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Abstract
Consider n items, each of which is characterised by one of d + 1 possible features in {0, . . . , d}.
We study the inference task of learning these types by queries on subsets, or pools, of the items that
only reveal a form of coarsened information on the features - in our case, the sum of all the features
in the pool. This is a realistic scenario in situations where one has memory or technical constraints
in the data collection process, or where the data is subject to anonymisation. Related prominent
problems are the quantitative group testing problem, of which it is a generalisation, as well as the
compressed sensing problem, of which it is a special case.

In the present article, we are interested in the minimum number of queries needed to efficiently
infer the features, in the setting where the feature vector is chosen uniformly while fixing the
frequencies, and one of the features, say 0, is dominant in the sense that the number k = nθ, θ ∈
(0,1), of non-zero features among the items is much smaller than n. It is known that in this case,
all features can be recovered in exponential time using no more than O(k) queries. However,
so far, all efficient inference algorithms required at least Ω(k lnn) queries, and it was unknown
whether this gap is artificial or of a fundamental nature. Here we show that indeed, the previous
gap between the information-theoretic and computational bounds is not inherent to the problem
by providing an efficient algorithm that succeeds with high probability and employs no more than
O(k) measurements. This also solves a prominent open question for the quantitative group testing
problem.
Keywords: Statistical inference, Quantitative group testing, Compressed Sensing, Pooled Data,
Spatial Coupling

1. Introduction

Imagine a population of n items, each of which is characterised by one of finitely many distinct
features, such as a class label in an object detection task, an age group, gender, or blood type. We are
interested in inferring these types, using only a small number of coarse measurements on subgroups
of the items. This problem, as introduced by Wang et al. (2016), is known as the pooled data
problem. While its general framework is of relevance in many practical situations, a particularly
prominent and topical instance of the pooled data problem is given by the quantitative group testing
problem (Djackov, 1975; Gebhard et al., 2022; Grebinski and Kucherov, 2000; Karimi et al., 2019).
In this case, the population is split into two types, which we interpret as healthy and defective, and
the goal is to identify which individuals are the defective ones, by using tests that only provide the
total number of defectives in the pooled subgroup. Other applications of the pooled data problem
include DNA screening (Sham et al., 2002), traffic monitoring (Wang et al., 2015), machine learning
(Liang and Zou, 2021; Martins et al., 2014) and signal recovery (Mazumdar and Pal, 2022).
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In the following, we will assume that the labels of the items are chosen uniformly given their
frequencies. Since the information on the features increases with the number of queries asked on
them, a natural and important question concerns the minimum number of queries that are needed to
successfully identify all the labels with high probability1 over the choice of the labels. To address it,
one can derive both upper and lower bounds: A sequence m0 such that for m ≥m0, the probability
of making an error does not tend to one is called an information-theoretic lower bound. On the other
hand, a sequence m0 such that for m ≥ m0, exponential time algorithms like exhaustive search are
guaranteed to recover all features w.h.p. is called an information-theoretic upper bound.

Having obtained information-theoretic bounds and thus identified a regime where inference is
theoretically possible, a second important question is concerned with the minimal m for which all
features can be recovered efficiently (in polynomial time).

Our article addresses this second question in the case where one of the features is dominant.
For this setting, we provide an efficient algorithm that w.h.p. infers all labels correctly, while using
no more than O(k) queries. This algorithm is the first one to match the information-theoretically
optimal order of queries. In the special case of quantitative group testing, this result resolves the
basic, yet open question whether efficient, information-theoretically optimal inference is possible.
We continue to describe the precise model and related results.

1.1. Model and terminology

Consider n items x1, . . . , xn, each of which is assigned a label σi ∶= σ(xi) ∈ {0,1,2, . . . , d}. The
vector σ = (σ1, . . . ,σn) of item-labels constitutes the ground-truth or signal that we aim to infer
by performing m queries on (multi-)subsets a1, . . . , am of the items, which we call pools. There is
freedom both in the choice of the pools a1, . . . , am as well as in the nature of the queries. In the
design of the pools, we restrict ourselves to the non-adaptive setting, where all m pools have to be
constructed before conducting any queries. This constraint is predominant in theoretical work on
the quantitative group testing problem and of relevance in practical applications due to scalability
and stability considerations Zhou et al. (2014). With respect to the queries, we consider the additive
model, where for each i = 1, . . . ,m, the total weight σ̂i ∶= ∑j∶xj∈ai σj of pool i is measured. In
particular, this model is a natural extension of the quantitative group testing problem, where the
measurement σ̂i corresponds to the number of defectives in the i−th pool. On the other hand, it
reveals less information on the labels than other commonly studied variants of the problem, where
one measures a histogram of the frequencies of each label within the given pool (see El Alaoui et al.
(2019); Scarlett and Cevher (2017)).

It is well-known that the presence of a dominant label, say 0, is a distinguishing feature in the
theoretical analysis of the model. Denote by k0, . . . , kd the numbers of items with label 0, . . . , d,
respectively, and by k ∶= ∑d

i=1 ki the total number of non-zero labels. If k/n→ α ∈ (0,1) as n→∞,
the problem is called linear pooled data problem, while the sublinear pooled data problem considers
k ∼ nθ for θ ∈ (0,1). In this article, we study the sublinear regime. One reason behind the interest
in this regime is its practicability. In the context of epidemiology, early numbers of defectives can
be captured by this setting according to Heaps’ Law (Wang et al., 2011). In the context of machine
learning, pooled measurements have been applied to image moderation tasks (Liang and Zou, 2021),
where the sublinear regime corresponds to the detection of rare, but inappropriate images.

1. With high probability (w.h.p.) means with probability tending to 1 as n→∞.
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Within the sublinear setting, we assume that k0, . . . , kd are known a priori, for example through
empirical findings, and that for each label i = 1, . . . , d, there exists εi = Θ(1) such that ki = εik.
This model choice is analogous to parametrisations in the linear regime as in El Alaoui et al. (2019).
Finally, we perform an average-case analysis of the problem and from here on, we will thus assume
that the ground-truth σ is chosen uniformly at random among all vectors having exactly ki entries
of type i, where i = 0, . . . , d. To realise this assumption in practice, one can apply a uniform
permutation to the items before running any inference algorithm.

In the next two subsections, we briefly review previous work on the problem and then give an
overview of our main results. After fixing the notation, Section 2 describes our pooling scheme,
while Section 3 is devoted to the presentation of the inference algorithm. The final Section 4 con-
tains a summary of our findings.

1.2. Information-theoretic and computational bounds

Information-theoretic lower bounds In the special case of the quantitative group testing prob-
lem, Djackov (1975) provides the explicit information-theoretic lower bound mQGT ≥ 21−θ

θ k.

Turning to the general case, a meaningful information-theoretic lower bound mcount can be
obtained with the help of a simple counting argument: For fixed k0, . . . , kd, there are ( n

k0,k1,...,kd
)

different values that the ground-truth σ can take. On the other hand, each query outputs a value
between 0 and W ∶= ∑d

j=1 jkj . For unambiguous inference to be possible with high probability, we
thus need lim infn→∞ (W + 1)mcount/( n

k0,k1,...,kd
) ≥ 1. In our setting, where k = nθ for θ ∈ (0,1),

this argument has the consequence that for fewer than mcount = Ω(k) pools, there is no hope to
successfully reconstruct σ w.h.p.

Information-theoretic upper bounds By means of a non-constructive argument, Grebinski &
Kucherov (Grebinski and Kucherov, 2000) show that

mGK = 4W ln( n

W
+ 1) ln−1(W ) = O(k)

pools suffice to reconstruct σ w.h.p. Moreover, in the special case of the quantitative group test-
ing problem, the leading constant was further reduced by a factor of 2 in independent works of
Gebhard et al. (2022) and Feige and Lellouche (2020). Since these results asymptotically match
the information-theoretic lower bound, the pooled data problem can be regarded as almost under-
stood from an information-theoretic point of view. However, with respect to efficient algorithms,
the picture is a different one.

Efficient Algorithms Natural candidates for efficient inference algorithms in the pooled data
problem are those that also apply to the more general sparse compressed sensing problem. The lit-
erature on this topic is vast, with the foundational contributions of Candes et al. (2006) and Donoho
(2006), but we refrain from reviewing it in more detail at this point. Linear programming tech-
niques from this context guarantee successful inference w.h.p. with Θ (k lnn) measurements in the
sublinear regime.

In the extensively studied quantitative group testing problem, one might hope that taking into
account the specific structure of the problem yields some improvement on the order of the pools
needed. And indeed, more specialised algorithms exist, see e.g. Coja-Oghlan et al. (2020); Feige
and Lellouche (2020); Gebhard et al. (2022); Karimi et al. (2019). However, even these ideas
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have failed to beat the lower bound of Ω (k lnn). Thus, when comparing what is information-
theoretically achievable and what is efficiently achievable, we are faced with a multiplicative gap of
order lnn, for all values of d.

1.3. Main result

In this article, we propose and analyse an efficient algorithm that reconstructs the ground truth σ
correctly w.h.p., while using no more than O(k) measurements, and thereby overcome the multi-
plicative lnn gap between the current algorithmic and information-theoretic bounds. Our algorithm
makes use of a random pooling design that is based on the so-called spatial coupling-technique
from coding theory (Felström and Zigangirov, 1999; Kudekar et al., 2011, 2013). In particular, all
pools have the same fixed, non-random size. The inference algorithm given the pooling scheme is
then based on a thresholding idea.

Theorem 1 Let d ∈ N, θ ∈ (0,1) and abbreviate k = k(n) = nθ. Fix a sequence of proportions
(ε1, . . . , εd) = (ε1(n), . . . , εd(n)) ∈ (0,1)d with (ε1, . . . , εd) = Θ(1) and∑d

w=1 εw = 1, and choose
σ ∈ {0,1, . . . , d}n uniformly among all vectors having exactly εwk entries of value w for w =
1, . . . , d. Then for each δ > 0, there are a randomised, non-adaptive poly(n)-time construction
of a pooling scheme and a deterministic poly(n)-time algorithm that jointly allow to recover σ
w.h.p. within the additive model, while using no more than

mPD = (8 + δ)
1 +
√
θ

1 −
√
θ
(

d

∑
w=1

w2εw)
1 − θ
θ

k

pools.

Most notably, when applied to the quantitative group testing problem, Theorem 1 guarantees
the existence of a polynomial-time construction of a testing scheme coming with a polynomial-time
algorithm that recovers σ w.h.p. using no more than

mSC = (8 + δ)
1 +
√
θ

1 −
√
θ

1 − θ
θ

k

tests. Thus, the performance of our algorithm matches the information-theoretic lower bound mQGT

up to a moderate constant.

1.4. Related problems

Problems related to the pooled data problem arise in a variety of contexts and have been of fun-
damental interest to mathematicians for a long time. For example, extensions of the quantitative
group testing problem (d = 1) have been studied since the 1960’s by, among others, Erdős and
Rényi (1963), Djackov (1975) and Shapiro (1960). El Alaoui et al. (2019) and Wang et al. (2016)
introduce a variant where σ is is a vector in {0,1, . . . , d}n and queries output the numbers of items
of each label within the pool, while Bshouty (2009) studies the coin weighing problem, where every
query returns the sum of the contained labels. Clearly, any algorithm that uses the coarser informa-
tion from the setting of Bshouty (2009) can also be used for inference within the framework of El
Alaoui et al. (2019); Wang et al. (2016). Finally, the pooled data problem can be seen as a special
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case of the compressed sensing problem (Candes et al., 2006; Donoho and Tanner, 2006; Foucart
and Rauhut, 2013), which generally asks for recovery of a high-dimensional signal σ ∈ Rn from a
small number of linear measurements on its components.

A pooling scheme of a similar design as the one underlying Theorem 1 in combination with a
thresholding algorithm has been used in recent work on the binary group testing problem (Coja-
Oghlan et al., 2020). In this problem, which differs from the quantitative group testing problem,
tests do not output the number of defectives within a given pool, but simply the binary information
whether a given pool contains a defective individual. We will discuss the similarities to and differ-
ences from the approach in Coja-Oghlan et al. (2020) in the discussion after our algorithm has been
presented in detail.

2. Model

2.1. Getting started

Generally, we write [a] for the set {1, . . . , a} and if z ∈ Rp, we also use the notation z(t) to refer to
the t-th component of z, where t ∈ [p].

Recall that we aim to infer the labels σ1, . . . ,σn ∈ {0,1, . . . , d} of n items x1, . . . , xn by mea-
suring label-sums in m multi-subsets a1, . . . , am of {x1, . . . , xn}. We call these multi-subsets pools
and assume that the vector σ ∶= (σ1, . . . ,σn) ∈ {0,1, . . . , d}n is chosen uniformly at random from
all vectors containing exactly ki entries of value i for each i ∈ [d]. Here, ki = εinθ for εi = Θ(1),
i ∈ [d], and θ ∈ (0,1). We abbreviate k = ∑d

i=1 ki = nθ. Finally, W = ∑d
i=1 iki denotes the total

weight of σ.
In the following, we will represent pooling schemes {a1, . . . , am} as bipartite multi-graphs.

In this representation, the pools and the items yield the two vertex classes of the bipartite graph
(see Figure 1). An edge in the graph is present whenever the incident item is an element of the
incident pool. This prescription yields a multi-graph since in our scheme, items will be allowed to
appear multiple times in a given pool. We denote the neighbourhood of item xi in this graph by
∂xi and the neighbourhood of pool aj by ∂aj . These are understood to be multi-sets of pools and
items, respectively. If we work with sets rather than multi-sets, we use the notation ∂⋆xi, ∂⋆aj for
the sets obtained from ∂xi and ∂aj . Finally, we denote the label-sum of pool aj by σ̂j such that
σ̂j = ∑i∶xi∈∂aj σi.

1 2 0 0 1 0 0

3 2 5 1 1

Figure 1: Graphical representation of a pooling scheme: Here, the n = 7 items are represented
by circles, while the m = 5 pools are represented by squares. Edges between items and pools are
present whenever an item is an element of the corresponding pool.

2.2. The pooling scheme

The polynomial-time pooling scheme that constitutes the basis for our algorithm builds upon the
introduction of a “spatial” order to both items and pools. To this end, we introduce a parameter
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ε > 0 that will later be chosen small enough and depending on δ from Theorem 1. We then partition
V ∶= {x1, . . . , xn} into ℓ compartments V [s], . . . , V [s + ℓ − 1] ⊂ V of (almost) equal sizes ∣V [i]∣ ∈
{⌊n/ℓ⌋, ⌈n/ℓ⌉}, where ℓ = ⌈k1/2−ε⌉ and s = ⌈ℓ1/2−ε/2⌉. This partition will allow us to successively
infer the labels of each compartment, where we proceed from s to s + ℓ − 1 and use the information
of previous compartments along the way. However, to get this idea started properly, the first few
compartments need some extra attention.

We facilitate the initial steps of the algorithm by the introduction of s−1 artificial compartments
V [1], . . . , V [s−1] (this also explains why the labelling in the previous paragraph starts at s). These
contain n′ = (s−1)⌈n/ℓ⌉ auxiliary items that are distributed equally among the s−1 compartments.
To equip these auxiliary items with labels that behave as the original variable labels, we sample
an assignment τ ∈ {0,1, . . . , d}n

′

uniformly at random from all vectors with exactly k′i = ⌈(s −
1)εikℓ−1⌉ items of weight i ∈ [d]. This only takes polynomial time and in particular, τ is known.
In the remainder of this article, we call the s − 1 compartments Vseed = V [1] ∪ . . . ∪ V [s − 1] the
seed, while the remaining compartments ℓ constitute the bulk Vbulk.

Analogously to the partition of the bulk, for an integer m divisible by ℓ+ s− 1, we divide the m
pools into ℓ + s − 1 many compartments F [1], . . . , F [ℓ + s − 1] such that each of the compartments
contains exactly m/(ℓ + s − 1) ∼m/ℓ pools.

After this partitioning, items for the pools are chosen as follows: First, let

Γ ∶= ns√
m(ℓ + s − 1)

+O(s)

be an integer divisible by s, which will be the number of items in each pool. Let j ∈ [ℓ+s−1] be the
index of one of the pool compartments. Then each pool a ∈ F [j] chooses its Γ items exclusively
from the s “previous” compartments V [j − (s − 1)], . . . , V [j], where it selects exactly Γ /s items
from each of these compartments uniformly at random with replacement. Here and in the following,
for r = 0, . . . , s − 2, we identify V [−r] with V [ℓ + s − 1 − r] as well as F [ℓ + s + r] with F [r + 1],
which equips the random bipartite graph with a ring structure. In particular, the number s is called
the sliding window. The terminology and construction are illustrated by Figure 2.

As described above, this pooling scheme gives rise to a bipartite multi-graph. We denote the
(random) degrees of the items x1, . . . , xn in this graph by ∆x1 , . . . ,∆xn . The number of neighbours
of item xi among the elements of F [i+j] is denoted by ∆xi[j], where j = 0, . . . , s−1. Furthermore,
as the pools sample their items with replacement, we introduce ∆⋆xi

,∆⋆xi
[j] as the corresponding

numbers of distinct pools that item xi participates in. As we will see later, the effect of multi-edges
is almost negligible, as ∆⋆xi

= (1−o(1))∆xi w.h.p., but their presence simplifies the analysis mildly.
Finally, set ∆ ∶= E[∆xi] and ∆⋆ ∶= E [∆⋆xi

].

3. Algorithm outline

Motivation As a starting point for the algorithm, we consider the influence of an arbitrary variable
x ∈ V on the queries on the pools that it participates in.

While a change in the label of x typically only marginally affects the outcome of the query at
one of its neighbouring pools, the situation is different if we consider all ∆x neighbours of x jointly.
Indeed, this number is binomially distributed and thus concentrated around its mean ∆ ∼

√
ms/ℓ.

More precisely, the Chernoff bound guarantees that, w.h.p.,

∆x =∆ ± lnn
√
∆ = (1 + o(1))∆.
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V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]

⋯ ⋯

Figure 2: Schematic representation of the pooling scheme with n = 28 items, ℓ = 7 compartments,
18 measurements and a sliding window of size s = 3. The number of (blue) auxiliary items, whose
weight is known a priory, is 8 in this example. The figure is an adaptation of Figure 2 in Coja-Oghlan
et al. (2020).

By definition of s, ℓ and for m = Ω(k) (in agreement with the information-theoretic lower bound),
we have ∆ = Ω(k1/4+ε2/2). Therefore, if we define the neighbourhood sum of x as the sum of all
the outcomes of pools in which x occurs, and alter the label of x, the change in the neighbourhood
sum is of order Ω(k1/4+ε2/2). As a consequence, the neighbourhood sum of x is highly dependent
on σx.

In light of this observation, it is natural to try to discern the labels by thresholding neighborhood
sums, provided that these are concentrated well enough for items of different types and that suffi-
ciently many measurements are conducted. This idea, which does not make use of our sophisticated
pooling scheme, has previously been applied to the quantitative group testing problem (Gebhard
et al., 2022), where the authors show that it leads to successful recovery of σ using Θ(k lnn)
measurements w.h.p.

We aim to improve this result through the spatially coupled design, which provides additional
information on the labels at each inference step. For simplicity, we assume from now on that
x ∈ V [s] is an item from the first bulk compartment. Then the pooling scheme in combination with
the auxiliary compartments ensures that:

• Item x is only contained in pools from the s compartments F [s], . . . , F [2s − 1].

• For each j = 0, . . . , s − 1, any pool from compartment F [s + j] contains a proportion of
1−(j+1)/s of already known labels (namely, those from compartments V [1], . . . , V [s−1]).

Therefore, rather than to simply sum up the labels of items that share a pool with x, one should
construct the neighbourhood sum and then subtract all contributions from known or, more generally,
previously inferred labels in order to lay bare the influence of the unknown labels. We call the
reduced sum arising from this idea the unexplained neighbourhood sum of x.

Unexplained neighbourhood sums already yield some improvement over naive neighbourhood
sums. However, the second observation above also indicates that pools from compartments close to
F [s] actually reveal more information on the items in V [s] than pools from far apart compartments,
since they contain a larger portion of known labels. For example, the pools in F [s] have unexplained
neighbourhood sums that exclusively involve labels from V [s]. One idea to incorporate this imbal-
ance between the information coming from the different compartments and to further improve the
concept of an unexplained neighbourhood sum is to introduce weights ω1, ..., ωs ∈ (0,1] to scale
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the contributions accordingly. We call such a compartment-wise linear combination of unexplained
neighbourhood sums weighted unexplained neighbourhood sum2.

Alas, it turns out that again, this process does not yield the desired improvement. This is due
to the fact that while the information from close compartments is indeed much more valuable, on
the other hand the expected size of the unexplained neighbourhood sum is by a factor of s = nΩ(1)

larger in the farthest away compartment than in the closest one. Thus, despite the contrary effort, the
influence of the first compartment almost vanishes in the weighted unexplained neighbourhood sum.
To compensate for this effect, we normalise the unexplained neighbourhood sum in each compart-
ment and sum up those normalised quantities in the described weighted fashion with the weighted
normalised unexplained neighbourhood sum Nx, which is the core quantity of our algorithm.

Key quantities In this subsection, we formalise the notions of the last subsection. Let σ̃ ∈
{0, . . . , d}n be the current estimate of σ during any step of the algorithm. Then for each item
x ∈ V [i], i = s, . . . , ℓ + s − 1, and j = 0, . . . , s − 1 we first define the unexplained neighbourhood
sum of x into compartment F [i + j] with respect to the estimate σ̃ as

U j
x ∶= U j

x(σ̂, σ̃) = ∑
a∈∂⋆x∩F [i+j]

⎛
⎝
σ̂a −

s−j−1
∑
p=1

∑
y∈∂a∩F [i−p]

σ̃y
⎞
⎠
. (3.1)

We illustrate this random variable for the special case d = 1. In this case, given the pool design, and
under the assumption of perfect knowledge of σ,

U j
x(σ̂,σ) ≈ Bin((j + 1)∆⋆x[j]

Γ

s
,
k

n
) + ∆x

s
σx.

Indeed, x has ∆⋆x[j] neighbours in compartment F [i+j], each of which features roughly (j+1)Γ /s
so far unexplained items. This is only a heuristic approximation of the unexplained neighbourhood
sum, but still instructive. The precise distributions of the unexplained neighbourhood sums through-
out the inference process are derived in Lemma 3.

In a next step, we define the normalised unexplained neighbourhood sumN j
x of x into compart-

ment F [i + j]. As explained in the previous paragraph, this quantity takes (an approximation of)
the expectation and the variance of U j

x into account. Under the assumption that the current estimate
of the ground truth has been mostly correct on the previous compartments, we define an estimate of
E[U j

x∣∆x[j],∆x[j]⋆] by setting

M j
x ∶=

d

∑
w=1

w
kw
n
((j + 1)∆⋆x[j]

Γ

s
−∆x[j]) .

The conditional variance of U j
x is, with high probability, (1 + o(1))(j + 1)k2ε by the choice of

Γ and the concentration properties of ∆x[j],∆⋆x[j]. The normalised unexplained neighbourhood
sum N j

x of x into compartment F [i + j] is then defined as

N j
x ∶=

U j
x −M j

x√
(j + 1)k2ε

.

2. A weighted unexplained neighbourhood sum is the key quantity in the analysis of optimal binary group testing (Coja-
Oghlan et al., 2020).
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Through U j
x, the sum N j

x depends on σx. Indeed, it is approximately of order

N j
x(σ̂,σ) ≈ σx∆s−1

√
(j + 1)k2ε

−1
= Cσx

√
j + 1

−1

for some constant C > 0. But, in contrast to U j
x, it is comparable between items in close compart-

ments and far apart compartments.
Finally, the weighted normalised unexplained neighbourhood sum of item x with a specified

choice of weights is defined as

Nx ∶=
s−1
∑
j=0
(j + 1)−0.5N j

x . (3.2)

Finding thresholds The idea of the inference algorithm is quite simple: We define thresholds
T 0,1, T 1,2, . . . , T d−1,d such that item x is classified as having weight i ∈ [d − 1] if T i−1,i < Nx ≤
T i,i+1, as having label 0 if Nx ≤ T 0,1 and as having label d otherwise. With respect to the
information-theoretic lower bound mQGT in the quantitative group testing problem, we assume that
the spatially coupled pooling scheme involves

m = 2c1 − θ
θ

k

pools for some constant c = cd,θ ≥ 1 that may depend on d and θ. We then define the thresholds
T i,i+1 for i ∈ [d − 1] and additionally T 0,1 as

T i,i+1 ∶= (i + 1

2
)
√

2c(1 − θ)
θ

ln s and T 0,1 ∶= 1

1 +
√
θ

√
2c(1 − θ)

θ
ln s.

The threshold T 0,1 takes a slightly different form, as it tells apart the much more numerous items
of weight 0 from the items of non-zero weight. The choice of T 0,1, . . . , T d−1,d is explained in more
detail in the full version (Hahn-Klimroth and Müller, 2021).

3.1. Algorithm

Recall τ ∈ {0,1, . . . , d}n
′

from Section 2.2. Using the notation from the previous sections, our
algorithm does the following.

Set σ̃ = (τ ,0) ∈ {0,1, . . . , d}n
′+n;

for i = s, . . . , ℓ + s − 1 do
For any individual x ∈ V [i] calculate Nx;

Set σ̃x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if Nx ≤ T 0,1

d, if Nx > T d−1,d

b, if 1 ≤ b ≤ d − 1 and Nx ∈ (T b−1,b, T b,b+1] .
end

Algorithm 1: Algorithm for the pooled data problem with thresholds T 0,1, . . . , T d−1,d.

It turns out that, for a not too large constant c, we find the following performance guarantee for
Algorithm 1.

9
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Proposition 2 Let δ > 0. Then ε > 0 can be chosen sufficiently small such that if

c ≥ (4 + δ)(1 +
√
θ)

1 −
√
θ

d

∑
w=1

w2εw,

the output σ̃ of Algorithm 1 coincides with σ w.h.p.

Outline of the proof of Proposition 2 We prove Proposition 2 in three steps. First, we find a
reasonably well-behaved substitute Nx ofNx that uses idealised information and is therefore easier
to study. Secondly, we bound the probabilities that thresholding Nx (had we access to it) would
lead to a wrong classification of x. Finally, we prove Proposition 2 by an inductive argument that
ensures that with sufficiently high probability, Nx is not too far from Nx, for all x.

For step 1, we observe that the quantity U j
x(σ̂, σ̃) has a particularly accessible form, if the

estimate σ̃ and the ground truth σ agree on all previously inferred compartments. We therefore
introduce specific notation for the unexplained neighbourhood sum of x into compartment F [i+ j]
with respect to the correct labels τ ,σ1, . . . ,σn(i−1)/ℓ. To this end, denote by σi the (n′ + n)-
dimensional vector which agrees with (τ ,σ) up to coordinate n′ + n(i − 1)/ℓ and with σi

b = 0 for
b > n′ + n(i − 1)/ℓ. We then define

U j
x ∶= U j

x(σ̂,σi).
Thus, U j

x is the (random) unexplained neighbourhood sum of item x into compartment F [i + j]
with respect to the true σ. Moreover, denote by k

(j)
i the random number of items of weight i in

compartment j + s − 1 in the spatial coupling set-up and abbreviate

k(j) ∶= (k(j)i )i=1...d and k ∶= (k(j))
j∈[ℓ] .

Finally, let the σ-algebra Ex be
Ex ∶= σ (∂x,σx,k) .

Based on the idealised information Ex, we define the quantities

N j
x ∶=

U j
x −E [U j

x ∣Ex] +∆x[j]σx
√
(j + 1)k2ε

as well as Nx ∶=
s−1
∑
j=0
(j + 1)−0.5N j

x, (3.3)

Of course, if the estimate σ̃ has inferred every label correctly so far, then U j
x agrees with U j

x.
Unfortunately, the actual values of σ and U j

x are unknown at any specific stage of the algorithm,
and thus, we can neither compute U j

x nor Nx exactly. However, the main strategy of the proof
is to analyse Nx and then to show that w.h.p., the guess Nx is sufficiently close to Nx for the
concentration properties of Nx to be transferred.

In Lemma 3, we analyse the distribution of each U j
x given Ex, which is basically a weighted sum

over the coordinates of independent multinomially distributed random vectors. This distributional
insight formalises the intuition that was given in the last section for the case d = 1. A detailed proof
of Lemma 3 can be found in the full version of this article (Hahn-Klimroth and Müller, 2021).

Lemma 3 Let x ∈ V [i] and j ∈ {0, . . . , s − 1}. Let

X(i∶j)x ∶=Mult
⎛
⎝
∆⋆x[j]Γ

s
−∆x[j],

k
(j)
1 − 1{σx = 1}

n/ℓ − 1
, . . . ,

k
(j)
d − 1{σx = d}

n/ℓ − 1
⎞
⎠

10
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and

X(r∶j)x ∼Mult
⎛
⎝
∆⋆x[j]Γ

s
,
ℓk
(r)
1

n
, . . . ,

ℓk
(r)
d

n

⎞
⎠

for r = i + 1, . . . , i + j be independent multinomial random variables given Ex. Then

U j
x

d=∆x[j]σx +
i+j
∑
r=i

d

∑
w=1

wX(r∶j)x (w) given Ex. (3.4)

From Lemma 3, it is straightforward to calculate the conditional mean and variance of U j
x given

Ex. In particular, it turns out that Nx given Ex can be written as a weighted sum over negatively
associated Bernoulli random variables. Therefore, by a straightforward application of Bernstein’s
inequality, we find that the idealised weighted normalised unexplained neighbourhood sums Nx are
tightly concentrated around their means.

Lemma 4 For any α ∈ (0,1), set T 0,1
α ∶= (1 − α)

√
2c(1−θ)

θ ln s. Then, there exists a constant D > 0
that depends on d and θ and a sequence ζn = o (n−2) such that

P (Nx > T 0,1
α ∣σx = 0) ≤Ds

−
(1−α)2c(1−θ)

θ∑d
w=1

w2εw + ζn, P (Nx ≤ T 0,1
α ∣σx = 1) ≤Ds

−
α2c(1−θ)

θ∑d
w=1

w2εw + ζn

as well as

P (Nx > T i,i+1∣σx = i) ≤Ds
− c(1−θ)

4θ∑d
w=1

w2εw + ζn and

P (Nx ≤ T i,i+1∣σx = i + 1) ≤Ds
− c(1−θ)

4θ∑d
w=1

w2εw + ζn
for i = 1, . . . , d − 1.

We refer the reader to Appendix A of the full version (Hahn-Klimroth and Müller, 2021) for a proof
of Lemma 4.

Finally, Proposition 2 follows from an inductive argument based on the spatial coupling of
the pools. More precisely, for any given compartment V [i], we condition on the event that the
algorithm’s estimate σ̃ agrees with (τ ,σ) on all previous compartments V [1], . . . , V [i − 1]. In
this case, for x ∈ V [i], N j

x and N j
x differ only in their centering, and we argue that N j

x is close to
N j

x , so that w.h.p., also the quantities Nx are concentrated well enough in between the thresholds
T 0,1, . . . , T d−1,d to correctly infer all items from compartment V [i]. From a more quantitative
point of view, a short but rather technical calculation shows that, with high probability, Nx =Nx +
Õ (
√
s2/ℓ) , while Nx = Θ (ln s) . By our choice of ℓ and s, the approximation error is small

enough to be negligible. The proof of this assertion is carried out in detail in Appendix B of the full
version (Hahn-Klimroth and Müller, 2021).

3.2. Proof of Theorem 1

Theorem 1 now is an immediate consequence of Proposition 2, if we show that Algorithm 1 com-
putes the estimate σ̃ on the bulk items in polynomial time. To this end, it is necessary to calculate
both the quantities Nx as well as to threshold them. However, for each item x ∈ Vbulk, this can be
done with n2 elementary operations. Therefore, the running time is polynomial in the number of
items. ∎

11
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4. Conclusion

On the spatially coupled pooling design For simplicity, we discuss our results for the quanti-
tative group testing problem. Similar conclusions hold for more general d = O(1). As we have
seen, in the case d = 1, our algorithm succeeds with high probability, using a number m of tests
that is within a constant factor of the information-theoretically optimal number of tests. Yet, there
is a (small) gap, which can, in principle, have three reasons. Firstly, our pooling scheme might be
sub-optimal. Secondly, the inference algorithm might be sub-optimal given the pooling scheme.
Thirdly, there still might be a gap between efficient and non-efficient algorithms.

To discuss these three options in more detail, we briefly sketch a heuristic argument that, at least
for small θ, illustrates that we cannot hope to find a better inference algorithm, given the chosen pool
design. The argument resembles the information-theoretic counting bound from the introduction,
and a similar line of thought was presented by Feige and Lellouche (2020). It makes use of the fact
that the number of items with label 1 inside each pool is, approximately, Bin(Γ, k/n) distributed.
Therefore, with high probability, all results stem from an interval of length ln(n)k1/8 by Chernoff’s
bound. To distinguish the (nk) possible values of σ,

(ln(n)k1/8)
m
≥ (n

k
) ⇐⇒m ≥ (8 + o(1))1 − θ

θ
k

measurements are required asymptotically. For small θ, Algorithm 1 matches this bound. For larger
values of θ, an improvement might be achievable through a tolerance for a few mistakes in the
algorithm’s classification, combined with a back-propagation approach to repair them locally. This
would require less strict concentration of the number of items with specific weight in the second
neighbourhood of a specific given item.

As the algorithm is optimal for small θ, the pooling design itself has to be sub-optimal. This
evidence is further supported by the fact that the design would be information-theoretically optimal,
if the underlying graph was much denser. More precisely, it is known that Γ ∼ n/2 and ∆ ∼ m/2
allows reconstruction of σ w.h.p. by exhaustive search at mQGT

non−ada (Gebhard et al., 2022; Scarlett
and Cevher, 2017). Unfortunately, we cannot make the pooling design denser due to our inference
algorithm. As the number of items with weight 1 in each compartment has to be estimated by kℓ−1,
those estimates yield approximation errors with respect to the correct underlying distribution which
become more severe as the graph becomes denser. The pooling design was chosen as dense as
possible such that those approximation errors are, with high probability, negligible in comparison to
the difference of items with label zero and label one in the neighborhood sum. A detailed verification
can be found in Appendix C of the full version (Hahn-Klimroth and Müller, 2021).

Binary group testing This paragraph discusses the similarities with as well as the differences
to the inference algorithm from Coja-Oghlan et al. (2020). While the overall approach by means
of a spatially coupled pooling design in combination with a thresholding algorithm has the same
structure, the specific implementation is rather different.

The first difference concerns the decoding of the seed. While in Coja-Oghlan et al. (2020),
the items in Vseed represent physical items, we introduce auxiliary items, whose labels are sampled
uniformly from all assignments that posses the correct frequencies. This idea has been put forward
to us by an anonymous referee. The main point here is that in the binary setting, it is possible to use
simple combinatorial algorithms, like the DD-algorithm, on the spatially coupled pooling design in
order to infer the ground-truth in Vseed, while using only o(k) additional tests. In the quantitative

12
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group testing setting (d = 1), such algorithms do also exist (Gebhard et al., 2022; Hahn-Klimroth
and Kaaser, 2022). On the contrary, in the more general pooled data setting (d > 1), we fall short of
algorithms to decode the seed on the spatially coupled design. Therefore, had we recruited the seed
from V , a separate treatment of the inference of the labels in Vseed would have been necessary, for
instance through variants of the Basis Pursuit algorithm (Donoho and Tanner, 2006).

A second, more consequential difference is our definition of weighted unexplained neighbour-
hood sums. More precisely, Coja-Oghlan et al. (2020) also use unexplained neighbourhood sums
and apply a thresholding algorithm. However, the naı̈ve combination of their spatial coupling design
and thresholding based on unexplained neighbourhood sums would only lead to an improvement of
a constant factor in the quantitative group testing setting. Therefore, a more substantial modifica-
tion needs to be employed to actually meet the correct order of tests. The main step towards the
lnn improvement is to identify the source of the failure in the above approach. This source lies in
the reverse trends in the size of partial neighbourhood sums and their information content, and we
overcome the ensuing effect through elaborate weighting and scaling. In the binary group testing
problem, a similar trade-off can be neglected, and to the best of our knowledge, this is the first time
that spatial coupling resulted in an improvement of more than a constant factor. This enhancement
seems to be due to our modifications.

On multi-edges Our pool design uses multi-edges, as it simplifies the proofs. However, the same
ideas should be immediately applicable to the case in which every test chooses distinct items. In-
deed, then the unexplained neighbourhood sum follows a multivariate hypergeometric distribution
(rather than being multinomially distributed). However, this distribution has similar concentration
properties as the multinomial distribution.

Future directions We present an efficient algorithm that closes the previous multiplicative lnn
gap between the simple information-theoretic lower bound mcount and all previously known efficient
algorithms for the pooled data problem and its special cases. A natural question, in particular with
respect to the quantitative group testing problem, is whether there is a pooling design coming with
an efficient inference algorithm that matches the known exponential time constructions up to the
correct constant. However, it seems unlikely that our ideas can be stretched much further onto
this point. Rather, we think that one needs to come up with new ideas for a pooling scheme or a
modification of the inference algorithm in order to achieve this goal.
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