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Abstract

We present new efficient projection-free algorithms for online convex optimization (OCO), where
by projection-free we refer to algorithms that avoid computing orthogonal projections onto the
feasible set, and instead relay on different and potentially much more efficient oracles. While
most state-of-the-art projection-free algorithms are based on the follow-the-leader framework, our
algorithms are fundamentally different and are based on the online gradient descent algorithm with
a novel and efficient approach to computing so-called infeasible projections. As a consequence,
we obtain the first projection-free algorithms which naturally yield adaptive regret guarantees, i.e.,
regret bounds that hold w.r.t. any sub-interval of the sequence. Concretely, when assuming the
availability of a linear optimization oracle (LOO) for the feasible set, on a sequence of length 7',
our algorithms guarantee O(73/4) adaptive regret and O(7/4) adaptive expected regret, for the
full-information and bandit settings, respectively, using only O(T') calls to the LOO. These bounds
match the current state-of-the-art regret bounds for LOO-based projection-free OCO, which are not
adaptive. We also consider a new natural setting in which the feasible set is accessible through a
separation oracle. We present algorithms which, using overall O(T") calls to the separation oracle,
guarantee O(+/T) adaptive regret and O(T3/*) adaptive expected regret for the full-information
and bandit settings, respectively.

Keywords: projection-free methods, online convex optimization, online learning, Frank-Wolfe,
linear optimization oracle

1. Introduction

In this paper we consider the problem of Online Convex Optimization (OCO) Hazan (2019); Shalev-
Shwartz et al. (2012) with a particular focus on so-called projection-free algorithms. Such algo-
rithms are motivated by high-dimensional problems in which the feasible decision set admits a
non-trivial structure and thus, computing orthogonal projections onto it, as required by standard
methods, is often computationally prohibitive. Instead, projection-free methods access the decision
set through a conceptually simpler oracle which in many cases of interest admits a much more ef-
ficient implementation than that of an orthogonal projection oracle. Indeed, for this reason such
algorithms have drawn significant interest in recent years, see for instance Hazan and Kale (2012);
Garber and Hazan (2013); Chen et al. (2019); Garber and Kretzu (2020); Kretzu and Garber (2021);
Hazan and Minasyan (2020); Levy and Krause (2019); Wan and Zhang (2021); Ene et al. (2021);
Chen et al. (2018); Zhang et al. (2017).

Let us introduce some formalism before moving on. Throughout the paper we assume without
loosing much generality that the underlying vector space is R™. We recall that in OCO, a decision
maker (DM) is required throughout 7' iterations (we will assume throughout that 7" is known in
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advanced for ease of presentation), to pick on each iteration ¢ € [T, a decision in the form of a
point x; from some fixed convex and compact decision set L C R”. After choosing x; € K, the
DM incurs a loss given by f;(x;), where f; : R* — R is convex'. We will make the standard
distinction between the full-information setting, in which after incurring the loss, the DM gets to
observe the loss function f;(-), and the bandit setting, in which the DM only learns the value f;(x;).
In the full-information setting we shall assume that the sequence of losses fi,..., fr is arbitrary,
and may even depend on the plays of the DM, while in the bandit setting we shall make a standard
simplifying assumption that fi,..., fr are chosen in oblivious fashion, i.e., before the DM has
made his first step (and thus are in particular independent of any randomness introduced by the
DM). We recall that the standard measure of performance in OCO, which is also the objective that
the DM usually strives to minimize, is the regret (or its expectation in the bandit setting) which,
given the entire history {x;, f;}_,, is given by

Regret = ijl fi(xe) — I)}lellfcl ZtT:l Je(x). ey

Most projection-free OCO algorithms are based on a combination of the Follow-The-Leader
(FTL) meta-algorithm, and in particular its deterministically regularized variant known as Regularized-
Follow-The-Leader (RFTL) Hazan (2019), and the use of a linear optimization oracle (LOO) to
access the feasible set, e.g., Hazan and Kale (2012); Chen et al. (2019); Garber and Kretzu (2020).
We shall refer to these as RFTL-LOO algorithms. Indeed, for many feasible sets of interest and in
high-dimensional settings, implementing the LOO can be much more efficient than implementing
an orthogonal projection oracle, see many examples in Jaggi (2013); Hazan and Kale (2012). For
arbitrary (convex and compact) feasible set and nonsmooth convex losses, the current best regret
bound for both the full-information and bandit settings obtainable by these RFTL-LOO algorithms
is O(T3/%), using overall O(T') calls to the LOO, due to Hazan and Kale (2012) and Garber and
Kretzu (2020).

However, the RFTL approach for constructing online algorithms has well known inherent lim-
itations. While the regret, as given in (1), can in principle be negative — due to the ability of the
online algorithm to change decisions from iteration to iteration while the benchmark’s decision is
fixed, it is known that RFTL-type algorithms always suffer non-negative regret Gofer and Mansour
(2016). As a consequence, such algorithms are also inherently non-adaptive in a sense that we now
detail. It is often the case that there is no fixed decision in hindsight that has reasonable performance
w.r.t. the entire data (i.e., the sequence of loss functions) and thus, the standard regret measure be-
comes insufficient. In such cases, adaptive performance measures which, on different parts of the
data, allow to be competitive against different actions, are much more preferable. Such standard
adaptive performance measure introduced in Hazan and Seshadhri (2009) is called adaptive regret
and is given by

Adaptive Regret = supj; .7y {st fe(xe) — min Z::S Ji (X)} ; @)

where for any two integers 1 < s < e < T, we denote [s,e] = {s,s + 1,...,e}. In words, the
adaptive regret is the supremum over all standard regrets w.r.t. all sub-intervals of the sequence of
loss functions. We refer the interested reader to Hazan and Seshadhri (2009); Daniely et al. (2015)
for many useful discussions on the adaptive regret and its connection to other notions of adaptivity
in the literature.

1. In fact, it suffices that f; is convex on a certain Euclidean ball containing the set /.
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Unfortunately, due to their inherent non-negative regret property, RFTL-based algorithms can-
not guarantee non-trivial adaptive regret bounds. Thus, it is natural to ask:

Is it possible to design efficient projection-free algorithms for OCO with non-trivial adaptive regret
bounds?

One attempt towards this goal could be to instantiate the strongly adaptive online learner of Daniely
et al. (2015) with the non-adaptive state-of-the-art RFTL based algorithm for the full-information
setting of Hazan and Kale (2012), known as Online Frank-Wolfe (OFW), which will result in an
adaptive algorithm with O(T3/ 4) adaptive regret.> However, this approach is somewhat artificial
and will require to run in parallel O(log T') copies of OFW, which will require log 7-fold memory
and calls to the LOO. Moreover, this approach is not applicable to the bandit setting.

Another possibility is to design new projection-free algorithms which are not based on the FTL

approach, but instead on the Online Mirror Descent meta-algorithm, and in particular its Euclidean
variant — Online Gradient Descent (OGD) Zinkevich (2003), which naturally yields an O(\/T )
adaptive regret bound Hazan (2019). While OGD requires to compute on each iteration an orthog-
onal projection onto the feasible set, a naive approach to making it projection-free using a LOO, is
to only approximate the projection on each iteration via the well known Frank-Wolfe method for
offline constrained minimization of a smooth and convex function, which only uses the LOO Jaggi
(2013); Frank and Wolfe (1956). However, as recently noted in Garber (2021), such an approach
strikes an highly suboptimal tradeoff between regret and number of calls to the LOO. Instead, Gar-
ber (2021) considered using OGD with so-called infeasible projections, which on one hand can be
computed efficiently with a LOO (at least in terms of the model in Garber (2021) which is signif-
icantly different than ours), and on the other-hand could be translated into feasible points, without
loosing too much in the regret. Our approach in this paper is inspired by Garber (2021), however,
our technique for computing such infeasible projections will be very different (in particular, the
setting in Garber (2021) is not concerned with the dimension and thus the Ellipsoid method is used,
which is not suitable for our setting, due to its polynomial dependence on the dimension).
Two projection-free oracles: While our discussion so far has focused on the assumption that the
feasible set is accessible through a linear optimization oracle, which is indeed the most popular
assumption in the literature on projection-free methods, in this paper we introduce an additional
new natural projection-free setting in which the feasible decision set KC is given by separation oracle
(SO). Given some x € K, the SO either verifies that x is feasible, in case it indeed holds that
x € K or, returns a hyperplane separating x from /C, in case x ¢ K. For instance, a setting in
which the SO model arrises naturally is when the feasible set is given by a functional constraint
of the form £ = {x € R" | g(x) < 0}, where g(-) is convex. Implementing the SO in this
setting simply amounts to calling the first-order oracle of g(+) (i.e., computing g(x) and some gx €
0g(x), for a given input point x € R™). In particular, when g(-) has the following max structure:
g(x) = max;<i<m gi(x), where m is not very large and g1, ..., g,, are convex functions which
admit simple structure, implementing the SO can be very efficient, while orthogonal projections
can still be prohibitive. One such example is a polytope given by the intersection of m halfspaces
for moderately-large m. Importantly, the SO model allows to efficiently handle the intersection of
several simple convex sets, each given by a SO. Note that in the LOO setting there is no simple
approach to implement a LOO for a convex set given as the intersection of several sets, each given
by a LOO.

2. In fact, such an algorithm will have for any interval I, regret bounded by O(|I|>/ + |I|*/? log T') w.r.t. the interval.
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The following example demonstrates the complementing nature of the LOO and SO oracles.
Consider the following two, dual to each other, unit balls of matrices which are common in several
applications: B, = {X € R"™" | |X||. < 1}, By = {X € R™" | |X]l2 < 1}, where
for a real matrix X we let ||X]||. denote its nuclear/trace norm, i.e., the sum of singular values,
and we let ||X||2 denote its spectral norm, i.e., its largest singular value. Euclidean projection
onto either B, or Bs requires in general a full-rank singular value decomposition (SVD), which is
computationally prohibitive when both m, n are very large. Linear optimization over B, is quite
efficient and only requires a rank-one SVD (leading singular vectors computations) however, linear
optimization over By requires again a full-rank SVD Jaggi (2013). On the other-hand, denoting
9+(X) = | X[« — 1, g2(X) := || X]|2 — 1, we have that implementing the SO for B,, which requires
to compute a subgradient of the nuclear norm, also requires in worst case a full-rank SVD. However,
implementing the SO w.r.t. Bs, requires to compute a subgradient of the spectral norm, which is
w.l.o.g. a rank-one matrix (corresponding to a top singular vectors pair of X), and thus requires
only a rank-one SVD which is far more efficient. Thus, while a LOO is efficient to implement for
B., the SO is efficient to implement for Bs.

Contributions: Our main contributions, stated only informally at this stage, and treating all quan-
tities except for 7' and the dimension n as constants, are as follows (see also a summary in Table

D).

1. Assuming the feasible set is accessible through a LOO, we present an OGD-based algorithm
for the full-information setting with adaptive regret of O(73/*) using overall O(T) calls to
the LOO. This improves over the previous state-of-the-art (RFTL-based) not-adaptive regret
bound of O(T3/*) due to Hazan and Kale (2012). We give a similar algorithm for the bandit
setting which guarantees O (y/nT/*) adaptive expected regret using O(T") calls to the LOO
in expectation, which improves upon the previous best bound of O(\/nT 3/ 4) due to Garber
and Kretzu (2020) which only applies to the standard regret.

2. Assuming the feasible set is accessible through a LOO and all loss functions are strongly
convex, we show that a projection-free OGD-based algorithm can recover the state-of-the-art
O(T?/3) (standard) regret bound using O(T) calls to the LOO, which matches that of the
RFTL-based method due to Kretzu and Garber (2021).

3. Assuming the feasible set is accessible through a SO, we present an OGD-based algorithm
for the full-information setting with adaptive regret of O(+/T') using overall O(T') calls to the
SO. In the bandit setting, we give a similar algorithm with O(T3/ 4) adaptive expected regret
using overall O(T') calls to the SO.

We remark that aside of standard subgradient computations of the loss functions observed, and
calls to either the LOO or SO, all of our algorithms require only O(n) space, and O(nT") additional
runtime (over all 7" iterations).

We acknowledge a parallel work Mhammedi (2021), in which the author proves that given a
separation oracle, it is possible to guarantee a O( \/T) regret bound for general Lipschitz convex
losses, and the techniques could be readily used to also give adaptive regret guarantees in the full
information setting (but not in the bandit setting). However, the approach of Mhammedi (2021),
which uses substantially different techniques than ours, requires overall O(T logT') calls to the
separation oracle to guarantee O(+/T) regret, while our result only requires O(T’) calls in order to
achieve this regret bound.
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Theorem 9 Theorem 11 Theorem 10 Theorem 14 Theorem 15
Objective adaptive adaptive regret adaptive adaptive
regret expected regret regret expected regret
Losses convex convex strongly convex convex convex
Feedback full bandit full full bandit
Oracle LOO LOO LOO SO SO
Regret T3/4 T3/4 T%/3 VT T3/4

Table 1: Summary of results. For clarity, in the regret bounds we treat all quantities except for 7" as constants.

Feedback Objective Oracle Reference Regret
adaptive regret | projection Zinkevich (2003) VT
Full adaptive regret SO This work (Thm. 14) VT
Information regret LOO Hazan and Kale (2012) T3/
adaptive regret LOO This work (Thm. 9) T3/4
adaptive regret | projection Flaxman et al. (2005) T3/
Bandit adaptive regret SO This work (Thm. 15) T3/4
regret LOO Garber and Kretzu (2020) | 7°/%
adaptive regret LOO This work (Thm. 11) T3/

Table 2: Comparison of results to previous works. This is a non-exhaustive list. Here we only list the most
relevant works which are suitable for arbitrary convex and compact sets and convex and nonsmooth losses,
make overall O(T) calls to the oracle of the set, and use O(n) memory and O(nT') additional runtime. For
clarity, in the regret bounds we treat all quantities except for 7" as constants.

We note that due to lack of space some of the results and proofs are deferred to the appendix.

2. Preliminaries
2.1. Additional notation, assumptions and definitions

Throughout this work we assume without loss of generality that the feasible set K contains the
origin, i.e., 0 € K and we denote by R > 0 a radius such that  C RB, where B denotes the unit
Euclidean ball centered at the origin. We also denote by &S the unit sphere centered at the origin,
and we write u ~ B and u ~ S to denote a random vector u sampled uniformly from B and S,
respectively. We assume the loss functions are bounded by M in £, norm and are G's-Lipschitz
over RB, thatis, forall t € [T],x € RBand g € 0fi(x), |fi(x)| < M and ||g|]2 < Gy.

In our results for the bandit feedback setting and when assuming the feasible set is accessible
through a SO we shall make the following additional standard assumption.

Assumption 1 The feasible set fully contains the ball of radius r around 0, for some r > 0, i.e.,
rB C K.

Forevery 0 € (0, 1) we define the §-squeezed version of K as K5 = (1-0)K = {(1-9)x |x € K}.
Note that if Assumption 1 holds, then for all x € K5 /,., it holds that x+B C K (see Hazan (2019)).

2.2. Basic algorithmic tools

2.2.1. THE FRANK-WOLFE ALGORITHM WITH LINE SEARCH

The Frank-Wolfe algorithm Frank and Wolfe (1956); Jaggi (2013) is a well known first-order
method for minimizing a smooth and convex function over a convex and compact set, accessible
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through a LOO. In this work we use the Frank-Wolfe with exact line-search variant, see Algorithm
8 in the appendix.

Theorem 1 [Primal convergence of FW Jaggi (2013)] Let f : R™ — R be convex and (3-smooth
over a convex and compact set K C R"™ with Euclidean diameter 2R, and denote x* € argmin, - f(x).
Algorithm 8 guarantees that Vi > 1: f(x;) — f(x*) < 28(2R)?/(i + 2).

Theorem 2 [Dual convergence of FW Jaggi (2013)] Under the same assumptions of Theorem 1,
Algorithm 8 guarantees that for every number of iterations K > 2, there exists an iteration 1,
K > i > 2, such that maxyex(x; — v) Vf(x;) <6.756(2R)?/(K + 2).

Note that for a convex function f(-) and a feasible point x € K, the dual gap in Theorem 2
serves as an easy-to-compute certificate for the optimality gap of x w.r.t. any optimal solution
X" € argmingcx f(y), since from the convexity of f(-) it follows that, f(x) — f(x*) < (x —
x*) TV f(x) < maxyex(x — v) TV f(x).

2.2.2. ONLINE GRADIENT DESCENT WITHOUT FEASIBILITY

As discussed, our online algorithms are based on the well known Online Gradient Descent method
(OGD) Zinkevich (2003), which applies the following updates:

VE>1:  yip1 < Xe — 8, 8 € 0ft(Xt), Xep1 ¢ argming i [|x — vl

Where {n; }I_, are the step-sizes and x; is an arbitrary feasible point. However, motivated by Garber
(2021), instead of considering exact projections on the feasible set, which may be computationally
prohibitive, we consider using only infeasible projections, as we now define.

Definition 3 We say y € R" is an infeasible projection of some y € R™ onto a convex set K,
ifVz € K it holds that ||y — z||*> < |ly — z||?>. We say a function O;p(y,K) is an infeasible
projection oracle for the set K, if for every input point 'y, it returns some § < Orp(y, K) which is
an infeasible projection of y onto K.

This definition gives rise to the online gradient descent without feasibility algorithm — Algorithm
1, and its corresponding regret bounds captured in Lemma 4. While this algorithm will play a
central role in our projection-free online algorithms, clearly, another central piece, which we will
detail later on, will be to transform such infeasible projections into feasible points without loosing
too much in the regret bound.

Algorithm 1: Online Gradient Descent Without Feasibility

Data: horizon T, feasible set K, step-sizes {n; }1_, infeasible projection oracle O;p(K, -)
y1 < arbitrary point in
for t=1,...,7T do
Play y,, observe fi(¥:), and set V; € 9f;(y:)
Update y; 1 =yt — eV, and set yy 1 < Orp(K,yi41)
end

Lemma 4 Let O;p an infeasible projection oracle (Definition 3).
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1. Suppose all loss functions are convex. Fix some 1 > 0 and let ny = n for allt > 1. Algorithm
1 guarantees that the adaptive regret is upper-bounded as follows:

VI=[s,e] CT]: > [y —min > filx ”ys XIH 77}: V7|2

xR

2. Suppose all loss functions are a-strongly convex for some o > 0. Let n; = é forallt > 1.
Algorithm 1 guarantees that the (static) regret is upper-bounded as follows:

Z; fe(ye) — minxex Z; filx) < Z; IVel|?/2axt.

2.2.3. INFEASIBLE PROJECTIONS VIA SEPARATING HYPERPLANES

Continuing the discussion on infeasible projections, our approach for transforming such infeasible
projections into feasible points without sacrificing the regret bounds too much, will be to design
infeasible projection oracles that always return points that are sufficiently close to the feasible set.
The following simple lemma will be instrumental to all of our constructions of such oracles, and
shows how using a separating hyperplane we can “pull” an infeasible point closer to the feasible set.

Lemma 5 Let K C R"™ be convex and compact, let y be infeasible w.rt. K, i.e., y ¢ K, and
let g € R™ be a separating hyperplane such that for all z € K: (y —z)'g > Q, for some
Q > 0. Consider the pointy =y — g, for v = Q/C?, where C > ||g||. It holds that ¥z € K:

Iy — 2| < |ly —2||> — (Q/C)%
Proof Fix some z € [C. It holds that

17 —zl* = lly =z —v8l” < ly — 2> — 27(y — 2) "g ++°C".
Since (y — z)—r g > @, we indeed obtain

1§ — 2 < Iy — 2> = 20Q ++°C” < |ly — 2> - Q*/C?,

where the last inequality follows from plugging-in the value of ~. |

3. Projection-free Algorithms via a Linear Optimization Oracle
In this section we present and analyze our LOO-based algorithms.

3.1. LLO-based computation of (close) infeasible projections

The main step towards obtaining our novel algorithms will be to construct an efficient LOO-based
infeasible projection oracle (Definition 3). A first step towards this goal will be to show how an
LOO could be efficiently used to construct separating hyperplanes for the feasible set K. This will
be achieved via the Frank-Wolfe algorithm, when applied to computing the Euclidean projection
of the given point onto K, i.e., to solve minyex ||x — y||?, where y is the point which should be
separated from K. See Algorithm 2 and the corresponding Lemma 6.

Lemma 6 Fix e > 0. Algorithm 2 terminates after at most ((27R2 / e) — 2] iterations, and returns
a point x € K satisfying:
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Algorithm 2: Separating hyperplane via Frank-Wolfe

Data: feasible set K, error tolerance e, initial vector x; € K, target vector y.
for i =1,... do
v; € argming o {(x; — y) 'x}; /* call to LOO of K x/
if (x; —y) " (x; — vi) < eor|x; —yl||? < 3¢ then
| return X < x;
0; = argming o {ly — xi — o(vi —x:))[*} and xi41 = x; + 03 (v — %))
end

L |lx = yl? < [lx = yI”
2. At least one of the following holds: |X — y|> < 3corVz € K: (y —z)" (y — %) > 2e.
3. Ifdist*(y,K) < e then | % — y||*> < 3e.

Proof Since Algorithm 2 is simply the Frank-Wolfe method with line-search (Algorithm 8) when
1

applied to the function f(x) = §||x — y||?, which is 1-smooth and with gradient vector V f(x) =
X — y, the upper-bound on the number of iterations follows directly from Theorem 2, which guar-
antees that the stopping condition of the algorithm will be met within the prescribed number of
iterations.

Similarly, Item 1 in the theorem follows directly since the line-search guarantees that the func-
tion value f(x;) = 1||x; — y||? does not increase when moving from iterate x; to X; 1.

Item 2 follows from the stopping condition of the algorithm and by noting that in case for some
iteration i it holds both that (x;—y) T (x; —v;) < eand ||x; — y||? > 3¢ (in which case the algorithm

will return X = x;), then for all z € K it holds
(z—y) (xi—y)=(z—x) (xi—y)+[xi —yl* > (vi—x)" (xi — y) + 3e > 2e,

where the first inequality is due to the definition of v;. Finally, to prove Item 3, denote x* =
argming ., |x — y||?. Suppose by contradiction that dist?(y, ) = [x* —y||*> < e and that
|% — y||> > 3e. Denote the function f(x) = 1||x — y||? and its gradient vector V f(x) = x —y.
According to the assumption and by the stopping condition of the algorithm, on the last iteration

executed i it must hold that (X — y) T (X — v;) = maxyex (X — v) TV £(X) < ¢, which means that

%= yII? = dise(y, ) = 2/ (%) — 2 (x7) < 2% — x") V(%) < 2max(x —v) V() < 2,

where the first inequality is due to the gradient inequality and the convexity of f(-). Thus, we have
that ||X — y||? < 2¢ + dist?(y, ) < 3¢, which contradicts the assumption that ||X — y||?> > 3c. W

We can now use Algorithm 2 as a subroutine in an iterative algorithm which takes as input some
infeasible point y ¢ K, and returns an infeasible projection of it w.r.t. the feasible set K that is also
guaranteed to be at a bounded distance for XC. In a nutshell, as long as the infeasible point is too far
from the set, Algorithm 3 iteratively calls Algorithm 2 to obtain a separating hyperplane which is
then used to “pull” the point closer to the set while maintaining the infeasible projection property.

Cvoll2(lIxo—yoll2—
Lemma 7 Fixe > 0. Setting vy = HXOE#HQ’ Algorithm 3 stops after at most max { Ixo—yol (Jll:;‘) yol*~e) +

1, 1} iterations, and returns (x,y) € K x RB scuh that

8
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Algorithm 3: Close infeasible projection via a linear optimization oracle

Data: feasible set K, feasible point xo € /C, initial point y, error tolerance e, step size
y1 < yo/ max{l, |yl||/R}; /* y1 1s projection of yg over RB «*/
if ||X() — y0||2 < 3¢ then

| Return x < X,y < y1

end
fori=1... do
x; < Output of Alg. 2 with set I, feasible point x;_1, initial vector y;, and tolerance e.
if ”Xl — yiH2 > 3¢ then
‘ Yit1 = Yi — Y (¥i — Xi) ; /* (yi —x;) separates y; from K «/
else
| Return x < X;,y < ¥;
end

end

VzeK: |ly —z|? < |yo—z|> and |x—y|? < 3e.

Furthermore, if the for loop has completed overall k iterations, then the point y satisfies

dist*(y,K) < min {R,distQ(yo,lC) — (k —1)4€*/||xo — yon}.

Before proving Lemma 7 we require an additional auxiliary lemma.

Lemma 8 Consider Algorithm 3 and fix some € such that 0 < 3¢ < ||xg — yol|?. Setting v =

HXOEW’ we have that on every iteration i of Algorithm 3 it holds that ||x; — y;|| < ||x0 — yoll-

Proof [Proof of Lemma 7] First, we note that since y is the projection of yg onto RB and IC C RB,
it holds that Vz € K : |ly1 — z[|? < ||yo — z|[%. When ||xo — yo/|*> < 3cor ||x1 — y1]* < 3¢ the
lemma holds trivially.

For the remaining of the proof we shall assume that ||x; — y1]|> > 3e. Let us denote by k > 1
the overall number of iterations of Algorithm 3, i.e. ||y; — xx[|* < 3e and |ly; — x;|* > 3e for all
i < k. Using Lemma 6, we have that for all i < k it holds that (y; — Z)T (yi — %) > 2e for every
z € K. Using Lemma 8 we also have that ||y; — x;|| < ||yo — Xo|| for all i < k. Thus, using Lemma
5withg = (y; —x;),C = |lyo — Xo||, and Q = 2¢, we have that for every 1 < i < k,

Vze Kt |y —2l* < llyi — 2] — 4€/llyo — xol > ®)

This already guarantees that indeed forall z € K, the returned point y satisfies: ||y — z||? <
ly1 — 2| < |lyo — 2| Since 0 € K, it in particular follows that ||y|| < |[y1|| < R.i.e.y € RB.
Note also that x € K since it is the output of Algorithm 2.

Now we continue to upper-bound the number of iterations until Algorithm 3 stops and dist?(y, ).
Denote x; = argmin,cx ||y; — x||* for every iteration i < k. Using Eq. (3), for every iteration
1 < kit holds that

dist*(yir1,K0) = lyir1 = xipl* < llyirn — x|
< lyi = x711* = 4€*/llyo — xol* = dist*(yi, K) — 4€*/||y0 — xol|*.
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Unrolling the recursion and using dist?(y, K) < dist?(yo, K), we have

dist? (yi41, K) < dist?(y1, K) — i4€?/||yo — xo||* < dist?(yo, K) — i4€%/|lyo — xol|?

< [lyo — xol[* — i4€*/|ly0 — %o,

Then, after at most k—1 = (||yo — xo|*([lyo — %o||? — €)) /4€? iterations, we obtain dist* (yy, K) <
€, which by using Lemma 6, implies that the next iteration will be the last one, and the returned
points x, y will indeed satisfy||x — y||> < 3¢, as required. [ |

3.2. LOO-based algorithms for the full-information setting

We are now ready to fully detail our algorithm for the full information setting using a LOO, Algo-
rithm 4, and analyze its regret and oracle complexity. The algorithm combines the OGD without
feasibility algorithm, Algorithm 1, and the LOO-based infeasible projection oracle given in Algo-
rithm 3. Since each invokation of Algorithm 3 may call through Algorithm 2 the LOO several times,
Algorithm 4 considers the iterations in blocks of K disjoint iterations (K is a parameter to be de-
termined in the analysis), and uses the same prediction for the entire block. Thus, a single call to
the infeasible projection oracle, Algorithm 3, is made on each block. Finally, we note that for more
practical considerations, the update to predictions of the algorithm is delayed in such a way that, at
the end of each block m, the algorithm does not need to wait until the prediction for the next block
m + 1 will be computed but, it is already computed during the course of block m.

Algorithm 4: Blocked Online Gradient Descent with LOO (LOO-BOGD)
Data: horizon 7T, feasible set X, block size K, update step 7, error tolerance e.
X(, X1 ¢ arbitrary points in /.

Yo ¢ X0,¥1 < Yo, Y1 ¢ X1.

for t=1,...,K do

Play x( and observe f;(x¢)

Set V; € 0f;(x0) and update y;+1 =y — nVy

end
for sz,...,% do
Let (X, Ym) € K x RB be the output of Algorithm 3 when called with set /C, feasible
point X, 2, initial point y ,,_1)x 1, and tolerance € (execute in parallel to the following
for loop over s)
SetY(m-1)Kk+1 = Ym—-1
for s=1,...,K do
Play x,,,—1 and observe f;(X;—1) ; /x t=(m—-1)K+s */
Set Vy € Ofi(Xm—1) and update y; 11 = y¢ — nVy
end

- K
Note: ymr+1 = Ym—1 — nZ?i(m_l)KH Vi.

end

10
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Theorem 9 Setting n = (R/Gf)T_%, ¢ = 60R?T2,K = 5T°2 in Algorithm 4 guarantees that
the adaptive regret is upper bounded by

e . e 1 3
supI:[sye]gT} {ths ft(Xt) — Ny, e/C Zt:s ft(X[)} < 20GfRT2 + 20GfRT4,

and that the overall number of calls to the LOO is upper bounded by Nq;js < T

3.3. (standard) Regret bound for strongly convex losses

We now consider the case in which all loss functions are a-strongly convex, for some known o > 0.
In this setting, vanilla OGD does not yield adaptive regret guarantees, and the same goes for our
OGD-based approach for constructing new LOO-based projection-free algorithms. Instead, here we
show that our approach can recover the state-of-the-art (standard) regret bound for this setting of
O(T2/ 3) Kretzu and Garber (2021). The algorithm, Algorithm 5, is given below. We note that in
the strongly convex setting (as opposed to the case of convex, but not strongly convex losses), we
do not require to consider the iterations in blocks, which slightly simplifies the algorithm.

Algorithm 5: Online Gradient descent with Linear Optimization Oracle (LOO-OGD)

Data: horizon T, feasible set K, update steps {1 }_,, error tolerances {e;}1
X1 < arbitrary points in
Y1+ X1
for t=1,....,7 do
Play x; and observe f;(x;)
Set V, € 9f;(x;) and update y; 11 =y — 0V
X141, Vi1 < Outputs of Algorithm 3 with set /C, feasible point x;, initial vector y;, 1, and
tolerance €;4 1

end

Theorem 10 Suppose all loss functions { ft}z;l are a-strongly convex, for some o« > 0. Setting

2
e = 130 (4G?R2/at) ° e = é in Algorithm 5, guarantees that the (static) regret is upper
bounded by

Z; fe(xt) — mingek Z; fi(x) < 50(R2G4/a)sT5 + (G3/2a)(1 + In (T)),

and that the overall number of calls to the linear optimization oracle is upper bounded by

2 2 4
Ra\3 2 Gf 3 1 1 1 Gf 3 1 Gf 2
Neanns <0.9T — T — 1T - — e e
w00t (g0 ) e () (G o) 72 (o) 3 (o

3.4. LOO-based algorithm for the bandit setting

Our algorithm for the bandit information setting using a LOO, Algorithm 9 (given in the appendix),
follows from a simple combination of Algorithm 4 and the standard technique for bandit opti-
mization pioneered in Flaxman et al. (2005), which generates unbiased estimators for gradients of

11
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smoothed versions of the original (unknown) loss functions via random sampling in a small neigh-
bourhood of the feasible point. For this reason, Algorithm 9 applies the full-information Algorithm
4 on a slightly squeezed version of the feasible set — the set K5, = (1 — §/r)K, so that the
sampled points will remain feasible. We remind the reader that in the bandit setting we make the
standard assumption that the loss functions are chosen obliviously, i.e., they are independent of any
randomness introduced by the algorithm.

Theorem 11 Suppose Assumption 1 holds. For all ¢ > 0 such that @ < 1, Setting n =
\/RfMTfﬁ , K = 6nM T%,6 =T 1in Algorithm 9 guarantees that the adaptive expected regret

n
is upper-bounded as follows

AERy =  sup ] {E [Z;S ft(Zt)} - i?él}c Z;S ft(xl)} <

I=[s,e]C[T

R 3 1 2 RnM 3 \/nM 1
< (4+7”) GycT's +vnM (4R+\/6+3RGf+ 902 )T4 +24RnM< /6 —‘rGf) Tz,

and the expected overall number of calls to the linear optimization oracle is upper bounded by

27 R? S5RY (M) 6°R* (nM)? G2 66 R4 (nM)2GA
E[Nos] < —_ (SR (M) | (nM)"Gy | CRM7Cr 0\ .
InMc? 4c8 28 3¢t

4
In particular, if (% V”M) < T then, setting c = 20Rv/nM, we have

R 1 1 5 1 .
AERT < RVnM 20G ;= +4+ — 24— | T14+24nM | = T2
Ry < RVn (800f+ OGfT+ +2R+3Gf+4R2) 14 24n <2+RGf> 2,

- G2
and E[Negys) < m <Rl4 + R—ﬁ + G‘} + 1) T, where 0 < ¢ < 1 is an universal constant.

4. Projection-free Algorithms with a Separation Oracle

In this section we discuss our SO-based algorithms. Similarly to our LOO-based algorithms, here
also we will begin by showing how to efficiently compute infeasible projections using the SO, and
then we will combine it with the OGD without feasibility approach (Algorithm 1), to obtain our
algorithms. More concretely, our SO-based algorithms will be based on the following idea, which
is slightly different than the one used for our LOO-based algorithms. Note that under Assumption
1, for any § € [0, 1] it holds that s = (1 — 0)K C K. Thus, our approach will be to fix some
d € (0,1] and to treat s as if it was the feasible set, and compute infeasible projections w.r.t. it,
while ensuring that at all times, the points played by the algorithms remain within the enclosing
feasible set K.

For clarity, throughout this section we introduce the notation KCs, 5, = (1 — 01)(1 — 62)K =
{(1=61)(1 = 82)x | x € K}, for any (61,52) € [0,1]2.

4.1. Efficient (close) infeasible projection via a SO

We now turn to detail the main ingredient in our SO-based online algorithms — efficient infeasible
projections onto the set K5 5., for any given (4,4") € [0, 1] x [0, 7], using the SO.

12
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As in our LOO-based construction, the first step will be to show how the SO of K can be used to
construct separating hyperplanes w.r.t. Ks 5 /., which will in turn be used to “pull” infeasible points
closer to the set, while maintaining the infeasible projection property.

Lemma 12 Suppose Assumption 1 holds. Fix (6,0") € (0,1) x [0,7), and let y € R™ such
that 1 5//T ¢ K. Let g € R"™ be the output of the SO of K w.rt. ﬁ,/r, ie, forall x € K,

-
<m — x) g > 0. Then, it holds that,Vz € Ky 5/, :  (y —2) g > d(r —&)|gll

We can now present our SO-based infeasible projection oracle, see Algorithm 6.

Algorithm 6: Infeasible projection via a separation oracle
Data: feasible set K, radius r, squeeze parameters (6, 0") € [0, 1] x [0, 7], initial vector yy.
y1 < yo/ max{l, |y||/R}; /* y1 is projection of yg over RB x/
fori=1... do
Call SO;C with input

if 3(’;,/7, ¢ K then

1— 6’/7‘

T
Set g; < hyperplane outputted by SO ; /* Vx e (1_3;73/7“ — x) gi >0 «/

Update y;11 = yi — 7i&i
else
| Returny < y;

end

end

Lemma 13 Suppose Assumption 1 holds. Let 0 < § < 1, and 0 < & < r. Setting v; =

. dist? s 51 r —dist? s 51 ” . .
5(r — &) /|||, Algorithm 6 stops after at most — o 2 (T)i 5,1)2 & Koaryr) + 1, iterations, and

returns’y € Ks: = (1 — 0')K such thatVz € Ky g/ = ||y — 2|* < [lyo — 2[*.

4.2. SO-based algorithm for the full-information setting

Our SO-based algorithm for the full-information setting, Algorithm 7, is given below.

Algorithm 7: Online gradient descent via a separation oracle (SO-OGD)

Data: horizon 7', feasible set K, update step 7, squeeze parameter 0.
y1 < 0€Ks.
for t=1,...,7T do

Play y: and observe f:(y:).

Set V; € 0f;(y:) and update y;+1 = y¢ — nVy.

Set ¥;+1 < Outputs of Algorithm 6 with set /C, radius r, initial vector y; 1, and squeeze

parameters (9, 0).

end

13
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Theorem 14 Suppose Assumption 1 holds. Fix ¢ > 0 such that 6 = T2 € (0,1), and set
T3, Algorithm 7 guarantees that the adaptive regret is upper bounded by

cir

= 2q;

e TG RZG
SUD[—[s,¢]C[T] { Zt:s ft( — inérllc Zt . ft Xr } < <GfRC + Tf + . f> \/T,
and that the overall number of calls to the SO is upper bounded by N q;1s < (% + 1z + 1) T.
In particular, if % < \/T then setting ¢ = %, we have that

2

R r  8R? 5 r
sup {th Vi —)glérllc;ft(xj)} <Gy <4 + r) ﬁ, and Negps < <4 + 64R2> T,

[s.e]C

4.3. SO-based algorithm for the bandit setting

Similarly to our LLO-based algorithm for the bandit setting, our SO-based bandit algorithm follows
from combining our SO-based algorithm for the full-information setting together with the use of
unbiased estimators for the gradients of smoothed versions of the loss functions, as pioneered in
Flaxman et al. (2005). Our algorithm for the bandit feedback, Algorithm 10, is given in the ap-
pendix. As opposed to the full-information setting which used a single squeeze parameter (i.e., we
set 0’ = 0 when considering the squeezed set ICs 5 /r), in the bandit setting, due to the ball-sampling
technique which is used to construct the unbiased gradient estimators, in order to keep the iterates
feasible, we set &’ to be strictly positive.

Theorem 15 Suppose Assumption 1 holds Fix some c',c¢ > 0 such that 2¢T~Y* < r and
I~Y* < 1. Setting n = 4\/7T i 0 = VA = JT™1 in Algorithm 10, guarantees
that the adaptive expected regret is upper bounded as follows

;ft(zt) ‘,{?é%tzft(xﬁ} <

3 4nM  (nM)z 7
<GR[E+< -
= <R+T+C+ rGy +8GfR '

AERp = sup E
I=[s,e]C[T]

/
) T% + GyRETS,
.

and the overall number of calls to SO is upper bounded by Neatis < T + 21’17 VCCTfMT% + 4"2M,2 Ts.
In particular, if T*/* > max{2v } then setting ¢ = and ' = /nM, we have

ABRy < RV (244 24 )7ty N LIEE
and Noays < T + (R/4) TT + (r/16)2 T2
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Appendix A. Details Missing from Section 2

A.1. The Frank-Wolfe algorithm with line-search

Algorithm 8: Frank-Wolfe with line-search
Data: feasible set /C, initial point x¢ € K, objective function f(-).
for 1 =0,... do
v; € argmin, cc {Vf(x;) 'x} ; /* call to LOO of K x/
i = argmin,c(o {f(xi + o(vi — %))}
Xit1 = X; + 03(vi — X;)
end

A.2. Smoothed loss functions for bandit optimization

A standard component of bandit algorithms Flaxman et al. (2005); Chen et al. (2018); Garber
and Kretzu (2020); Kretzu and Garber (2021), is the use of smoothed versions of the loss func-
tions and their unbiased estimators. We define the d-smoothing of a loss function f by f(g(x) =
Eu~s[f(x+ du)] . We now cite several standard useful lemmas regarding such smoothed func-
tions.
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Lemma 16 (Lemma 2.1 in Hazan (2019)) Let f : R® — R be convex and G ;-Lipschitz over a

convex and compact set KK C R". Then ﬁ; is convex and G y-Lipschitz over K5, and Vx € Ks it
holds that | f5(x) — f(x)| < 0GYy.

Lemma 17 (Lemma 6.5 in Hazan (2019)) f5( ) is differentiable and ¥V fg( ) =Eywsn [% fx+ 5u)u],

where u is sampled uniformly from S™.

Lemma 18 (see Bertsekas (1973)) Ler f : R™ — R be convex and suppose that all subgradients
of f are upper-bounded by Gy in {3-norm over a convex and compact set Kk C R™. Then, for any

x € Ks it holds that |V f5(x)|| < Gy.

Appendix B. Proof of Lemma 4

Proof [Proof of Lemma 4] Fix some iteration ¢ of Algorithm 1. Since y+1 is an infeasible projection
of yti1, and yi 1 =y — 7V, we have that
Vx € K: [[Fi01 — x| < lyesr — xI” = [|IFe — m Ve — x|
< Nlye = x| + 71Vl = 200V (52— x).
Rearranging, then we have
~ 2 ~
I5: =" [[Fe1 —x|? n el Viel®

vx e K: V) (y; —x <

Fix some positive integers 1 < s < e < T'. Summing over the interval [s, e|, we have that

e ~ 2 e
- Ys — X 1 1
Vx € K ZVI(yt—x)§H2H+ > < ~ o )HYt—XH +ZmHV [

t=s Ns t=s+1 21 t=s
4)

Using the convexity of each f;(-) and plugging-in 1, = 7 for all ¢ > 1, we have that

VxeK: S fulFe) - filx) < ”ys_ ”ZHV 1%,

which yields the first guarantee of the lemma.

In case all loss function f;(-),1 < t < T, are a-strongly convex, using the inequality f;(y) —
fi(x) < Vily) (y —x) — 4y — x|, (x,y) € R" x R", and setting (s,e) = (1,T) in Eq.(4),
for every x € KC we have that,

T
IIVtH2 ay - 2
< — —
E ft(¥e) < E: 27]1 5 ly1 — x|

Plugging in 1y = é, we obtain the second guarantee of the lemma. |
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Appendix C. Proof of Lemma 8

Proof [Proof of Lemma 8] Using the update step of the algorithm, for every iteration ¢ > 1 we have
thaty; = yi—1 — v (yi—1 — Xi—1), and thus, for every ¢ > 1 we have that

[xi—1 = yill = [[xi-1 = yic1 + 7 (yi-1 = xi-1) | = (1 =) [[xi—1 — yi-1ll < lxi-1 = yi-all,

where the last inequality holds since our choice of - satisfies v € [0, 1).
From Lemma 6 we also have that for all i > 1, x; satisfies ||x; —y;|| < ||xi—1 —yi||- Combining
this with the inequality above gives

1% = yill < llxie1 = yioall <+ <o = yall < %o = yll < [l%0 = yoll,

where the last inequality follows since xg € K and y; < yo/ max{l, |lyo||/R}, i.e. y1 is the
projection of y( over the set RB (X C RB), and thus ||xg — y1]|| < ||x0 — yoll- [ |

Appendix D. Proof of Theorem 9

Before proving the theorem we need an additional lemma.

T _
Lemma 19 Let {ym};;:; C RB be as in Algorithm 4 when ran with some block size K, for some
positive integer K, and step-size 1 > 0. It holds that

e e 2
~ . n ) 4R

sup ft(¥¢) — min ft(XI)} < -KG%T +4RKGy + —.
Proof Denote 7,,, = {(m—1)K+1,...,mK} forevery m € [T/K]. Since for every m € [T/ K],
Ym+1 18 the output of Algorithm 3 when called with the input y,, 41, we have from LemNma 7 that
Vx € K: [[§me1 — x[|* < [[ymi+1 — x]||*. Note also that Y1 = Ym-1 — 1 Y7, Vi, where

V, €0 ft(¥m—1). Thus, we have that

2
Vx €K Fmir — xI° < [ymecr = x[1P = |Fm1—n Y Vi—x
t€Tm
<Fm1 = x| +*E>GF =20 > V{ (Fm-1 —x),
t€Tm

where in the last inequality we have used the assumption that for all ¢ € [T] and x € RB it holds
Vi)l < Gy

Rearranging, we have for every block m that

~ 2 ~ 2
=T/~ Ym—1—X Ym+1 —X
Y Vi (Fmo1—x) < [15m 5 I=_1 m+2 | +QK2G§. S
teTmm " " 2

Fix some interval [s,e],1 < s < e < T. We define two scalars ms and m,. which are set to
the smallest block index and the largest block index that are fully contained in the interval [s, €],
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respectively. Recall that for a certain block m, all iterations ¢t € 7, share the same prediction
¥Ym—1.Thus, for every x € K we have that

ms—1 K

DV Gy =% < D ViFme =0+ Y > VI Fmo1 - %)
t=s t=s m=ms tETm
t=meK+1

Using the Cauchy-Schwarz inequality, recalhng that y,,, € RB for all m, and ||V f(z)|| < G for
allt > 1 and z € RB, we have that Vt (Ym@) —x) < 2GR foreveryt > 1and x € K. Using
Eq.(5), and this last observation, we have that for every x € IC,

Me ~ 2 =~ 2 2 2
[Fm1 = xI°  [[Fmpr —x[* | K™0G5
th po1—%x) < Y ( T gyt g | TAKGR
m=msg

Since for every ¢t € [T], f;(+) is convex in R, we have that

- - 4R?
Vx €K > fi (Fmge-1) — filx) ST + 5KG?T +4KGYR,

t=s
and thus the lemma follows. |
Proof [Proof of Theorem 9] Denote m (¢ { W Fix some interval [s,e],1 < s < e < T, and fix

some minimizer Xj € argmingcx Y ;. ft (x). From the convexity of f;(-) for every t € [T], we
have that for every x € RB it holds that

> fe (Rimy-1) — th — ft (Ym@y—1) + ftr Fmy-1) — fr(x)
t=s
<th Xn(t)—1 — Ym(t) +th Ym(ty-1) — fe(x).  (6)

Using Lemma 7, for every block m, Algorithm 3 returns points (X,,,¥.,») € K X RB such that
|%m — ¥m||* < 3e. Since for every ¢ > 1, fi(-) is G y—Lipschitz over R, from both observations
and using the Cauchy-Schwarz inequality, for every ¢ € [T'] we have that,

Vi (-1 = Y1) < G [Kmey-1 = Yo -1|| < GV/3e. M

Since Eq.(6) holds for any interval [s, e], using Eq.(7) and the fact that sup,{f1(x) + fa(x)} <
sup,{ f1(x)} + sup,{ f2(x)}, we have that

sup {Z m(t)— 1 th X] }_ sup {th Ym(t)—1 —th(x})}
t=s

I=[s,e]C[T] I—s =[s,e]C[T]

+ GfﬁT.
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Using Lemma 19, we have that

e e 4 R2 G2
sup S fim-0) -~ pin Y- ) | < arGyr o+ 4 S wou
I=[s,e]C[T] \ =5 xek i — n 2

Combining the last two equations and plugging-in the values of €, n, I stated in the theorem, we
obtain the adaptive regret bound stated in the theorem.

We now move on to upper-bound the overall number of calls to the linear optimization oracle.
Recall that on each block m € [2,...,T/K], the call to Algorithm 3 returns points (X, ¥m) € ICx
RB which satisfy ||X,,—¥m||? < 3¢, and Algorithm 4 updates y,,xc 11 = Ym—1—7 Z’;I((m_l)KH V.
Thus, the points X,;,—1, Yk +1 Which are the input sent to Algorithm 3 on the following block m+1
satisfy:

||Xm71 - YmK—l-lH < ||Xm71 - S’m—1|| + ||ym71 - YmK—l—lH < \/3754‘ Knt
Using (a + b)? < 2a® + 2b2, we have that for any block m,
%m—1 = ymr11]* < 6e + 2K*n*G3.

Using Lemma 7, each call to Algorithm 3 on some block m makes at most

_ 2 _ 2
max{ ||Xm71 YmK—I-lH (|Z|1X;n1 ymK—Q—l” 6) 41, 1}
€

iterations. On each iteration of Algorithm 3 it calls Algorithm 2, which according to Lemma 6,
makes at most {@ — 2} calls to a linear optimization oracle. Thus, Algorithm 4 on block m

makes
_ 2 _ 2 _ 2
iy, < max [%m—1 = Ymr 1 I*(IXm-1 — Ymrt1]] €) 11,1 2TR
4¢€2 €
K2772G2 K4’I’]4G4 27R2
< (8.5+5.5 L+ —-
€ € €

calls to linear optimization oracle. Thus, the overall number of calls to a linear optimization oracle
is

T/K 2,272 4, 4,4

T K*n*Gy  K'n"Gy\ 27R?

Neans = Z Ny < ? (85+55 ! + 5 ! .
m=1

€ € €

Appendix E. Proof of Theorem 10

Before proving the theorem we need an additional observation.
Observation 1 For all t > 1 the followings hold

4
IERVER

t

(t+2)
(t+1)

2

t+2)5  (t+1)
1 2
t3

1. d 2.
S 2

ol cols
wivo

~

oa\w‘ w
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Proof [Proof of Theorem 10] Recall that according to Lemma 7, Algorithm. 3 is an infeasible
projection oracle. Denote V; € Of:(y;). Since for every t € [T] we have that 7; = L fi() is
a-strongly convex, and y; is an infeasible projection of y; over I, then, from Lemma 4, it follows
that for every x € K,

d Ve
th(f’t) - fi(x) < Z .
t=1 t=1

2ot

Since for every t € [T, fi(-) is also G y—Lipschitz, using Lemma 7, we have that

T T T
D filxe) = ful3) <DV (ke = 31) S V3G Y Ve
t=1 t=1 t=1

Denote x* = argmin, cx ZZ;I fi(x). Since for every ¢ € [T, §; € RB, it holds that | V|| < Gy.
Since Z,f:l t=1 <1+ 1In(T), and combining the two last equations, we have

T T 2
G
D Jilxe) = filx") < VBG Y e+ oI (1+ (D).
t=1 t=1 @
Plugging-in the value of ¢, listed in the theorem, and using the facts that Zle =5 < flT t5dt <

%Tg , we obtain the regret bound.

We turn to upper-bound the number of calls to the linear optimization oracle. Recall that for
every t € [T, Algorithm 3 returns points x;, ¥ such that ||x; — ¥||* < 3e;, and that Algorithm 5
updates y¢+1 = Y+ — 1: V. Thus, for every ¢t > 1, we have that

1%t = yerll < lxe = 5¢ + ¥ — yerll < V3ee +mGy.
Since (a + b)? < 2a? + 2b?, for any t > 1 we have that
dist*(yi1,K) < ||xt — yer1l|* < 6 + 27]?6’?. (8)

For every t > 1, let us denote by n; the number of iterations executed by Algorithm 3, when called
from Algorithm 5 on iteration ¢. Using lemma 7, for every ¢ € [T, after n; iterations of Algorithm
3, we have that

. . _ 4¢2
dist®(y¢, K) < dist®(y¢, K) — (ne — 1)m
t—1 — Yt
o 4¢?
< dist™(y-1 — m-1V¢,K) — (ne — 1)m
o o 2 2 def
< dist™(y1-1,K) + dist(ye—1, K)ne 1 G + i1 Gy — (1 — 1) i ————5
Ixt—1 — yell
. i 4¢?
< A (11, K) 2V Gt 1 G (= 1)
t—1 — Yt

where the last inequality is due to dist(y:—1, ) < ||xi—1 — ¥e—1]| < V/3€t—1.
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Summing over all T iterations, we have that

—Yi+1 . -
Zn <T+ Z w <d st? (34, K) — dist?(y441, K) + 2\/§77th\/§+ ntszf) )

Using Eq.(8), and since dist*(§1,C) = 0, and for every ¢ € [T] dist?(§, K) < 3¢;, we have that

6e +2 232
Znt <T+Z il ek (distz(yt,lC)—distQ(SrtH,lC)+2\/§nth\/§+nfG?c)

t+1

3eri1 + 07 GE 3 +mPG3\ G4 3 2 3
§T+3Z€t+1< t+H1 T M1y 96 277t Iy e [ V3¢ ntetJrn“/a o\

— 267, 267, € ch QG? V3G, 6

Since according to Lemma 6 every iteration of Algorithm 3, when calling Algorithm 2, results

in at most szl W calls to the linear optimization oracle, the overall number of calls to linear
optimization oracle is

9¢2 ¢ 361:4—1772 1G2 3n; G2 27R?
Nogits < Z( t+1 t 4 +1-f

2€t+2 26t+1 2€%+2 26t+1 €t4+1
T 3
|36, Z vamer | Grier VaGutva Gt 21R’

€1 26t+1 B¢t 66t+1 €t+1

2
Plugging-in the values of {€; }+>1, {7 }+>1 listed in the theorem, and denoting ¢; = 1303 4G£ R
have that

’

122R2 G~ [((t+2)5  (t+1)5  G3 [(t+2)5 (t+1)s
Neans < 2 Z 2 2 + 2 (t + 1)2 o t2
¢ =1 (t+1)3 t3 3cia?
122G R% (¢ +1)? \fo 2G2 G3
+ > = Sy +— v
Ve o @ a2c t5 adc? t5 \fcla ¢

Using Observation 1, and the fact that (tg)Q = (1 + %)2 < 4 forevery t > 1, we have that

122R2 L [ 2 G? 488G R < [ 6 3G 2G2 G3
Ncallsg 3 Z<1+ 2f2>—|— ! Z ——|—\flf2—|— g'f4 f42 .
[ —— i3 cia?ts V3er =1 a?cits  adcits V3eiatt
Then, we have
122R2 3G2 488GR? [ 6. 3v3G 6G2 G4
Nealis < 2 3T% T + et A —T+ \[ 1fT% + 4
015 ¢ a2 \/gcl o a%f fcloz
2
Plugging in ¢; = 1302 2917 we obtain the lemma. [ |
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Algorithm 9: Blocked Bandit Gradient Descent using Linear Optimization Oracle (LOO-
BBGD)
Data: horizon T, feasible set IC with parameters r, R, block size K, step size 1, smoothing
parameter 0 € (0, 7]
X0, X1 ¢ arbitrary points in K,
Yo ¢ X0, ¥1 < Y0, Y1 < X1.
for t=1,...,K do
Set uy ~ S™ and play z; = Xg + du;.
Observe fi(z), set g; = 7§ fi(z:)u; and update y; 11 = y; — ng.
end

for m:2,...,% do
Let (Xm, ym) be the output of Algorithm 3 with set Ks/,., feasible point x,, 2, initial
vector ¥, 1)k 1. and tolerance % (execute in parallel to following for loop over s)
SetY(m-1)Kk+1 = Ym—1
for s=1,...,K do
Set uy ~ S™ and play z; = X,,,—1 + duy. ; /x t=(m—-1)K+s */
Observe fi(z¢), set g = % f+(z:)u; and update y; 11 = ys — 18-
end

- K
Note: y,k+1 = Ym-1 — nZQ’L(mfl)KH 8t

end

Appendix F. LLO-based Algorithm for the Bandit Setting and Proof of Theorem 11

Our LLO-based algorithm for the bandit setting is given in Algorithm 9. Before proving Theorem
11, we need an additional lemma.

Lemma 20 Fix some interval T = {7+1,...,7+L} of size L, a set of i.i.d. samples {u; }ic7, 0t ~
S", and some'y € (1 —6/r)K = Ks,, for some § € (0,7). Define g = 5 fi(y + du)us, t € T,

and let g = Y g Then, it holds that
teT

1 Ellgril® <E[lgrl?] < L (45) + 1263
2 B [IgrllY] <322 (") + 617 ()" G + 11

Proof We start with the first item. It holds that

r 2
E(grl?] =E |[|> el | =E|D lel*+ > &g
| llteT teT (,5)ET2i#]
=E (Y lelP|+ > Elge]. ©)
LteT (1,J)ET?i#]

23



GARBER KRETZU

Since maxxer | fi(x)| < M, we have that ||g;|| < 2|fi(y + du)|||w|| < 224, and thus,

M 2
> lleel* < L <”5> . (10)

teT
Using Lemma 18 we have that for all ¢t € T, |E[g|y]|| = HVﬁ,g(y)H < Gy. Furthermore,
since, conditioned on y, Vi # j, g;, g; are independent random vectors, we have that
> Elgle]= Y E[ENEEb] <06 ap
(1,4)ET?i#] (1,7)ET?i#]

Combining Equations (9), (10), and (11), we obtain the first part of the lemma:
2 nM\?
Bllerl <E(lerl?) <2 (%) + (22~ )¢,

where the first inequality follows from Jensen’s inequality.
We move on to prove the second part of the lemma. It holds that

4 2
dSal | =E[[DlelP+ D &ls
teT (2,7)ET2i#]

teTm
27 r 2
=E <Z IIgtHQ) +2E (Z IIgtHQ) > g'gi||+E > glg
teT | teT (i,7)ET2,i%j (1,))ET2 i

E[lgrl*] =E [

Using Eq. (10) and Eq. (11) we have,

S|4 2 (M ! nd\? T T
Efler|] <% =) +2L{—- > E[gi gj]+E > slg
(6,4) €T i#] (i.4) €T i#j
2
nM\* nM\? T
< L? (5> + 2L <5> (L> - L)G} +E > glg
(1,4)ET?i]

Now we upper-bound the last term in the RHS. Note that, the expectation argument has (L? — L)?
summands. Since conditioned on y, for every four indices ¢ # j # k # [, the random vectors g;,
g;, 8k» & are independent, we have that

E|el gsel s = E [Ele] v Elg; IyEle] [y Elily]] < G}, (12)

where the last inequality follows, as before, from Lemma 18 which yields ||E[g;|y]|| < G for all
teT.

In the case of three different indices 7 # j # k, we have
E [nggig;I gj] =E [nggigJTgk} =E [gf gjglfgj} =E [gf gjnggk}
—E |Elgily]"Elg;e; [vIElerly)| < E [IEily)lElg;e; |v]lIElglyll

n2M2G?
< Elg; 163 < ——L. (13
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There are L(L —1)(L — 2)(L — 3) summands with four different indices, and 2(L? — L) summands
with exactly two different indices. Thus, since there are overall (L? — L)? summands, there are
4L3 — 12L? + 8L summands wiht exactly three different indices. Thus, using Lemma 18, Eq. (12),
and Eq. (13), it holds that

2
M\* M?
E > gle| | <2r? <”5> +4L7 <”5> GF + L'G.
(i.4)ET? i#]

Thus, we obtain that

M\* M2
E [|lgr|!] <3L? <”5> +6L3 <"5> G} + L'Gj.
m

Proof [Proof of Theorem 11] First, we establish that Algorithm 3 indeed plays feasible points.
Using Lemma 7, for each block m € [2,...,T/K], Algorithm 3 returns x,,, € K5/, = (1-6/7)K
Thus, for every iteration t € [T7] it 1ndeed holds that z; € K.

We now turn to prove the upper-bound to the adaptive expected regret. Throughout the proof of
the regret bound let us fix some interval I = [s,¢e|,1 < s < e < T. We start with an upper bound
on E [Z::s ﬁ,t (Xm(t)_l) — f‘\&t(x)} which holds for every x € K5/,.. We will first take a few
preliminary steps. For all ¢ € [T'], denote the history of all predictions and gradient estimates by
Fe=A{x1,.. ., Xp(4-1), 81, - -, 81}, where m(t) := [ £]. Since forall ¢ € [T, g is an unbiased
estimator of Vﬁjg (xm(t)_l), ie,Eg|F] = Vﬁ’(g (xm(t)_l), and E [Xm(t)—ﬂ]:t] = Xp()—1, W
have that for every ¢ € [T] and x € s ,. it holds that,

E [gtT (Xm(t)—1 — X)} =E [E (8t F2] " (Kngy—1 — X)} =E [Vfa,t(xm(t)q)T(Xm(t)q - X)] .
(14)
For every block m € [T'/K], denote T,,, = {(m — 1)K +1,...,mK}. Using Lemma 7, we have
that for every block m € [T/K], the point ¥,,,+2 is an infeasible projection of y(,,41)x+1 Over

Ks/r. Since y(mi1)k41 = Ym — 0 ZteTm+1 g, we have that for every block m € [T'/K] and
x € K5y, it holds that

2

[§me2 — I < [¥gmpnyress — xI? = Hym Y, Ex

2
[e— T v p—
ZteTm+1 8t 217 ZtGTm+1 gt (ym X).

Rearranging, we have for every block m that,

T /= |7 — x]I° ||ym+2 — XH2
— <
ZteTm+1 &t (ym X) - 2n Zte’fm

= |7 — x|+

5)

Denote by ms and m, the smallest and the largest index of block that is fully contained in the
interval [s, €], respectively, i.e., {(ms — 1)K + 1,... ,meK} = {Tmoy -+ T} C [s,€]. Recall
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that all iterations ¢ € 7, share the same prediction ¥,,—1. Since {s,...,ms_1K} C Ty, , and
{meK +1,...,e} C Ty, forevery x € K5/, we have that

ms_1K

E[zg: <ym<t>_1—x)] B[S g Gma x| +E
t=s

t=s

Me
S —x>]
m=ms t€Tm

e

Z gtT(S’me - x)

t=meK+1

+E

Using the Cauchy-Schwarz inequality, Lemma 7 (which yields that y,,, € RB), and Lemma 20, with
the fact that forall a,b € RY : v/a + b < \/a++/b, we obtain the bound: E [Ztm;;}()fl 8 Y — x)] <

2RK <5f + Gf) for every t € [T], and x € K;/,. Combining Eq.(15), and this bound, we have
that

nM
<4RK (| —= +G +—+— E
(aﬁ f) Z

mmé

2
th

teTm

E [Z gtT (5’m(t)—1 - X)
t=s

Combining Eq.(14) and Lemma 20, we have that for every x € Ks ;. it holds that,

4R?

ZE [Vﬁs,t (Xm(t)q)T (Xm(t)—1 — ] <E [Z g (Xm@—1—Ymu-1)| + e
t=s

nM n._ (n*M?*
4RK G —-K Gy
i (&/K it > < PE
From Lemma 7, we have that for every block m, Ym—1|| < 6. Using Lemma 20 with the

fact that for all a,b € R* : va+b < v/a+ v/b, we have that E [|| e, &ll] < VK (™) +
K Gy for every block m. Plugging-in these two observations, we have that for every x € K5/, it

holds that,

° ~ nM nM
;E [Vf@t (xm(t>_1)T (Xm(t)-1 — x)} < <\/T< + 5Gf> T + 4RK <W + Gf>

4R?  m_ (nPM?
——+ K
+ p + (52[{ +G>

Since for every ¢ € [T], fi(-) is convex in K, using Lemma 16 it holds that the smoothed function
ft.s(+) is convex in [Cs /, for all ¢ € [T']. Thus, for every x € K5/, we obtain that,

Zfat Xin(t)—1) — Jae(x )] < <%+5Gf>T+4RK <£/A%+Gf>

AR?  nK (n*M?%*
+n+2<K(52+Gf)T. (16)
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Let us now denote by x7 a feasible minimizer w.r.t. the interval I = [s, e],i.e. x] € argmin ) ;__ f(x).
xek

Denote also X} = (1 — 2) x} € K /7~ It holds that,

th z) (Xm()=1) + fr Km@y—1) = [e(XT) + fi(X7) = fo(xT) | -
17

E th(zt — fu(x] ] =

Since for every t € [T, z; = X,,(4)—1 + duy, and f; is G p-Lipschitz over K, we have that

[th (zt) (Xm(t)— ZE Jt(&Emy—1 + 0ur) — fi(Xpm)—1)]

< SB[l < G,

t=s

and since ||x7|| < R, we have

e € G
E [Z fe(X7) = fe(x7 ] th — fi(x]) < ZGin? —xj| < ?Mﬂ‘
t=s t=s

Using Lemma 16 and Eq.(16), we have

E [Z It (Xm(t)—l — fi(x7)
t=s

+E

th ~ Jar (% >]

Zf&t fét(Xj +E

ngt (%) — fi(X])

t=s
nM nM 4R? q <n2M2 2)
< 26GT + +6G; )| T+ 4RK +Gp )+ -+ oK + G
! <¢K f) (NK f> 0 2K

Combining the last three equations and Eq.(17), we obtain that

R nM nM
E <3+ — )G T+ | —=+Gs | T+ 4RK + G
[ felm) = i XI)] N ( 7’) d <\/E f) ((5\/? f)
AR? 7 (n*M? 9
+77+2< 52 +KGf>T

Plugging-in the values of K, n, d listed in the theorem, we obtain the regret bound of the theorem.
We now turn to prove the upper-bound on the expected overall number of calls to the LOO. We
start with find an upper-bound on E [[|Xp—1 — yimx41]|*]. Since (a + b)* < 8(a’ + b), we have

E [|Ixm-1 — Ymr+1]*] =E [[%m-1 — Fm-1 + Fm-1 — Ymr+1]"]

< 8E [[[xm—1 — Fm—-1lI* + [Fm-1 — Ymr+1l"] -
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Using Lemma 7, for every block m, Algorithm 3 returns points X,,, ¥, such that || x,, — ¥, ||* < 62.
Since Algorithm 9 updates ymx+1 = Ym—-1 — 0 Ztg—m g, using Lemma 20, we have that

4
E [I%m-1 — ymrs1ll'] <8 [ &' +n'E

th

teTm

4 2
<8 (54 + 3niK? (”g”) +6ntK? (”?4) G%+ 774K4G§> .

Using Lemma 7, for every block m, Algorithm 3 makes at most

2

It = Ymcia? (I = Vs - 5)
max +1,1

(%)

iterations, where 62 /3 is the error tolerance. On each iteration of Algorithm 3, it calls Algorithm 2,

which in turn, by Lemma 6, makes at most RZ% — 2} calls to a linear optimization oracle. Thus,

the call to Algorithm 3 in block m executes

2
It = Ymsc 12 (1om1 = yr a2 = 5) | s1g2
Elng,] <E 5
52 62
(%)
472 M4 M2 ~2 24
< 5 +19 )~

calls to linear optimization oracle in expectation. Thus, the expected overall number of calls to a
linear optimization oracle is bounded by

T/K 4702 4 4703 2 2 Aped 9
T [ 54n*K? (nM) 108n°K*° (nM)" G 187*K*G} S1R
E [Nears] = mZ::lE ] < % ( 5 + 5 T TR
It only remains to plug-in the value of K, 7, J listed in the theorem. |

Appendix G. Missing Proofs from Section 4.1

Lemma 12 Suppose Assumption 1 holds. Fix (4,d’) € (0,1) x [0,7'), and let y € R™ such
that 1_%’7,/7, ¢ K. Let g € R" be the output of the SO of K w.r.t. %,/r, ie., forall x € K,

T
(ﬁ,/r — x) g > 0. Then, it holds that,

Vz € Ksypr: (y—2)'g>d(r—0)|gl.
Before proving the lemma we require an additional observation.

Observation 2 Suppose Assumption 1 holds and fix some (6,9") € [0,1] x [0,7]. Then, for all
VAS K&,é//r = (1 - 6)(1 — (5,/7’)IC, it holds that z + (5(7‘ — (5,)8 - ]C(S’/r'
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Proof [Proof of Lemma 12] Note that s = (1—96)K C K, and Kso jr = (1-¢"/r)(1=86)K C Ks.
Since for all x € K, (y — (1 — &'/r)x)Tg > 0, we have that for all w € Ky /., (y — w) g > 0.
Fix some z € s 5 /,, and note that using Observation 2, it holds that z 4 §(r — ¢')g € Ky .., where

g = ﬁ. Then, we have that,

0<(y—(z+6(r—38)8) g=(y—2)Tg—d0r—3)gl

Rearranging, we obtain the lemma.
|

Proof [Proof of Lemma 13] Denote by k the number of iterations until Algorithm 6 stops. Then, for
every iteration ¢ < k, it holds that ﬁiﬁ ¢ IC, which implies that y; ¢ Ky /. = (1—¢6'/r)K. Thus,
using Lemma 12, we have that for every ¢ < k, it holds for all z € K5/, that (yi — z)T g >
d(r — ¢")||gil|. From these observations and using Lemma 5 with g = g;, C' = ||g;]|, and Q =
d(r — 0")||g:||, we have that for every i < k,

V2 € Ksyyrt Nyier —2l* < llyi —2|® = 8*(r — 8')?, (18)

Specifically for i = k£ — 1, and unrolling the recursion, we obtain that for all z € K5 5 /,., ||y — 2 1?2 <
ly:1 — z||?, and since y; is the projection of yo onto RB and Kss /»  RB, it holds that for
all z € Ks5r lyr — 2z[|* < [[yo — z|?, and we can conclude that indeed for all z € Ky .,
ly — z||* < |lyo — z||%, as needed.

Now, we upper-bound £ — the number of iterations until Algorithm 6 stops. Denote x; =
argminye, ., yi = x||2. Using Eq. (18) for every iteration i < k it holds that,

dist*(yit1, Ks 5 /r) = lyier — xpi I < lyipr — x7|?
<lyi — x{||> = 6*(r — &')% = dist*(yi, Ks 1)) — 67 (r — &)

Unrolling the recursion, and Since y is the projection of y( onto RB and Ks 5/, C RB, we have

diSt2(Y7 ICJ,(S’/T) < diStQ(ylv IC(S,(S’/T) - (k - 1)52(7" - 5,)2
< diStz(yg, K&,é’/r) — (k- 1)(52(7“ — (5/)2.

Thus, after at most

b dist? (yo, IC(;’(;//T) — dist? (y, IC575//T)

62(r — 0")2 +1

iterations Algorithm 6 must stop. |

Appendix H. Proof of Theorem 14

Before proving the theorem we need an additional observation.

Observation 3 Fix § € (0,1). For anyy € K it holds that dist(y, Cs) < RJ.
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Proof [Proof of Theorem 14] First, we note that since for every ¢ € [2, T, ¥, is output of Algorithm
6, using Lemma 13 with ¢’ = 0, it follows that §; € K, and thus, Algorithm 7 indeed plays feasible
points. Now, we prove the upper-bound on the adaptive regret. Fix an interval I = [s,e],1 <
s < e < T, and a feasible minimizer w.r.t. this interval, x} € argmin, x> v_. f¢(x). Define
x; = (1 —9)x} € Ks. Since for every t € [T'], f;(-) is G f—Lipschitz over K, we have that

D fe (1) = fi(x)) th yi) = fi (X1) + fo (X1) = fu(x])
t=s

< GfR5T+th (ye) — fi (x1) -

t=s

Using Lemma 13 with §' = 0 for all ¢ > 1 we have that, y; € K is an infeasible projection of y;
over Cs. Thus, from Lemma 4, we have that

2

e e o G
th(yt)—th(i Hys UZHV 1? < UT.
t=s t=s

Combining the last two equations, we obtain that
G 2R?
th yi) = fi(x]) < | GrRO + —— 2 T‘i'T
The regret bound in the theorem now follows from plugging-in the values of §, 7 listed in the theo-
rem.
We turn to upper-bound the number of calls to the SO. Forevery ¢t > 1, denote X; = argmin, ¢, [|[x—
yi||- Since yi+1 = y¢ — nVy, we have
dist(ye41,Ks) < [1X7 = yeall S 1% = ¥ell + (|36 — yeal| < dist(ye, Ks) + [[nVell.
It follows that, for any iteration ¢ > 1, Algorithm 7 calls Algorithm 6 with y;;; such that
dist® (yer1, Ks) < dist® (3, Ks) + 2dist(y¢, Ks)nGy + n°G5. (19)

Using Lemma 13 with initial point y; 1, feasible set K, radius r, squeeze parameters (9, = 0),
and the returned point y; 1, we have that for every iteration ¢ > 1, Algorithm 6 makes at most

dist® (ye+1,Ks) — dist® (Y411, K5)
§2r2
iterations. Thus, using Eq.(19) and Observation 3, the overall number of calls to the SO of K that
Algorithm 6 makes is

+1

T
1 . - . ~
Neais < g 52,2 (dlstQ(yt, Ks) + 2RonG s + nQG? — dist?(F41, Ks)) +1
t=1

2RG 1y an
< Iy
ST s Taw

where the last inequality is since dist?(§1, Ks) = 0. [ |

I +1T,
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Appendix I. SO-based Algorithm for the Bandit Setting and Proof of Theorem 15

Our SO-based algorithm for the bandit setting is given in Algorithm 10.

Algorithm 10: Bandit online gradient descent via a separation oracle (SO-BGD)

Data: horizon T, feasible set K with parameters r, R, update step 7, squeeze parameters (4, §’).
y1 < 0¢€ ]Cgv(;/
for t=1,....,7 do
Set u; ~ S™, play z; = ¥+ + &'uy, and observe fi(z;).
Set g; = 5 fi(z:)u; and update y¢+1 = yi — 18t-
Set y;41 < output of Algorithm 6 with set K, radius 7, initial vector y;+1, and squeeze
parameters (9, d").
end

Proof [Proof of Theorem 15] First, we establish that Algorithm 10 indeed plays feasible points,
meaning z; € K for all ¢ € [T]. Since for every t > 1, Algorithm 6 returns y; € Ky =
(1 =4¢"/r)K and rB C K, it follows that indeed z; = y; + d'u; € K forevery t € [T].

Now, we turn to prove the upper-bound on the adaptive expected regret. Let us fix some interval
I = Is,e],1 < s < e < T. We start with an upper bound on E [Zf:s fml (¥e) — ﬁ’y (x)]
for every x € K55/, = (1 —0'/r)(1 — 6)K. We will first take a few preliminary steps. For
every t € [T}, denote by 74 = {y1,...,¥t-1,81,--.,8t—1} the history of all predictions and
gradient estimates up to time ¢. Since for all £ > 1, g; is an unbiased estimator of V f; s/ (y1), i.e.,

E[g|F] = Vft,y (¥t), we have that for all £ € [T] and x € K5 5/, it holds that

Elg/ 5:-%)| =E[ElelF] 5t —%] =E|[Vis ) Ge-%]. @0

From Lemma 13 with ¢’ # 0, we have that for every ¢ € [T7, the point y; € K., and is an
infeasible projection of y; over K5 5 /,. Thus, we have that

Vvt € [T)Vx € Ksgyr: 5001 — x| < llyeen — x|
Since y¢ 11 = y¢ — ng, forevery ¢ € [T] and x € K5 5/, we have that
15641 = x|* < 115t — nge — x> = 70 — x| +0* lgell* — 2ng/ (5 — ).

Rearranging, we obtain that for every ¢ € [T] and x € K 5 ,., it holds that

~ 2 ~
) < lye =x[I”  [lye+ —x|?
- 2n 2n

i 7
g/ (y: —x + 5 lleell”

Summing over the interval [s, e] and taking expectation, we have that

e e ~ 2 ~ 2
E T x| <E e —x[I"  [[ye41 — x|
;gt (¥t X)] < [; o

2n

€
n 2
7S E[ }
t3 2 gl
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Since y; € Ky, for every ¢ € [T7, then ||y; — x|| < 2R for every x € K5 5/, and thus,

e R &
E > & —x)] <t E|lel].
t=s t=s

Using Eq. (20), for every x € K 5/, we have that,

EE:E[VE’(;/(%) yt—x] ZE[gt Yt—X}S

t=s

3\:0

ng [leel].

Since for every t € [T], f:(-) is convex in K, using Lemma 16, it holds that ﬁ,y(') is convex in
Ks: - Thus, for every x € K s/, we obtain that,

E|> fro (30) — ﬁ,y(x)] < ]; + 23 E |l @1
t=s t=s

Let us denote by X7 a feasible minimizer w.r.t. to interval I = [s, €], i.e., X} € argmin, i > ;. fe(%),
and define accordingly X7 = (1 —¢'/r)(1 — §)x} € K54/, It holds that,

E Zﬁ(zt)] =3 filxr) =E

S film) = [ 30+ D F 30 — L&D |+ D0 LED =D filxh)

(22)

Since for every t € [T'] f;(-) is G ¢-Lipschitz, we have that

E > fulz) - fi Yt] ZE fe(Fe + ") — fe(3e)] < Gpo'T,
t=s

and

e ) 5y s
>R — filx]) <vat X)) (% <2Gf|| —x7ll SGfR< +5+> T.
t=s

Using Lemma 16 and Eq. (21), we have

E th(f’t ftXI]_
t=s

th i) = fro (30) | +E

S s - ft(fc?)]

t=s

~ B ,\ ~ R n e )
E /—,*<26’GT—7E[ }
- ;fw (¥e) = Jeo <xf>] <20GT+ 5 ; el
Combining the last three equations and Eq. (22), and using the fact that ||g;| < "é\,/[ , we obtain that
J 56’ R n’M? g
S e B
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Plugging-in the values of 7, §, ¢’ listed in the theorem, we obtain the adaptive expected regret bound
in the theorem.

We now move on to upper-bound the overall number of calls to the SO of K. For every ¢ € [T],
let us denote x; = argminxe,ca’y/r |lx — ¥y¢||. Since Algorithm 10 updates y;+1 = y: — ng:, we
have

dist (yer1, Ks o) < N%KE =yl S N%F = 5ell + 115 — yeall = dist (3¢, Ks 5 ) + el

which, by plugging-in the upper-bound on ||g;||, gives

. . ~ e nM nM)?
dlSt2 (yt+17 ,C§,5’/r) < dlSt2 (Yu IC(;’(;//T) + 2dist (yt, K:(g’(g//r) n 5 + ’)’]2 ( 6/2) .

Forany ¢ € [T, using Lemma 13 with initial point y; 1, feasible set /C, radius r, squeeze parameters
(0,9), and the returned point y;1, we have that Algorithm 6 makes at most

(23)

dist® (yi11, Ko, /r) — dist® (Fe11, Ks,5 1)
82 (r — &)’

+1

iterations. Since y; € Ky C K and (1 — 6)Ks /. = K51/, using Observation 3 it holds that

dist (¥¢, Ks,6//r) < R0. Thus, using this observation and Eq.(23), the overall number of calls to the
SO of K that Algorithm 6 makes is

T
1 g2 (S nM 2 (nM)? 2 (S
Neas <T + m ; (dlSt (Yta ’C6,6’/r) + 2R5777 +1n 52 dist (Yt+17}C675’/r)
S8RnM n  4(nM)%* n?
S (1 + 7’2 @ 7’2 525/2 9
where last inequality follows since dist? (571, Ks.s /T) =0,and &' <r/2. |

Appendix J. Proofs of Additional Observations
Proof [Proof of Observation 1] For every ¢ > 1 it holds that,
t+1)t+3)2—(t+2>=t2+3t+1>0.

Since both sides are non-negative, we obtain

1

W=

(t+1)35(E+3)5 > ((t+2)%)3 =t+2.
Rearranging, we have that fort any ¢ > 1,
¢ 11/3t 32/3
(4 D)+ 3P0 o
t+2
Thus, we have that
4 1 2
t+2)s t+2)3(t+3)3 t+3 2
(+2)8 _(@+250+3)5 043 e 2
(t+1)3 (a) (t+1)s (t+1)s (t+1)s

33



GARBER KRETZU

where (a) follows from (24).
Thus, we can write

4
3

4
t+2)3 2 2 t+1 2
U2 v+ PR L
(t+1)s (t+1)s t3 t3
The first item of the observation follows from rearranging the equation.
Now, we prove the second item. It holds for all ¢ > 1 that,
(t+2)3 (422 1 (E+1)2420+D+1 1
t+1)2  (t+1)? (1 42)3 (t+1)? (t+2)3
3
S J—

_<1+ 2 N 1 > 1 _ 3
t+1 0 (t+1)?) (1+2)3 ~ (t+2)5 3

Thus, we indeed obtain

—~
~
[\
~— | ~—
N[ ol

Proof [Proof of Observation 2] First we prove that (r — ¢')B C Ky, = (1 — &' /r)K. Fix some

ue (r—4¢)B,ie., ||ul| <r—4¢". Since rB C K, it holds that uﬁ =u—L5 € rB C K. This
1

in turn implies that u = (1 — (5’/r)um € (1—=0/rK = Ks .

Now, we recall that if a convex set P C R"™ satisfies that pI5 C P, for some p > 0, then for
any v € [0,p] and any z € (1 — v/p)P, it holds that z + yB C P (see for instance the chapter on
bandit algorithms in Hazan (2019). Applying this with P = Ky /., p = (r — ¢'), and v = §(r — '),
we have that for any z € (1 — d(r — &) /(r — ') Ks ) = (1 = 6)Ksi/p = Ks4/r, it holds that
z+6(r —0")B C Ky y, as needed. [

Proof [Proof of Observation 3] Denote x* = argmin ||x — y||? and y; = (1 — §)y. Sincey € K
xes
and y; € K4 it holds that

dist(y, Ks) = |[x" =yl < llys =yl = [Ioy[| < OR.
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