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Abstract

We study convergence rates of AdaGrad-Norm as an exemplar of adaptive stochastic gradient meth-
ods (SGD), where the step sizes change based on observed stochastic gradients, for minimizing
non-convex, smooth objectives. Despite their popularity, the analysis of adaptive SGD lags behind
that of non adaptive methods in this setting. Specifically, all prior works rely on some subset of the
following assumptions: (i) uniformly-bounded gradient norms, (ii) uniformly-bounded stochastic
gradient variance (or even noise support), (iii) conditional independence between the step size and
stochastic gradient. In this work, we show that AdaGrad-Norm exhibits an order optimal conver-
gence rate of O(polylos(T)//T) after T iterations under the same assumptions as optimally-tuned
non adaptive SGD (unbounded gradient norms and affine noise variance scaling), and crucially,
without needing any tuning parameters. We thus establish that adaptive gradient methods exhibit
order-optimal convergence in much broader regimes than previously understood.

Keywords: Adaptive stochastic optimization, AdaGrad, Non-convex optimization

1. Introduction

Due to its simplicity, an enormous amount of literature, starting by Robbins and Monro (1951), has
sought to understand convergence guarantees for variants of stochastic gradient descent (SGD):

Wil = Wg — MGy,

for minimizing a function F'(-) using stochastic gradients g, and a step size schedule 7;. When
the (non-convex) objective function is smooth (i.e., has L-Lipschitz-continuous gradients) and the
stochastic gradients are unbiased and have affine variance!, i.e.,

Elg] = VF(w) and E[|lg - VF(w)|?| < of + o} [VF(w)|?, (M

* Equal contribution

1. While the proof of convergence under affine variance is not given explicitly in (Ghadimi and Lan, 2013), by slightly
modifying the step size choice, the analysis given in this work continues to hold with no additional modifications.
Indeed, this observation is made explicitly by Bottou et al. (2018, Theorem 4.8).
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then it is well-known that SGD with a properly-tuned step size (depending on L and o) converges to
a first-order stationary point with error O(1/vT) after T iterations (Ghadimi and Lan, 2013; Bottou
et al., 2018). Moreover, Arjevani et al. (2019) showed this rate is tight under these assumptions.

Given these results, it is natural to ask if knowledge of L and oy is necessary to obtain this
optimal rate of convergence. Indeed, this has been the motivation for adaptive step size algorithms
such as AdaGrad-Norm, where for any parameters 7, by > 0, the step size, 1, is given by

t
= bz’ where b7 = b3 + Z lg.ll? = b2, + |lg.l? (AG-Norm)

¢ s=1

Ward et al. (2019) showed that AdaGrad-Norm enjoys a O(les(T)/\/T) convergence rate even
when neither L nor o is used to tune the step size-schedule. However, their analysis only holds
when o; = 0 and the gradients are uniformly upper-bounded — an assumption which is violated
even by strongly convex functions such as F(w) = ||w]||>. In fact, (Li and Orabona, 2019, Sec-
tion 4) suggests that, due to the correlation between 7; and g, in the standard AdaGrad-Norm, the
assumption that the gradients are uniformly-bounded might be necessary to prove their convergence
guarantee. Although some works on similar adaptive SGD algorithms do not require the gradients
to be uniformly upper-bounded (Li and Orabona, 2019, 2020), their analysis only holds when the
step-size 7; is (conditionally) independent of the current stochastic gradient g,, and require sub-
gaussian noise (a condition which forces 01 = 0). However, disentangling 7; from g, is detrimental
to the normalization scheme, rendering these methods crucially dependent on the knowledge of the
Lipschitz constant L for determining their step size.

Extending these results from the bounded variance setting (07 = 0) to the affine variance setting
is important. Indeed, results that hold only for the case of bounded variance effectively require that
one has noiseless access to gradients when their magnitudes are large (see Remark 1 for more dis-
cussion). As opposed to the non-adaptive SGD setting where this extension is immediate (discussed
above), in AdaGrad-Norm (and more generally, in adaptive methods), the bias introduced by the
correlation between 7; and g, causes this additional variance to be significantly more problematic.

1.1. Contributions, Key Challenges and the Main Insights

We show that AdaGrad-Norm converges to a first-order stationary point with error O(poly log(T)/\/T)
after 7' iterations under the same noise assumptions as well-tuned SGD (stochastic gradients are
unbiased, with affine variance, as in (1)). Thus, we achieve a convergence rate with optimal depen-
dence on 7" up to polylogarithmic factors (Arjevani et al., 2019), even when the step-size sequence
is chosen without knowledge of L, g, or o;. In a sense, this establishes a “best of both worlds”
result for adaptive SGD methods, showing that they can converge at the same rate (up to logarith-
mic factors) as in (Ghadimi and Lan, 2013) without any hyperparameter tuning of the step-size
sequence. Our results show that neither the assumption of uniformly-bounded gradients nor the
assumption of uniformly-bounded variance is necessary; thus, adaptive gradient methods exhibit
robust performance in much broader regimes than what has been established by prior studies.

Our analysis must overcome two main challenges: (i) possibly unbounded gradients, and (ii)
an additional bias term introduced by affine variance. Prior work avoided or circumvented these
challenges via additional assumptions. Our work requires several new insights that we believe
may be of independent interest. Furthermore, as we state in Remark 14, these insights are broadly
applicable to related adaptive algorithms such as coordinate-wise AdaGrad. We outline these below.
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Main Challenge 1: Unbounded gradients. Prior work by Ward et al. (2019), under uniformly
bounded gradients and uniformly bounded variance assumptions, introduce a proxy 7; for the step
size in (AG-Norm). Unlike 7; (the true step size), this proxy is decorrelated from g,. Furthermore,
this proxy scales inversely to (the square root of) the sum of gradients. The boundedness assump-
tion is used to deterministically bound each individual gradient term in the sum, and thus derives a
lower-bound of E [1;] = Q(1/vT). This directly leads to a convergence rate of O(1/vT) to a first-
order stationary point in their context. Without the bounded gradient and thus, bounded variance
assumptions, however, it is unclear if E [1;] scales as €2(1/vT). Instead of assuming a uniform, de-
terministic bound on each summand as in the prior approach, we develop techniques of independent
interest that permit us to directly bound this sum in expectation.

Key Insight 1: Recursively-improving inequalities. We identify two properties satisfied by
AdaGrad-Norm (as well as related adaptive algorithms) — bounded iterate steps and norm-squared
step decay — which allow us to derive an initial lower bound of 7; = €(1/poly(T)) which holds
with sufficiently high probability, and a corresponding upper bound on the sum of the gradients of
> ierr) IVE (wy)||* = O(T?1og(T)). While this polynomial bound is too loose to result in any
convergence rate, it does provide a starting point. Our key technical approach here is a recursion,
where in each iteration, we improve both these bounds using a result that shows their product is
controlled by an invariant upper bound (Lemma 12). By infinitely recursing this argument, so that
constants or logarithmic factors do not “blow up,” we obtain an order-optimal bound directly on the
expected sum of gradients, eliminating the need for a uniform upper bound on individual gradients.

Main Challenge 2: Additional bias from affine variance. In the affine variance setting, the
expected difference in function value between consecutive time steps is bounded as:

t

[\')‘31

(1 — o1 bias,) | VE(we)|[* < E[F(wi) = F(wes1) | Fooa] +const E (17 [lgq]* | ft—l} , (2

where const is a constant which scales with oy and L. Whenever bias; > 1/o, then the “negative
drift” term from the bounded variance case, —7j; - | V.F'(w;)||*, becomes positive, making the deriva-
tion of the invariant upper bound identified above (in Key Insight 1, Lemma 12) a serious challenge.
The presence of this bias; is the reason that prevents the analysis from the uniformly-bounded
variance case to directly extend to the affine variance framework, as happens in the standard SGD
analysis of Ghadimi and Lan (2013) by simply scaling down the step size by 1/(1+02).

Key Insight 2: Focus on the “good” times. To handle this bias;, we first restrict our analysis to a
subset of time steps, Sgo0d = {t € [T'] : bias; < /20, }, which we refer to as the “good” time steps.
Intuitively, these are the time steps during which the bias; term is sufficiently small. As it turns out,
the overwhelming majority of time steps are, in fact, “good,” as shown in Lemma 8.

Key Insight 3: Compensating for the “bad” times. Although the overwhelming majority of
time steps are “good,” in order to get a convergence rate that depends on F(wy) — F™*, we still
have to reason about the “bad” time steps in Sgcood. As it turns out, if the gradient at even one of
these bad times is large (say, | VE(w;)||* = T%()) then our upper bound on F(wy, 1) — F(wy)
is prohibitively large, presenting a serious challenge for the convergence analysis. We circumvent
this issue using a novel approach that assigns nearby (in terms of time) “good” times to every “bad”
one, thereby mitigating the effects of “bad” time steps in the analysis. This compensation insight,
formalized in Lemma 10, coupled with the fact that “most” time-steps are typically “good,” allows
us to overcome the bias term introduced by the affine variance scaling.
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Related Work. Ghadimi and Lan (2013) were the first to study the convergence of SGD
for opimizing a non-convex, smooth objective function. They proved that a properly-tuned SGD
converges to a first-order stationary point at rate O(1/vT), if the step sizes are chosen as 7, =
min {1/ (1+03)L, f)/aoﬁ} for a constant D > 0. Further, Arjevani et al. (2019) proved that the
O(1/¥T) rate is unimprovable for any algorithm with only first-order oracle access, assuming the
function is non-convex, smooth, and the stochastic gradients are unbiased with bounded variance.

The original AdaGrad algorithm was proposed simultaneously by Duchi et al. (2011); McMa-
han and Streeter (2010) whereas Streeter and McMahan (2010) were the first to consider a variant of
AdaGrad referred to as AdaGrad-Norm. Ward et al. (2019) analyzed AdaGrad-Norm for minimiz-
ing a smooth, non-convex function with uniformly-bounded gradients. They showed that AdaGrad-
Norm converges at essentially the same rate as SGD, but without the need to know the smoothness
constant (albeit under the restrictive assumption that the gradients are uniformly upper-bounded).
In a simultaneous work, Li and Orabona (2019) studied a variant of AdaGrad-Norm where step size
1 is conditionally independent of the current stochastic gradient g,, unlike in the standard AdaGrad
setting. They provided a similar convergence guarantee without needing a uniform upper-bound
on the stochastic gradients, but requiring that the noise have bounded support and additionally re-
quiring knowledge of the smoothness parameter L to tune their step sizes. In a followup work (Li
and Orabona, 2020), the same authors proved high-probability convergence of a class of adaptive
algorithms (including their variant of AdaGrad-Norm, as well as coordinate-wise AdaGrad with
momentum) under the assumption of subgaussian noise. Note that, like the earlier result, their step
sizes needed to be tuned with knowledge of the smoothness parameter, and further needed to be
conditionally independent of the current gradient. Kavis et al. (2022) established high probabil-
ity results for AdaGrad without knowledge of the smoothness parameter in the bounded variance
regime, assuming that the norm of the gradients are uniformly upper-bounded (i.e., the objective
function is Lipschitz). They were further able to remove the Lipschitz assumption, but only when in
addition to bounded variance, the noise of the stochastic gradients is subgaussian. Gadat and Gavra
(2020) studied the asymptotic convergence of AdaGrad (as well as and RMSProp), where their
analysis requires uniform gradient bounds as well as uniform bounds on the 2nd and 4th moments
of the gradient noise. Very recently, Jin et al. (2022) established asymptotic almost-sure conver-
gence of the AdaGrad-Norm iterates to first-order stationary points. Unlike our work, they do not
provide rates of convergence, and their focus on asymptotics makes their analysis and results sig-
nificantly different. Zou et al. (2018) studied a weighted version of coordinate-wise AdaGrad with
momentum, where they assumed the gradients were uniformly bounded. Défossez et al. (2020) later
improved upon these results with respect to the dependence on the momentum parameter.

Several recent works have studied the convergence of other adaptive algorithms, all of which
are based on the assumption of uniformly-bounded stochastic gradients. For instance, Kavis et al.
(2019) developed an adaptive, accelerated algorithm that achieves optimal rates in the constrained,
convex (smooth and non-smooth) regime, without knowledge of the smoothness or noise param-
eters. Chen et al. (2018) studied the convergence of a class of Adam-like algorithms (originally
introduced by Kingma and Ba (2015)). Later, building on the results of Ward et al. (2019), Défossez
et al. (2020) improved on this analysis of Adam with respect to the dependence on the momentum
parameter and range of valid hyperparameters. Guo et al. (2021) provide an alternate analysis of
a class of Adam-like algorithms for different momentum parameter scaling. Savarese et al. (2021)
studied “delayed” versions of Adam (as well as a new algorithm they called AvaGrad), which makes
the step sizes 1; conditionally independent of the current stochastic gradient, g,.
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2. Preliminaries

We study the convergence of stochastic gradient descent with adaptively chosen step sizes for mini-
mizing a non-convex, smooth function F'(-) over unbounded domain R? with F* = inf ,cpa F(w) >
—oo. In our context, adaptive step sizes are those which depend on the current stochastic gradient, as
well as, potentially, those from past iterates. We focus on the AdaGrad-Norm algorithm (AG-Norm),
although our arguments readily extend to the coordinate-wise AdaGrad case (albeit, at a cost of ad-
ditional dependence on the dimension). We denote F; = o {w1,gy,. .., W¢, g;, We+1} as the sigma
algebra generated by the observations of the algorithm after observing the first ¢ stochastic gradients,
and use ||-|| to denote the ¢, norm. We assume the following throughout the paper.

Assumption 1 (Unbiased gradients) For each time t, the stochastic gradient, g,, is an unbiased
estimate of VF (wy), i.e., E[g, | Fi—1] = VF(wy).

Assumption 2 (Affine variance) For fixed constants o, 01

> 0, the variance of the stochastic
gradient g, at any time t satisfies E [Hgt —VEW)|? | Fior| <o

2
oot [VE(w)|™

Remark 1 (Motivation for Affine Variance) This scaling is important for machine learning ap-
plications with feature noise (including missing features) (Fuller, 2009; Khani and Liang, 2020),
in robust linear regression (Xu et al., 2008), and generally whenever the model parameters are
multiplicatively perturbed by noise (e.g., a multilayer network, where noise from a previous layer
multiplies the parameters in subsequent layers). More broadly, restricting to bounded variance (i.e.,
assuming a% = 0) is equivalent to assuming “noiseless” access to the gradient when the magnitude
of the gradient grows (e.g., a strongly convex function); this is because the stochastic gradient is an
arbitrarily small perturbation of the true gradient in this regime. Finally, as discussed earlier, the
analysis for non adaptive SGD is essentially unaffected by affine variance (Bottou et al., 2018).

Since E [(g, — VF(wy), VF(wy)) | Fi—1] = 0, we note that Assumptions 1 and 2 imply that
E |lgl” | Fiet| < 08 + (1403 IVF(wi) > 3)
Further, we will assume that the function F'() is L-smooth:

Assumption 3 (L-smoothness) The function F(-) is L-smooth, i.e., has L-Lipschitz continuous
gradients. That is, for every w,w' € R%, |[VF(w) — VE(w')|| < L ||w — w||.

A key property of AdaGrad-Norm is that the step-size sequence is tightly controlled:
Iwipr —will < and > [[wipr — wil|® < log(b3/e3). (4)
te[T)

In fact, variations of this observation have been noted for a number of AdaGrad variants (Ward et al.,
2019; Défossez et al., 2020). While simple, it is crucially important to our analysis, since, taken
together with Assumption 3, it implies that the gradient at time ¢ scales at most polynomially in t.

Lemma 2 (Polynomial control of gradients (informal statement of Lemmas 21 and 24)) Con-
sider any times t; < to € [T| during a run of algorithm (AG-Norm). Then, deterministically,

IVE(we,)[| = IVF(wey)[l] < nL(t2 —t1).
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Moreover, with probability at least 1 — 0, the following bound also holds

IIVE (Wi, )| = [V E(wey )l < nLy/(t2 — t1) log(poly(t2)/s).

As a consequence of Lemma 2, we derive } ;. 7y [| VEF(W¢) I = T(|VF(w1)||+nLT)? = O(T?)
deterministically, and an analogous bound of O(7? log(7/s)) with probability 1 — . Of course,
Lemma 2 only gives a much weaker control over ||V F(wy)||* than a uniform bound, and has not
(to the best of our knowledge) been previously exploited. However loose, this bound nonetheless is
one of the key steps to removing the uniform gradient bound, and may be of independent interest
(e.g., useful for refining the convergence rates for strongly convex problems).

As mentioned earlier, a key difficulty in analyzing adaptive algorithms is the bias introduced by
the correlation between the step size 7; and the stochastic gradient g, at each time ¢. To analyze the
convergence of such algorithms, it is useful to introduce the following “decorrelated” step size.

Definition 3 (Decorrelated step sizes) The decorrelated step size “proxy” at time t, which is in-
dependent (conditioned on the history F;_1) of g,, is denoted by 7 and defined as

- n
ne = .
V¥ + (o) [VEw) + o3

Notice that 7}; is the natural lower bound on E [, | F;_1] by applying Jensen’s inequality.

3. Motivating the Proof

We have discussed the two main challenges in Section 1.1: unbounded gradients and affine variance.
Now that we have the required mathematical definitions from Section 2, we discuss these challenges
in more detail. Adaptive stochastic gradient methods exhibit two difficulties not present in the non-
adaptive regime: (i) Since the step size 7; depends on the trajectory of stochastic gradients, one
must argue about the scaling of these stochastic gradients, and (ii) the step size is correlated with
the current gradient, g,, as well as the past gradients. These manifest themselves as follows: by
L-smoothness (Assumption 3) and the AdaGrad-Norm algorithm (AG-Norm), we have that

L 2
ne|[VEw)|* < F(wi) = F(wisr) =n (VE(w), g, = VEw) + = gl ()

When 7; and g, are conditionally independent, then the inner product term above is mean-zero. As
a consequence, as long as the step size 7; < 1/L(14+02), (5) immediately implies that

L 2
E| Y TIVEw)I?| < F(wi) = F*+ 20 o (©)
te[T) te[T]

Moreover, if n, = Q(1/vT), a O(1/vT) obtaining the convergence rate is immediate (see (Ghadimi
and Lan, 2013; Bottou et al., 2018) for details). In contrast, in the adaptive setting, the inner product
term of (5) may no longer be mean-zero, since 7; depends on g,. While Li and Orabona (2019)
circumvented this issue by studying a step-size sequence which depends on the past but not current
gradient, Ward et al. (2019) and Défossez et al. (2020) analyzed adaptive gradient methods by
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introducing (for the sake of analysis) a step-size proxy (identical to Definition 3 for o; = 0), iy =
n/ \/ b2 +||VF(wy)||*+02, which is conditionally independent of g,. Using that, (5) can be rewritten as

i |VE(w)||? <E[F(wi) — F(wi) | Fee1] + E (7 — me) (VE(wWy), g4) | Fii]

L2
+E |5 g | 7. Q

As noted in prior work, one can show that E {Z re[T] n?| gtH2 = O(log(T")) (note that this need
not be true in the non-adaptive setting; see Lemma 23 for a proof in our setting) and thus, for the
remainder of this discussion, we focus only on the remaining terms of (7).

Unbounded Gradients: Lower-bounding the step size. Although in the non-adaptive setting,
we could simply choose 7; = (1/vT), in the adaptive regime it is no longer obvious that such a
condition holds. One may observe, however, that by Jensen’s inequality and Definition 3

n
\/bg +Tod + (1+ 0DE |3y IVF(ws)|?

E[n] > E [7t] > ®)

As discussed in Section 1.1, it should be clear by observing (8) that the reason prior studies (Ward
et al., 2019; Gadat and Gavra, 2020; Zou et al., 2018; Défossez et al., 2020) assumed a uniform
upper bound on the gradients is to bound the denominator in (8). This allows one to conclude that
both 7; and 7; scale as Q(1/v/T) in expectation. Since our setting is one where neither the gradients
nor the variances are uniformly bounded, new techniques are required to get around this challenge.

Affine Variance: Upper-bounding the bias. The bias term in (7) presents another difficulty in
analyzing the rate of convergence in the adaptive setting. Specifically, in the affine variance setting

<

E (7 — ) (VE(We),g4) | Fio1] < —

. 20
(1-+ aubiass) [ V() + 2 [af g0l | Fica].
)

where bias; := 4\/ E [||9t||2/ ®2  +lg.1?) | ]-}_1] is the additional bias introduced by the affine vari-

ance scaling (see Lemma 5). Notice that in the bounded variance setting (i.e., o1 = 0), (9) corre-
sponds precisely to the bound obtained by Ward et al. (2019) which was used to derive

b |

E|) %Hvzr(wt)w < F(w1) — F* + ¢plog(poly(T)), (10)
te[T]

where ¢y = 20¢n + Ln*/2. This inequality is analogous to (6) and, combined with the lower bound
E[i] = Q(1/vT), immediately leads to the desired convergence rate. When o < 1/8, (9) takes
essentially the same form as (10), since, deterministically, E [ll9:1°/(2_, +]lg,]1%) | F¢—1] < 1. When
o1 > 1/4, however, the first term of (9) can potentially be quite large? and cannot be controlled
simply by scaling down the step size. Indeed, this additional bias can be problematic, since the
“positive drift” could completely cancel out the “negative drift”, i.e., the —7j; | VF(w;)||* term, in
(7). Handling this combination of negative and positive drifts constitutes our second challenge.

2. While one could control this term using a batch size of Q(c7), we are interested in the standard setting where the
batch size is 1, and the algorithm does not know the parameter 0.
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4. Main Results

In this section, we sketch out the key ideas that go into deriving a bound on the convergence rate of
AdaGrad-Norm to a first order stationary point. Our main result is the following:

Theorem 4 (Informal statement of Theorem 35) With probability at least 1 — 6, the iterates of
(AG-Norm) satisfy:

13/4
min [[VF(w)|2 < £18 (1)

11
te(T] BT (b

where C o< (1 + o1) (FW)=F*/y+ by + 00 + (1 + 07) [|[VF(w1)|| + (1 + a?)nL)2 + o(Y1).3
Moreover, when o1 < 1/8, then with probability at least 1 — 6,

. A+ 01B)log” (T)  C'log*(T)
2 (o0 1
min [VE(w)[|” < 52T T er

where A o< F(w\)—F*/n+ o9 +nL, B « (1+ Ui/Q)(bo + 00 + |[VF(w1)|| + nL+Fw)—F /)2,
and C" < (14 0%)(bo + o0 + nL + F(wi)—F"/p)2,

(12)

_ Theorem 4 demonstrates two interesting regimes for our guarantee. Namely, (11) shows a
O(1/vT) convergence rate for any choices of by, > 0, thus establishing our parameter-free guar-
antee. However, this bound does not recover the /T convergence rate in the “small-noise” regime.
Through a minor modification to the proof technique used to obtain (11), we are able to derive
(12), which demonstrates that (AG-Norm) recovers an (5(1/T) rate of convergence when oo, 01 =
O(1/vT) — the rate obtainable by a well-tuned gradient descent in the noiseless regime up to logarith-
mic factors. We emphasize that (AG-Norm) does not require a priori knowledge of the smoothness
parameter L or the variance parameters o, o1 to obtain either of the convergence rates in (11) or
(12). Indeed, (AG-Norm) adapts automatically to obtain the faster rate in the “small-noise” regime.

As highlighted in Section 3, obtaining Theorem 4 has two main obstacles: (1) devising a way to
deal with the additional bias; term introduced by the affine variance scaling, and (2) lower bounding

the step size proxy (for which, as we discussed, it suffices to upper bound E [Zte[T] VE(w)|[*]).
We now outline the main ideas needed to overcome each of these.

4.1. Bounding the Bias via a Compensation Argument

As displayed in (9), the affine variance scaling introduces additional bias that our analysis must
handle. Indeed, this bound taken together with (7) implies the following lemma.

Lemma 5 Let us recall the step size proxy, 1y, from Definition 3. Then, we have that

2
| f]
b1 + llg:l

' (1 — oybiasy) [VF(wy)||? <E[F(wy) — F(wit1) | Fie1] + o E

53‘431

where bias; := 4\/]E [“gt“g/(b%_1+”gt”2) | ]:t—l} is the additional bias term introduced by the affine

variance scaling and co = 209n + Ln*/2.

3. We use the notation = « y tomean 3 - y < & < « - y for some absolute constant « > [ independent of all problem
parameters.
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By Lemma 5, whenever bias; > 1/o,, we cannot upper bound 7 ||V F (w)||* as we could in the
bounded variance case (01 = 0). To overcome this issue, we utilize the following new ideas.

Key Idea: Focus on the “good” times. Note that, as long as bias; is small, the bound in Lemma 5
is still useful. Hence, instead of summing both sides of the expression in Lemma 5 for all times
t € [T], we need to focus on the good events and separate them from the bad events in which
bias; > 1/51. To do so, we first formally define the good time instances as follows.

Definition 6 (“Good” times) Using the notation from Lemma 5, we call a time t € [T'] “good” if
1 — oybias; > %, and denote Sgo0q as the set of all such times in the interval [T). Similarly, we call
atimet € [T] “bad” if it is not “good,” and take Sgood as the set of all bad times.

By this definition, the “good” times are those for which a bound on 7, |V F (w,)||? is preserved. By
summing the expression in Lemma 5 over only the “good” times and applying the second inequality
from (4), we can derive the following result.

Lemma 7 (Informal statement of Lemma 25) Recall the step size proxy of Definition 3 and the
notation in Definition 6. With co = 2001 + Ln*/2, we obtain

E| Y %HVF(Wt)HZ < F(wi) = F* + colog(poly(T)) +E | Y F(wi) = F(wy) |,
teSgood tgsgoc’d
(13)

The above expression is almost the same as the expression (10) which was obtainable in the bounded
variance case. The main differences are: (i) the residual term involving the deviations at the “bad”
times, and (ii) the summation over only Sg,0q instead of all times [T]. Since most times are typically
“good”, as we show in Lemma 8, (ii) is not a serious issue. However, the magnitude of the deviations
in “bad” times could be large, casting (i) a more serious hurdle.

Lemma 8 (Informal statement of Lemma 26) Let S04 be the set of “good” times from Defini-
tion 6. Then, we have that, when o1 < 1/, then |S§00d| = 0, and otherwise*

E [|S¢00al] < 6407 log(poly(T)) and E[|S5,ql*] < (6407 (1 + 12807) + 2) log®(poly(T)).

Proof sketch An alternative condition that is equivalent to the one in Definition 6 is ¢ is “good”
it E [77? lg.l? | ]-"t,l} < . Since n? |lg,|*> < n? by construction of (AG-Norm), it follows

- 640'%
immediately that all times are “good” (i.e., Sgoo 4 = 0) whenever o1 < 1/s. In the opposite case, this
alternate condition allows us to argue about the expected number of “bad” times via a pigeonholing
argument. Specifically, by the tower rule of expectations and the definition of 7, one can show (see

Lemma 23 for details) that

E| SB[ gl | Fia] | =B | S 0 g, | = B los(/)] = n log(poly(T)).
te[T) te(T]

4. As an aside, using essentially the same arguments, we can show that |Sg,q| satisfies the Bernstein condition with
parameter const - log(7"), which implies that, with high probability, |Sg,oq| < const - log?(T).
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Hence, if more than 6407 log(poly(T')) times were “bad” in expectation, then since each bad time

leads to E |12 [|g,||° | ]:t,l} > n°/6402, we would reach a contradiction to the above bound. [ |

This result shows that most times are “good.” Hence, replacing the sum over all time instances
with summation over good time instances in (13) would not be a major issue, as long as we can
ensure that the additional term corresponding to the bad events, i.e., E[3 ;o F(Wii1)—F(wy)],

ood
would not lead to a vacuous upper bound. Next, we formally show how this goal can be achieved.

Key Idea: Compensating for the ‘“bad” times. Lemma 7 shows that, even when we focus on the
good times, we still must argue about the deviations at bad times to obtain a convergence guarantee.
In order to address this problem, we begin by rewriting Lemma 7 by: (i) upper bounding the “bad”
times using the (potentially quite large) bound obtained from Lemma 5, and (ii) subtracting some
of the “good” deviation terms from both sides to compensate for the bad terms.

Henceforth, we associate each “bad” time ¢ with a set of compensating “good” times, denoted
by S, [Ct‘])mp, such that all compensating sets are disjoint. Further, we denote the union of these sets

with S€omP = Utese, g S ﬁ(])mp and the remaining good time steps with S := Sgood \ S™P. Hence,

immediately from Lemma 7, we derive the following.

Lemma 9 (Informal statement of Lemma 27) In the same setting as Lemma 7, we have that

E |32 VE(w)|” | < F(wi) = F* + colog(poly(T)
teS

40' -1 - ﬁ/
vB| Y (Y vre - Y o ree ||

t€Sgo0d vesy™?

where S 1= Sgood \ SP are remaining “good” times after compensation, and co = 2001+ Ln?/2,

The above expression is promising in the following sense. If for every “bad” time ¢ € Sgood one
comp

could find enough compensating “good” times ¢’ € S g with 7y |V F(wy)||* of the same order
as the analogous term for ¢, then the last term in Lemma 9 could be bounded deterministically as a
function of the size of the bad set, go oq/- By Lemma 8, both the size of this set and its square are
no more than O(poly log(7")) in expectation. Hence, this bound suffices to recover an expression
similar to (10). The next lemma gives insight into how one can select such “compentating” times.

Lemma 10 Recall the step size proxy 1y from Definition 3. For any time t € [T| and set S [Ct?mpc [T)
such that (i) t > max(S[CtTmp) and (ii) \S[Ct(])mp| = Neomp = max{8 [401 — 11,0},

40’1—1
2

2
n° LNcomp

S (t — min(Sp™)).

[t]

A VEw)I* = Y VEw)|* <

/ comp
vessy

The above result serves as our guide for constructing the set S to upper-bound the residual
term from Lemma 9. Indeed, it tells us that, in order to bound the deviation 7, |V F(w,)||* at a
bad time ¢, we should not simply pick arbitrary “good” times to offset this deviation. Instead, we

10
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should pick times which are as close as possible (in time) to t. Perhaps surprisingly, it suffices to
use the deviations at a constant n¢omp, = O(c1) number of “good” times to compensate for the
deviation of ¢. Importantly, these “good” times which we choose must come earlier in time than
t, since the step size proxies are “effectively” decreasing over time, and thus the proxies at good
times after £ might be significantly smaller than 7;. To see why selecting these nearby earlier times
suffice, recall that the AdaGrad-Norm algorithm (AG-Norm) always takes steps of constant length.
Therefore, by L-smoothness, the gradients at nearby time steps must also be of the same order.
Thus, by choosing nearby, earlier compensating times, we can ensure that both (i) the gradients and
(i) the step size proxies at these good times are of the same order as those of the bad time. We
describe this construction in full detail in Appendix D, where we additionally include Fig. 2, which
shows an example configuration of these compensating “good” times.

This greedy compensation construction alone, however, is not sufficient to bound the residual
term in Lemma 9, since it might be the case that some bad time ¢ € Sgcood has insufficiently many
good times to compensate for it (e.g., if ¢ = 1). We show in Lemma 11 that, whenever we cannot
compensate for ¢, this time must, in fact, be very small (O(log(7")) in expectation). Moreover, since
the deviation at any time ¢ can be upper bounded by ¢ (because 7, | VF(wy)||*> < n||[VF(w)|| =
O(t) by Lemma 2), the corresponding deviation must also be O(log(7’)) in expectation. Further,
our greedy construction deterministically guarantees (as we show in Lemma 11) that compensating
times for ¢ will never be more than (’)(|S§00d|) time steps away from ¢. Thus, the deviations at these
bad times also will never be more than O(log(7’)) in expectation, by Lemmas 2 and 10.

Lemma 11 There exists a construction of S°™ = Uy¢ge d]S[Ct(])mp, where S[Ct(]jmp denotes the
goo
compensating “good” times for a bad time t € good (disjoint from other Sftf])mp ), satisfying

|S§Tmp| <Neomp :=max{8 [451—1],0} and t >max(Sf; "), where one of the these holds:

[t]
1. |S[Ct‘fmp\ = Neomp and, if Neomp > 0, then t — min(S[Ct(])mp) < Neomp * |Sgood|

2. |S[(;}Omp‘ < ncomp andt S ncomp : ’S§00d|

By condition 1 of Lemma 11 combined with Lemma 10, the deviation at a “bad” time ¢ can
always be bounded by O(|S 200 4|) whenever there are enough times to compensate for it. Whenever
there are not enough compensating times for ¢, condition 2 of Lemma 11 implies that this time ¢,
and thus also the associated deviation (as we discussed above), must be bounded by (’)(]Sgood]).
Therefore, the total deviation cannot be more than O([Sg,,q %), which is O(log?(T)) in expectation
by Lemma 8. Through these observations, we obtain our desired bound, the analogue of (10). For
more details on the arguments presented here, refer to Appendix D, where we include all proofs, as
well as a flow-chart of the main ideas in Fig. 1.

Lemma 12 (Informal statement of Lemma 30) Let the set S°™P from Lemma 9 be chosen as in

Lemma 11. Then, denoting S = Sgood \ SCMP as the set of “good” times after compensation,

E |32 IVEw)| | < F(wi) = F* + ey - logh(T), (14)
teS

where c1 o« oo + Ln? + (no [|[VF(w1)| + Ln?0?) 1{o1 > 1/s}.

11
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With Lemma 12 in place, we are very close to obtaining a (5( 1/yT) convergence rate. Indeed,
if we knew deterministically that 7; = 2(1/vT), then substituting in Lemma 12, we could conclude

that E [Zte§ |IVF (Wt)Hz} = O(V/Tlog*(T)). This would immediately imply a convergence
rate of E [mintem |V E(wy) HQ} = O(1/¥T) by lower bounding the average by the minimum, and

noting that ]§ | = Q(T') with high probability (an easy consequence of Lemmas 8 and 11). However,
since 7j; is a random variable which can be significantly smaller than 1/v/T on some sample paths,
deriving the required bound is challenging. Below, we formally show how we address this.

4.2. Bounding the Expected Sum of Gradients via Recursive Improvement

As mentioned above, to finalize our convergence result, we need to show that E [;] = Q(1/vT).
However, the naive bound one can derive for E [1};] as an immediate corollary of Lemma 2 is worse
than what we require. We show instead that we can start with a loose lower bound on 7; which holds
with sufficiently high probability and recursively improve it to obtain our desired bound on E [7].

Key Idea: Recursively-improving inequalities. We initialize the recursion with an upper bound
onE > HVF(wt)HQ} < O(T?1og(T)) from Lemma 2, and use this to derive a lower bound

on 7); with high probability (Step I). Next we use the upper bound on the expected sum of products,
St || VF (wy)||? (the caveat being that the sum is over most but not all of the time indices), from
I

Lemma 12 to decrease the upper bound on E |3,y [|[VF (W) } (Step 3). This iteration is now

recursed ad infinitum, resulting in Lemma 13. Crucial to this iteration is the observation that the
upper bound in Lemma 12 remains unchanged even as the lower bound on 7; and upper bound
on E [Zte[T] IVF (wt)‘ﬂ evolve — hence, we term Lemma 12 as the “invariant upper bound”
property. While this description gives the main intuition, using this requires more care (see Steps 2
and 3) because the relation between 7 and 3¢y |V F (wy) || is over all times, whereas the upper
bound in Lemma 12 contains only the “good” times that are not used for compensation.

Step 1: Lower bounding 1;. We start with an upper bound on the expected sum of gradients,

E [Ztem ||VF(wt)||2} < T log?(h(T)), where ¢y is a sufficiently large constant, h(7T) is
a polynomial function of 7', and = and y are parameters which can initially, as a consequence of
Lemma 2, be chosen as = 2 and y = 1. This directly implies an analogous bound on E [b%._, | (re-
call that b is defined in (AG-Norm)) through (3). Thus, one immediately obtains, through Markov’s
inequality, a loose upper bound on b2._; < co T log??(h(T')) which holds with probability at
least 1 — O (log? "2 (A(T))/T71) (Where we set y; = (4—=)/3 and 2 = 2(y—1)/3). Thus, taking E7(J) to
be this high probability event, and applying the deterministic bound on ||V F'(w;)|| from Lemma 2,
we obtain a lower bound for each 77, whenever £7(0) is true, which we use to obtain:

tesS
V/2¢o T+ 1og™2(h(T))
15)
Step 2: Bounding the “good” terms. To remove the indicator function in the lower bound, one
can use the fact that |} [Zteg at oIk 11{&(6)}} ~E [Zteg IV E(w)|)? (1 — n{gT(a)C})] :
and the polynomial upper bound that we have on the gradients sum from Lemma 2 together with

nE [ZjIVF(Wt)H2 11{5T(<5)}]

E DY allVEw)I?| =B D i [VF(w)|? 1{&r(8)}| =
teS teS

12
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an upper bound on the failure probability of £7()¢. Moreover, we importantly use the “invariant”
upper bound on E [Z gt IVE (wy) ||2} from Lemma 12 together with the lower bound on this
same quantity from (15) to conclude that

E [ IVF(wy)|?| < 277 log's (A(T)). (16)
teS

Note that this is almost an improved bound on E [Zte[T] |V F(wy) HQ} However, the summation
range in (16) is a subset of [T] that almost has the same size.

Step 3: Bounding the “bad” terms. It remains only to bound E {Z 148 IVE(wy)|?|. Recall
that, by construction of S°™P in Lemma 11, |S“™| < neomp - ]S§00d|. Further, by the result

in Lemma 2, each |[VF(w;)||> = O(Tlog(T)) with probability at least 1 — T2, and O(T?)
deterministically. Hence, by using Lemma 8 to bound the expected size of |Sgc00 4/> we obtain that

E | IVE(we)|? S%Tlogz(h(T)). 17)
tgs

Thus, by combining the results of (16) and (17) (recalling the constraint that x > 1), we conclude
that E [Ztem HVF(wt)HQ} < o T3 10g"™/3(h(T)). We may thus use this improved bound
recursively in place of the original choice of = and y from Step 1. The conclusion of this “recursive
improvement” argument is that E [Ztem ||VF(wt)||2} = O(T), which, by Jensen’s inequality,
implies E [77;] = Q(1/v7). This result is summarized in Lemma 13. For more details on the argu-

ments presented here, refer to Appendix E, where we include all proofs, as well as a flow-chart of
the main ideas in Fig. 3.

Lemma 13 (Informal statement of Lemma 31) Suppose that, for some parameters x € [1,4],
y > 1, h(T) a sufficiently large polynomial function of T, and sufficiently large constant cs,

¢z oc b + off +max {1,097} (|VE(wa)[|* + 77 L?) + (Fov)=F /)%,

we have that E [Zte[T} |V F(wy) ||2} < cg T"log?(h(T')). Then, the following tighter bound also
holds:

E| Y IVEW)[?| < 2T log™s (h(T)). (18)
te[T)
In particular, as a consequence of Lemma 2,
E| Y (IVE(w)|?| <2 TlogZ(h(T)) and E[fi] = QYVT). (19)
]

te(T

13
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4.3. Wrapping up

With these bounds from Lemmas 12 and 13 in place, obtaining the convergence result for (AG-Norm)
in Theorem 4 is immediate. Indeed, we note that Lemma 12 gives us essentially the same bound as
the one obtainable in the uniformly-bounded variance case (10) (modulo the summation over the set
S instead of all times [T]). Therefore, we may apply (essentially) the same Holder’s inequality ar-
gument as in (Ward et al., 2019), replacing their application of the uniform gradient bound with our
bound on the expected sum of gradients from Lemma 13, and taking extra care that our summation
from Lemma 12 is over a random set S. We give the full proof of this theorem in Appendix F.

Remark 14 While we focus in this paper on the convergence rate of one particular adaptive SGD
method, our methods are not overly specialized to AdaGrad-Norm. Indeed, using nearly identical
arguments per coordinate, we can obtain similar O (1/VT) convergence rates under similar assump-
tions for coordinate-wise AdaGrad, albeit with an additional polynomial dependence on d.

5. Conclusion

In this paper, we extended the analysis of AdaGrad-Norm to the setting where the gradients are
possibly unbounded and the noise variance scales affinely. We showed that under these conditions,
together with the standard smoothness assumption, the iterates of (AG-Norm) reach a first-order
stationary point of a nonconvex function with an error of O(poly log(T)/\/T).
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Appendix A. Preliminaries
Here, we provide proofs for claims from Section 2, as well as some auxiliary results and notation.
We additionally state some definitions that will be useful for proving our results.

Lemma 15 For any sequence {as}32, such that ag > 0 and as > 0 for all s,

T T

Zztat <1+log (Zat> —log (ap)

t=0 s=0 as t=0

Proof The base case of 7" = 0 holds with equality. Let us now assume that the claim holds at 7.
Then, we have that

T+, T a
t T+1
Z — < 1+log (Z at> —log(ao) + 75—
T T+1
t=0 Zs:O as t=0 Zs +O
T T+1
<1+log (Z at> log(ap) + log (M>
t=0 Zs 08s

T+1
=1+ log (Z at) log(ayp),

where the first inequality holds by the induction hypothesis, and the second because of the fact
—log(1 — x) (where log(-) denotes the natural logarithm). [ |

Our analysis will focus on adaptive gradient algorithms with a particularly convenient structure,
which we refer to as the Bounded Step-Size Property

Definition 16 (3.cp-Bounded Step-Size Property) We say that an optimization algorithm has
Bstep-Bounded Step-Sizes if, for any pair of adjacent iterates (W, Wyy1) generated by the algo-
rithm, the following inequality holds deterministically:

Hwt-‘rl - Wt” < Bstep-
Another convenient property of the algorithms we study is what we call the Decay Property:

Definition 17 ((qecay, bo)-Decay Property) We say that an optimization algorithm satisfies the
(Bdecay» bo)-Decay Property if the iterate sequence {w},c[7) satisfies the following inequality de-
terministically:

t=1

Z W1 — Wil|* < Baecay - log <1 + Z HQtH ) .

We observe that these property is satisfied by a number of interesting adaptive gradient algo-
rithms.
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Observation 18 AdaGrad-Norm has n-Bounded Step-Sizes and (n?, by)-Decay. The first follows
since for any time t > 0,
gl
e = will = n—— 2 <
bi_1 + gl

The second is an immediate consequence of Lemma 15, taking ag = b3 and as = || gS||2 for s > 0.

Observation 19 Coordinate-wise AdaGrad (with coordinate-dependent step sizes
n

bt2—1,z‘ + (gt,z‘)

Nti = 5

has 1-v/d-Bounded Step-Sizes and (dn?, by)-Decay. The first follows since since W1 — W] <
n for every coordinate i € [d]. The second follows by applying Lemma 15 to the sum of |W11,; —

(gz,i)2
b2

2 2
Wil =
tﬂ’ n 171’i+(9t7i)

5 for each coordinate.

Remark 20 We note here that all of the remaining results in this section could be stated in more
generality by using Definitions 16 and 17. To showcase our ideas in the simplest manner, we will
state everything in the context of the AdaGrad-Norm algorithm (AG-Norm).

By Assumption 3 and Observation 18, we also have the following simple, but quite useful, facts,
which give us crude but, crucially, polynomial (in T) bound on ||V F (wy)||*:

Lemma 21 Consider the AdaGrad-Norm algorithm (AG-Norm) running on an L-smooth objective
function F'. Then, for any times to > t1,

IVE(we) || = IVE(we)|l| < nL(t2 — t1).
In particular, this implies that
IVE(w)|| < IVF(w1)ll +nLt

Proof The proof follows by first applying the triangle inequality and using a telescoping sum to
bound
to—1

Y VF(wgp1) - VF(w,)

s=t1

IVE W) = IVE (W)l < [[VE(wiy) = VE(w, )| =

)

then noting that, for each s € [t1, t2], by Assumption 3 and Observation 18,
IVE(Wsi1) = VE(Wy)|| < L[Wsi1 —wl| < L -7,
|

The above bound on ||V F(wy)|| is quite useful, since it guarantees a polynomial (in T') bound
for ||V F(w;)|. However, note that this bound is much more crude than the bound assumed by Ward
et al. (2019); Défossez et al. (2020) (where they assumed ||V F'(w) H2 < B < oo for every t). It
turns out that, on “nice” sample paths, a significantly tighter bound can be derived. Intuitively, these
sample paths are those for which the quantity b% = b3 + Zthl llg,||* is bounded by a polynomial
inT.

17
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Definition 22 (Nice event) For any time s € {0}U[T] and failure probability § € (0, 1], we define
the following “nice event”:

508 + (1+ ODE [Cyery IVF(wo)|P

(20)

and take E5(6) = () for 6 > 1.
We note that, by construction, Markov’s inequality tells us that this event occurs with probability
at least 1 — 6, i.e., Pr[E5(0)¢] < 0. Further, taking

v 2 *(IVF(w1)|l + nLs)?, 1)
0

it follows (by upper bounding E [Zte[s] ||VF(WS)||2] < s(|VF(w1)| + nLs)? by Lemma 21)
that, whenever E(3) is true, we have that b3/s3 < f(s)/s.

As we will soon see, bounding the quantity Zte[T] w1 — wy||* will be crucial in many parts
of our analysis. Under the “nice” events from Definition 22, this quantity can be easily controlled:

Lemma 23 For any choice of b3, and any sample path, (AG-Norm) satisfies

T b2
D lwisr — wil|” < n*log (b€> : (22)
t=1 0

Further, assuming that the “nice event” (20) (E5(0)) is true at time s € [T, and taking f(-) as in
(21),

T
E|D lwet —wil? | fs] < log (£(1)/s). (23)
t=1
In particular, since Ey(1) is (trivially) always true, the above implies that
Z W1 — wi ] < log(f(T)), 24)
Additionally, when E1(6) (the nice event at time T') is true,
T
> lwipr — wel|* < 5’ log (/(T)/s) . (25)
t=1

Proof We already established (22) in Observation 18. For the remaining inequalities, we may
assume without loss of generality that 6 < 1. Indeed, whenever § > 1, then £(d) = () by Defini-
tion 22, and thus &,(4) is never true, so all of the claims follow trivially.

To show (23), we note that, on any sample path, by (22) and Jensen’s inequality,

T E[lg)?| 7|

T
S llweer — well? | F. bt llg:II*
2 2 t
E|D Wi —we|” | s]<nE[log( >’f}<7710g 1+§ T ) 7

t=1 0 t=s+1

18
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To bound this term above, first observe that, as noted in (3), Assumptions 1 and 2 imply that
Ellgil* | Fia] < 08 + (14 03) [VF(we).

Further, when (20) (€5(9)) is true at time s, we have that, by Lemma 21,

s 2 2 2
1 S gl < sog + (1 +0?)E [Ete[s] [V EF(wy)l } _ 502 4+ (14 03)s (|[VF(wy)| + an)Q.
Ch=f bgo = b5

Combining the above bounds, we conclude that

T 2
Tog + (1+o})T (|[VF(w1)|| +nLT T
E § :Hwt—‘rl - WtH2 ‘ -Fs < 772 IOg 1+ 99 ( Ul) (HQ ( 1)” n ) < 772 IOg M ,
P bgo 4]

as claimed. Finally, observe that (24) and (25) follow immediately from (23), taking s = 0 (noting
that £y(1) is true deterministically) and s = T', respectively. [ |

2

B

With the above construction in place, we are ready to give a slightly stronger bound for ||V F'(wy)
improving upon Lemma 21 (with high probability) in many interesting regimes.

Lemma 24 Consider any time t € [T| during a run of (AG-Norm) initialized at a starting point
w1, and is currently at iterate wy. Then,

IVE(w)|[* < 2| VE(w1)l* + 20° L%t - log (/53)
and additionally, assuming that £,(5) from Definition 22 is true, and taking f(-) as in (21), then
IVE(w)|* < 2| VE(w1)l* + 20 L%t - log (f(2)/9) -

Proof The proof follows effectively from the same arguments used to prove Lemma 21, only using
the improved bound from Lemma 23 in place of Lemma 21. Indeed, using the same decomposition,
and applying Cauchy-Schwarz, we have that

t 2
IVF(wo)|l* < 2 [VE(w)|? + 2L (Z [ - wsu>

s=1

t
<2 VEw)IP +222 Y Wi — i

s=1

2
< 2||VF(w1)|* + 2L%)%t log <Zg>
0

where the first inequality follows from the decomposition used in the proof of Lemma 21, the second
follows by Cauchy-Schwarz, and the third from Lemma 15.
The second claim follows immediately from the above, combined with Lemma 23. |
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Appendix B. Deriving the Starting Point
Here, we provide the proof for the starting point of our analysis, Lemma 5, from Section 4.

Lemma 5 Let us recall the step size proxy, 1y, from Definition 3. Then, we have that

=l

! (1 — oy bias;) ||VF(Wt)||2 < E[F(wy) — F(wiy1) | Fie1] + coE

v |

b7y + llg.ll

2
[ ]
D) t—11 >

where bias; 1= 4\/E [\\9t\\2/(b§_1+||gt||2) | ]-"t,l] is the additional bias term introduced by the affine

variance scaling and cy = 209m + LWQ/Q.

Proof We will begin by using our assumption of L-smoothness, along with the definition of the
algorithm, to get the bound:

L
F(wit1) = F(we) < (VE(We), Weir = wi) + 5 [Wep = wil
Ln?
= —m (VE(we), g,) + =" lgell”

L 2
=~ [VE(wo)|* = m (VE(w). g, = VE(w) + = llga|

Now, as noted in Ward et al. (2019), the inner product term is not zero in expectation, since 7
depends on g,. Hence, we introduce a step size proxy 7; from Definition 3, which is independent of
g, (conditioned on F;_1). This choice, unlike 7, satisfies:

B (VE(Wt),9, = VE(Wt)) | Fi1] =0

Hence, by taking expectations of our first inequality and adding this mean-zero quantity to the
resulting expression, we have that

E[F(wis1) | Fio] — F(wi) < =i [VE(wi)[|> = E (e — ) (VF (W), g4) | Fi1]

L772 2
D g, | f]

E
+E| S

We will now focus on bounding the second term. Observe that, denoting a = b? | + ||g,||* and
b="b7_ 1+ (L+01) [VE(wW)|* + o,

e — T
n

Vb -/
Vab

-l A
“Va bl T ~ | Vab(v/a + V)
From this, we conclude that
L+ o) IVFw)|* + 0 — llgill”
Vab(y/a +/b)
[UVEwoll = g DUVE W) + llgel)| + o3 + of |V F(w)||?
Vab(v/a + V)
lg, — VE(w)| + \/o? + 07 [VE(wy)]?

VI il 02+ (4 0D [VEw)? + 03

Ne — Tt
n

<
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Plugging this bound into the above, and taking expectation with respect to the filtration at ¢ — 1,
we have shown that

E[F(wit1) | Fe—1] — F(we)
< =i [|[VF(wy) ||

lg: = VEW) [ [VE(w)| [lg.l

5 | Fio1
w)t Lt lgal? B+ (L 02 [VE(w)|? + o3
03 + o [VE(we) | [IVF(wy)]
Vob + ot IVF(w Mgl ol 5,
Vi QoD IVEe)IP + 03 [ \J8 + g
L172

T

g
ol
by 1+ 1lg:ll

We will now show that the second and third terms above have the same upper bound. Focus on the
second term above, we apply Holder’s inequality and the affine variance assumption to conclude
that

lg: = VEwW)[[ [[VE(w)| [lg:l

> | Fe1
w)t L+ llgel? B+ (L 02) [VE(w)|? + 3
_ | IVFOIPE g = VEGOI* | Bt T g, . ]
>~ t—1
b+ (L+od) [VEwo) > +08 (67, + gl
_ |IVFE)I (g + ot IVF®I) T g, .
= t—1
b+ (L) [VEw)I? + 08 [0, + gl

Now, focusing on the third term, by Jensen’s inequality to the concave function /-, we know that

2 2
E’gt’z‘ft‘l :E[ bz’gt’z\ft—llﬁ szgtuz\Ft_l]
b7y + [lg.l i1+ llgell i1+ gl

21



THE POWER OF ADAPTIVITY IN SGD

which show that the second and third terms have exactly the same upper bound. Combining these
expressions and rearranging, we find

E[F(Wis1) | Feor] = F(wi) < =i [V F(wo)|*

%fo + o2 [VF(w)|2 [VE(wy)|

2
g
al®
bt—1+||gt||

w) (1+0%) [VE(w) | + 07
L 2
Lty | el f]
bi_q + gl

< =i [V F(wo)|?

o0 |V F(w [ 2
o o [VF(wo)l o
\/b?,1 + (1402 |[VF(w)|* + od b1+ [lgll
o1 [|[VE(wy)|? [ 2 |
Lo A CTRR Y Y
VB + A+ [VEw)P +03 \ LW+l
Ln? 2
Ly | led® f]
bi_1 + llg:l
To conclude, we can bound the second term above, using the inequality ab < %az + %bQ, choosing
VillVE(w)| b= 2110 E {ith . ]]—“t_l]. After
\/b (1402 [VE(w) |2 +02 \/b (1402 [ VE(wo) | +02 b1 +llgll
grouping the resulting expressions, we arrive at the claimed inequality. |

Appendix C. Most Times are (Typically) Good

Here, we provide proofs regarding properties and consequences of the “good” times (Definition 6)
from Section 4.

Lemma 25 Recalling the step size proxy of Definition 3 and the notation in Definition 6, we obtain

= 2
it * g
Bl Y T vrw)l? [ < Fov) - FrraE| Y A9l E ] S plw) -

tESgood tesgood bt_l T Hgt” tgsgood

401 — 1 _
< F(wi) — F* +colog(f(T) +E | > 12 i [VE(wy)|?]
tgsgood

where co = 200n + Ln*/2, and f(-) is the function defined in (21).
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Proof The proof is an easy consequence of Lemma 5 together with the fact that {t € Sy0a} € Fi—1.
Indeed, by construction of Sgo,q, Whenever ¢ € Sgood, We have that

1—40’1

g 1

T Pt
by + gl
Therefore, Lemma 5 implies that, whenever ¢ € Sg04,

E [F(Wit1) — F(wy) | Fe—1]

2 2
[VF(ws)] (s 2

2
_n lg.ll
B+ (o) [VEw)I? + 03 ?

bf 1+ llg.ll

IN

5 !Eq] (26)

Summing this expression over all “good” times ¢ € S04, recalling that {t € Sgo0a} € Fi—1, and
applying the tower rule of expectations, we find that the LHS of the resulting expression can be
written more simply as:

Y E[E[F(Wir1) = F(we) | Fot] 1{t € Sgooa}] = D E[E[(F(Wit1) = F(we))1{t € Sgooa} | Fi-1]]
te[T) te[T]

= Z E [(F(WtJrl) — F(Wt))ﬂ{t € SgoodH

=E| ) F(wi) - F(w)
teSgood
Thus, applying the same argument tower rule argument as above to the RHS of (26) after summing
over all £ € Sgo04, and rearranging, we obtain

n 2 400 4 L 2
Bl Y T vrw)? | <E| Y Flwe) - | + T Eg | s odE
tesgood tESgOOd tesgood bt—l + HgtH

Observing that, by adding and subtracting E [ZteZSgood F(wy) — F(wt+1)] to the above expres-

sion, and by upper bounding F'(w1) — E[F(wr)] < F(w1) — F*, we obtain the first inequality.
To obtain the second inequality, we note that, since {t & Sgo0a} € Fi—1, We may use the
same arguments as presented earlier, along with the observation that, since l9:/1°/b?_,+]g,|?) < 1

deterministically, 1 — 40 \/IE [||gt||2/(b%_1+HgtH2) | ]-"t_l] > 1 — 4074, to conclude that, whenever
13 g Sgooda
E[F(wit1) = F(wy) | Fioi]

VF 2 Ln? 2
" 4o -1 [V F () (oo Ve[ 105 )
i (o) I FE 23 i1+ o

Summing and taking expectations of the above expression, using the resulting expression to bound

2
[§ 125004 F(wgy) — F(wt)] , and using Lemma 23 to bound E [E Z;l b2|1|i-t||||gt||2:| <log(f(T)),
t—

we reach the desired inequality. |
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Lemma 26 Let Syo0q be the set of “good” times from Definition 6. Then, we have that, when

o1 < Vs, then |SS, 4| = 0, and otherwise®

E [|Sgo0al] < 6407 10g(f(T)) and E[|Sgooql?] < (6407 (1 + 12807) + 2) log*(T*f(T)),
where f(-) is as defined in (21).

Proof Observe that an equivalent condition for a time ¢ to be “good” in the sense of Definition 6 is:

lg.|I* 1
| 1| S —
by + llgl” 6o

Whenever o1 < 1/s, the above inequality is (trivially) true deterministically since lg:1%/6?_, +|lg,|2 < 1,
implying that S;, 4 = (). Thus, we will focus on the case when o > 1/8.
We first prove the first inequality. Note that, if ¢ & Sgooa, then E [llg:1°/52 | Fi_1] > 1/6402 by

construction. Conveniently, this lower bound tells us that, for each time t € [T,

lg.|I* lg.|I”
E =E [E _
[ 7 i

b7
Now, summing the above expression over all times ¢ € [T, and applying Lemma 23, we find that

E [ﬂ{t Q Sgood}] .

>FE
- 640%

E

2
o] fH] 1t ¢ Sgooa)
t

log(f Z E

te[T)

HgtH 1 T 1
E ]1 t (o]0} Z E C00 ?
- 64 te[T] 07 Shoot) 6407 [|Sg dH

as claimed.
Now, observe that, for that first result, we only used our guarantee on | [Ete[T] ||gt||2/b(2)i| . How-

ever, Lemma 23 tells us much more. Indeed, assuming that £ () (the nice event from Definition 22)
is true for some s € [T'], and choosing (with foresight) 6 = 1/72,

T

> E[1{t & Sgooa} | Fs] < 6407 log(F(T)/s), (27)
t=s+1

where the above follows by noting (similarly as before), for every t > s, since {t ¢ Sgood} € Fi_1,
by an application of the tower rule of expectation and Definition 6

\gtt\ |f] [E ol | 7, ]‘E]

g
>E[E HthH|}-t—1] ﬂ{tgsgoodﬂ‘}—s] =z

t
5. As an aside, using essentially the same arguments, we can show that |Sg.q| satisfies the Bernstein condition with
parameter const - log(7"), which implies that, with high probability, | Sg,.q| < const - log”(T').

E

E [ﬂ{t g Sgood} | Fs]
6402 '

(28)
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Now, by (23) in Lemma 23, we know that, whenever () is true, then

T T
> S | F| SE|Y S5 | | <log :

t=s+1 ¢ t=1 t

Therefore, by summing (28) from s + 1 to 7" and rearranging, we obtain (27). We can use this

2
bound as follows: since |S§OOd|2 = (Zte[T} 1{t ¢ Sgood}) , we may expand this expression and
apply the tower rule of expectations to observe that

T
E [’Sgood|2] =E [’SgOOdH +2 Z E

t1=1

T
ﬂ{tl ¢ Sgood}E [ Z ]l{tQ € Sgood} ‘ fh]] .

to=t1+1

By (27), we additionally know that, for each time ¢; < T,

E

T

ﬂ{tl ¢ Sgood}E [ Z l{tQ g Sgood} ‘ Ftl]]
to=t1+1

T

ﬂ{tl Q Sgood}E [ Z 1{t2 g Sgood} | ft1] (ﬂ{gtl (5)} + ]l{gtl (5)0})]

to=t1+1
< 6407 log(/(T)/s)E [1{t1 & Sgooa}] + TPr [E, ()] .

=E

As aresult, since Pr [€;, (0)¢] < ¢ by construction, and by our choice of § = 1/72, we conclude that
E [|S5o0al’] < (1 + 12807 log(T? f(T)))E [|55p0al] + 2
< (6403 (1 4 12807) + 2) log*(T? £(T)),

as claimed. [ |

Appendix D. Compensating for “Bad” Time-Steps

Here, we provide proofs for the compensation arguments presented in Section 4

Lemma 27 In the same setting as Lemma 25, for any set S™P := Ugege S comp

a”[t]
S [Ct(])mp denotes the compensating set for a bad time t which is disjoint from all other S

that

C Sgood (Where
CO:

[1]

"P) we have

E % IVE(w)|? | < F(wi) — F* + colog(f(T))
teS

N DS e PR  o %”VF(W“)HQ

2

tgsgood t’ESEﬁmp

where S := Sgooq \ S are the remaining “good” times after compensation, and co = 200n +
Ln?/a,

25



THE POWER OF ADAPTIVITY IN SGD

Use smoothness to bound Compensating for “bad times”

for any to > ty,

E [F(Wt+1) | Fio1] — F(wy)

2L [V F(wo)|* = Tpesome 4 IVF(we)|?

< - (1 — oybias,) |[VF(wy)||? + coE [m | Fi— 1] < 7 L1;c(,,,.,, (t — min(S5™P))
pes (t]
As a consequence, can show the existence of a small set
‘ of compensating good times Scomp C Sgood such that
Bound sum of normalized true gradients in ezpectation [Scomp| < const - \Sgood\, and
for “good” times Sgood = {t € [T] | (¥) < 1/2}
; E| > A9 [VEw)|P = ¥ B VE(we)|
2
E SZ HNVE(w)ll |:t6Sgood 2 ves 4
t€Sgood

) < const - log?(T)
<Fy—F4ec-log(T)+E| > 22=145 |VF(w,)|

t€Sgo0d

F(wi—1) — F(w,) for every time ¢ Sgooa = {t € [T (¥) > 1/2} with nearby “good times”
By L-smoothness + bounded step property of AdaGrad,

| o N
T\

Improved bound for sum of normalized true gradients in
expectation for contracted “good times” Sgood \ Scomp

E Y BIVE(w)|*| < Fy = F* + ¢ -log*(T)

t€Sgooa \SCOMP

Figure 1: A flow chart of the main ideas underlying the compensation argument used in Lemma 30

Proof By subtracting E | 3",/ ¢ geomp 2 1|V F (wy)| } from both sides of the expression in Lemma 25

comp

(since S°™MP C S,,q) and using the fact that the S| ] partition S°°™P, the claimed inequality is
immediate. u

Lemma 10 Recall the step size proxy 1, from Definition 3. For any time t € [T| and set Sﬁ?mp [T)
such that (i) t > maX(S[CtTmp) and (ii) \Scomp| = Ncomp ‘= max{8 [40y — 1],0},
401 — 1

- Ny 2anom . om
5 Nt HVF(Wt)HQ — Z 777t ”VF(Wt’)H2 < u(t — min(S;;"P)).

8 [¢]
vesgm *
Remark 28 (On the interpretation of and proof techniques for Lemma 10) Note that we will
use Lemma 10 in order to bound (some of) the residual terms in Lemma 27, and thus, in that context,
will take t to be some “bad” time, and Sct‘fmp to be the set of ncomp compensating “good” times
for t. We emphasize, however, that the proof of Lemma 10 does not rely on the notions of “good”
comp

or “bad” times from Definition 6. Indeed, this result holds true for any time t € [T] and set S ]
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which satisfies conditions (i) and (ii) from the statement. The proof will exploit special properties of
the algorithm (AG-Norm) and the smoothness of the objective function, and holds deterministically.

Proof Let us begin by proving that, for any times ¢ > t/,

n?L(t —t')

2 (29)

BN E (W) > = i | VF () | <

The claim is trivial when #' = ¢, so we focus on the case when ¢ < t. Let us denote a = b? | +
(1+0}) |[VE(W)|? + 02 and b= b%_, + (1 + 0}) |[VE(wy)||* + 3. Then, observe that

1 1 _Vbi-va_  b-a
va Vb Vab o Vab(Va+vb)

Therefore, we can observe that the step sizes are sufficiently close, since

m— T 1 1
T B+ (o) [VE(w)|? + 03 \/bt, (L4 [[VE(wy) | + o2
(1+03) (IVF(we)IP = IVF(wa) )
Vab (Va+b)
_ (o) (IVE(we )l = [VE(W)[) (IVF (W) + [IVE(we)l])
Vab (va+b)
. A+ o) [IVEwe)ll = [VE(w)l|
- Vab
nL(t —t')

~IVEMW)[IVE(we ]

where the last line follows by Lemma 21. We will now use this observation in order to prove the
claimed inequality. We will proceed by considering two cases.

In the first case, if || VF(wy)|| > 2nL(t — t'), then by Lemma 21, ||VF(wy)|| > [|[VF(wy)| —
nL(t —t') > 1/2[|[VF(w;)||. This implies that

1 B 1 o
1 IVE(we)|[* = i [|VE(we) || < 1 IV E(we)l|* (7 — i)
Lt —t) |[VE(we)|

- 4 ||V F(wy )

2 /
ML =t)
)

In the alternative case, when ||V F(w;)|| < 2nL(t — t'), then

3

n?L(t —t)

1. . 1.
i IVE(wo)||? = i |V F (we)|* < 1 IVE(w) | < 7 IVF(w)|| < 5

o

where the first inequality follows by lower bounding the second term by zero, and the second by
definition of 7, and the third by assumption. Thus, we obtain exactly the same bound in both cases,
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geomp
(3] geomp
geomn — = ‘ ‘ ™ )
5 , . J/ . /
good| _bad bad good good| _good good| _bad| ,.good| _good
o) TiS5alle | T 0 @ [Burcomp]® ® o 0] | Roncome] © @ | 722 | T | 2] | Tncome]
1 times in —Time— times in

S S

Figure 2: A possible configuration of each bad time 7'[b]ad € 5S¢, .q and the associated compensating

g0o
good times S@Tmp from the greedy construction in Lemma 11 on the interval [T]. Ob-

serve that, by this greedy construction, Tﬁ?d has the largest ncomp “good” times in its

compensation set, S[Cﬁmp. The remaining compensation sets are built greedily from the

largest time to the smallest. Hence, 7'[ba]d has only a single compensating time, and all

smaller bad times have no compensating times. Finally, note that the number of “bad”
times, |S§OO 4> is typically quite small relative to 7" (see Lemma 26), even though it is not
depicted as such in the above figure.

which establishes (29). Now, we can use (29) to prove the claim. Indeed, since, by construction,
|Scomp| = Ncomp > 8(401 — 1) we have

401 — 1 _ m 7l N
ENIVEeE - Y TR < Y (S IV - [Pl

’ comp / comp
tess vess

I

Therefore, using (29) to bound the above, and recalling that |S| = ncomp, we conclude that

dop —1 _ 9 Ty , _n*Ln .
S IVEwI? = 3 IVl < T (- min(SE)),
t'eS[Ct‘]’mp
as claimed. -
Lemma 11 There exists a construction of S©°™P = Ute[SC d]SH , where S[C(])mp denotes the

comp

compensating “good” times for a bad time t € Scood (disjoint from other S[t] ), satisfying
\Scomp| <Neomp :=max{8 [4o1—17,0} and t > maX(SﬁTmp), where one of the these holds:

|Scomp‘ = Ncomp al’ldy ifncomp > 0’ thent — min(SFt(])mp) < Tcomp * |S§00d|
|Scomp‘ < MNeomp and t < Necomp - ’SgOOd’

Proof

Constructing S°°™P. We begin by giving a detailed description of our greedy construction of

S°mP which was briefly described in Section 4. To begin, let us denote T[?f‘d as the ¢th largest

time in S¢__ .. For notational simplicity, we will abuse our notation and refer to S7;"* and S; .o
good 2] [T[t;]ad]
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interchangably as the set of compensating “good” times for T[li)]ad. We will iteratively construct each

S[Ci(fmp for each i € [|S§, 4], starting with i = 1. Let us denote
S[eilligible ={t € Sgo0a | t < min{T[%ad, min(S[Cio_nﬁ))}}

as the set of eligible compensating “good” times for T[?]ad. Intuitively, these are the set of “good”

times smaller than T[?]ad which have not been used to compensate for larger bad times T[b,"‘id > T [?]ad-
focimp) = 400 and min(f)) = —oo so that (i) S

“good” time which is smaller than T[%ad, and (ii) if S[Ci(inip = (), then there are no eligible times for

ehglble

Note that we take min(S consists of every

T[%ad, ie., S[eiﬁigible = 0.
We may then choose the “compensating” set S[C(])mp for 7'[ i 4 as the largest (at most) Neomp times
Sf‘il]igible It is clear by this construction that S[C‘])mp ns [Co]m P =0 forevery i # i € [|Sg,0qll-
We will further take i* to be the smallest index in [|Sg,,4|] such that |S [(;(fmp| < Neomp. Intu-
itively, this is the index of the largest “bad” time T['Z?]ad which is not fully compensated.
Establishing the properties of S°°™P, Note that, as required, each |Scomp] < Neomp and T[b]ad >

max(S [C;])mp) by the construction of S°™P described above. Addltlonally, whenever n¢omp = 0, the

result is immediately true, so we proceed assuming that ncomp > 0. Further, note that since ¢* is
chosen as the smallest index for which ]Sﬁi?lp\ < Neomps it must be the case that ]S[Ci‘}’mp\ = Neomp

for every i < i*, and |Scomp] < Neomp for every ¢ > ¢*. Therefore, to reason about the two

conditions, we need to cons1der only the cases (i) T['Z?]ad > T[?a}d and (ii) T[},L)-]ad < T[lz?f]d.

Case 1: Let us first consider a bad time T[l;.)]ad > T[]l?f”] . Clearly, \S[Cii)mp| = Neomp. BY the greedy
construction of the compensating sets, observe that

’(maX(Sf?mp), [l] )ﬁSgood

(i - 1) * Ncomp- 30)

Indeed, these are the times in Sgo0q associated with a compensating set S[Ci?]mp for a larger “bad”

bad bad
time T[Z,] > TH

assigned to SE;(])mp by definition of our greedy procedure. Next, note that

. If there were any more “good” times on this interval, then they would have been

‘ [min(SF;fmp) maX(Scomp)} N Sgood | = Necomp- 3D

[i]

These times corresponding to the ncomp times in .S f;fmp . Indeed, by the greedy construction of our

compensating sets, max(SfomF]) < mm(S[CO}mp) for every i’ € [|S,,4/], and the procedure always
chooses the largest “good” times available in S[el.l]igible, so no other good times can lie on this interval.

Finally, we observe that

< |S;

good | (3 2)

‘ [mln(Sﬁ)mp) T[%ad) N Sgood

corresponding to the at most | Cood\ —1 bad times T[bf]”d < T[E]ad Combining Egs. (30), (31) and (32),

we conclude that T['Z?]ad — min(S[C(])mp) < Neomp * | Sgoodl-
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Case 2: We now consider the case when T[lz?]ad < T[E,?}d. Clearly, Scomp\ < Neomp- Since we need

only to show that Tbad is upper bounded by 7n¢omp - |Sgcood|, it suffices to show this for T[Ea}d. Our

arguments will follow in a similar spirit as Case 1. Indeed, using exactly the same arguments used
to establish Eqs. (30) and (31), we know that

| [min(SE™), 74) 1 Syooa| < i

Further, by the greedy construction of the compensating sets, since |SC°mp] < Neomps it must be the
case that

* Ncomp- (33)

{1 mln(S[COI]np)) N Sgood = 0, (34)

since otherwise, any remaining elements could have been added to SEZ?IP. Therefore, since

1 82f) 0 85| =

we conclude by Egs. (33), (34) and (35) that T[?f]d < Neomp * |S§OO 4l» as claimed. [ |

|S

good| (35)

Lemma 29 [f S™P is constructed as in Lemma 11, then the “residual” term from Lemma 27 can
be bounded as follows:

(4oy — 1) _ T
el Y |9 vrwr - 2 T vl
tgsgood t'es ymP

[t]
< 128007 |V F(w1)| log(£(T))L{o1 > 1/s}

+ 1% Litcomp (”C;mp + 2) (6402(1 + 12802) + 2) log?(T2(T)),

where Neomp = max{8 401 — 1| ,0} is as in Lemma 11.

Proof Borrowing the notation from the proof of Lemma 11, we will use 7'[b]ad to denote the ith
largest “bad” time in Sgo04, and, abusing notation slightly, use S[C‘]) P and S[ Obad] interchangeably

to denote the compensating “good” times for T['Z?]ad. For the purpose of this proof, we may assume

that o1 > 1/4 (which also implies n¢omp > 0), since otherwise the result is trivially true because the
left-hand side of the claimed inequality is negative in this case. Further, we take ¢* to be the index
of the first “bad” time T['Z?f‘d which cannot be fully compensated, i.e., |S [Czor]np\ < Neomp- Using this
notation, we may rewrite the residual term from Lemma 27 in the following convenient manner:

(401 — 1) _ Tt
E Z Tm ||VF(Wzt)||2 - Z 1 ||VF(Wzt)||2
tgsgood tIGSF;])mp
. (40'1 - 1) 2 ’rh/ 2
=E | > | i [VEwp) | = Y T IVEGw)

1<* comp
ES[Z]

VF(W [b]ad)

401 —1
+E Z((HQ) bad

P>

’2
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Now, we will use Lemma 10 to bound the first term above. We will use the trivial bound for the
second term: by Definition 3 and Lemma 21, we may bound each term inside of the sum of the
second expression above as:

U
s vl s e

These two bounds described above, together with Lemma 11 and the fact that each 7 < |S§OO d|,
imply that:

E| Y <(4012_1)ﬁt||VF(Wt)||2— > ﬁZHVF(Wt’)’Q>

VF(W bad

(W) < (IVF(w)]| +nLrb)

bad
[

tgsgood t' € Scomp
< g |3 P Lncomp b geomeyy | 4 Ao -1 o £ bad
S e (b min(sE) | +E |02 <|r (wi)l +nLrb)
1<% > 2 1—|—
772Lngomp 2 2
< PR [IS500al”] + 20 (IVF(W1) | E [|SGooal] + nLncomp [|S5o0al’])

n
< 1 Lncomp (=22 +2) E [|Sg0al?] + 201 [VE(W1)I|E [|Sfo0al] -

Applying the bounds on |S§00d| from Lemma 26 yields the claimed bound. |

Lemma 30 Let the set S°™P from Lemma 27 be chosen as in Lemma 11. Then, taking S =
Sgood \ P as the remaining “good” times after compensation, we have that

E % IVF(wy)|]? | < F(wi) — F* +¢ - log(f(T)) + ¢ - log*(T?f(T)),
tes
where we can take
L772

Co = co + 128002 |[VF(w1)|| 1{o1 > 1/s} where ¢y = 2nog + 0

and
= Ln*Neomp (neomn/s + 2)(640% + 819201 +2)  where nNeomp = max{8 [407 — 1] ,0}.

In particular, we have that

B | S RYTEwI? | < Fwi) = " + e - log(T2(T)),
teS

where ¢c; = ¢o + 7.

Proof The result follows immediately by combining Lemmas 27 and 29. Note that this result, up to
logarithmic factors, takes essentially the same form as in the uniformly-bounded setting (10). N
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Result of compensation argument: Bound for sum of

normalized true gradients in expectation for contracted

“good times” Sgood \ Scomp

E Y RIVEw)I?

tE€Sgo0d \Scomp
<Fy—F*+e¢- logZ(T)

Bound sum of stochastic gradients w.p.
ut2 - .
1 — const - los 3 (T)/7*5* using bound on
E [Zte[T] HVF(wt)HZ] < ¢y T log?(T) + Markov
for any xz,y > 1

2(z+2)

t
bi = b5+ EngstéT 5 log

2(y—1)
3

(1)

D

| Initialization:

-

Bound sum of unnormalized true gradients in
expectation for the “good” (non-compensating)
terms

24z 5ty

. 2 VF(“’t)V} <2 T log 7 (T)

tE€Sgo0d \Scomp

zeQ,lyel

Trivially bound on 3, ¢y [V E(w,)|? using
L-smoothness + bounded-step property of AdaGrad:

e IVE(w)|* < T almost surely

>ierm) IVE(we)||” < Tlog(7/s) w.p. at least 1 — &

M
Nl

Bound sum of unnormalized true gradients in
expectation for all terms

E| Y |VF(w)|?| < e T log +(T)
te[T]

Bound sum of unnormalized true gradients in
expectation for the “bad” (or compensating)
terms
E {18504 U Seompl] < log(T)

which implies

> |VF('wt)|2:| < 2 .Tlog*(T)

USeomp

E

tes

.
good

Recursive improvement argument. Observe that
z— 1 and y — 5/2.

T . . 24z , 5+1
Update @ < 2£% and y + 22

U Conclusion of recursive improvement

E

2
te[T)

Conclusion of recursive improvement: Can
remove the bounded gradient assumption

|VF<wt>|2] < ey Tlog?(T)

Figure 3: A flow chart of the main ideas underlying the ‘“Recursive Improvement” argument of

Lemma 31.
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Appendix E. Bounding the Expected Sum of Gradients via Recursive Improvement

Here, we provide a proof for the recursive improvement argument presented in Section 4.

E.1. Main Ideas

Lemma 31 Suppose that, for some constants x > 1 and y > 0, the following inequality is true:

E| Y IVEwW)?| < e log?(T?f(T)), (36)
te[T]

where ca is specified as

F(wy) — F* —1—61)2}7

Co = max {b% + 02 4 32(1 + 8(1 4 Neomp)73) (|| VF (w1)||* + n°L?), 512 < .

with Neomp = max{8 [4o1 — 1], 0} defined in Lemma 10 and c, the constant defined in Lemma 30,

L 2
c1 = 2noo + 777 +128n07 |VE(w1)| 1{o1 > 1/8} + Ln*ncomp (ncomp/s + 2) (6407 + 819207 + 2).

Then, in fact, the following tighter bound also holds:

E| S IVEw)|P| < e {555 ogma {521 (12 f(T)). 37)
te|T)

In particular, as a consequence of Lemmas 23 and 24,

E| S IVE(w)|?| < c2Tlog3 (Tf(T)). (38)
te(T]

The main idea of the proof is to recursively improve our upper bound on the “normalized”
expected sum of gradients from Lemma 30 in expectation combining it with a lower bound on the
step size proxy with high (enough) probability obtained from Markov’s inequality and an invariant
upper bound provided in Lemma 12. Recall that 777 = 1/ \/ b2, +(1+0d)|[VF(wy)|?+02, thus to provide
a lower bound on the step size proxy we will focus on upper bounding br_;. In particular taking
the expectation, we have that:

T-1 T—1
E[1] =0+ Y E|lgl’] <@+ (T - Do+ 1 +0}) Y E[IVFw)IP], (39

t=1 t=1
where the above follows by applying Assumptions 1 and 2. Thus, to obtain an upper bound for
E [b3._,], we must have a bound for E [Zte[T_I] |V F(wy) HQ} — the quantity we wish to bound!
This highlights the motivation for applying the following improving idea recursively. We begin with
a crude (polynomial in 7") upper bound for E [Zte[T] IV F(wy) Hﬂ , and recursively improve this
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bound via the interlaced inequalities described above. Repeating this process infinitely many times
ultimately obtains the desired upper bound on the expected sum of the gradients.

Proof (of Lemma 31) The proof will proceed in three steps, in which we will invoke the auxiliary
Lemmas 32, 33 and 34. It is straightforward to verify that the constant cy specified in this lemma,
as well as the choice of h(T') = T?f(T), satisfy the constraints from those lemmas. Thus, we are
free to use these results to prove our desired result.

Step 1: Lower bounding the step size proxy. Recall that Lemma 30 gives an upper bound on
E [Zte Sgooa\seomp Tt [V F (w¢)||?|. Using the “nice event” £r(8) from Definition 22 with a suf-
ficiently small failure probability 6 = (2+07)log?="2(T?f(T))/T1, where 71,72 > 0 are arbitrary
parameters satisfying y1 +x > 2and v; < 1,y > 72, and x and y are the parameters from (36). we

can ensure that the step size proxy 7 is sufficiently small. Indeed, these insights allow us to prove
Lemma 32, which tells us that:

ME 3,5 I VF(wo)|” 1{€r(6)}
V2T 102 (T2f(T))
(40)

E DY allVEw)I?| =B D i IVE(w)|? 1{Er(8)} | >

teS teS

While the above translates the bound in Lemma 30 into a more interpretable form, the presence
of 1{&r(d)} makes the above bound not immediately useful. However, by construction, Er(J)
happens with probability at least 1 — §. Our choice of § will allow us to show that, effectively, the
above upper bound is still true with the indicator removed.

In order to “remove” the indicator from the expectation above, we will need to show that, when
Er(6) is false, D, 5 [VF(wt) |? cannot be oo large. Recall that we have two main tools to upper
bound the size of this sum: Lemma 21, which gives a deterministic upper bound of O(T?), and
Lemma 24, which gives a high-probability upper bound of (5(T2). These insights allow us to prove
Lemma 33, which tells us that

E Y IVE(w)|? ()} =E | D [VF(wy)|*| - %TZ_W logV 2L (T2f(T)). (41)
teS teS
Step 2: Bounding the “good” terms. With the indicator removed from the above expression, we

are now ready to use Lemma 30 together with (40) and (41) to obtain a bound on the expected size
of the gradients at the good times:

F(w1) — F* + ¢1log?(T? f(T))
1

E | IVEw)I?| < (4v2e T log® (T2 (1))
teS
+ %TQ—’Yl 1Ogy—72+1 (T2f(T))

Co __zt+71

< T2 log?t (TP (T))

+ T log! (T2 F(D)),
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where the second inequality follows by upper bounding 41/2(F(w1)—F*+c1)/y < +/c2/4. Hence, by
choosing v; = max{(4-2)/3,0} and v, = max{2(v—1)/3,0}°, we conclude that

E | Y IVEw)|? | < 7555 10gm "5 2 12 (1)), (42)
L teS

Step 3: Bounding the “bad” terms. To conclude the argument, we will need to bound the re-

maining terms, E | 12§ |\VF (wt)Hz}. Intuitively, these terms are not problematic for the sake

of this argument, since (i) E Dgcq =E [\Sgood U S|l < (1 4 Neomp)E []Sgood]} < (1+
Neomp)640? log(f(T')) by construction of S«™P (Lemma 11) and by our control on the “good”
set in Lemma 26, and since (ii) each term ||V F(w;)||* can be bounded with high probability by
O(Tlog(T?f(T))) by Lemma 24. These arguments are formalized in Lemma 34, which tells us
that

c

E D IVF(w)|?| < 5 Tlog*(T?f(T)). (43)

teS

Thus, we arrive at (37) by combining the results of (42) and (43), using the fact that 1 < max{(z+2)/3,z/2}
since x > 1. To obtain (38), simply note that we may initialize (37) with x = 2 and y = 1 by
Lemmas 23 and 24, since these Lemmas imply that E [Zte[T} ||VF(wt)||2] < 2(|VE(w)|* +
2 L2)T?log(f(T)) < coT?1og(T?f(T)). Alternatively, we could choose = 3 and y = 0 by
Lemma 21, which implies that E [Zte[T] HVF(wt)HQ} < 2(|VE(w)||? + n?LA)T3 < ¢T3,
Given either of these initializations, we may invoke our improved bound on the expected sum of
gradients (37) recursively, concluding that we may take 2z = 1 and y = 5/2, as claimed. |

E.2. Technical Lemmas

Lemma 32 (Polynomial control of step sizes) Suppose that:

E| > IVF(w)|?| < e log? (h(T)) (44)
te(T)

for some x,y > 1, and c; > max {b% + o3, (1 + o%)(|VF(w1)|| + nL)* + o3} and h(T) > e.

2 y—
Recalling the “nice” event E7(9) from Definition 22, where we choose 6 = (2+07) 1055:1 (@) for

any vi,7v2 satisfying y1 + x > 2, v1,v2 > 0, 1 < 1y > 9. Then, recalling the step size proxy
from Definition 3, 1, we have that

T [S,c5 IV F(wo) | 1{€7(6)}]
~ 2
E Z e HVF(Wt)H > \/ZCQTer')q 10g’)/2 (h(T)) .

teS

6. Note that these choices of 1, 2 satisfy the requirements of Lemmas 32, 33 and 34. Indeed, 1,2 > 0 by construc-
tion. Further, since > 1, we have that v; < (4-=2)/3 < 1 and, whenever x € [1,4], z + 1 = 22+4)/3 > 2, and
whenz >4,z +v1 =z >4 > 2. Finally, y — 72 = min{(¥+2)/3,y} > 0 since y > 0.

(45)
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Proof We divide the proof in two cases: (1) § > 1, and (2) 6 < 1. In the first case, the claimed
result (45) holds trivially, since E7(d) = () by definition (see Definition 22), and thus,

TE [ ye5 I VF(wo) | 1{€r(5)}
V2T 1og? (W(T))

E > il VE(w)|*| > 0=
tes

)

since 1{&7(d)} = 1{0} = 0 deterministically. Thus, for the remainder of the proof, we assume
that § < 1.

Let us assume that £7(9) (the “nice” event from Definition 22) is true. Then, we have that

Tog +(1+ U%)Cﬂm log(h(T))
5
_ B+ Tog + (1 + 0f)caT™ log? (W(T))
< 5
(@ 4 gf)) esT" log (h(T))
5
< CzT:r+'71 log??(h(T)),

b3 < bE +

<

where the first inequality follows by definition of £7(0) and by the assumed bound (44). The second
inequality follows since 1 < 1/s, and the third since > 1 and log(h(T")) > 1. The final inequality
follows by plugging in our choice of 9§, and using the fact that co > b% + 0(2].

Now, since b7_; < b2, the above inequality implies that

Lo \Ji o) IVEw)IP + 03
Nt

< /eI 1og" (h(T)) + (1 + o2)(||[VF(w1)|| + nLT)? + o
< V/2eaT*7110g™ (W(T)),

where the first inequality follows since b7_; < b% and by Lemma 21, and the second since x +; >
2and c2 > (1 + 0?)(|[VF(w1)|| + nL)? + o3.

Noting that [ [zte 7t [V F (ws) HZ} > E [zte <7 [ VE(w,) > 1{€7(5)}], and using the
lower bound derived above, we obtain the claimed lower bound of (45). |

Lemma 33 (Removing 1{E7(0)}) Let us consider same setting as in Lemma 32, assuming addi-
tionally that ¢y > 16(2 + o2)(|VF(w1)||? + L?*1?) and h(T) > T?f(T). Then, recalling the set
S = Sgood \ S™P as constructed in Lemma 11, we have that

E Y IVEW) P L{Er@)}| = E | [VE(w)|?

tes tes

— %T%“ﬂ logy*WH(h(T))
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Proof Now, in order to “remove” the indicator from the expectation, we will need to show that,
when Er(0) is false, }, 5 [|VF (wy) ||* cannot be ro0 large. Recall that we have two main tools to
upper bound the size of this sum: Lemma 21, which gives a deterministic upper bound of O(T?),
and Lemma 24, which gives a high-probability upper bound of @(Tz). To exploit this “lighter”
regime of Lemma 24, it will be useful to introduce the following event:

E =Er(0)° N {b% < 2T 10g™?(W(T))},

where § = (2+07)log? =72 (h(T))/T7 is the same choice as in Lemma 32. By definition, £’ C Er(d)¢,
SO
(2+ o) log? " (h(T))

T '

Pr[€'] < Pr[£p(6)] < 0 =

Additionally, using Markov’s inequality and the assumed upper bound on E [Ztem IV E(we) ||,
we may similarly conclude that
2+ 02) log! ™ (h(T))

T2 '
Hence, decomposing 1{&r(0)} = 1-1{&"}—1{&7()° N (£)°}, and upper bounding 3=,y |V F' (W) 12
using the high probability bound of Lemma 24 under &£’, and using the deterministic bound of
Lemma 21 under E7(6)¢ N (£7)¢, we have that

Pr [E7(6)° N (E)] = Pr [b7 > 2T ?1og? (W(T))] < (

E Y IVF(w)I? {9} = E | [VF(w)|
tes tes

— 2T (||VF(w1)|* + n*L*T log(£(T)/s))Pr [£']
—2T(|VE(w1)||” + n*L*T?)Pr [E7(5)° N (£')°]

> E | IVF(we)|?

tes

- 272+ oD log (D) IV F )P (755 + 72

Tn T2
2 y—2 2 (21l-m 2
—2T(2 + 07) log? "2 (h(T))L* (n*T* " log(h(T)) +n*),

where in the last inequality, we use the following facts: 1/5 = =) 10223172 ) < T? (chosen in
Lemma 32) and /(T)/s < T?f(T) < h(T) which hold since 71 < 2,y — 72 > 0, and by the initial
conditions on h(T') > e. Now, since 71 < 1 by assumption (which implies that 2 — v; > 1), we

may simplify the above to conclude that

E (D IVE(w)|? H{er(@)}| 2B | (IVF(w)?
teS teS
42+ D) ([VF(wy)|]? + L) T2 logh ™+ ((T)).

By our assumption that c; > 16(2 + 03)(||VF(w1)||* + L?3?), the claimed bound is immediate. M
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Lemma 34 (Bounding gradients at the “bad” times) Recalling the set S = Sgood \ ST as
constructed in Lemma 11, we have that

SOIVEw)?| < ST 08> (W(T)),
tgS

where cg > 4(|[VF(w1)||> + n2L2) (64(1 + neomp )0t + 1)1{o1 > 1/8} and h(T) > T?f(T), and
Neomp = Max{8 401 — 1],0}.

Proof The main insight of this proof is that, for each time ¢, with high probability, we have

that |[VF(wy)||> < O(Tlog(h(T))), by Lemma 24. Thus, by using the fact that E [|§c|} <

O(log(h(T))) by Lemma 26, we can hope to obtain the claimed bound. Let us now show how to
combine these insights.

First, notice that, by Lemma 26, whenever oy < 1/s, then Sgooq = S = [T], i.e., S¢ = ().
Our claim follows trivially in this case. Thus, we will assume for the remainder of the proof that
o1 > 1/ 8.

To derive the claimed bound, we will consider the “nice” event £7(d), where 0 is a parameter
to be chosen shortly (note that () need not be the same event as was used in Lemmas 32 and 33,

as it is simply an event used internally to this proof). Recall that we can easily bound E [|§C\} as

E [!SCI] = E [|(Sgood \ S“P)°|] = E [|S500al + [S™I] < E [(1+ ncomp)|Sgooal]
<1+ ncomp)64U% log(f(T)),
which follows by definition of S, together with the construction of S°™P given in Lemma 10 and

the bound on E [|S§00d \] from Lemma 26. Using this fact together with the bounds for |V F (w)||*
from Lemmas 21 and 24, we have that

Y IVEW)I| =E | D IVE(w)l* (L{Er(6)} + 1{Er(5)Y)

t¢S t¢S
< 2(|VF(w)|” +n*L*T log(#()s) E ||5°]]
+2(|VE(w)|” + UQLQTQ)TPI" [ET( )]
< [VF(w1)[? (128(1 + ncomp) o log(f(T)) + 27)
+ 02 L*T (128(1 + neomp)o? log(£(D)/s) log(f(T)) + 2T25) .

Therefore, choosing § = 1/72, and assuming that 72 f(T) < h(T), we conclude that

S IVEwIP| < 2(IVF(w1)[|? + 7> L?)(64(1 + ncomp)oi + 1) log®(h(T))T.
teS

Since ¢2/2 > 2(|VF(w1)||* + 72L?)(64(1 + neomp)o? + 1), the claimed bound follows from the
above. |
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Appendix F. Obtaining the Convergence Rate for AdaGrad-Norm

Here, we provide a proof for the main result of this paper, a proof of convergence for the AdaGrad-
Norm algorithm.

Theorem 35 With probability at least 1 — 9, the AdaGrad-Norm algorithm (AG-Norm) for any
choice of parameters 1, b% > 0 satisfies:

16(F — F*
minHVF(Wt)HQg 1—|—O’% 6(F (w1) - +a)
NV o3T

|:bo + 209
te[T]

+/32(1 + 8(ncomp + Do) (IVE(w) | + L)

116yt W) _nF T Jog (T2 £(T))

V2 (12802 (neomp + 1) log(£(1))) 2 [VF(w1)[21{o1 > L}

" (6T) ">

(46)

where Neomp = max{8 4oy — 1],0} is the constant defined in Lemma 10, c; is the constant
defined in Lemma 30,

L 2
c1 = 2nog + 777 + 12807 |VE(w1)| 1{o1 > 1/8} + L*necomp (neomp/s + 2) (6407 + 819207 + 2),

and

03T  (1+o3)T

h2 b2 (HVF(Wl)H +77LT)27
0 0

is the function defined in (21).
Furthermore, whenever o1 < 1/8, then with probability at least 1 — 6, (AG-Norm) also satisfies:
2(F Y
win [V (wy) |2 < SY2EW) = F 4 ¢o)
te(T] 52nV/T

|:Uo + o1 (bo + 0o

+ \/32(1 + 8(1 + Ncomp) o) (| VF (w1)]|| + nL)
+16v2 V) ;F* + CO)} log” (T2 f(T))

F(wi1) = F* + ¢ log(f(T))>
p ;

8(F(w1) — F* + colog(f(T)))

+ &%nT

(bo +4(2+ 07)
47
where cq = 2nog + Ln*/2.

We note that the second bound in Theorem 35, (47), is particularly interesting in the regime
when o, 01 = O(1/vT). Indeed, in this setting, our bound yields a O(1/T) convergence rate which
one should expect in the noiseless regime.

Proof (of (46)) Now that we know that E [Zteg’ Tt ||VF(wt)||2} = O(log?(T)) by Lemma 30
and that E [Zte[T] IV F(wy) HQ} — O(T) by Lemma 31, we have all of the tools we need to obtain
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our claimed convergence rate. Indeed, we can first use the result of Lemma 31 to obtain a uniform
lower bound on the step size proxies 7; in expectation. To see this, let us denote

T = 1\ 03 +03+(140) Soei IVF (w0, (48)

and observe that 7, > 7 for every ¢ € [T'], deterministically. Additionally, by Holder’s inequality,

we know that E [(XY)*] < E[X]""E [YQ]I/B. Thus, taking X = ijr 3., 5 IVF(wy)|* and
Y = 1/ir, we have that

3

B | (Sies V1) |

[V

Y IVEw)I*| > E |ir Y IIVE(wo)l*| > (49)

teS tes E [(I/ﬁl)z}

To further lower bound (49), we may first upper bound the denominator using our bound from
Lemma 31 together with the definition of 7j7 and (3):

E [(Vir)’] < Tof+ 20+ 0DE | 3 IVF(w)|?| < Tod +2e5(1 +01) T log (12 4(T)).
te[T]

Focusing now on lower bounding the numerator of (49),

3

~ ~ 4

E( X IVEw)* | | =E [I5]5 ZHVF woll* || 2B |IS]5 min [ VP (w1
teS tes

wlro

where the lower bound above follows since the average is always larger than the minimum. If
it were the case that S = [T], then, at this point, we would essentially be done with our proof.
However, since S is a random set, we must take some additional care. Because |S¢| is O(log(T"))
in expectation by Lemma 26, this is only a minor technicality. Indeed,

2

~ T\ 3 ~

E [|S\§ min HVF(wt)Hg} > () E [min IV F(wy)||? 11{|5| > T/Q}} .
te[T] 2 te[T]

Therefore, collecting the results we have derived so far into a lower bound on the right-hand side

of (49), and applying the result of Lemma 30 to upper bound the left-hand side of (49), we have

obtained the following upper bound:

Cr
E | min VPl 1131 > 72} < ﬁ) | (50)
where
Cp = 8(F(wy) — F™ +77€1 logZ(TQf(T))) \/U(% + 2e(1 + U%) log5/2(T2f(T)).
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To conclude, we will translate the bound in (50) into one on E [mintem IVF(wy) ||4/ 3} . Begin by
writing

E [min |VF<wt>uﬂ —E [m[,_;a] IvFewlld 115> T/2}] TE [g[iﬁ IVl 1[5 > T/Q}]

te[T) te

< (%) +||[VF(w1)|# Pr [\§C| > T/z} .

where the inequality follows since minge(z) IVF(w)||”* < |[VF(w1)||”®. The above failure
probability can be easily upper bounded via Markov’s inequality:

2(ncomp + 1)E [|Sgood|] < 12802 (Neomp + 1) log(f(T))1{oy > 1/8}

Pr [|§C| ZT/Q} = T T

where we used the fact that, by Lemma 11, |5¢| = |Sgood U 5P| = (ncomp + 1)[Sgo0a
with Lemma 26. The above bound combined with (50) thus gives

, along

4
E |min |[VF 3
i 77w

Cr\? | 12803 (neomp + 1) log(f(T)[VF(w)||*1{or > 1} _ ( Cr :
|<() : Y ()

where

(12802 (eomp + 1) log(F(T))) ? [|VF(w1)|21{oy > L
T

éT::\/i Cr+

3
2 1280F (eomp + 1) log(F(T))[VE(w1)|[*1{o1 > L} ?
> Cp+ T3 '

Hence, by a final application of Markov’s inequality, we obtain, for any 6 € (0, 1),

2

. C~'T . 4 1 C~’T 3
P F 2 =P F - =£ < 6.
rlt%”v woll™> g | = Fr | i IVE vl >5<¢T> )

as claimed. [ |

Proof (of (47)) We will proceed in a similar manner as in the proof of (46), borrowing notation
from that proof, and using a slightly different application of Holder’s inequality, which will allow us
to prove a O(1/T) convergence rate in the “small-noise” regime. We begin by noting that, whenever
o1 < 18, Sgood = S = [T'] by Lemma 26. Thus, for the purpose of this proof, we will replace S
with [T7].

Using the fact ), = IVF(wy) || = > te(r] |V F(w;)||* in our setting (07 < 1/8), we apply

Holder’s inequality E [\/ X Y] < E[X]E[Y], where we choose X and Y as X = 1/4; and
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to establish that

= i Yy IV (W),

2
E /e IVEw)|
i |VEw)|*| > E |ir Z IVEF(w z [\/ EE [Yiir] J
teS te[T] o

Now, plugging in the definition of 7jr from (48) and upper-bounding ||g, 12 < 2(|lg; — VE(w)|*+
|V F(wy)||*), we can conclude that

E [7/ir] <E \/bg+03+2 Y. lgi—VEw)|*| +E \/(2+0§)Z|VF(W0H2

te[T—1] te[T]

< \/bg +2T02 4 202¢yTlog”* (T2 f(T)) + E \/(2 +03) > IIVEw)I?]
te(T)

where the second inequality follows by Jensen’s inequality together with Assumption 2 and the
bound on E [Ete[T] |V F(wy) Hﬂ from Lemma 31. Therefore, using the result of Lemma 30 to

upper-bound E [Ete[T] e ||V F(wy) Hﬂ together with the lower bound on the same quantity that

we have just derived above, and writing a = \/bg +2T02 4 20%¢, T log™*(T2h(T)) and b =
4(F(w1)—F*+colog(f(T)))/n, we conclude that

STUVEw)I?| <b|a+y/2+40IE | | (IVE(w)|?

te[T] te[T)
Solving this quadratic inequality, we conclude that

V24 0?b 2+ 02)b?
S IVEw)|P| < ;"1 +\/( 1) +ab < \/2+02b+ Vab.

4
te[T)

Now, using the fact that

\/Z VP | =VTE| | 1 5 IVl | 2 VTE |min [VF (]
te[T

te(T)

we conclude that

2+Ulb+
E VF
o] < G
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In particular, this implies by Markov’s inequality that, with probability at least 1 — &,

2172
- 1V F ) < 22 0512); + 2ab
8(F(w1) — F* + colog(f(T)))
82nT
L 8VA(F(w) ~ F* + colog((T))
82nVT

This shows that, in the setting when o3, 03 = O(1/vT), then we recover a O(1/1) convergence rate,

as in the noiseless setting. |

<

(bO +4(2 +U%)F(W1) - F* + co IOg(f(T)))

Ui

VR + c202 o2 (T2 £(T)).
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