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Abstract
Designing algorithms for machine learning problems targeting beyond worst-case analysis and, in
particular, analyzing the effect of side-information on the complexity of such problems is a very
important line of research with many practical applications. In this paper we study the classic
k-means clustering problem in the presence of noisy labels: in addition to a set of points and
parameter k, we receive cluster labels of each point generated by either an adversarial or a random
perturbation of the optimal solution. Our main goal is to formally study the effect of this extra
information on the complexity of the k-means problem. In particular, in the context of random
perturbations, we give an efficient algorithm that finds a clustering of cost within a factor 1 + o(1)
of the optimum even when the label of each point is perturbed with a large probability (think 99%).
In contrast, we show that side-information with adversarial perturbations does not help, namely the
problem remains as hard as the original k-means problem even if only a small ε fraction of the
labels are perturbed. We complement this negative result by giving a simple algorithm in the case
when the adversary is only allowed to perturb an ε fraction of the labels per each cluster.
Keywords: k-means, beyond worst-case, noisy labels.

1. Introduction

Clustering is a central problem in unsupervised learning with many real world applications. Perhaps
the most widely studied clustering problem is the k-means problem. In this problem, we are given a
finite set of points P ⊂ Rd in a d-dimensional Euclidean space. The goal is to find a set of k centers
{c1, . . . , ck} such that the sum of squared distances between the points in P to their closest centers
is minimized. I.e., the k-means problem asks to solve the following optimization problem:

(c∗1, . . . , c
∗
k) = arg min

c1,...,ck∈Rd

∑
p∈P

(
min
i∈k
‖p− ci‖

)2

.

The k-means problem has attracted a lot of attention in the last decades Arthur and Vassilvitskii
(2007); Arya et al. (2004); Byrka et al. (2014); Charikar and Guha (2005); Kanungo et al. (2004);
Jain et al. (2003); Li (2011); Lloyd (1982); Ahmadian et al. (2017). A wide range of techniques
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have been introduced to achieve high quality solutions and hardness results; the best known approx-
imation guarantee for the problem is 6.357 Ahmadian et al. (2017).

While algorithms with strong worst-case guarantees are certainly desirable, additional infor-
mation regarding instances often allow for dramatically improved solution guarantees. Classic ex-
amples for k-means clustering are assumptions on the “clusterability” of instances Awasthi et al.
(2010); Bilu and Linial (2012); Cohen-Addad and Schwiegelshohn (2017); Kumar and Kannan
(2010); Ostrovsky et al. (2013). Another natural viewpoint is to analyze the impact of side-information
such as noisy labels. This viewpoint is motivated by the fact that, in many real-world scenarios, in
addition to the input points, we have access to extra information about the points that can be used to
improve the quality of the solution. For example, consider a machine learning pipeline that receive
as input a set of points and a cluster labeling computed by an earlier stage of the pipeline. Naturally,
one cannot assume that the input labeling is perfect but it is reasonable to assume that it provides
some noisy labels. Similarly, imagine a setting where humans provide initial clustering labels in a
crowd-sourcing setting. Also in this case, the labels will not be perfect but they will contain useful
information. Motivated by such examples, many machine learning problems including clustering
problems in generative models have been studied with noisy labels Abbe et al. (2021); Saad and
Nosratinia (2018); Esmaeili et al. (2019); Lesieur et al. (2016); Lelarge and Miolane (2019). How-
ever, perhaps surprisingly, there has been no such work on the classic k-means problem where there
is no assumption on the underlying data distribution. We address this question with the goal to
understand what kind and what amount of noise on the labels allow for the development of efficient
algorithms with strong approximation guarantees.

Our results and overview of techniques. We study two natural noise models, the adversarial and
the stochastic. In the adversarial noise model, starting from a correct labeling, an adversary changes
a fraction of the labels. In the stochastic noise model, the label of a fraction of the points are altered
at random. More formally, in the noisy k-means problem, in addition to the set of points P and
number of centers k, we are provided with a clustering O′ = (O′1, . . . , O

′
k) that is a noisy version

of an optimum solution O1. For each point p ∈ P , we refer to the id of the cluster that it belongs in
O′ as its label, i.e., the label of a point p ∈ O′i is i. The goal of this work is to investigate the impact
of this extra information on the complexity of the problem, its benefits and limitations. Therefore,
we consider different models based on the source of the noise.

The first model that we consider is the adversarial noise model. In this model, an adversary
is allowed to pick any optimum solution and change the label of ε-fraction of the points to any
desired label, for some ε > 0. Therefore, in this model, at least (1− ε)-fraction of the labels are not
changed. At first, this model might sound very strong as revealing the labels of most of the points
can potentially be very useful in finding the optimal solution, but this is not the case. Our first result
shows that this labeling does not provide any useful information and any hardness result for the
k-means problem also applies to this setting. Intuitively, this is true because one can take any hard
instance of the k-means problem on n points and add n/ε additional points extremely close to each
other but far away from all the points in the hard instance. In this new instance, the adversary can
assign any label to the points in the initial hard instance while ensuring that the labels for at least
(1− ε)-fraction of the points are correct. An improved and formal argument for this is presented in
Appendix F (Theorem F.1). Motivated by this, we define a Balanced Adversarial Noise model. In

1. We note that our noise model is strictly more challenging than a model where an (1 − ε)-fraction of the clustering
labels are revealed either adversarially or randomly.
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this model, the adversary creates a set of perturbed labels O′ = {O′1, O′2, . . . , O′k} such that there
exists an optimum solution O = {O1, O2, . . . , Ok} so that for all i ∈ [k], the size of the symmetric
difference |Oi∆O′i| ≤ ε|Oi|. This setting is basically the same as adversarial setting with the caveat
that a fraction of points in each cluster is preserved instead of a fraction of the entire instance.
Interestingly, we can show that in this setting it is possible to achieve a high quality solution.

Theorem 1.1 (Informal version of Theorem B.1) There exists a (1 + O(ε))-approximation algo-
rithm for the noisy k-means problem in the balanced adversarial noise model. 2

To obtain such a result, we consider each cluster O′j separately. We start by observing that if
O′j ⊆ Oj (i.e., no points were added to the cluster), then the centroid of O′j is close to that of Oj ,
which gives a (1 +O(ε)) approximate solution. However, the points that are added to Oj can move
the centroid ofO′j much farther from that of Oj . Let Aj = O′j \Oj be the added points. If a point in
Aj is close to the centroid ofOj , its contribution to the movement of centroid ofO′j is not significant.
Thus, only the points in Aj that are far away from the centroid of Oj are problematic. Intuitively,
if we somehow remove such “outliers” from consideration and compute the centroid considering
the remaining points, it should result in a good solution. In fact, we show that the following outlier
removal approach works: Consider a set of candidate centers that is guaranteed to contain a point
close to the centroid of Oj and find the center that gives the minimum sum of squared distances to
points in O′j excluding the farthest 2 · ε fraction of the points. Note that by excluding the farthest
away points, we might also exclude some points in Oi, but since it is only a small fraction, we are
still able to show that the resulting center is close to the centroid of Oj . A formal version of this
argument is presented in Appendix B.

Furthermore, we show that any algorithm that considers only the points inO′j to find its centroid,
cannot achieve an asymptotically better guarantee.

Theorem 1.2 In the balanced adversarial noise model, any (potentially randomized) algorithm
has an approximation guarantee of (1 + Ω(ε)) if it computes the center of each cluster only as a
function of the input points with the label of that cluster.

In many practical scenarios, the adversarial setting is too pessimistic and a stochastic noise
model is more suitable. We consider two natural variants of such noise: the proportional stochastic
model where the noisy labels are proportional to cluster sizes and the uniform stochastic model
where noise is uniform across labels.

We first study the algorithmically easier proportional stochastic model. Starting from an arbi-
trary optimum solution O = {O1, O2, . . . , Ok}, each point keeps its label with probability 1 − ε
and its label is changed to label j with probability ε |Oj ||P | . More precisely, the set of perturbed labels
O′ = {O′1, O′2, . . . , O′k} is constructed as follows: for each cluster i ∈ [k] and p ∈ Oi, put p in
O′i with probability 1 − ε and put p in O′j with probability ε |Oj ||P | for each j ∈ [k].3 This model,
as in the adversarial model, ensures that a fraction of the points from each cluster is kept and the
expected number of points added to each cluster i is at most ε|Oi|. However, in contrast to the
adversarial model, we are here able to get an approximation guarantee of 1 + o(1) even if only a
small (e.g., 1/log |P |) fraction of the labels are accurate.

2. By definition, the running time of approximation algorithm is polynomial with respect the size of input.
3. Thus the probability that a point p ∈ Oi retains its original label is 1− ε+ ε |Oi|

|P | .
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Theorem 1.3 (Informal version of Theorem 3.1) For ε ≤ 1−1/log |P |, there exists a (1+O(1/log |P |))-
approximation algorithm with a success probability of 1 − 1/|P | for the proportional stochastic
model, assuming that |Oi| > poly(log |P |) for 1 ≤ i ≤ k.

Our approach has two main steps: In the first step, we find a set of points B that contains most
of the points of an optimum cluster while having the diameter4 bounded by the average cost of
that cluster. In the second step, we focus on the points identified in B and use them to estimate
the centroid of this cluster. The fact that the diameter of the points in B is bounded enables us to
achieve a good estimate with high probability. As presented in Section 2, we do so by considering
the centroid of B ∩O′j as a linear combination of the centroids of unperturbed and perturbed points
in B ∩O′j .

Perhaps the most natural stochastic model is the uniform stochastic noise model: each point
keeps its label with probability 1 − ε and with the remaining probability its label is sampled uni-
formly. It turns out that this model is more challenging than the proportional model. Indeed a major
challenge with uniform noise is that, for the clusters that have small (say nε) size, the amount of
noisy labels added is almost n/k. Therefore, the number of noisy-labeled points can be a factor
n(1−ε)/k more than the correctly labeled points. In other words, the signal is much weaker than the
noise for small clusters. We overcome this with a more complex approach that iteratively finds the
currently large clusters and discards them. This allows us to achieve similarly strong guarantees for
the uniform stochastic model: we get close-to-optimal solutions even if only 1/log |P | fraction of the
points are correctly labeled.

Theorem 1.4 (Informal version of Theorem 4.1) For ε ≤ 1−1/log |P |, there exists a (1+O(1/log |P |))-
approximation algorithm with a success probability of 1 − 1/|P | for the uniform stochastic model,
assuming that |Oi| > poly(k, log |P |) for 1 ≤ i ≤ k.

The algorithm for the uniform stochastic noise model is explained in Section 4.

Related work. Thanks to its natural motivation, many machine learning problems have been stud-
ied in presence of noisy labels. For example, in the context of learning halfspaces, both the adversar-
ial Haussler (1992); Kearns et al. (1994), the stochastic Angluin and Laird (1988), and the Massart
noise models Diakonikolas et al. (2019) have been studied.

When we restrict our attention to clustering, side information has been extensively studied to
improve the results on the stochastic block model. For example, Mossel et al. (2014) use the output
of another algorithm to show that belief propagation run on that output recovers the underlying
clustering. Several papers also consider side information in the form of clustering labels Abbe et al.
(2021); Saad and Nosratinia (2018); Esmaeili et al. (2019). In metric spaces, side information has
been used to improve results on mixture of Gaussians Lesieur et al. (2016); Lelarge and Miolane
(2019). In this context, our work extend this line of work in a setting where we have no assumption
on the underlying structure of the clustering.

More generally, our problem is also related to the problem of estimating a vector of discrete
variables, using a set of on noisy observations on the pairs has also been studied El Alaoui and
Montanari (2021).

Finally, our paper is also related to the literature studying beyond worst-case analysis Rough-
garden (2019). A closely related line of work in this are is the semi-supervised active clustering

4. The maximum distance between two points.
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framework (SSAC) Ashtiani et al. (2016). In this model we are given a set X of n points and an
oracle answering to same-cluster queries of the form “are these two points in the same cluster?”. In
this model both k-meas clustering and clustering with side information have been studied Ashtiani
et al. (2016); Mazumdar and Saha (2017).

2. Stochastic Noise Model

In this section we consider the the k-means problems with stochastic noise, and we focus on the
problem of designing an algorithm to estimate the centers for each cluster separately. Later, in Sec-
tion 3, we show how to use our algorithm as a black box in a straightforward manner to solve the
k-means problem in the proportional stochastic noise setting. Then, in Section 4, we present a more
elaborate, iterative algorithm that again uses the algorithm of this section as a black box to solve the
k-means problem in the uniform stochastic noise setting.

Formally, we consider the following problem, which we refer to as the noisy center estimation
problem: Let P ⊂ Rd be a set of points, O ⊆ P be a cluster of interest, and let ε, δ ∈ (0, 1)
be a pair of parameters denoting probabilities. An instance of the noisy center estimation problem
consists of the quadruple (P,O, ε, δ). Let Pnoisy be a random subset of P constructed by including
each point of P independently with probability ε. Let Ogood = O \ Pnoisy and let Obad be a
random subset of Pnoisy which includes each point of Pnoisy independently with probability δ. Let
Onoisy = Ogood ∪Obad. We call such Onoisy an (ε, δ)-noisy version of O. Given P , an (ε, δ)-noisy
version Onoisy of O, and parameters ε, δ, the noisy center estimation problem asks to find a center
ô that is close to the centroid o of O.

Let cost(X, c) :=
∑

x∈X ‖x − c‖2 denote the sum of squared distances from a points in a set
X ⊂ Rd to a center c, and we further use cost(X,C) =

∑
x∈X minc∈C ‖x− c‖2 for a subset C of

centers. Let ravg =
√

cost(O,o)/|O| be the average radius of O.5 Our aim is to find a center ô such
that ‖ô − o‖ = O (1/log0.5 |P |) ·

√
cost(O,o)/|O|. Since cost(O, ô) = cost(O,o) + |O| · ‖ô − o‖2,

such a center ô satisfies cost(O, ô) ≤ (1 +O (1/log |P |)) · cost(O,o). We formally state this result
below in Theorem 2.3.

The success of our algorithm depends on several natural assumptions on the input. First, we
assume that the underlying cluster is not too small, and the noise parameter ε (i.e., the probability
with which a point is selected for noisy labeling) is not too large. We also assume that the noise
parameter δ (i.e., the probability with which the perturbed points are relabeled as belonging to O) is
not too high so that the variance of the size of Onoisy is small compared to the size of the underlying
cluster O. Formally, we define the following:

Definition 2.1 We say an instance (P,O, ε, δ) of the noisy cluster estimation problem is nice if
|O| ≥ log200 |P |, ε ≤ 1− 1

log |P | , and δ ≤ |O|1.1
|P | log2 |P | .

We remark that it is not necessary for the algorithm to know the parameters ε and δ exactly; instead
it is sufficient to know good approximations ε′ and δ′, as formalized below:

Definition 2.2 For an instance (P,O, ε, δ) of the noisy cluster estimation problem, we say that the
probability parameters ε′, δ′ ∈ (0, 1) are close approximations of ε and δ if |ε − ε′| ≤ |O|−0.4 · ε
and |δ − δ′| ≤ |O|−0.4 · δ.

5. Note that, despite the term ‘average radius’, this is in fact the quadratic mean of point-to-center distances.
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As the main result of this section, we prove the following theorem:

Theorem 2.3 There exists an algorithm ONECENTER that satisfies the following:
Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be an (ε, δ)-

noisy version ofO, and ε′, δ′ be close approximations of ε and δ. The algorithm ONECENTER takes
(P,Onoisy, ε

′, δ′) as input and outputs a center ô such that

cost(O, ô) ≤ (1 +O (1/log |P |)) · cost(O,o)

with probability at least 1 − exp
(
−|O|0.2

)
, where the probability is over the randomness of the

noisy labels and the algorithm’s internal random bits.

Overview of the techniques

Recall that Onoisy is the union of the following two disjoint sets:

1. Ogood, i.e., the points that were originally in O but were not included in Pnoisy. Observe that
Ogood is a random set of points constructed by including each point in O independently with
probability 1− ε.

2. Obad, i.e., the points that were included in Onoisy due to noise. Note that Obad can be viewed
as a random set of points constructed by including each point of P independently with prob-
ability ε · δ. However, it is not independent from Ogood.

Observe that the centroid on of Onoisy is a linear combination of the centroids og and ob of
Ogood and Obad respectively. Namely, we have on = (|Ogood|/|Onoisy|) ·og + (|Obad|/|Onoisy|) ·ob, and
substituting |Ogood| = |Onoisy| − |Obad|, we get

og =
on − (|Obad|/|Onoisy|) · ob

1− |Obad|/|Onoisy|
. (1)

Intuitively, the centroid s of a set S of points can be approximated by taking the centroid of a
random subset T obtained by including each point in S independently with some fixed probability
(see Lemma A.3 for a statement of this kind). In particular, the latter is an unbiased estimator for
the former, whose variance is O (1/|T | · cost(S,s)/|S|). Consequently, og is an unbiased estimator for
the true centroid o of O. We may thus use Eq. (1) to estimate the centroid of O since we can
find/estimate each term on the right hand side as follows: We can directly compute the centroid on
from the input and closely approximate the ratio |Obad|/|Onoisy| using the standard concentration
bounds. As for the centroid ob of Obad, we can again invoke Lemma A.3 since we can view Obad

as a random subset obtained by including each point of P independently with probability ε · δ.
However, there are two issues with the above approach:

1. The bound we have for the variance of ob is in terms of cost(P,p) instead of cost(O,o). The
former can be arbitrarily large compared to the latter.

2. Even if cost(P,p) is comparable to cost(O,o), the failure probability bound we get is only
inversely proportional to |O| as we are using Chebyshev-style inequality to bound ‖og − o‖
and ‖ob − p‖. Ideally, we prefer Chernoff-style bounds that are exponentially small in terms
of |O|, which would imply a wider applicability.

6



APPROXIMATE CLUSTER RECOVERY FROM NOISY LABELS

To circumvent the first issue, we employ a two stage algorithm: In the first step, we find a ballB
that contains most (i.e., 1 − o(1) fraction) of the points of cluster O while having the diameter
bounded by O(log0.5 |P |) ·

√
cost(O,o)/|O|, and restrict our attention to only the points in side

B. Since B contains most of the points of O, the centroid o of O is close to that of O ∩ B by
Lemma B.2 as will be shown in Appendix B. To this end, we define the following:

Definition 2.4 For a subset Q ⊆ P , we define a ball with center c and radius r, denoted by
BALLQ(c, r) as the set of all points in Q that are within distance r from c. Namely

BALLQ(c, r) = {q ∈ Q : ‖c− q‖ ≤ r}.

We denote by Ball the set of all balls for P whose center belongs to P and whose radius corresponds
to the distance between the center and some point in P . Formally,

Ball = {BALLP (c, r) : c ∈ P and r = ‖c− c′‖ for some c′ ∈ P}.

By definition, Ball contains at most |P |2 balls.

Definition 2.5 We say a ball B ∈ Ball is good if the following two conditions hold:

1. B contains at least 1− 1
log |P | fraction of the points in O, and

2. the diameter of B, i.e., maxx,y∈B ‖x− y‖, is at most 32 · (log0.5 |P |) · ravg.

We denote set of all good balls by Bgood.

The way we find a good ball B is to guess a center and a radius for the ball and perform a
statistical test to check if the guess is good. Namely, for each candidate center and radius, we
compare the number of points in Onoisy that are outside the corresponding ball with the expected
number of such points if the guess were to be good. This yields the following lemma which we
prove later in Appendix C.1.

Lemma 2.6 There exists an algorithm GOODBALL that satisfies the following:
Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be an (ε, δ)-

noisy version of O, and ε′, δ′ be close approximations of ε and δ. The algorithm GOODBALL takes
(P,Onoisy, ε

′, δ′) as input and outputs a ball B ∈ Ball such that B ∈ Bgood with probability at least
1− 1

2 exp
(
−|O|0.2

)
, where the probability is over the randomness of Onoisy.

In the second step, we use Eq. (1) considering only the points inside the identified ball to es-
timate the centroid of O ∩ B. To boost the success probability and overcome the second issue we
mentioned above, we use further randomization in the second step followed by a high-dimensional
median trick (see Corollary A.5). Namely, instead of naı̈vely using our approach on the points of B
to estimate a single centroid for O ∩ B, we use it on many random partitions of B. Then we take
the geometric median of the estimated centers as our final output. We describe the key ideas of
this approach in Section 2.1, but we defer the technicalities of the high-dimensional median trick
to Appendix C.2. This approach yields the following lemma. In Section 2.1, we prove a weaker
version of it and present a proof-sketch for the stronger version. Due to the technicalities involved,
we defer the complete proof of Lemma 2.7 to Appendix C.2.
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Lemma 2.7 There exists an algorithm CENTERINBALL that satisfies the following:
Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be an (ε, δ)-

noisy version of O, and ε′, δ′ be close approximations of ε and δ. The algorithm CENTERINBALL

takes (P,Onoisy, ε
′, δ′) and B ⊆ P as input and outputs a center õB . With probability at least

1 − 1
2 exp

(
−|O|0.2

)
over the randomness of Onoisy and the algorithm’s internal random bits, it

holds that
‖õB − centroid(O ∩B)‖ ≤ 6 · ravg

log0.5 |P |
for all B ∈ Bgood.

Using the algorithm GOODBALL from Lemma 2.6 and the algorithm CENTERINBALL from
Lemma 2.7, Theorem 2.3 now follows. Indeed, we first find a good ball using GOODBALL and
then we estimate its center using CENTERINBALL. The high probability guarantee of Lemma 2.7
allows us to union-bound the failure probabilities over all possible good balls that the first stage
(i.e., the algorithm GOODBALL) may output. For the formal argument how Theorem 2.3 is implied
by the two lemmas, we refer the reader to Appendix C.4.

2.1. Estimating the centroids in good balls (proof of Lemma 2.7)

In this section, we first prove a weaker version of Lemma 2.7 to demonstrate our key techniques.
Later we explain how it can be combined with random partitioning and a high dimensional median
trick to prove the stronger result of Lemma 2.7. We defer the full proof of Lemma 2.7 to Ap-
pendix C.2. We remark that, to simplify the calculations, the weaker version stated below assumes
that the algorithm knows the probability parameters ε and δ exactly.

Lemma 2.8 There exists an algorithm that satisfies the following:
Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem andOnoisy be an (ε, δ)-

noisy version of O. Let B ∈ Bgood be good ball for the considered instance and further suppose
that εδ|B| ≥ |O|0.95. The algorithm takes (P,Onoisy, ε, δ) and B as input and outputs a center ô.
With probability at least 2

3 over the randomness of Onoisy, it holds that

‖ô− õ‖ ≤ 3 · ravg

log0.5 |P |
,

where õ is the centroid of O ∩B.

Proof The algorithm proceeds as follows: it first computes α = εδ|B|
|Onoisy∩B| , the centroid on of

Onoisy ∩B and the centroid b of B; it then outputs the center

ô =
on − α · b

1− α
.

Recall that in the noisy cluster estimation problem, we can view Onoisy as the union of two dis-
joint sets,Ogood andObad, which are constructed as follows: First a random set Pnoisy is constructed
by including each point of P independently with probability ε. Then the set Ogood is created by
removing all points in Pnoisy from O, and the set Obad is constructed by including each point in
Pnoisy independently with probability δ.

With this viewpoint, we can note that the definition of ô is analogous to the right hand side of
Eq. (1) considering only the points of B. Here the ratio α is an estimator for the quantity |Obad ∩
B|/|Onoisy ∩B|.

8
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We claim that ô computed as above is a good estimator for the centroid õ of O∩B. To this end,
observe that

‖ô− õ‖ =

∥∥∥∥on − α · b1− α
− õ

∥∥∥∥ =
1

1− α
‖on − αb− (1− α)õ‖

Now, letting o′ = (1− α)og + αob where og and ob are the centroids of Ogood ∩B and Obad ∩B,
respectively, we get

‖ô− õ‖ =
1

1− α
∥∥on − o′ + o′ − αb− (1− α)õ

∥∥
=

1

1− α
∥∥on − o′ + ((1− α)og + αob)− αb− (1− α)õ

∥∥
≤ 1

1− α
(
‖on − o′‖+ (1− α) · ‖og − õ‖+ α · ‖ob − b‖

)
≤ 1

1− α
‖on − o′‖+ ‖og − õ‖+

α

1− α
· ‖ob − b‖. (2)

(3)

Thus, to bounding ‖ô− õ‖ now boils down to bounding the the terms 1/(1−α), ‖on− o′‖, ‖og − õ‖
and ‖ob − b‖.

Bounding 1/(1−α) With Chernoff bounds, one can verify that, with probability at least 0.99,

|Onoisy ∩B| ≥ (1− |O|−0.4)((1− ε)|O ∩B|+ εδ|B|) ≥ (1 + |O|−0.2)εδ|B|, (4)

where we also use that |O ∩ B| ≥ |O|/2 since B is good and εδ|B| ≤ δ|P | ≤ |O|1.1 since
(P,O, ε, δ) is nice. Let E1 be the event that |Onoisy ∩B| ≥ (1 + |O|−0.2)εδ|B|. Conditioned on E1,
we have that α = εδ|B|

|Onoisy∩B| ≤
1

1+|O|−0.2 , which implies that 1/(1−α) ≤ 2|O|0.2.

Bounding ‖on − o′‖ Again using the Chernoff bounds, we can verify that, with probability at
least 0.99, ∣∣|Obad ∩B| − εδ|B|

∣∣ ≤ |O|−0.25εδ|B|. (5)

Let E2 be the event that Eq. (5) holds.
We can write the centroid on as a linear combination of og and ob.

on =
|Ogood ∩B|
|Onoisy ∩B|

· og +
|Obad ∩B|
|Onoisy ∩B|

· ob.

Observe that both on and o′ (defined earlier in the derivation of Eq. (2)) lie on the same line segment
between og and ob. The point on is |Obad∩B|

|Onoisy∩B| · ‖og − ob‖ away from og while the point o′ is
α · ‖og − ob‖ distance away from og. Thus, conditioned on both E1 and E2, it holds that

‖on − o′‖ =

∣∣∣∣ |Obad ∩B|
|Onoisy ∩B|

− α
∣∣∣∣ · ‖og − ob‖ ≤

|O|−0.25εδ|B|
(1 + |O|−0.2)εδ|B|

· ‖og − ob‖

≤ 64(log0.5 |P |) · ravg

|O|0.25
.

The first inequality follows from Eq. (5), and the second one uses the fact that both ob and og are in
B and that B’s diameter is bounded by 32 · (log0.5 |P |) · ravg since B ∈ Bgood.

9
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Bounding ‖og − õ‖ and ‖ob − b‖ By the Chernoff bounds, one can verify that, with probability
at least 0.99, it holds that

|Ogood ∩B| ≥
1

2
(1− ε)|O| ≥ |O|0.5 and |Obad ∩B| ≥

1

2
εδ|B| ≥ |O|0.5.

This, combined with Lemma A.3, yields that, with probability at least 1− 0.99− 1
|O|0.2 −

1
|O|0.2 ≥

0.95,
‖og − õ‖ ≤ ravg

log0.5 |P |
and ‖ob − b‖ ≤ ravg

|O|0.25
.

Let E3 denote this event.
Thus, using Eq. (2) and conditioned on the events E1, E2 and E3, we observe that

‖ô− õ‖ ≤ 2|O|0.2 · 64 · (log0.5 |P |) · ravg

|O|0.25
+

ravg

log0.5 |P |
+ |O|0.2 · ravg

|O|0.25
≤ 3 · ravg

log0.5 |P |
,

where the last inequality uses that |O| ≥ log200 |P |. To conclude the proof, observe that Pr[E1 ∩
E2 ∩ E3] ≥ 1− E1 − E2 − E3 ≥ 2

3 .

Note that Lemma 2.8 is a weaker version of Lemma 2.7 in a few aspects. First, it assumes that
the algorithm knows the parameters ε, δ exactly, but this can be easily relaxed at the expense of a
slightly more involved calculation.

Secondly, it is constrained on the assumption that εδ|B| ≥ 1
2 |O|

0.95. This assumption can also
be removed as follows: Suppose that εδ|B| ≤ 3

2 |O|
0.95. In this case, we can show that, with high

probability, |Obad ∩B| is in the order of o(1) · |Ogood ∩B|. Thus, we can simply use the algorithm
for the adversarial setting to estimate a good center forOgood∩B. We can use a simple probabilistic
check (which succeeds with high probability) to determine which algorithm to run depending on the
value of εδ|B|.

Finally, the most crucial issue is that the probability guarantee of Lemma 2.8 is not nearly
sufficient, as we need the estimate to be good regardless of which good ball is selected, and we need
this guarantee with high probability. Namely, the algorithm must succeed for a fixed good ball with
high probability (≥ 1 − 1

2·|P |2 exp(−|O|0.2)) so that we can union bound over all (≤ |P |2) such
balls. Next, we discuss how to achieve this.

Suppose that instead of estimating a center using all points in B, we first take a random sample
of Q ⊆ B and run our approach considering only the points in Q. Then, with a good probability,
we can show that the centroid of O ∩ Q is close to that of O ∩ B, and hence the center estimated
using the approach of Lemma 2.8 considering only the points of Q is close to the the centroid of
O ∩B with a constant probability.

Now we can take many random samples of Q1, . . . , Qt ⊂ B, estimate a center ôQi using each
sample, and then take the geometric median of the samples as our final estimate. If the majority of
the estimated centers are close to o, then using the result of Minsker Minsker (2015), we get that
the geometric median of the estimated centers is also close to o.

Now, how can we argue that the majority of these estimates are good? First, we make the
different runs of the approach of Lemma 2.8 independent on different random samples by ensuring
that Qi’s disjoint. However, this poses an additional challenge: Let õQi be the centroid of O ∩Qi.
Then the events that õQi’s being close to the centroid of O ∩ B are no longer independent. To get

10
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around this challenge, we take many disjoint random samples of B, but only run our algorithm on
a 1

log3 |P | fraction of them. This allows us to view each considered sample Qi as a random subset of

a set Bi where Bi ⊆ B contains at least 1 − O
(

1
log3 |P |

)
fraction of the points of B ∩ O’s points.

(Note that this only holds conditioned some high probability events such as all sample sizes being
not too large compared to their expected sizes.) Hence, for each Qi, we can show that the centroid
of Qi ∩O is close to that of Bi ∩O with constant probability, which in turn is close to the centroid
of B ∩ O due to Lemma B.2. By using an augmented Chernoff-style bound, we then show that,
with high probability, the above holds for majority of Qi’s.

We formalize all these ideas in Appendix C.2 and prove Lemma 2.7 in its full generality.

3. Proportional Stochastic Noise Model

In this section, we present an algorithm to estimate the centers in the proportional stochastic noise
model. Unlike the 1 +O(ε) approximation guarantee for the balanced adversarial noise model, we
now aim for a 1 + o(1) approximation guarantee.

Theorem 3.1 There exists an algorithm such that the following holds:
Let (P, {O1, . . . , Ok}, ε) be an instance of the k-means problem in the proportional stochastic

noise setting where |Oi| ≥ log200 |P | for all i ∈ [k] and ε ≤ 1 − 1
log |P | . Let O′1, . . . , O

′
k be the ε-

noise added versions ofO1, . . . , Ok. The algorithm takes as input (P, {O′1, . . . , O′k}, ε) and outputs
centers ô1, . . . , ôk such that, with probability at least 1− 1

|P | , we have

cost(Oi, ôi) ≤
(

1 +O

(
1

log |P |

))
· cost(Oi,oi)

where oi denote the centroid of Oi. Consequently, the output of the algorithm satisfies

cost(Oi, {ô1, . . . , ôk}) ≤
(

1 +O

(
1

log |P |

))
·OPT .

with probability at least 1− 1
|P | . The probability is over the randomness of O′i’s and the algorithm’s

internal random bits.

The proof follows from the observation that (P,Oi, ε, δ), where δ = |Oi|
|P | , is a nice instance of

the noisy center estimation problem. Moreover, we have with high probability that ε, δ′ are close
approximations of ε, δ, where δ′ = |O′i|

|P | . Hence, using the algorithm ONECENTER whose existence
is guaranteed by Theorem 2.3, we can with high probability find a very accurate center ôi for each
cluster Oi. This implies that the cost of each cluster is low and thus also the cost of the whole
clustering. The formal proof is given in Appendix D.

4. Uniform IID Noise Model

In this section, we present an algorithm to estimate the centers in the uniform stochastic noise
model. Similarly to the proportional stochastic noise model, we obtain a (1 + o(1)) approximation
guarantee, as formally stated below.

11
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Theorem 4.1 There exists an algorithm such that the following holds:
Let (P, {O1, . . . , Ok}, ε) be an instance of the k-means problem in the uniform stochastic noise

setting where |Oi| ≥ max(log200 |P |, k200 log |P |) for all i ∈ [k] and ε ≤ 1 − 1
log |P | . Let

O′1, . . . , O
′
k be the ε-noise added versions ofO1, . . . , Ok. The algorithm takes (P, {O′1, . . . , O′k}, ε)

as input and outputs centers ô1, . . . , ôk′ where k′ ≤ k such that

cost(P, {ô1, . . . , ôk′}) ≤
(

1 +O

(
1

log |P |

))
·OPT

with probability at least 1 − 1
|P | , where the probability is over the randomness of O′i’s and the

algorithm’s internal random bits.

Suppose that we attempt to recover one cluster a time as before. Observe that for a fixed cluster
label i ∈ [k], recovering a good center for Oi can be viewed as solving the instance (P,Oi, ε,

1
k ) of

the noisy center estimation problem from Section 2 with (P,O′i, ε,
1
k ) as input. However, we can no

longer use the approach of Section 2 to solve this if |Oi| = O(
√
|P |/k) due to the following: In

Section 2, we first identified a ball that contains most of the points of |Oi| while having a diameter
bounded in terms of the average radius of Oi, using a statistical test that checks whether a guessed
center-radius pair (c, r) defines a good ball. Suppose that B = BALLP (c, r) is good. Our test may
fail to identify that B is good if the variance of the number of points that are outside B and bad
(i.e., the variance of |(P \ BALLP (c, r)) ∩ Obad|) is significant compared to the number of good
points that are inside the ball (i.e., |BALLP (c, r)∩Ogood|), which may happen with a non-negligible
probability if |Oi| = O(

√
|P |/k).

Nevertheless, we can estimate good centers for all clusters |Oi| that are sufficiently large using
the techniques of Section 2. Observe that we can always find some clusters that are sufficiently large;
for example, we can always estimate a good center for the largest cluster since |Oi| ≥ |P |/k for that
cluster, and consequently, the instance (P,Oi, ε,

1
k ) is nice. Intuitively, if we assume that we also

correctly identify most of the points that belong to these clusters, we can remove all such points
from the instance, and recursively apply the same technique on the remaining points to estimate
centers for the remaining clusters. Of course, we cannot correctly identify all such points, but we
show that we can assign some fraction of the points in the instance that are closest to the already
estimated centers, and then recursively estimate centers for the remaining portion of the instance
after removing the already assigned points. Note that the points we assign to estimated centers
may not overlap with the points that truly belong to the respective clusters. However, using the
fact that we assign a fraction of the points that are closest to the estimated centers and that the
estimated centers are close to the true centroids of the respective clusters (considering only the
remaining points), we develop an elaborate charging scheme to bound the total assignment cost of
this approach. We describe our algorithm in detail in Appendix E.

As a final remark, note that our approach for the stochastic uniform noise model requires the
minimum cluster size to be larger compared to the number of clusters k. This is to ensure that the
sizes of clusters remain not too small even in the recursively solved instances.
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Marc Lelarge and Léo Miolane. Asymptotic bayes risk for gaussian mixture in a semi-supervised
setting. In 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), pages 639–643. IEEE, 2019.

Thibault Lesieur, Caterina De Bacco, Jess Banks, Florent Krzakala, Cris Moore, and Lenka Zde-
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Appendix A. Basic Results

In this section, we present some basic results that are frequently used in the subsequent sections.
We extensively use the following Chernoff bounds. The first one is the standard Chernoff bound

and the second one is a slightly modified version for the case when events are not completely
independent.

Lemma A.1 (Chernoff) Fix a positive integer n. For each i ∈ [n], let Xi be an independent
Bernoulli random variable. Let X =

∑
i∈[n]Xi and µ = E[X]. Then for all δ ∈ (0, 1),

Pr [|X − µ| > δµ] < 2 exp(−δ2µ/4),

and for all δ ≥ 1,
Pr [X ≥ (1 + δ) · µ] ≤ exp(−δµ/4).

Lemma A.2 (Chernoff when events are dependent) Let X1, . . . , Xt be binary random variables
and p1, . . . , pt ∈ [0, 1] be real numbers such that Pr[Xi = 1|X1, . . . , Xi−1] ≥ pi for all outcomes
of X1, . . . , Xi−1. Let X =

∑t
i=1Xi and µ =

∑t
i=1 pi. Then for δ ∈ (0, 1), we have

Pr[X < (1− δ)µ] ≤ exp(−δ2µ/4).

Proof For i = 1, . . . , t, let Yi be independent random variables such that

Pr[Yi = 1] = min
x1,...,xi−1

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1].

Note that Pr[Yi] ≥ pi for all i = 1, . . . , t. Let Y =
∑t

i Yi. By coupling, we get Pr[X > t] ≥
Pr[Y > t] for any t, and hence we get

Pr[X < (1− δ)µ] ≤ Pr[Y < (1− δ)µ] ≤ exp(−δ2µ/4)

where the second inequality follows from Lemma A.1.

Estimating the centroid of a point based on a small size sample is one of the procedures that we
often use in our algorithms. Here we provide a utility lemma that bounds the error of this estimation.

Lemma A.3 (Centroid estimation) Let S ⊂ Rd be a finite set of points, and let s be its centroid.
Let m ≥ 1 be a positive integer. Let T ⊆ S be a uniformly random subset of m points, and let t be
its centroid. With probability at least 1− δ, we have

‖s− t‖2 ≤ 1

δm

(
cost(S, s)

|S|

)
.
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Proof
We compute the variance of the estimator t and apply Markov’s inequality. For a point x ∈ S,

let Ix denote the indicator variable for the event x ∈ T . Fix some i ∈ [d] and consider the deviation
of t from s in the i-th dimension. Note that for any point x ∈ S, it belongs T with probability |T |/|S|,
and for two points x,y ∈ S, both of them belong to T with probability (|T |/|S|) · (|T |−1/|S|−1).

Observe that

(si − ti)2 =

(
1
|S|

∑
x∈S

xi − 1
|T |

∑
x∈T

xi

)2

=
∑

x,y∈S
xi · yi ·

(
1
|S| −

Ix
|T |

)
·
(

1
|S| −

Iy
|T |

)
.

Using the linearity of expectation and the fact that Pr[x ∈ T ] = |T |/|S|, we thus get

E[(si − ti)2] =
∑

x,y∈S
xi · yi · E

[
1
|S|2 −

Ix
|S|·|T | −

Iy
|S|·|T | +

Ix·Iy
|T |2

]
=
∑

x,y∈S
xi · yi ·

(
E
[
Ix·Iy
|T |2

]
− 1
|S|2

)
.

Note that x and y are the same point, we have

E
[
Ix·Iy
|T |2

]
= |T |
|S| ·

1
|T |2 = 1

|S|·|T | ,

and, when x and y are different, we have that

E
[
Ix·Iy
|T |2

]
= |T |
|S| ·

(|T |−1)
(|S|−1) ·

1
|T |2 = |T |−1

|S|·|T |·(|S|−1) .

Thus we conclude that

E[(si − ti)2] =
∑

x,y∈S,x 6=y

xi · yi ·
(

|T |−1
|S|·(|S|−1)·|T | −

1
|S|2

)
+
∑
x∈S

x2
i ·
(

1
|S|·|T | −

1
|S|2

)

= 1
|S|(|S|−1)

 ∑
x,y∈S,x 6=y

xi · yi ·
(
|T |−1
|T | −

|S|−1
|S|

)
+
∑
x∈S

x2
i ·
(
|S|−1
|T | −

|S|−1
|S|

)
= 1
|S|(|S|−1)

∑
x∈S

x2
i ·
(
|S|−1
|T | −

|S|−1
|S|

)
−

∑
x,y∈S,x 6=y

xi · yi ·
(

1
|T | −

1
|S|

) j

= 1
|S|(|S|−1)

(
1
|T | −

1
|S|

)∑
x∈S

x2
i (|S| − 1)−

∑
x,y∈S,x 6=y

xi · yi


= |S|−|T |
|S|2(|S|−1)|T |

|S|∑
x∈S

x2
i −

∑
x,y∈S

xi · yi


= |S|−|T |
|S|(|S|−1)|T |

∑
x∈S

x2
i − 1

|S| ·

(∑
x∈S

xi

)2
 . (6)
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Now, taking the summation over all dimensions and noting that |S| − |T | ≤ |S| − 1, we get

E[‖s− t‖2] ≤ 1

m

(
cost(S, s)

|S|

)
, (7)

where we use that |T | = m. The proof now follows from Markov’s inequality.

Next, we present a useful lemma due to Minsker (2015) that helps to boost the success probabil-
ity of centroid estimates by combining multiple estimates. Namely, if we take the geometric median
of a set of points U ⊂ Rd and consider any point u ∈ Rd that is far from the median, then there is a
large subset of points in U that are far from u.

Lemma A.4 (Lemma 2.1 of Minsker (2015)) Let u be a point in Rd and let U = {u1, . . . ,ut} ⊂
Rd be a set of points. Let û be the geometric median of U . If ‖u − û‖ > ((1 − α)/

√
1− 2α) · r,

then there exists V ⊆ U such that |V | ≥ α|U | and ‖u− ui‖ > r for all ui ∈ V .

Lemma A.4 implies that, if sufficiently many points in U are good estimates for a point u, then
so is the geometric median of U . In particular, substituting α such that (1 − α)/

√
1− 2α = 2,

i.e., α ' 0.46 in , we get the following corollary, which can be viewed as a generalization of the
so-called median-trick to higher dimensions.

Corollary A.5 Let u be a point in Rd and let U = {u1, . . . ,ut} ⊂ Rd be a set of points. Let û
be the geometric median of U . If more than 0.6|U | points ui ∈ U satisfies ‖ui − u‖ ≤ r for some
point u, then ‖û− u‖ ≤ 2 · r.

Finally, the following lemma bounds the cost increase due to adding a small number of points
to an existing set of points.

Lemma A.6 Let Q be a set of points in Rd, and let S ⊂ Q such that |Q \ S| ≤ γ2|Q| for some
1/2 ≥ γ > 0. Let c ∈ Rd be any point and let q ∈ Rd be the centroid of Q. Then we have that

cost(Q, c) ≤ (1 + 4 · γ) (cost(S, c) + cost(Q,q)) .

Proof Observe that for real numbers a, b ∈ R, and δ ∈ (0, 1
2 ], we have

(a+ b)2 = a2 + b2 + 2ab ≤ a2 + b2 + δ · a2 + (1/δ) · b2

≤ (1 + δ) · a2 + (1 + 1/δ) · b2 ≤ (1 + δ) · a2 +
2

δ
· b2,

which we refer to as the squared triangle inequality.
Let T = Q \ S. Let s and t be the centroids of S and T . Note that we also have ‖s − q‖ =

(|T |/|S|)‖t− q‖. We thus have the following:

cost(Q, c) = cost(Q,q) + |Q| · ‖c− q‖2

≤ cost(Q,q) +
|S|

1− γ2
·
(

(1 + γ)‖c− s‖2 +
2

γ
‖s− q‖2

)
= cost(Q,q) +

|S|
1− γ2

·
(

(1 + γ)‖c− s‖2 +
2

γ

|T |2

|S|2
‖t− q‖2

)
≤ cost(Q,q) + (1 + 4 · γ) · |S| · ‖c− s‖2 + 4 · γ · |T | · ‖t− q‖2

≤ cost(Q,q) + (1 + 4 · γ) · cost(S, c) + 4 · γ · cost(Q,q)

= (1 + 4 · γ) (cost(Q,q) + cost(S, c)) ,
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where the first inequality follows from the squared triangle inequality and the second inequality
follows since γ ≤ 1/2. In the third inequality, we use that for a non-empty set of points A ⊂ Rd
with centroid a and for any point b ∈ Rd, it holds that cost(A,b) = cost(A,a) + |A| · ‖a−b‖2 ≥
|A| · ‖a− b‖2.

Appendix B. Balanced Adversarial Noise Model

In this section, we present our algorithm for the k-means problem in the balanced adversarial noise
model and prove the following threorem which is the formal version of Theorem 1.1.

Theorem B.1 There exists a deterministic algorithm that, given an instance P of the k-means
problem in the balanced adversarial noise setting with the underlying optimal clusters O1, . . . , Ok
and the noise parameter ε ∈ [0, 1], outputs centers ô1, . . . , ôk such that

cost(P, {ô1, . . . , ôk}) ≤ (1 +O(ε)) · cost(P, {o1, . . . ,ok}),

where oi denote the centroid of Oi for each i ∈ [k].

Note that when ε ≥ 1/4, any constant factor approximation algorithm for k-means (without any
side information) will satisfy the claimed statement. Thus, without loss of generality, we assume
that ε < 1/4.

Our algorithm recovers one cluster at a time and is based on the following observations: In the
adversarial noise model, for each i ∈ [k], O′i is obtained by removing some points from Oi and
adding some other points to Oi. In the balanced adversarial model, we have that |Oi∆O′i| ≤ ε|Oi|,
for each i ∈ [k], so the number of points added to Oi and the number of points removed from Oi
are both upper-bounded by ε|Oi|.

Now, fix some i ∈ [k] and consider the set Oi of the points with true label i. If we remove a
small number of points from Oi, the optimum center cannot move too far, so the new centroid is
close to the original centroid. On the other hand, suppose that we add small number of points to
Oi. The new points can be arbitrary far away, but we can remove such outliers by disregarding the
distant points. Note that when we disregard distant points, we could end up ignoring some points
that are in Oi, but by the previous argument on removing a small fraction of the points, ignoring a
small fraction of points that were originally in Oi does not move the centroid by much.

We start by formalizing the robustness of the centroid with respect to removing points.

Lemma B.2 Let S be a set of points whose centroid is s. Let T ⊆ S be any subset obtained
by removing ε|S| points for some 0 ≤ ε ≤ 2

3 , and let t be the centroid of T . Then ‖s − t‖ ≤√
2ε · cost(S, s)/|S|.

Proof Let T ′ = S \ T and let t′ be the centroid of T ′. Observe that |T ′| = ε|S|. Since we work
with Euclidean distances, we have

cost(S, s) = cost(T, s) + cost(T ′, s)

= cost(T, t) + |T | · ‖s− t‖2 + |T ′| · ‖s− t′‖2 + cost(T ′, t′)

≥ (1− ε) · |S| · ‖s− t‖2 + ε · |S| · ‖s− t′‖2.

18
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In the last inequality, we use that the costs are non-negative.
Note that s lies on the line segment between t and t′ such that ‖s − t‖ = ε · ‖t − t′‖. Hence

we have

cost(S, s) ≥ (1− ε) · ε2 · |S| · ‖t− t′‖2 + ε · (1− ε)2 · |S| · ‖t− t′‖2

= ε · (1− ε) · |S| · ‖t− t′‖2,

which yields that

‖s− t‖ = ε · ‖t− t′‖ ≤ ε ·

√
cost(S, s)

ε · (1− ε) · |S|
=

√
ε · cost(S, s)

(1− ε) · |S|
≤

√
2ε · cost(S, s)

|S|
,

where the last inequality uses that ε ≤ 2
3 .

We now present the algorithm, which we refer to as OUTLIERREMOVAL, for approximating
the center of some fixed cluster O which has been perturbed by adding and/or removing points.
The algorithm uses a set of candidate centers that includes a center o∗ such that cost(O,o∗) ≤
(1 + ε) · cost(O,o) where o is the centroid of O. Such a set can be constructed as explained
in Matoušek (2000) with polynomial size with respect to the input size.

The algorithm OUTLIERREMOVAL takes as input a set O′ and ε, goes over each candidate
center c, and compute the cost ofO′ with respect to center c ignoring the farthest away 2ε|O′| points
from c. Out of all candidate centers, it outputs the one that gives the minimum cost. Algorithm 1
outlines these steps, and Lemma B.3 shows that it always outputs a good center for the considered
cluster O, provided that |O′∆O| ≤ ε|O|.

Algorithm 1: The outline of OUTLIERREMOVAL.

1 Input: Set of points O′ and ε ∈ [0, 1/4].
2 ô←∞
3 cost← nil
4 for each center c in the set of candidate centers do
5 O′c ← O′ \ {2ε|O′| farthest points from c in O′}
6 if cost(O′c, c) < cost then
7 cost← cost (O′c, c)
8 ô← c

9 return ô.

Let ô be the center returned by OUTLIERREMOVAL. Recall that we use o to denote the centroid
of O, and that the set of candidate centers includes a center o∗ such that cost(O,o∗) ≤ (1 + ε) ·
cost(O,o). Moreover, we can also show that |O′ \ O| ≤ 2ε|O′|, implying that the center ô incurs
a cost of at most (1 + ε) · cost(O,o) for its nearest (1 − 2ε) · |O′| points. On the other hand, this
set of nearest (1 − 2ε) · |O′| points to ô must have a considerable overlap with O, and hence the
fraction of the points outside the overlap must be small. As a result, by Lemma B.2, the centroid of
these overlapping points must be close to both

1. the center returned by the algorithm ô, and
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2. the centroid o of O.

Hence ô and o must be close to each other. We formalize this intuition in Lemma B.3.

Lemma B.3 Given O′ and ε ∈ [0, 1/4] such that |O∆O′| ≤ ε|O|, OUTLIERREMOVAL returns a

center ô such that ‖ô − o‖ ≤ 12
√
ε cost(O,o)

|O| . Consequently, we have cost(O, ô) ≤ (1 + O(ε)) ·
cost(O,o).

Proof
In this proof, we use the following inequalities, which can be easily verified using that ε ∈

[0, 1/4] and that |O∆O′| ≤ ε|O|:

(1− ε) · |O| ≤ |O′| ≤ (1 + ε) · |O|, and (8)

(1− 2ε) · |O′| ≤ |O| ≤ (1 + 2ε) · |O′|. (9)

Similarly, we also observe that

|O ∩O′| = |O′| − |O′ \O| ≥ |O′| − ε|O| ≥ (1− 2ε) · |O′|. (10)

Let Ô be the closest (1− 2ε) · |O′| points in O′ to ô. We first prove that

cost(Ô, ô) ≤ (1 + ε) · cost(O,o). (11)

To see this, let o∗ be the candidate center such that cost(O,o∗) ≤ (1 + ε) · cost(O,o). Then we
have that

cost(O ∩O′,o∗) ≤ cost(O,o∗) ≤ (1 + ε) · cost(O,o).

Moreover, by (10), O′ contains at least (1− 2ε) · |O′| points of O. Thus OUTLIERREMOVAL could
have picked o∗ together with some (1 − 2ε) · |O′| points such that the cost of the selected points
with respect to o∗ is at most (1 + ε) · cost(O,o). Since the algorithm output the center with the
minimum cost, we have cost(Ô, ô) ≤ (1 + ε) · cost(O,o).

We now bound cost(O, ô) by showing that ‖o − ô‖ is small. Let Õ = O ∩ Ô and let õ be
the centroid of the points in Õ. Observe that |Õ| ≥ (1 − 4ε) · |O′|. This is because Ô contains
(1−2ε) · |O′| points and O′ can have at most ε|O| ≤ 2ε|O′| points that does not belong to O. Thus,
|Ô \ Õ|/|Ô| ≤ 2ε

1−2ε ≤ 4ε when ε ≤ 1/4. Now, invoking Lemma B.2 with S = Ô and T = Õ
yields

‖õ− ô‖ ≤

√
8ε

cost(Ô, ô)

|Ô|

≤

√
8ε

(1 + ε) · cost(O,o)

(1− 2ε) · |O′|

≤

√
8ε

(1 + ε) · cost(O, o)

(1− 2ε) · (1− ε) · |O|

≤ 8

√
ε

cost(O, o)

|O|
.
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For the second inequality, we used (11) and that Ô is a set of (1 − 2ε) · |O′| points. The third
inequality follows from (8) and the last inequality is due to ε being at most 1/4.

On the other hand, we have |Ô| ≥ (1−2ε)·|O′| ≥ (1−2ε)·(1−ε)·|O|where the last inequality
follows from (8). Moreover, Ô is a subset of O ∪ O′ and |O′ \ O| ≤ ε|O|. Thus Õ = O ∩ Ô must
contain at least (1−2ε) ·(1−ε) · |O|−ε|O| points. Using ε ≤ 1/4, we therefore get that Õ contains
at least (1− 4ε) · |O| points, which yields that |O \ Õ|/|O| ≤ 4ε. Now invoking Lemma B.2 with
S = O and T = Õ, we get

‖o− õ‖≤

√
8ε

cost(O,o)

|O|
≤ 4

√
ε

cost(O,o)

|O|
.

By the triangle inequality, we thus have that

‖o− ô‖ ≤ ‖o− õ‖+ ‖õ− ô‖ ≤ 12

√
ε

cost(O,o)

|O|
.

Thus, we get that

cost(O, ô) = cost(O,o) + |O| · ‖o− ô‖2

≤ cost(O,o) + |O| · 144 · εcost(O,o)

|O|
= (1 + 144ε) · cost(O,o).

The proof of Theorem B.1 now follows from Lemma B.3 as we can separately invoke OUT-
LIERREMOVAL O′i for each i ∈ [k].

Appendix C. Details of Stochastic Noise Model

In this section, we present our algorithm for solving the stochastic noisy center estimation problem
introduced in Section 2. Recall that our overall approach consists of two stages, which we describe
in Appendix C.1 and Appendix C.3.

C.1. Find good balls for clusters (proof of Lemma 2.6)

In this section, we prove Lemma 2.6, which we restate below. As mentioned in Section 2, we show
that we can identify good balls for a cluster using a statistical test to determine if a guessed (center,
radius)-pair is good. For balls defined by all possible (center, radius) combinations, we essentially
check whether the numbers of points inO′ that fall outside the considered ball significantly deviates
from the expected number of such points. Our analysis extensively uses Chernoff bounds to show
that all comparisons work as expected with very high probability.

Lemma 2.6 There exists an algorithm GOODBALL that satisfies the following:
Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be an (ε, δ)-

noisy version of O, and ε′, δ′ be close approximations of ε and δ. The algorithm GOODBALL takes
(P,Onoisy, ε

′, δ′) as input and outputs a ball B ∈ Ball such that B ∈ Bgood with probability at least
1− 1

2 exp
(
−|O|0.2

)
, where the probability is over the randomness of Onoisy.
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Algorithm 2: Outline of ISRADIUSTOOSMALL.

1 n̂O ← (|Onoisy| − ε′ · δ′ · |P |)/(1− ε′)
2 nout

P ← |P \ BALLP (c, r)|
3 mout

O ← |Onoisy \ BALLOnoisy(c, r)|
4 nthresh ← (1− ε′) n̂O

4 log |P | + ε′ · δ′ · nout
P

5 if mout
O ≥ nthresh then

6 return YES

7 else
8 return NO

As stated earlier, the idea behind GOODBALL is to use a statistical test to determine whether
a considered candidate center c and a radius r defines a good ball. In this regard, we first define
and analyze an auxiliary algorithm called ISRADIUSTOOSMALL. Its goal is to decide whether a
significant fraction of the points of O are outside a given ball BALLP (c, r).

To do so, given (P,Onoisy, ε
′, δ′), a candidate center c, and a radius r, ISRADIUSTOOSMALL

checks if the number of points inOnoisy\BALLP (c, r) is significantly more than the number of such
points we would expect if the number of points in O that are outside the considered ball is close to

1
log |P | fraction of the size of O. Namely, we check whether |O \ BALLP (c, r)| ' |O|/ log |P |.

Let nout
P = |P \BALLP (c, r)|, nout

O = |O \BALLP (c, r)|, mout
O = |Onoisy \BALLP (c, r)| be the

numbers points in P,O, and Onoisy respectively that are outside the considered ball. Then we have
E[mout

O ] = (1−ε)·nout
O +ε·δ·nout

P . On the other hand, we have that E[|Onoisy|] = (1−ε)·|O|+ε·δ·|P |,
and hence we can approximate |O| with n̂O = (|Onoisy| − ε · δ · |P |)/(1 − ε). Thus, assuming
|O \ BALLP (c, r)| ' |O|/ log |P |, we expect about (1− ε)n̂O/ log |P |+ ε · δ · nout

P points to be in
Onoisy \ BALLP (c, r). Using this observation, we outline ISRADIUSTOOSMALL in Algorithm 2.

We have the following lemma regarding the performance of ISRADIUSTOOSMALL.

Lemma C.1 Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be
an (ε, δ)-noisy version of O, and ε′, δ′ be close approximations of ε and δ. Given (P,Onoisy, ε

′, δ′),
a candidate center c, and a radius r, the algorithm ISRADIUSTOOSMALL outputs YES or NO
such that the following holds with probability at least 1− 1

2|P |2 exp
(
−|O|0.2

)
over the randomness

of Onoisy:

1. If ISRADIUSTOOSMALL outputs NO, then |BALLO(c, r)| ≥
(

1− 1
log |P |

)
|O|, and

2. If ISRADIUSTOOSMALL outputs YES, then |BALLO(c, r)| ≤
(

1− 1
16 log |P |

)
|O|.

Proof
Recall that E[|Onoisy|] = (1− ε)|O|+ εδ|P |. Since the instance is nice, we have 1− ε ≥ 1

log |P |

and δ ≤ |O|1.1
|P | . Thus we have (1 − ε)|O| ≥ |O|

log |P | and δ|P | ≤ |O|1.1. Furthermore, trivially

εδ|P | ≥ 0 and (1 − ε)|O| ≤ |O| ≤ |O|1.1. Thus we have |O|
log |P | ≤ E[|Onoisy|] ≤ 2 · |O|1.1. Now
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by Lemma A.1,

Pr
[
||Onoisy| − E[|Onoisy|]| ≥ |O|0.95

]
≤ 2 · exp

(
− |O|1.9

4 · E[|Onoisy|]

)
≤ 1

4|P |2
exp

(
−|O|0.2

)
. (12)

Now let E1 be the event that ||Onoisy| − E[|Onoisy|]| < |O|0.95. Recall that nthresh = 1
4 log |P |(|Onoisy|−

ε′δ′|P |) + ε′δ′nout
P . Thus, conditioned on E1, we have

nthresh ≤ 1

4 log |P |

(
|Onoisy| −

(
1− |O|−0.4

)2
εδ|P |

)
+
(
1 + |O|−0.5

)2
εδnout

P

≤ 1

4 log |P |
(
|Onoisy| −

(
1− 2|O|−0.4

)
εδ|P |

)
+
(
1 + 3|O|−0.5

)
εδnout

P

≤ 1

4 log |P |
(|Onoisy| − εδ|P |) + εδnout

P + 5|O|−0.4εδ|P |

≤ 1

4 log |P |
(|Onoisy| − εδ|P |) + εδnout

P + 5|O|−0.4|O|1.1

<
1

4 log |P |
(
E[|Onoisy|] + |O|0.95 − εδ|P |

)
+ εδnout

P + 5|O|0.7

≤ 1

4 log |P |
(
(1− ε)|O|+ |O|0.95

)
+ εδnout

P + 5|O|0.7

≤ (1− ε)|O|
2 log |P |

+ εδnout
P .

Similarly, conditioned on E1, we also have,

nthresh ≥ 1

4 log |P |

(
|Onoisy| −

(
1 + |O|−0.4

)2
εδ|P |

)
+
(
1− |O|−0.4

)2
εδnout

P

≥ 1

4 log |P |
(
|Onoisy| −

(
1 + 3|O|−0.4

)
εδ|P |

)
+
(
1− 2|O|−0.4

)
εδnout

P

≥ 1

4 log |P |
(|Onoisy| − εδ|P |) + εδnout

P − 5|O|−0.4εδ|P |

≥ 1

4 log |P |
(|Onoisy| − εδ|P |) + εδnout

P − 5|O|−0.4|O|1.1

>
1

4 log |P |
(
E[|Onoisy|]− |O|0.95 − εδ|P |

)
+ εδnout

P − 5|O|0.7

≥ 1

4 log |P |
(
(1− ε)|O| − |O|0.95

)
+ εδnout

P − 5|O|0.7

≥ (1− ε)|O|
8 log |P |

+ εδnout
P .

Note that E[mout
O ] = (1 − ε)nout

O + εδnout
P , and observe that E[mout

O ] ≤ E[Onoisy] ≤ 2 · |O|1.1.
Consider the following two cases:
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Case 1. Suppose that E[mout
O ] ≤ |O|0.95. This implies, by Lemma A.1, that

Pr
[
mout
O − E[mout

O ] ≥ |O|0.95
]
≤ exp

(
−1

4
|O|0.95

)
≤ 1

4|P |2
exp

(
−|O|0.2

)
.

Case 2. Suppose instead that E[mout
O ] ≥ |O|0.95. This implies, by Lemma A.1, that

Pr
[
|mout

O − E[mout
O ]| ≥ |O|0.95

]
≤ exp

(
− |O|1.9

4E[mout
O ]

)
≤ 1

4|P |2
exp

(
−|O|0.2

)
.

In either case, with probability at least 1− 1
4|P |2 exp

(
−|O|0.2

)
, it holds that |mout

O −E[mout
O ]| ≤

|O|0.95. Let E2 denote this event.
By the union bound, both E1 and E2 hold with probability at least 1− 1

2|P |2 exp
(
−|O|0.2

)
, and

conditioned on E1 and E2, we have the following:

1. If |BALLO(c, r)| <
(

1− 1
log |P |

)
|O|, then

mout
O ≥ E[mout

O ]− |O|0.95

≥ (1− ε)|O|
log |P |

+ εδnout
P − |O|0.95

≥ (1− ε)|O|
log |P |

+ εδnout
P − |O|0.95

≥ (1− ε)|O|
2 log |P |

+ εδnout
P

> nthresh.

Thus ISRADIUSTOOSMALL outputs YES.

2. If |BALLO(c, r)| >
(

1− 1
16 log |P |

)
|O|, then

mout
O ≤ E[mout

O ] + |O|0.95

≤ (1− ε)nout
O + εδnout

P + |O|0.95

≤ (1− ε)|O|
16 log |P |

+ εδnout
P + |O|0.95

≤ (1− ε)|O|
8 log |P |

+ εδnout
P

< nthresh.

Thus ISRADIUSTOOSMALL outputs NO.

Finally, observe that the output of the algorithm violates the two claims of the lemma if it outputs
NO when |BALLO(c, r)| <

(
1− 1

log |P |

)
|O| or YES when |BALLO(c, r)| >

(
1− 1

16 log |P |

)
|O|,

which never happens if E1 and E2 hold. The claim of the lemma now follows because both E1 and
E2 hold with probability at least 1− 1

2|P |2 exp
(
−|O|0.2

)
.
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Having access to ISRADIUSTOOSMALL, we now introduce an algorithm to find a good ball
for the desired cluster. Namely, the algorithm, which refer to as GOODBALL, tries all possible
(center, radius)-combinations and finds the combination with the smallest radius for which ISRA-
DIUSTOOSMALL returns NO. The outline of GOODBALL is given in Algorithm 3. We now analyze
its performance and show that it satisfies the requirements of Lemma 2.6.

Algorithm 3: Outline of GOODBALL.

1 r ←∞
2 c← Null
3 for c′ ∈ P do
4 for r′ ∈ {‖p− c′‖ : p ∈ P} do
5 if not ISRADIUSTOOSMALL((P,Onoisy, ε

′, δ′), c′, r′) then
6 if r′ < r then
7 c← c′, r ← r′

8 break

9 return c, r

Proof [Proof of Lemma 2.6]
Let (c, r) be the center and the radius returned by GOODBALL when it is called with P and

O′ as input. To prove Lemma 2.6, we show that BALLP (c, r) is good with probability at least
1− 1

2 exp
(
−|O|0.2

)
. In other words, we need to show that the following two requirements are met

with that probability:

1. |BALLO(c, r)| ≥
(

1− 1
log |O|

)
|O|, and

2. r ≤ 16 · (log0.5 |P |) ·
√

cost(O,o)
|O| where o is the centroid of O.

Note that GOODBALL makes at most |P |2 call to ISRADIUSTOOSMALL, and each call fails
with probability at most 1

2|P |2 exp
(
−|O|0.2

)
. Therefore, by the union bound, with probability at

least 1− 1
2 exp

(
−|O|0.2

)
, all calls to ISRADIUSTOOSMALL succeeds.

Suppose that all the calls to ISRADIUSTOOSMALL are successful. Observe that, for any can-
didate center, the ISRADIUSTOOSMALL call with minimum radius always returns YES and the
ISRADIUSTOOSMALL call with maximum radius always returns NO. Thus, GOODBALL always
returns a (center, radius) pair where the radius is finite. Since all calls to ISRADIUSTOOSMALL

succeeded, we already have Item 1 above.
To prove Item 2, let c, r be the center and the radius returned by GOODBALL and let c′ be the

point in P that is closest to the centroid o of O. This implies that

2 · cost(O,o) ≥ cost(O,o) +
∑
x∈O
‖x− o‖2 ≥ cost(O,o) + |O| · ‖o− c′‖2 = cost(O, c′).

On the other hand, since r is the smallest radius for which ISRADIUSTOOSMALL returned NO,
it must be the case that |BALLO(c′, r′)| <

(
1− 1

16 log |O|

)
|O|, for any r′ < r. In particular, there
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are at least |O|
16 log |O| points outside BALLO(c′, r/2), which implies that

cost(O, c′) ≥ r2|O|
22 · 16 log |O|

.

Combining this together with the previous bound for cost(O, c′), we get that

r ≤ 16 · (log0.5 |O|) · ravg,

which implies the requirement in Item 2.

C.2. Estimating center with high dimensional median trick (proof of Lemma 2.7)

In this section, we prove Lemma 2.7 which we restate below. Previously, in Section 2.1, we proved
a weaker version of this result where the success probability was only constant. To prove the
stronger version, we use the same techniques from Section 2.1 on random partitions of the input
to obtain multiple centroid estimates and then combine it with a high dimensional median trick
(Corollary A.5).

Lemma 2.7 There exists an algorithm CENTERINBALL that satisfies the following:
Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be an (ε, δ)-

noisy version of O, and ε′, δ′ be close approximations of ε and δ. The algorithm CENTERINBALL

takes (P,Onoisy, ε
′, δ′) and B ⊆ P as input and outputs a center õB . With probability at least

1 − 1
2 exp

(
−|O|0.2

)
over the randomness of Onoisy and the algorithm’s internal random bits, it

holds that
‖õB − centroid(O ∩B)‖ ≤ 6 · ravg

log0.5 |P |
for all B ∈ Bgood.

Before we proceed, recall that in the noisy cluster estimation problem, Onoisy is obtained as
follows: First a random set Pnoisy is constructed by including each point of P independently with
probability ε. Then a set Ogood is created by removing all points in Pnoisy from O, and a set Obad

is constructed by including each point in Pnoisy independently with probability δ. Finally Onoisy is
defined as the union of Ogood and Obad. Also recall that, since B is a good ball, it has bounded
diameter in terms of ravg.

As mentioned before, our goal is to estimate a good center forO∩B using only a subsetQ ⊆ B
of points. We now introduce the properties we require subsets Q to satisfy. Note that depending on
the how much bad points we expect to see in the considered ball B, (i.e., the size of Obad ∩ B, we
have different requirements for the partitions. This is because we plan to use different algorithms
depending on the situation. In any case, we first need the centroid of good points in the partition be
be close to the centroid of O ∩ B. Next, if we expect many bad points in B, then we plan to use
the approach of Lemma 2.8, and hence we have the following requirements: Namely, the number
of bad points in the partition should be close to the expected number of such points, the number of
good points in the partition must not be too small, and the centroid of bad points in the partition
must be close the centroid of the partition. On the other hand, if expect the number of bad points
in B to be small, then we plan to use the algorithm for the adversarial setting, so we require the
number bad points in the partition to be very small compared to the number of good points in the
partition. We formalize these requirements in the following definition.
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Definition C.2 Let B ∈ Bgood be a good ball for the considered instance, and let Q ⊆ P . We say
that Q is good for a ball B and a fixed realization of Ogood and Obad if the following implications
hold:

• εδ|B| ≥ 1
2 |O|

0.95 ⇒ Properties 1-4 below hold, and

• εδ|B| ≤ 3
2 |O|

0.95 ⇒ Properties 1 and 5 below hold.

The properties are:

1. ‖ centroid(Ogood ∩Q)− centroid(O ∩B)‖ ≤ ravg

log0.5 |P | .

2. |Obad ∩Q| ∈
[(

1− |O|−0.25
)
· εδ|Q|,

(
1 + |O|−0.25

)
· εδ|Q|

]
.

3. |Ogood ∩Q| ≥ |O|−0.2 · εδ|Q|.

4. ‖ centroid(Obad ∩Q)− centroid(Q)‖ ≤ ravg

|O|0.25 .

5. |Obad ∩Q| ≤
|Ogood∩Q|

log2 |P | .

Now consider a set Q ⊆ B that is good for some fixed ball B ∈ Bgood satisfying εδ|B| ≥
1
2 |O|

0.95. As we see later, Properties 2-4 of the goodness definition ensures that the center õ we
estimated for Ogood ∩ Q using Eq. (1) is close to centroid(Ogood ∩ Q), and the first property
guarantees that õ, in turn, is close to centroid(O ∩B). This is formalized in Lemma C.3.

Lemma C.3 Consider an instance (P,O, ε, δ) of the noisy center estimation problem. Let Onoisy

be an (ε, δ)-noise added version of O and ε′, δ′ be parameters such that (P,Onoisy, ε
′, δ′) is nice.

Let Bgood be the set of good balls for the considered instance, let B ∈ Bgood, and suppose that
εδ|B| ≥ 1

2 |O|
0.95. Let Q ⊆ B, C = O ∩ Q, Cnoisy = Onoisy ∩ Q, and define α = ε′δ′|Q|

|Cnoisy| . Let c,

cn, and q, respectively, denote the centroids of C, Cnoisy, and Q, and define ĉ = cn−α·q
1−α (or 0 if the

fraction is undefined). If Q is good for B and Onoisy, Then we have

‖ĉ− centroid(B ∩O)‖ ≤ 3 · ravg

log0.5 |P |
.

Proof Let Cbad = Obad ∩ Q and let Cgood = Cnoisy \ Cbad = Ogood ∩ Q. Note that since
εδ|B| ≥ 1

2 |O|
0.95 and Q is good for B, Properties 1-4 of Definition 2.5 hold. From Property 2 and

Property 3, it follows that,

|Cnoisy| = |Cgood|+ |Cbad| ≥ (1 + |O|−0.2 − |O|−0.25) · εδ|Q| ≥ (1 + 1
2 |O|

−0.2) · εδ|Q|. (13)

Since the instance is nice (Definition 2.1), we have that ε′, δ′ are 1±|O|−0.4 approximations to ε, δ.
Hence we have

|Cnoisy| ≥
1 + 1

2 |O|
−0.2

(1 + |O|−0.4)2
· ε′δ′|Q| ≥ (1 + 1

4 |O|
−0.2) · ε′δ′|Q|. (14)
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This yields that α = ε′δ′|Q|
|Cnoisy| ≤

1

1+
1
4 |O|

0.2
, implying

1

1− α
≤

1 + 1
4 |O|

−0.2

1
4 |O|−0.2

≤ 8|O|0.2. (15)

Also observe that ∣∣|Cbad| − ε′δ′|Q|
∣∣ ≤ ∣∣|Cbad| − εδ|Q|

∣∣+
∣∣εδ|Q| − ε′δ′|Q|∣∣

≤ |O|−0.25εδ|Q|+ |O|−0.5εδ|Q|
≤ 2|O|−0.25εδ|Q|, (16)

where the first line is due to the triangle inequality and the second line uses Property 2 of Defini-
tion C.2 and that ε′ and δ′ are

(
1± |O|−0.4

)
approximations for ε and δ respectively.

Now, observe that the sets Cgood and Cbad are analogous to sets Ogood and Obad in Eq. (1). We
first write the centroid cn of Cnoisy as a linear combination of centroids of Cgood and Cbad.

cn =
1

|Cnoisy|
∑

x∈Cnoisy

x

=
1

|Cnoisy|

 ∑
x∈Cgood

x +
∑

x∈Cbad

x


=
|Cgood|
|Cnoisy|

·

 1

|Cgood|
·
∑

x∈Cgood

x

+
|Cbad|
|Cnoisy|

·

 1

|Cbad|
·
∑

x∈Cbad

x

 .

Denoting cg = 1
|Cgood| ·

∑
x∈Cgood

x and cb = 1
|Cbad| ·

∑
x∈Cbad

x, we thus get

cn =
|Cgood|
Cnoisy

cg +
|Cbad|
Cnoisy

cb.

Define c′ = (1− α)cg + αcb.
SinceQ is good forB, by Definition C.2, we have that ‖cg−c‖ ≤ ravg

log0.5 |P | and that ‖cb−q‖ ≤
ravg

|O|0.25 . Thus we can estimate c with (c′ − αq)/(1− α) if we know c′.
We now show that cn is very close to c′. Observe that cn and c′ both lie on the same line

segment between cg and cb. The point cn is |Cbad|
|Cnoisy| · ‖cg − cb‖ away from cg while the point c′ is

α · ‖cg − cb‖ is distance away from cg. Consequently, it holds that

‖cn − c′‖ =

∣∣∣∣ |Cbad|
|Cnoisy|

− α
∣∣∣∣ · ‖cg − cb‖

=

∣∣∣∣ |Cbad|
|Cnoisy|

− ε′δ′|Q|
|Cnoisy|

∣∣∣∣ · ‖cg − cb‖

≤ 2εδ|Q|
|Cnoisy| · |O|0.25

· ‖cg − cb‖

≤ 64(log0.5 |P |) · ravg

|O|0.25
.

28



APPROXIMATE CLUSTER RECOVERY FROM NOISY LABELS

The first inequality follows from Eq. (16) and the second one uses Eq. (14) together with the fact
that both cb and cg are in B. Note that B’s diameter is bounded by 32 · (log0.5 |P |) · ravg since
B ∈ Bgood.

We thus conclude that

‖ĉ− c‖ =

∥∥∥∥cn − αq1− α
− c

∥∥∥∥
=

1

1− α
‖cn − αq− (1− α)c‖

=
1

1− α
∥∥cn − c′ + c′ − αq− (1− α)c

∥∥
=

1

1− α
∥∥cn − c′ + ((1− α)cg + αcb)− αq− (1− α)c

∥∥
≤ 1

1− α
(
‖cn − c′‖+ (1− α) · ‖cg − c‖+ α · ‖cb − q‖

)
≤ 1

1− α
‖cn − c′‖+ ‖cg − c‖+

α

1− α
· ‖cb − q‖.

≤ 8|O|0.2 · 64 · (log0.5 |P |) · ravg

|O|0.25
+

ravg

log0.5 |P |
+ |O|0.2 · ravg

|O|0.25

≤ 3 · ravg

log0.5 |P |
.

The second to last inequality uses that |P | sufficiently large and that |O| ≥ log100 |P |.

The key to prove Lemma 2.7 is to find a large collection of setsQ such that, for any good ballB,
we have many good sets for B in the collection. To show that we can find such a collection with
high probability, we proceed by first defining a collection of sets that is nice for a fixed good ball B.

Definition C.4 Let Q = {Q1, . . . , Qt} be a collection of at least |O|0.3 sets Qj ⊆ P . We say that
Q is nice for a ball B ∈ Bgood, if there are at least 3

4 t sets Q ∈ Q that are good for B.

The next lemma guarantees that we can find a nice collection of sets with high probability for
any ball B ∈ Bgood. The candidate algorithm that we use to prove Lemma C.5 simply partitions
a given ball into Θ(t log |P |) sets uniformly at random, and then return the first t subsets of the
partition, where t = Θ(|O|0.4). However, due to the dependencies involved, the analysis is rather
technical, and we defer its proof to Appendix C.3.

Lemma C.5 There exists an algorithm RANDOMPARTITION such that the following holds: Let
(P,O, ε, δ) be an instance of the noisy center estimation problem, let Onoisy be an (ε, δ)-noise
added version of O, and let ε′, δ′ be parameters such that (P,Onoisy, ε

′, δ′) is nice.
RANDOMPARTITION takes (P,Onoisy, ε

′, δ′) and a ball B ∈ Ball as input and outputs a collec-
tion Q = {Q1, . . . , Qt} of subsets of B where t ≥ |O|0.4. If B ∈ Bgood then Q is nice for B with
probability at least 1− 1

2|P |2 exp
(
−|O|0.2

)
.

We now use Lemma C.5, Lemma C.3, and Corollary A.5 to prove Lemma 2.7.
Proof ( of Lemma 2.7)
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Algorithm 4: Outline of CENTERINBALL.

1 Q ← RANDOMPARTITION(P,Onoisy, ε
′, δ′, B)

2 C ← ∅
3 for each Q ∈ Q do

4 if ε′δ′|B| ≤
(
|Onoisy|−ε′δ′|P |

1−ε′
)0.95

then

5 c← OUTLIERREMOVAL
(
Onoisy ∩Q, 1

log |P |

)
6 else
7 c← the estimate from Lemma C.3 for Q and B.

8 C ← C ∩ {c}
9 return geometric median of C

Let CENTERINBALL be the algorithm outlined in Algorithm 4. We show that CENTERINBALL

satisfies the claim of Lemma 2.7 with the required success probability probability.
LetBgood

low ⊆ Bgood be the set of good ballsB such that εδ|B| ≤ 3
2 |O|

0.95, and letBgood
high ⊆ B

good

be the set of good balls B such that εδ|B| ≥ 1
2 |O|

0.95. Let QB be the collection of subsets of B
chosen in Line 1. Note that |QB| = |O|0.3. Let CB be the state of set C at the end of the algorithm.
Let EB be the event that QB is nice for B, i.e., the event that at least 3

4 |QB| sets in QB are good
for B.

First, suppose that B ∈ Bgood
low and consider a set Q ∈ QB that is good for B. By Property 1

of Definition C.2, we have that

‖ centroid(Ogood ∩Q)− centroid(O ∩B)‖ ≤ ravg

log0.5 |P |
.

And by Property 5 of Definition C.2, we have that |Obad ∩Q| ≤
|Ogood∩Q|

log2 |P | . Moreover, note that

cost(Ogood ∩Q, centroid(Ogood ∩Q)) ≤ 322 · |Ogood ∩Q| · (log |P |) · r2
avg

asB’s diameter is bounded. Let q̂ be the center returned by OUTLIERREMOVAL
(
Onoisy ∩Q, 1

log2 |P |

)
.

Thus by Lemma B.3, we get that

‖q̂− centroid(Ogood ∩Q)‖ ≤ 12

(
2

log2 |P |
·

cost(Ogood ∩Q, centroid(Ogood ∩Q))

|Ogood ∩Q|

)0.5

≤ 12 · 32
√

2 · ravg

log |P |

≤ ravg

log0.5 |P |
,

and by the triangle inequality, we conclude that

‖q̂− centroid(O ∩B)‖ ≤ ‖q̂− centroid(Ogood ∩B)‖+ ‖ centroid(Ogood ∩B)− centroid(O ∩B)‖

≤ 2 · ravg

log0.5 |P |
.
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Now suppose that B ∈ Bgood
high and again consider a set Q ∈ QB that is good for B. Note that in

this case, Properties 1-4 of Definition C.2 hold for Q (because εδ|B| ≥ 1
2 |O|

0.95), and the center q̂
estimated as in Lemma C.3 satisfies

‖q̂− centroid(O ∩B)‖ ≤ 3 · ravg

log0.5 |P |
.

To conclude the proof, observe the following: From Eq. (12), we have that with probability
at least 1 − 1

4|P |2 exp(−|O|0.2), Pr
[
||Onoisy| − E[|Onoisy|]| ≥ |O|0.95

]
. Moreover, we have that ε′

and δ′ are 1 ± |O|−0.4 approximations to ε and δ respectively. With this, it is easy to verify that
ε′δ′|B| ≤ |O|0.95 ⇒ εδ|P | ≥ 1

2 |O|
0.95 and ε′δ′|B| < |O|0.95 ⇒ εδ|P | ≤ 3

2 |O|
0.95.

Therefore, in any case, ifQ ∈ QB is good forB, the centroid estimate q̂ found by the algorithm
CENTERINBALL at Line 5 or Line 7 satisfies

‖q̂− centroid(O ∩B)‖ ≤ 3 · ravg

log0.5 |P |
.

When EB happens, there are 3
4 |QB| sets in QB that are good for B, and hence, by Corollary A.5,

the median õB of CB satisfies:

‖õB − centroid(O ∩B)‖ ≤ 6 · ravg

log0.5 |P |
.

Note that for a fixed ball B ∈ Bgood, EB holds with probability at least 1− 1
2|P |2 exp

(
|O|−0.2

)
.

Thus, by the union bound over all good balls, we have that

‖õB −O ∩B‖ ≤
6 · ravg

log0.5 |P |

for all balls in Bgood with probability at least 1− 1
2 exp

(
|O|−0.2

)
as |Bgood| ≤ |Ball| ≤ |P |2.

C.3. The proof of Lemma C.5

We now prove Lemma C.5 by showing that a random partition yields a nice collection with high
probability.

Let t = 2 ·
(
|Onoisy|−ε′δ′|P |

1−ε′
)0.4

and s = log3 |P |. From Eq. (12), we have that with probability

at least 1− 1
4|P |2 exp(−|O|0.2), Pr

[
||Onoisy| − E[|Onoisy|]| ≥ |O|0.95

]
. Let EO be this event. Note

that we have that ε′ and δ′ are 1±|O|−0.4 approximations to ε and δ respectively. Thus, conditioned
on EO, it is easy to verify that |O|0.4 ≤ t ≤ 4 · |O|0.4.

We partition B into disjoint sets P = {P1, . . . , P2·t·s} as follows: For each point p ∈ P , put p
in a uniformly random set in P . Then, let Q = {P1, . . . , Pt} be the first t sets in P .

In the following analysis, we assume that B ∈ Bgood and that |P | is sufficiently large. Denote
by Qgood ⊆ Q the collection of sets that are good for B. To prove Lemma C.5, we show that, with
probability at least 1− exp

(
−|O|0.2

)
, |Qgood| ≥ 3

4 t.

Let OB = O ∩B. Since B is good, we have |OB| ≥
(

1− 1
log |P |

)
|O| ≥ |O|2 . We consider a set

Q ∈ P to be good with respect to size if both |Q| and |Q ∩OB| are close to their expectations.
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Definition C.6 We say that a set Q ∈ P is size-wise good for B if

|Q| ∈
[

1

4
· |B|
s · t

,
3

4
· |B|
s · t

]
and |Q ∩OB| ∈

[
1

4
· |OB|
s · t

,
3

4
· |OB|
s · t

]
.

Using standard concentration bounds, it follows that, with high probability, all sets in P are
size-wise good.

Lemma C.7 With probability at least 1− exp
(
−|O|0.5

)
, all Q ∈ P are size-wise good for B.

Proof Fix some Q ∈ P , and let EQ be the event that Q is not size-wise good for B. Let X = |Q|.
We have E[X] = |B|

2·s·t ≥
|OB |
2·s·t ≥

|O|
8·s·t ≥

|O|0.6
4 log3 , and by Chernoff bounds, we have

Pr

[
|X − E[X]| ≥ 1

2
E[X]

]
≤ 2 · exp

(
− 1

16
E[X]

)
= 2 · exp

(
− |O|0.6

64 log3 |P |

)
.

Similarly, setting Y = |Q ∩ OB|, we get E[Y ] = OB
2·s·t ≥

|O|0.6
4 log3 |P | as before. And by the same

Chernoff bound above, we conclude that

Pr

[
|Y − E[Y ]| > 1

2
E[Y ]

]
≤ 2 · exp

(
− |O|0.6

64 log3 |P |

)
.

Thus by the union bound, we have Pr[EQ] ≤ 4 exp(−|O|0.55), and

Pr[∪Q∈PEQ] ≤ 8 · |P| · exp
(
−|O|0.55

)
= 16 · s · t · exp

(
−|O|0.55

)
≤ exp

(
−|O|0.5

)
.

As we see later, Lemma C.7 allows us to prove that the centroid ofO∩Pj is close to the centroid
of B ∩ O with good probability for each j ≤ t. This is because, conditioned on P1, . . . , Pj−1 and
that they are size-wise good, we can view Pj as a uniformly random sample from the remaining
points. Due to P1, . . . , Pj−1 being size-wise good, there are many remaining points in both B and
OB. Consequently, the centroids of the remaining points in B and OB are close the centroids of B
and OB respectively.

Let Esize be the event that Pj is size-wise good for B for all Pj ∈ P . For each j ≤ t, we
now show that, conditioned on the choices of P1, . . . , Pj−1 and Esize, Pj is good for B as defined
in Definition C.2 with a good probability.

Lemma C.8 Let Ej denote the event that Pj is good for B. For each j = 1, . . . , t, we have that
Pr[Ej |P1, . . . , Pj−1, Esize] ≥ 0.9.

Proof
Let E1

j , E2
j , E3

j , E4
j and E5

j be the respective events that the Properties 1-5 of Definition C.2 does
not hold when Q is set to Pj . Namely, they are events that the following properties hold:

1. ‖ centroid(Ogood ∩ Pj)− centroid(OB)‖ ≤ ravg

log0.5 |P | .

2. |Obad ∩ Pj | ∈
[(

1− |O|−0.25
)
· εδ|Pj |,

(
1 + |O|−0.25

)
· εδ|Pj |

]
.
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3. |Onoisy ∩ Pj | ≥ (1 + |O|−0.2) · εδ|Pj |.

4. ‖ centroid(Obad ∩ Pj)− centroid(Pj)‖ ≤ ravg

|O|0.25 .

5. |Obad ∩ Pj | ≤
|Ogood∩Pj |

log2 |P | .

Conditioned on Esize and any outcome of P1, . . . , Pj−1 that is compatible with Esize, we show the
following:

1. If εδ|B| ≥ 1
2 |O|

0.95, then Pr[E ij |P1, . . . , Pj−1, Esize] ≤ 1
log |P | for i = 1, 2, 3, and, 4, and

hence
Pr[E1

j ∪ E2
j ∪ E3

j ∪ E4
j |P1, . . . , Pj−1, Esize] ≤ 4

log |P |
≤ 0.1.

2. If εδ|B| ≤ 3
2 |O|

0.95, then Pr[E ij |P1, . . . , Pj−1, Esize] ≤ 1
log |P | for i = 1 and 5, and hence

Pr[E1
j ∪ E5

j |P1, . . . , Pj−1, Esize] ≤ 2

log |P |
≤ 0.1.

One important observation we use in the proof is that for any subset Q of B with centroid q, the
average radius

√
cost(Q,q)/|Q| is at most 32 · (log0.5 |P |) · ravg as the diameter of B is bounded

by that quantity.
Suppose that Esize holds, and fix any choices of P1, . . . , Pj−1 that is compatible with Esize.

Regardless of the value of εδ|B|, we have the following:

Bounding Pr[E1
j |P1, . . . , Pj−1, Esize]

Let Orem
B = OB \ (∪j−1

`=1P`). Since j ≤ t and we are conditioning on Esize, we have that
|Orem

B | ≥ |OB| − 3 · (j − 1) · |OB |4·s·t ≥
(
1− 1

s

)
|OB|. Noting that s = log3 |P |, from Lemma B.2, we

get that

‖ centroid(Orem
B )− centroid(OB)‖ ≤

√
2

log3 |P |
· 32 · (log0.5 |P |) · ravg ≤

ravg

3 log0.5 |P |
.

Furthermore, since we are conditioning on Esize, we know that OB ∩ Pj is a uniformly random
subset of Orem

B of size at least |OB |4·s·r ≥
|O|

8·|O|0.4 log3 |P | ≥ |O|
0.6 ≥ log6 |P |. From Lemma A.3, we

thus have that, with probability at least 1− 1
2 log |P | ,

‖ centroid(OB ∩ Pj)− centroid(Orem
B )‖ ≤ 32 · (log0.5 |P |) · ravg

log3 |P |/(
√

2 · log0.5 |P |)
≤ ravg

3 log0.5 |P |
.

Moreover, observe that Ogood ∩ Pj is constructed by including each element of OB ∩ Pj indepen-
dently with probability 1− ε ≥ 1

log |P | . We have

E[|Ogood ∩ Pj |] ≥ (1− ε) · |OB ∩ Pj | ≥
|OB|

4 · s · t · log |P |
≥ |O|0.6

8 · log4 |P |
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and by Lemma A.1, we get that |Ogood ∩ Pj | ≥ 1
2
|O|0.6

8·log4 |P | ≥ log6 |P | with probability at least

1− 1
4 log |P | . Conditioned on |Ogood ∩ Pj | ≥ log6 |P |, with probability at least 1− 1

4 log |P | , we get

‖ centroid(Ogood ∩ Pj)− centroid(OB ∩ Pj)‖ ≤
32 · (log0.5 |P |) · ravg

log3 |P |/(2 · log0.5 |P |)
≤ ravg

3 log0.5 |P |
,

due to Lemma A.3. Thus from the union bound and the triangle inequality, we conclude that,
Pr[E1

j |P1, . . . , Pj−1, Esize] ≤ 1
2 log |P | + 1

4 log |P | + 1
4 log |P | = 1

log |P | .

Now suppose that εδ|B| ≥ 1
2 |O|

0.95. We bound the probabilities of E2
j , E3

j and E4
j conditioned

on P1, . . . , Pj−1 and Esize as follows:

Bounding Pr[E2
j |P1, . . . , Pj−1, Esize]

We have E[|Obad ∩ Pj |] = εδ|Pj | ≥ εδ |B|4·s·t ≥
|O|0.95

8·s·t·log |P | = |O|0.55

8 log4 |P | . By Lemma A.1, we have
that ∣∣|Obad ∩ Pj | − εδ|Pj |

∣∣ ≤ εδ|Pj |
|O|0.25

with probability at least 1 − exp
(
− |O|0.55

32|O|0.5 log4 |P |

)
. Thus we have Pr[E2

j |P1, . . . , Pj−1, Esize] ≤
1

log |P | .

Bounding Pr[E3
j |P1, . . . , Pj−1, Esize]

We have E[|Onoisy ∩ Pj |] = (1 − ε)|OB ∩ Pj | + εδ|Pj |. Using the second term, by the same
reasoning as in the previous bound, we get

E[|Onoisy ∩ Pj |] ≥
|O|0.55

8 log5 |P |
.

On the other hand, we also have that

E[|Onoisy ∩ Pj |] ≤ (1− ε) 3|OB|
4 · s · t

+ εδ
3|B|

4 · s · t
≤ δ|B|

s · t
≤ |O|

1.1

s · t
≤ |O|0.7

log4 |P |
.

By Chernoff bounds, we have

Pr

[
||Onoisy ∩ Pj | − E[|Onoisy ∩ Pj || ≥

|O|0.55

log6 |P |

]
≤ 2 · exp

(
− |O|1.1

4 · (log12 |P |) · E[|Onoisy ∩ Pj |]

)
≤ 1

log |P |
.
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This yields that probability at least 1− 1
log |P | ,

|Onoisy ∩ Pj | ≥ (1− ε)|OB|+ εδ|Pj | −
|O|0.55

log6 |P |

≥ εδ|Pj |+
|OB|

4 · s · t · (log |P |)
− |O|

0.55

log6 |P |

≥ εδ|Pj |+
|O|0.95

8|O|0.4 log5 |P |
− |O|

0.55

log6 |P |

≥ εδ|Pj |+
|O|0.55

8 log5 |P |
− |O|

0.55

log6 |P |

≥ εδ|Pj |+
|O|0.55

log6 |P |
.

Since εδ|Pj | ≤ |O|0.7
log4 |P | , we get that |Onoisy ∩ Pj | ≥ (1 + |O|−0.2) · εδ|Pj |. Thus we have

Pr[E3
j |P1, . . . , Pj−1, Esize] ≤ 1

log |P |
.

Bounding Pr[E4
j |P1, . . . , Pj−1, Esize]

From the same reasoning we did in the bound for the conditional probability of E2, we have
E[|Obad ∩ Pj |] ≥ |O|0.55

8·log4 |P | , and by Lemma A.1, we get that with probability at least 1− 1
2 log |P | ,

|Obad ∩ Pj | ≥
1

2
E[|Obad ∩ Pj |] ≥

|O|0.55

16 · log4 |P |
.

Conditioned on |Obad ∩ Pj | ≥ |O|0.55

16·log4 |P | , by Lemma A.3, we get that, with probability at least

1− 1
2 log |P | ,

‖ centroid(Obad ∩B ∩ Pj)− centroid(B ∩ Pj)‖ ≤
32 · (log0.5 |P |)ravg

|O|0.275/(4
√

2 · log2.5 |P |)
≤ ravg

|O|0.25
.

Thus we have that Pr[E2
j |P1, . . . , Pj−1, Esize] ≤ 1

2·log |P | + 1
2·log |P | ≤

1
log |P | .

Finally, to conclude the proof, suppose that εδ|B| ≤ |O|0.95. In this case, using the conditioning
on Esize, it follows that E5

j always holds.

Bounding Pr[E5
j |P1, . . . , Pj−1, Esize]

Since Pj is size-wise good, we have

|Obad ∩ Pj | ≤
3|B|

4 · s · t
≤ |O|

0.95

s · t
and

|Ogood ∩ Pj | ≥
|OB|

4 · s · t
≥ |O|

8 · s · t
.
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Thus we conclude that
|Obad ∩ Pj |
|Ogood ∩ Pj |

≤ 8

|O|0.05
≤ 1

log2 |P |
,

and hence, conditioned on P1, . . . , Pj−1 and Esize, E5
j always holds.

Now to conclude the proof of Lemma C.5, recall that Qgood denote the collection subsets in Q
that are good for ball B. By Lemma A.2, we have that,

Pr
[
|QB| < 3t/4 | Esize

]
≤ Pr

[∣∣∣|Qgood| − 0.9t
∣∣∣ < 1

6
· 0.9t

∣∣∣∣ Esize

]
≤ exp

(
−0.9|O|0.4

62

)
≤ exp

(
−|O|0.25

)
.

Using Lemma C.8 together with Lemma A.2, we have the following:

Pr

[
|Qgood| ≥ 3

4
t

]
≥ 1− Pr[Esize]− Pr

[
|QB| < 3t/4 | Esize

]
≥ 1− exp(−|O|0.25)− exp(−|O|0.25)

≥ 1− 1

2|P |2
exp(−|O|0.2).

C.4. Putting things together (proof of Theorem 2.3)

In this section we prove Theorem 2.3 assuming Lemma 2.6 and Lemma 2.7. For convenience, we
start be restating these lemmas and the theorem.

Lemma 2.6 There exists an algorithm GOODBALL that satisfies the following:
Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be an (ε, δ)-

noisy version of O, and ε′, δ′ be close approximations of ε and δ. The algorithm GOODBALL takes
(P,Onoisy, ε

′, δ′) as input and outputs a ball B ∈ Ball such that B ∈ Bgood with probability at least
1− 1

2 exp
(
−|O|0.2

)
, where the probability is over the randomness of Onoisy.

Lemma 2.7 There exists an algorithm CENTERINBALL that satisfies the following:
Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be an (ε, δ)-

noisy version of O, and ε′, δ′ be close approximations of ε and δ. The algorithm CENTERINBALL

takes (P,Onoisy, ε
′, δ′) and B ⊆ P as input and outputs a center õB . With probability at least

1 − 1
2 exp

(
−|O|0.2

)
over the randomness of Onoisy and the algorithm’s internal random bits, it

holds that

‖õB − centroid(O ∩B)‖ ≤ 6 · ravg

log0.5 |P |
for all B ∈ Bgood.

Theorem 2.3 There exists an algorithm ONECENTER that satisfies the following:
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Let (P,O, ε, δ) be a nice instance of the noisy center estimation problem, Onoisy be an (ε, δ)-
noisy version ofO, and ε′, δ′ be close approximations of ε and δ. The algorithm ONECENTER takes
(P,Onoisy, ε

′, δ′) as input and outputs a center ô such that

cost(O, ô) ≤ (1 +O (1/log |P |)) · cost(O,o)

with probability at least 1 − exp
(
−|O|0.2

)
, where the probability is over the randomness of the

noisy labels and the algorithm’s internal random bits.

Proof of Theorem 2.3. The algorithm first finds a ball B using the algorithm GOODBALL with
(P,Onoisy, ε

′, δ′) as input, and then uses the algorithm CENTERINBALL with (P,Onoisy, ε
′, δ′) and

B as input to find a center ô.
Let E1 be the event that ball B returned by GOODBALL is not good, i.e., the event that B /∈

Bgood. Let E2 be the event that CENTERINBALL fails to find a good approximate center for some
good ball, i.e., the event that

‖õB − centroid(O ∩B′)‖ > 6 · ravg

log0.5 |P |
for some B′ ∈ Bgood.

Suppose that neither of the events E1 and E2 happen. Then, since B ∈ Bgood, we have that
B∩O is a subset ofO obtained by removing at most |O|

log |P | fraction of the points fromO. Therefore,

by Lemma B.2, we have that ‖ centroid(B ∩ O) − o‖ ≤
√

2·ravg

log0.5 |P | . Moreover, we also have that

CENTERINBALL succeeds on B and hence ‖ô − centroid(O ∩ B)‖ ≤ 6·ravg

log0.5 |P | . Hence, from the
triangle inequality, it follows that

‖ô− o‖ ≤ ‖ô− centroid(B ∩O)‖+ ‖ centroid(B ∩O)− o‖ ≤ 8 · ravg

log0.5 |P |
.

Thus we conclude that

cost(O, ô) = cost(O,o) + |O| · ‖ô− o‖2

≤ cost(O,o) +
64

log |P |
· |O| · r2

avg

=

(
1 +

64

log |P |

)
· cost(O,o).

By the union bound, the failure probability of this algorithm is upper-bounded by

Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2] ≤ exp
(
−|O|0.2

)
,

where in the last inequality we use that both Pr[E1] and Pr[E2] are at most 1
2 exp

(
−|O|0.2

)
due

to Lemma 2.6 and Lemma 2.7.
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Appendix D. Proportional Stochastic Noise Model: Proof of Theorem 3.1

In this section, we formally prove Theorem 3.1 which we restate below. The algorithm for this
setting simply uses our earlier algorithm of Section 2 as a black box.

Theorem 3.1 There exists an algorithm such that the following holds:
Let (P, {O1, . . . , Ok}, ε) be an instance of the k-means problem in the proportional stochastic

noise setting where |Oi| ≥ log200 |P | for all i ∈ [k] and ε ≤ 1 − 1
log |P | . Let O′1, . . . , O

′
k be the ε-

noise added versions ofO1, . . . , Ok. The algorithm takes as input (P, {O′1, . . . , O′k}, ε) and outputs
centers ô1, . . . , ôk such that, with probability at least 1− 1

|P | , we have

cost(Oi, ôi) ≤
(

1 +O

(
1

log |P |

))
· cost(Oi,oi)

where oi denote the centroid of Oi. Consequently, the output of the algorithm satisfies

cost(Oi, {ô1, . . . , ôk}) ≤
(

1 +O

(
1

log |P |

))
·OPT .

with probability at least 1− 1
|P | . The probability is over the randomness of O′i’s and the algorithm’s

internal random bits.

Proof As in the balanced adversarial model, the high-level idea of the candidate algorithm is to
recover the centers for each label separately.

Fix any i ∈ [k] and let X = |O′i|. We have E[X] = (1 − ε)|Oi| + ε · |Oi||P | · |P | = |Oi|, and by
Chernoff bounds

Pr[|X − E[X]| ≥ |Oi|0.6] ≤ 2 exp

(
−|Oi|

1.2

4E[X]

)
≤ exp(−|Oi|0.1) ≤ |P |−3.

Thus, with probability at least 1 − |P |−3, we have that |O
′
i|
|P | is a (1 ± |Oi|−0.4)-approximation

to |Oi||P | . When this happens, we have that
(
P,Oi, ε,

|Oi|
|P |

)
is a nice instance of the noisy center

estimation problem. Hence, using the algorithm ONECENTER whose existence is guaranteed by
Theorem 2.3, we can find a center ôi such that, with probability at least 1 − exp(−|Oi|0.2) ≥
1− exp(− log40 |P |) ≥ 1− |P |−3,

cost(Oi, ôi) ≤
(

1 +O

(
1

log |P |

))
cost(Oi,oi).

Let E1 be the event that |O
′
i|
|P | is a (1 ± |Oi|−0.4)-approximation to |Oi||P | , and let E2 be the event

ONECENTER from Theorem 2.3 succeeds. Then, the failure probability of our algorithm is at most
Pr[E1] + Pr[E2] ≤ |P |−3 + |P |−3 ≤ |P |−2.

We apply the procedure mentioned above on each Oi separately, and the proof now follows by
the union bound.
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Appendix E. Uniform Stochastic Noise Model

In this section, we present our algorithm for the k-means problem in the uniform stochastic noise
model and prove Theorem 4.1, which we restate below:

Theorem 4.1 There exists an algorithm such that the following holds:
Let (P, {O1, . . . , Ok}, ε) be an instance of the k-means problem in the uniform stochastic noise

setting where |Oi| ≥ max(log200 |P |, k200 log |P |) for all i ∈ [k] and ε ≤ 1 − 1
log |P | . Let

O′1, . . . , O
′
k be the ε-noise added versions ofO1, . . . , Ok. The algorithm takes (P, {O′1, . . . , O′k}, ε)

as input and outputs centers ô1, . . . , ôk′ where k′ ≤ k such that

cost(P, {ô1, . . . , ôk′}) ≤
(

1 +O

(
1

log |P |

))
·OPT

with probability at least 1 − 1
|P | , where the probability is over the randomness of O′i’s and the

algorithm’s internal random bits.

Recall that, as outlined in Section 4, the idea is to estimate cluster centers in several phases,
starting from the largest clusters. In each phase, we estimate the centers of clusters that are large
compared to the current number of remaining points. Then we reduce the overall size of the instance
by removing points that are closer to the recovered centers.

The iterative approach above leads to a more complicated analysis compared to that of the
proportional stochastic noise model. Recall that in proportional stochastic noise model, our analysis
was on a per-cluster basis. Namely, for each optimal cluster Oi, we found a center ôi that is close to
the centroid of Oi. For the iterative approach described above, this kind of analysis no longer works
due to the following reason: Suppose that O1 is the largest cluster, and for simplicity, assume that
we estimate only one center ô1 (for O1) in the first phase. Note that although ô1 is close to the true
centroid of O1, when we remove the points that are close to ô1, we might end up removing many
points from P \ O1 and assign them to ô1, while still keeping a lot of points of O1 in the instance.
(This may happen because points may not be symmetrically distributed around their centroid.) This
poses two questions: First, how do we bound the cost of these assigned points, especially if we
assign wrongly? Second, since we may end up in a situation where we do not have enough points
remaining for the algorithm to proceed, how can we bound the cost of the remaining points at this
stage?

In the first case, there are two kinds of points: For assigned points that belong to O1 (i.e.,
correctly assigned points), the cost increase is small since ô1 is close to the centroid of O1. (In
the recursively solved instances, this still holds for a given cluster considering only the remaining
points of that cluster.) However, for assigned points that does not belong to O1 (i.e., wrongly
assigned points), the cost increase can be large compared to their true assignment cost in the optimal
clustering. Thus we make sure that for each such point, there always exists sufficiently many points
(e.g., at least log |P | points) in O1 that are so-far unassigned. Since we assign the closest points, the
cost of assigned points that does not belong to O1 can be charged (fractionally) to those unassigned
points of O1.

In the second case, let p be a remaining unassigned point when our algorithm terminates, and
suppose that p ∈ Oi. If we have already estimated a center for i in a previous stage, then we can
easily bound the cost of assigning p to that center since the estimated center is close to the centroid
of remaining points of Oi at the time we estimated that center. On the other hand, if we have not
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estimated a center for i yet, this means that we have already assigned many points of Oi to other
centers before (since the number of remaining points is very small). We show that we can assign
such points p to those centers such that the total assignment cost is not too large compared to their
total assignment cost in the optimal clustering.

E.1. Our algorithm

As discussed before, the algorithm reduces the instance size in each phase and continues until we
have at most max(log195 |P |, k200) points remaining. Let α = 0.99 and let Φ be the smallest
integer such that |P |αΦ ≤ max(log195 |P |, k200). Our algorithm continues for Φ iterations. For
φ = 1, . . . ,Φ, in the φ-th iteration, the algorithm operates on a subset Pφ−1 ⊆ P where P0 = P

and |Pφ| = |P |α
φ−1

. In each phase φ, it estimates centers for sufficiently large clusters in Pφ−1, and
then produces a new instance Pφ by removing the points that are closest to the estimated centers
until we arrive at the new required size.

At the beginning of each phase, the algorithm computes a set of cluster-labels Lφ for which it is
going to estimate centers. It does so in such a way that the following holds:

1. Lφ does not contain any cluster-label considered in the previous iterations. I.e., Lφ∩Lφ′ = ∅
for all φ′ < φ.

2. Lφ contains all cluster labels whose sizes in the current instance are at least |P |αφ (except
those cluster labels that are already considered in previous iterations). Namely, j ∈ Lφ for all
j ∈ [k] \ (L1 ∪ · · · ∪ Lφ−1) such that |Oj ∩ Pφ−1| ≥ |P |α

φ
.

3. Lφ does not contain any cluster label whose size in the current instance is smaller than
|P |αφ/2. Formally, for all j ∈ Lφ, it holds that |Oj ∩ Pφ−1| ≥ |P |α

φ
/2.

If a set Lφ of cluster labels satisfies the above three conditions, we say that it is nice.
Note that the first condition above ensures that we never estimate two centers for the same clus-

ter, so that we never output more than k centers. The second condition ensures that we recover
centers for all sufficiently large clusters. The third condition ensures that we do not attempt to esti-
mate centers for too small clusters. We show how to find nice sets of cluster labels in Appendix E.3
where we extensively rely on Chernoff bounds.

Once the set of labels is computed for a phase, the next step is to estimate a center for each label
in the set. For a phase φ and a label j ∈ Lφ, let oφj denote the centroid of Oj ∩ Pφ−1, i.e., the
centroid of the points of Oj that remain in phase φ. We say that an estimate ôj is good at phase φ if

‖ôj − oφj ‖ ≤ O(1/log0.5 |P |) ·
√

cost(Oj∩Pφ−1,o
φ
j )/|Oj∩Pφ−1|.

When this happens, we have that cost(Oj ∩ Pφ−1, ôj) = (1 +O(1/log |P |)) · cost(Oj ∩ Pφ−1,o
φ
j ).

Our algorithm, at phase φ, estimates good centers ôj for each j ∈ Lφ. In Appendix E.4, we show
how to estimate such centers using our algorithm from Section 2 as a black box. We denote the set
of estimated centers at the end of phase φ by Cφ.

Finally, the algorithm reduces the current instance size by removing points that are close to the
already estimated centers. For a point c ∈ Rd, let c∗ ∈ P be the point in P that is closest to c.
We call c∗ the representative of c. At the end of each phase, the algorithm first construct a set C∗φ
which consists of the representatives of centers in Cφ. It then constructs Pφ by removing the points
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closest to the points in C∗φ until we end up with |P |αφ−1
points. As we see later, this additional

complication (i.e., removing points closest to C∗φ instead of those closest to Cφ) allows us to limit
the number of intermediate states the algorithm may arrive at, which, in turn, allows us to union
bound the failure probability of the algorithm over all such intermediate states.

We outline our algorithm in Algorithm 5.

Algorithm 5: Algorithm for estimating centers in the uniform stochastic noise model.

1 Input: An instance P of the k-means problem in the uniform stochastic noise model.
2 Let α = 0.99 and let Φ be such that |P |αΦ ≤ max(log195 |P |, k200).
3 P0 ← P , C0 ← ∅
4 for each φ = 1, . . . ,Φ do
5 Compute a nice set of cluster labels Lφ.
6 for each j ∈ Lφ do
7 find a good center ôj .

8 Cφ ← Cφ−1 ∪ {ôj : j ∈ Lφ}.
9 Let C∗φ be the representatives of Cφ.

10 Pφ ← {farthest |P |αφ−1
points in Pφ−1 from C∗φ}

11 return CΦ

E.2. Analysis of Algorithm 5

In later sections, we show how the tasks in Line 5 and Line 7 are performed with high success prob-
ability. In this section, we prove Theorem 4.1, assuming the algorithm successfully executes Line 5
and Line 7 in all phases. Namely, we prove the following lemma:

Lemma E.1 Let C = CΦ be the output of the procedure outlined in Algorithm 5. We have that

cost(P,C) ≤
(

1 +O

(
1

log |P |

))
· cost(P, {o1, . . . ,ok}).

Proof We use φ(j) to denote the phase in which a center ôj is estimated. I.e., j ∈ Lφ(j) and
ôj ∈ Cφ(j). For j ∈ [k] for which no center was estimated, define φ(j) = Φ+1. Let L = ∪φ∈[Φ]Lφ
be the set of all cluster labels for which the algorithm estimates centers.

To bound the cost of the output clustering (defined in terms of the centers CΦ), we consider
three types of points.

1. Agood: the set of points that belong to cluster of L that were present in the instance when the
respective center was estimated. Namely, Agood = ∪j∈LOj ∩ Pφ(j)−1.

2. Abad: the set of points that belong to some cluster Oj for j ∈ [k] but were removed from
consideration in some phase φ where φ < φ(j). Namely, Abad = ∪j∈[k]{p ∈ Oj : p /∈
Pφ(j)}.

3. Augly: all the remaining points. Namely, ∪j∈[k]\LOj ∩ PΦ.
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Bounding the cost ofAgood Conditioned on Line 7 succeeds in finding good centers for all j ∈ L,
we have the following bound for the cost of Agood:

cost(Agood, C) ≤
(

1 +O

(
1

log |P |

))
·
∑
j∈L

cost
(
Oj ∩ Pφ(j)−1,o

φ(j)
j

)
≤
(

1 +O

(
1

log |P |

))
·
∑
j∈L

cost(Oj ,oj). (17)

The first inequality holds because all centers in C are good and the second one holds because
Oj ∩ Pφ(j)−1 ⊆ Oj and o

φ(j)
j and oj are, respectively, the centroids of Oj ∩ Pφ(j)−1 and Oj .

(Observe that cost(Oj ∩ Pφ(j)−1,o
φ(j)
j ) ≤ cost(Oj ∩ Pφ(j)−1,oj) ≤ cost(Oj ,oj).)

We also establish a cost bound for Agood with respect to the representative centers. This
will be useful in our charging argument for bounding the cost of Abad later. For this, define
cost∗(Agood) =

∑
j∈L cost(Oj ∩ Pφ(j), ô

∗
j ), where ô∗j is the representative of ô∗j . Using the fact

that the representative is the closest point and that ô∗j is good, we can show that for each point
p ∈ Oj ∩ Pφ(j)−1,

‖p− ô∗j‖2 ≤ O(1) ·

(
cost(Oj ∩ Pφ(j)−1,o

φ(j)
j )

|Oj ∩ Pφ(j)−1|
+ ‖p− o

φ(j)
j ‖2

)
.

Summing over points in each Oj ∩ Pφ(j)−1 for j ∈ L, we thus get that

cost∗(Agood) ≤ O(1) ·
∑
j∈L

cost
(
Oj ∩ Pφ(j)−1,o

φ(j)
j

)
≤ O(1) ·

∑
j∈L

cost(Oj ,oj). (18)

Bounding the cost of Abad To bound cost(Abad, C) we show that for each point in Abad, there
are many (at least log |P |) unique points in Agood that have a greater cost.

For a phase φ ∈ [Φ], let L≤φ = ∪φφ′=1Lφ and rφ be the minimum distance from a point in Pφ
to any center in C∗φ. Let P pend

φ = Pφ ∩ (∪j∈[k]\L≤φOj) be the points that both (1) remain in the
instance at the end of phase φ and (2) belong to so far un-recovered clusters. Since each cluster in
[k] \ L≤φ has size at most |P |αφ (due to Line 5), we have

|P pend
φ | ≤ k · |P |αφ ≤ |P |αφ/200 · |P |αφ ≤ |P |1.006αφ .

In the second inequality, we use that |P |αφ ≥ |P |αΦ
= |P |αΦ−1α ≥ k200α.

On the other hand, after phase φ, we have |Pφ| = |P |αφ−1 ≥ |P |1.01αφ . Let P good
φ = Pφ ∩

(∪j∈L≤φOj) be the set of points in Pφ that belong to already recovered clusters. We thus have that
|P good
φ | ≥ |Pφ| − |P pend

φ | ≥ |P |1.01αφ − |P |1.006αφ ≥ |P |1.006αφ log2 |P |. We now argue as fol-

lows: In P good
Φ , we can select |P |1.006αΦ

log2 |P | points (denoted byAgood
Φ ) that are distance at least

rΦ away from their respective representative center. In P good
Φ−1 , we can select |P |1.006αΦ−1

log2 |P |
points (denoted by Agood

Φ−1 ) that are distance at least rΦ−1 away from their respective representa-
tive center, and out of these points, we can select (|P |1.006αΦ−1 − |P |1.006αΦ

) · log2 |P | points
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that does not overlap with Agood
Φ . Namely, for each φ = Φ − 1, . . . , 1, in P good

φ , we can select

|P |1.006αφ log2 |P | points (denoted by Agood
φ that are distance at least rφ away from the representa-

tive center estimated for them, and out of these, we can select (|P |1.006αφ − |P |1.006αφ+1
) · log2 |P |

many points that does not overlap with Agood
φ+1 . This yields that

cost∗(Agood) ≥ r1 · (|P |1.006α1
log2 |P | − |P |1.006α2

log2 |P |)

+ r2 · (|P |1.006α2
log2 |P | − |P |1.006α3

log2 |P |) + . . .

≥ r1 · |P |1.006α1
log |P |+ r2 · |P |1.006α2

log |P |+ . . . . (19)

Now let P bad
φ = Pφ−1 ∩

(
∪j∈[k]\L≤φOj \ Pφ

)
be the points of so far un-recovered clusters

that were removed from consideration at the end of phase φ. As with P pend
φ before, we have that

|P bad
φ | ≤ | ∪j∈[k]\L≤φ Oj | ≤ k · |P |

αφ ≤ |P |1.006αφ . Observe that Abad = ∪φP bad
φ , and thus

cost(Abad, C) =
∑
φ

cost(P bad
φ , Cφ) ≤

∑
φ

rφ · |P |1.006αφ . (20)

Combining Eq. (19) with Eq. (20), we conclude that

cost(Abad, C) ≤ 1

log |P |
· cost∗(Agood). (21)

Bounding the cost increase due to Augly Finally, observe that for any j ∈ [k] \ L, we have
|PΦ ∩Oj | ≤ max(log195 |P |, k200) whereas we have |Oj | ≥ max(log200 |P |, k200 log2 |P |). Thus,
by applying Lemma A.6 to each cluster in [k] \ L separately, we get that

cost(Abad ∪Augly, C) ≤
(

1 +O

(
1

log |P |

))cost(Abad, C) +
∑

j∈[k]\L

cost(Oj ,oj)

 . (22)

Combining the bounds Eq. (17), Eq. (21), and Eq. (22), we thus get

cost(P,C) ≤ cost(Agood ∪Abad ∪Augly, C)

= cost(Agood, C) + cost(Abad ∪Augly, C)
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≤ cost(Agood) +

(
1 +O

(
1

log |P |

))cost(Abad, C) +
∑

j∈[k]\L

cost(Oj ,oj)


≤ cost(Agood) +

(
1 +O

(
1

log |P |

))O(1) · cost∗(Agood)

log |P |
+

∑
j∈[k]\L

cost(Oj ,oj)


≤
(

1 +O

(
1

log |P |

))
·

cost(Agood) +
∑

j∈[k]\L

cost(Oj ,oj)


≤
(

1 +O

(
1

log |P |

))
·

(1 +O

(
1

log |P |

))
·
∑
j∈L

cost(Oj ,oj) +
∑

j∈[k]\L

cost(Oj ,oj)


≤
(

1 +O

(
1

log |P |

))
·

∑
i∈[k]

cost(Oi,oi)


=

(
1 +O

(
1

log |P |

))
· cost(P, {o1, . . . ,ok}).

The first inequality uses Eq. (22), the second one uses Eq. (21), and the fourth inequality follows
from Eq. (17).

In the next two sections, we show how to implement Line 5 and Line 7. Before we proceed,
we introduce the concept of an intermediate state of Algorithm 5. We union bound the failure
probabilities of Line 5 and Line 7 over all possible intermediate states the algorithm may have.

Definition E.2 (Intermediate state) We denote an intermediate state of Algorithm 5 by a tuple
(φ, Pφ−1) where φ denote the current phase and Pφ is the set of remaining points.

Note that when φ = 1, we have only one possible intermediate state (1, P0). For each interme-
diate state (φ, Pφ−1), observe that there is at most O(|P |k) possible intermediate states (φ+ 1, Pφ)
for phase φ + 1 that can be arrived from (φ, Pφ−1). This is because we choose at most k repre-
sentative centers in each phase out of |P | possible points, and Pφ is completely determined by the
current state (φ, Pφ−1) and the chosen representative centers. Since the algorithm may have at most
Φ = O(log |P |) phases, we now have the following observation:

Observation E.3 The total number of possible intermediate states is O(|P |k log |P |).

E.3. Implementing Line 5 of Algorithm 5

The following lemma guarantees that we can successfully implement Line 5 of Algorithm 5.

Lemma E.4 There exists an algorithm Alabels that satisfies the following with probability at least
1− 1

2 |P |
−1: Given any intermediate state (φ, Pφ−1), Alabels identifies a set of labels L ⊆ [k] such

that j ∈ L if |Oj ∩ Pφ−1| ≥ |P |α
φ

and j ∈ L only if |Oj ∩ Pφ−1| ≥ |P |α
φ
/2.
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Proof Given (φ, Pφ−1), the candidate algorithm simply computes nj = |O′j ∩Pφ−1| for all j ∈ [k],

and includes j ∈ L if and only if nj ≥ 3
4 · (1 − ε)|P |

αφ + (ε/k)|P |αφ−2
. We have that E[nj ] =

(1− ε)|Oj ∩ Pφ−1|+ (ε/k)|Pφ−1|, and

Pr

[
|nj − E[nj ]| ≥ 100(log |P |)

√
E[nj ]

]
≤ exp

(
− log |P |

√
E[nj ]

)
≤ exp

(
−10k10 log3 |P |

)
≤ |P |−10k10 log2 |P |.

In the first inequality, we used that E[nj ] ≥ (ε/k)|Pφ−1| ≥ k100 log4 |P |. Thus we have that, if
|Oj ∩ Pφ−1| ≥ |P |α

φ
, with probability at least 1− |P |−10k10 log2 |P |,

nj ≥ E[nj ]− 100(log |P |)
√
E[nj ]

≥ (1− ε)|P |αφ + (ε/k)|P |αφ−2
+ 100(log |P |)|P |0.5αφ−2

≥ (1− ε)|P |αφ + (ε/k)|P |αφ−2
+ 100(log |P |)|P |0.7αφ

≥ 3

4
(1− ε)|P |αφ + (ε/k)|P |αφ−2

.

The last inequality follows because 1 − ε ≥ 1
log |P | . On the other hand, if |Oj ∩ Pφ−1| ≤ 1

2 |P |
αφ ,

with probability at least 1− |P |−10k2
,

nj ≤ E[nj ] + 100(log |P |)
√
E[nj ]

≤ 1

2
(1− ε)|P |αφ + (ε/k)|P |αφ−2

+ 100(log |P |)|P |0.5αφ−2

≤ 1

2
(1− ε)|P |αφ + (ε/k)|P |αφ−2

+ 100(log |P |)|P |0.7αφ

≤ 3

4
(1− ε)|P |αφ + (ε/k)|P |αφ−2

.

As before, the last inequality follows because 1 − ε ≥ 1
log |P | . Now, by the union bound over

all j ∈ [k], the candidate algorithm succeeds for a given (φ, Pφ−1) with probability at least 1 −
k|P |−10k10 log2 |P |, and it succeeds for all intermediate states with probability at least

1− k ·O(|P |k log |P |) · |P |−10k10 log2 |P | ≥ 1− 1

2
|P |−1.

E.4. Implementing Line 7 of Algorithm 5

The following lemma ensures that we can successfully implement Line 7 of Algorithm 5.

Lemma E.5 There exists an algorithm CENTERINUNIFORMNOISE that satisfies the following:
The algorithm CENTERINUNIFORMNOISE takes an instance P of the k-means problem in the

uniform stochastic noise model, an intermediate state (φ, Pφ−1), and a label j ∈ [k] as input and
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returns a center ô. We say that the center is good if ‖ô − oφj ‖ ≤
100rφ,javg

log0.5 |P | , where oφj denotes the

centroid of Oj ∩ Pφ−1. With probability at least 1− 1
2 |P |

−1, for all intermediate states (φ, Pφ−1),
and labels j ∈ [k] such that |Oj ∩ Pφ−1| ≥ |P |α

φ
, the returned center is good.

Proof Fix some intermediate state (φ, Pφ−1) and a label j ∈ [k] such that |Oj∩Pφ−1| ≥ |P |α
φ
. Note

that (Pφ−1, Oj ∩Pφ−1, ε,
1
k , O

′
j ∩Pφ−1, ε,

1
k ) is an instance of the noisy center estimation problem.

Moreover, we have |Oj ∩ Pφ−1| ≥ |P |α
φ ≥ |P |αφ−2α2

= |Pφ−1|α
2

which implies that δ = 1
k ≤

1 ≤ |O|1/α2
/|P | ≤ |O|1.1/|P |. Thus the instance is in fact nice, and hence ONECENTER succeeds

in finding a good center with probability at least 1− exp(−|Oj |0.2) ≥ 1− exp(−10 · k10 log2 |P |).
Taking the union bound over all possible intermediate states and j, we have that with probability at
least

1− k ·O(|P |k log |P |) · |P |−10k10 log2 |P | ≥ 1− 1

2
|P |−1,

the algorithm succeeds on all intermediate instances.

Finally, due to Lemma E.4 and Lemma E.4, it follows that both Line 5 and Line 7 succeeds with
probability at least 1− 1/|P |.

Appendix F. Hardness and Impossibility Results

In this section, we start by presenting an example that intuitively shows that the labels does not
provide any additional information for the adversarial noise model.

Theorem F.1 For constant α > 1, any α-approximation hardness result for the k-means problem
also extends to k-means problem in the adversarial noise setting, even in the case that adversary
can alter only the labels of kε clusters or |P |ε points, for any constant ε > 0.

Proof Consider an instance of a k-means problem with points P without any labels. First we add
a new cluster far away from the points P as follows. We add a set of points P0 of size m >> |P |c
for some constant c in the same place with distance more than the cost of the optimum solution. We
denote the new instance by P’ and use k+ 1 as the number of center that we want to open. Observe
that the cost of the optimum solution for these two instances are the same. If there is no bound
on the number of elements that the adversary changes from each cluster, adversary can change the
labels of the all the point in P to an arbitrary or random color. Therefore the labels in the input does
not contain any information regarding the point in P , so any such α-approximate hardness results
for the k-kmeans problem applies to this case as well. Furthermore, instead of adding one cluster
one can add k′ clusters, where k′ is significantly higher or independent from k. Therefore even if
the we bound the number of the clusters that the adversary is allowed to alter their labels of kε, the
input labels do not have any information and the hardness results still apply.

Lets us now show that our result is tight among all the algorithm that looks at the colors inde-
pendently. Formally we show that:

Theorem 1.2 In the balanced adversarial noise model, any (potentially randomized) algorithm has
an approximation guarantee of (1+Ω(ε)) if it computes the center of each cluster only as a function
of the input points with the label of that cluster.
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Proof We start by showing the result for k = 2 and then we extend it to general k values. We define
the following set of points in one dimensional space:

• Let Q−1, be a set of εn points at coordinate −1.

• Let Q0, be a set of n points at coordinate 0.

• Let Q1, be a set of εn points at coordinate +1.

In both instances these three sets of the points exist with label 1. In P1, P2 there is additional set
of n points with label 2 in coordinates−1 and 1, referred to asW−1 andW1 respectively. Therefore,

P1 = Q−1 ∪Q0 ∪Q1 ∪W−1 and P2 = Q−1 ∪Q0 ∪Q1 ∪W1,

which concludes the construction of the instances. One can observe that O1 = {Q−1 ∪W−1, Q0 ∪
Q1} is an optimal solution with centroids at positions −1 and ε for A1 and satisfies the constraint
of the label of the adversarial setting. Similarly O1 = {Q−1 ∪Q0,W1 ∪Q1} is an optimal solution
with centroids at positions −ε and 1 for A2 which also satisfies the constraint of the label of the
adversarial setting. Moreover the cost of both these solutions is

cost(O1) = cost(O2) ≤ε2n+ (1− ε)2 · εn
≤ε2n+ εn− 2ε2n+ ε3n

≤εn(1− ε+ ε2) (23)

Any algorithm that computes the center of the clusters only based on the input points with the label
of that cluster; provides same distribution D1 for the center of the points of labels 1 for A1 and A2.
Notice that the best distribution D for these two instances is the one that opens a center in position
0 with high probability. The points with label 2 are in the same coordinate in both of these two
instances and opening a center there has cost zero. Therefore in the best case the cost of the solution
is at least εn. Combining with Eq. (23) the approximation ratio is

εn

εn(1− ε+ ε2)
∈ 1 + Ω(ε).
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