleaﬁ(dg (s[Z.] ; m) = da(s[Z,] ; ﬂ's[i—]), where 7 € INVAR

The ExoMDP transition structure further implies that max <1 dao (s ; 7r) =dy (s ; Ws[i]) Vs €
S.
Proof of Proposition 3.1. We begin by highlighting two useful structural properties of the ExoMDP;
both properties are specializations of more general results, Lemmas B.1 and B.2 (Appendix B).

Property 3.1 (Decoupling for endogenous policies). For any endogenous policy m, we have
da (s[Z] ; m) = da (s[Zen) 5 ) - d2 (8[Zex]), forall T C [d] and s € S.

Property 3.2 (Restriction lemma). For all factor sets T and [J, we have

max do (s[J]|; m) = max ds (s[T]; ) Vs[T]e€ S[T]. )

rell[Z] ’ 7€ [Zon]

2. The set II[Z] also gives a policy cover, but it is even larger.
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Property 3.2 is perhaps the most critical structural result used by our algorithms. It implies that
maxyer da (s[J] ; ™) = maxyenyz, d2 (s[J] ; 7), which in turn implies that the optimization and
selection phases of Algorithm 1 are feasible (since we can show that Z, is a valid choice). If ZandZ
are endogenous, then since Z C Z, the selection rule ensures that T[Z]isa policy cover for S[Z,] (by
choosing J = Z, in Line 3 and since n I, = I) We next show that both Z and 7 are endogenous.

Claim 1: T is endogenous. Observe that for any (potentially non-endogenous) factor setZ =1, HUIeX,
Property 3.2 implies that for all 7 € .#<; and s[J] € S[J],

max do (s[J]; 7) = max dy(s[J]; 7),
TI'EH[I] WEH[IEH]

For any factor set 7 that satisfies the constraints in Line 1 but has fcx # @&, we can further reduce
the cardlnahty without violating the constraints, so the minimum cardinality solution is endogenous.

Claim 2: T is endogenous. Consider a (potentially non-endogenous) factor set 7= Ien U Iex If7Z
satisfies the constraint in Line 3, then for all 7 € <}, and s € S, since Jen = J NI, € <y,

max da (s[Jen] ; ™) = d2 (3[\7en] P Jemf]> = dy <S[Jen] DT jenmfe"]) : 3)

WGH[eﬂSk]

Next, using Property 3.2 and Property 3.1, we have

max dy (s[J]; m) = max dy(s[TJ]; m) = max da (8[Ten] ; 7) - do(s[Tex))-

WEH[]SJQ] WEH[ *] WEH[I*}
As a result, since T o[ TonFon] satisfies
ngna[x*} d (S[u7en] ; 77) =ds (‘SLZm] ) WS[Jenmfen])

and it is an endogenous policy, we have

max ds (s[J]; 7) = da (S[Jm] : WS[JenﬂfenJ - da(s[Tex])

NEH[-]S)C}
=y (s19]: myg,0z,) = &2 (51915 mgezy)
where the second relation holds by Property 3.1, applicable since 7

and the third relatin holds since Jen N fe\n =JnN fe\n
Thus, Z., satisfies the constraint in Line 3, and if Z,, # &, we can reduce the cardinal-

ity while keeping the constraints satisfied, so the minimum cardinality solution is endogenous.
O

s[TonZon] is an endogenous policy,

3.2. Warm-Up II: Finding an Endogenous Policy Cover with Exact Occupancies (H > 2)

Algorithm 2 describes OSSR.Exact, which extends the OSSR.OneStep method to handle ExoMDPs
with general horizon (rather than H = 2), but still requires exact access to occupancy measures.
When invoked with a layer h, OSSR.Exact;, takes as input a sequence of endogenous policy covers
v W=D for layers 1,...,h — 1 and uses them to compute an endogenous policy cover W™
for layer h. The algorithm constructs W") in a backwards fashion based on the dynamic programming
principle. To describe the approach in detail, we use the notation of ¢ — h policy cover.
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Algorithm 2 OSSR.Exacty: Optimization-Selection State Refinement with Exact Occupancies

1: require: Timestep h € [H], policy covers {\If(t)}?;ll forsteps 1,...,h — 1.
2: initialize: Z"" < @ and ¥ «— @,
3:fort=h—1,...,1do
Phase I: Optimization
4: Let u® := Unf(¥®).
Find Z € .7}, with minimal cardinality such that for all 7 € .Z< (Z¢+2M), s[J] € S[T],

(t) t+1,h) _ L) (t+1,h)
ﬂEIIITl[E}XSk] dp, (s[j] 1Y op T opyq Y ST+ ]) = wrélg[)%] dp, (s[j] ;1 oy oy %[I(Hl,h)]) :

+1,h)
s[zC+1, h)}

6: For each factor set 7 € S<j, (Z¢"") and s[J]| € S[J], let

// Beginning from any state at layer ¢, ﬂ_it[)j] opp1 U maximizes probability that s,[J] = s[J].

773[,_’7] € argmax dh ( [j] ,U/< ) O¢ T Ot41 w(t[;—(lti1 h)]) P
well[T]

and define I [J] := {m 7 : s[T] € S[T]}.

Phase II: Selection
7: FindZ € F<, (201 with minimal cardinality s.t. for all 7 € S, (ZUH"), s[T] € S [T],

® i\ NCINIR0 (t+1,h)
ﬂerlrilfﬁ}ik] dp, (s[j] 1 or ™ot Yz ]) =dy <s[‘7} P o 3 Ot ws[z(tﬂ h)])

Policy composition

8: Let Z" < 7, and for each s[Z*")] € S[T(""] define

(t,h) . (t+1,h)
¢S[I(t h)] Z(t h) ¢ [I(H—l h)
// Recall that w“[;(t,h)] eT®[Z""] and wi‘[;;j;h)] €yttt
0:  Let Wi {w[;gt ¢ SITOM] € ST h>]}

10: return U ;= p.n)

Definition 3.1. For h € [H| and t < h, a set of non-stationary policies ¥ is said to be a (-
approximate) t — h policy cover with respect to a roll-in policy . € Iy if forall s € S,

gggdh (s[Z.] ; porvp) > max dn (s[Z] ; porm) —

If all policies in V are endogenous, we say that V is endogenous.

OSSR.Exact;, performs a serious of “backward” steps ¢ = h — 1,...,1. In each step t, the
algorithm rolls in with the mixture policy u¥ := Unf(¥®) and constructs a ¢ — h policy cover
Wh) with respect to p¥. W®" acts on an endogenous factor set Z*™ (with Z(t:" D Z¢+1.M D

10
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<+ D I™M = @), and is built from the next-step policy cover W*+") via dynamic programming. In
particular, the algorithm searches for a collection of endogenous “one-step” policies for choosing the
action at time ¢ that—when carefully composed with the (¢ + 1) — h policy cover W*+") —result
inat — h policy cover. The algorithm ensures that the factor set Z“"*) (upon which ¥®*") acts) is
endogenous using an optimization and selection phases analogous to those in OSSR.OneStep.

In more detail, OSSR.Exact;, satisfies the following invariants for 1 <¢ < h — 1.
(i) I"MC...CIEMC... CT,. (“state refinement”)

(73) The set U™ is an endogenous ¢ — h policy cover with respect to p¥ = Unf(¥T®):

di(s[Z.] 5 ' o ¢;};@,h>]) = max dy(s[Z] ; p® oy ), Vs[Z,) € S[Z.).

This implies that U™ := ¥ s an endogenous policy cover for layer h (Definition 2.3). In what
follows we show how OSSR.Exact;, uses dynamic programming to satisfy these invariants.

Dynamic programming. Consider step ¢ < h — 1, and suppose that (Z¢+1") WE+LR)) gatisfies
invariants (7) and (i7). Because p** uniformly covers all states in layer ¢+ 1 (recall U™, ... W=
are policy covers), the policy ¢:[;(1;T17,L)] maximizes the probability that s, [Z,] = s[Z,], starting from
any state in layer ¢ + 1. Hence, the Bellman optimality principle implies that to find a ¢ — A policy
to maximize this probability, it suffices to use the policy 7 o; 1 @D;t[}(l,;i)l?h)}, where ) solves the
one-step problem:

7" € argmax dy, (S[I*] : oy oy wit[;(lii)1,h>]) . 4)
WGH[I*}

At first glance, it is not apparent whether this observation is useful, because the endogenous factor
set Z, is not known to the learner, which prevents one from directly solving the optimization problem
in Eq. (4). Fortunately, we can tackle this problem using a generalization of the optimization-selection
approach of OSSR.OneStep. First, in the optimization phase (Line 5 and Line 6), we compute a
collection of one-step policy covers (I'"”[J]) /¢ . (T(+1.m), Where '™ [J] consists of the policies
that solve Eq. (4) with Z, replaced by 7, for all possible choices of state in s[7] € S[J]. Then, in the
selection phase (Line 7), we find a single factor Z-") O Z(+1" guch that I [Z")] provides good
coverage (in the sense of Eq. (4)) for all factor sets J € < (Z*"") simultaneously. Both steps
ensure endogeneity by penalizing by cardinality in the same fashion as OSSR.OneStep. The success
of this approach critically relies on the assumption that the preceding policy covers ™ ... W=b
are endogenous, which ensures that the occupancy measures induced by p™, ..., u"~Y factorize
(due to independence of the endogenous and exogenous state factors). To summarize:

Proposition 3.2. I[f U™ ... WY gre endogenous policy covers for layers 1, ..., h—1, then the set
U™ returned by OSSR.OneStepy, is an endogenous policy cover for layer h, and has | ™| < S,

We do not prove this result directly, and instead refer the reader to the proof of Theorem 3.1,
which proves the sample-based version of the result using the same reasoning.

3.3. OSSR: Overview and Main Result

The full version of the OSSR algorithm (OSSR;"S) is given in Algorithm 8 (deferred to Appendix G
due to space constraints). The algorithm follows the same template as OSSR.Exact: For each

11
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Algorithm 3 ExoRL: RL in the Presence of Exogenous Information

require: precision parameter € > 0, reachability parameter 7 > 0, failure probability § € (0, 1).
initialize: V") = &.
forh=23,---,H do

U ¢ OSSRZ/275 ({\I/(t) }?:_11) // Learn policy cover via OSSR (Algorithm 8 in Appendix G).

7 < ExoPSDP¢? ({‘11<h) }thl) . /I Apply ExoPSDP (Algorithm 7 in Appendix F) to optimize rewards.
return 7

h € [H], given policy covers U ... W"=1 the algorithm builds a policy cover ¥ for layer & in

a backwards fashion using dynamic programming. There are two differences from the exact algorithm.
First, since the MDP is unknown, the algorithm estimates the relevant occupancy measures for each
backwards step using Monte Carlo rollouts. Second, the optimization and selection phases from
OSSR.Exact are replaced by error-tolerant variants given by subroutines EndoPolicyOptimization and
EndoFactorSelection (Algorithm 5 in Appendix D and Algorithm 6 in Appendix E, respectively).

Briefly, the EndoPolicyOptimization and EndoFactorSelection subroutines are based on approxi-
mate versions of the constraints used in the optimization and selection phase for OSSR.Exact (Line 5
and Line 7 of Algorithm 2), but ensuring endogeneity of the resulting factors is more challenging due
to approximation errors, and it no longer suffices to simply search for the factor set with minimum
cardinality. Instead, we search for factor sets that satisfy approximate versions of Line 5 and Line 7
with an additive regularization term based on cardinality. We show that as long as this penalty is
carefully chosen as a function of the statistical error in the occupancy estimates, the resulting factor
sets will be endogenous with high probability.

The main guarantee for Algorithm 8 is as follows.
Theorem 3.1 (Sample complexity of OSSR). Suppose that OSSR;"s is invoked with {\II“)}?:_ll,
where each W' is an endogenous, 1/2-approximate policy cover for layer t. Then with probability at
least 1 — 0, the set U™ returned by OSSR;’(S is an endogenous e-approximate policy cover for layer
h, and has |U"| < S*. The algorithm uses at most O (AS** H?k?log (%) - € ?) episodes.

By iterating the process W) < OSSRZ/ 2’5({\11(“}?:_11), we obtain a policy cover for every layer.

4. Main Result: Sample-Efficient RL in the Presence of Exogenous Information

In this section we provide our main algorithm, ExoRL (Algorithm 3). ExoRL first applies OSSR
iteratively to learn an endogenous, 7)/2-approximate policy cover for each layer, then applies a
novel variant of the classical Policy Search by Dynamic Programming method of (Bagnell et al.,
2004) (ExoPSDP), which uses the covers to optimize rewards; the original PSDP method cannot be
applied to the ExoMDP setting as-is due to subtle statistical issues (cf. Appendix F for background).
The main guarantee for ExoRL is as follows; see Appendix H for a proof and overview of analysis
techniques.

Theorem 4.1 (Sample complexity of ExoRL). ExoRL, when invoked with parameter, € € (0,1) and

5 € (0,1), returns an e-optimal policy with probability at least 1 — 0, and does so using at most
O (AS3*H?(S% + H?)k3 log (%) - (72 +172)) episodes.

12
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Recall that S* = |S[Z,]| may thought of as the cardinality of the endogenous state space so—up to
polynomial factors, logarithmic dependence on d, and dependence on the reachability parameter 7, the
sample complexity of ExoRL matches the optimal sample complexity when Z, is known in advance.

Remark 4.1 (Computational Complexity of ExoRL). The runtime for ExoRL scales with ZIZ’:O ( ,f,) =
O(d*) due to brute force enumeration over factors sets of size at most k. While this improves over
the S runtime required to run a tabular RL algorithm over the full state space, an interesting question

that remains is whether the runtime can be improved to O(d°) for some constant ¢ independent of k.

5. Related Work
In this section we highlight additional related work not already covered by our discussion.

Reinforcement learning with exogenous information. The ExoMDP setting is a special case of
the Exogenous Block MDP (EX-BMDP) setting introduced by Efroni et al. (2021b), who initiated the
study of sample-efficient reinforcement learning with temporally correlated exogenous information.
In particular, one can view the ExoMDP as an EX-BMDP with S as the observation space and S[Z,|
as the latent state space, and with the set ® := {s — s[Z] | |Z| < k} as the class of decoders. Efroni
et al. (2021b) provide an EX-BMDP algorithm whose sample complexity scales with the size of
the latent state space and with log|®|, which translates to poly(S¥, log(d)) sample complexity for
the ExoMDP setting, but the algorithm requires that the endogenous state space has deterministic
transitions and initial state. The motivation for the present work was to take a step back and provide
a simplified testbed in which to study the problem of learning with stochastic transitions, as well as
other refined issues (e.g., minimax rates). Also related to this line of research is Efroni et al. (2021a),
which considers a linear control setting with exogenous observations. Unlike our work, Efroni et al.
(2021a) assumes that the inherent system noise induces sufficient exploration, and hence does not
address the exploration problem.

Empirical and theoretical works that aim to filter exogenous noise in RL include Pathak et al.
(2017); Zhang et al. (2020); Gelada et al. (2019) and Dietterich et al. (2018), but these methods do
not come with finite sample guarantees nor tackle the exploration problem.

Tabular reinforcement learning. As discussed earlier, existing approaches to tabular reinforce-
ment learning (Azar et al., 2017; Jin et al., 2018; Zanette and Brunskill, 2019; Kaufmann et al.,
2021) incur (S?%) sample complexity if applied to the ExoMDP setting naively. One can im-
prove this sample complexity to poly(S¥, d*, A, H) using a simple reduction. This falls short of
the poly(S*, A, H,log(d)) sample complexity our algorithms obtain, we sketch the reduction for
completeness.

* For each Z C [d] with |Z| < k, run any optimal tabular RL algorithm with precision parameter
e over the state space S[Z], and let 77 be the resulting policy.

» Evaluate each policy 77 to precision € using Monte-Carlo rollouts, and take the best one.
The first phase has poly(S*, A, H) sample complexity for each set Z, and there are at most (Z) =

O(d*) subsets. The algorithm that runs on S[Z,] will succeed in finding an e-optimal policy with
high probability, so the policy returned in the second phase will be at least 2e-optimal.

13
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Factored Markov decision processes. The ExoMDP setting is related to the Factored MDP
model (Kearns and Koller, 1999). Factored MDPs assume a factored state space whose transition
dynamics obey the following structure:

Vs,ss e Staec A, T(s|s,a)= HT i | s[pt(i)], a),

where pt : [d] — 2% is a parent function and Tj : SP*@) x A — A(S) is the transition distribution
of the ith factor. Many algorithms have been proposed for Factored MDPs, including for the setting
where the parent function is unknown (Strehl et al., 2009; Diuk et al., 2009; Hallak et al., 2015; Guo
and Brunskill, 2017; Rosenberg and Mansour, 2020; Misra et al., 2021). These algorithms assume
that the parent factor size is bounded, i.e., |pt(z)| < « for all ¢ € [d], and their sample complexity
typically scales with O(|S|®) for a numerical constant c. The ExoMDP setting cannot be solved
using off-the-shelf factored MDP algorithms for two reasons. First, we do not assume that each
factor evolves independently of other factors given the previous state and action. Second, the size
of the parent set for an exogenous factor can be as large as d — k. Therefore, even if factors were
evolving independently, applying off-the-shelf Factored MDPs algorithms would lead to exponential
sample in d sample complexity.

6. Conclusion

We have introduced the ExoMDP setting and provided ExoRL, the first algorithm for sample-efficient
reinforcement learning in stochastic systems with high-dimensional, exogenous information. Going
forward, we believe that the ExoMDP setting will serve as a useful testbed to understand refined
aspects of learning with exogenous information. Natural questions we hope to see addressed include:

* Minimax rates. While our results provide polynomial sample complexity, it remains to
understand the precise minimax rate for the ExoMDP as a function on S*, H, and so on.
Additionally, either removing the dependence on the reachability parameter or establishing a
lower bound remains for its necessity is an issue which deserves further investigation.

* Computation. Both ExoRL and OSSR rely on brute force enumeration over subsets, which
results in Q(d*) runtime. While this provides an improvement over naive tabular RL, it remains
to see whether it is possible to develop an algorithm with runtime O(d¢), where ¢ > 0 is a
constant independent of k.

* Regret. Naively lifting our e-PAC results to regret results in T2/ 3_type dependence on the time
horizon T'. Developing algorithms with v/7-type regret will require new techniques.

* Parameter-free algorithms. The OSSR algorithm requires an upper bound on |Z,| and a lower
bound on 7. It is relatively straightforward to remove access to these quantities when the value
of the optimal policy (max, J (7)) is known, by an application of the doubling trick. However,
developing truly parameter-free algorithms is an interesting direction.

Finally, the problem of learning in the ExoMDP model is related to the notion of out-of-distribution
generalization and learning in the presence of acausal features (Peters et al., 2016; Arjovsky et al.,
2019; Kim et al., 2019; Wald et al., 2021). It would be interesting to explore these connections in
more detail. Beyond these questions, we hope that our techniques will find further use beyond the
tabular setting.
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Organization and Notation
The appendix contains three parts, Part I, Part I, and Part II1.

Part I: Preliminaries. In Part I we provide basic technical results used in our analysis. Appendix A
contains technical lemmas for reinforcement learning (Appendix A.1), concentration inequalities
(Appendix A.2), and basic analysis tools (Appendix A.3). In Appendix A.4, we provide a simple, yet
useful result which shows that the collection .#<, (Z) is a 7-system for any factor set Z with |Z| < k.

In Appendix B we present structural results for the ExoMDP model. We begin by establishing
a negative result (Appendix B.1) which shows that the Bellman rank (Jiang et al., 2017) of for the
ExoMDP model scales with the number of exogenous factors. In Appendix B.2 and Appendix B.3,
we prove key structural results for the ExoMDP model, including a decoupling property (Lemma B.1)
and restriction lemma (Lemma B.2) for occupancy measures, a restriction lemma for endogenous
rewards (Lemma B.7), and a performance difference lemma for endogenous policies (Lemma B.6).

In Appendix C, we present an algorithmic template, AbstractFactorSearch, which forms the basis
for the subroutines in OSSR.

Notation used throughout the main paper and appendix is collected in Table 1.

Part II: Omitted subroutines. In Part I, we describe and analyze subroutines used by OSSR and
ExoRL. Appendix D presents and analyzes the EndoPolicyOptimization subroutine used in OSSR
and ExoPSDP. Appendix E we presents and analyzes the EndoFactorSelection subroutine used in
OSSR. Finally, Appendix F presents and analyzes ExoPSDP algorithm, which is used by ExoRL.

Part III: Additional details and proofs for main results. In Part III, we present our main results
and their proofs. In Appendix G, we present and analyze the full version of the OSSR algorithm,
and in Appendix H, we combine the results for OSSR and ExoPSDP to establish the main sample
complexity bound for ExoRL.
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Notation Meaning

7 an ordered set of factors (a set of distinct elements from [d]).
I, (T) {7 Cld:T2L.|7| < k}.

S (T) {(7Cld:J2L17| =k}

I<k; {J C[d]:|J| <k}, orequivalently, S<j = I, (D).

P {J C[d] : |T| = k}, or equivalently, .7, = .7, (@).

II[7] the set of policies that depend only on the factors specified in Z.
II[.7] the union of the set of policies Uz¢ #II[Z].

T, the set of endogenous factors.

AN the set of exogenous factors.

S[Z] the set of states induced by the factors in Z.

s[Z] the state s restricted to the set of factors Z.

VI value of a policy m measured with respect to an initial distribution.
Vi (s) value of a policy m measured from state s at timestep h

Vi Vi (1) = Br [, ).

QF (s, a) @-function for a policy 7 measured from state s at timestep h.
dp, (s[Z]; ) shorthand for P (s, [Z] = s[Z]).

dn(s[Z] | :[T'] = s[Z'); 7)
1 Ot T2

Ten

Iex

shorthand for P™ (s, [Z] = s[Z] | s¢[Z'] = s[Z']).

Policy that executes 71 until step ¢ — 1 and executes w2 from then on.
For a set of factors Z, Zep, := Z N Z,.

For a set of factors Z, Zoy :=Z N ZS.

Table 1: Summary of notation.
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Part 1
Preliminaries

Appendix A. Supporting Lemmas

A.1l. Reinforcement Learning

Lemma A.1 (Performance difference lemma (Kakade and Langford (2002), Lemma 6.1)). Consider
a fixed MDP M = (S, A, T, R, H, p). For any pair of policies , 7’ € Tlxs,

H
J(r) = J(7') = Ex | Y QF (se,me(s¢)) — QF (s1,71(50))
t=1

Lemma A.2 (Density ratio bound for policy cover). Let ¥ be an endogenous e-approximate policy
cover for timestep t and p¥ := Unf (W). Then, for any s[L,] € S [L,] such that max cr gz, de(8[Zi] 5 ™) >
2¢, it holds that

di(s[Z.] ; ™)

max EEANL LAY 2sk
WGHNs[I*] dt(S[I*],N(t)) =

Proof of Lemma A.2. Fix s[Z,] € S[Z,]. Since V is an endogenous e-approximate policy cover,
there exists ¢z,) € ¥ such that

d ) < d : . 5
6T < (L) + e ®
Thus, we have that

di(s[T);m) (a) ok di(s[Z.]; )
max —————* = 58% max
mellys(Z.] di(s[Zd; ) rellns(Z] Dz, lesiz,] G (S[Z; sz,
(;) gk dt(s[z*]ﬂr)

retiys(L] di(s[T]; oz, )
© or_ MaXnernygiz,) d(s[L]; )

maXﬂ'EHNs[I*] dt(S[I*];ﬂ-) —€

Here, (a) holds because ;") = Unf (¥), (b) holds because d;(s[Z.]; ¢s(7,1) > 0 for all ¢y (7,) €,
and (c) holds by Eq. (5). Finally, since z/(x — €) < 2 for = > 2¢, we conclude the proof. O

A.2. Probability

Lemma A.3 (Bernstein’s Inequality (e.g., Boucheron et al. (2013))). Let X1, .., Xy be a sequence
of i.i.d. random variables with E [X;] = p, E[(X; — u)z] = 02, and | X; — p| < C almost surely.
Then for all § € (0,1),

1
N

)

202 log (%) N C'log (%)

P <
N N -

(Xi — )
1

N
>
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Lemma A.4 (Union bound for sequences). Let {Qt}?zl be a sequence of events. If P(G; |
NG Gy) > 1 =6 forallt € [h), then P(NP_,G;) > 1 — hd.

Proof of Lemma A.4. We prove the claim by induction. The base case h = 1 holds by assumption.
Now, suppose the claim holds for some b’ < h:

P(NY.,G,) > 1 — K.
By Bayes’ rule, we have that

P(ﬁif{lgt)

= P(Guy1 | N2 G0)P(NL1Gr)
(a) ’

> P(Ghy1 | Mi21Gr) (1 — h'6)
() ,

> (1-10)(1—Hé)

>1— (k' +1)4,

where (a) holds by the induction hypothesis and (b) holds by assumption of the lemma. This proves
the induction step and concludes the proof. O

A.2.1. CONCENTRATION FOR OCCUPANCY MEASURES
Definition A.1 (e-approximate occupancy measure collection). Let D= {c?h («;m)|me H}, be a

set of occupancy measures for timestep h. We say that D is e-approximate with respect to (11, ., h)
ifforallm € 11,7 € ¥ and s [I] € S [Z] it holds that

d (sn|Z] = s[T] ; 7) —dp (sn[Z] = s[T] ; 71')‘ <e

In the following lemma, we bound the sample complexity required to compute a set of e-
approximate occupancy measures with respect to (o ITo W, .#, h), where p is a fixed policy, IT is
a set of 1-step policies, and U is a set of non-stationary policies. The proof follows from a simple
application of Bernstein’s inequality and a union bound.

Lemma A.5 (Sample complexity for e-approximate occupancy measures). Lett,h € Nwitht < h
be given. Fix a mixture policy p € Il i, a collection I' C 11 of I-step policies, a set ¥ C Ilns, and
a collection of factors 7. Assume the following bounds hold:

1. || < Sk,

2. Tl<o (dkAS’“).

3. 171 <O (d).

4. ForanyT € .7 it holds that |S [T]| < S*.

Consider the dataset Zt{\; = {(St,n, At Yns Sh,n)}nNz1 generated by the following process:
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* Execute (1 := Unf(U®) up to layer t (resulting in state s p,).
* Sample action a;, ~ Unf(A) and play it, transitioning to s;41 , in the process.
o Sample 1T ~ Unf(W5M) and execute it from layers t + 1 to h (resulting in Shn)-

Define a collection of empirical occupancies

~

D= {&\h (-3 mormory M) [ e T, € ‘P},

where d), (5 pop m™opq YN is given by (see also Line 5 in Algorithm 8)

N (t+1,h) t+1,h
-~ 1 l{atn:ﬂ'(&fn), n :¢<+’),Shn::§}
dp(s; popmopyy Py = — : 7 : . (6)
P (LA - (1/19])
AS%klog(M)
Then, whenever N = €} 6—2‘5 trajectories, with probability at least 1 — ¢ it holds that

D is e-approximate with respect to (j1 o4 I' oy U, .7 h).

Proof of Lemma A.5. Denote p as the policy that generates the data th\g. Fixmel,y eV ,Iec
S, s|Z] € S[Z]. It holds that

dn(s[Z] ; pormop1 V) —dp(s[Z] ; pop mopy1 V)
@ Z C/1\}1(5; O T Op41 1/J)—dh(5; O T O41 w)

L Yo = sun) Yo = Yosin D =T} 0
Z (1/‘_/4‘)(1/’\1/’) dh( [I] 5 MOt t+1 1/1)

N
o (X (0,50 2]) — (s (2] 5 o o1 )

where
U = wlsun)s tn = G500 [1] = 5 [1])
Xn (s [1)) = (/1A (/1))

Note that (a) holds by definition: both c/i\h(s [Z] ; pormorr1v) and dp(s[Z] 5 poy mopy1 ) are
given by marginalizing all state factors in Z°. Observe that the estimator X, is unbiased and bounded
almost surely:

Eo[Xn (w0, s [Z]))] = dn(s[Z] 3 pormorrap), and0 < Xy (w9, s[Z]) < AP (D)
As a result, we can control the quality of approximation of c/l\h(s [Z] ; pormosy 1)) using Bernstein’s

inequality (Lemma A.3). First, observe that the variance of each term in the sum can be bounded as
follows:

0% =B, [(Xy (7,9, 8 [Z]) — dn(s[Z] ; por T o1 )]
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Y E,[X, (7,9, 5 [Z])’]

(b)
< A|Y|E,y[X, (7,9, s[T])]

D AN dn(s (2] 5 povm o )

< A|V. ®

Here (a) holds since dp,(s[Z] ; por morr1 ¢0) > 0, (b) holds since 0 < X, (m, 4, s[Z]) < A|¥|,
and (c) holds by Eq. (7). As a result, using Bernstein’s inequality, we have that for any fixed
mel, eV, Te 7 s|[Z] e S|[Z], with probability at least 1 — 9,

‘Jh(s [Z] 5 por morr1 ) — dp(s[Z] 5 por m o1 1))

(

o

) o2 log (%) N Al¥|log (%)

© N N

IN

(b) A|¥|log (%) A|¥|log (%)
0 N * N ’

where (a) holds byLemma A.3 and (b) holds by Eq. (8). Setting N = © (W) and using
that €2 < ¢ for € € (0, 1), we find that

~

dp(s[Z] 3 pormorp1 ¥) —dp(s[I] 5 por mopn ?Z))‘ <O(e+€) <e

Finally, taking a union bound over all 7 € I',¢p € ¥, 7 € .#, s [Z] € S[Z] and using assumptions
(1) — (4), we conclude the proof. O

A.3. Analysis

The following elementary result shows that if two functions f, f + & = R are point-wise close, any
approximate optimizer for f is an approximate optimizer for f.

Lemma A.6. Let X be a compact set, and let f, f: X — R be such that
1F = flloe 3= mass| Fla) = 7(@)] < e

Then, for any € > 0, the following results hold:

~ ~

1. Ifmaxgey f(x) > mingey f(z) + €, then max,cy f(x) > mingey f(x) + € — 2e.

~ ~

2. Ifmaxzey f(z) < mingey f(x) + €, then maxey f(x) < mingey f(z) + € + 2e

~ ~

3. Forany T € X, ifmaxgeyx f(x) > f(T) + €, then maxgex f(x) > f(ZT) + € — 2e

~ ~

>
4. Forany € X, if maxzex f(2) < f(Z) + €, then maxgex f(x) < f(Z) + € + 2e
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Proof of Lemma A.6. Denote the maximizer and minimizer of f by

Tnin, f i= arg ;rg)r(l f(x), ZTmaxf = arg max f(z),

and denote the maximizer and minimizer of f by

T in F —arggg}f( x), s f —argmeaxf( x).

Note that these points exist by compactness of X.
Observe that the following relations hold by the assumption that || f — f||oc < €:

~

ggf( 2) = f(@ oy ) < f(@a ) +€ < max f(z) + ¢ ©)
min f(x) = F(@,, 1) > F(@,,7) — € > min f(@) —c, (10)
max F(@) > F(@max.s) > F(Tmax.f) — € = max f(z) — ¢, (1D
min f(2) < J(@win,g) < J(@min,g) + € = min f(2) + (12)

Proof of the first claim. Combining relations Eq. (9), Eq. (10) and rearranging, we have

rglgag%(f( )>gé1nf( r)+e = Ig:cnea/%(f( )>£1é1nf( z) + € — 2.

Proof of the second claim. Combining relations Eq. (11), Eq. (12) and rearranging, we have

rg?ea/%(f( )<gé1nf( )+ = Igleaxf( )<£Ié1nf( z) + € + 2.

Proof of the third claim. By Eq. (9) and the assumption that || f — ﬂ loo < €, we have

~

I;lea/%(f() (Z)+ ¢ :>1;1€axf()>f(fi)+6’—26.

Proof of the fourth claim. By Eq. (11) and the assumption that || f — ]?HOO < €, we have

~ ~

I;lea/%{f() (Z)+ ¢ :>I;l€axf() f(@) + € + 2e.

Lemma A.7 (Equivalence of Maximizers for Scaled Positive Functions). Let X, ), and A be finite
sets. Let f : X x A — Rand g : Y — R, and let P be a probability measure over X x ). Let
Iy xy and Iy be the sets of all mappings from X x Y to A and X to A, respectively. Then,

L By [f(2,m(@,y))g(y)] = max Beyrp [f (@, ()9 (y)]
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Proof of Lemma A.7. By the skolemization lemma (Lemma A.9), we can exchange maximization
and expectation by writing

ﬂgllgnyx,yw [f(z,7(2,9))9(y)] = Esyop |max (f(z,a)g(y))| - (13)

Let 77} € ITy be defined via
73 (z) € max f(z,a).
a

Observe that for any z,y € X x ) it holds that

max (f(z, a)g(y)) 2 g(y) max f(z,a) = g(v)f(x, 7)), (14)

a

where (a) holds because g(y) > 0. Plugging Eq. (14) back into Eq. (13) we find that

(b)

(max Boyerp [f(7m(@,9))9(v)] Y E, e [f(2, 752))g(y)] < max By yp [f (2, 7(2)g(y)],
(15)

where (a) holds by Eq. (14), and (b) holds since 7} € ILy. Finally, observe that we trivially have

max E:v,yw[? [f(xa 77(51"7 y))g(y)] > max Ea:,yw]P’ [f(l‘, W(m))g(y)] ) (16)
FEHXQ} WEHX
since Iy C Iy y. Combining Eq. (15) and Eq. (16) yields the result. ]

Lemma A.8. Let k, k1, ko € N satisfying 1 < ko < k1 — 1 < k be given. Then, for all € > 0,
(L4 1/k)" et ¢/3k < (1+1/k)"F2e.
This further implies that (14 1/k)* ™" ce + ¢/3k < (1 + 1/k)* %2 ce for all ¢ > 1.
Proof of Lemma A.8. We prove the result by explicitly bounding the difference:
(1+1/k) ™ M ete/3k— (1+1/k)FF2e= ((1 +1/k)k2k 1) (14 1/k) 2 e 4 ¢/3k

2 ((1 + 1K) - 1) (1+1/k)"7 e 4 ¢/3k
= —(1+1/k) 2 e/(1+ k) +¢/3k

(b)
< —¢/(1+k) +¢/3k.

—

Here, relation (a) holds since k2 — k1 < —1 and (1 + 1/k) > 1, and relation (b) holds since
k — ko > 1 which implies that (1 + 1/k)" " > 1. Observe that 3k > 1 + k for k > 1 which
implies that

—€e/(1+k)+¢€¢/3k<0

for ¢ > 0. Thus, under the assumptions of the lemma, we have that (1 + 1/k)" " ¢ 4+ ¢/3k —
(14 1/k)** ¢ < 0, which implies that

(14 1/k)" ™M et e/3k < (1+1/k)F2 e
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The following result is standard, so we omit the proof.
Lemma A.9 (Skolemization). Let S and A be finite sets and 11 be the set of mappings from S to A.
Then for any function f : S x A — R, max e E[f(s,7(s))] = E[max, f(s,a)].
Ad. Iy (T)is a m-System

We now prove that .#<j (Z) is a m-system (that is, a set system that is closed under intersection).
Importantly, this implies that if Z, € Y<j, (Z), then forany Z € S« (Z), Z, N T := Len € I<i, (I).
This fact is repeatedly being in the design and analysis of OSSR in Section 3.3.

Lemma A.10 (J<;, (Z) is a 7w system). Forany L € <y, I<, (L) is a m-system:
1. I<y, (T) is non-empty.
2. ForanyT,,Ty € I<j (L), we have T; N1y € I<y, (1).

Proof of Lemma A.10. Since Z € .#<j, we have |Z| < k. Furthermore, it trivially holds that
Z C 7. Thus, T € F<i, (Z), which implies that <}, (Z) is non-empty.

We now prove the second claim. By definition, every J € < (Z) has Z C 7. Thus, for any
11,15 € fgk (I),

ITCIinNiD. 17

Furthermore, since, both |Z;| < k and |Z3| < k, we have
17, N Ty| < min{|Z4|, |Zs|} < k. (18)
Combining Eq. (17) and Eq. (18) implies that Z; N7y € Y<y, (T). ]

Appendix B. Structural Results for ExoMDPs
B.1. Bellman Rank for the ExoMDP Setting

In this section we show that in general, the ExoMDP setting does not admit low Bellman rank (Jiang
et al., 2017), which is a standard structural complexity measure that enables tractable reinforcement
learning in large state spaces. We expect that similar arguments apply for the related complexity
measures (Jin et al., 2021; Du et al., 2021) and other variations. We note that Efroni et al. (2021b)
showed that the more general Exogenous Block MDP model does not admit low Bellman rank. Here,
we show that the same conclusion holds for the specialized ExoMDP model.

Recall that Bellman rank is a complexity measure that depends on the underlying MDP and on
a class of action-value functions F used to approximate Q*. For a policy 7, denote the average
Bellman error of function f € F by

En(m, [) = Bsyomapmrs [f (Shyan) — 7 — f(Sha1, T (Sny1)] -

With IIF = {7y : f € F} we define &(lr, F) = {E(T, [)}ren, ser as the matrix of
Bellman residuals indexed by policies and value functions. The Bellman rank is defined as
maxy, rank (&, (I £, F)).
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Proposition B.1. For every d = 2 for i € N, there exists (i) an ExoMDP with S = 3, A = 2,
H = 2, d exogenous factors and 1 endogenous factor, and (ii) a function class F containing of d
functions, one of which is Q* and the rest of which induce policies that are 1/8 sub-optimal, such
that such that the Bellman rank is at least d — 1.

Proof. We construct a ExoMDP with H = 2, A = {1, 2} (so that A = 2), a single endogenous
factor with values in {1, 2, 3}, and d binary exogenous factors with values in {0, 1}.

Let e; € R? denote the i*® standard basis element. We take the first factor to be endogenous, and
construct the initial distribution, transition dynamics, and rewards as follows:

o di = Unif({(1, &) }ie(a)-
 T(2,6) | (1e),1) = 1, and T((3, 1) | (1,€:),2) = 1.
e R((2,¢1),-) = 1/2, and R((3, ), ) = 3/4.

There is only a single, terminal action at states (2, ¢;), (3, e;), which we suppress from the notation.
It is straightforward to verify that this is an ExoMDP. Note that the optimal policy takes action 2 at
the initial state, and we have V* = 3/4.

We first construct the class F. Since d is a power of 2, there exist subsets A1, ..., Ag_1 C [d]
such that:*

Vjeld—1]:|A;| =d/2, Vji#keld—1]:]A;N A =d/4.
We define F = {fo, f1,..., fa—1}, with fo = Q* and each f; associated with subset A; as follows:
f]((1761)72) :3/47 f]((37el)>):3/4

Observe that since there is no reward, each function has zero Bellman error at the first timestep (that
is, &1(my,, f3) =0 Vi, j € {0,...,d —1}). On the other hand for j, k € [d — 1] we have

d
Ealmsy, fi) = 3 31 € AN (((2.0). ) — 1/2) + 1(0 & A} (B e0). ) — 3/4)
=1
d
= 2> 1€ Al en), )~ 1/2)
=1

d
1 . . =
=3 E {ic Ajn A (1 -1/2) +1{i € A;NA}(0—1/2)
i=1
1
517 =k},
where we have used that |A; N Ag| = |A; N Ag| = d/4 when j # k. This shows that we can embed

a(d—1) x (d — 1) identity matrix in (1L, F), so we have rank(E (Il x, F)) > d — 1. O

3. This can be seen by associating the sets with rows of a Walsh matrix.
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B.2. Structural Results for State Occupancies

In this section we provide structural results concerning the state occupancy measures in the ExoMDP
model. These results refine certain results derived for the more general EX-BMDP model in Efroni
et al. (2021b).

For the first result, we adopt the shorthand

dr (s[Z]) := dy, (s[Z] ; ) := P (sp[Z] = s[Z]).

Lemma B.1 (Decoupling of state occupancy measures). Fix t,h € [H] such that t < h. Let
7 € lINs|Zy] be an endogenous policy and let T be any factor set. Then for any s' [Z] € S [Z] and
s € §,a € A the following claims hold.

Lodi (S'Z] | s = s,a0 = a) = dj (5'[Len] | 5t[Ze] = s[Z.], ar = a)-d (5'[Tex] | se[Z5] = s[Z])-
2. dy (S'[2] | st = s) = dj (5'[Zen] | 56[Z4] = s[T]) - dn (5'[Zex] | 8:[Z5] = s[Z])-
3. For any endogenous mixture policy p € Iyix[Z,| and factor set Z,
A ((T)) = i (5[Ten]) - (5[]
Hence, the random variables (s Zen|, Sh[Zex]) are independent under .
Proof of Lemma B.1. The proof follows a simple backwards induction argument.
Proof of Claims 1 and 2. We prove the two claims by inductionont' = h —1,..,¢
Base case: t' = h— 1. The base case holds as an immediate consequence of the ExoMDP structure.
In more detail, we have the following results.
1. Claim 1.
dy (sl[I] | sh—1=s,ap-1 = a)
= T(s'Z] | s,a)
s'[Z¢)eS[Z¢)

~ ¥ S T ST T | ()

8' [T\ Zen] €S[Ti\Len] 8' [T\ Tex] €S[T{\ Tex]

= > T(s'|L] | s|Z.], a) > T(s'[Z3] | s[Z])

S[I* \Zen] ES[I* \Zen] S [Zi \Zex} GS [IS \Iex}
= dj, ('[Zen] | sn-1[L] = s[L),an1 = a) dp (5'[Zex] | su—1[L] = s[Z]) . (19)
2. Claim 2.

d’r('[ ]| sh— 123)
Zd” 1] | sp-1 = s,an— 1—a)7rh 1(a | s[Z.])

acA

Zd” Ten) | sn-1[L] = [T, an—1 = a) d (s'[Zex] | sn-1[Z5] = s[Z7]) mr-1(a | s[Z.])
acA
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= dp, (5 [Tex] | sn—1[Z5] = s[Z]) D dfy (8
acA

dp (5 [Zex] | sn1[Z] = s[L]) df, (5'[Zen] | sn—1[Zi] = s[Z.]) -

Ten ‘ Sh— 1[2] = S[I*Lah*l = G) thl(a ‘ S [I*])
(©

Here (a) holds by Bayes’ rule and because = € II[Z,] is endogenous policy, (b) holds by Eq.
(19), and (c) holds by Bayes’ rule and the law of total probability.

Induction step Fix t' < h — 1 and assume the induction hypothesis holds for ¢’ + 1.

1. Claim 1.

di (s'|Z Hst/:s ay = a)

= Zdﬂ I | sp41 = 3) P(sy41 =5 sy = s,ap = a)
5eS

@S a7 ()| s = 5) TGIL | ST, @) TGIZE] | Z5))

seS

O S @ (5 Ten] | 51T = SIT) TGIL | ST, )

E[I*]GS[ *}

x> dn (8T | s [Z) = S[TS]) TGIT] | s[Z9))

slzgles(zg]
= dj, (s'[Zen] | sv[L] = 5[], ap = a) dy (s'[Zex] | s [Z] = s[L7]) (20)
where (a) holds by the ExoMDP model assumption (Section 2), and (b) holds by the induction
hypothesis.
2. Claim 2.

dﬂ(/[ ]|3t’:3)
O S dr (2] | s = s,a0 = a) me(a | s [Z)

acA

Zdﬂ- Len ‘ St’[ *] = 3[ *] ay = a) dh( [ eX] | St’[Ii] = S[Ii]) Wt’(a ‘ S[ *])
acA
= dy, (s'[Zex] | s¢[Z5) = s[Z5]) ) df, (s

ZLen | St’[ ] = S[I*Lat’ = CL) 7Tt’(a ’ S [I*D
acA

—

©)

Dy (L] | $00Z5] = SIZS]) I (' [Ten] | s0/[Z] = S[Z.]) -

Here (a) holds by Bayes’ rule and because 7 € II[Z,] is endogenous policy, (b) holds by Eq.
(20), and (c) holds by Bayes’ rule and law of total probability.

This proves the induction step and both claims.
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Proof of Claim 3. We first prove the claim holds for 7 € IIng[Z,]. That is, for any 7 € IIns[Z],
factor set Z and s[Z], we have

dp (s[Z]) = dj,(s[Zen]) - dn(s[Zex]) 1)
This yields the result, since for o € Iyix[Z,.], Eq. (21) implies that

h
= By [df, (8 Zen]) - dn(s'[Zex])]
= Erropuld), (sZen))ldn (s[Zex]) = di(s[Zen]) - dn(s[Zex])-

We now prove Eq. (21). Fix 7 € IIxg[Z,], and observe that

(a) T
= ES1Nd1 [dh (S | 51)]

g, g, (@ ST | s1[L] = s[L]) df (s[Z9] | 1[22] = s[Z5])]

D By poay [ (SIZ] | $1(L] = ST By zgyma, 145 (SIZS) | 51(Z5] = S[Z3))

= dp (s [T])dn(s [Z7]). (22)
Relation (a) holds by the tower property, and relation (b) holds by the second claim of the lemma,
because 7 is an endogenous policy. Relation (c) holds because s1[Z,] and s1[Z¢] are independent (by

the ExoMDP model assumption, we have d(s) = d1(s[Z,])d1(s[Z{])).
The relation in Eq. (22) now implies the result:

) I Y ST dis)

8[Zu\Zen] €S[Ti\Ten] $[T¢\Tex] €S[1\Zex]

Z Z dp, (s [Z.])dn (s [Z5])

8[Z6\Zen]€S[Ts\Ten] s[T5\Zex| €S[T\ Zex]

_ S dr (s [Z.) > dn (s [Z])

S[I* \Ien] GS[Z* \Ien] S[If \Iex} ES[IS \Iex]
= d} (8" [Zen))dn (8" [ Zex]) s
where (a) holds by the law of total probability and (b) holds by Eq. (22). n

dj,(s)

=

®

Lemma B.2 (Restriction lemma). Fix h,t € [H] where t < h — 1. Let u € Ilnix[Z,] and
p € IINs[Z,] be endogenous policies. Let J and I be two factor sets. Then, for all s [I] € S [Z] it
holds that

d AR = d AR .
ngrﬁ?;} h(s[Z] ; por o1 p) Welﬁﬁ;in] h(s[Z] 5 pormor p)

Let us briefly sketch the proof. To begin, we marginalize over the factor set 7€ := [d] \ J at
layer ¢t. We then show that if 4 and p are endogenous policies, then for all 7 € IT and s [ | € S[Z],

dp (s [Z] 5 pormoryr p) = Bgyndy(sig); m) [ (8t [Ten] 7w (56 [T]))3 (st [Tex])] (23)
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where both f and g are maps to R;. We observe that the policy
(s [Jen]) € argmax f(s [Ten] , 7w (s [T]))
a

also maximizes Eq. (23). The result follows by observing that 7 € [ Jen]-
Proof of Lemma B.2. Fix s[Z] € S [Z]. The following relations hold.

dn (s[Z] ; pormort1 p)

()

= Egg)ndi(- s 1) [Bsigelmdy (e[ )=s17] s 1) [dn (S [Z] | s¢ = 55 ppop mops1 p)]]

(b)

= Eggjmde(- 5 ) [Bsige)md ClselT)=s17] s 1) [0 (s [Z] | st = 55 progmorp1 p)]] s (24)

where (a) holds by the tower property, and (b) holds by the Markov assumption of the dynamics:
conditioning on the full state s at timestep ¢, the future is independent of the history.

(%) :=dn (s[Z] | st = s; pormor1 p),
(5) := B 7ejmdy (Js:[T)=517] 5 ) [dn (S[Z] | s = s 5 prog morgq p)].

Analysis of term (x). Let € II[J]. Fix s € S at the ' timestep, and observe that a = 7(s [J])
is also fixed, since the policy 7 is a deterministic function of s [7] .

di (s[Z) | 50 = 53 1oy 7 o041 p)

@dh(s[IHSt:Saat:W(S[jD ; p)

Y ) (s [Ten] | $t[L] = [T a0 = 7 ([T) 5 p) -l (s [T | [ZS) = S[ZS]). (25)

=:f(se[Z)m(s[T))) =:g(s¢[Z5])

Relation (a) holds by the Markov property for the MDP, and relation (b) holds by the first statement
of Lemma B.1, which shows the the endogenous and exogenous state factors are decoupled; note
that the assumptions of Lemma B.1 hold because p is endogenous policy and a = 7 (s[J]) is fixed.
In addition, both f(-) and g(-) are mappings to R .

Analysis of term (xx). We consider term (xx) and analyze it by marginalizing over the state factors
not contained in s[J]. Observe that d; (s[J¢] | s¢ [J]| = s[J] ; p) also factorizes between the
endogenous and exogenous factors due to decoupling lemma (Lemma B.1, Claim 3):

dy (s[T°] | s [T = s[T] 5 )
= dt (S[I* \ u7en] ’ St [u7en] =S [u7en] ) ,UJ) dt (If \ Tex | St [jex] =S [jex]) . (26)

Hence, we have

Eg[7e)mds ([se[T]=s[7] 5 ) [dn (S [Z] | 8t = 85 por 7 ory1 p)]
(a‘) r — C
= Egigelmds ([se[T1=s(7] : ) LF (8 (L], 7 (s [T])g (s [Z5])]
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(b) r — C
= Eyz,\ Jonlmds ([t [Tonl=s[Ten] : 1) LT (S TT] 5 T (8 [TD))] B\ Fumd (152 [ Ton]=s( 7)) [0(5 [ZED)],

=:f(8[Ten]m(s[T)) =:g(s[Tex])

(27)
where (a) holds by the calculation of term (%) in Eq. (25), and (b) holds by the decoupling of the
occupancy measure d; (s[J°] | s¢ [T] = s[T] ; w)in Eq. (26).

Combining the results. Plugging the expression in Eq. (27) back into Eq. (24) yields

dp (3 [I} 3 Ot T Oq1 /0) = Es[J}wdt(- ) [f(st [jen] y T (St [j}))g(st [jex])] . (28)

We conclude the proof by invoking Lemma A.7, which gives

o d (8 [7] < prormoren p) @ max Bz (65 1enl 7 (3 (71)) (s (o))

= 1Imax Es[ﬂth(. ) [(f(s [u7en] , T (5 [%n]))g(s [jex]))]

TFGH[Jen}

—~
=

—~

C
= max dp(s|Z]; pormo .
wen[}in} h( [ ] O T Opqq P)

N2

Relations (a) and (c) hold by Eq. (28). Relation (b) holds by invoking Lemma A.7 with X =
S[jen]’ y =S [\7ex] 7X X y - S[j]’ f(x,a) = f(s[tjenLa)a g(y) = g(s[\yex])a HXXJ) - H[j]
and ILy = II[Jen]. O

The result is proven as a consequence of the restriction lemma (Lemma B.2).

Lemma B.3 (Existence of endogenous policy cover). Fix h,t € [H|witht < h—1. Let ji € nix[Z,]
and p € TIns|Z,] be endogenous policies. Let T be a factor set and . be a collection of factor sets
withZ, € .. Then forall s [I] € S [Z],

dp (s[Z] ; = dpn (s [Z] ; .
ﬂglﬁ%[?}] h(s[Z] ; por ot p) Wlelha[x*} h(s[Z] 5 pormor p)

Proof of Lemma B.3. Forall 7 = Jep U Jex € ¥ and s [Z] € S [Z], we have

(a)

d 7] ; = d 7] ;
o dh (s[Z] 5 potm ot p) Jnax (s[Z] 5 pot m ot p)
(b)
< max dn (s[Z] ; pormort1 p), (29)

where (a) holds by Lemma B.2, and (b) holds because I1[7.,] C II[Z,] (since Jen C Z,). Since Eq.
(29) holds for all 7 € .#, we conclude that

ﬂrenna[?}] dp (s[Z] 5 pormorr1 p) < Trlerha[x*] dp (s[Z] ; pormor1 p). (30)

On the other hand, since I1[Z,] C II[.#] it trivially holds that

nax dp (s[Z] 5 pormor1 p) > max dp (s[Z] 5 pormory1 p). (31)
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Combining Eq. (30) and Eq. (31) yields the result. O

Consider the problem of finding a policy 7 that maximizes

dn (s[Z] 5 potmory1 p), (32)

where both p and p are endogenous policies. Our next result (Lemma B.4) shows that if 7 is an
endogenous policy that is approximately optimal for reaching s [Z,] in the sense that

max dp (8 [Zen] 5 poymopp1 p) < dp (S [Zen] 5 p 0t T o1 p) + €, (33)

then it is also approximately optimal for Eq. (32), in the sense that

Igll%);}dh(s[l] s ppormorr1 p) < dp (S[Z] 5 por T o p) + €

Lemma B.4 (Optimizing for endogenous factors is sufficient). Fix h,t € [H] witht < h — 1. Let
i € Iyix, © € Il and p € TINg be given. Let T be a factor set and ¥ be a collection of factor sets
such that T, € .. Fix s|I] € S|Z] and assume that:

(A1) p,pand T are endogenous .
(A2) 7 is approximately optimal for s [Ley|:

max dp, (5 [Zen] 5 pros mopy1 p) < dp (8 [Len) 3 o T og1 p) + e
well[.7]

Then

gll?[)}}dh(sm s pormorty p) <dp(s[I]; ot o1 p) +e.

Proof of Lemma B.4. By assumption (A1), x and p are endogenous policies, so Lemma B.3 yields

wrenr?[.);] dp (s[Z] 5 popmorr1 p) = ﬂre%a[%c*] dp (s[Z] ; pormorr1 p). (34)

Next, we observe that the following relations hold

max_dy (s[Z] ; prog 7011 p) ( max dp, (s [Zen] ; p10¢ 70111 p)> dp (s [Zex])
mell[Z,] mell[Zy]

(b)
< dp (8 [Zen] 5 pot T ory1 p)dp (s[ZTex]) + €

Dy (5 [Ten] 5 [Texd 3 102 Forp1 p) + €

=dp (s[I] ; poyTopp1 p) + e (35)
Relation (a) holds by Lemma B.1, as p o; m o441 p is an endogenous policy. Relation (b) holds
by assumption (A2) and because dy, (s [Zex]) < 1. Relation (c) holds by Lemma B.1; note that

assumptions of the lemma are satisfied because p o; T 0441 p is endogenous. Combining Eq. (34)
and Eq. (35) concludes the proof. O
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B.3. Structural Results for Value Functions

In this section we provide a structural results concerning the values functions for endogenous
policies in the ExoMDP model. These results leverage the assumption that the rewards depend
only on endogenous components. We repeatedly invoke the notion of an endogenous MDP
Men = (S[Z.], A, Ten, Ren, H, d1 en), Which corresponds to the restriction of an ExoMDP M to
the endogenous component of the state space. Note that only endogenous policies are well-defined in
the endogenous MDP. We also denote the state-action and state value functions of an endogenous
policy measured in Me,, as QF .. (s[Z.],a), and VT (s[Z.]).

Our first result is a straightforward extension of Proposition 5 in Efroni et al. (2021b). It shows
that the value function for any endogenous policy in an ExoMDP is an endogenous function in the
sense that it only depends on the endogenous state factors.

Lemma B.5 (Value functions for endogenous policies are endogenous). Let 7 € IIng[Z,] be an
endogenous policy, and assume that the reward function is endogenous. Then, for any t € [H| and
s € S, we have

Vi"(s) = Vien (s[Z4]) and Q7 (s, @) = Qf oy (5[Z4], a),
where V7, and QF ,, are value functions for  in the endogenous MDP Mey, = (SIZ4], A, Ten, Ren, H, d en)-

Proof of Lemma B.5. Let R = {Rh}thl denote the reward function. We prove the result via
induction. The base case t = H holds by the assumption that the reward is endogenous. Next,
assume the claim is correct for ¢ + 1, and let us prove it for ¢. Since R; is endogenous, the inductive
hypothesis yields

Y T (YT SIL] mena GITD)) Vi (ST Y. Ten (S'[Z5] | 8[Z5))
' [T.)€S[T4] s'[I¢]eS[Lg]

= RengGILL mGIL) + Y T ('L | SIL] 741 BIT))) Viewa (S'1Z),  (36)
s/[L.)€S[T)

where (a) holds by the factorization of the transition operator (see Eq. (1)), and (b) holds by

marginalizing the exogenous factors, since > i7cjesize] Ten (s'[Z¢] | s[Z¢]) = 1. Finally, ob-
serve that Eq. (36) is the precisely the value function for 7 in the endogenous MDP M., =
(SIZ4], A, Ten, Ren, H, d1 en), which concludes the proof. O

Lemma B.6 (Performance difference lemma for endogenous policies). Let m, 7' € TNs[Z,] be
endogenous policies. Then

H

J(m) = J(7) = Ex | > QF (stlZ], mi(si[Z]) — QF (se[Z.), mi(se[Z.])

t=1
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Proof of Lemma B.6. For any endogenous policy 7, observe that

J(m) 1= Bty V¥ (51)] 2 By, [V (51 [Z])] 2 B Zndi e VT (51T])] = Jen(m),  (37)

Relation (a) holds by Lemma B.5, since Je, () is the averaged value of V/"(s1) with respect to the
initial endogenous distribution. Relation (b) holds by marginalizing out s;[Z{], since V" (s1[Z,])
does not depend on this quantity. Using (37) and applying the standard performance difference
lemma to the endogenous MDP M., now yields

H
J(m) = J(7') = Jen(7) = Jen(7') = Er !Z QF (si[Z), mi(s:[T))) — QF (sil L], mi(s:[T.]))
t=1

O]

Lemma B.7 (Restriction lemma for endogenous rewards). Fix t < h. Let p € Ilyix[Z.] and
p € IINs[Z,] be endogenous policies. Define

h
Vi (10 mor41 p) = Epoyrorrp [Z w] : (38)

t'=t

Assume that R is an endogenous reward function. Then for any factor set Z, we have

max V, oy T O = max V; o ToO .
. Vin (pog o1 1) Jamax Vi (fog mopy1 1))

To prove this result, we generalize the proof technique used in the restriction lemma for state
occupancy measures (Lemma B.2).
Proof of Lemma B.7. Since i € I1,,ix[Z,] is an endogenous policy, the occupancy measure at the
' timestep factorizes. That is, by the third statement of Lemma B.1, we have that

dy (s[Z] 5 pr) = di (s[Zen] 5 1) di (5[Zex]) -
For each s[Z] € S[Z], the conditional state occupancy measure factorize as well:

de (s[Z°] | se[Z] = s[Z] 5 )
= dy (8[Z \ Zen] | 5t[Zen] = 8[Zen] 5 1) di ([T \ Zex] | 5t[Zex] = 8[Zex]) - (39)

Let Qﬁen be the () function on the endogenous MDP M., = (S[Z,], A, Ten, Ren, b, di cn) When
executing policy p starting from timestep ¢ + 1. We can express the value function as follows:

Vi (ot mort p)
=E,[Q) (s¢[[d]], m¢ (s¢[1)))]
Wg, [QF on (st 7 (se[Z)))]

= Eqigjnds(- ; 1) [Bs{zelmds ([se[z)=s[T] : ) [@bren (S[T:], 72 (s[2]))] ]

(b)
= Eoizjmde(- 5 1) [BslZ\Zun]rode (5t [Ton]=5[Zen] ; 1) [ @b en (SITx], 7t (s[Z1))] ] (40)
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Relation (a) holds by Lemma B.5, since p is an endogenous policy. Relation (b) holds by decoupling
of conditional occupancy measure (Eq. (39)), and because Qf ., (s[Z.], ¢ (s[Z])) does not depend
on state factors in Z¢ \ Zy, which are marginalized out.

To proceed, define

F(8t[Zen], e (S[Z])) 1= Bg{z\ Tun] s (|5 [Ton]=5[Zen] ; 1) | @F en (S[Te), e (s[Z]))].
With this notation, we can rewrite the expression in Eq. (40) as
Vi (por mory1 p) = Bgprymd, (- ; ) Lf (5¢[Zen), me (s[Z]))]. (41)

We now invoke Lemma A.7, which shows that

()
ﬂrggé_} Vi,h (:U Ot T Ot41 P) = ﬂréll%[)%} ES[I]th(~ ;) [f(S[Ien]v W(S[I]))]

= max Egeaimlf (slZen]. 7(s[Z]))]

—~
=

—~

C

© E, o oy [ f(8[Zon], 7(s[T

Lo Baizpedy (- mF (5l Zen], (s {Z]))]
(c) holds by Eq. (41). Relation (b) holds by invoking Lemma A.7, with
STex], & x Y = S[I], f(z,a) = f(s[Ten]; a), 9(y) = 1, and Iy xy = TI[Z]
O

~

Relations (a) and
X = S[Ien]a y =
and [Ty = II[Zey].

Appendix C. Noise-Tolerant Search over Endogenous Factors: Algorithmic
Template

In this section we provide a general template for designing error-tolerant algorithms that search over
endogenous factors sets. This template is used in both EndoPolicyOptimization; , and EndoFactorSelection ,,
(subroutines of OSSR). 7 7
Our algorithm design template, AbstractFactorSearch is presented in Algorithm 4. Let us describe
the motivation. Let Z be an abstract “dataset” (typically, a collection of trajectories), let € > 0 be
a precision parameter, and let Condition(Z,¢,7Z) € {true, false} be an abstract function defined
over factor sets Z. AbstractFactorSearch addresses the problem of finding an endogenous factor set
7 C T, such that
Condition(Z,C - ¢,7) = true (42)

for a numerical constant C' > 1, assuming that the endogenous factors Z, satisfy the condition
themselves:

Condition(Z,€,Z,) = true. (43)

For example, within EndoPolicyOptimization; ;, Condition(Z,€,7) checks whether policies that
act on the factor set Z lead to e-optimal value for a given reward function (approximated using
trajectories in Z).

AbstractFactorSearch begins with an initial set of endogenous factors Zy C Z,. Naturally, since
Z. € J<i (Ip) and Z, is known to satisfy Eq. (43), a naive approach would be to enumerate over
the collection .#<, (Zp) to find a factor set 7€ F<i (Ip) that satisfies Eq. (42). For example,
considering the following procedure:
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Algorithm 4 AbstractFactorSearch

1: require: abstract dataset Z, precision ¢, initial endogenous factor Zy C Z,.
2. for k' = |Zy|,|Zo| + 1,...,k do
3 Setey = (1+1/k)F e
4: for 7 € .7}, (Io) do
5
6

if Condition(Z, €;/,Z) = true then return 7«7
: return fail.

* Foreach Z € Y, (Iy), check whether Condition(Z, Ce,T) = true.
e If so, return T« T.

It is straightforward to see that this approach returns a factor set 7€ F<i; (Zp) that satisfies Eq. (42),
but the issue is that there is nothing preventing 7 from containing exogenous factors. AbstractFactorSearch
resolves this problem by searching for factors in a bottom-up fashion. The algorithm begins by
searching over factor sets with minimal cardinality (k" = |Zy|), and gradually increases the size until
a factor set satisfying (42) is found.

In more detail, observe that we have

I<k (Do) = Ug’:|10|jk‘ (Zo)
where

fk (I()) = {I/ g [d] ’IO g I/,

7| =k}.

Starting from &’ = |Zy|, AbstractFactorSearch checks whether exists a set of factors Z € .y (Zy)

that satisfies Condition(- - -) with respect to an accuracy parameter ey = (1+ 1/ k:)kikl €; this
choice allows for larger errors for smaller k’. When a set of factors Z satisfies Eq. (42) AbstractFactorSearch
halts and returns this set; otherwise, &’ is increased. For this approach to succeed, we assume that
Condition satisfies the following property.

Assumption C.1. For any set of factors T = Loy U Loy with |Lex| > 1, it holds that
Condition(Z, €7, Z) = true = Condition(Z, €z,,|, Zen) = true. (44)
We now describe three key steps used to prove that this scheme succeeds.

1. AbstractFactorSearch does not return fail. This follows immediately from the assumption that
(43) is satisfied.

2. AbstractFactorSearch returns an endogenous set of factors. Observe that the assumption
T, € I« (Ip) implies that for any Z € I<y, (Zy), Zen := L. N L € I<y, (Ip); this follows
from Lemma A.10. Hence, if Z satisfies Eq. (42), Assumption C.1 implies that Z,, satisfies Eq.
(42) as well. Since AbstractFactorSearch scans .#<, (Zy) in a bottom-up fashion, this means it
must return an endogenous factor set, since it will verify that Z), satisfies Eq. (42) prior to Z.

3. AbstractFactorSearch is near-optimal. Since (1 + 1/k)**e < 3¢ for all & € [k], the factor
set Z returned by AbstractFactorSearch satisfies Condition(Z, 3¢,Z) = true.
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Part I1
Omitted Subroutines

Appendix D. Finding a Near-Optimal Endogenous Policy: EndoPolicyOptimization

Algorithm 5 EndoPolicyOptimization; ; : One-Step Endogenous Policy Optimization

/I Find an endogenous policy 7 € II[.#<}] that approximately maximizes Vi, (1t o¢ T 0441 ), where p € Ilnix
and ¢ € IlIng are fixed policies.
1: require:
* Starting timestep ¢, end timestep h, and target precision € € (0, 1).
* Collection {Vp, (1o mopp1 9)}
e H[ﬂg k]

el Ie] of estimates for V; p, (p oy mopqq 9p) for all

2: for k' =0,1,--- ,kdo /
3 Letey = (1+1/k)f % e
4: for 7 € .7, do
5: Set is_cover = true if
max ‘//\v O¢ T O <max‘7 Oy T O + €pr.
R ih (pormory ) < nax Vin (ogmopp1 ) + €
6: if is_cover = true then return: 7 € argmax 7 XA/t’h (o ™ oppq V).

7: return: fail.

In this section, we introduce and analyze the EndoPoIicyOptimization; 5, algorithm (Algorithm 5),

which is used in the optimization phase of OSSRZ"S (Appendix G) and in ExoPSDP (Appendix F).
In Appendix D.1 we give a high-level description and intuition for the algorithm, and in Appendix D.2
we prove the main theorem regarding its correctness and sample complexity.

D.1. Description of EndoPolicyOptimization.
The goal of EndoPolicyOptimizationy ;, is to return a policy 7 € II[Z] such that:
1. 7 is endogenous in the sense that 7 € II[Z] for some Z C Z,.

2. 7 is near-optimal in the sense that

max Vip(pormop1¥) < Vip(pogmorr1 ) + 0 (e),
ﬂ'EH[jfk]

where V; p, (7) := E [Zi‘,:t rt] for a given reward function R.
EndoPolicyOptimization assumes access to approximate value functions XA/t’h (1 o¢ ™ ogqq 1) that

are e-close to the true value functions V; p, (1 oy m o441 1)). Given these approximate value func-
tions, finding a near-optimal policy is trivial; it suffices to take the empirical maximizer 7 €
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argmaX cry[.s. ] 17;7,1 (11 o¢ T 0441 ¥). However, finding a near-optimal endogenous policy is a more
challenging task. For this, EndoPolicyOptimization applies the abstract endogenous factor search
scheme described in Appendix C (AbstractFactorSearch), which regularizes toward factors with
smaller cardinality.

EndoPoIicyOptimization; ;, splits the set S« as <), = Uﬁ,zofk/, where ¢} is the collection
of factor sets with cardinality exactly k¥’ € [k], and follows the bottom-up search strategy in
AbstractFactorSearch. Beginning from k' = 0, ..., k, the algorithm checks whether there exists
a near-optimal policy in the class II[.#}/]. If such a policy is found, the algorithm returns it, and
otherwise it proceeds to k&’ + 1.

Intuition for correctness. We prove the correctness of the EndoPolicyOptimization; ;, procedure
by following the general template in Appendix C. In particular, we view EndoPolicyOptimization; ;,
as a special case of the AbstractFactorSearch (Algorithm 4) scheme with

Condition(Z,¢,7) = 1 max ‘Z,h (i oy moprq ) < max ‘//\;t,h (mopmop1 ) +€p.
T[Sy nel[Z]

Most the effort in proving the correctness of the algorithm is in showing that this condition satisfies
Assumption C.1. In particular, we need to show that if some 7 € .#< satisfies the condition
in Line 5,

max Vi p (poymor1 1) < max Vip (o mory1 ) + €,
WEH[eySk] ﬂEH[I]

then Z.,, := Z N Z, also satisfies the condition in the sense that

max Vi (pormor1 ) < max Vip (pormorir¢) + €| Zen |
ﬂ'EH[fSk] 7I—GH[IGD]

This can be shown to hold as a consequence of assumptions (A1) and (A2) in Theorem D.1.
Assumption (A1) asserts the following restriction property holds: For any Z,

max V, O T 0441 = max V, 04 T 0411 V) .

I Vin (p o o1 1)) Jax Vin (pog o1 1))
Hence, optimizing over a larger policy class that acts on exogenous factors does not improve the
value. Assumption (A2) asserts that the estimates for Vi (11 o¢ T 0441 1) are uniformly e-close, so
that optimizing with respect to these estimates is sufficient.

Importance of the decoupling property. We emphasize that assumption (A1) is non-trivial. We show
it holds for several choices for the reward function in the ExoMDP (Lemma B.2 and Lemma B.7),
which are used when we invoke the algorithm within OSSR. However, the condition my not hold if
the endogenous and exogenous factors are correlated. In this case, optimizing over exogenous state
factors may improve the value, leading the algorithm to fail.

Formal guarantee for EndoPolicyOptimization. The following result shows that EndoPolicyOptimization; ,
returns a near-optimal endogenous policy.

Theorem D.1 (Correctness of EndoPolicyOptimization; ;). Fix h € [H]| and t € [h]. Let p € Ilyix
and 1y € llng be fixed policies. Assume the following conditions hold:
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(A1) Restriction property: For any set of factors I,

max V; 04 T O = max V4 o, T O .
I Vi (1t og mopy1 1) Jmax Vi (pog mopy1 1))

(A2) Quality of estimation. For all m € II[.7<y],

Vi (1o T op1 ) — ‘7t,h (popmopp1 )| < €/12k.

Then the policy T output by EndoPolicyOptimization; ;, satisfies the following properties:
1. T is endogenous: T € 11 [Z], where T C Z,.

2. T is near-optimal: Max, cniy,] Vin(pormoth) < Vip (moy 7o) + 4de.

D.2. Proof of Theorem D.1

We use the three-step proof recipe described in Appendix C to prove correctness of EndoPolicyOptimization.

Step 1: EndoPolicyOptimization; ; does not return fail. By definition, there exists Z & <k
such that

max Vi p (1opmopr1 ) = max Vip (op mop1 ).
ﬂ'EH[jSk} WEH[Z]

Thus, Line 5 is satisfied, since ¢ > 0.

Step 2: EndoPolicyOptimization; , returns an endogenous policy. Since EndoPolicyOptimization; ,
does not return fail, it returns a policy 7 € II[Z] for some factor set Z. We prove that Z is an endoge-
nous factor set, which implies that 7 is an endogenous policy. We show this by proving the following
claim:

Claim 1. [f7 satisfies the condition in Line 5 (is_cover = true for T), then L, satisfies the condition
as well (is_cover = true for Ley).

Given this claim, it is straightforward to see that EndoPolicyOptimizationy ; returns an endoge-
nous policy. First, observe that forany 7 € Y<, wehave Zo, :=ZNZI, €T € :ﬁgk by Lemma A.10
(since Z, € J<p). If |Zen| < |Z|, then EndoPolicyOptimizations ; verifies that Z., € <}, satis-
fies Line 5 prior to verifying whether Z € <, satisfies the condition. Tt follows that the factor set
returned by the algorithm must be endogenous.

Proof of Claim 1. Assume that 7 contains at least one exogenous factor, so
|Ien| < |I| - L (45)
Suppose that is_cover = true for Z. By construction, it holds that for ky := |Z| < k,

max ‘7t,h (pog mogy1 1) < max ‘7t,h (pog mopr1 ) + gy - (46)
WEH[ﬂSk] WEH[I]

41



EFRONI FOSTER MISRA KRISHNAMURTHY LANGFORD

This statement, which holds for the approximate value 17,5,;1 (1 o4 T 0441 ) implies a similar state-
ment on the true value V; 5, (1t o; ™ 0441 9). Specifically, Eq. (46) together with Lemma A.6 (which
can be applied using assumption (A2)), implies that

max _Vip (1or mopp1 ¥) < max Vip (1or mopg1 ¥) + €, + €/6k
Wen[ﬂgk] TI'GH[I}
(a)

= max Vip (pormop1 1))+ ex, + €/6k, 47)
FEH[Ien]

and (a) holds by the restriction property in assumption (A1).

We now relate the inequality in Eq. (47), which holds for the true values V; 5, (v oy ™ 0441 9),
back to an inequality on the approximate values. Using Lemma A.6 and assumption (A2) on Eq.
(47), we have htat

max ‘/}t,h (pogmopy1 ) < max ‘A/t,h (pog Topy1 V) + ex, +¢€/3k
WGH[]SIC] 7I—GH[Z@T]]

(a) ~
< max Vip (pormop ¥) + €g,y, (48)

TI'GH[Ien]
where (a) holds for all k1, k2 € [k] such that ko < ki — 1, since
n +€/3k = (1+1/k)" et e/3k < (1+1/k)f ™ e:= ¢,

by Lemma A.8. Setting ky = |Zen| < k1 — 1 = |Z] (the cardinality of Z,, is strictly smaller than that
of Z by Eq. (45)) and plugging this value into Eq. (48) yields

max Vip(pogmopp1 ) < max Vip (popmor ¢) + €|Zon|- (49)
ﬂ'EH[fSk] WGH[ZGD]

Hence, 7., also satisfies the conditions in Line 5.
Step 3: EndoPolicyOptimization; , returns a near-optimal policy. When the condition of EndoPolicyOptimization; ,

at Line 5 holds and is_cover = true, the factor set Z satisfies

max Vi (o m o1 ) < max Vi (pog o1 ) + €z
TFEH[]Sk] FEH[I]

th (B ot T o1 ) + €
i (pop T o1 1)) + 3e, (50)

Il
Y,

IN

where the last relation holds because €7 < (1+ 1/ k)" e < 3e. Applying Lemma A.6 with (A2)
then gives

max Vip (popmorp1 ) < Vip (1op T opyr ) + 3e + €/6k .
ﬂGH[ﬂSk] *ﬁ/—“<4
<4e
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Appendix E. Selecting Endogenous Factors with Strong Coverage:
EndoFactorSelection

Algorithm 6 EndoFactorSelection; ,: Simultaneous Policy Cover for all Factors

// Find T such that reaching Z implicitly leads to good coverage for all J € F<(Z¢+™).
1: require:

* Starting timestep ¢ and end timestep h, target precision € € (0, 1).
* Set of endogenous factors Z¢+1" C T,

* Collection of policy sets {I'” [Z]}7¢ ;_, (z(t+1.n)), Where

IOL) = {x% | s[Z] € S[I]}.

Set of (¢t + 1 — h) policies

‘Ij(t+1,h) — {¢§[§£?Lh>] ‘ S[I(t+1,h)] c S[I(H—l,h)]}.

L]

Collection D of approximate occupancy measures for layer h under the sampling process
M(t) 0y T 0441 PHHLR),

// Pick & € T'® [I] opr1 WM that explores T C Z, and sufficiently explores other factors.

2: for k/ = |20 |20+ + 1, .. k do
/
3 Define e = (1 + 1/k)" ¥ 5e.
4: for 7 € .7 (I(“’l’h)) do
/] Test whether reaching states in Z leads to good coverage for all factors J € F<(Z¢T1™),
5: Set sufficient_cover = true if for all 7 € #<;(Z"*"") and for all s[J] € S[T] :
max c?(sj ® o, mo 1) )
N w(s[T]5 p' ormory 1/} S[Z(H+LM)]
7 +1,h)
<dj (S [j} : :U'<t) oy S[jﬂI] Ot41 ’Lﬂ S[Z(H1, h)]) + €, (51)
where 7% s[TNT) € I'O[T NZ]. // Recall 7" sz] ~ aerl%néax] gi;( [(JNI]; omroﬁﬂ/’ 1(1#)1 ;g])
mel[F<y
6: if sufficient_cover = true then
7: I+ 1T
8: return (Z,T"[Z]).
9: return: fail. // Low probability failure event.

In this section, we describe and analyze the EndoFactorSelection; ;, algorithm (Algorithm 6).

EndoFactorSelection; ;, is a subroutine used in the selection phase of OSSRZ"S, and generalizes the
selection phase used in OSSR.Exact, to the setting where only approximate occupancy measures are
available. In Appendix E.1, we give a high-level description EndoFactorSelection; ,, give intuition,
and state the main theorem concerning its performance. Then, in Appendix E.2 we prove this result.
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E.1. Description of EndoFactorSelection

To motivate EndoFactorSelection; ;,, let us first recall the selection phase of OSSR.Exacty, (Line 7 of
Algorithm 2). The selection phase assumes access to a collection of policy sets {T'”[Z]} 7, (z(e+1.m)s

which are calculated in the optimization step. In particular, for each set Z and each s[Z] € S[Z],
W;t[)z € I'[Z] is an endogenous policy that maximizes the probability of reaching s[Z] at layer A in
the Ilollowing sense:

[I] € argmax dj, ( [Z] 5 1™ op 7oty 7/) (1ti>1 h)]>
WEH[VSk]

The selection phase of OSSR.Exacty, find the factor set Z € F<i (T of minimal size such that
forall 7 € I« (ZU+"M) and s[J] € S[T].

L wrim ) © o, 2® 1)
o dp (8L7] P oot Yz, h>]> dp ( [T1s woem g ot Vi 0+, h>]>
(52)

At the end of the selection step, OSSR.Exact;, outputs the tuple (f ,T®[Z]). Since 7 is chosen as the
minimal factor set that satisfies Eq. (52) it can be shown it is an endogenous factors set. Furthermore,
I'®[Z] satisfies condition Eq. (52).

EndoFactorSelection; ;, is similar to OSSR.Exacty,, but only requires access to approximate
state occupancy measures. Analogous to OSSR.Exacty,, the algorithm outputs a tuple (I ,® [f])
where 7 is an endogenous factors set and I'™ [I] ensures good coverage at layer h.However, since
EndoFactorSelection; ;, has only has access to approximate state occupancy measures, the policy set

re [i] returned by the algorithm is only guaranteed to satisfy an approximate version of Eq. (52):

max d, (3 s u oo L) )
el Fey] h [\7] % t t+1¢ S[Z(+1.h)]

<dp (slT]5 100w 2 orn Wi ) +O() (53)

where W(t[)jmf] e T[T,

To ensure find an endogenous factor set 7 such that T [f] satisfies Eq. (53), EndoFactorSelection; ;,
follows the AbstractFactorSearch scheme described in Appendix C. It enumerates the collection of
factor sets A<y, (Z") in a bottom-up fashion—starting from factor sets of minimimal cardinality—
and checks whether each factor set approximately satisfies the optimality condition.

Intuition for correctness. To establish the correctness of EndoFactorSelection; ,, we view the
algorithm as an instance of AbstractFactorSearch with

Condition(Z,¢€,7)

. 1,h)
@ﬁﬁﬁ“GwL“u%ﬂqﬂwmwwﬂ

Sc/l\h (S [J] 5 1@ o, ([) ey t-i-lq/) Z(th)]) + €,

—1 VT € S(T0+M), s[T] € S[T] b,

and recall that W;t[)JmI] € I'W[JNZ] is the output from the optimization step at EndoPolicyOptimization.

The analysis of EndoFactorSeIection;h follow the recipe sketched in Appendix C. Most of our
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efforts are devoted to proving that the condition in Eq. (44) required by AbstractFactorSearch
holds for EndoFactorSelection; ,. In particular, we wish to prove the following claim: If 7 sat-
isfies the condition in Line 5 (sufficient cover = true for I), then I, satisfies the condition
as well (sufficient_cover = true for L.,). To show that the statement is true, we use a key
structural result, Lemma B.4, which generalizes certain structural results used in the analysis of
OSSR.Exact (Proposition 3.1). Let 1 and p be endogenous policies, and consider a fixed state factor
s[Z] € S[Z]. Lemma B.4 asserts that if an endogenous policy 7 [Z..] @pproximately maximizes the
probability of reaching the endogenous part of s[Z], which is given by

dp (S[Icn] » Ot Ts[Tey] Ot+1 p) )

then the policy also approximately maximizes the probability of reaching s[Z], which is given by

dp (s[Z] 5 poy myz,) 0141 p) -

Hence, to approximately maximize the probability of reaching s[Z], it suffices to execute a policy that
approximately maximizes the probability of reaching the endogenous part of the state, s[Ze,]. We use
this observation to show that exogenous factors are redundant in the sense that if sufficient_cover =
true for Z, then sufficient_cover = true for Z; this proves the claim

Formal guarantee for EndoFactorSelection The following result is the main guarantee for
EndoFactorSelection; ,.

Theorem E.1 (Success of EndoFactorSelection ;). Fix h € [H] and t € [h]. Assume the following
conditions hold:

(A1) Endogeneity of arguments. u € I1,ix[Z,] is endogenous, WM contains only endogenous
policies, and TV [T contains only endogenous policies for all T € I<j, (Z++M). In addition,
I(t+1,h) g I*.

(A2) Quality of estimation. D is a collection of €/12k-approximate state occupancy measures with
respect to (p' o I[I<y] o WEHLM g (ZUF1M) "h) (Definition A.1).

(A3) Optimality for I'"[Z]. For any factor setl € I<j, (Z'+*"") and any s[I] € S[Z], the policy

ﬂ';t[)z] € T'® [Z] satisfies the following optimality guarantee:

ﬂgﬂl&ik} dp, (3 [Z] ; p" opm oy wét[;;i)l,h)o <dp <8 [Z] 5 ™ oy W;IE)I] Op11 w?[}b?l,h)]) + 4e.

Then EndoFactorSelection; ;, does not output fail, and the tuple (f , 0 [f]) output by the algorithm
satisfies the following guarantees:

1. TCT,.

2. Forall s[1,] € S[Z,], we have

wgha[é] dp, <s [Z.]; 1 of 7 041 w:[ji@l,hq) —dy, (8 [Z.] ; ™ oy W;t[)f] 041 qp:[;ﬁlm]) < 16k,

where we note that we can write s [L,] = (s [f] , S| Z. \f]) = (s[ZUFM] ) s [T, \ Z¢HEM))
because I““*h),i C 7,.
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E.2. Proof of Theorem E.1

We use the three-step proof strategy described in Appendix C to prove correctness for EndoFactorSelectiony ;..

Step 1: EndoFactorSelection; ;, does not return fail. We show that given assumptions (A1) —
(A3) EndoFactorSelectiony ;, does not return fail. First, observe that T, € ., (Z¢+"), since
Tt C 7, by (A1) and |I | < k by assumption. We prove that EndoFactorSelection; ;, halts for
7 < 7; meaning that 7, satisfies the condition at Line 5 of EndoFactorSelection; .

Fix T € S« (Z¢+") and s[Z] € S[Z]. Let Zon € F<i (Z+17)* be the endogenous compo-

nent of I so that s[Z] = ($[Zen], $[Zex]). Consider the policy ﬂ';t[)Ien} € I'Y[Z.y,]. By assumption

(A3), [I ] is endogenous and satisfies

c (t+1,h)
g (11 0 oo i)

< dh ( [ 61’1] 7 )U/(t) O¢ ﬁ;t[)Ien] OtJrl w;t[—:;zi)Lh)]) + 46- (54)

Eq. (54) shows that TI'(t[) N has near-optimal probability for the endogenous component of S[I] near

optimally (when the rollout policy @/J(t[;t’fl ] is fixed). Combined with the fact that both 7 [Z ,jand
1/1(“’1 " are endogenous (by (A1)), this allows us to apply Lemma B.4, which asserts that 7 Lf[)Ien]
reaches the any state factor s[Z] with Z., C Z near-optimally as well. In particular,
®) (t+1,h)
s i (5120 e mens v )
<dp, (8 1Z] 5 u® o W;t[)Ien] Ot+1 7115[;;1)17,1)]) + 4e. (55)

Now, observe that since D is ¢ /12k-approximate with respect to (II [I<p (U] Ip (ZUFM) [ R)
(cf. (A2)), Eq. (55) and Lemma A.6 imply that

max dy, (s[Z] : pu® o opq M
me[I<] h( s m " Q/JS{I(H’I’M]

<d, (S 7] s p oy m s[z o1 Y [Iit'fl h>]) + Be. (56)
Since Z.,, = 7 N Z,, and since
Be < (14 1/k)F ¥ 5e .= ¢
for all £’ € [k], this implies that the condition at Line 5 of EndoFactorSelection; , is satisfied by Z,.

Step 2: Proof of first claim (Z C Z, is a set of endogenous factors). Since EndoFactorSelection; ,,

does not return fail, it necessarily returns a pair (f ,T® [f}) We now show that 7 is endogenous. To
do so, we prove the following claim.

4. Ten € I<k (") since T, € I (V") and I<p (ZUH")) is a m-system by Lemma A.10.
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Lemma E.1. IfZ € 9, (Z“*") satisfies the condition in Line 5 (sufficient_cover = true for I),
then Loy, satisfies the condition as well (sufficient_cover = true for ZLgy).

Conditioned on Lemma E.1, the result quickly follows. Observe that for any Z € .#<j, (Z¢"")),
we have Zo, € F<i (ZU+M)* Furthermore, if |Zen| > |Z|, then EndoFactorSelection will
check whether Z., satisfies the condition in Line 5 prior to checking whether 7 satisfies it. Thus,
EndoFactorSelection necessarily returns a set of endogenous factors; it remains to prove Lemma E.1.
Proof of Lemma E.1. FixZ € Y« (Z¢"") with Zx # @. Assume that 7 satisfies the conditions
in Line 5. That is, for k1 := |Z| < k, it holds that for all 7 € #<,(Z"""") and all s[J] =
(s[Z],s[T\1]) € S[T],

max dh ( [J]; H(t) Of T Ot41 @Z) [Z(H—l h)})

WEH[]<;€]
< dh (5 (T] Nm Ot 7 [JQI} O¢+1 ¢S[I(t+1 h)]) + €k (57)
where 7' [ JHZ] € I'W[J N Z]. We will show that this implies that Z.,, also satisfies the conditions
in Line 5.

Ten satisfies the conditions in Line 5. Since T satisfies Eq. (57) for all J € F<,(Z"F"), it must
also satisfy the condition for all 7o, € J. Fix J € S<;(Z"*"™). Then for all $[Ten] € S[Ten). we
have

max c?h (sj - 1™ oy opq UM )
ESVEAY eal 5 1 * ¢S[I<t+l’h)]

7 . ) (t+1,h)
< dn (S [Jen] 3 1 01 Ts[TenZ] Ot+1 ws[ﬂtﬂ,h)]) + ek
a

< C/l\h ( [Jen] <t) O T S[Jenﬂfen] Ot+1 w o (1:;1 h)]) + €k (38)

—
N

where (a) follows because Jen N Z = Jen N Zen.

Since (A2) asserts that D is e /12k-approximate with respect to (IT [I<p (T, Iy (08P [ R),
we can relate the inequality above to the analogous inequality for the true occupancies using Lemma A.6.
After multiplying both sides by d}, (s[Jex]) € [0, 1], this yields

dp, (s[Jex]) max dy, <S[Jen} s pV op mopt wi@?ﬂ,mJ

meIl[I<]
<dj (s[jex]) < [jen] ;M Ot [JenﬂIen] Ot+1 @D;t[}(lti)lh)}) + €xy + 6/61{3 (59)
We now manipulate both sides Eq. (58) to relate these quantities to the occupancy measure for s[7].

This is done by appealing to the decoupling property for occupancy measures of endogenous policies
(Appendix B.2). To begin, for the left-hand side of Eq. (59), we have

dp (s[Jex]) max dp (‘SLZm] s Y op T opt ?,Z):[;(léi)l,h)])

mell [']<k:}
(a)
= d (5[\7@(]) ngl_lai;i} dp, ( [u7en] ;K Ot T O¢41 T’ZJS[I(lti)l h)])
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(b) o

= nrer%%}I{*] dh (S[j] N ,u( ) O T O] 1/’([1(1zi)1 h)])

©  max dp (S[j]‘ p® o oy UL ) (60)
Trel'[[ﬂgk} 5 + I(t+1 h)]

where relations (a) and (c) hold by Lemma B.3 and relation (b) holds by Lemma B.1; note that the

assumptions of these lemmas hold because p* and w(tﬂt +)1 m) are assumed to be endogenous, and

because 7 € II[Z,] is also endogenous. Moving on, we analyze the right-hand side of Eq. (59). We
have

n (5(Tex]) i (51Ten] 5 19 0070 ) 001 V)

— dh ( [j] ,u<t) O Trs[JcnﬁIcn] Ot+1 Tﬁ ;(1:31 h)]> ’ (61)

and Y0 are

by Lemma B.I (the assumptions of the lemma hold because u*, 778[ JenZen] S[TU+1)]

endogenous). Plugging Eq. (61) and Eq. (60) back into Eq. (59), we have that

max dh<s.7 : 1 ® oy opyq UM >
el Ser] [ ]7 2 + w (t+1 h)]

<dp (S[j] TR ﬂ-;t[}cnmzcn o441 ws[I(tH h>]) + e, + €/6k. (62)

It remains to relate this to the analogous inequality for the approximate occupancy measures. Since D
is €/12k-approximate with respect to (I [ <y, (ZU+0M)], I, (ZUTM) | h) by (A2), Lemma A.6,
and Eq. (62) imply that

~

C o ® (t+1,5)
werﬁlflik] dp, (8[j] ;M Yoy m Ot+1 ws[z(m h)})

<dp <3Lﬂ ) M(t) Ot Wét[gmzen] Ot+1 w;;(lti)lh)]> + g, +€¢/3k
(&) ~
< dp (s[j] ; ut oy 77?[37019,]} Op41 ws[;(lti)l ’”]) + €k, (63)
where (a) holds for all k1, ko € [k] such that ko < k; — 1, since

ey 4 €/3k = (1 4+ 1/k)F M 5 + ¢/3k < (1 4+ 1/k)F 7 5¢ := ¢y,

by Lemma A.8 (with ¢ = 5). Since |Zen| < |Z| := k1, we can set ko = |Zeyn| in Eq. (63), which
implies that

7 ) +1,h) ) . (t41,h)
we%l[?;k] dp, (S[J] s oy w1 Y S[T(t+1, m]) <dp (8[«7] ; u oy 7Ts[JﬁZ o] Ot ¢s§<t+1,h>]> T € Zenl-
(64)

Since Eq. (64) holds for all 7 € S« (Z¢+"") and s [J] € S[J], this yields the result. O
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Step 3: Proof of second claim (v [A] is near-optimal). This claim is a direct consequence of
the condition in Line 5. Let Z be the output of EndoFactorSelection; ;,. Since sufficient_cover =
true, then the conditions at Line 5 are satisfied, and for all J € f<k( ZWrtm) for all s[J] =
(s[ZV], s [T NI M]) € S[T]

7 (t+1,h)
max dp (s T p' op moppr )
el gy [ ] Y 1 Vgztr1m)

<dp (7] 5 1 0 7

s[jﬂl' Ot+1 77Z);t[z(lti)l h) ) + 156, (65)

where 7 [ij] € TW[J N Z]; the upper bound holds because e := (1 + 1/k)* ¥ 5e < 15¢ for
all k' € [k]. Applying Eq. (65) with J < Z, € J<,(Z"*""), and using Lemma A.6 (which is
admissible by assumption (A2)), we have that for all s [Z,] € S [Z,],

max dj, (s : 1 oy opyq LM )
SV s p * ws[f(”'l’h)]

<dy (s[T) 5 1o wj[;m or1 iriihm, ) + 166
(a)
< di (S 5 n 0wl orn Wi ) + 166

where (a) holds because Z, N 7= f, since 7 C T, by the first claim. O

49



EFRONI FOSTER MISRA KRISHNAMURTHY LANGFORD

Appendix F. PSDP with Exogenous Information: ExoPSDP

Algorithm 7 ExoPSDP: PSDP with Exogenous Information
1: require:

o Target precision € € (0, 1) and failure probablitity § € (0, 1).
¢ Collection {\I/“‘)}hH:2 of endogenous 7)/2-approximate policy covers.
2: initialize:
« Let N = C - AS* H2k? log (49441 ¢=2 for sufficiently large constant C' > 0 and ¢) =
%‘%H'
e Forall t € [H], define p” := Unf (T®).
e Let7H) = &,
fort=H —1,..,1do

/* Estimate average value functions via importance weighting. */

~

N
H .
4: Get dataset {(sm, Aty {rt’vn}yzl)} . by executing 1" o; Unf(A) oy 1 7,

5: Estimate the (t — H) value for all & € TI[.#<}] via importance weighting:
N H
. 1 T{atn =7 (stn)}
Vi (0 op mopp1 Tey1:m) = — : ’ Tt | -
ti (1 +1 T4 1:H) NZ 1/A Zt,n
n=1 t'=t
/* Apply policy optimization with estimated value functions. */
~ . . . € > ~
6: 7O EndoPolicyOptimization;’, ({VtH (u® oy oy WHLH)}rreH[,ﬂgk])‘
7: 7O = 7O o g FEFLE),

8: return: 77,

In this section we present and analyze the ExoPSDP algorithm (Algorithm 7). ExoPSDP is based
on the classical PSDP algorithm (Bagnell et al., 2004), but incorporates modifications to ensure that
the policies produced are endogenous. In Appendix F.1, we motivate ExoPSDP and state the main
guarantee concerning its performance (Theorem F.1). Then, in Appendix F.2, we prove this result.

F.1. Description of ExoPSDP
The ExoPSDP algorithm solves the following problem:

Given a collection of endogenous policy covers {\P(t)}i 1 for an ExoMDP M, find a
policy T that is e-optimal in the sense that J(T) > max, J(7) — €.

To motivate the approach behind the algorithm, we first remind the reader of the classical PSDP
algorithm.

Background on PSDP. Suppose we have a set of mixture policies {u™} thl that ensure good
coverage at every layer for an MDP M, and our goal is to optimize the MDP’s reward function. The
PSDP algorithm (Bagnell et al., 2004) addresses this problem by using the dynamic programming
principle to learn a near-optimal policy through a series of backward steps t = H,...,1. Assume
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access to a policy class I1. At each step ¢, assuming that step £+ 1 has already produced a near-optimal
(t+1) — H policy 7"+ the algorithm estimates the value function V; g (' oy 7 0441 Tey1:1)
for all = € II where (see also Eq. (38))

H
t o Py E
Vim (N< Yoy mopp WH‘LH) '_ ]EM“)OHF%H%HLH [ Ttl] ‘
t'=t

The estimates are calculated via importance-weighting by

Vo () Feern) 1 i L{an =7 (s10) ) (i >
t,H \H"~ Ot TOt41 T4 1:H) = 77 T n
N n=1 1/A t'=t

where the data is generated by rolling in with 1®, taking random action on the ' time-step and
rolling out with 7yt 1.57 using N trajectories. Then, PSDP computes

7 € argmax Vim (/N) Op T Opy1 %t—i-l:H) ; (66)
mwell

and sets 7" = 1 o, TEFLH) | The final policy 7 := 7 is guaranteed to be near-optimal as
long as {u™} thl have good coverage.

Insufficiency of vanilla PSDP. The first issue with applying PSDP to the ExoMDP model is that,
if we want the policy class II to contain all possible policies, we will have |TT| = ©(A° d), which
leads to sample complexity scaling with log|TI| = Q(poly(S?)); this is prohibitively large. An
alternative policy class one my hope can address this issue is II[.#<]. Indeed, this class has much
smaller cardinality: [II[.7<;]| = ©(d*AS"). However, for an ExoMDP, naively optimizing over
this class via Eq. (66) may lead to roll-out policies 71 1.z that depend on the exogenous state
factors, since there is no mechanism in place to ensure endogeneity. This in turn may invalidate the
realizability assumption needed to apply standard PSDP (see Misra et al. (2020), Assumption 2). In
particular, PSDP requires that the policy class II contains the optimal policy in the sense that

Q) (®)

max Vi g (u Ot T Op41 %t+1:H) . (67)

Of T Op41 TMy41:H) = maxV},H
wellng * * ) mell ('u

If the roll-out policy ;1 1.7 depends on the exogenous state factors, then the optimal policy that
maximizes V; g (u oy 7 o441 T41.r) may depend on exogenous state factors as well. Then, Eq.
(67) may be violated when instantiating PSDP with the policy class H[Jgk].

A solution: ExoPSDP. To address the issues above, ExoPSDP applies an alternative to the
optimization step in (66). In particular, ExoPSDP uses the sub-routine EndoPolicyOptimization
(see Line 6), which finds an endogenous near-optimal policy. In particular, as long as 7¢+1) ig
endogenous, which can be guaranteed inductively, EndoPolicyOptimization, will succeed in find-
ing an endogenous policy at step ¢. Importantly, since (i) the reward in a ExoMDP depends
only on the endogenous factors, and (ii) the policy 7**#) is endogenous (by the guarantees of
EndoPolicyOptimization), 7® can be shown to be near-optimal with respect to the entire policy
class II. Hence, in spite of optimizing over the restricted policy class .#<j, we are able to find a
near-optimal policy with respect set of all policies. Using this argument inductively allows us to
prove that 7(*:*) is near-optimal and endogenous.
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Theorem F.1 (Main guarantee for ExoPSDP). Suppose that the sets { \I/“)}fi | passed into ExoPSDP
are endogenous 1 /2-approximate policy covers for all t. Then, for any €,6 > 0, with probability at
least 1 — 0,

1. 5 s endogenous.
2. w1 s e-optimal in the sense that

max J(m) < J(@) + €.
WEHNS

AH4k353k lOg( d%H ) ) )
V) trajectorles.

Furthermore, the algorithm uses at most N = O< .

F.2. Proof of Theorem F.1

Fix a pair of endogenous policies 7, @ € Ilxg|[Z,]. Further, let Mey = (S, A, Ten, Ry(z,], H, d1 en)
denote the restriction of the ExoMDP to its endogenous component, and let Q7 ,, (s[Z4], a) denote
the associated state-action value function for My,.

We decompose the difference in performance as follows.

~
=

h
<3S max AT 1) (max Qs T],0) - Qs L] Rl L)

WEH[ *]

(b) h _ _
; 255N Y di(s[T] 5 p®) (mgx@éien(s [Z.],a) = Qf en(s [Ti] , Tu(s [I*D))~

t=1 s[Z,]€S[T,]
h ~ ~
= 25" Y By [max Qfeu (st [T, 0) = Qfen(st [T Fren(s [LD)] -
t=1

h
L2583 max By [QFen(on (1], 7 (s () — Qln(se (2], Aelse ()]
t=1 *

h
=26k max V; ® o, ' o1 7)) = Vi ® o, 7® o, 1 7). 68
;Wlené*] t,H (M t T Ot+1 7T) t,H (,u t T t+1 77) (68)

The key steps above are justified as follows:

* Relation (a) holds by the performance difference lemma for endogenous policies (Lemma B.6),
since both 7, 7 € IIng[Z,] by assumption.
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* Relation (b) holds because

maXqerz,) de (- 5 )
A (- u®)

< 25*,

which is a consequence of Lemma A.2. In particular, we use that (i) { ¥ }t 1 are endogenous
1/2-approximate policy covers, (ii) for all states, either max ¢ryz,) d:t (s[Z:] ; m) > n or
max ez, ¢ (s[Zi] ; ) = 0 (by the reachability assumption), and (iii)

maXQten( [Z.],a) = Qfen(s [Z) . Ti(s [Z.])) = 0.

* Relation (c) holds by the skolemization principle (Lemma A.9).

Let Geyxopspp denote the success event for Lemma F.1 (stated and proven in the sequel), which is the
event in which for all t € [H], EndoPollcyOptlmlzat|on returns a policy 7 such that

1. 7® is endogenous.

2. 7 is near-optimal in the following sense:

max Vi g (,u(‘) op oy wL H)) Vi ( oy W opyq I H)) < €. (69)
' €I1[Z4]
. - AH?k3S* log (441
Lemma F.1 asserts that Geyopspp holds with probability at least 1—§ whenever N = €} 5

€0
Conditioning on Gexopspp, it follows immediately that 7(**) is endogenous. To show that the policy

is near-optimal, we apply Eq. (68) with 7 = 7) and bound each term in the sum using Eq. (69).

Maximizing over m € IINg[Z,] yields

J(r) — J(7) < 2S*Hey = ¢,
 max (m) = J(7) < € =¢

by the choice ¢q := ¢/2S5* H. Finally, by the fact that maXqeryz,) J (7) = maxqenyg J (), which

holds because the reward is endogenous (Efroni et al. (2021b), Proposition 5), we conclude the proof.

O]

F.3. Computational Complexity of ExoPSDP
We now show that ExoPSDP can be implemented with computational complexity of
1o (deskAH) ,
where N is the number of trajectories. The main computational bottleneck of ExoPSDP occurs at
Line 5 of EndoPollcyOptlmlzatlon . There, we need to optimize over Vt g (u™ op mopp1 Ter1.m)

estimated by the empirical averages (Line 5) for all Z € .#;.. Meaning,

max Vt o (1" op morr1 Ter1:m
rell[z] ( )

53

).



EFRONI FOSTER MISRA KRISHNAMURTHY LANGFORD

To sketch how to do this efficiently, we first show how to optimize over the set II[Z] when a
factor set Z is fixed. We show that instead of enumerating over all policies, one can optimize
Vi (u op wogy1 Tey1.11) as follows. Observe that

=5 ~ (B oy mor 1R pa 1
Vi (M(t) Ot T Ot+1 7Tt+1:H) = Z inh TR (S[2], 7 (s[Z]))
s[Z]eS[1]

where we note that |S[Z]| < S¥, and where

n=1

N h
W oyros 17y, 1
Zh tTOt 41Tt 1: H (s[Z],a) := N Z 1{s|Z] = s[Z],ar = a} <Z Tn,ﬂ) .

t'=t

To maximize V; , (4! oy T 0441 Tyq1.17) it suffices to maximize each individual function

~ (1) =
QY SHTOLRITHL (G[T] ). Letting
~ ~ (1) Tt
77 (s[Z]) € argmax Q) °EA (S]T] a)
a
we have that

max, Vin (11 0p mopy1 Toprer) = Vi (10 Tz 0441 1) -
Furthermore, observe that 77 (s[Z]) € II[Z].
This shows that it is possible to solve max 7] Vi.n (1™ of T 0441 Tya1.) With computational
complexity O (N SkA). Since EndoPolicyOptimization; ;, optimizes over all possible factor sets 7 €
S<), where | I<i| = O (dk) for H times the total computational complexity is O (de SkAH ) .

F.4. Application of EndoPolicyOptimization within ExoPSDP

In this section we state and prove Lemma F.1, which shows that the application of EndoPolicyOptimization
within ExoPSDP (Line 6) is admissible, in the sense that the preconditions required by the algorithm
are satisfied.

Lemma F.1 (Guarantees of EndoPolicyOptimization for ExoPSDP). Let precision parameter € €

(0,1) and failure probability § € (0,1) be given. Assume that the mixture policies u* € Ty used
AH?k3SF log (441 )
62

in Algorithm 7 are endogenous for all t. Then, if N = Q(
for each layer, we have that with probability at least 1 — 0, for all t:

trajectories are used

1. 7 is an endogenous policy.
2. ©Y is near-optimal in the sense that

max Vi (p© op ' opg @) = Vi g (n® 0p T 0pq M) < e
™ *

Proof of Lemma F.1. Let G® denote the event in which

1. 7® is an endogenous policy.
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7® is near optimal:

max Vi g (u

o op ' 0p41 FEDY Z Wy (1D 0y RO 0y g R < de.
™ *

We will prove that for any 6 > 0,

as long at least €2 ( = ) trajectories are used at layer ¢. Whenever Eq. (70) holds, Lemma A.4

P (g9 | NfL10") 210, (70)

AH?E3S* log (442

implies that

P (mglg“”) >1— HS, 1)

and scaling 0 < §/H concludes the proof.
We now prove that Eq. (70) holds. To do so, we apply Theorem D.1 and verify that assumptions
(A1) and (A2) required by it hold.

(A1)

Conditioning on the event N_, 19 @) we have that 7¢+*#) is an endogenous policy. In
addition ™ is an endogenous policy and the reward function is endogenous by assumption.
Thus, the conditions of Lemma B.7 are satisfied, and the restriction property holds:

max V; o T O = max V, 0p T O .

max i ([ og ™or1 1) ohax | i (Jeop T o1 1)
The proof of this result uses similar arguments to Lemma A.5 . Fix 7 € II[.#<;] and observe
that Vi i (1! of 0441 Tey1:m) is an unbiased estimator for Vi g () op mop 1 Tg1::),
and is bounded by AH. Using Lemma A.3 and following the same steps as in the proof
of Lemma A.5, we have that with probability at least 1 — 9,

’Vt,H (1 oy o1 Tegrim) — Vi (1 op mopa %t-i-l:H)’

AH?log (%) N AH log (%)

<0
- N N

Taking a union bound over all = € II[.#<;] and using that |II[.7<;]| < O (dkHASk), we
have that with probability at least 1 — 4,

’Vi,H (1 oy mop1 Tegrm) — Vi (09 o mopg %t+1:H)’

0 \/AHQkSk log (4) | AHES" log (%)
N N

. AH?K3 S log( 44 .
Hence, setting N = Q(E—Zogm) and using that €2 < e for € € (0,1), we have that

with probability at least 1 — 6, for all 7 € II[.#<y],
€

’Vt,H (,U(t) Ot T O+1 %t—Q—l:H) —Vinm (MM Ot T Ot+1 %t-&-l:H)‘ < 1ok
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Part I11
Additional Details and Proofs for Main Results

Appendix G. OSSR Description and Proof of Theorem 3.1

In this section we present and analyze the full OSS Rzé algorithm (Algorithm 8). The algorithm may
be thought of as a sample-based version of the OSSR.Exact algorithm described in Section 3.2. While
OSSR.Exact assumes exact access to state occupancy measures, OSSR;"S estimates the occupancy
measures in a data-driven fashion, which introduces the need to account for statistical errors.

This section is organized as follows. First, in Appendix G.1 we give a high-level overview of
the algorithm design principles behind OSS R;’(S. Then, in Appendix G.2, we prove the main result
concerning its performance, Theorem 3.1. Appendices G.3 and G.4 contain proofs for supporting
results used in the proof of Theorem 3.1.

G.1. OSSR: Algorithm Overview

The OSSRZ’(S algorithm follows the same template as OSSR.Exact: For each h € [H], given
policy covers ¥ ... W=D the algorithm builds a policy cover ¥" for layer h in a backwards
fashion using dynamic programming. There are two differences from the exact algorithm. First,
we only have sample access to the underlying ExoMDP, the algorithm estimates the relevant
occupancy measures for each backward step using Monte Carlo rollouts. Second, the optimization
and selection phases from OSSR.Exact are replaced by error-tolerant variants given by the subroutines
EndoPolicyOptimization and EndoFactorSelection (Algorithm 5 in Appendix D and Algorithm 6 in
Appendix E, respectively).

State occupancy estimation. In order to apply dynamic programming in the same fashion as
OSSR.Exact, each backward step 1 < ¢ < h — 1 of OSSRZ‘S proceeds by building estimates
for the layer-h occupancies dp(s[Z] ; pu™ oy w opyq M) forall T € Sy, m € II[.#<] and
UL e Pl+hh  This is accomplished through Monte Carlo: We gather trajectories by running
1™ up to layer ¢, sampling a; ~ Unf(A) uniformly, then sampling ¢)**" ~ Unf(W*+") and
using it to roll out from layer ¢ 4+ 1 to h. We then build estimates by importance weighting the
empirical frequencies. We appeal to uniform convergence to ensure that the estimated occupancies are
uniformly close for all Z € < and 7 € II[.#<]; this argument critically uses that W+ | < G
and log|II[.7<;]| < O (k:Sk log (dA)), as well as the fact that we only require convergence for
factors of size at most k.

Error-tolerant backward state refinement. Given the estimated state occupancy measures above,
each backward step 1 <¢ < h — 1 of OSSR;"s follows the general optimization-selection template
used in OSSR.Exact. For the optimization step (Line 7), it applies the subroutine EndoPolicyOptimization; ,,
(Algorithm 5 in Appendix D), which finds a collection of endogenous “one-step” policy covers 7
(r® [I])Ieﬂq(ﬂtﬂ,h)), which have the property that for all Z € < (ZU**") and s € S, the

t+1,h)

t — h policy w;’f[)z] o wg[ Z6+10] (approximately) maximizes the probability that s;[Z] = s[Z]. Then,

at selection step (Line 9), OSSR;’é applies the subroutine EndoFactorSelection; ;, (Algorithm 6 in
Appendix E), which selects a single factor set Z*" C 7, such that—by choosing ¥®" to be the
composition of I'” [Z"™] and W('")—we obtain an (approximate) ¢ — h policy cover.
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Algorithm 8 OSSR;’(S: Optimization-Selection State Refinement
1: require:

* Timestep h, precision parameter € > 0, failure probability § € (0, 1).
* Policy covers {\Il(“}i:ll forsteps 1,...,h — 1.
» Upper bound k£ > 0 on the cardinality of Z,.
2: initialize:
o LetZ"M «+— @ and UM + &,
* Define N = CAS* H?k? log (%) ¢~ 2 for sufficiently large constant C' > 0, and let

€0 = sgrp-
3 fort=h—-1,h—2,..,1do
Estimate occupancy measures

4: Collect dataset { St.n, At n, Py s Shon) }7]:;1 by drawing NNV trajectories from the process:
* Execute p := Unf(¥®) up to layer ¢ (resulting in state sy ,,).
* Sample action a; , ~ Unf(.A) and play it, transitioning to s;1 5 in the process.
* Sample ¥, """ ~ Unf(W+1:7) and execute it from layers ¢ + 1 to h (resulting in sy, ,,).

5: ForeachZ € J<y, 7 € II[.9<], and 1M € WM | define

. 1 1 = (o), 057 = 0, s, (7] = (7]}
dp, (S[I] 0 1 op mop w(tﬂ’h)) == Z N '
N (171D - (1/[#e0)

6: Let ﬁ(t’h) = {C/i\h( ; Hm Of T Op41 ¢<t+1’h)) | s H(jgk),w<t+lvh) c \Ij(tJrl,h))}.
Phase I: Optimization (Algorithm 5 in Appendix D)

// Beginning from any state at layer ¢, 7’ [ ] Ot+1 z/;““(t:)l . maximizes probability that s, [Z] = s[Z].
I

7: ForeachZ € I, (Z""") and s [Z] € S [Z], let

—® o) (t+1,h)
Tz < EndoPoI|cyOpt|m|zat|on ({dh ( [Z]; ' op oyt @DS[IHL,L}) }Wen[fgk]> .

8  LetDI'®[I]:= {w“) ] € S[Z]}.
Phase II: Selection (Algorithm 6 in Appendix E)

// Find factor set Z"*" C Z, such that '’ [Z"""] has good coverage for all factors in F<j, (Z+"")).
9: (2, TO[Z"M]) « EndoFactorSelection;’ ({I‘(’f> I} zesopirimy 3 ZOFHD, WO ), Dtw) )

Policy composition // Recall that 7 €O TP and U H Y ) € WETEM,

[zu n € S[ZCA1))
(t,h (1) (t+1,h)
10: Let Z(*" < 7, then for each s[T""] € S[T*"] define 1) I<t w] = Tgprem) Ot ws[z(t+1»h)}'
1: Let U0 {w[;gt ST € S|z ]}

12: return ¥ = YLh), // Policy cover for timestep h.
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Full descriptions and proofs of correctness for EndoPolicyOptimization; , and EndoFactorSelection; ),
are given in Appendix D and Appendix E. Briefly, both subroutines are based on approximate versions
of the constraints used in the optimization and selection phase for OSSR.Exact (Line 5 and Line 7 of
Algorithm 2), but ensuring endogeneity of the resulting factors is more challenging due to approxi-
mation errors, and it no longer suffices to simply search for the factor set with minimum cardinality.
Instead, we search for factor sets that satisfy approximate versions of Line 5 and Line 7 with an
additive regularization term based on cardinality. We show that as long as this penalty is carefully
chosen as a function of the statistical error in the occupancy estimates, the resulting factor sets will
be endogenous while inducing sufficient amount of exploration (with high probability).

In Appendix C, we provide a general template for designing error-tolerant algorithms that
search for endogenous factors using the approach described; both EndoPolicyOptimization; ;, and
EndoFactorSelection; ;, are special cases of this template.

G.2. Proof of Theorem 3.1

We now restate and prove Theorem 3.1, which shows that OSSRZ’é learns an endogenous e-optimal
policy cover with sample complexity depending only logarithmically on the number of factors d.
Theorem 3.1 (Sample complexity of OSSR). Suppose that OSSR;"s is invoked with {\Il“)}?:_ll,
where each W' is an endogenous, 1/2-approximate policy cover for layer t. Then with probability at

least 1 — 0, the set U™ returned by OSSR;"S is an endogenous e-approximate policy cover for layer
h, and has |U"| < S*. The algorithm uses at most O (AS** H?k?log (%) - €72) episodes.

Proof of Theorem 3.1. We begin by defining a success event for ExoRL.

Definition G.1 (Success of OSSR at the layer h). G\ is defined as the event in which the following
properties hold:

1. U™ is an endogenous n/2-approximate policy cover for layer h.

2. I™ contains only endogenous factors.

In addition, we define G< = N/}, G*). The following intermediate result—proven in the
sequel (Appendix G.3)—serves as our starting point.

Theorem G.1 (Success of State Refinement). Fix h € [H| and condition on G'<"). Then, for any

€ > 0 (recalling that €y := ﬁ)’ by setting

N = 645k log (dS?H> %),

OSSR;’(; guarantees that with probability at least 1 — 0, forall t < h,
1. ZtM C I, and V" contains only endogenous policies.

2. Forall s € S,

. (t+1,h) . (t:h)
WIGIll_[af%{*] dp (S[ *]7 N(t) Ot T Ot41 ¢S[Z(t+1,h)]) —dp, (S[I*]a ,U'(t) Ot ws[z(t,h)}) < €o, (72)

where we recall that @Z’:[;()t,h)] € UM and @ZJ:[;{?LW € Pltrhh),
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We now show that conditioned on the event in Theorem G.1, the set ¥ is an endogenous,
e-approximate policy cover (as long as € is chosen to be sufficiently small). In particular, we will
show that for all s[Z,] € S[Z,] there exists a policy ¢ € ¥ such that

max_dp(s[Z]; ) < dp(s[Z];¢) + €. (73)
mellng [I*}
Fix s[Z,] € S[Z,]. From first part of Theorem G.1, we have that Z"" C Z,, so we can write
S[Z.] = (s[ZUM], s[Z, \ ZM™M]) . We will show that the policy @Z)([Z(l ) € U = M maximizes
the probability of reaching s[Z,| € S[Z,] in the sense of Eq. (73).
Define a endogenous “reward function” Rz, ], with

Ryzgn(sn [Z4) = 1{sn [L.] := s [Z.]}

and Ryz,1,(-) := 0 for t # h. Letting 77, ; := Ryz,14(5t [Z+]), we can write

h
dn(s [T ;7)== E, [Z rs[z*],t] . (74)

t=1

That is, we can view the state occupancy dj, (s [Z,] ; 7) as the state value function for the ExoMDP
M = (8, AT, Ryz,), H, dl). Let 7 € TIng[Z.] be an endogenous policy. We let M, =
(8, A, Ten, Ry(z,], H, d1 en) denote the endogenous component of this MDP, and let Q7 ,, (s[Z.], a)
denote the associated state-action value function for Mg,,.

To proceed, we use the representation above within the performance difference lemma (Lemma B.6)
to bound the suboptimality of v }Ih()l m] by a sum of "per-step” errors for each of the backward steps.
In particular for any pair of endogenous policies 7, € IIng[Z,], Lemma B.6 implies that

dn(s [Zi];m) — dn(s [Zi];9)
© Z ™ [Qfen(st (L], me(se [Z.]) — Q:&{Jen(st [Z.] , e (se [I*]))}

h
<> Bamit ) 2% Q[T 0) = Q5 L] (s [1]))]

~+

<S> Y max s [L] 5 ) (max Qs (L], @) — Qs [T va(s (1))

=1 siz)esiz " s

(b) h
2255 Y [T s ) (max Qi (5[L.].0) — Qs (L] (s (1))

t=1 s[I,]eS[T.]

h
=25"3 Er o u0) (M QY (2], 0) = Qa5 (L] (s [Z.]))]

) 95k Z ( max  dp(sp [Z] s u' op ' opp1 ) — dp(sn [Zi) s ' o ¢)> : (75)

T GH[I*

We justify the steps above as follows:
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* The equality (a) follows from Lemma B.6).
* Relation (b) holds because

maXrerz,) dt (-5 ) < 96k

which is a consequence of Lemma A.2. In particular, we use that (i) { ¥ }?:_11 are endogenous
1)/2-approximate policy covers, (ii) either max cryjz,) dt (s[Z+] ; ™) > normax ez, di (s[Zi] 5 ™) =
0 for all s[Z,] € S[Z,] by the reachability assumption, and (iii) nonnegativity:

2 QF (5 1.1 ,0) = QYo (L] (s [1.])) 2 0.

* Relation (c) holds by the skolemization principle (Lemma A.9) and the tower rule for condi-
tional probabilities.

Recall that the event defined in Theorem G.1 (Eq. (72)) implies that for all ¢t < h,

max dp(sp [Z.] 5

! HLh) ) o ()
' €II[Zy] Ot T Oty ¢S[I(t+1,h>] dh(Sh [I*] s O ws[z(t,h)]) < €.

1,h)

Plugging this bound into Eq. (75) with ¢ + w; o

K we have that for all endogenous policies 7,

dp(s L] :7) — dp(s [L] ;@Dil[;()l’h)]) < 25%Hey.

By using that ¢y := ¢/25* H and taking the maximum with respect to 7 € II[Z,], we conclude that

forall s [Z,] = (s [Z""M], s [Z, \ Z"M]), the policy zﬂ;l[;()l’h)] satisfies

Jmax dn(s (L)) = di(s (L] ;wj[’;zl,h)]) <e. (76)

This establishes that the set W™ is an endogenous e-approximate policy cover. With this choice
for €g, the total sample complexity is O (AS 4k 11213 log (%) . 6_2). Finally, we note that as a
consequence of Theorem G.1, we have Z'") C 7, as desired. We have || < S* by construction.

O]

G.3. Proof of Theorem G.1 (Success of State Refinement Step)

In this section we prove Theorem G.1, a supporting result used in the proof of Theorem 3.1. The
result shows for each step ¢, the optimization and selection phases in OSSRZ’(S lead to a set of
endogenous ¢ — h policies W) as long as certain preconditions are satisfied.

Theorem G.1 (Success of State Refinement). Fix h € [H| and condition on G'<"). Then, for any
€ > 0 (recalling that €y := 5557 ), by setting

N = 645k log (dS?H> )

OSSR;’(S guarantees that with probability at least 1 — 9, for all t < h,
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1. ZtM C T, and V" contains only endogenous policies.

2. Foralls € S,

wénl'ﬁ%{ | dp (S[I*]; /L(t) Ot T Ot41 T,Z):[;(léi)l,h)]) —dp, (5[1*]; :u(t) Ot wgt[;()t,h)o < €p, (72)

where we recall that @D(t[Ih(), m) € v and @b(t[;,i)l ] € Ph+1n),

Proof of Theorem G.1. The event G<") (Definition G.1) holds by assumption, which implies that
the policy sets ¥ for ¢t € [h — 1] contain only endogenous policies. As a result,

p® :=Unf (TW) . (77)

is an endogenous mixture policy. To proceed, we define some intermediate success events which will
be used throughout the proof. First, for ¢ < h define

Gi“" := {¥"" contains only endogenous policies, and 7" C Z,}.
Observe when G{*" holds, we can express all states s[Z,] € S[Z,] as
s[T,] = (S[I(t,h)L s[Z, \I(t,h)]) _ (S[I(Hrl,h)]’ s|T. \I(tJrl,h)]) 7

since Z4H1M C ZtM C T,. Next, we define an event G3"" via

Gy =
(LT € ST e duGIE® ormons 05 - dh(GIE o0 gl < o).
where we recall that T/Jég(liﬂ,h)] € UM and w(t[zh()t my € € U®M, Finally, let G 1= G{"" n g™,
We will prove that for all t < h,
P (G0 a6 GV) 21— /8. 78)

Taking a union bound (Lemma A.4), this implies that P (ﬁ?,:lg“"h) ] g(<h>) > 1 — 4, which
establishes Theorem G.1.

Proving Eq. (78). Lett < h be fixed, and condition on N, _, Y @-h) and G<M. We will show that
whenever these events hold and the estimated occupancy measures have sufficiently high accuracy,
G*M holds. Formally, recalling Definition A.1, define an event

tr _ [A~.. €0
gstat - {D 18

12k—approximate with respect to (u" o II[F<] opyq WEHM | Iy (ZUHHM) ,h)}.

(79)
Our goal is to show that conditioned on mt,_mg“ +)and G<M, g“ o — GWM o that

, (a)
P (g(t,h,) | ﬂiz/:ng(t ,h)’g(<h)) > P( S(;;t | ﬁt’_t+ g(t D) g(<h)> >1-39.
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Here (a) is a consequence of Lemma A.5, which asserts that by setting
dSA
N = Q(As%k?’ log (5) - eg2>, (80)

the estimated state occupancies D produced in Line 5 of OSSRZ’é are €p/12k-approximate with
respect to (u* o II[I<y] opqy WEEM | Fp (ZUF1M) [h), in the sense of Definition A.1. We
formally verify that the preconditions required to apply Lemma A.5 are satisfied at the end of the
proof for completeness.

We now prove that conditioned on ﬂt, ng(t M) and G<M g“ M) — G| This relies on
two claims: Success of EndoPolicyOptimization and success of EndoFactorSeIection.

Success of EndoPolicyOptimization) e We appeal to Lemma G.1, verifying that the assumptions it
requires, (A1) and (A2), are satisfied (conditioned on ﬂl{}:tﬂg("’h’ and G<M).

(A1) p® is an endogenous policy when G<" holds (see Eq. (77)) and """ contains only
endogenous policies whenever G¢+") holds.

(A2) D is ey/12k-approximate with respect to (TT[I<], F< (Z¢+1M) | h) whenever G*) holds.

Thus, Lemma G.1 implies that for all Z € .Y, (Z""") and s[Z ] € S[Z], the respective invocation
of the sub-routine EndoPolicyOptimization;‘, outputs a policy 7l [I] € I'®W[Z] that is (i) endogenous,
and (ii) near-optimal in the following one- step sense:

ﬂe%l[?b} ]dh ( 7] ; p' oy mwopga ¢;t[;15rh1),h]) <dp (S[I] ; w0 W;t[)z} Ot+1 %Z);t[;ﬁ),h]) + 4eo.
<k
(81)

Success of EndoFactorSelection;’,. 'We appeal to Theorem E.1, verifying that the assumptions
(A1)-(A3) required by it are satisfied.

(A1) p® is endogenous whenever G<" holds. Whenever G*") holds, we are guaranteed that

WE+LM) contains only endogenous policies, so that w(t; o n € P+ s endogenous in

particular.
(A2) D is €y/12k-approximate with respect to (TI[I<], <k (D), h) by G

(A3) Due to the success of EndoPollcyOptlmlzatlon (verified above), the condition in Eq. (81) is
satisfied.

Hence, by Theorem E.1, EndoFactorSelection;’, returns a tuple (2", ¥ " [Z(M]) such that
1. ZtM C 7,.
2. Foralls € S,

(t+1,h) (t) (t+1,h)
Wg}_[a[%c*} dy, < [Z,]; 1 RET - 1/18[1(,5“,,0]) —dp, ( [Z,] 5 p Yoy ST Ot+1 ws[I(H'l,h)]) < 16¢g,

where we recall that 1" e WttLm gpd 7

[Z(t+1 h)] S[I(t’h)] S F(t) [I(t7h>].
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(t,h)

Wrapping up.  Scaling ey < €y/16 and 6 < §/H, and recalling that ws[zwh)]

€ WM is given by

(t,h) (D) (t+1,h)
@bs[z(t,h)} = Ws[I(t’h)] Ot+1 ¢s[I(t+1ah)]’

we have that for all t < h,
P (g(t,h) ’ mg:t+1g(tl'h)7 m]];/_:llgwl)) Z 1— 5/[{,

proving the result.

Verifying conditions of Lemma A.5. 'We conclude by verifying that the four conditions required
by Lemma A.5 hold, conditioned on N%_, HQ“'*’” and G="; this justifies the application in the
prequel.

L. By construction, W) = {071 | S[Z010) € S(TOU]) Thus, (] =

|S [Z¢M]| < S*, since | T+ | < k.
2. We have |II[.7<;]| < O (dkAS k), since the number of factor sets of size at most £ is

k k
d ed k
<|— <
£ (1)) <o)
k'=0
and for any factor set Z with |Z| < k we have [II[Z]| < AS".
3. | I<k (T0HM)] < | I<k] < O (d¥) by Eq. (82),

4. For any fixed set Z with |Z| < k, we have |S [Z]| < S*.

G.4. Application of EndoPolicyOptimization in OSSR

The main guarantee for the EndoPolicyOptimization; , subroutine (Theorem D.1) implies that the

policy ﬂff&] returned in Line 7 of OSSR is endogenous, as well as near-optimal in the following this
sense:

B ]dh (Sm ;' oy oy ¢s[;ﬂ>,h]> < dp (S[I] s u oy Wét[)I] Oft1 %gifﬂh]) + O(e).
s <k

In this subsection we state and prove Lemma G.1, which shows that the preconditions (A1) and (A2)
required to apply Theorem D.1 are satisfied, so that the claim above indeed holds.

Lemma G.1. Fix h € [H] and t < h. Suppose that the following conditions hold:
(C1) u® € Mpmix[Zs] is endogenous and W'+ contains only endogenous policies.
(C2) The collection D of occupancy measures is € /12k-approximate with respect to

(1D 0 TI[I<p] 0 T+ gy (TE+IM) ).

63



EFRONI FOSTER MISRA KRISHNAMURTHY LANGFORD

Then assumptions (A1) and (A2) of Theorem D.1 are satisfied when EndoPolicyOptimization ;, is
invoked within OSSR, and for all T € I<j, (Z+"M):

1. The setT'" [T] = {775[)2] | s[Z] € S [I]} contains only endogenous policies.

2. Forall s[I] € S[Z], the policy w;f‘[)ﬂ € I'[Z] satisfies

max dp, [ s[Z] ; u® o moppq M
P h( El s P ormonn ¥z

<dy (S [I] : M(t) ot ’/Tét[_?[] 0441 w:[}bﬁlﬁ)]) + 4e.

Proof of Lemma G.1. Toward proving the result, we begin with a basic observation. Fix 7 €
I, (ZU+M) and s [Z] € S [Z]. Define an MDP (S, A, T, Ry(7), h) where Ry, = 1 {s3[Z] = s[Z]}
and Ry7) p» = 0 for all R’ # h. Observe that the occupancy measure for s[Z] at layer h is equivalent
to the (¢, h) value function in this MDP:

Vin <,u(t) O T Opy1 f(ﬁitf;ti)lh)]) =d (S Z] ; M(t) Of T Opy1 ¢:[?;tti)lh)]> . (83)

We now show that assumptions (A1) and (A2) of Theorem D.1 hold when the theorem is invoked
with this value function, from which the result will follow.

Verifying assumption (A1) of Theorem D.1. The policies p and w;t[;éi)m)] € Wi+Lh are

endogenous by condition (C1). Hence, the assumptions of the restriction lemma (Lemma B.2) are
satisfied, which gives

.o, (t+1,h) _ ! (t+1,h)
wléll%[)%] dp, (S [Z] 5 p' op mopyq T/JS[I(HL;L)}) = WGHIEIE[)JZ)ZD] dp, <8 [Z] 5 ' op o ws[z(tﬂ,h)])

@ (t+1,h) _ *) (t+1,h)
— ﬂ_rélﬂié] Vt,h (:u Ot T Ot4+1 ws[l—(t+1,h)]) ﬂerrfll?)in} V;fvh (U Ot T Ot+1 ws[:[(t-‘rl,h)]) )

Verifying assumption (A2) of Theorem D.1. By condition (C2), we have that Dise /12k-approximate
with respect to (p* o II[F<y] o WL | g (Z0+1M) 'R, and hence

dp, <8 [Z] ; HU) Of M Opy1 w?[;;TLh)]) —dy, (8 7] ; ,u(t) Of M Opy1 ¢;t[;ti)1h)]> ‘ <e€/12k

—

> (t+1,h) (t+1,h)
‘/;,,h </’L(t> Oy T0 Ot+1 ws[z(t+1,h)]> — W,h <,"L(t> Oy T Ot+1 ws[l‘(t""lvh)]) ’ S 6/12k.
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Appendix H. Proof of Theorem 4.1 (Correctness of ExoRL)

In this section we formally prove Theorem 4.1, which shows that ExoRL (Algorithm 3) learns an e-
optimal policy for a general ExoMDP. The correctness of ExoRL is essentially a direct corollary of the
results derived for OSSR and PSDP in Appendix G and Appendix F. The high probability guarantee
for OSSR (Theorem 3.1) implies that iteratively applying OSSRZ/ 29 results in an endogenous
7/2-approximate policy covers for every layer h € [H]. Conditioning on this event, ExoPSDP is
guaranteed to find an e-optimal policy with high probability (Theorem F.1).

Theorem 4.1 (Sample complexity of ExoRL). ExoRL, when invoked with parameter, € € (0,1) and

d € (0,1), returns an e-optimal policy with probability at least 1 — §, and does so using at most
(0] (AS3kH2(Sk + H?)k? log (%) - (€72 +n72)) episodes.

Proof of Theorem 4.1. We first show that OSSR results in a near-optimal (endogenous) policy
cover, then show that the application of ExoPSDP is successful.

Application of OSSR.  Let G denote the event in which OSSRZ/ 2’6( {T®}1) returns an endoge-
nous 7)/2-approximate policy cover ¥ with [ | < S* and let G<<M := ﬂZ,_:ll G™. Theorem 3.1

. - . AS {23 log ( 45AH
states that for all A > 2, if we condition on G<", then given N = O ( QOg( g )> sam-

n

ples, OSSRZ/ 29 ensures that G holds probability at least 1 — ¢ . Furthermore, G holds trivially
for h = 1. By Lemma A.4, this implies that P (Nf.,G™) > 1 — H4. Scaling § < 6/2H, we

conclude that given
A54kH2 k3 log dSAH

samples across all applications of OSSRZ/ 20 the collection {wmy thl is a set of endogenous 7/2-
approximate policy covers with probability at least 1 — 6 /2. We denote this event by Gossg, so that
P(Gossr) > 1 —4/2.

Application of PSDP. Conditioned on the event Gossg, the conditions of Theorem F.1 hold, so that
the application of ExoPSDP is admissible. As a result, given

AS3k HAR3 log (2542
NEXO.:SDPZO( . (=)

samples, ExoPSDP finds an endogenous e-optimal policy. We denote this event by Geyopspp, SO that
P (Gexopsop | Gossr) > 1 —6/2.

Concluding the proof. ExoRL returns an endogenous e-optimal policy when Gossr and Geyopspp
hold, and by the union bound P (Gossg N Gexopspp) > 1 — d. The total number of samples is

AS4k 213 log (nglH) . AS3k AR log (nglH)) |
,72 2

N = Nossr + Nexopspp < O ( ;
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H.1. Computational Complexity of ExoRL

The ExoRL procedure can be implemented with O(d* NS* AH) runtime. In Appendix E.3, we
show that ExoPSDP can be implemented in runtime O(d*NS*¥AH). Similarly, OSSRZ"S can be
implemented with runtime O(d* N.S* A). The most computationally demanding aspect of OSSR
is optimizing the function XA/t i (1 oy 7 op4q Tyt1.1) over the policy class II[.7<]. As shown in
Appendix F.3, this procedure can be implemented with runtime O(d* N'S* A), which is repeated for
H times in ExoRL.
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