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Abstract

Introduced as a notion of algorithmic fairness, multicalibration has proved to be a powerful and
versatile concept with implications far beyond its original intent. This stringent notion—that pre-
dictions be well-calibrated across a rich class of intersecting subpopulations—provides its strong
guarantees at a cost: the computational and sample complexity of learning multicalibrated pre-
dictors are high, and grow exponentially with the number of class labels. In contrast, the relaxed
notion of multiaccuracy can be achieved more efficiently, yet many of the most desirable properties
of multicalibration cannot be guaranteed assuming multiaccuracy alone. This tension raises a key
question: Can we learn predictors with multicalibration-style guarantees at a cost commensurate
with multiaccuracy?

In this work, we define and initiate the study of Low-Degree Multicalibration. Low-Degree
Multicalibration defines a hierarchy of increasingly-powerful multi-group fairness notions that
spans multiaccuracy and the original formulation of multicalibration at the extremes. Our main
technical contribution demonstrates that key properties of multicalibration, related to fairness and
accuracy, actually manifest as low-degree properties. Importantly, we show that low-degree multi-
calibration can be significantly more efficient than full multicalibration. In the multi-class setting,
the sample complexity to achieve low-degree multicalibration improves exponentially (in the num-
ber of classes) over full multicalibration. Our work presents compelling evidence that low-degree
multicalibration represents a sweet spot, pairing computational and sample efficiency with strong
fairness and accuracy guarantees.

Keywords: Fairness, calibration, agnostic learning.

1. Introduction

Machine learning models are increasingly used to aid decision-making in professional, personal,
medical, and legal spheres. This ubiquity has brought increased concern about whether these mod-
els make fair predictions, especially on underrepresented subpopulations. Typically in supervised
learning, models are trained to minimize the expected loss over the entire population, and can be less
accurate on such subpopulations. A particular fairness concern is that predictive models may com-
mit algorithmic stereotyping, where every member of a subpopulation receives similar predictions,
despite internal diversity within the subpopulation. Such shortcomings of the standard supervised
learning framework have been documented extensively within the research community and in the
popular press. In response, a growing area of research investigates multi-group fairness notions,
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that require predictions to perform well not simply overall, but even when restricting attention to
structured subgroups Hébert-Johnson et al. (2018); Kearns et al. (2018); Kim et al. (2018, 2019);
Shabat et al. (2020); Blum and Lykouris (2020); Dwork et al. (2021); Jung et al. (2021); Rothblum
and Yona (2021); Tosh and Hsu (2021); Gupta et al. (2021); Dwork et al. (2022).

Central within the study of multi-group fairness is the notion of multicalibration. Calibration
is a classic notion from the forecasting literature Dawid (1982) that was introduced to the literature
on fairness in prediction tasks by Kleinberg et al. (2017). For a binary prediction task, calibration
requires that amongst the individuals which receive prediction f(z) = v, the true expectation is v.
Defined by Hébert-Johnson et al. (2018), multicalibration strengthens the classic notion, requiring
a predictor to be calibrated simultaneously across a large, possibly-overlapping collection of sub-
populations. We model the collection by a hypothesis class C C {c: X — {0,1}} and say that a
predictor f is mutlicalibrated over C if, for all predicted values v € [0, 1], and for all ¢ € C

Elc(x)-(y-v) [f(x)=v]~0.

Intuitively, an expressive class C will contain subpopulations that go beyond “protected groups”
(typically defined marginally in terms of a single attribute). In this way, while calibration provides
only marginal guarantees, multicalibration requires predictors to capture the variation within sub-
populations, to give confident (but not overconfident) predictions, thus providing strong protections
against algorithmic stereotyping.

Beyond its origins as a notion of fairness, multicalibration has proved surprisingly versatile
and powerful in diverse contexts. The notion of multicalibration makes no mention of loss min-
imization, yet the work of Gopalan et al. (2022) shows that multicalibrated predictors implicitly
obtain optimal loss, simultaneously for all Lipschitz, convex losses. Specifically, given any (fixed)
C-multicalibrated predictor f, for every such loss Z, the predictor f guarantees loss competitive with
the hypothesis ¢, € C chosen to the minimize the loss over C (in fact, over linear combinations of
hypotheses in C). This property leads to an omniprediction guarantee, where one can learn a single
predictor f, without knowledge of the choice of loss at the time of learning.

In another direction, Dwork et al. (2021) demonstrate that the multicalibration framework is
equivalent to a certain pseudorandomness condition, which they call outcome indistinguishability.
Intuitively, a predictor f is outcome indistinguishable to a family of distinguisher algorithms A if
given a sample (x,y) no distinguisher A € A can tell whether y was sampled from Nature’s true
conditional distribution of y|x, or according to the predicted probability f(x). This indistinguisha-
bility perspective has seen application in characterizing the feasibility of multi-group strengthenings
of agnostic PAC learnability Rothblum and Yona (2021). Multicalibration has also been extended
to diverse settings of uncertainty quantification for real-valued outcomes Jung et al. (2021), impor-
tance weights Gopalan et al. (2021), online prediction Gupta et al. (2021), and adaptation under
covariate shift Kim et al. (2022).

It is perhaps not a surprise that the power of multicalibration comes at a cost—both in terms of
samples and computation. Computationally, Hébert-Johnson et al. (2018) show that a weak agnos-
tic learner for the class C is necessary and sufficient to learn C-multicalibrated predictors. Using
the weak learner, they design a boosting-style algorithm that produces a multicalibrated predictor
by combining hypotheses ¢ € C using nontrivial Boolean logic.! The number of calls to the weak

1. In fact, multicalibration has been shown to be tightly connected to the boosting-by-branching-programs framework
of Mansour and McAllester (2002); Kalai et al. (2008). See Gopalan et al. (2022) for a discussion.
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learner and the sample complexity are governed by an approximation parameter o which quantifies
the deviation from perfect multicalibration. The sample complexity depends inverse polynomially
in the parameter «, with fairly large exponent. This dependence becomes even worse when we
generalize multicalibration to the multi-class setting with [ > 2 class labels, where a single predic-
tion is a vector of probabilities in [ dimensions. Reasoning about expectations conditioned on the
predictions leads to complexity that scales as 1/ a0 exponential in the number of class labels.
Consequently, achieving multicalibration is practically infeasible with more than a few classes.

In the work defining multicalibration, Hébert-Johnson et al. (2018) also introduced a weaker
fairness notion known as multiaccuracy, which only requires that f(x) and y have similar expecta-
tions over subpopulations in C, without conditioning on the predicted values.

Elc(x) - (y-f(x)]=0

The simpler notion of multiaccuracy is comparatively easier to obtain, quantitatively and qualita-
tively. One can view C-multiaccuracy as a first-order optimality condition on A € RI°! for predictors
of the form f(x) = > .- Ac - ¢(x). Thus, while multiaccuracy also requires a weak learning ora-
cle, one can learn a multiaccurate predictor simply by minimizing the squared or logistic loss over
linear combinations of ¢ € C (without specialized boolean logic), using techniques like coordi-
nate ascent or gradient boosting. Further, standard concentration inequalities demonstrate that the
sample complexity to obtain multiaccuracy scales as 2, even as the number of classes  grows.

In exchange for its efficiency, multiaccuracy is known to provide considerably weaker guaran-
tees than multicalibration. Many of the most desirable fairness and accuracy properties that can
be derived from multicalibration cannot be derived from multiaccuracy alone, including its guar-
antees for loss minimization Hébert-Johnson et al. (2018); Rothblum and Yona (2021); Gopalan
et al. (2022), the fairness properties of the ranking induced by predictions Dwork et al. (2019),
and multi-group confidence intervals Jung et al. (2021). This tension—between guarantees and
efficiency—brings us to the motivating question behind our work:

Are there notions that retain important properties of multicalibration,
but are computable much more efficiently (comparable to multiaccuracy)?

2. Overview of Contributions

We introduce a hierarchy of multicalibration notions that enable a tradeoff between the strength
of multi-group guarantees and the complexity required to learn the predictor. At the extremes,
our hierarchy recovers the existing notions of multiaccuracy and multicalibration, but our interest
is in the intermediate notions. We establish guarantees about these notions, and show that many
desirable properties of multicalibration kick in at low levels of the hierarchy. In doing so, we
gain new insights into the power of (full) multicalibration. We complement these with algorithmic
results showing that computing predictors in the low levels of the hierarchy can be significantly
more efficient than the original formulation of multicalibration. Our three main contributions can
be summarized as follows:

(1) Our primary conceptual contribution is the definition of low-degree multicalibration and its as-
sociated hierarchy. For k € N, the kth level of the hierarchy defines a notion of multicalibration
that constrains the first £ moments of the predictor, conditioned on subpopulations in C. The
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lowest level of the hierarchy corresponds to multiaccuracy. As we go higher, the multicali-
bration constraints become more stringent. In the limit, we approach a notion we call smooth
multicalibration; a relaxation of the original formulation of Hébert-Johnson et al. (2018), which
we refer to as full multicalibration.

(2) With the hierarchy in place, we study the fairness and accuracy properties obtainable via low-
degree multicalibration. Our main contribution is to provide a rich toolbox for reasoning about
multicalibrated predictions f(z), by comparing to the moments of the Bayes optimal predic-
tions f*(z) = E[y | x = x ]. Our key technical result establishes novel moment sandwiching
bounds for multicalibrated predictors. For instance, in lieu of & moment matching (which
would give E[f(x)*] ~ E[f*(x)*], but is impossible to achieve for k > 1), we show that
degree-k multicalibration implies that E[f(x)*] < E[f*(x)*], even when conditioned on sub-
populations defined by ¢ € C. Using these tools, we can relate the confusion rates (generalized
false error rates) of any degree-2 multicalibrated f to those of the optimal predictor. Our results
reveal wide gaps even between multiaccuracy and degree-2 multicalibration; predictors satis-
fying the latter cannot exhibit overconfidence over subpopulations in C, unlike multiaccurate
predictors.

(3) Finally, we show that low-degree multicalibration can provide significant savings over full mul-
ticalibration. In particular, we show that for /-class prediction tasks, the sample complexity to
obtain low-degree multicalibration is polynomial in [/, whereas obtaining the same guarantees
using full multicalibration requires sample complexity exponential in /. Even in the case of
binary prediction, low-degree multicalibration obtains improvements over full multicalibration,
by polynomial factors in the approximation parameter 1/c«. These bounds suggest that the
low-degree notions may be practically-realizable, providing strong guarantees in settings where
the existing notions of multicalibration cannot be achieved.

In all, we develop a more refined picture of multiaccuracy, multicalibration, and the guarantees that
lie in between. Our results establish that—in addition to the calibration class C and approximation
parameter a—the degree of multicalibration is a meaningful “knob” that can be tuned to the needs
and constraints of a given setting. Low-degree multicalibration provides a new perspective and set
of techniques that we anticipate will be useful to practitioners and theoreticians alike.

Organization of manuscript. The remainder of the manuscript is structured as follows. We con-
tinue this section with a high-level overview of our contributions, focusing on the binary prediction
setting. In Section 2.1, we begin with an intuitive explanation of how one might discover low-degree
multicalibration. Then, in Section 2.2, we present the definitions of the new variants of multicali-
bration and their relation to one another; in Section 2.3, we present the novel moment sandwiching
bounds for multicalibrated predictors; and in Section 2.4, we present the bounds on the complexity
of achieving each variant of multicalibration. We conclude the overview with Section 2.5, where
we provide further discussion of low-degree multicalibration and how it relates to other works on
multi-group fairness, agnostic learning, and calibration. In Section 3, we give formal definitions of
the notions within the low-degree multicalibration hierarchy, handling the multi-class setting.

The appendix of the manuscript contains much of the technical content, and follows the structure
of the overview. In Appendix A, we establish Proposition 1 and other the relationships and robust-
ness properties of notions in the hierarchy. In Appendix B, we establish our main technical result,
Theorem 2, along with other key fairness properties of low-degree multicalibration. In Appendix C,
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we describe Algorithm 1 and analyze the sample complexity as in Theorem 3. In Appendix D, we
highlight a proof-of-concept experimental evaluation of low-degree multicalibration.

2.1. Towards Multi-Group Moment Matching

In this motivating vignette, we focus on the setting of binary prediction: we are given samples from
a distribution D on X x ), for domain X" and label space )V = {0,1}. Weuse f : X — [0, 1]
to denote our hypothesis, and use f* : X — [0, 1] to denote the Bayes optimal predictior, defined
as f*(x) = E[y|x = ], the true expected outcome over D of y given x = x.2 Ideally, our
learned hypothesis f should be a close approximation to f*. Every variant of multicalibration
is parameterized by a hypothesis class C C {c¢: X — {0,1}}. We think of C as an expressive but
bounded class, where the functions ¢ € C have a simple representation; for instance, we may assume
that the VC-dimension of C is finite.

To begin, we describe the intuition for multiaccuracy and how one might strengthen it, without
appealing to full multicalibration. Towards the goal of approximating f*, multiaccuracy imposes a
first-order condition of matching expectations over ¢ € C.

E[c(x)-(y - f(x)]~0 = E[c¢(x)-f(z) ] = E[c¢(x) - f(x)]

Naturally, the next step might be to try and match second moments, and require that E[c(x) -
f(x)?] ~ E[c(x) - f*(x)?]. This ask, however, is information-theoretically infeasible. In our
setting, we only get to see samples (x,y) ~ D for discrete y ~ Ber(f*(x)) and do not have access
to the values f*(x) themselves. Initially, in such a setting, it seems impossible to say anything
meaningful about higher-order moments of f*(x).

Short of second-moment matching, degree-2 multicalibration imposes the following constraint
forall c € C.

E[c(x) f(x)(y - f(x)]=0 = E[c(x) fx)f(x)]~E[cx) f(x)*]

As a sanity check, observe that this is a valid constraint, since f = f* does satisfy it. As in multiac-
curacy, the condition can be audited using only access to samples (x,y) and the predictions f(x),
without knowledge of f*(x). But what do we gain from adding this constraint? As we will see, this
“degree-2” constraint turns out to be surprisingly powerful. Short of second moment matching, we
prove that the degree-2 condition (approximately) implies the following second moment inequality:

E[cx) f(x)?] <E[c(x) f(x)?]

It is unclear that this inequality by itself can be audited from samples alone, yet it is implied by
the conditions of degree-2 multicalibration, which are indeed auditable. Intuitively, the inequality
says that—unlike multiaccuracy—this degree-2 variant of multicalibration prevents overconfident
predictions conditioned on ¢ € C. It gives us an avenue to reason about f(x) by comparing it to
f*(x), using its first two moments.

Concretely, the set of degree-2 constraints is sufficient to give nontrivial guarantees on the ag-
nostic learning properties of multicalibrated predictors. A simple calculation® shows that if f sat-
isfies degree-2 multicalibration over the class C, then f achieves squared error comparable to the

2. We use boldface for random variables. All expectations are taken over D.
3. Included in Appendix E



GOPALAN KIM SINGHAL ZHAO

minimum over functions ¢ € C.

E[(f(x) - f(x)*] <minE [ (c(x) - (x))"]
This loss minimization guarantee is similar to the “omnipredictor” loss minimization guarantees
from full multicalibration, recently established in Gopalan et al. (2022). In effect, for a more re-
stricted class of convex losses like the squared error, omniprediction is actually a low-degree prop-
erty.

The multicalibration hierarchy arises by lifting this intuition to higher degree polynomials: at
the kth level, we obtain guarantees on the kth moments. Indeed, we show that a number of mean-
ingful guarantees that hold for low-degree multicalibration, but not for multiaccuracy. Our results
are in direct analogy with classic results in pseudorandomness, where k-wise—even pairwise—
independence is known to be surprisingly powerful, in contrast to 1-wise independence Luby and
Wigderson (2006). As with pseudorandomness, we are able to prove new guarantees for multical-
bration in its full generality, by showing that they hold even for low-degree multicalibration.

2.2. A Hierarchy of Multicalibration

With the motivation in place, we are ready to define the multicalibration hierarchy. In this overview,
we present the notions focusing on binary predictors. In Section 3, we extend these definitions
to the multi-class setting where outcomes are categorical random variables with [ > 2 labels. As
with previous notions, our variants of multicalibration are parametrized by a hypothesis class C
and an approximation parameter > 0. A new ingredient of our definitions will be a family
W C {w:][0,1] — [0,1]} of weight functions that we will compose with the predictions of our
model, which gives rise to a generic weighted version of multicalibration.

Definition Given a hypothesis class C and a weight class YV, we say that the predictor f : X —
[0, 1] is (C, W, &)-multicalibrated if for every ¢ € C and w € W it holds that

Elcx) - w(fE)y - f)]| < e (1)

The primary conceptual contribution of this work is to identify choices of weight classes W that
give rise to novel meaningful notions of multicalibration. We consider four notions, which fixing a
hypothesis class C, give increasingly stronger guarantees.

(1) Multiaccuracy. Taking W = {1} to consist of only the constant function w(z) = 1 for all 2,
we recover multiaccuracy.* Let MA («) denote the set of (C, a)-multiaccurate predictors.

(2) Low-degree multicalibration. We define a hierarchy of variants of low-degree multicalibra-
tion, by taking W to be families of low-degree polynomials. Formally, degree-k multicali-
bration uses weight functions defined by sparse degree-(k — 1) polynomials. We adopt this
convention because using degree-(k — 1) polynomials as weight functions allow us to reason
about the kth moments of our predictions. In the case of binary prediction, it suffices to take
Wy = {t/ }?;5 to be the monomial basis. Let MCy(«) denote the set of (C, «)-degree-k multi-
calibrated predictors.

4. We adopt the formulation of multiaccuracy initially defined in Kim et al. (2019).
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(3) Smooth multicalibration. Beyond the hierarchy, we consider multicalibration using the family
all 1-Lipshcitz functions as our weight class. We refer to the resulting notion as (C, «)-smooth
multicalibration. Smooth multicalibration directly extends the notion of smooth calibration
Kakade and Foster (2008); Foster and Hart (2018), introduced to address issues of robustness
in defining calibration. Let MC®(«) denote the set of a-smooth multicalibrated predictors.

(4) Full multicalibration. Instead of explicitly conditioning on the predicted values, we define
full multicalibration using indicator functions on the prediction intervals as our weight class. In
binary prediction,” we define the d-interval basis to be Zs = {1=1)s,46) : J € [1/0]} where
1{4) indicates membership in the interval [a,b). We refer to (C,Zs, o)-multicalibration as
(C, v, §)-full multicalibration to distinguish it from smooth multicalibration, and use MC()
to denote the set of predictors satisfying it.

With the variants in place, our first results establish the relationship between the multicalibration
notions for a fixed class C.

Proposition 1 Fix a hypothesis class C and o > 0. By construction, multiaccuracy and degree-1
multicalibration are equivalent. For every k > 1, increasing the degree leads to a more restrictive
notion. In other words, the hierarchy satisfies the following inclusions.

MA (a) = MCq(a) 2 MCa(a) - -- D MCg(a)

Further, low-degree multicalibration is a relaxation of smooth multicalibration, which is a relax-
ation of full multicalibration. That is, for any k > 1 and o > § > 0,

MCy(ka) D MC3(a) 2 MCL(ad — §2)

Kakade and Foster (2008); Foster and Hart (2018) were motivated to introduce smooth calibra-
tion in order to address the lack of robustness in the classical notion of calibration. We show that
smooth multicalibration has similar robustness guarantees; for instance, predictors that are close
to smoothly multicalibrated functions are also smoothly multicalibrated (with modest degradation
in the approximation parameter). We also show robustness to small (in ¢,) perturbations to the
weight function. This property is important algorithmically, since it allows us to infer smooth mul-
ticalibration (defined over all 1-Lipshcitz weight functions) from a small basis of functions that can
uniformly approximate every 1-Lipschitz function in /.

2.3. Fairness from Low-Degree Multicalibration

We now return to our motivating question and ask: does the hierarchy give strong fairness guar-
antees at low levels? Our main technical contribution is a toolbox for reasoning about properties
of predictors at low levels of the hierarchy, using their first few moments. Using this, we establish
that the gurarantees of multicalibration for important measures of fairness, like the false error rates
indeed manifest at low levels of the hierarchy. The hammer in this toolbox is the following moment
sandwiching bound stated below for binary predictors with o = 0.

5. For multi-class prediction, we use an [-dimensional analog of the interval basis.
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Theorem 2 (Informal) Suppose that f : X — [0, 1] is a (C, 0)-degree-k multicalibrated predictor.
Then, for every degree d < k and every c € C,
E[e(x)f*(x)] (2) E[c(x) f (x)] o Elc(x) f(x)*71f*(x)] (Z) E[e(x) f(x)"] - Ele(x) f*(x)]
a C

Our bounds are inspired by the sandwiching bounds for importance weights from multicalibrated
partitions proved in Gopalan et al. (2021). While we prove these bounds assuming only degree-
k multicalibration, no analogous statements were known to hold, even for the original (stronger)
notion of multicalibration.

The utility of this sandwiching bound can be seen by thinking about each inequality separately.
First, note that (b) follows immediately by the definition of degree-k multicalibration. We dig into
(a) and (c) separately. The upper bound in (a) says that first & moments of the multicalibrated
predictor f are dominated by those of the ground truth predictor f*, conditioned on any ¢ € C.
Given that the exact kth moment of f* is inaccessible through samples, this inequality is useful in
lieu of exact moment matching.

Specifically, while we can’t perfectly match moments for d > 2, this inequality implies that
the predictions of f cannot be overconfident. For example, for a degree-2 multicalibrated f, the
inequality implies that conditioned on any ¢ € C, the variance of f is no more than the variance
of f*, and their expectations match. In other words, any variation in the predictions of f over
¢ € C can be attributed to true variation in the distribution of f*(x)|c(x) = 1. Concretely, if all
points with ¢(x) = 1 were identical under f*, then f cannot treat them differently! This stands in
stark constrast with multiaccuracy, where many of the “failure modes” of multiaccuracy exploit this
weakness Dwork et al. (2019, 2021).

The lower bound in (c) can be interpreted as saying that f*~!(x) is positively correlated with
the label y, by expressing the difference in expectations as the covariance between f*~1(x) and y.

Cov[f(x)* !, y] = E[f ()" f*(x)] - E[f(x)* ] E[f*(x)] 2 0

In this light, the bounds from degree-2 multicalibration can be summarized succinctly: the covari-
ance between f(x) and the ground truth labels y within any ¢ € C is always positive, but never
more than the covariance between the optimal f*(x) and y in ¢. Again, neither claim necessarily
holds under multiaccuracy.

As a concrete application, we show how sandwiching bounds allow us to reason about the true
and false error rates of f, which have been intensively studied in algorithmic fairness Hardt et al.
(2016); Kleinberg et al. (2017). In particular, the bounds extend even when we condition on the
value of the true label. For instance, conditioning on y = 1, we can bound the generalized true
positive rate of f compared to that of f*, even conditioned on subpopulations.®

E[cx)fx) ] <E[c(x)f(x) [y =1] <E[c(x)f"(x) |y =1]

This bound crystallizes the inutition that multicalibrated predictors prevent overconfidence. Even
though f has positive correlation with y over ¢, the predictions don’t assign excessively high prob-
abilities to points which are more likely to be 1. Such overconfidence is a well-known issue in
large neural networks Guo et al. (2017). Whereas full multicalibration addresses overconfidence at
a fine-grained level, conditioning on every value of the prediction, even degree-2 multicalibration
gives a qualitatively similar guarantee.

6. An analogous statement can be made about the true negative rates.
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2.4. The Pragmatic Appeal of Low-Degree Multicalibration

We establish the feasibility of low-degree and smooth multicalibration by giving an efficient learning
algorithm. More generally, following the boosting-style approach of Hébert-Johnson et al. (2018),
we show that a weak agnostic learner for C Ben-David et al. (2001); Kalai and Kanade (2009) suf-
fices to obtain (C, W, ov)-multicalibration for any finite weight class YW. This procedure, described
as Algorithm 1, makes a number of calls to the weak learner bounded polynomially in [W| and
1/a. The algorithm immediately demonstrates the feasibility of degree-k multicalibration for any
fixed k € N. For smooth multicalibration, where the definition involves an infinite family W, our
algorithm uses constructions of finite bases that uniformly approximate the family of 1-Lipschitz
functions.

We now delve further into the sample efficiency of each notion. In principle, the relaxed no-
tion of low-degree multicalibration is implied by smooth or full multicalibration. However, there
is a significant degradation in the accuracy parameter o, which translates to a blowup in computa-
tional and sample complexity. Concretely, suppose we train a predictor f to satisfy (C, ag, d)-full
multicalibration; in order to guarantee that f satisfies (C, ov)-degree-k multicalibration, we need to
take a9 < o much smaller than if we train for degree-k multicalibration directly. For a fair com-
parison, we compare the sample complexity needed by each variant to obtain the same guarantee:
(C, @) degree-k multicalibration. We make the assumption that C has a sample-optimal weak ag-
nostic learner in terms of the dependence on o.” We state the theorem informally, using shorthand
m ~ B to denote m < O (B) (see Section C, Theorem 35 for a formal statement).

Theorem 3 (Informal) For a C be a hypothesis class, let VC(C) denote its VC-dimension. For any
a > 0and k € N, the sample complexity to obtain a predictor f € MCy(«) (with constant failure
probability) is bounded as my, using degree-k multicalibration, mg using smooth multicalibration,
and m; using full multicalibration, for my, mg, m; bounded as follows.

- (VC(C) + k) k4 -ve(e) kI (2k1)2 D . vC(0)

m mg ~
s ol al+3 g aA(+1)

my, ~ o
Note the dependence is poly(l, 1/a) for low-degree multicalibration, but Q(1/a)" for smooth and
full multicalibration, with a factor 4 difference in the constant b between them. This suggests that in
the multi-class setting, low-degree multicalibration can lead to exponential savings, as compared to
the stronger notions. Even under tighter analyses tailored to the binary prediction setting, we obtain
polynomial savings in 1/« from low-degree multicalibration.

Given that many desirable properties of multicalibration start to take effect at small degrees
(even degree-2), these results suggest a pragmatic win for low-degree multicalibration. In the re-
alistic setting where a learner is given a fixed data set of sample, the learner may achieve stronger
fairness and accuracy properties by training for low-degree multicalibration directly, as compared
to either multiaccuracy or full multicalibration.

While these sample complexities give asymptotic upper bounds, in Section D, we report on a
proof-of-concept experiment that explore the findings in a semi-synthetic setup. By using a semi-
synthetic setup, we can access the ground-truth f* values, thereby evaluating quantities like the
gap in moments between f* and the learned predictors. We show that, even in a standard binary

7. Suboptimal dependence of the learner on g will increase the gaps in sample complexity between low-degree and
the stronger variants of multicalibration.
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prediction setting, the sample efficiency gap is not a merely asymptotic phenomenon, but is realized
in a setting with a few thousand samples from the data distribution.

2.5. Discussion and Related Works

Low-degree multicalibration adds to a growing list of works that study multicalibration and related
notions. On a conceptual level, our work is closely related to the idea of outcome indistinguishabil-
ity (OD), introduced by Dwork et al. (2021, 2022). Ol is not a single notion, but rather an extensible
framework for reasoning about the guarantees of predictions in the language of computational in-
distinguishability. In particular, Dwork et al. (2021) also define a hierarchy of notions, based on the
way distinguisher algorithms may access the predictions f(x). The first two levels of their hierarchy
correspond tightly to multiaccuracy and multicalibration; intuitively, multiaccuracy distinguishers
do not get to observe f(x), where as multicalibration distinguishers may depend on f(x) arbi-
trarily. Low-degree multicalibration refines the idea of access to f(x), where the corresponding
distinguishers can functionally depend on f(x) in restricted ways.

On a technical level, our sandwiching bounds, which shed light on how multicalibrated pre-
dictors control for uncertainty relative to the uncertainty of the optimal predictions, are actually
inspired by work on unsupervised distribution learning of Gopalan et al. (2021). Their work estab-
lishes analogous moment sandwiching bounds for density estimates given by so-called multicali-
brated partitions. Closely related—but not to be confused with low-degree multicalibration—is the
idea of moment multicalibration due to Jung et al. (2021). Moment multicalibration obtains guaran-
tees of uncertainty quantification in the setting of real-valued outcomes, by (full) multicalibrating
on higher moments of the outcomes. Importantly, in contrast to our setting, the relevant moments
of real-valued outcomes can be estimated to arbitrary precision with enough samples. Using these
estimates, Jung et al. (2021) derive Chebyshev-style confidence intervals across subpopulations for
their multicalibrated predictions.

Very recently, multicalibration and OI have played a key technical role in obtaining strong guar-
antees for omniprediction Gopalan et al. (2022) and multi-group agnostic learning Rothblum and
Yona (2021). Both results are known to follow from multicalibration, but not from multiaccuracy.
In light of our work, it would be interesting to revisit these results to see whether the proofs use
the full power of full multicalibration or whether we can recover the guarantees using low-degree
techniques. More broadly, we speculate that the low-degree multicalibration hierarchy suggests a
certain proof system—akin to the convex programming sum-of-squares hierarchy Barak and Steurer
(2014)—in which properties derived from low-degree moments of f* could be derived for low-
degree multicalibrated predictors for free. Exploring this intuition further and how it may connect
with Ol is a fascinating direction for future research.

Multicalibration was initially developed as a strengthening of calibration to provide meaningful
fairness guarantees, not just on the basis of marginally-defined groups, but intersectionally Hébert-
Johnson et al. (2018); Kim et al. (2019). The risk of inequity due to miscalibrated predictions has
been well-documented Kleinberg et al. (2016); Pleiss et al. (2017); Garg et al. (2019), especially in
the setting of medical risk prediction Obermeyer et al. (2019); Barda et al. (2021). Despite its origins
as a complexity-theoretic fairness notion, mutlicalibration has already seen clinical application to
address such equity issues Barda et al. (2021) and to develop a COVID-19 risk predictor in the early
days of the pandemic Barda et al. (2020). While individual-level calibration is generally impossible
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Barber et al. (2019), recent works have investigated settings where guarantees at an individual-level
are possible, through hedging Zhao and Ermon (2021) and randomization Zhao et al. (2020).

Calibration has a rich history in the forecasting literature, as a criterion for uncertainty quan-
tification Brier (1950); Dawid (1984); Foster and Vohra (1998); Kakade and Foster (2008); Foster
and Hart (2018). For multi-class prediction tasks, the strongest definition is known as distribu-
tion calibration Kull and Flach (2015); Song et al. (2019), and is known to require exponentially
many samples in the number of labels. Consequently, practitioners commonly use very weak no-
tions such as confidence calibration Platt et al. (1999); Guo et al. (2017), class-wise calibration Kull
et al. (2019). To address this tension, Zhao et al. (2021) recently proposed a notion of decision
calibration, which ensures that the predictions are calibrated with respect to downstream decisions,
avoiding the infeasibility of calibrating to the predictions, but strengthening the marginal guaran-
tees of confidence and class-wise calibration. Naturally, one could extend the definition of decision
calibration to decision multicalibration, with similar motivations to low-degree multicalibration but
incomparable guarantees.

3. Defining the Multicalibration Hierarchy

Notation. In a generic supervised learning problem, we are given a distribution D on X x ),
where X is the domain and ) is the set of labels. We consider the multi-class setting where ) = [I]
for [ > 2. We represent each outcome i € [I] by the “one-hot” encoding e¢; € R!. We denote
sampling from D by (x,y) ~ D where x € X and y € R, so that y is the indicator for label
equalling ¢ € [I]. Let A; denote the space of probability distributions over [I]. We associate every
distribution p € A; with a vector in p € R! where p;, = Pryply = e¢]. An [-class predictor is
a function f : X — A; which maps each point to a distribution over labels. Throughout, we use
f* X — A to denote the Bayes optimal predictor, defined as

ffe)=Ely[x==z]

where for each ¢ € [l], f/(z) = Pr[y,=1|x=x]. In other words, f*(x) governs the true
distribution over classes for a given individual x € X. Some of our results will be stated for the
special case of binary prediction (I = 2), in which case, we let f : X — [0, 1], where f(x) estimates
of Priy=1|x].

3.1. Multicalibration with Weight Classes

We present a unified framework for defining variants of multicalibration that captures the original
notions, as defined by Hébert-Johnson et al. (2018), but also naturally captures the novel notions
of low-degree and smooth multicalibration. We present all of the definitions in terms of [-class
predictors, which generalizes their original definitions for binary predictors.

Multicalibration is parameterized by a hypothesis class of functions C C {c¢ : X — [0, 1]}. The
class C may be finite or infinite, but importantly, we think of C as having a simple representation.
Natural choice of C include linear/logistic hypotheses, decision forests of a fixed depth, or neural
networks of a fixed size and architecture. Departing from prior works, we additionally parameterize
multicalibration by a weight class W C {w : A; — [0,1]'}. The weight functions will be applied
on the predictions from f.

The classic calibration constraint requires that predictions be accurate in expectation, even after
conditioning on the predicted value. Intuitively, the class of weight functions serves as an analog
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of “conditioning” on a prediction. Taking different choices of WV will realize the original and novel
variants of multicalibration. Generically, we define multicalibration in terms of the calibration class
C, the weight class W, and an approximation parameter o« > 0.

Definition 1 Given a hypothesis class C C {X — [0, 1]} a weight class W C {A; — [0,1]'} and
a >0, apredictor f : X — Ay is (C, W, «)-multicalibrated if for every ¢ € C and w € W

B[ e(x) (w(f(0),y — /)] < a. @

With this general framework in place, we instantiate it with various choices of weight functions to
derive four notions of increasing strength.

Multiaccuracy. Hébert-Johnson et al. (2018); Kim et al. (2019) The weakest notion, multiaccu-
racy, requires that predictions be accurate in expectation on each ¢ € C. Specifically, an [-class
predictor f : X — A;is (C, «)-multiaccurate if for each ¢ € [[],

Efc(x)-(ye = f(2)o) ]| < e 3)

To instantiate (C, ov)-multiaccuracy from (C, W, a)-multicalibration, we can take W = {wy} o
where wy(p) = ey for all p € A;. In words, wy is constantly the ¢th standard basis vector. In the
case where f : X — [0, 1] is a binary predictor, we can simply take W = {wg} to contain the
constant function wy(p) = 1 for all p € [0, 1]. We use MA(«) to denote the set of all predictors
that satisfy Equation (3).

MA(a) ={f: X — Ay satisfying (3)}

Low-degree multicalibration. Intuitively, multiaccuracy enforces a collection of linear (in f(x))
constraints based on C. In low-degree multicalibration, we strengthen these constraints by taking
the class of weight functions to be the family of low-degree polynomials. For instance, in the binary
prediction setting, degree-2 multicalibration enforces the following nonlinear constraint.

Bletx) S (v - f6x) ]| <
A degree-k polynomial is a function

az)= D as-]]=

Sell): j<k €S

where S goes over all multisets of elements from [l], of size at most k. Py is the family of all
degree-k polynomials that satisfy the following two conditions

q(z) € 10,1] Vz € Ay, 4)
> lasl<1 (5)
Sell)i: i<k
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We refer to (4) as boundedness and (5) as sparsity. For k£ > 1, we define the weight class W as all
functions where each coordinate belongs to Pr_1.

Wy = {w . Ay — [0, 1]! such that w; € Py_y Vi € [l]}

Note that we define the degree-k weight class in terms of degree-(k — 1) polynomials. We adopt
this convention because, as we will see, using degree-(k — 1) polynomials allows us to reason about
the kth moments of the predictor. With this class in place, we can define degree-k multicalibration.

Definition 2 For k > 1, a predictor f : X — Ay is (C,«)-degree-k multicalibrated if it is
(C, W, ov)-multicalibrated.

Let MCy () be the set of degree-k-multicalibrated predictors with approximation parameter .

Proposition 3 For any calibration class C and approximation parameter o, multiaccuracy and
degree-1-multicalibration are identical, hence

MA = MCl(a),
and for every k > 2, degree-k-multicalibration implies degree-(k — 1)-multicalibration, hence
MCp—1(a) 2 MCy(a).

In other words, low-degree multicalibration is a strengthening of multiaccuacy, and becomes a more
restrictive notion as we increase the degree k. The proposition follows immediately by the construc-
tion of P, and the fact that Pr_; C P.

Smooth multicalibration. As we increase k, intuitively, low-degree multicalibration will begin to
approximate multicalibration with arbitrary, smooth weight functions. This motivates our definition
of smooth multicalibration using Lipschitz functions. We consider weight functions w : A; —
[0, 1]" that are £; — £, Lipschitz; that is, for all z, 2’ € A,

l(@) = wZ)l <[]z =l - ©)

We consider the class £, of all such Lipschitz functions.

Ly oo = {w A} — [0, 1] satisfying (6)}

Definition 4 A predictor f : X — Ay is (C, «)-smoothly multicalibrated if it is (C, L1 00, @)-
multicalibrated.

While we define smooth multicalibration in terms of 1-Lipschitz weight functions, the property
naturally extends to any weight function with bounded Lipschitz constant. Denote L1, as the
set of weight functions w : A; — [0, 1%, where forall z, 2’ € A, [|w(2) — w(2')||, < ||z — /||

Proposition 5 For any calibration class C, approximation parameter o, and constant v > 1, if
f X = Ayis (C, «)-smoothly multicalibrated, then for any w € L1,

E[c(x) - w(f(x) - (y - f(x))]| < 7-a.

D

This proposition is an immediate consequence of the smooth multicalibration guarantee and linear-
ity of expectation.
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Full Multicalibration. Hébert-Johnson et al. (2018) The strongest variant of multicalibration cor-
responds to the classic notion of calibration, where the expectation is taken conditional on the pre-
dicted value. We present our generalization to the multi-class setting.

For a measurable set S C Ay, let 1g be the indicator function of the set; that is, for any z € A,

W=y, Lad

Let IT be a partition of A; and denote by Zy; = {1p : P € II}. For binary predictors, we focus on
the interval basis. For § > 0, we define a partition ITs of the interval [0, 1] to be

s = { [(j — 1)5,76) forj € {1,...,[1/6]} }.

We use Z5 = Iy, to denote the basis of indicator functions on each d-interval. Taking Z;s as our
weight class in the binary setting, (C, Zs, «)-multicalibration gives us the notion we call (C, «, §)-
full multicalibration, which recovers the original notion of multicalibration, as defined by Hébert-
Johnson et al. (2018).% For | > 2, we define the partition Hf; of the interval [0, 1]’ to be the I-wise
Cartesian product of IT5, whose elements are products of §-width intervals in each dimension. We
set If; = Ing and use these as weight functions in full multicalibration. We will use the easy bound

12| < [1/4]", it also holds that |TT)| < 7[1/8]""".

Definition 6 A predictor f : X — Ayis (C, «, 0)-full multicalibrated if it is (C,If;, a)-multicalibrated.
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Appendix A. Understanding the Hierarchy
A.1. The Hierachy of Fairness notions

Proposition 3 demonstrates that there is a hierarchy of notions of low-degree multicalibration. Next,
we show how low-degree multicalibration compares to smooth and full multicalibration. We show
how for any k& € N, for appropriately chosen approximation parameters, smooth multicalibration
can implement degree-k multicalibration. Then, we show how full multicalibration can implement
smooth multicalibration.

Theorem 7 Fix a calibration class C and an approximation parameter o > 0. For any k > 2,
every (C, a)-smoothly multicalibrated predictor is (C, (k — 1)«)-degree-k multicalibrated.

MCS () € MCy((k — 1)a).

The theorem follows by bounding the ¢; — ¢, Lipschitz constant of weight functions w € Wy
by (k — 1) and then appealing to Proposition 5.

Lemma 8 For k > 2, the degree-k weight functions are (k — 1)-Lipschitz; that is,
Wi C (k—1)L1 o0
Proof To prove the claim, we need to show for any 2, 2’ € A,
Hw(z) — w(z’)Hoo <(k—-1)- Hz — z’Hl .

Recall that each coordinate of w : A; — [0, 1]’ can be expressed as an sparse degree-(k — 1)
polynomial w; € Py_1. To obtain this ;1 — ¢, bound, we start with the max over class predictions
i € [l], and bound this quantity in terms of the gradient of w; € Pjy_1.

Hw(z) — w(z')H < max |w(z)Z — w(z/)i|

T el
< v i *’ R 7
_Igé%}]{zglgi{l< wi(z"),z — 2') @)

< max max ||Vw;(z")||

. _ /
’L’G[l] Z*EN, HZ z Hl

[e.o]

where (7) follows by the smoothness of w; and the mean value theorem, establishing that for some
ze Ay, |w(z); —w(2)i| = (Vwi(2), z — 2’). Thus, to bound || Vw;(2*)]|, it suffices to bound the
gradient over any ¢ € Pj,_1 on z* € A;. Using the degree and sparsity bounds, a simple convexity
argument demonstrates that for any polynomial ¢ € Py_1 and i € [[],

Jq
1 <k-—1.
géi}j 8Zi (Z) k-1

In all, we derive the bound

|w(z) —w(z)||, < Joax max IVg(z )Mo - ||z = 2|, < (k—=1) - ||z = 2|,

Next we show that full multicalibration with a sufficiently small error parameter leads to smooth
multicalibration.
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Theorem 9 Fix a calibration class C and an approximation parameter o > 0. Every (C, 3, 9)-full
multicalibrated predictor is (C, o)-smooth multicalibrated for

a=p8-1/81"+1s.
Hence for § < a/l and 1/6 € N, we have MCE(ad! — 16'1) € MC3(a).

To prove Theorem 9, we first establish a few key properties of calibration defined by weight
functions that will be useful throughout our discussion. We start by showing that (C, W, «)-
multicalibration is robust to small perturbations of the weight functions in W.

Lemma 10 Let v, w : Al — [0, 1]' be weight functions such that

max [[v(p) — w(p)ll, < 7-
pEAL
Then for any l-class predictor f : X — Al and any ¢ : X — [0, 1],

Elcx)(v(fx)),y = fx))] - Elc(x){w(f(x)),y - f(x)) ]| < 2n.

D
Proof Observe that forany z € X and y € ),
le(@) - ((v(f(2)) = w(f(2),y = f@)] < |e(@)] - [lo(f (@) = w(f (@)l - v = F(@)]l,
<2n
since |c(x)| < 1and ||y — f(x)||; < 2. The claim follows by averaging over (x,y) ~ D . [

A key application of the robustness to weight functions is that one can infer smooth multicalibration—
a condition defined in terms of an infinite weight class—from multicalibration for a finite basis of
functions that uniformly approximates every function in £1_, .

Definition 11 A collection of weight functions W = {w;}¥_, is a (n, L) basis for L1 if for
every u € L1 00, there exists v : A; — [0, 1] such that ||[u — v||s < 1 where

k k
i=1 i=1
Typically, both k£ and L will be functions of 7. Our interest in £, approximations is motivated by

the following lemma.

Lemma 12 IfW is (n, L) basis for L1, and the predictor f is (C, W, 3)-multicalibrated on C,
then f is (C, a)-smoothly multicalibrated where o = BL + 2.

Proof For a weight function v € Ly, let v = ), A\;w; be the /., approximation guaranteed from
the definition of VV. Then by linearity of expectation

Ele(x)(v(f(x), (v = fEON] = B |e(x) Y Aidwi( f(x)).y — f(x))
=1
= S A Ble( i),y — £(x)]
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Taking absolute values and using the assumption that f is (8, W)-multicalibrated on C gives

Do NB

=1

Ble(x)o(/ )y ~ S]] < < L

To complete the proof, we now use Lemma 10 to conclude that f is « = SL + 2n-smoothly
multicalibrated on C. |

Proposition 13 For any | > 2, the set I} is a (15/2, [1/61%) basis for £1_ec.

Proof Recall that IT§ partitions [0, 1] in a set of cubes (products of intervals). For each cube
7 € II5, we pick the center point 2, € T, note that it satisfies ||z — z||; < 6/2 for every = € .
Given a weight function v € £, we approximate it by the function v where

v(z) = Z w(zg)1r(x)

71'61'[5s
which assigns the value u(z) to every point z € . Since u € L1, forz € 7

[o(z) = u(@)o = lu(z) = u(zx)llo < Iz = 2ll; <16/2,

> lulz)| < |G| < [1/6]'

l
melly

hence the claim follows. [ |

Combining Proposition 13 with Lemma 12 completes the proof of Theorem 9. In the setting
of binary labels, one gets the following strengthening, which improves the dependence on &, by
observing that |[II5| < [1/§].

Proposition 14  For binary classification, let 6 < « and 1/5 € N. If f is (C,ad — §2,68)-full
multicalibrated then it is (C, a)-smoothly multicalibrated, hence MCk(ad — 6%) € MC().

A.2. Robustness of Low-Degree and Smooth Multicalibration

While calibration is an intuitively desirable property of predictors, one frustration in reasoning
about calibrated and multicalibrated predictors is that full (multi)calibration is not robust to small
perturbations in predictions. For instance, consider a binary prediction setting where X = Xy U &)
is equally partitioned such that in one half all X have associated label y = 0, and in the other half
X all have y = 1. Then, the constant predictor f(x) = 1/2 is perfectly calibrated, but the e-close
predictor f(x) =1/2 —eforxz € Xp and f(x) = 1/2 + € for z € A, is far from calibrated.

In this section, we show that—in stark contrast to full multicalibration—low-degree and smooth
multicalibration are both robust to small perturbations of the predictor.

Theorem 15 Let f,g: X — Al be l-class predictors such that for § > 0,
E[[f(x)—gx)l, | <4
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» If f is (C, «)-degree-k-multicalibrated, then g is (C, a+ (2k — 1)0)-degree-k multicalibrated.
o If f is (C, a)-smoothly multicalibrated, then g is (C, o + 36)-smoothly multicalibrated.

This theorem is a consequence of the following more general lemma which applies to any weight
family W with bounded ¢; — ¢, Lipschitz constant.

Lemma 16 Let f, g : X — Al be I-class predictors such that for § > 0,

E[[[f(x) =g, ]<é.
LetW C rLy 00 If f is (C, W, a)-multicalibrated, then g is (C, W, a+(2r+1)d)-multicalibrated.
Proof Fix any w € rLq_,o. By the Lipschitz property, we derive the following inequalities:

[(w(f(2)) —wlg(@)),y)] < lw(f(z)) —wlg@)le < rlf(z) = g@),

and

w(f (@), f(z)) = (w(g(x)), 9(x))]

[(w(f (@), f(z) — 9(x)) + (w(f(2)) —w(g(x)), g(x))]

lw(f (@)l - 1 (2) = g(@)[; + [[w(f(2)) = w(g(x))ll - [l9(2)l,
(r+ D) 1f (@) = g(@)ll; -

Thus, for every = € X, by the triangle inequality, we bound the difference of the expressions by

(w(f(2)),y — f(@)) = (w(g(x),y — g(x))| < 2r + 1) [|f(z) — g(2)]l,

Fix ¢ € C and consider the difference for f and g in the smooth multicalibration constraint for c.

<
<

B [t ()5 ~ 60} = BLeb (o). - 960 ]

= [Efe(x) ((w(f(x)),y = f(x)) — (wl9(x)),y = 9(x))) ]‘

< max |¢(z)] -

E[(w(f(x)),y = f(x)) = (w(g(x)),y = 9(x)) ]‘

zeX D
<@ +DE[f(x) -9, ]
= (2r + 1)5

where we use the fact that |c(x)| < 1 for all ¢ € C. Since by assumption f is (C, W, a) multicali-
brated, we get

B[ c(x)(w(g(x),y — 9(x) ]] < [B[ct)(w(f(0),y ~ F)) ]| + (2r + 1)5

<a+ (2r+1)o.

This holds for all ¢ € C,w € W, hence g is (C, W, a + (2r + 1)¢)-multicalibrated. [ |
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Appendix B. Moment Sandwiching from Low-Degree Multicalibration

In this section, we prove the key technical results, establishing moment sandwiching bounds for low-
degree multicalibrated predictors. We begin by establishing the general theorem, then show various
corollaries, for bounds on the confusion probabilities in multi-class prediction, and the correlation
between the predicted values and the true outcomes.

We begin with some useful notational shorthand. Recall that C = {c¢ : X — [0, 1]}. We denote
the measure of ¢ under D by u. = Ep[c(x)]. Define the distribution D, over X x {0, 1} obtained
by conditioning on ¢ by

c(z)D(x,y)
e

For ease of notation, we will sometimes use o, = a/ pic.

De(z,y) =

Lemma 17 Let k > 2 and f € MCy(«). For every degree d € [k], label £ € [l] and ¢ € C,

<2 - )

C

gm@wwﬂw—gm@m

Proof We consider the function w : Al — [0,1]" where w,(f) = f¢~' and w;(f) = 0 for j # £.
It is easy to see that w € Py_1. For this choice of w, degree k& multicalibration implies

Bietx) )" (ve — i) < o

Switching to the conditional distribution D,, we can rewrite this as

He

B (700 - )] <
since E[y/|z] = f*(x). Dividing both sides by y. and rearranging gives the desired bound. [ |

Note that this guarantee is meaningful only if u. is larger than «. This is to be expected, since
we cannot hope to get strong conditional guarantees for sets that are very small.

Our goal is to show the following sandwiching bound which we state for the setting o = 0 for
clarity. For all d € [k],¢ € [l],c € C,:

EW@WZEW@WZEW@WHﬂﬂZEW@VWEW&H

The middle equality is by Lemma 17, which is immediate from the definition of degree-k multi-
calibration. The key ingredients are the outer inequalities. The lower bound can be interpreted as
saying that fg_l is positively correlated with the label being ¢, since

Covli(x)* yil = ELfix)" ()] = Bl BLf; (x)] = 0.

The upper bound can be seen as an upper bound in lieu of exact moment matching, it says that the
first £ moments of f, are dominated by those of the ground truth f; for every £ € [I].

When o > 0, the overall form of the inequalities stays the same, with some slack depending on
a.. But the two terms in the middle are only approximately equal. This makes it easier to state the
bounds separately, which we do in Theorem 18 and Corollary 19.
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Theorem 18 (Formal restatement of Theorem 2) Fix k > 2 and a predictor f : X — A; where
f € MCy(«). For every degree d € k], label ¢ € [l] and c € C, the following sandwiching bound
holds:

d% + gc[ff(X)d] > E[fg(x)d] > g:[f;(x)] g:[fg(x)dﬂ] _ %_ ©)

Proof We first prove Equation (9), starting from the upper bound on E[f,(x)?%]. We claim that
d—1 * 1 —1 px
Bl Bl (07 > BUAG0™ £ (] > Bl - a

The the upper bound is by Holder’s inequality whereas the lower bound is by Equation (8). Dropping
the term in the middle,

=

BUT B (0% 2 Bl - o

We may assume f is not identically 0, since otherwise the upper bound is trivial, and hence that its
moments are positive. Divide both sides by Ep_[f(x)?] to get

1
(EDC[fE(X)d]> ‘o <1 e )
Ep [fe(x)1] ) ~ Ep, [fe(x)9]
Raising both sides to the power d, and using (1 — ) > 1 —dnfork € Z* andn > 0

Eplfi)% _ (,_  ac N f,_ . a
B, [fo(x)1] ~ <1 EDc[fe(X)d]> = <1 dEDC[fz(xm)

Multiplying throughout by Ep_[f,(x)%]
E[f; ()] 2 E[fo(x)"] - dac (10)

which gives the desired upper bound ford € {1,...,k}.
We now prove the lower bound on E[f?] in Equation (9). By multiaccuracy and convexity,

Bfi ()] < BU)] + e < E[f(x)4 +a
Elf0"") < BlA)"T
Multiplying these together gives
E[fe)" Bl (9] < (BIA() + ) Blf()") T < Blfi(x)") + o

where the last inequality uses the fact that f, € [0, 1]. This completes the proof of Equation (9). B

Corollary 19 Under the conditions of Theorem 18, the following sandwiching bound holds:

(d+ 1)% +E [fi(x) > Ep[fo(x)41fr(x)] > E[fix]E )™ =25 ()

C

Proof We start from the bound on E[f?] in Equation (9) and use Equation (8) which implies that
the bounds hold for E[f¢~! f*] with an additional slack of . [

24



LOW-DEGREE MULTICALIBRATION

B.1. Bounding the True Positive Rates

Imagine a binary prediction problem on a population P = A U B where one half A has a 70%
chance of having outcome y = 1, and the other half B has only a 30% chance. When we consider
this population in isolation, multiaccuracy is a very weak condition. In particular, the predictor
g : X — [0,1] that predicts g(x) = 1 on A, and g(x) = 0 on B satisfies accuracy-in-expectation
over P. This predictor is over-confident in its predictions; it does not give an accurate sense of the
uncertainty in its predictions. A key property of calibration is that it disallows such overconfidence,
by explicitly requiring that when f(x) ~ v, then E[y|f(x)] ~ v.

A different way to quantify confidence is to look at E[f(x)|y = 1] and E[f(x)|y = 0]. The
latter has been termed the generalized false positive rate, so we refer to the former as the generalized
true positive rate. Common sense suggests that we want a low false positive rate, and a high true
positive rate. But how low a false positive rate is desirable? A quick calculation shows that the
predictor g above has a generalized false positive rate of 0.3, whereas even the Bayes optimal
predictor f* has a higher false positive rate of 0.58! In general, only seeking to minimize the false
positive rate and false negative rate risks preferring predictors that overstate their confidence, since
it does not incentivize the predictor to convey the level of uncertainty in its predictions.

We give bounds on the true positive rates of any predictor in MCs.

Definition 20 For a predictor f : X — Ay, label { € [l] and ¢ € C, define the true positive rate
for f on £ conditioned on c € C to be 7.(f,{) = Ep_[fi(x)|y, = 1].

Lemma 21 Every predictor f € MCy satisfies

3 N B 2a
o e T8 2 el 0 2 BRI = g

The lower bound says the true positive rate for label ¢ is at least as much as the overall positive
rate for that label in the population C. This is equivalent to positive correlation between fy(x) and
y¢ conditioned on c. The upper bound asserts that the correlation is not exaggerated, being upper
bounded by the true positive rate of the Bayes optimal predictor. Our proof relies on the following
characterization of true positive rates:

Lemma 22 We have
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|
Proof [Proof of Lemma 21] Equation (11) for d = 2 gives
@ * * * a
3+ BIY > Boli()fi ()] > B BIRG —2 02
The claimed bounds follow by dividing throughout by E[f;] and observing that by Lemma 22,
Ep, [f7 (%) fe(x)]
T(f, £) = = »
S N
) Ep. [f; (x)?]
T(f*,0) = 2 * .
S NTACY)
|

We can define higher moment analogues of the true positive rate by considering the quantity
E[f/(x)?|y, = 1] for d > 2; for which we prove the following bound:

Lemma 23 Foreveryd € [k — 1] and c € C, every f € MCy, satisfies the following bounds :

2

(d+ 1)04 *
+BUT ) e =102 B e = 112 BUG = e

Ep, [f; ke | D.

B.2. Bounds for the Confusion Matrix

We generalize the discussion of error rates to the multi-class setting. Here, we are concerned with
the confusion matrix, whose 7jth entry corresponds to the probability of predicting j when the true
label is 7. In this setting, we think about sampling a predicted label z according to the prediction
f(x); this bears similarity to the model of outcome indistinguishability. With some manipulation,
it is not hard to see that the collision and confusion rates can be audited directly within the OI
framework Dwork et al. (2021, 2022) to test the closeness of the matrices as in Lemma 24.

Given a distribution D on X x [I] and a predictor f : X — Ay, let us assume that the predictor
f generates a label z € [I] where Pr[z = j|z] = fj(x). The [ x [ confusion matrix has entries
bij =Prply =i Az =j]fori,j € [l]. Itis easy to see that

Prly =i Az = j] = Bl ()00

Associating points in A; with column vectors in R!,and using f7 to denote the transpose of f, we
can define the confusion matrix as

Bo(f*,f) = BIf () (x)"].

Define the max norm of a matrix A = {a;;}; je by [[All pax

= maxmem \aij|.

Lemma 24 Let f € MCsq(«) and ¢ € C. Then we have

(%

HBDc(f*vf) - BDc(f7 f)Hmax < ;
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Proof For i, j € [l], define the function w : A — [0,1]" by w;(f) = f; and wy (f) = 0 for i’ # 4.
Clearly w € Py, hence by the definition of degree-2 multicalibration applied to w,

He < a.

B ()3 — /i(x)

‘We can rewrite this condition as

Ef; () fi(x)] - Elfi(x)fi(x)]

De

< ae

which implies the claim. |

Next we show that the confusion matrix for f is dominated by that for f* in the PSD order.

Lemma 25 Forany f € MCsy(a) and ¢ € C, we have
B(f, f) < B(f*, [*) + 2la - L.
Proof Fix a unit vector u € R’. By the definition of the PSD order, it suffices to show that

E[(u” f(x))] < DEC[(qu*(X))Q] + 2o

c

We have

E[(u” f(x))’] = Zuzug E[fi(x)fj(x)}
< Z (o gc[fi*(x)fj(x)] +a Z Ui
i i

< El('f(0)(u' f(x))] + la
< Bl ()2 Bl f(x0)*)"/2 + la

c

Dividing both sides by Ep_[(u” f(x))?] we get

Ep 002 | la
Ep. [ 700717 = Bp [ ())?

Squaring and using (1 —1)? > 1 — 27 gives

E[(u’f*(x))’] 2 gc[(qu(X))Q] — 2la,

c

which implies the desired bound. |

As an application, we can generalize our bounds on true positive rates to allow combinations
of labels. As motivation, consider a model trained to assign images from a large label set [I]. We
might want to know how well the model does on the set of cat images, where cats correspond to a
subset L C [I]. In analogy with the true positive rate on label, we could measure the probability that
the image belongs to L, and the predicted label is also in L, without distinguishing between labels
within L. This motivates our next definition. We use the notation f7,(z) = >, fe(x).
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Definition 26 For a predictor f : X — /Ay, set L C [l] and ¢ € C, define the true positive rate for
f on L conditioned on ¢ € C to be

e(f, L) = E [fL |Zyg—1}
leL
We present the following generalization of Lemma 21:

Lemma 27 For a subset L C L of labels, every predictor f € MCs satisfies
21| L2
= Tt
Ep, [f1(X)]pe
Proof In analogy with Lemma 22, we can show that

Ep, [fr(x)fi(z)] _ 1] Bp.(f*,f)lL
Ep, [f](%)] Ep [fi(x)]

(1L + Lo

7e(f* L) 2 7e(f, L) = B[fr(x)] - Ep, [/; (X)]1e

Tc(fa L) =
Using Lemma 24, we have

17 Bp, (f*, f)11 > 11 Bp,(f. f)11 — |L]ac
-E [f(x)%] = |L|Pae
> gl[fL(X)]Z — |L]Pe
> gc[fL(x)]gc[fZ(x)] — (ILP” + |L])cx

where the last line used the following consequence of multiaccuracy

E[fi(x) - fLx)]| < [Llac
Lemma 25 implies an upper bound of

17 Bp. (£, /)1 < 1EBp (f*, £)11 + 21| L|a.
< E[fi(x)’] + 2|LPa +c.

The claim now follows by dividing throughout by Ep_[f; (x)] |

B.3. Covariance Guarantees for Degree-2 Multicalibration

We present a detailed analysis of the covariance between the predictions f;(x) and label being ¢ con-
ditioned on c. As one might expect, the ground truth predictor is indeed positively correlated with
the labels. Multiaccuracy guarantees that the expectations of f;(x) and y, are equal conditioned on
¢, but this need not imply that they are positively correlated. Our main result of this section is MCq
guarantees positive correlation, and that the correlation is conservative compared with the ground
truth predictor. We also provide an example showing that the correlation can indeed be negative for
f € MC;.

28



LOW-DEGREE MULTICALIBRATION

Theorem 28 For f € MCa(«) and ¢ € C, we have

Var|fo(x)] — 20c < Cov|fy(x),yi] < Cov[fi(x),ye] + 6o

(13)

Our key technical lemma uses these to show that conditioned on any ¢ € C, every predictor in
MCs, has variance not much larger than the Bayes optimal predictor. Its proof will use the following

properties every f € MCsy(«) satisfies by Equation (8).

BU0)] - B < o

Lemma 29 For f € MCs and ¢ € Cq,
Var(f;(x)] < Var(f; (x)] + a.
Cov(f; (x)y] = Varlf; (x)]
Covife(x)y] — Var[fy(x)]| < 2ac.
Proof We observe that by Equation (10) with d = 2,
ks (x)%] > E [fe(x)?] = 2a.
By Equation (14) we have

E(fi(? = Bl (0% <

Elf(x)] + E[f; ()

E[f()] - By ()] < 20
Applying this together with Equation (19) gives
Var(f; (x)] - Var[fu(x)] = E{f¢ (%)% - = [fe(x)?] + = [fo(x))* ~ Eife (x)]”
> 20 — 20, = —4a,

which implies the desired bound.
By definition of f*, E[y|x]| = f;(x). Hence

Covlf; (x)y] = BIf; (¥ ~ EL ()| Bly] = ELf7 (x)?] - BUf7 (0] = V(7 ()

By Equation (15),

|E[fe(x)y] — E[fe(x)?]] < ac

29

(14)

5)

(16)
an

(18)

19)

(20)
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Using Equation (14) we have

[E[fe(x)] Ely] - E[fe(x)]*| < E[fe(x) [E[fe(x) —y]| < acE[fo(x)] < a. (22)

Finally, using the definitions of variance and covariance, we have

|Covlfe(x),y] - Var[fe(x)]| < |E[fe(x)y] - E[fe(x)*]| + |E[fo(x)]| Ely] - E[fe(x)]*| < 2.

where we use Equations (21) and (22). [ |

Proof [Proof of Theorem 18] The lower bound is an immediate consequence of Equation (18). The
upper bound follows since

Cov[fu(x), 4] < Var[fu(x)] + 20, < Var[f; (x)] + 60, = Covlf; (x),y] + ba
where we use Equations (18), (16) and (17) respectively. |

We complement this by an example showing that the correlation between f;(x) and y, can be
negative for f € MA = MC;. In particular, we show that this is true even when y/, is obtained by
standard methods such as least-squres or logistic regression (on linear combinations from C).

Lemma 30 There exist a distribution D on {0,1}? x {0, 1}, a constraint set C, a constraint ¢, and
alabel ¢ € {0, 1}, such that if f € MA is obtained by least-squares or logistic regression, then

CDOV[fg(X),yg] =-1/12 < 0.

The example we provide is in the binary classification setting, with D = {0, 1}? and the sets C
all being edges (that is, the sets x; = 0, z1 = 1, 2 = 0, and 2 = 1). The covariance we achieve
is —1/12, though we note that it can be made arbitrarily close to —1/4, the minimum possible
covariance of two [0, 1] random variables. The full example is provided in Appendix F.

Appendix C. The Complexity of Low-Degree Multicalibration

Here, we establish upper bounds on the time and sample complexity for obtaining low-degree mul-
ticalibration. We begin by describing a completely generic multicalibration algorithm that works
for any class of weight functions ¥V and for any number of class labels & € N. Importantly, fol-
lowing Hébert-Johnson et al. (2018); Kim et al. (2019), the algorithm reduces the task of learning
a weighted multicalibrated predictor to the task of weak agnostic learning the class C. We analyze
the algorithm in terms of its oracle-efficiency, assuming access to a weak agnostic learner.

With upper bounds on the complexity of learning a multicalibrated predictor using a generic
weight class VW, we instantiate the bounds for the low-degree, smooth, and indicator variants of
multicalibration. We show that, for meaningful settings of the parameters, low-degree multicalibra-
tion is considerably more sample efficient than the original formulation of multicalibration. This
effect is particularly pronounced as the number of class labels [ grows.
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C.1. Learning Weighted Multicalibrated Predictors

In Algorithm 1, we describe a procedure for learning multicalibrated predictors. The algorithm
assumes oracle-access to a weak agnostic learner Kalai et al. (2008); Feldman (2009).

Definition 31 (Weak Agnostic Learning) For a data distribution D supported on X x [—1,1], a
weak agnostic learner for a hypothesis class C C {c: X — [0,1]} is a learning procedure that
takes labeled data D = {(x;, z;)}.~,, where each sample (x,z) ~ D. For o > 0, the learning
procedure returns an element of C U { L}

¢+ WALc (D)
satisfying the following properties.
(1) if there exists ¢ € C suchthatEp [ (x)-z] & [—a,al, thenc # L and Ep [ c(x) -z] > a/2.
(2) ifc= L, thenforalld € C,Ep[d(x)-z] € [—a,al

We say the sample complexity of the weak agnostic learner, m = m(C,«, 3), is the number of
samples from D necessary to guarantee properties (1) and (2) with probability at least 1 — (3.

Intuitively, a weak agnostic learner searches for some ¢ € C that correlates nontrivially with the
labels given by z.° With this definition in place, we can describe the Weighted Multicalibration
algorithm and state its guarantees.

The algorithm is an iterative boosting-style procedure. We initialize the hypothesis to be the
constant function fo(x) = (1/I,...,1/l) € A;. Then, in the tth iteration, for each w € W we
reduce the problem of searching for some ¢ € C where f; is miscalibrated to the problem of weak
agnostic learning. If we find some ¢ € C such that

E[cx)(w(fi(x),y — fi(x))] > a/2

then we can use ¢(x) - w(fi(x)) to update the predictor to be better calibrated in this direction. If
for all w € W we fail to find any ¢ € C that correlates with the residual, then we return the current
hypothesis. We describe the procedure in Algorithm 1.

Analysis of the algorithm. The exact running time of the algorithm depends intimately on the
model of computation and the time complexity of weak agnostic learning, which for most classes C
will dominate the time complexity. With this in mind, we bound the iteration complexity 7' of the
algorithm, noting that each iteration makes at most |)V| calls to WAL¢ , which results in a time
complexity bounded by 7" - W] times the complexity of weak agnostic learning C.

First, we argue correctness—that if the algorithm terminates, then the returned hypothesis sat-
isfies multicalibration.

Lemma 32 IfAlgorithm I returns a hypothesis f : X — [0, 1]}, then f is (C, W, &)-multicalibrated.

9. Our analysis does not assume that WAL is a proper learner. All of the results hold equally for improper weak agnostic
learners.
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Algorithm 1 Weighted Multicalibration
Input: training data {(z;, i) i,
Concept class C C {c: X — [0, 1]},
Weight class W C {w : Ay — [0, 1]},
approximation v > 0,
step size 1
Output: (C, W, a)-multicalibrated predictor f : X — A
fo() « (1/1,...,1/]) € A
mc < false
t<0
while —mc do
mc <— true
for w € W do
cip1 < WALeo ({ (2, (w(fi(), 9 — fi(za)) ) i y)
if c;11 = | then
continue
else
Ot41(+) = w(fe(+)) - ce1 ()
fra1() < ma, (fe() + 1 6141(4)) // where T, projects onto
mc < false
t+—t+1
break
end if
end for
end while
return f;

Proof Observe that Algorithm 1 only returns a hypothesis f; if, in the tth iteration, for every
w € W, the call to the weak agnostic learner WAL¢ ,, returns L. By the weak agnostic learning
property (2), returning L in every call indicates that for all w € WV and for all ¢ € C, the correlation
between c and the weighted residual is bounded by « in magnitude.

E[c(x) - (w(fi(x)),y — fi(x)) ] € [-a,q]
By definition, this means that f; is (C, W, a))-multicalibrated. [ |

Next, we argue that the number of iterations that the algorithm ever runs for is bounded polyno-
mially in [ and 1/a.

Lemma 33 With step-size n = o/2l, Algorithm 1 returns fr after T < 8l1/a? iterations.

Proof The bound on the number of iterations follows by a potential argument. Using the expected
squared error as a potential function, we lower bound the progress at each iteration. Specifically, we
use the following potential function,

o) =B | If*(x) = fx)|?

32



LOW-DEGREE MULTICALIBRATION

By the assumption that f* : X — /; and our choice of fy(x); = 1/l for all ¢ € [I], the initial
potential value is at most ¢( fy) < 2.
Consider the change in potential after the ¢th update.

E| 60 = £ | =B | 15760) = fii (I |
—E[ 1560 = S | =B 1) = fix) = - S x)]” |
=2 B[ () = fi(x), 011 ()) ] = 0? B | 6151 |
> 20 B[ (f*(x) = %), w(fu(x)) - 1 () | = 7 B[ Ju(fux)a®)] |
> an —n’l
where we use the following bounds

» By our definition of w and c,
lw( fi(x))er ()1 < flwe(F))I* < L.
» By the weak agnostic learning property (1),
E[ (/) = fix), w(fi(x)) - ct41(x)) | = B[ crp1(x) - (w(fe(x)),y — fi(x)) | 2 /2

Taking 7 = «/2l, the progress in ¢ in each iteration is at least o /(4l). Since ¢(fo) < 2 and
#(f:) > 0 for all ¢, the total number of iterations is upper bounded by T' < 81/a?. [

We upper bound the sample complexity necessary to run Algorithm 1 in terms of the number of
iterations, the cardinality of the weight class WV, and the sample complexity of the weak agnostic
learner for C. Note that in the tth iteration, for each w € W, we assign x; a label that depends on
ft. This dependence on prior hypotheses (and thus prior access to the data), results in an adaptive
data analysis problem. Naively, we can handle this by resampling at each iteration. We obtain the
following generic bound.

Proposition 34 For a hypothesis class C and approximation parameter oy > 0, the sample com-
plexity m to run Algorithm 1 with success probability at least 1 — ( is upper bounded by

m S 0 (l : m(c72a()7/60)>
o
where m(C, o, Bo) is the sample complexity of running WALc o, with failure probability By <
04(2)5
AR

Proof The upper bound follows by using a fresh sample for each iteration. We leverage the upper

bound on the number of iterations necessary from Lemma 33, T < [ /a2. Then, to obtain an overall

failure probability of /3, we take 3y small enough that we can union bound the failure probability of
a%ﬁ

WAL¢ o, over T - |W| calls. Again, leveraging the bound on 7', we bound Sy < AT |

Using Proposition 34, we obtain a concrete upper bound on the sample complexity based on
specifying a weak agnostic learner and a class of weight functions WV. For instance, if C is a finite
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class, the weak agnostic learner that iterates over C and evaluates the correlation with labels as a
statistical query obtains sample complexity log(|C| /80)/ad, for an overall sample complexity of

<o (LIoslM o)),

o)

For classes C of bounded VC dimension, it is known that the optimal sample complexity of weak
learning is

VC(C) + 1og(1/60)> _ (23)

m(caa()aﬁ(]) =0 < 2

®p

Assuming we have access to a weak agnostic learner that has optimal sample complexity, the sample
complexity of Algorithm 1 given by Proposition 34 is

L (VOO + o1 ] )

2
%)

m§0< 24)

Better sample complexity. Improved sample complexity analyses are possible for specialized im-
plementations of the weak agnostic learner. Following Hébert-Johnson et al. (2018); Kim (2020), we
can avoid some of the cost of resampling by appealing to generalization guarantees for differentially-
private learning algorithms Dwork et al. (2006). Note that Algorithm 1 only touches the data through
the weak agnostic learner, in order to search for a violated constraint for some ¢ € C. By imple-
menting this search step under differential privacy, we can appeal to the results of Dwork et al.
(2015); Bassily et al. (2016); Jung et al. (2019), demonstrating that such algorithms guarantee sta-
tistical generalization, even under adaptive access to the data. For instance, using a bound from
Corollary 6.4 of Bassily et al. (2016), in the case where C is a finite class, we can actually bound
total the sample complexity as follows.

m<O0 <l1/2 -log(|C] W] /a) - 10g(1/a5)3/2>

a3

This bound follows by viewing each iteration as an optimization over the simultaneous choice of
w € W and ¢ € C to maximize the multicalibration violation. While this approach improves the
sample complexity, computationally it requires exhaustive search over the choice of ¢ € C and
w € W to execute the exponential mechanism McSherry and Talwar (2007).

C.2. Comparing the Sample Complexity Across Notions

We instantiate the general bound from Proposition 34 using the different weight classes correspond-
ing to low-degree, smooth, and full multicalibration. Since there are many parameters involved, to
get a fair comparison, we make the following choices:

1. We instantiate each notion using the accuracy parameter o that is required to guarantee
a-degree-(k + 1) multicalibration for some k& € N. In other words, for smooth and full
multicalibration, we upper bound the sample complexity using the best choice of cvg known
to guarantee that we get f € MCpy11(«).
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2. We assume that we have access to a weak agnostic leaner WAL¢ , that gives optimal sam-
ple complexity (Equation (23)), so that the sample complexity of Algorithm 1 is bounded
by Equation (24). Note that an increase in the sample complexity’s dependence on oy will
increase the gap in sample complexities. Hence, assuming a sample-optimal weak agnostic
learner gives a conservative estimate on the gap.

In this setting, we show a substantial gap in the sample complexities of low-degree multicali-
bration on one hand versus smooth and full multicalibration on the other. The former has sample
complexity that grows polynomially with the number of labels /, whereas the latter notion have
sample complexity that grows exponentially with [.

Theorem 35 (Formal restatement of Theorem 3) Suppose C has a weak agnostic learner with
sample complexity

agp

to obtain desired accuracy o over C with all but probability 3y. Then, for any k € N and any
failure probability 5 > 0, there exists an implementation of Algorithm 1 to obtain the variants of
multicalibration, obtaining sample complexity as follows.

* (Low-Degree).

my < O <l - (VC(C) + k - log(l/aﬁ)))

ot
to obtain (C, ov)-degree-(k + 1) multicalibration.

* (Smooth).

VC(C log(kl/a kD1 pol l,log(k/a
ms§0<k4l-( ()+a4g( [aB) | (kD) pcifl(+3 g(k/ ))>>

to obtain (C, o/ k)-smooth multicalibration.

* (Full).

A0+

m; < O ((2k1)4(l+1) - (VC(C) +log(kl/aﬂ))>

to obtain (C, a)-full multicalibration for ag < (o /2kl) 1,

In the case of binary prediction, the full multicalibration bound can be improved to

i < O <k4 - (VC(C) + 10g(k/046))> '

ad
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Proof The proof instantiates the bound in (24) with an appropriate weight class to achieve the
desired notions.

(Low-Degree). To guarantee that the calibration constraint is satisfied for all w € W1, we use a
discrete set of functions M}, defined by monomials of degree < k. In particular, we know that each
coordinate of a given w is implemented by some ¢ € Pj;,. We consider a finite class of functions,
where for each i € [I] and each monomial s(z) = [],cq 2 of degree < k (where S is a multiset
of elements from [[]), we include a 1-sparse function equal to s(z) in the ith coordinate and 0
elsewhere.

My, = {s@) e, Sel]tn< k}

where s(i)(z)j — {(l)_[ies Zi J=1
0.W.

For z € /A, these functions satisfy boundedness and sparsity. Further by convexity, obtaining
(C, My, o)-multicalibration implies (C, «)-degree-(k + 1) multicalibration. The cardinality of this
set | M| grows as O(I¥). We plug this bound on the number of weight functions into the generic
sample complexity bound.

g < O <l - (VC(C) + klog(l/aﬁ)))

ot

(Smooth). By Theorem 7, we can take ap < a/k to guarantee a (C, op)-smooth multicalibrated
predictor f is also (C, a)-degree-(k + 1) multicalibrated. Then, for our choice of weight class W
to guarantee smooth multicalibration, we appeal to Lemma 36, which upper bounds the cardinality

IW| < exp (6((l/ag)l_1)>, proved below in Section C.3. With the choice of v, we bound the log
of this cardinality as follows.

log [W| < O <(alo>ll> < (Zl)ll - poly (1, log(k/a))

Combining these bounds, we can bound the sample complexity for smooth multicalibration as fol-
lows.

me <O (k4l.(VC(C) +10g§i€l/ozﬁ) —I—]og‘W’))
VC(C) + log(kl/a kD) =L poly(l,log(k/a
§O<k4l-< ()+a4g( [aB) | (kD) P;’lig g(/))))

(Full). For § > 0, by Theorem 9, MC}(ad/k — 16"+1) € MC*(a/k) € MCj,1(c). Balancing

terms, we take § = 557, which results in ap < 7 (%)ZJrl to guarantee that a (C, ag, d)-full

multicalibrated predictor is also (C, «)-degree-(k + 1) multicalibrated. The interval basis Zs has
1/6' functions, so we can bound log |Zs| as follows.

log |Zs| =1 - log (2kl/«)
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With the choice of § and «g, we bound the sample complexity as follows.
[-(VC(C)+ (I +1) - log(2kl/apB) + 1 - log(2kl/))
14(cr/2k1)40+1)

VC(C) + log(kl/ap)
4(1+1)
<0 <(2kl) ' [120A0+1)

IN

o ((2kl)4<l+1> - (VC(C) + log(k:l/aﬁ))>

PIEEY

Finally, using the containment of full multicalibration within smooth multicalibration specialized
to binary prediction, we can tighten the analysis for [ = 2. In this case, we can take the binary
interval basis Zs of size 1/§ functions for § = @(a(l)/ 2), and applying Proposition 14, we can
take g < O(a?/k), to ensure (C, a/k)-smooth multicalibration. In all, we can bound the sample
complexity

i < O <k4 ~(VC(C) + 1og(k:/a,8)>> ’

o8
establishing Theorem 35. |

Consistent with the prior results on the relationship between the notions of multicalibration, we
see that focusing on low-degree multicalibration can lead to significant sample complexity savings.
In particular, in the multi-class setting, the low-degree complexity provides exponential savings
compared to the smooth and full complexity. For the binary prediction case, the savings from low-
degree multicalibration are only polynomial factors in «, but still practically-relevant. Even for very
modest values of «, say 0.25, low-degree multicalibration obtains more than a 200-fold decrease in
sample complexity.

While this analysis doesn’t establish lower bounds on the sample complexity, the point is that
the savings are coming from the difference in the necessary choice of ayy. Thus, it seems that any
sample complexity upper bound should apply equally well for all notions (in terms of «aq), will
result in an improved complexity for low-degree multicalibration. Of particular note, a recent work
of Gupta et al. (2021) establishes an (inefficient) algorithm with optimal dependence of oy 2 for full
multicalibration in the binary prediction case. Specifically, in our notation, for classes where each
group ¢ € C has constant measure in D, they achieve (C, ayp, 0)-full mutlicalibration with probability
at least 1 — (3 in sample complexity that grows as

o(t5)

Setting o and § to achieve even (C, o)-multiaccuracy, gives a dependence of a~*. It would be
interesting to extend their game-theoretic analysis to low-degree multicalibration, towards obtaining
a~2 dependence.

C.3. Better bases for smooth multicalibration in high dimensions

In [ dimensions, we can construct a sparse basis at the cost of a much larger sized family of weight
functions.
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Lemma 36 Foranyn € (0,1), there exists a (n, 1)-basis By, for L1 of size exp(O(In~1)! "1 log %)

Proof We assume that 1/n € A is an integer. It will be enough to show such a basis for £, since
we can handle each coordinate of the output separately, at the cost of a multiplicative factor of [ on
the size of the family.

Break up [0, 1]~ into (31/n)!~! cubes of side length 1/31 each. Then, let 3, be the all functions
on A; which take one of the constant values 0,7/3,2n/3,...,1 on each of these cubes (where we
have projected away the last coordinate z; in A;). We have

_ 1
B,| < (3/n+ 1)@ — exp <O(l77_1)l_110gn>

Now, we claim that every u € L1 can be approximated to within 7 by a single function in B,,.
Indeed, for each of the cubes, round u down to the nearest multiple 77/3 on one of the corners of the
cube. Construct the function v € B, by letting v take on this rounded value on that cube. Then, v
will be within 77/3 of u on that corner of the cube.

We claim that the whole cube (projected up to 4A;) is within distance 27/3 in L; from the
corner. To see this, note that by construction, the distance in L; in the first [ — 1 coordinates is at
most (I — 1) -n/3l < n/3. Also, in Ay, the distance in the last coordinate is at most the L; distance
in the rest of the coordinates, so this is at most 77/3 as well.

Thus the whole cube is within 27/3 in L; from the corner, so since u € L1, this means that the
value of u on the whole cube is within 27/3 of its value of the corner. Therefore, the value of u on
the whole cube is within 7/3 + 21/3 = 7 of the value of v on the cube. Thus, |[u —v||,, <7n. W

Appendix D. Experiments

We use a numerical experiment to compare boosting for multiaccuracy (MA), degree-2 multicali-
bration (MC2) and full multicalibration (MC-full). The goal of this experiment is two-fold. First,
the theoretical sample complexity results are asymptotic; here, we show that qualitatively similar re-
sults hold empirically in the finite sample regime. Second, the sandwiching bounds show that MC2
can reduce overconfidence, as compared to multiaccurate predictors; we supplement the theory by
showing a setting in which multiaccuracy post-processing does not correct for initial overconfi-
dence, but degree-2 multicalibration does. In combination, these preliminary experiments suggest
that the strongest notion of multicalibration is not always better. Given a fixed data set size, the
realized fairness guarantees may actually improve by choosing a lower degree of multicalibration.

Metrics. We measure the performance of predictors across the first two moments across subpop-
ulations ¢ € C. Specifically, we measure the multiaccuracy error as

multiaccuracy error:  max E[c(x)(f(x) — f*(x))] — E[(1 — ¢(x))(f(x) — f*(x))] (25)

ceC

Intuitively, this is the multi-accuracy error on the subpopulation and its complement. Second, we
measure the excess variance as

excess variance: max (Var[f(x) | ¢(x) = 1] — Var[f*(x) | ¢(x) = 1]) - Prle(x) = 1] (26)

which intuitively is how much the variance of the predicted probability exceeds the variance of the
optimal predictions over all subpopulations in C.
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Setup. To estimate the excess variance we need access to the true probability f* which is un-
available for real datasets. Therefore, we use a semi-synthetic dataset by fitting a neural network
to the real UCI-adult dataset and use the neural network’s predicted probability as the “true” Bayes
optimal probability. We also fit a generative model (a variational autoencoder) to model the distri-
bution on the features x. Combined we create a synthetic dataset where we can sample x from the
generative model, compute the “true” probability f*(x), and draw samples y from the “true” prob-
ability. Note that all learning algorithm only have access to the samples (x,y) and not the “true”
probability; we use the “true” probability exclusively for computing the excess variance.

We generate three datasets: a pre-training set, a training set, and a test set. We first pretrain
a three-layer neural network on the pre-training set, then use our boosting algorithms to adjust the
predictions of the pretrained neural network to achieve multi-accuracy or calibration, and finally use
the test set to assess performance. For the calibration class C, we use linear functions with sigmoid
activation.

Results. Our results are summarized in Figure 1. We make the following observations.

* The boosting-style algorithm for multi-accuracy (MA), degree 2 multi-calibration (MC2) and
full multicalibration (MC-full) all improve the multi-accuracy error on the training set. This
is consistent with our result that MC2 and MC-full imply MA, hence by achieving MC2
and MC-full we can also achieve multiaccuracy (MA). However, on the test set, we observe
that multicalibration is much more prone to overfitting and the multi-accuracy error increases
rapidly without carefully regularization (e.g. by early stopping).

* Boosting algorithms for degree-2 multicalibration (MC2) and full multicalibration (MC-full)
can significantly decrease the excess variance. However, degree-2 multi-calibration is much
less prone to overfitting and can consistently keep the excess variance low, while multicali-
bration rapidly overfits.

Overall we observe that running Algorithm 1 for degree-2 multicalibration (MC2) can reduce
the excess variance without harming the multiaccuracy error, and generally maintains the gener-
alization performance as compared to multiaccuracy (MA) only. On the other hand, boosting for
multicalibration (MC-full) is significantly more prone to overfitting.

Appendix E. Squared loss minimization from degree-2 multicalibration
We give a proof for the claim of squared loss minimization given in the technical overview.

Proposition 37 Suppose f : X — [0,1] is (C,0)-degree-2 multicalibrated for some class C that
contains the constant function ¢(x) = 1. Then, for all c € C

E[(c(x) = f*x)’] ZE[(f(x) - f*(x)?]
In fact the following Pythagorean bound holds:

E[(c(x) = f{(x))*] =E[(f(x) = f(x))* ] + E[[ (c(x) — f(x))]

Proof It suffices to prove the Pythagorean bound, the inequality follows from it. For ¢ € C, we
consider the difference in squared error with f:

E[(c(x) = ff(x)?*] ~E[(f(x) = f{(x)*] =E[c(x)” = f(x)* = 2c(x) f*(x) + 2f (x) /" (2) ]
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Figure 1: Comparing the excess variance and multiaccuracy error for three methods: boosting for
multiaccuracy (MA), degree-2 multicalibration (MC2) and full multicalibration (MC-
full). Error bars are 1 standard deviation of the results based on 5 randomly drawn
datasets. Both MA and MC2 achieve low multiaccuracy error, but MC2 has much lower
excess variance, consistent with our theoretical results. MC-full is very prone to overfit-
ting.

By first moment equality, we have that

and by degree-2 calibration, we have that
E[fx)f'x)]=E[f(x)?].

Thus, in all, we can simplify the expression as follows.

(%) = f(x)? = 2e(x) f*(x) + 2f (%) f*(x) ]

[c(x)® + f(x)? = 2c(x) f(x) + 2f (%) f(x) — 2f (%) ]
[(e(x) = f(x)*] 20

B[

Q

Il
= =

Appendix F. Multiaccuracy does not imply positive correlation

Note that many common regression methods do not in fact guarantee a positive or near-positive
correlation between f and y, conditioned on a constraint ¢. We provide an example in the case of
binary classification illustrating this.

Example 1 Let X = {0,1}2; we will refer to the two coordinates as x1 and 3. Let the four
constraints c;p, for i € {1,2} and b € {0,1} be I exactly when x; = b, and 0 elsewhere. Let the
distribution D have weight 1/3 on (0,0) and (0, 1), and weight 1/6 on (1,0) and (1,1). Finally,
let the value y be always equal to the parity of x; that is, y = x1 & xo. Figure 2 illustrates this
example.
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Figure 2: Diagram illustrating Figure 1. Black points indicate points x such that y = 1 always, and
white points indicate where y = 0 always. The points are labeled with their probability
under D. The constraints each contain two points, and are drawn as edges.

We will show that, in Figure 1, both L, and logistic regression obtain predictions f which have
negative correlation with y conditioned on ¢y 1.
First, Lo regression finds the predictor f of the form

F) = Aipeip(x),
b

such that the objective

BI(/(x) - y)

is minimized. By first order optimality, f is actually a multiaccurate predictor. We can see that if
we apply Lo regression, the obtained coefficients and predictor f are:

)\170 = )\1?1 = 1/2,)\271 = 1/6,)\270 = —1/6,
F((0,0)) = f((1,0)) = 2/3, f((0,1)) = f((1,1)) = 1/3. 27

This can be seen by running Lo regression, or as follows. First, note that the constraints c; ;, are
linearly dependent (satisfying c¢1 0 + ¢1,1 = ¢2,1 + ¢2,0), SO we may assume that A; o = 1/2. The
remaining constraints are now linearly independent, so since the objective is strictly convex, there
is a unique optimal choice of \;;. Now note that the example exhibits symmetry by exchanging
x9 = 0 and xo = 1, and flipping each of the y values. Thus, the value of the objective is conserved
under the substitutions

A1 1= A1ty Ao ¢ —A21, Aoj1 < —Aop.

But since the optimum is unique, this implies that A\;; = 1/2 and A9 = —A2;. Finally, we
can obtain the actual value of A3 o by using multiaccuracy, or by directly optimizing the objective.
Finally, with the predicted values (27) we obtain the covariance conditioned on ¢ = ¢ 1 equal to

Covlf(x).y] = ~1/12,

showing that f is negatively correlated with y conditioned on ¢y 1.
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Next, logistic regression finds the predictor

) 1
h(x) 1+ exp (— Db Hi»bcivb(x)>

9

maximizing the objective
Elylogh(x) + (1 - y)log(1 — h(x))].

Again, by first-order optimality 5 is also a multiaccurate predictor. This time, the obtained coeffi-
cients and predictor are:

0170 = 9171 = 0,9271 = log 2, 0270 = — log 2,

h((0,0)) = h((1,0)) = 2/3,h((0,1)) = h((1,1)) = 1/3. (28)

This can again be seen by essentially an identical argument as for Lo regression. Note that this is
also the exact same predictor as that of L, so we obtain a similar negative correlation.

Note that these examples can also be modified by changing the probabilities under the distri-
bution D from 1/3 and 1/6 to 1/2 — € and ¢, respectively, as e gets arbitrarily small. The same
argument shows that f((1,0)) gets arbitrarily close to 1 while f((1,1)) gets arbitrarily close to 0.
This achieves covariance arbitrarily close to —1/4, which is the lowest possible covariance between
[0, 1] random variables. This is at the cost of D(c1,1) = 2€ getting arbitrarily small, so the constraint
that we condition on gets arbitrarily low in probability, making statements about the constraint less
meaningful.
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