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Abstract

In this paper, we study private optimization problems for non-smooth convex functions F'(z) =
E; f;(z) on RY. We show that modifying the exponential mechanism by adding an ¢2 regularizer
to F(x) and sampling from 7(x) oc exp(—k(F(x) + u||z||3/2)) recovers both the known opti-
mal empirical risk and population loss under (e, §)-DP. Furthermore, we show how to implement
this mechanism using O(n min(d, n)) queries to f;(x) for the DP-SCO where 7 is the number
of samples/users and d is the ambient dimension. We also give a (nearly) matching lower bound

Q(nmin(d,n)) on the number of evaluation queries.
Our results utilize the following tools that are of independent interest:

* We prove Gaussian Differential Privacy (GDP) of the exponential mechanism if the loss function is
strongly convex and the perturbation is Lipschitz. Our privacy bound is optimal as it includes the
privacy of Gaussian mechanism as a special case and is proved using the isoperimetric inequality for
strongly log-concave measures.

 We show how to sample from exp(—F'(z) — p||x||3/2) for G-Lipschitz F' with ) error in total variation

(TV) distance using O((G? /) log®(d/n)) unbiased queries to F/(x). This is the first sampler whose
query complexity has polylogarithmic dependence on both dimension d and accuracy 7.
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1. Introduction

Differential Privacy (DP), introduced in Dwork et al. (2006a,b), is increasingly becoming the uni-
versally accepted standard in privacy protection. We see an increasing array of adoptions in indus-
try Apple (2017); Erlingsson et al. (2014); Bittau et al. (2017); Ding et al. (2017) and more recently
the US census bureau Abowd (2016); Kuo et al. (2018). Differential privacy allows us to quantify
the privacy loss of an algorithm and is defined as follows.

Definition 1 ((¢,6)-DP) A randomized mechanism M is (g, 0)-differentially private if for any neigh-
boring databases D, D’ and any subset S of outputs, one has

Pr[M(D) € S] < € Pr[M(D’) € S] + 6.

In this paper, we say D and D' are neighboring databases if they agree on all the user inputs except
for a single user’s input.
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Privacy concerns are particularly acute in machine learning and optimization using private user
data. Suppose we want to minimize some loss function F'(z; D) : K — R for some domain XC where
D is some database. We want to output a solution 2P"™ using differentially private mechanism M
such that we minimize the excess empirical risk

E[F(a""";D)] - F(2"; D), (1)

where 2* € K is the true minimizer of F'(x; D).

Exponential Mechanism One of the first mechanisms invented in differential privacy, the expo-
nential mechanism, was proposed by McSherry and Talwar (2007) precisely to solve this. It involves
sampling 27" from the density

7p(x)  exp (—kF (3 D)). @)

Here k controls the privacy-vs-utility tradeoff, large k£ ensures that we get a good solution but
less privacy and small k& ensures that we get good privacy but we lose utility. Suppose Ap =
supp,p sup, |F(x; D) — F(x;D’)| is the sensitivity of F’, where the supremum is over all neigh-
boring databases D, D’. Then choosing k = ﬁ, the exponential mechanism satisfies (¢, 0)-DP.

Exponential mechanism is widely used both in theory and in practice, such as in mechanism de-
sign Huang and Kannan (2012), convex optimization Bassily et al. (2014); Mangoubi and Vishnoi
(2021), statistics Wasserman and Zhou (2010); Williams and McSherry (2010); Awan et al. (2019),
machine learning and Al Zhu and Philip (2019). Even for infinite and continuous domains, expo-
nential mechanism can be implemented efficiently for many problems Hardt and Talwar (2010);
Chaudhuri et al. (2013); Kapralov and Talwar (2013); Balcer and Vadhan (2019); Canonne et al.
(2020). There are also several variants and generalizations of the exponential mechanism which can
improve its utility based on different assumptions Thakurta and Smith (2013); Beimel et al. (2013);
Raskhodnikova and Smith (2016); Liu and Talwar (2019). See Liu and Talwar (2019) for a survey
of these results.

DP Empirical Risk Minimization (DP-ERM) In many applications, the loss function is given
by the average of the loss of each user:

1 n
F(@;D)i= =3 flass). 3)
i=1
where D = {s1, s9,- -, sp} is the collection of users s; and f(x; s;) is the loss function of user s;.

Throughout this paper, we assume f(x;s) is convex and f(x;s) — f(x; ') is G-Lipschitz for
all s, s', and K C R? is convex with diameter D." We call the problem of minimizing the excess
empirical risk in (3) as DP Empirical Risk Minimization (DP-ERM). This setting is well studied by
the DP community with many exciting results Chaudhuri and Monteleoni (2008); Rubinstein et al.
(2012); Chaudhuri et al. (2011); Jain and Thakurta (2014); Bassily et al. (2014); Kasiviswanathan
and Jin (2016); Fukuchi et al. (2017); Zhang et al. (2017); Wang (2018); Iyengar et al. (2019);
Bassily et al. (2019); Feldman et al. (2020); Kulkarni et al. (2021); Bassily et al. (2021); Liu and Lu
(2021); Asi et al. (2021); Song et al. (2021); Mangold et al. (2021); Ganesh et al. (2022).2

1. Some of our results can handle the unconstrained domain, such as K = R,
2. Most of the literature uses a stronger assumption that f(x; s) is G-Lipschitz, while some of our results only need to
assume the difference f(z;s) — f(z;s") is G-Lipschitz.
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In particular, Bassily et al. (2014) shows that exponential mechanism in (2) achieves the optimal
excess empirical risk of O (%) under (g,0)-DP. On the other hand, Bassily et al. (2014, 2019,
2020) show that noisy gradient descent on F'(x; D) achieves an excess empirical risk of

o (GD\/d;;)g(l/é)> @

under (&, §)-DP, which is also shown to be optimal Bassily et al. (2014). This is a significant v/d
improvement over the exponential mechanism.

Exponential mechanism is a universally powerful tool in differential privacy. However, nearly
all of the previous works on DP-ERM rely on noisy gradient descent or its variants to achieve the
significant v/d improvement over exponential mechanism under (€,9)-DP. One natural question is
whether noisy gradient descent has some extra ability that exponential mechanism lacks or we didn’t
use exponential mechanism optimally in this setting. This brings us to the first question.

Question 1.1 Can we obtain the optimal empirical risk in (1) under (g,9)-DP using exponential
mechanism?

DP Stochastic Convex Optimization (DP-SCO) Beyond the privacy guarantee and the empirical
risk guarantee, another important guarantee is the generalization guarantee. Formally, we assume
the users are sampled from an unknown distribution P over convex functions. We define the loss
function as

F(z) = E [f(x;5)] 5)
s~P
We want to design a DP mechanism M which outputs 27" given users D = {s1,82,...,5,}

independently sampled from P and minimize the excess population loss

WE (PG - Fa) ©®)

where x* is the minimizer of ﬁ(x) We call the problem of minimizing the excess population loss in
(6) as DP Stochastic Convex Optimization (DP-SCO). By a suitable modification of noisy stochastic
gradient descent, Bassily et al. (2019); Feldman et al. (2020) show that one can achieve the optimal

population loss of
1 dlog(1/9)
D|—+-"+——7"—= . 7
O <G ( NG + - )

Bassily et al. (2019) bounds the generalization error by showing that running SGD on smooth func-
tions is stable and Feldman et al. (2020) proposes an iterative localization technique. Note that only
the algorithm for smooth functions in Bassily et al. (2019) can achieve both optimal empirical risk
and optimal population loss at the same time, with the price of taking more gradient queries and loss
of efficiency. It is unclear to us how one can obtain both using current techniques for non-smooth
functions. This brings us to the second question.

Question 1.2 Can we achieve both the optimal empirical risk and the optimal population loss for
non-smooth functions with the same algorithm?
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Sampling Without extra smoothness assumptions on f, currently, there is no optimally efficient
algorithm for both problems. For example, with oracle access to gradients of f, the previous best
algorithms for DP-SCO use:

« 0 (nd) queries to V f(x; s) (by combining Feldman et al. (2020), Moreau- Yosida regulariza-
tion and cutting plane methods),

« O(min(n?2,n%/\/d)) queries to V f(z; s) Asi et al. (2021),
e O(min(n®/4dY/8, n3/2 /d'/8)) queries to V f (x; s) Kulkarni et al. (2021).
Combining these results, this gives an algorithm for DP-SCO that uses
O(min(nd, n®/4d"/® n®/?/d"/8 n?/V/d))

many queries to V f(z;s). Although the information lower bound for non-smooth functions with
the gradient queries is open, it is unlikely that the answer involves four different cases.

In this paper, we focus on the function value query (zeroth order query) on f(z;s). This query
is weaker than gradient query as it obtains d times less information. They are used in many practical
applications such as clinical trials and ads placement when the gradient is not available and is also
useful in bandit problems. This brings us to the third question.

Question 1.3 Can we obtain an algorithm with optimal query complexity for DP-SCO for zeroth
order query model?

1.1. Our Contributions

In this paper, we give a positive answer to all these questions using the Regularized Exponential
Mechanism. If we add an /3 regularizer to F' and sample #P"® from the density

exp (=k (F(@;D) + pllal3 /2)) ®)

then, for a suitable choice of i and k, we recover the optimal excess risk in (4) for DP-ERM and
optimal population loss in (7) for DP-SCO. Finally, we give an algorithm to sample zP"*” from the
density (8) with nearly optimal number of queries to f(x;s) (See Figure 1). To the best of our
knowledge, our algorithm is the first whose query complexity has polylogarithmic dependence in
both dimension and accuracy (in TV distance).

Formally, our result is follows:

Theorem 2 (DP-ERM, Informal) Let K be a convex set with diameter D and { f(-; s) } be a family

of convex functions on KC where f(-;s) — f(-;8") is G-Lipschitz for all s,s'. Given a database

D ={s1,82, -+ ,8n}, foranye,d € (0, %), 3 the regularized exponential mechanism

| BN
x(prw) X exp (_k . (n Zf(.’IJ, 3@‘) + g”-ﬂ‘%))
=1

3. See Theorem 25 for general conclusions for all e > 0
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is (€,0)-DP with expected excess empirical loss

2GD+/dlog(1/0)

for some appropriate choices of k and p. Furthermore, if f(-;s) is G-Lipschitz for all s, we can
sample 2P"") using O(log(l/a) log? (% 4)) queries in expectation to the values of f(x; s).

Theorem 3 (DP-SCO, Informal) Let K be a convex set with diameter D and { f(-; s)} be a family
of convex functions on KC where f(-;s) — f(-;8") is G-Lipschitz for all s,s'. Given a database
D = {s1,82, -+, Sn} of samples from some unknown distribution P. For any ¢,6 € (0, 10) the
regularized exponential mechanism

| BN
21 o exp (—k~ (n Zf(x; 53) + g”ﬂ\%))
i=1

is (€, 9)-DP with expected excess population loss

2GD n 2GD+/dlog(1/9)
Vvn en

for some appropriate choice of k and . Furthermore, if f(-;s) is G-Lipschitz for all s, we can

sample xP"™) using O(mm{lo;l/é) ,nd} log? (% 4)) queries in expectation to the values of f(x; s)
and the expected number of queries is optimal up to logarithmic terms.

For DP-SCO, we provide a nearly matching information-theoretic lower bound on the number
of value queries (Section C), proving the optimality of our sampling algorithm. Moreover, when f is
already strongly convex, our proof shows the exponential mechanism (without adding a regularizer)
itself simultaneously achieves both the optimal excess empirical risk and optimal population loss.

2. Techniques

The main contribution of this paper is the discovery that adding regularization terms in exponential
mechanism leads to optimal algorithms for DP-ERM and DP-SCO. For this, we develop some
important tools that could be of independent interest. We now briefly discuss each of the main tools.

2.1. Gaussian Differential Privacy (GDP) of Regularized Exponential Mechanism

To analyze the privacy of the regularized exponential mechanism, we need to bound the privacy
curve between a strongly log-concave distribution and its Lipschitz perturbation in the exponent.
Minami et al. (2016) gave a nearly tight (up to constants) privacy guarantee of exponential mech-
anism if the distribution exp(—kF'(z; D)) satisfies Logarithmic Sobolev inequality (LSI). Since
strongly log-concave distributions satisfy LSI, their result immediately gives the (¢, d)-DP guaran-
tee of our algorithm. However, this gives a sub-optimal privacy bound because it does not fully take
advantage of the strongly log-concave property.

4. See Theorem 29 for general conclusions for all € > 0.
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Instead, we show directly that the privacy curve between a strongly log-concave distribution and
its Lipschitz perturbation in the exponent is upper bounded by the privacy curve of an appropriate
Gaussian mechanism. This new proof uses the notion of tradeoff function introduced in Dong et al.
(2019) and the isoperimetric inequality for strongly log-concave distribution.

Theorem 4 Given convex set I C R% and pi-strongly convex Junctions F', F over K. Let P,Q be
distributions over K such that P(x) o e F®) and Q(z) o e F'®). If F — F is G-Lipschitz over

K, then for all ¢ > 0,
(P Q)E) < 5(A 0.1 H N (fﬁ ).

This proves that the privacy curve for distinguishing between P, () is upper bounded the privacy
curve of a Gaussian mechanism with sensitivity G/,/i and noise scale 1.

Tightness: Note that Theorem 4 is completely tight because it contains the privacy of Gaussian
mechanism as a special case. If F( ) = ||z||3 /2 and F(z) = ||z — a3 /2 for some a € RY, then
F(z) — F(x) = — (z,a) + ||a||3 /2 is G-Lipschitz with G = ||a||, and F, F' are 1-strongly convex.
And P = N(0,1;) and Q = N (a, I). Therefore:

O(P || Q) = 6(N(0, Ia) [| N(a, Ia)) = 6(N(0,1) | N (flall, 1))

which is precisely the upper bound guaranteed by the theorem.

2.2. Generalization Error of Sampling

Many important and fundamental problems in machine learning, optimization and operations re-
search are special cases of SCO, and ERM is a classic and widely-used approach to solve it, though
their relationships are not well-understood. If one can solve the ERM problem optimally and get
the exact optimal solution x* to minimizing F'(-; D) (see Equation 3), then Shalev-Shwartz et al.
(2009) showed z* will also be a good solution to the SCO for strongly convex functions. But in
most situations, solving ERM optimally costs too much or even impossible. Can we find a approx-
imately good solution to ERM and hope that it is also a good solution for SCO? Feldman (2016)
provides a negative answer and shows there is no good uniform convergence between F' (+; D) and
F, that is there always exists = € /C such that |F(z;D) — F( )| is large. This fact forces us to find
approximate solution to ERM with very high accuracy, which makes the algorithms inefficient.

Prior works proposed a few interesting ways to overcome this difficulty, such as the uniform
stability in Hardt et al. (2016) and the iterative localization technique in Asi et al. (2021). Roughly
speaking, uniform stability means that if running algorithms on neighboring datasets lead to similar
output distributions, then the generalization error of the ERM algorithm is bounded. Thus a good
solution to ERM obtained by a stable algorithm is also a good solution for SCO. Bassily et al.
(2019) makes use of the stability of running SGD on smooth functions to get a tight bound on the
population loss for DP-SCO.

Recall F(z;D) and F (x) are defined in Equation (3) and (5) respectively. Our result enriches
the toolbox of bounding the generalization error and provides new insights for this problem.

Theorem 5 Suppose {f;} is a family of u-strongly convex functions over K and f; — fi is G-
Lipschitz for any two functions f;, fy in the family. For any k > 0 and suppose the n samples in
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data set D are drawn i.i.d from the underlying distribution, then by sampling x*°) from density
o e_kF(z(wl)?D), the population loss satisfies
~ ~ G?> d
E[F (2] — min F(z) < — + —.
[F™0) —min Flw) < -5+ ¢
Considering two neighboring datasets D and D’, our result is based on bounding the Wasser-
stein distance between the distributions proportional to e %' (#P) and ek (@D, By the Talagrand
transportation inequality, this can be done by bounding the KL divergence between these two distri-
butions. Finally, a bound on the KL divergence easily follows from our privacy bounds. Therefore

the sampling scheme is stable (in Wasserstein distance) and this leads to the ;% term in generaliza-

tion error. The other term % is excess empirical loss of the sampling mechanism. One advantage of

our result is that it works for both smooth and non-smooth functions. Moreover, we may choose the
value k carefully and get a solution with both optimal empirical loss and optimal population loss.

2.3. Non-smooth Sampling and DP Convex Optimization

Implementing the exponential mechanism involves sampling from a log-concave distribution. When
the negative log-density function F' is smooth, i.e. the gradient of F' is Lipschitz, there are many
efficient algorithms for this sampling tasks such as Dalalyan (2017); Lee et al. (2018); Mou et al.
(2021); Chen and Vempala (2019); Durmus et al. (2019); Shen and Lee (2019); Chen et al. (2020);
Lee et al. (2020). For example, if F' = % > i, fiand each f; is 1-strongly convex with x-Lipschitz
gradient,’ we can sample = ~ exp(—F(z)) in O(n + xmax(d, v/nd) log(1/8)) iterations with
error in total variation distance and each iteration involves computing one V f;(x) Lee et al. (2021).
Note that this is nearly linear time when n > x2d and the § error in total variation distance can be
translated to an extra ¢ error in the (£, §)-DP guarantee.

’ ‘ Complexity ‘ Oracle ‘ Guarantee ‘

Bassily et al. (2014) d°0 F(z) | Do <e
Chatterji et al. (2020) GOOPRIA | VE(x) | Wy <6

Jia et al. (2021) + Chen (2021) d? F(zx) | TV<?
Ganesh and Talwar (2020) ‘127%4‘1 VF(z) | Dy<e
Liang and Chen (2021) & VF(z) | TV<é
This G* filz) | TV <4

Figure 1: The complexity of sampling from exp(—F'(z)) where F' = % >, fiis 1-strongly convex
and f; are G-Lipschitz and convex. For applications in differential privacy, ¢ is a con-
stant and 6 = n~°(), Polylogarithmic terms are omitted. Only the last result uses the
summation structure and queries only one f; each step.

Unfortunately, when the functions f; are only Lipschitz but not smooth, this problem is more
difficult. In Table 1, we summarize some existing results on this topic. They use different guarantees
such as Renyi divergence D, of order c, Wasserstein distance W9 and total variation distance TV
(defined in subsection D.1). For applications in differential privacy, we need either polynomially
small W5 or TV distance, or € small D, distance.

5. For convenience, we used f; to denote the function f(-; s;) in this and Section A.
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All previous results for non-smooth function use oracle access to I’ or VF' (instead of f;) and
have iterative complexity at least d iterations for Wy or TV distance smaller than 1/d. Because
of this, our algorithm is significantly faster than the previous algorithms and can handle the case
when F' is expectation of (infinitely many) f; directly. For example, to get the optimal private
empirical loss with typical settings where ¢ = ©(1) and § = 1/ ne(ll, the previous best samplers
use O(n*d) many queries to V f;(z) by Ganesh and Talwar (2020) or O(nd?) many queries to f;(z)
by combining Jia et al. (2021) and Chen (2021). In comparison, our algorithm only takes 6(n2)
many f,(z).

Our result is based on the alternating sampler proposed in Lee et al. (2021) and a new rejection
sampling scheme.

Theorem 6 Given a pi-strongly convex function 1)(z) defined on a convex set K C R and +oo
outside. Given a family of G-Lipschitz convex functions { fi(z)}ier defined on K and an initial
point zy € K. Define the function F(z) = Eic; f;(x) +¥(z) and the distance D = ||zo — z* |2 for
some r* = argmingex F'(z). Forany § € (0,1/2), we can generate a random point x that has 0
total variation distance to the distribution proportional to exp(—F(z)) in

2 2 2
im0 (S (CULEDY) e
"

Furthermore, each steps accesses only O(1) many f;(x) and samples from exp(—(x) — 5= ||z —
y|13) for O(1) many y in expectation withn = ©(G~2/log(T/6)).

3. Preliminaries

We present some necessary definitions and background used in the paper. We refer to the Appendix
for other basic definitions such as Wasserstein distance and log-concavity.

3.1. Differential Privacy

A DP algorithm M usually satisfies a collection of (e, §)-DP guarantees for each ¢, i.e., for each &
there exists some smallest § for which M is (e, §)-DP. By collecting all of them together, we can
form the privacy curve or privacy profile which fully characterizes the privacy of a DP algorithm.

Definition 7 (Privacy Curve) Given two random variables X,Y supported on some set <), define
the privacy curve §(X||Y') : R>o — [0, 1] as:

I(X|Y)(e) = ElclgPr[Y € S]—e"Pr[X € 5].

One can explicitly calculate the privacy curve of a Gaussian mechanism as

SN0, | V(s 1)) = @ (—=+3) —e"@ (—= - 7) ©)
where ®(-) is the Gaussian cumulative distribution function (CDF) Balle and Wang (2018). We say
a differentially private mechanism M has privacy curve ¢ : R>o — [0, 1] if for every ¢ > 0, M
is (g, d(e))-differentially private, i.e., 6(M(D)|| M(D’))(e) < d6(¢) for all neighbouring databases
D, D'. We will also need the notion of tradeoff function introduced in Dong et al. (2019) which is
an equivalent way to describe the privacy curve 6(P||Q).
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Definition 8 (Tradeoff function) Given two (continuous) distributions P, (), we define the trade-
off function® T(P||Q) : [0,1] — [0,1] as

T(PIQ)(:) = inf  QLS)

It is easy to compute explicitly the tradeoff function for Gaussian mechanism Dong et al. (2019)
TN, D[N (s,1))(2) = 2(D7H (1 — 2) — 5). (10)

Note that perfect privacy is equivalent to the tradeoff function Id(z) = 1— z and the closer a tradeoff
function is to Id, better the privacy. The tradeoff function 7'(P||Q) and the privacy curve §(P||Q)
are related via convex duality. Therefore to compare privacy curves, it is enough to compare tradeoff
curves.

Proposition 9 (Dong et al. (2019)) /(P||Q) < o(P'||Q") iff T(P||Q) > T(P'|Q")

3.2. Isoperimetric Inequality for Strongly Log-concave Distributions

The cumulative distribution function (CDF) of one-dimensional standard Gaussian distribution will
be denoted by ®(x) = Pryxr0,1)[y < z]. The following Lemma relates the expanding property of
log-concave measures with .

Proposition 10 (Theorem 1.1. in Ledoux (1999)) Let 7 be a p-strongly log-concave measure sup-
ported on a convex set K C R%. Let A C K by any subset such that 7(A) = z. For any point
z € RY define d(x, A) = infyea ||z — yll2. Let A, = {x :d(z,A) <r}. Thenif A, C K, for
every r > (),

m(A) > ®(@ 7 (2) +r/p).

The property above implies the concentration of Lipschitz functions over log-concave measures.

Corollary 11 Let 7 be a p-strongly log-concave measure supported on a convex set K C R<
Suppose o : K — R is G-Lipschitz. For z € [0, 1], define m(z) € R such that Pry.[a(x) <
m(z)] = z. Then for every r > 0,

Prla) > m() +r] <@ (070 2) -

)

Pfa(o) < mle) -l < @ (874) - T4

4. GDP of Regularized Exponential Mechanism

In this section, we prove our DP result (Theorem 4). The proof uses the isoperimetric inequality
for strongly log-concave measures Ledoux (1999). Intuitively, the privacy loss random variable
will be G-Lipschitz under the hypothesis and isoperimetric inequality implies that any Lipschitz
function will be as concentrated as a Gaussian with appropriate standard deviation. This allows us

6. Tradeoff curves in Dong et al. (2019) are defined using type I and type I errors. The definition given here is equivalent
to their definition for continuous distributions.
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compare the privacy curve 0(P || @) to that of a Gaussian mechanism. In our proof, it is actually
more convenient to compare tradeoff curves (T'(P || @)) which are equivalent to privacy curves via
convex duality (Proposition 9 and Theorem 4). We now prove our main privacy bound. Assume the
following claim holds.

Claim 12 -
/ e 'd (a)dt d(a )*62 TP(a— )
0 Y

o 2

/ el <a - ) dt = —®(a) + ez T D(a + 7)
0 Y

Theorem 13 Given convex set I C R® and p-strongly convex Junctions F, F over K. Let P,Q be

distributions over K such that P(x) o< e~ ¥®) and Q(z) oc e=¥'®). If F — F is G-Lipschitz over

K, then for all z € [0, 1],

7P| Q)(:) = T(N (0. H N (fﬂ,l»(z).

Proof Let v = G/,/ji. Let a(z) = F(z) — F(z) so that Q(z) o e @ P(z). Recall that we
have T'(P||Q)(z) = 1nf 5:p(5)=1—z Q(S). Note that the infimum is achieved when we choose S =
{r e L:alx) >m(z)} for some m(z) chosen such that P(S) = Prpla(z) > m(z)] =1—z
(Neyman-Pearson lemma).

Therefore:

Jues € *WP@)dr Eple15)\ ™'
PHQ / Q d.l‘ N fxEIC e_a(m)P({L‘)dl‘ N <1 + Ep[e_alg])

We now lower bound Ep[e™*1g]. Let the random variable Y = «(z) where = ~ P. Let fy(-) be
the PDF of Y, hence we have.

Ele="14] = / s =) P(g)da = Ble=Y 1(Y > m(2))] = / T ety ()t

Moreover,
o0 (o.9] >
/ e fy(t)dt = / e—t-m(e) <_dP1"w~P lafa) 2 ¢+ m(z)]) dt
m(z) t=0 dt
= ) <—e_t Pr [a(z) >t +m(z)] —/ et Pr [a(x) >t +m(2)] dt)
x~P 0 t=0 x~P

= (1—2)e ™) — e_m(z)/ et P];D [a(z) >t +m(z)]dt
t=0 @

> (1 —z)e” ™) — gmm(z) / e t®(@ Y1 —2)—t/y)dt  (Corollary 11)
t=0

2

= (1—2)e ™) — g=m() <(1 —2) —exp (72 —ol(1— z)’y) (O (1—2) - ’y))
(Claim 12)

2
= exp (72 + <I>_1(z)’y — m(z)) P(—01(2) — )

10
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We can upper bound
2
Ble15] < o+ 0712y~ m(s) ) 2(@7(2) +)

in a similar way, and we refer to the Appendix for the full proof. Combining the two bounds, we
get:

Eple™"1g] ) o

T(PlQ)(2) = (1 T Eple1s

(<071 (z)—7)  (Using ®(x) + ®(~z) = 1)
(N(0,1) || N(,1)). (Eqn (10))

As a corollary to Theorem 13, we can bound any divergence measure that decreases under
post-processing such as Renyi divergence or KL divergence. In particular, this also implies Renyi
Differential Privacy Mironov (2017) of our algorithm. The proof can be found in the Appendix.

Corollary 14 Suppose F, F are two p-strongly convex functions over KK C R and F — F is G-
Lipschitz over K. Forany k > 0, ifwe let P o< e " and Q oc e *F be two probability distributions

on K, then we have
GVk
D(P|Q) <D <N(O, 1)||N <\/ﬁ’ 1))

for any divergence measure D which decreases under post-processing. In particular,

akG? kG2
D P < —.
o and D, (P|Q) < 2

Da(P[Q) <

5. Sampling and Optimization Results Overview

Due to the space limit, we briefly discuss our results on efficient non-smooth sampling algorithm and
DP convex optimization in this section, and the details can be found in Appendix A and Appendix B.

5.1. Sampling
We study the following problem about sampling from a (non-smooth) log-concave distribution.

Problem 15 Given a p-strongly convex function (x) defined on a convex set K C R* and +oc
outside. Given a family of G-Lipschitz convex functions { fz(x)/}le 1 defined on K. Our goal is to
sample a point x € K with probability proportionally to exp(—F(x)) where

F(z) = E fi(x) + b(x).

11
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Algorithm 1: Alternating Sampler

Input: p-strongly convex function F, step size 7 > 0, initial point z¢
fort € [T] do
Yt < x4—1 + /N - ¢ where ¢ ~ N(0, 1).
Sample z; o< exp(—F(z) — 5[l — w[|3)-
end
Return z

Our sampler is based on the alternating sampling algorithm in Lee et al. (2021) (See algo-
rithm 1). This algorithm reduces the problem of sampling from exp(—ﬁ (z)) to sampling from
exp(—ﬁ (x) — %Hx — y||?) for some fixed 1 and for roughly # many different y. When the
step size 7 is very small, the later problem is easier because the distribution is almost like a Gaus-
sian distribution. For our problem, we will pick the largest step size 7 such that we can sample
exp(—F(z) — %HJE — y|?) using only O(1) many steps.

Theorem 16 (Lee et al., 2021, Theorem 1) Given a u-strongly convex function F' defined on KC with
an initial point xo. Let the distance D = ||zg — z*||3 for any x* = arg mingcx ﬁ(m) Suppose
the step size n < % the target accuracy 6 > 0 and the number of step T > @(# log(d/“n%m)).
Then, Algorithm I returns a random point xr that has § total variation distance to the distribution

proportional to exp(—F(z)).

Now, we show that Line 1 in Algorithm I can be implemented by a simple rejection sampling.
The idea is to pick step size 1 small enough such that F'(x) is essentially a constant function for a
random x ~ N (y,n - I). The precise algorithm is given in Algorithm 2.

Algorithm 2: Implementation of Line 1

Input: convex function ﬁ(m) = Ejer fi(x) + (), step size n > 0, current point y
repeat
Sample z, z from the distribution oc exp(—1(z) — ﬁ”x —9y13)
Setp+ 1
fora=1,2,--- do
p < p+ 115, (f;,(2) — fj,(x)) where j; are random indices in [

With probability £, break

end

Sample v uniformly from [0, 1].
until v < % 0

Return x

The properties of our sampler are demonstrated in the following theorem.

Theorem 17 Given a p-strongly convex function 1)(x) defined on a convex set K C R? and +oo
outside. Given a family of G-Lipschitz convex functions {fi(x)}icr defined on K. Define the Jfunc-
tion F(z) = Eer fi(x) + ¢¥(x) and the distance D = ||zg — x*|| for some x* = arg min, F(x).

_ llz—yl3

T ) for any y € R and n > 0,

Forany § € (0,1/2), if we can get samples from exp(—1(x)

12
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we can find a random point x that has J total variation distance to the distribution proportional to
exp(—F(x)) in

G2

T := @(7 logz(—GZ(d/M + D%)

5 )) steps.

Furthermore, each steps accesses only O(1) many f;(x) in expectation and samples from exp(—1(z)—

sillz = yl3) for O(1) many y with ) = ©(G 2/ log(T/9)).

5.2. DP Optimization

We analyze the performance of our algorithm for DP-ERM and DP-SCO in this section. As for
DP-ERM, briefly speaking, we show sampling from exp(—k(F (z; D) + pl|x||3/2)) for some ap-
propriately chosen k, ;1 can achieve the optimal DP excess empirical risk. The privacy guarantee
follows from our abstract theorem of the Regularized Exponential Mechanism (Theorem 13), and
the utility guarantee of sampling schemes follows from the following standard result.

Lemma 18 (Utility Guarantee, (De Klerk and Laurent, 2018, Corollary 1)) Suppose k > 0 and
F is a convex function over the convex set K C R%. If we sample x according to distribution v whose
density is proportional to exp(—kF(x)), then we have

d
E[F(z)] < min F(z) + —.
v e k
This is first shown by Kalai and Vempala (2006) for any linear function F', and Bassily et al.
(2014) extends it to any convex function F' with a slightly worse constant.

Now we bound the generalization error of the Regularized Exponential Mechanism for DP-

SCO. By Corollary 14, for neighboring databases D, D’ we can bound Dg 1, (A(D), A(D’)) < frgi

where A(D) is sampling from exp(—k(F(x; D) + u||z||3 /2)). As the distributions are strongly
log-concave, we can get an upper bound on the Wasserstein distance due to Talagrand transportation
inequality. Recall for two probability distributions v, 12, the Wasserstein distance is defined as

1/2
W) =it (| E o -aal})

(z1,22)~

where the infimum is over all couplings I" of vy, vs.
Theorem 19 (Talagrand transportation inequality, Theorem 1 in Otto and Villani (2000)) Let
dr o e F@dx be a p-strongly log-concave probability measure on K C R with finite moments

of order 2. For all probability measure v absolutely continuous w.r.t. w and with finite moments of
order 2, we have

2
Wg(l/,ﬂ) S ;DKL(I/,ﬂ').

From this we get Wa(A(D), A(D')) < \/%DKL(A(D), A(D")) < % A small bound on
Wasserstein distance in some sense means the Regularized Exponential Mechanism is stable and
thus has a small generalization error by the following Lemma.

13
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Lemma 20 (Lemma 7 in Bousquet and Elisseeff (2002)) For any learning algorithm A and dataset
D = {s1, -, Sn} drawn i.i.d from the underlying distribution P, let D' be a neighboring dataset
formed by replacing a random element of D with a freshly sampled s' ~ P. If A(D) is the output
of A with D, then

E[F(A(D)) — F(A(D); D)) [/ (AD); ) = FAD); 5. an

= E
D,s'~P,A
To see how stability in the Wasserstein metric implies a good bound on the generalization error,
suppose f( - ;s) is G-Lipschitz for any s, then the RHS of (11) can be upper bounded by G -
Ws(A(D), A(D’)). Combining these ideas, we prove our main result on the generalization error.

Theorem 21 Suppose {f(-,s)} is a family p-strongly convex functions over K such that f(z;s) —

f(z; ") is G-Lipschitz for all s, s'. Suppose we sample our solution from density mp(x) o e~ *F@P),
For any k > 0 and dataset D = {s1, 59, , Sy} drawn i.i.d from the underlying distribution P,

let D' be a neighboring dataset formed by replacing a random element of D with a freshly sampled
s’ ~ P, then Wo(mp, mpr) < % We can bound the excess population loss as:

B [F()) - min Fa) < &+
x)] — min F(z —+ —.
D,x~Tp zeK —un k
Lastly, one can efficiently implement the sampling by our efficient sampler. In Appendix C, we
complement our algorithmic results with a nearly matching information-theoretic lower bound on
the zeroth order query complexity for DP-SCO.

Roadmap

In Appendix A, we present our efficient non-smooth sampling algorithm. In Appendix B, we show
how to make use of our results to achieve optimal empirical risk for DP-ERM and analyze the
generalization error to get optimal DP-SCO population loss. In Appendix C, we give information-
theoretic lower bounds on the zeroth order query complexity for DP-SCO and (non-private) sam-
pling scheme, which nearly match our upper bounds. Some omitted definitions and proofs can be
found in Appendix D and Appendix E.
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Appendix A. Efficient Non-smooth Sampling

In this section, we finish the proof of the main result on our efficient sampler. Recall we want to

sample from the probability proportionally to exp(—F(z)) where F(z) = Eie; fi(z) + ¢ ().
Since F has the v term, instead of sampling x from N (y,n- 1;), we sample from exp(—(z) —

2—177||x — y||?) in Algorithm 2. The following lemma shows how to decompose the distribution

exp(—F(z)— % ||lz—y||?) into the distribution mentioned above and the distribution exp(— E;c; f;(z)).
It also calculates the distribution given by the algorithm.

Lemma 22 Let 0 be the distribution proportional to exp(—F(z) — %Hw — y|13) and let G be the
distribution proportional to exp(—i(z) — ﬁ”fﬂ — y||?). Then, we have that

dm dg ) exp(— Eier fi(x))

dr  dr FEyogexp(—Eie fi(z))

Let T be the distribution returns by Algorithm 2. Then, we have that

&7 dG E(plz)

de  dr TE(p)

where p = min(max(p,0), 2) is the truncation of p in Algorithm 2 to [0, 2], E(p|x) is the expected
value of p conditional on x, and E(p) = E,.g E(p|z). Furthermore, we have that

E = —E f; - E E f; )
(plz) = exp(— E filx)) - E_exp(E, £i(2))
Proof For the true distribution 7, we have

) = (@) — g5l — yll3)

2) — () — &lle — ylB)da

dr  _ 49 exp(=Eics fi(z))
Jexp(—Eies fi(x))Edx  dz Egwgexp(—Eier fi(z))

dr  exp(~Eiet f
dx feXp(_EieI fi

For the distribution 7 by the algorithm, we sample = ~ G, then accept the sample if u < % P
Hence, we have
dr dGPr(u < tp|z)
dr  dx Pr(u< %p) .

Since u is uniform between 0 and 1, we have the result.
Finally, for the expectation of p, we note that

EILZ (f(2) = fi(@)) = (E (fi(2) — fi(2)))"

and that the probability that the loop pass step « is exactly % Hence, we have

E(plr,2) = 1+ (B (fi(2) — i) = oxp(E (fi(2) — fix))
a=1

7
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Taking expectation over z gives the result. |

Note that if we always had 0 < p < 2, then E(p|z) = E(p|z) x exp(— Eics fi(x)) and hence
% = %. Therefore, the only thing left is to show that 0 < p < 2 with high probability and
that it does not induces too much error in total variation distance. To do this, we use Gaussian
concentration to prove that E;c; f;(x) is almost a constant over random = ~ G.

Lemma 23 (Gaussian concentration (Ledoux, 1999, Eq 1.21)) Let X ~ eXp(—F\) forsome 1/n-
strongly convex F and ¢ is a G-Lipschitz function. Then, for all t > 0,

Pr[(X) — E[¢(X)] > t] < e 1*/(2nC?),

Now, we are already to prove our main result. This shows that if 7 < G2, then the algorithm
indeed implements Line 1 correctly up to small error.

Lemma 24 If the step size 1 < C'log ™ (1/6inner)G =2 for some small enough C and the inner
accuracy dipner € (0,1/2), then Algorithm 2 returns a random point x that has dinner total variation
distance to the distribution proportional to exp(—F (z) — ﬁ |z —yl||3). Furthermore, the algorithm
accesses only O(1) many f;(x) in expectation and samples from exp(—1(z) — %Hx — y|13) for
O(1) many y.

Proof Let 7 be the distribution given by ¢ - exp(—F(z) — % |z — y||3) and 7 is the distribution
outputted by the algorithm. By Lemma 22, we have

drv (7, 7) = /R d dG  exp(—Eier fix))  dGE(plz)

bt — dx
dz Eygexp(—Eicr fi(z)) dz E(p)
= E

exp(—Eies fi(z))  E(plz)
Ezng exp(—Eicr fi(z))  E(p)
Let X be the random variable E(p|z) and X be the random variable E(p|z). Lemma 22 shows that
X =exp(—Eies fi(x)) - E.g exp(Eicr fi(2)) and hence
exp(=Eicr filz)) X
Esngexp(—Eicr fi(z))  Esng X

Therefore, we have
X X
EX EX

X X

X X QEyX—)?\
EX EX

d ) =E
TV<7T77T> = ‘EX’

(12)

X_)Z+
EX EX

We simplify the right hand side by lower bounding E X. By Lemma 23 and the fact that the
negative log-density of G is 1/n-strongly convex, we have that E;c; fi(2) > Epog Eier fi(x) —
2G/m with probability > 1 — e~2. Hence, we have

EX = IHEQ exp(— iIEEI fl(w)) ‘ Z@Q exp(iIEEI fl(z))
= €Xp(— xIEQ Z'IGEI fl(x)) ‘ ZIEQ exp(iIGEI fl(z))

=5 exp(E, fi(2) - i fi@))

> (1 - ¢72) exp(—2G /7).
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Using n < G~2/8, we have E[X] > 2. Using this, (12), X = E(p|z) and X = E(p|z), we have
dpv(m,7) < 3-E[X — X| <3-E(|p| - Lgpa)-

We split the p into two terms p<y, and p~ . The first term p<y, is the sum of all terms added to
p when a < L (including the initial term 1). The second term p-~ 1, is the sum when o > L. Hence,
we have p = p~ 1, + p<r and hence

drv(m,7) < 3-E(lp>Ll - Lo¢pz2) +3 - Ellp<cl - 1ogo,2)- (13)

For the term p~ 1, by a calculation similar to Lemma 22, we have
E(lo>rl - Logo2) <Elp>i] < E @(E |fi(z) — fi(2))),

where ®(t) = Y07, 4 ta—a, is a power series in ¢ with all positive coefficients. By picking L >
C'log(1/dinner) for some large constant C, we have ®(t) < 5“1‘—%‘* for all [t| < 1. Let A be the
random variable E;c; | fi(2) — fi(x)| whose randomness comes from z and z. Then, we have

5inner A 5inner R k+1
E(lp>rl - Lpgioa) < =35+ +Eelaz < 22 +) e Pr(A > k).

k=1

Denote a function h, .(t) := Pricr[|fi(z) — fi(x)] > t]. Since each f; is G-Lipschitz,
Lemma 23 shows that

Pr(|fi(z) — fi(z)| > 1] < 4e~1*/(B1CG?),

which implies

[hx,z(t)} = PI‘HfZ(z> — fz(x)‘ > t] < 467152/(817G2).

T,z
By Markov inequality, for any £ > 0, we know

Pr[h$7z(t) > eik] < 4€k7t2/(87lG2)_

As|fi(2) = fi(@)| < Gz — 2|2, if ha - (t) = Prics[| fi(z) — fi(z)] > 1] < e=t*/(161G%) e know
E1fi(z) = @] < t+ e t/(16nG%) . G|z — z]|,.
Hence, one has
Pr| E |fi(2) — fi(z)] > t+ e /0G| — z||2} < Prlhy,q(t) > e /010157

T,z Liel
) 2
go—t2/(169G2)

IN

By Gaussian Concentration, we know
Pr[||z — z|l2 > t] < Pr[||lz —Ex|2 > t/20r ||z —Ez|| > t/2]
x,z T,z

< 9012/ (8n)
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Thus we know
Pr(E |fi(2) — filx)] > 21
= PrE [£i(2) ~ file)| > 20, |}z — 22 > t/G] + Pr[E |fi(2) — fi(a)] > 2t |l — 2]}2 < t/C]
< 2e77/CT 4 PUE |fi(2) ~ fi(w)| > 24, |l — 2]l2 < t/C]
<2 /OF L P E |fi(2) - fila)] = t + G — 2]l

T,z e

< Ge—t7/(16nG?)

Hence, we have Pr(A > k) < 6 exp(—k2/(64G?7)) and

E(‘ ‘ 1 ) < 5inner +17 - k—% < 5inner (14)
. e n [——
P>L| " Lpg0,2]) = 16 1§21 =79

where we used 7 < 275G 72 /10g(400/Jinner ) at the end.
As for the term p<r,, we know that

E(lp<c] -1 02})
=E(lp<r| 1pg0,2) - 1|p<L|<2L) +E(lp<cl - 1pgp,2) - L)ooy >28)
<Pr[p ¢ [0,2]]- 2" + Z 2V Pr(|pe | > 251 (15)

k=1

Note that the term p<, involves only less than £ many fi(x) and f;(z). Lemma 23 shows that for
any 7, we have

Pr(|fi(z) — E_fi(x)| > t) < 2e7/216%),
~G :L'Ng
By union bound, this shows
4k

1
xljsgﬂfz(m) — fi(2)| > ZQk for any such i) < L? exp(—m).

Under the event | fi(z) — f;(2)| < 12 for all i appears in p<y,, we have

L L
lp<r| <1+ ZHi=1’fji,a(’z) — fia@)] <1+ Z(g) < 2

a=1 a=1
Therefore, we have Pr(|p<y| > 2¥) < L2 exp(—gﬁ%) and
2 k+1 LPI' p L| > 2kL k+1 LL2 eXp(— ) S 24kL Xp(_ )
; kz 32nG?2 ; 32nG?

Picking n < 278G ~2L~!, we have that

o0 0 o
_ 5inn r
;12 k—i—l)LPr (lp<c| > kL) < kz_: 9L oxp(—2 - 4FL) < 22 kL < Te (16)

b
Il
—
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by picking L > C'log(1/dinner) for large enough C.

It remains to bound the term Prlp ¢ [0,2]]-2%. We know the probability the algorithm enters the
(L + 1)-th phase is at most 7;. Hence we know Pr[p ¢ [0,2]] < 2 + Pr[p<; ¢ [0,2]]. Similarly,
by Gaussian Concentration and union bound, we have

xlzfg(’fz(x) — fi(2)] > 1/2 for any fixed i) < exp(_w

Under the event that | f;(x) — fi(z)| < 1/2 for all ¢ appears in p<r,, we have

).

L

1—211 Cliia(2) = Fia @] € pep <14 T [fi,0(2) = fia (@),

a=1

which implies 0 < p<;, < 2. Then we know Pr[p<y, ¢ [0,2]] < L? exp(— & 5-2) by Union bound.
By our setting of parameters and that L = C'log(1/dinner) for some large constant C, we know
1 1 5inner
- V< )
G2 T S o
Combining (13), (14), (15), (16) and (17), we have the result drv (7, 7) < dinner-
Finally, the accept probability is givenby E X /2andEX > EX-E | X - X| > % ‘S”‘“e > %
Hence, the number of access is O(1).

Prlp ¢ [0,2]] - 2% < 2"(L? exp(— (17)

Combining Theorem 16 and Lemma 24, we have the following result:

Theorem 17 Given a y-strongly convex function 1)(z) defined on a convex set K C R and +oc
outside. Given a family of G-Lipschitz convex functions { f;(x) }ics defined on K. Define the func-
tion F(z) = Eic; fi(z) + ¥(z) and the distance D = |zo — :n*Hgfor some ©* = arg min, F(z).
Forany § € (0,1/2), if we can get samples from exp(—(x) — ”z y||2 ) for any y € R and n > 0,
we can find a random point x that has J total variation distance to the distribution proportional to
exp(—F(z)) in
2 2 2
T:= @(C;l (G(d//g—l—D))) steps.

Furthermore, each steps accesses only O(1) many f;(x) in expectation and samples from exp(—(x)—
a5l = ylI3) for O(1) many y with n = ©(G 2/ log(T'/9)).

Proof This follows from applying Lemma 24 to implement Line 1. Note that the distribution im-
plemented has total variation distance dipper to the required one. By setting dipner = /(27"), this
only gives an extra §/2 error in total variation distance. Finally, setting 7 = ©(G~2/1og(1/8inner)),
Theorem 16 shows that Algorithm 2 outputs the correct distribution up to §/2 error in total variation
distance. This gives the result. |

In the most important case of interest when () is ¢3 regularizer, one can see exp(—(x) —
% |z — y||3) is a truncated Gaussian distribution, and there are many results on how to sample from
truncated Gaussian, e.g. Kotecha and Djuric (1999). For more general case, there are also efficient
algorithms to do the sampling, such as the Projected Langevin Monte Carlo Bubeck et al. (2018).
In fact our sampling scheme matches the information-theoretical lower bound on the value query
complexity up to some logarithmic terms, which can be reduced from the result in Duchi et al.
(2015) with some modifications. See Section C for a detailed discussion.

25



GOPI LEE

Appendix B. DP Convex Optimization

In this section we present our results about DP-ERM and DP-SCO.

B.1. DP-ERM

In this subsection, we state our result for the DP-ERM problem (3). Briefly speaking, our main
result (Theorem 4) shows that sampling from exp(—k(F(z; D) + &||z||3)) for some appropriately
chosen k and p is (g,0)-DP and achieves the optimal empirical risk in (4). Our sampling scheme
in Section A provides an efficient implementation. We start with the following lemma which shows
the utility guarantee for the sampling mechanism which was mentioned before.

Lemma 18 (Utility Guarantee, (De Klerk and Laurent, 2018, Corollary 1)) Suppose k > 0 and
F is a convex function over the convex set K C R%. If we sample x according to distribution v whose
density is proportional to exp(—kF (x)), then we have

Theorem 25 (DP-ERM) Let ¢ > 0, K C R? be a convex set of diameter D and { f(-; 5)}sep be a
family of convex functions over K such that f(x;s) — f(x;s") is G-Lipschitz for all s, s'. For any
data-set D and k > 0, sampling = P"**) with probability proportional to exp (—k(F(z;D) + pl|z|3/2))

is (¢, 0(¢g))-differentially private, where
GVk

The excess empirical risk is bounded by % + “TDZ. Moreover, if { f (-, s) }sep are already pi-strongly

5(e) < (5(./\/(0, 1)

convex, then sampling xP"™) with probability proportional to exp(—kF (z; D)) is (¢, 6 (¢))-differentially
private where
GVk
NG .
n./p

Proof The privacy guarantee follows directly from our main result Theorem 4, and the bound on
excess empirical loss can be proved by Lemma 18. |

d(e) < (5(./\/(0, 1)

The excess empirical risk is bounded by %.

Before we state the implementation results on DP-ERM, we need the following technical lemma:

Lemma 26 For any constants 1/2 > § > 0and e > 0, if |s| < /2log(1/(25)) + 2 —
21log(1/(26)), one has

SN(0,1) | M(s,1)) <.
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Proof By Equation (9), we know that

SN0, 1) [| Vs, 1))(e) < @ (== + 2]

Without loss of generality, we assume s > 0 and want to find an appropriate value of s such that
® (—£+ 5) < 4. Denote ¢ &ef ®~1(1—6) and since 1 — ®(t) < 5 exp(—t?/2) for t > 0, we know
that £ < /2log(1/(26)). It is equivalent to solve the equation £ — 5 > ¢, which is equivalent to
0 < s < V12 + 2e — t. Note that v/12 + 2 — t decreases as t increases, which implies that we can

set s < 1/2log(1/(25)) + 2e — /21og(1/(26)). |

Combining the sampling scheme (Theorem 17) and our analysis on DP-ERM, we can get the
efficient implementation results on DP-ERM directly.

Theorem 27 (DP-ERM Implementation) With same assumptions in Theorem 25, and assume
f(-;8) is G-Lipschitz over K for all s. For any constants 1/10 > § > 0 and € > 0, there is an
efficient sampler to solve DP-ERM which has the following guarantees:

* The scheme is (e, d)-differentially private;

GDVd
n(y/log(1/8)+e—+/log(1/4))
26D/ dlog(1/9) W. Ife > log(1/6),

» The expected excess empirical loss is bounded by . In particular, if

e < 1/10, the expected excess empirical loss is bounded by

the expected excess empirical loss is bounded by O(GnDi\/\?).

e The scheme takes
e2n? nde
T og? (==
© (1ot 5)

queries to the values on f(x;s) in expectation and takes the same number of samples from
some Gaussian restricted to the convex set K.

Proof By Lemma 26, we can set s = 1/21og(3/(46)) + 2e—+/21log(3/(44)) to make §(N'(0,1) || N(s,1)) <

24 /3. For our setting, Theorem 25 shows that we have s = %\/FE and hence we can take

ot (R0 % — o8
_ _ |

GVd
nD(\/log(3/(45))+€—\/10g(3/(45))) ’

2
Putting it into the excess empirical loss bound of %+ % and setting j4 =

we get the result on the empirical loss.
Particularly, consider the case when ¢ < 1/10. We know the excess empirical loss is bounded

GDVd .Notethatl—l—%—%S\/l—i-xg1+%f0erO.Underthe

b
Y (/10803 (10))+2—y/log(3/(49))
. 1 GD+Vd 2GD+/dlog(4/(56))
assumption that 6, € (0, 15), we know (/10805 (10)) +e— /108 B/ @) < — . The

case when € > log(1/4) also follows similarly.
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To make it algorithmic, we apply Theorem 17 with the accuracy on the total variation distance to
be min{d/3, —1_} for some large enough constant c. This leads to (¢, §)-DP and an extra empirical

loss and hence we use log(1/0) rather than log(3/(46)) or log(4/(59)) in the final loss term.
The running time follows from Theorem 17. |

B.2. DP-SCO and Generalization Error

We prove our main result on the generalization error (Theorem 21) first. As mentioned before,
one can reduce the DP-SCO (5) to DP-ERM (3) by the iterative localization technique proposed by
Feldman et al. (2020). But this method forces us to design different algorithms for DP-ERM and DP-
SCO, and may lead to a large constant in the final loss. In this section, we show that the exponential
mechanism can achieve both the optimal empirical risk for DP-ERM and the optimal population
loss for DP-SCO by simply changing the parameters. The bound on the generalization error works
beyond differential privacy and can be useful for other (non-private) optimization settings.

The proof will make use of one famous inequality: Talagrand transportation inequality. Recall
for two probability distributions vy, vo, the Wasserstein distance is equivalently defined as

1/2
. 2
Wovi,vp) =inf | E o1 —aafl;)
' \(z1,22)~T
where the infimum is over all couplings I' of vy, vs.
Now we restate and prove our main result on the generalization error.

Theorem 21 Suppose {f(-,s)} is a family p-strongly convex functions over K such that f(x;s) —

f(z; ") is G-Lipschitz for all 5, s'. Suppose we sample our solution from density mp(x) o< e~ *F(@P),
For any k > 0 and dataset D = {s1,s2,- - , Sy} drawn i.i.d from the underlying distribution P,

let D' be a neighboring dataset formed by replacing a random element of D with a freshly sampled
s’ ~ P, then Wo(mp, mpr) < % We can bound the excess population loss as:

E[F()] - minFa) < &+ 2
D,x~7p ze Toun kE
Proof Recall that
1
F(x; D) = — i
@) = 3 slain)

We form a neighboring data set D’ by replacing a random element of D by a freshly sampled s’ ~ P.
Let 7p o< e *F(@P) and p ox e FF(@P") By Corollary 14, we have

G?k
Dgr(mp, mpr) < 22

By the assumptions, we know both F'(x; D) and F'(x; D’) are p-strongly convex and by Theorem 19,
we have

2
Wa(mp, mpr) < \/kMDKL(ﬂ'DﬂTD’) < nﬁ

=
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By Lemma 20 and properties of Wasserstein distance, we have

B (F@) - FaDl= B | B jws)- B fs)
D,x~7p D,s'~P |z~7D ! T

— E E RPRANE /) _ E AN )

DB | B 15 = flais)] = B [f(') ~ flo'ss")
(where s is chosen arbitrarily, note that Ep ;. [f (25 5")] = Epr prermp, [f (25 8)])

< G- -Wy(mp,7p) (f(x;8") — f(x;8") is G-Lipschitz)
GQ

<.
np

Hence, we know that

E [F(z)]-minF(z)< E [F(2)]— E[minF(z;D)]

D,x~7p zeK D,x~7p D zek
(x) = F(z;D)|+ E [F(z;D)— min F(x; D))

D,x~7p D,x~7p zek

INA
=
)

<—+ E [F(2;D)— min F(z;D)]
n,u D,ZNWD ze

where the last inequality follows from Lemma 18. |

With the bounds on generalization error, we can get our first result on DP-SCO.

Theorem 28 (DP-SCO) Letc > 0, K C RY be a convex set of diameter D and {f(-;s)}sep be a
family of convex functions over K such that f(x;s) — f(x;s') is G-Lipschitz for all s, s'. For any
data-set D and k > 0, sampling = P"") with probability proportional to exp (—=k(F (x; D) + pllz|3/2))

is (¢, 6(¢))-differentially private, where
I <G¢E 1)) ©
ny/p

If users in the data-set D are drawn i.i.d. from the underlying distribution P, the excess population

d(e) < 5(/\/(0, 1)

loss is bounded by % + % + “TD{Z. Moreover, if {f(+; s)}sep are already u-strongly convex, then
sampling xP"™) with probability proportional to exp(—kF (z; D)) is (¢, 6(¢))-differentially private

where
N (i\/ﬂ? 1)) (e).

Proof The first part about privacy is a restatement of our result on DP-ERM (Theorem 27). The
excess population loss (See Equation (6)) follows from the bound on generalization error (Theo-
rem 21) and utility guarantee (Lemma 18). |

d(e) < 5(]\/(0, 1)

G

The excess population loss is bounded by T %.

We give an implementation result of our DP-SCO result.
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Theorem 29 (DP-SCO Implementation) With same assumptions in Theorem 28, and assume
f(;8) is G-Lipschitz over K for all s. For 0 < § < %0 and 0 < € < 1—10, there is an efficient
algorithm to solve DP-SCO which has the following guarantees:

o The algorithm is (e, §)-differentially private;

* The expected population loss is bounded by

oD (2 105511/6)d+;ﬁ>,

where ¢ > 0 is an arbitrary constant to be chosen.

o (o {riim e (7))

queries of the values of f(-,s;) in expectation and takes the same number of samples from
some Gaussian restricted to the convex set K.

» The algorithm takes

Remark 30 As for the non-typical case when € > 1/10, one can use the bound in Theorem 27 and
the bound on generalization error (Theorem 21) . Particularly, one can achieve expected population

Vd/n 1
loss O <GD <\/log(1/5)+€\/10g(1/5) + \/ﬁ>)

Proof By Theorem 28, sampling from exp(—k(F (z; D) + | z||3/2)) when k < #&7(4&)

is (€,20/3)-DP. Besides, we can set k = 45 min{%, 2nd} for arbitrarily large constant
¢ > 0 to make the mechanism (g, 24 /3)-differentially private, achieving tight population loss and
decrease the running time. Then the population loss is upper bounded by

+—+ . +—+—

d uD?> G* G? e 2log(3/(49))d 1 uD? G2
-t —+ — =—max ————, — .
k 2 un 2 U

e2n? " In

By setting u = % \/ Q(Mggﬂ + %), the population loss is upper bounded by

n

GD\/410g(3/(45))d+i+GD\/:< oD (2 log(3/(45))d+2>.

e2n? - en NLD

To make it algorithmic, we also apply Theorem 17 with the accuracy on the total variation
distance to be min{d/3, C}LC} for some large enough constant c. This leads to an extra empirical

loss and hence we use log(1/6) rather than log(3/(40)) in the final loss term. The runtime follows
from Theorem 17. u
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Appendix C. Information-theoretic Lower Bound for DP-SCO

In this section, we prove an information-theoretic lower bound for the query complexity required for
DP-SCO (with value queries), which matches (up to some logarithmic terms) the query complexity
achieved by our algorithm (in Theorem 29). Our proof is similar to the previous works like Arias-
Castro et al. (2012); Duchi et al. (2015) with some modifications.

Before stating the lower bound, we define some notations. Recall that we are given a set D of n
samples (users) {s1,- - , S, }. Let Ag be the collection of all algorithms that observe a sequence of
k data points (Y1, --- | Y*) with Y = f(X?; S*) where S* € D and X! € K are chosen arbitrarily
and adaptively by the algorithm (and possibly using some randomness).

For the lower bound, we only consider linear functions, that is we define f(z; s) &f (x,s). And
let Pg be the collection of all distributions such that if P € Pg, then Egp |53 < G2.
And we define the optimality gap

(A P.K)E B F@D)) -~ inf Fa),

where F' () = Esup f(x;5), T is the output the algorithm A given the input dataset D and the
expectation is over the dataset D ~ P™ and the randomness of the algorithm .4. Note that we can
rewrite the optimality gap as:

HAPK)= | E [FED)] - inf F2)
= E |, E  f@D)s)]] - nf E[f(:s)]

= E [Z(D)"s] — inf E [zs].
s~P,D~Pm™ A e s~P

The minimax error is defined by

‘SZ(PG’K) déf Alg./gk Psél}?:) Ek(A77D7’C)'
G

Theorem 31 Let IC be the {5 ball of diameter D in RY, then
GD d
* > 77 i Rl O
ep(Pa,K) > 16 mln{l, 4kz}

In particular, for any (randomized) algorithm A which can observe a sequence of data points
(Y1 ) YE) with Yt = f(X*; SY) where St € D = {s1,89,...,8,} and X' € K are cho-
sen arbitrarily and adaptively by A, there exists a distribution P over convex functions such that
Esp[||Vf(x,8)||3] < G? for all z € K, such that the output T of the algorithm satisfies

~ . GD . d
f(@;s)]| —min E [f(a:;s)]zmmm{l, }

E E
s~P LD~Pn, A e s~P 4k
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C.1. Proof of Theorem 31

We reduce the optimization problem into a series of binary hypothesis tests. Recall we are consid-

ering linear functions f(x; s) def (z,s). Let V = {—1,1}¢ be a Boolean hyper-cube and for each

v € V, let N, = N(6v,0%1,) be a Gaussian distribution for some parameters to be chosen such

that £, (z) & E,y [f(z;5)] = 6(x, v). Note that

E Vi@ s)E) = E (sl = (6% +0*)d.

Therefore G = +/d(0% + 02).

Clearly the lower bound should scale linearly with D. Therefore without loss of generality, we
can assume that the diameter D = 2 and define K = {z € R? : ||z||2 < 1} to be the unit ball. As in
Arias-Castro et al. (2012), we suppose that v is uniformly sampled from V = {—1,1}%. Note that if
we can find a good solution to ﬁv(x), we need to determine the signs of vector v well. Particularly,
we have the following claim:

Claim 32 (Duchi et al. (2015)) Foreachv € V, let x¥ minimize ﬁv over K and obviously we know
that ¥ = —v/ \d. For any solution T € R we have

o o(a (v g a : ~ . v
R~ Rile") 2 517 S () s

where the function sign(-) is defined as:

+ if i'\j >0
sign(z;) =< 0 ifz; =0
—  otherwise

Claim 32 provides a method to lower bound the minimax error. Specifically, we define the ham-
ming distance between any two vectors =,y € R as dy(z,y) = > j—1 L{sign(z;) # sign(y;)},
and we have

0
er(Pa,K) > inf E[dy (v,v)]}, 18)
1(Pa; K) 2\@{@ [du (v,v)]} (
where ¥ denotes the output of any algorithm mapping from the observation (Y'*,--- | Y*)to {—1,1}7,
and the probability is taken over the distribution of the underlying v, the observation (Y1, --- , Y'*)

and any additional randomness in the algorithm.

By Equation (18), it suffices to lower bound the value of the testing error E[dy (0,v)]. As
discussed in Arias-Castro et al. (2012); Duchi et al. (2015), the randomness in the algorithm can not
help, and we can assume the algorithm is deterministic, i.e. (X*, S?) is a deterministic function of
YIE=17 The argument is basically based on the easy direction of Yao’s principle.

Now we continue our proof of the lower bound. We will make use of the property of the Bayes
risk.

7. We use Y to denote the first ¢ observations, i.e. (Y, .-, Y?)
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Lemma 33 ((Arias-Castro et al., 2012, Lemma 1)) Consider the problem of testing hypothesis

H.:v~DP_yand Hi : v ~ Py, where H_1 and Hy occur with prior probability m_1 and

d . . . .
T = 1 — m_q respectively prior to the experiment. For any algorithm that takes one sample v

and outputs Ptv > {—=1,1}, we define the Bayes risk B be the minimum average probability

~

that algorithm fails (v is not sampled from Hy ). That is B = infzm_y Prli(v) = 1| v ~

P_1] 4 m Prli(v) = 0 | v ~ P1]. Then, we have
B > min(ﬂ_l,m)(l - HPI - P—IHTV)~

Lemma 34 Suppose that v is uniformly sampled from V = {—1,1}¢, then any estimate ¥ obeys

wiano.0)> § (1- 22F).

Proof Let m_; = 71 = 1/2. For each j, define P_; ; = P(Y¥ | v; = —1) and Py ; = P(Y[H] |
v; = 1) to be distributions over the observations (Y!,--- ,Y*) conditional on v; # 1 and v; = 1
respectively. Let B; be the Bayes risk of the decision problem for j-th coordinate of v between
H_i;:vj=—1and Hy; : v; = 1. We have that

d
Eldy (D, v)] > Z Bj

d
>my (1= [Py — P
j=1

d 1| <&
> (1= | Y IPy, —Poyy
=9 \/& || 1,j 1,5

V)

v |
j=1

where the first inequality follows from the definition of Bayes risk B;, the second inequality follows
by Lemma 33 and the last inequality follows by the Cauchy-Schwartz inequality.
To complete the proof, it suffices to show that

2

d 5
D P =Py jlly < k. (19)

: o?
7=1
Assuming Equation (19) first, which will be established later. Then we know that

Eldg(v,v)] > ik

We will complete the proof of Lemma 34 by showing the following bounded total variation
distance.
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Claim 35

d ) (52
S Py, — Py jllEy < =5k

) g
Jj=1

Proof Applying Pinsker’s inequality, we know ||P1 ; — P_q ;|3\ < $Dg(P_1,||P1,;). To bound

the KL divergence between IP_1 ; and 1 ; over all possible Y[k], consider v’ = (vy,- -, Vj—1,Vj41, ", Vd),
and define P_; ;. (Y1*]) o P(YI | v; = —1,v’) to be the distribution conditional on v; = —1

and v’. We have

Py (YI) =3 PrivPoy 0 (Y1),

v

The convexity of the KL divergence suggests that

D (Po1j[Prj) <Y Pr{oIDgr (P Py jw).

vl

Fixing any possible v/, we want to bound the KL divergence D1, (P_1 j/[|P1 j ).

Recall we are considering deterministic algorithms and (X, S?) is a deterministic function of
Y1, Let Q; € R¥** be a (random) matrix, which records the set of points the algorithm queries
for the user s;. Specifically, for ¢-th step, if the algorithm queries (X, S%), then Q! = X' if S = s,
otherwise Q! = 0, where Q! is the ¢-th column of Q;.

As we are considering linear functions, without loss of generality we can assume ( i , Qg ,> =
0 for each ¢ and any j # j/, and ||Qf|l2 € {0,1} for any 7 and . We name this assumption
ORTHOGONAL QUERY. Roughly speaking, for any algorithm, we can modify it to satisfy the
Orthogonal Query. Whenever the algorithm wants to query some point, we can use Gram—Schmidt
process to query another point and satisfy Orthogonal Query, and recover the function value at the
original point queried by the algorithm.

By the chain-rule of KL-divergence, if we define P_; ;»(Y"* | YI*=1) to be the distribution of
tth observation Y conditional on v’, v; = —1and Y[t_l], then we have

k
Dir (P jur [Prjer) =Y / . D (P (Y| YU = ) |P o (Y YEU = )dP_y 0 (1)
t=1 -

Fix Y[*=1 such that Y*~1) = 4. Since the algorithm is deterministic and (X*, S*) is fixed given
VI Let St = ;50 Xt = Q.

Note that the n users in D are i.i.d. sampled. Then Dy f,(P_q (Y | YU = )| Py ;0 (Y |
yl=1 = y) only depends on the randomness of s; and the first ¢ columns of @);, which is denoted

by Qz[t]. We use th to denote the observation corresponding to user s; for the ¢th query (if S* # s;,
we have Y}t = 0). Note that the observation Y;[ﬂ = Qy}Tsi where s; ~ N (6v,0%1;). Then we
know Yi[t] is normally distributed with mean 5Q£t]TU and co-variance U2Q£t]TQ[ﬂ.

(2
Recall that the KL divergence between two normal distributions is D g 1, (N (1, X)[| NV (12, X)) =
%(ul — p2) "E 7 (1 — p2). Recall that we have the Orthogonal Query assumption and thus

Ql[.ﬂTQEt] € {0, 1}tXt is a diagonal matrix. By the conditional distributions of Gaussian, we know

Y;! only depends on the Q! and it is independent of Qy*”.
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Hence we have

Dir (P (Y [ YT = )| P (V! VI = )
—DKL<P—1JU ¥ Y =y Py (0 [ Y =)

= 52001/,

where QL(j) is the j-th coordinate of QY. Summing over the terms, one has

d
1
D P —Poyjliiv <oDrr(P-1]P1y)
=1
1 k d n
S R RIS

t=1 j=1 i=

where the last line follows from the fact that for each t,> - ; [|Q¢[3 = Y, Z?Zl(Qﬁ(j))Q =1
as we only query one user for ¢-th step.
This completes the proof. |

Having Lemma 34, we can complete the proof of Theorem 31.
Proof of Theorem 31. As discussed before, we know

~

Fy(3) - (" MZn{mgn% + sign(a?)},

and hence we know that

ex(Pa,K) > f lng[dH(ﬁ,v)]
5[ . Vk
4 ovd
) oVd _ G
where the last line follows from Lemma 34. We now set § = N and o = N so that
d(o? + §%) = G2. Hence one has
ovd  DévVd GD GD d
ep(Pa, K) > \8[: 1%[2 > 16 miﬂ{la 41{:}'

164/1 + 2k

Thus we complete the proof. |
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Corollary 36 (Lower bound for DP-SCO) For any (non-private) algorithm which makes less than
0 (min{ %, nd}) function value queries, there exist a convex domain KK C R® of diameter D,

def ~
a distribution P supported on G-Lipschitz linear functions f(x;s) & (x, s), such that the output &
of the algorithm satisfies that

~ . GD ) log(1/6)d 1
SINEP[<$,S>] - l;fél%fpm’sﬂ > (H—k)g(n)/d - min {m + N 1}) .

Proof Note that Theorem 31 almost gives us what we want, except that the Lipschitz constant of
the functions in the hard distribution is bounded only on average by GG. To get distributions over
G-Lipschitz functions, we just condition on the bad event not happening.

Recall that we are considering the set of distributions N, = N(6v, 021;) for which Eg.py, |s]]3 <

G2 = d(6%402). And we proved that inf 44, sup,cy Esnr, a[Fy(Zr)—F7] > ED min {1 \ 1% }

in Theorem 31, where 7, is the output of A with k observations Y. To prove Corollary 36, we
need to modify the distribution of s to satisfy the Lipschitz continuity.
In particularly, for some constant ¢, we know

E[F,(Tx) — ]
) [ (3

k) — F |mastZH2<cG\/1—|—log (nd)/ }Pr[max|\sl||2<cG\/1+log (nd)/ ]
E {Fv(xk) - Fv | ma%||5i||2 > c¢G+/1 + log(nd) d} Pr [ma%(Hsin > cG+/1 + log(nd) d}.
8; € RS

By the concentration of spherical Gaussians, we know if s ~ A (dv, 02I,;), then

Pr [Hs—avug < 02d(1 + 2y/In(1/n)/d + 21n(1/n) /d)} >1-
We can choose the constant ¢ large enough, such that Pr[max,ep ||sill2 < ¢G/1 + log(nd)/d] >
1 — 1/ poly(nd), which implies

inf sup E Av Tk — ¥ | max sille < eGA/1 + log(nd)/d EQGDM.
v D
8;€

A€hy pey D~NZLA Vk

If we use the distributions conditioned on maxg,ep ||s;i||2 < ¢Gy/1 + log(nd)/d rather than the
Gaussians, and scale the constant to satisfy the assumption on Lipschitz continuity, we can prove
the statement. Particularly, let G’ = ¢G (/1 + log(nd)/d). If the algorithm can only make k =

0 (min{%, nd}) observations, we know

f E [RGB 2 < G|
Algm D DN A o(@) — Fy | 5D Isill <

>0 (GD-min{(lmgg(;/é)d + %),1})

B G'D o log(1/d)d 1
_Q< 1+ log(nd)/d { En +\/ﬁ71}> 7
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which proves the lower bound claimed in the Corollary statement. |

Corollary 37 (Lower bound for sampling scheme) Given any G > 0 and p > 0. For any algo-
rithm which takes function values queries less than O <%2 /(1 +1og(G?/u)/ d)) times, there is a

family of G-Lipschitz linear functions { f;(x)}scr defined on some {5 ball K C R, such that the
total variation distance between the distribution of the output of the algorithm and the distribution

proportional to exp(— Eiey fi(x) — pl|x||?/2) is at least min(1/2, \/du/G?).

Proof By a similar argument in the proof of Corollary 36, for any algorithm which can only make &
observations, there are a family of GG-Lipschitz linear functions restricted on an 5 ball K of diameter
D centered at O such that

E [ﬁv(@) - ﬁ;‘} >Q) (H(fj;(k)/d . min{ﬁ,l}) , (20)

where ﬁj = mingex ﬁ,(w) and 7, € K is the output of A.
Suppose we have a sampling algorithm that takes k queries. We use it to sample from z(5°") pro-
portional to p(z) := exp(—F,(z)— £|z[|*) on K with total variation distance 7 < min(1/2, \/du/G?).
Lemma 18 shows that

~

E[F, (") + £ o) < min (F,(2) + Zllz]?) + O(d) + O() - (GD + uD?),

where the last term involving 7 is due to the total variation distance between x(%°) and p. Setting
D = y/d/p and using the diameter of K is D and n < min(1/2, v/du/G?), we have

E[F, (¢0*)] < min F, (2) + 5 D* + O(d +7 - (GD + uD?))
fAS

< min F,(z) + O(d).
zek

Note that we set D = \/d/p. Comparing with (20), we have

GVdp | [d
1_‘_log(k)/dmm{\/;,1} < O(d).

If d < G?/p < exp(d), we have

G\/d/u\/z < 0(d)
and hence k = Q(G?/p). If G/ > exp(d), we have

G\d/p |d

VstV i = 7

and hence k = Q( logG(QGdQ/ 7#) ). If G/ < d, we can construct our function only on the first O(G2 /1)

dimensions to get a lower bound k& = Q(G? /). Combining all cases gives the resullt. |
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Appendix D. Omitted Definitions
D.1. Distribution Distance and Divergence
We present some distribution distances or divergences mentioned or used in this work.

Definition 38 (Rényi, 1961, Rényi Divergence) Suppose 1 < o < oo and w,v are measures with
m K v. The Rényi divergence of order o between w and v is defined as

1
Dy (m|v) = — log/()o‘u(:v)dm.
o
We follow the convention that % = 0. Rényi Divergence of orders o = 1, 00 are defined by continu-
ity.

Definition 39 (Wasserstein distance) Let 7, v be two probability distributions on R%. The second
Wasserstein distance Wo between m and v is defined by

. 1/2
Wa(r,v) = (inf / Iz — yl3dy (e, 1) ">,
vl (mv) JRd xRd

where T'(m, v) is the set of all couplings of m and v.

Definition 40 (Total variation distance) The rotal variation distance between two probability mea-
sures ™ and v on a sigma-algebra F of subsets of the sample space €} is defined via
TV (m,v) = sup |7(S) — v(S5)|.
SeF

Definition 41 (Kullback-Leibler divergence) The Kullback—Leibler divergence between proba-
bility measures m and v is defined by

Dyer(ml|v) = /log(:)dw.

D.2. Optimization
Here we collect some properties of functions which are useful for optimization and sampling.

Definition 42 (L-Lipschitz Continuity) A function f : K — R is L-Lipschitz continuous over the
domain K C R? if the following holds for all w,w' € K : |f(w) — f(w')| < L|jw — &'[|2.

Definition 43 (-Strongly convex) A differentiable function f : K — R is called strongly convex
with parameter p > 0 if K C R is convex and the following inequality holds for all points w,w' €
K,
!
F@) 2 f@) +(Vfw),o —w) + Tl = wll3.

Definition 44 (Log-concave measure and density) A density function f : K — R>q is log-concave
if [c f(x)dz = 1 and f(x) = exp(—F(z)) for some convex function F. We call f is y-strongly
log-concave if F' is u-strongly convex. Similarly, we call m a log-concave measure if its density
function is log-concave, and we call 7 is a u-strongly log-concave measure if its density function is
p-strongly log-concave.
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Appendix E. Omitted Proofs

Corollary 11 Let 7 be a p-strongly log-concave measure supported on a convex set K C R<
Suppose o : K — R is G-Lipschitz. For z € [0,1], define m(z) € R such that Pry[a(x) <
m(z)] = z. Then for every r > 0,

xfigr[a(x) >m(z)+r] < ® (‘I)_l(l —z) — T\éﬁ> ;
_ T/
Prlat) < mie) - <@ (075 - 2LF)).

Proof Fix some z € [0,1]. Let A = {z € K : a(z) < m(z)}, so m(A) = 2. Let A, = {x :
d(x,A) < r}. Since v is G-Lipschitz, a(z) > m(z) + r implies that d(x, A) > r/G. Therefore
{z:a(r) >m(z) +r} C{xr:d(x,A) >r/G} = A, and so

Prla(z) = m(z) + 1] < 7(4,/c)
=1- W(AT/G>

<1-o <q>1(z) + T\éﬁ>
S <—<I>_1(z) . T\/ﬁ) .

G
We obtain the other inequality by applying the above inequality to —a(z). |
Claim 12 - .
/ e 'd (a - t) dt = ®(a) — ez " B(a — )
0 v
° t 22
/ e'd (a - > dt = —®(a) + ez ®(a + )
0 v
Proof
/OO ‘P(a— t/y)d Wa—t/)|E - [ e
e " Pla—t/y)dt = —e " Pla—1/y —/ e ——dt
0 0 0 YV 2T
o0 —(t=(va—?))?/2
= ®(a) —/ 7 /2=ar dt
0 YV 2T
= ®(a) — 672/2_‘17(1)((1 - ).
/oo t@( )it tq)( y )’OO 00 te—(a—t/'y)2/2 U
edla—t/y =e®la—t/y +/ s
0 0 0 YV 2
o0 —(t—(av+7%))% /272
e
— —®(a +/ v /2 dt
(a) ; "

= —®(a) + /TP (a + 7).
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Theorem 13 Given convex set IC C R¢ and pi-strongly convex Junctions F), F over K. Let P,Q be
distributions over K such that P(x) oc e F(®) and Q(z) o e F'®), If F — F is G-Lipschitz over
K, then for all z € [0, 1],

T(P | Q) = 7(N 0. H N (fﬁ,l»(z).

Proof Let v = G/,/p. Let a( ) = F(z) — F(z) so that Q(z) o e *®) P(z). Recall that we
have T'(P||Q)(z) = infg.p(s)—1—- Q(S). Note that the infimum is achieved when we choose S =
{r e L:alx) >m(z)} for some m(z) chosen such that P(S) = Pr.pla(z) > m(z)] =1—z
(Neyman-Pearson lemma).

Therefore:

We now lower bound Ep[e™*1g]|. Let the random variable Y = «(z) where z ~ P. Let fy (-) be
the PDF of Y.

Ele=1] = / oy €O = Y 2 m(z)] = / T ey (e

> m(z)
_l/me—hmu)<_dPMWPkﬂx)Zt+ﬁn@H>dt
t=0 de

= ¢73) <—e_t Pr [a(x) > t 4+ m(2)]

T /°° e~ Pr [a(z) > £+ m(2)] dt)

r~P 0 t=0 z~P
= (1 —2)e™& — g / et Pl; [a(x) > t+m(z)]dt
t=0 T~
> (1 —z)e ™) — gm(z) / etD(dH1 — 2) — t/v)dt (Corollary 11)
t=0

= (1—2)e ™ — g=m() ((1 —2) — exp (7 —ol(1- m) (O (1 —2) - 7)>
(Claim 12)
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We can upper bound Ep[e™“15] in a similar way.

Ele—®@) 15 = / e @) p(z)dx
P z:o(z)<m(z)

_ /toz i) <_dPra:~P [a(scd)ts m(z) — t]> dt

=) (—et Pr [a(z) < m(z) — 1]

:O+/t°° ¢ Pr [a(z) < m(2) — 1] dt>

-9 x~P
= ze ™3 4 e_m(z)/ e Pr [a(z) < m(z) —t]dt
t=0 o~P
< ze”™E) 4 eml3) / (D1 (2) — t/~)dt (Corollary 11)
t=0

2
= ze” ™) 4 72) <—z + exp <é + ‘D_l(z)'y> D(d1(2) + fy)> (Claim 12)

2
— exp <72 + 0 (2)y - m(z)) (27 (2) +7)

Combining the two bounds, we get:

—aq 1y —1
T(PIQE) = (14 g )
(e (2)+7) \
- (1 T ee(e) —w)
=3(—d1(2) —v) (Using ®(z) + ¢(—z) = 1)
= T(N(0,1) || N(v,1)). (Eqn (10))

Corollary 14 Suppose F, F are two p-strongly convex functions over K C R and F — F is G-
Lipschitz over K. Forany k > 0, ifwe let P o< e " and Q oc e *F be two probability distributions

on IC, then we have
GVk
D(PQ) <D (N(o, DI (W 1))

for any divergence measure D which decreases under post-processing. In particular,

akG? kG?
dDgr (P < —.
o " kL(PllQ) < o
Proof By Theorem 2.10 in Dong et al. (2019), if T'(P||Q) > T'(X||Y), then there exists a random-
ized algorithm M such that M (X) = P and M(Y') = Q. Therefore for any divergence measure
which decreases under post-processing we have,

Do (P|Q) <

D(P[|Q) = D(M(X)[|M(Y)) < D(X[}Y).
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The rest follows from Theorem 13. It is well-known that Renyi divergence and KL divergence
decrease with post-processing (see Van Erven and Harremos (2014), for example). We can also
compute Dy, (N(0,1), N (s,1)) = as?/2 and Dk (N(0,1),N(s,1)) = s2/2 (Mironov (2017)).
|

42



	Introduction
	Our Contributions

	Techniques
	Gaussian Differential Privacy (GDP) of Regularized Exponential Mechanism
	Generalization Error of Sampling
	Non-smooth Sampling and DP Convex Optimization 

	Preliminaries
	Differential Privacy
	Isoperimetric Inequality for Strongly Log-concave Distributions

	GDP of Regularized Exponential Mechanism
	Sampling and Optimization Results Overview
	Sampling
	DP Optimization

	Efficient Non-smooth Sampling
	DP Convex Optimization
	DP-ERM
	DP-SCO and Generalization Error

	Information-theoretic Lower Bound for DP-SCO
	Proof of Theorem 31

	Omitted Definitions
	Distribution Distance and Divergence
	Optimization

	Omitted Proofs

