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Abstract
We propose a novel algorithm for multi-player multi-armed bandits without collision sensing
information. Our algorithm circumvents two problems shared by all state-of-the-art algorithms:
it does not need as an input a lower bound on the minimal expected reward of an arm, and its
performance does not scale inversely proportionally to the minimal expected reward. We prove a
theoretical regret upper bound to justify these claims. We complement our theoretical results with
numerical experiments, showing that the proposed algorithm outperforms state-of-the-art.
Keywords: Multi-Armed Bandits, Distributed Bandits

1. Introduction and Contribution

1.1. Multi-player Bandits

We consider the multi-player multi-armed bandit problem with K arms and M < K players. At each
time t = 1, ..., T , where T is the time horizon, each player m = 1, ...,M selects an arm denoted
by πm(t) ∈ {1, ...,K}. If arm k = 1, ...,K has been selected by strictly more than one player we
say that a collision occurs on arm k, and we denote by ηk(t) = 1

{∑M
m=1 1{πm(t) = k} ≥ 2

}
the corresponding indicator function. The reward received by player m = 1, ...,M is denoted by
rm(t) = Xπm(t)(t)[1−ηπm(t)(t)] where (Xk(t))t≥1 is i.i.d. Bernoulli with mean µk for k = 1, ...,K.
In other words, if a player m is involved in a collision then he receives a reward of 0, otherwise he
receives a binary reward with mean µπm(t).

1.2. No Collision Information

We consider the case where each player m = 1, ...,M only observes its own reward rm(t) and
nothing else. He does not observe the rewards obtained by other players, he does not know which
arms have been selected by other players, and he cannot observe the collision indicator ηπm(t). This
case is called "without collision sensing", and is the most arduous because when player m gets a
reward of rm(t) = 0, he does not know whether this was caused by a collision so that ηπm(t)(t) = 1
or whether this was caused because the reward of the chosen arm was null i.e. Xπm(t)(t) = 0.
Of course, when a reward of rm(t) = 1 is obtained, he can however be sure that no collision has
occurred. Therefore, the problem is fully decentralized, and no communication is allowed between
the players.
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1.3. Regret Minimization

Recall that µ1, ..., µK denotes the mean reward of each arm where no collision has occurred, and
define µ(1), ...., µ(K) its version sorted in descending order, so that µ(1) ≥ µ(2) ≥ ... ≥ µ(K). The
goal for the players is to maximize the expected sum of rewards, and to do so, each player must select
a distinct arm amongst the M best arms to both avoid any collisions and maximize total reward.
The regret (sometimes called pseudo-regret) is defined as the difference between the total expected
reward obtained by an oracle that plays the optimal decision and the reward obtained by the players

R(T, µ) =

T∑
t=1

M∑
m=1

µ(m) − E(rm(t))

Our goal is to design distributed algorithms in order to minimize the regret.

1.4. Related Work

Single-player multi-armed bandits were originally proposed by Thompson (1933) and asymptotically
optimal strategies proposed by Lai and Robbins (1985), Cappé et al. (2013) amongst others. Building
on the work of Lai and Robbins (1985), Anantharam et al. (1987) considered a generalization to the
case where a single player can choose several arms, and proposed asymptotically optimal strategies.
In fact, the problem considered by Anantharam et al. (1987) can be seen as a centralized version of the
distributed problem we consider here. Motivated by wireless communication and networking, more
recent works have considered multi-player multi-armed bandits, Liu and Zhao (2010), Rosenski et al.
(2016), for instance as a natural model for a scenario where several players must access a wireless
channel in a decentralized manner Besson and Kaufmann (2018). When collision sensing is available,
several authors Boursier and Perchet (2019), Wang et al. (2020) have shown that one can obtain
roughly the same performance as in the centralized case by cleverly exploiting collisions. A harder
problem is the case without collision sensing. The state-of-the-art known algorithms for this problem
are SIC-MMAB2 Boursier and Perchet (2019), EC-SIC Shi et al. (2020) and the algorithms of Lugosi
and Mehrabian (2018). Our work improves on these algorithms, both in terms of performance, and in
terms of practical applicability. Some generalizations and alternative settings were also considered.
Bistritz and Leshem (2018) and Mehrabian et al. (2020) consider the more general heterogenous
case where the mean of arms vary among players. Magesh and Veeravalli (2021) and Shi and Shen
(2021) consider a variant of the probem where collisions can yield a non-zero reward. Bubeck et al.
(2021) consider the additional assumption that players have access to shared randomness, and study
the minimax regret.

1.5. Our Contribution

The regret upper bounds for state-of-the-art algorithms and the prior information they require is
presented in Table 1 (1). We also present a regret lower bound which corresponds to the case with
collision sensing, although we do not know if this bound is attainable without collision sensing.
These algorithms suffer from two important issues: (i) They require a lower bound on the expected
reward of the worst arm µ(K), and cannot be used without this prior information. Since in practice
this information is usually not available, this limits their practical applicability. In fact EC-SIC also

1. where E in the EC-SIC regret bound is the error exponenent of the error correcting code used.
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Algorithm Regret Upper Bound

SIC-MMAB2 O
(
M
∑

k>M
lnT

µ(M)−µ(k)
+ K2M

µ(K)
lnT

)
EC-SIC O

(∑
k>M

lnT
µ(M)−µ(k)

+ KM
µ(K)

lnT + KM2

E(µ(K))
ln
(

1
µ(M)−µ(M+1)

)
lnT

)
Lugosi et al. O

(
KM

(µ(M)−µ(M+1))
2 lnT

)
(first algorithm)

Lugosi et al. O
(

KM
µ(M)−µ(M+1)

lnT + K2M
µ(M)

(lnT )2
)

(second algorithm)

Our work O
(∑

k>M
lnT

µ(M)−µ(k)
+K2M lnT +KM2 ln

(
1

µ(M)−µ(M+1)

)2
lnT

)
Lower bound Ω

(∑
k>M

lnT
µ(M)−µ(k)

)
Algorithm Prior Information

SIC-MMAB2 µ(K)

EC-SIC µ(K) and µ(M) − µ(M+1)

Lugosi et al. µ(M) and M
Our work ∅

Table 1: State-of-the-art without collision sensing: regret upper bounds and prior information

requires as prior information the gap µ(M) − µ(M+1) which is also typically unknown (ii) Their
regret is proportional to O(1/µ(K)) which can be arbitrarily large. Namely µ(K) may be very small,
for instance, in wireless applications where arms represent channels, where µk is an increasing
function of the signal-to-noise ratio on channel k, and where µ1, ..., µK are weakly correleated due
to frequency selective fading, this issue occurs. Indeed, if we assume that µ1, ..., µK are drawn
independently from some distribution over [0, 1], then µ(K) = mink=1,...,K µk is close to 0 with
overwhelming probability when K is large.

Our main contribution is to propose an algorithm correcting issues (i) and (ii). The proposed
algorithm requires no input information besides the number of arms K and the time horizon T and
its regret is upper bounded as:

R(T, µ) = O
( ∑
k>M

lnT

µ(M) − µ(k)
+K2M lnT +KM2 ln

(
1

µ(M) − µ(M+1)

)2

lnT
)

which does not depend on µ(K). We also present numerical experiments which confirm our theoretical
predictions. We believe that our work is a step towards closing the gap between the best known upper
bound and lower bound, by showing that, just like in the case with collision sensing, the regret need
not depend on µ(K), and that is it not necessary to have prior information about µ(K) either.

2. Algorithm and Analysis

The proposed algorithm can be broken down into three steps and corresponding subroutines. Of
course, since the proposed algorithm is distributed, all playersm = 1, ...,M apply the same algorithm
based on their own observations. When providing pseudo-code, it is understood that each player

3



HUANG COMBES TRINH

follows the same pseudo code, in a distributed fashion. When stating our algorithms we use the
notation X += x to denote X ← X + x, i.e. add x to X . All additional subroutines as well as
proofs are presented in the appendix.

2.1. Step 1: Agreement on a Good Arm

The first step of the proposed algorithm is the FindGoodArm subroutine. The goal of this subroutine
is for all players m = 1, ...,M to agree on a "good" arm k̃, in the sense that µk̃ ≥ (1/8)µ(1), as well
as to output a lower bound on µk̃.

This subroutine is the cornerstone of our algorithm, and the main reason why our algorithm does
not suffer from (i) a regret scaling inversely proportionally to the reward of the first arm O(1/µ(K))
(ii) requiring a non trivial lower bound of µ(K) as an input parameter, while all state-of-the-art
algorithms suffer from problems (i) and (ii). Indeed, once a good arm is identified, one can use this
arm to exchange information between players, and arms with very low rewards have no bearing on
performance and can be mostly ignored.

The FindGoodArm subroutine is designed such that, with high probability, not only will all
players agree on the same good arm, but also that they will all terminate the procedure at the same
time. This is important to maintain synchronization, and achieving this synchronization is not trivial
as shown next.

The FindGoodArm subroutine is broken in successive phases, and each phase p ≥ 1 has two sub-
phases. In the first sub-phase of phase p, each player selects an arm uniformly at random 6K2p ln 2

δ
times and observes the resulting rewards. For each arm k = 1, ...,K, each player computes µ̂pk which
is the ratio between the sum of rewards obtained from arm k and the number of times that arm k has
been selected. If µ̂pk ≥ 21−p, we say that the player accepts arm k at phase p (i.e. he believes that µk
is greater than 2−p) and otherwise he rejects arm k at phase p. In the second sub-phase, the players
attempt to reach agreement on one good arm. For all arms ` = 1, ...,K, if a player accepts arm ` at
phase p, he chooses an arm uniformly at random K2p ln 2

δ times and if he does not accept ` then he
chooses arm ` for K2p ln 2

δ times. If arm ` yields at least one non-zero reward then we say that the
player confirms arm ` in phase p. If there exists k̃ such that the player confirms k̃, then the procedure
stops and k̃ is output. This mechanism is designed so that, with high probability, the procedure does
not exit until all players have agreed on a good arm. Indeed, if at least one of the players rejects arm
`, then he will select arm ` all the time, and no non-zero reward can be obtained from `, preventing
other players from confirming arm `.

To summarize the FindGoodArm subroutine involves sampling arms uniformly at random more
and more, until at least one of them has a large enough reward, and periodically exchanging
information between players in order to reach agreement over one good arm, and once agreement
is reached, the procedure stops. Lemma 1 provides an analysis of FindGoodArm and Algorithm 1
provides its pseudo-code.

Lemma 1 Consider the FindGoodArm subroutine with input parameters K and δ. Then, with
probability greater than 1−C1KM(ln 1

µ(1)
)δ: (i) The subroutine lasts at most C2

K2

µ(1)
ln 1

δ time slots

causing at most C2K
2M ln 1

δ regret. (ii) The output k̃ is a "good" arm i.e. µk̃ ≥
1
8µ(1) (iii) The

output µ̃ is a lower bound on the expected reward of k̃ i.e. µk̃ ≥ µ̃ (vi) All players exit the subroutine
at exactly the same time and output the same arm k̃ and estimate µ̃, where C1, C2 are universal
constants.
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Algorithm 1 FindGoodArm (for player m = 1, ...,M))
Input: K: number of arms , δ: confidence parameter
Output: k̃: good arm, µ̃: lower bound on reward of k̃
p← 0, k̃ ← −1 # initialization
while k̃ = −1 do
p += 1, R[k], N [k]← 0 for k = 1, ...,K # current phase, rewards and number of samples
# sub-phase 1: explore arms uniformly at random
for t = 1, ..., 6K2p ln 2

δ do
Select arm k ∈ {1, . . . ,K} uniformly at random, observe reward r, R[k] += r, N [k] += 1

end for
# sub-phase 2: confirm accepted arms
for `← 1, . . . ,K do
R′[k]← 0 for k = 1, ...,K # rewards of samples
# if arm ` was accepted sample arms uniformly
if R[`]
N [`] ≥ 21−p then
for t = 1, . . . , 2pK ln 2

δ do
Select arm k ∈ {1, . . . ,K} uniformly at random and observe reward r, R′[k] += r

end for
# if a non-zero reward is obtained, confirm arm `
if R′[`] ≥ 1 then k̃ ← `, µ̃← 2−p break end if

# if arm ` was rejected only sample `
else

for t = 1, . . . , 2pK ln 2
δ do select arm k = `, observe reward r, R′[k] += r end for

end if
end for

end while

2.2. Step 2: Rank Assignment

The second part of our algorithm is the subroutine VirtualMusicalChairs which performs rank
assignment, that is, assigning a different number to each of the players. This allows to perform
orthogonalization and explore arms without collisions by using sequential hopping as done in Boursier
and Perchet (2019).

Our subroutine VirtualMusicalChairs is based on the so-called Musical Chairs algorithm
where players repeatedly choose an arm at random until they obtain a non-zero reward and then keep
sampling this very same arm, which will also be their external rank. However, the Musical Chairs
used in Boursier and Perchet (2019) is not satisfactory since it samples from all arms k = 1, ...,K.
Its performance is therefore limited by the worst arm leading to a regret which scales proportionally
to O(1/µ(K)), in addition to requiring a lower bound on µ(K) as an input parameter.

Instead we propose to adapt this algorithm to only sample from the unique good arm k̃ derived
by the FindGoodArm subroutine. To do so we map this unique good arm into K "virtual" arms by
using a time division technique depicted in Figure 1. We divide time in τ blocks of length K. The
`-th time slot of each block is mapped to the `-th virtual arm. At the beginning of a block, player j
chooses a virtual arm ` at random (without pulling it). At the `-th time slot of the block, he pulls
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Time t

virtual arm 1

virtual arm 2

virtual arm 3

Figure 1: Mapping between a single real arm (below) and K identical virtual arms (above).

the good arm k̃, and if the reward is positive, he settles on virtual arm ` until the end. Note that a
player actually selects one arm every K time steps on average. Note also that, due to this idea of
virtual arms, VirtualMusicalChairs can be analyzed simply by considering the classical musical
chairs algorithm applied to K identical arms with mean reward µk̃. Lemma 2 provides an analysis of
VirtualMusicalChairs and Algorithm 2 provides its pseudo-code.

Lemma 2 Consider δ > 0. Consider the subroutine VirtualMusicalChairs with input parame-
tersK, a good arm k̃ and τ = K

µk̃
ln 1

δ . Then the subroutine exits afterKτ time slots, incurring regret

at most 8K2M ln 1
δ and with probability greater than 1 − C3KMδ it assigns a distinct external

rank to all of the M players where C3 is a universal constant.

2.3. Step 3: Computation of the Number of Players

The third step of the proposed algorithm is the VirtualNumberPlayers subroutine which allows
players to estimate the number of playersM . VirtualNumberPlayers takes as inputK the number
of arms, k̃ a good arm, s the external rank of a player, τ a sampling time, all of which are available
from the previous subroutines.

Once again we combine the sequential hopping technique used by Boursier and Perchet (2019)
to estimate M along with the idea of virtual arms, so that the procedure only samples from a good
arm k̃, and hence is not impacted by the presence of some arms with low reward.

To estimate M , we initialize our estimate as M̂ = 1, and perform sequential hopping for 2K
rounds to make sure that every two different players only collide one time. Since players can be
orthogonalized thanks to their external rank, a player increments M̂ only if he gets all zero rewards
during a specific period (this suggests that some collisions have occurred). As a by-product, we also
output the internal rank j ∈ {1, ...,M}, not to be confused with the external rank s ∈ {1, ...,K}.
Each player is assigned a different internal rank, and it will serve for the last step of our algorithm, in
order to assign roles when exploring the various arms.

Lemma 3 Consider δ > 0. Consider the subroutine VirtualNumberPlayers with input param-
eters K, a good arm k̃ and τ = 1

µk̃
ln 1

δ . Then the subroutine exits after K2τ time slots causing

at most C4K
2M ln 1

δ regret, and with probability greater than 1 − C5δ, it both outputs a correct
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Algorithm 2 VirtualMusicalChairs (for player m = 1, ...,M )

Input: K: number of arms, k̃: a good arm, τ : sampling times
Output: s: external rank of the player
s← −1; # rank of the player is initially unset
# musical chairs on the arm k̃
for t← 1, . . . ,Kτ do

# time is split in blocks of size K and we select when to sample at the start of a block.
if mod (t,K) = 1 then

if s = −1 then
Draw ` ∈ {1, ...,K} uniformly at random # Choose a random slot if rank is unset

else
`← s # Choose the rank as a slot if it is set

end if
end if
# sample the corresponding time slot
if mod (t,K) = ` then

Select arm k̃, and observe reward r
# set rank if it was not set yet and a non zero reward was obtained
if r > 0 and s = −1 then s← ` end if

else
Select an arbitrary arm in {1, ...,K} \ {k̃}

end if
end for
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estimate of the number of players M̂ = M , and it assigns a distinct internal rank j ∈ {1, ...,M} to
all of the M players. Both C4 and C5 are universal constants.

Algorithm 3 VirtualNumberPlayers (for player m = 1, ...,M )

Input: K: number of arms, k̃ a good arm, s: external rank of a player, τ : sampling times
Output: M̂ : estimated number of players, j: internal rank of the player
M̂ ← 1, `← s, j ← 1 # initialization
for n = 1, . . . , 2K do

if n > 2s then `← mod (`+ 1,K) # sequential hopping end if
R← 0 # sum of rewards from the good arm
# sample from the good arm
for k = 1, . . . ,K do

if ` 6= k then
for t = 1, . . . , τ do Select an arbitrary arm in {1, ...,K} \ {k̃} end for

else
# sample from virtual arm τ times
for t = 1, . . . , τ do Select arm k̃, observe reward r, R += r end for
# if no non-zero reward was obtained increase the estimated number of players
if R = 0 then
M̂ += 1,
if n ≤ 2s then j += 1 end if

end if
end if

end for
end for

2.4. Step 4: Distributed Exploration and Finding the Best Arms

The last step is the subroutine DistributedExploration, which takes as input K the number of
arms, j the internal rank of the player, τ the sampling times, M̂ the estimated number of players, and
outputs one arm amongst the M best arms, which is assigned to the player.

DistributedExploration is similar to the exploration strategy used in Shi et al. (2020) with
two key improvements. First, to avoid choosing arms with low expected reward, a player sends data
only through arm k̃ rather than through the j-th arm as done in Shi et al. (2020). Second, we set the
quantization error to be dependent on phase p instead of the fixed quantity µM −µM+1. By doing so,
the number of pulls is reduced, and the subroutine does not require this prior knowledge anymore. Its
analysis, provided in lemma 4 follows along similar lines as Shi et al. (2020), so we simply highlight
the main steps of this procedure. The player with internal rank j = 1 is called the leader, and other
players are called the followers. The procedure operates in phases, and in phase p, the active players
(the players that have not been assigned an arm yet) sample each active arm (the arms for which
players have not figured out whether or not they are amongst the M best arms) 2pdln 1

δ e times using
sequential hopping (so that no collisions occur). Then all followers send their estimates to the leader,
the leader aggregates their estimates, determines which arms can be accepted (the arms for which
one is sure that they are amongst the M best arms) and rejected (the arms for which one is sure that
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they are not amongst the M best arms) and then sends the sets of accepted and rejected arms back to
the followers. If an arm is accepted then it is assigned to an active player, and both the arm and the
player become inactive, and the player simply selects the assigned arm until the end of the procedure.
If an arm is rejected then it becomes inactive. The strategy on how leader and followers act in this
information exchange step is given in subroutines ComFollow and ComLead in appendix. In essence,
the leader coordinates and takes all of the decisions, while followers simply collect samples, transmit
their estimates and receive orders on what to do next. The strategy to send and receive data between
leader and followers is given in subroutines EncoderSendFloat and DecoderReceiveFloat in
appendix.

Lemma 4 Consider δ > 0 and T ≥ 0. Consider the subroutine DistributedExploration with
input parameters K, k̃ and τ = 1

µk̃
ln 1

δ applied with time horizon T (2). Then with probability

greater that 1− C6δKM(lnT )2 the subroutine incurs a regret upper bounded by

C7

∑
k>M

ln 1
δ

µ(M) − µ(k)
+ C8KM

2 ln

(
1

µ(M) − µ(M+1)

)2

ln
1

δ

and assigns one distinct arm to each player from the set of the M best arms, where C6, C7, C8 are
universal constants.

2.5. Putting it all Together

The complete proposed algorithm is presented in algorithm 5, and combines the four steps above.
It is noted that our proposed algorithm is in fact a procedure to identify the set of best arms. To
turn it into an algorithm for minimizing regret over a time horizon of T , one can simply run the
proposed algorithm with confidence parameter δ = 1

T , and then let players select the arm that has
been assigned to them by the algorithm until the time horizon runs out. The regret upper bound
of Theorem 5 is our main result, and is simply proven by combining the four previous lemmas.
As promised, unlike state-of-the-art algorithms, our algorithm does not need any prior information
such as the number of arms K or the reward of the worst arm µ(K), and its regret does not depend
on µ(K). The regret bound is better than that of SIC-MMAB2 and EC-SIC, in the sense that the
term proportional to 1/µ(K) (which can be arbitrarily large), has been eliminated. In other words,
performance is not limited by the worst arm anymore. This causes a dramatic performance gain
which is seen in numerical experiments shown below.

Theorem 5 Consider T ≥ 0, µM − µM+1 > 0. First apply the proposed algorithm with input
parameters K and δ = 1

T (lnT ) with time horizon T , let k̄ denote its output, and select arm k̄ for the
remaining time steps. Then the expected regret of this procedure is

R(T ) ≤ C9

∑
k>M

lnT

µ(M) − µ(k)
+ C10K

2M lnT + C11KM
2 ln

(
1

µ(M) − µ(M+1)

)2

lnT

with C9, C10, C11 three universal constants.

2. Applying a procedure with time horizon T simply means that, if it does not terminate before T on its own, then its
execution is immediately stopped when time T is reached.
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Algorithm 4 DistributedExploration (for players m = 1, ...,M )

Input: K: number of arms, j: internal rank of a player, M̂ : number of players, k̃: a good arm, τ :
sampling times

Output: f an arm amongst the M best arms assigned to the player
Initialize p← 0; f ← −1; # initialization
R[k], v[k]← 0 for k = 1, ...,K # rewards and number of samples for each arm
# rewards and number of samples for each arm held by each players, only stored by the leader
if j = 1 then

for m = 1, ..., M̂ and k = 1, ...,K do µ̂[k,m], N [k,m]← 0 end for
end if
M ′ ← M̂ , K ← {1, . . . ,K} # number of active players and set of active arms
while f = −1 do
p += 1 # start phase p
k ← j # first sub-phase explore arms by sequential hopping
for t← 1, . . . , |K|2p

⌈
ln 1

δ

⌉
do

k ← (k + 1) mod |K|
Select arm k, observe reward r, R[k] += r, v[k] += 1, E[k]← R[k]

v[k]
end for
Q← dp2 + 3e # second sub-phase: share estimates between players
if j = 1 then

(f,K,M ′, µ̂, N)←ComLeader(µ̂, N,K,M ′, Q, τ, k̃, p, δ) # player is a leader
else

(f,K,M ′)←ComFollow(E, j,K,M ′, Q, τ, k̃) # player is a follower
end if

end while

Algorithm 5 Proposed algorithm (for player m = 1, ...,M )
Input: K: number of arms, δ: confidence level
Output: k̄ an arm amongst the M best arms assigned to the player

(k̃, µ̃)←FindGoodArm(K, δ) # find a good arm and a lower bound on its reward
s←VirtualMusicalChairs(K, k̃,K ln(1δ )/µ̃) # assign external rank to each player
(M̂, j)←VirtualNumberPlayers(K, k̃, s, ln(1δ )/µ̃) # estimate the number of players and as-
sign internal rank
k̄ ←DistributedExploration(K, j, M̂ , k̃, ln(1δ )/µ̃)) # find one arms out of the M best arms
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3. Numerical Experiments

We now compare the empirical performance of the proposed algorithm against the state-of-the-art
algorithms SIC-MMAB2 and EC-SIC. For simplicity we assume that rewards decrease from best to
worst in a linear fashion µ(k) = µ(1) + k−1

K−1(µ(K) − µ(1)). The regret of algorithms is averaged over
20 (or more) independent runs, and 95% confidence intervals are presented.

Influence of the number of players In our first set of experiments, we consider µ(1) = 1 and
µ(K) = 0.01, M = bK/2c. We plot the expected regret of the various algorithms for K = 5, 10, 20
in figures 2,3 and 4 respectively. Overall, the proposed algorithm clearly outperforms EC-SIC and
SIC-MMAB2, sometimes by several orders of magnitude, and the difference seems more and more
severe when K increases.

Influence of the gap Figure 2 and 3 consider µM − µM+1 = 0.2 and µM − µM+1 = 0.1. We
see that sometimes the proposed algorithm performs a bit worse than other algorithms for very small
time horizons, however for larger time horizons it does outperform SIC-MMAB2 and EC-SIC which
seem not to converge quickly enough.
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Figure 2: K=5,M=2,T=105
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Figure 3: K=10,M=5,T=106

0 2 4 6 8 10

Time T #106

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e 

re
gr

et
s

#107

SIC-MMAB2
EC-SIC
Proposed algorithm

Figure 4: K=20,M=10,T=107

Impact of the number of players In figures 5 and 6 we compare between M = 2 players and
M = 8 players. For M = 2, both the proposed algorithm and EC-SIC do converge. However, when
M increases, the collision probability becomes larger, causing EC-SIC to spend significant time
performing musical chairs to estimate M .
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Figure 5: K=10,M=2,T=106
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Figure 6: K=10,M=8,T=106
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Figure 7: K=5,M=2,T=105

with different µ(K)

Impact of the worst arm We present the regret for different values of µ(K) in figure 7. When
µ(K) decreases, we can see that the performance of SIC-MMAB2 and EC-SIC is greatly affected,
and for µ(K) = 0.001 they do not even start the exploration phase. On the other hand, no matter
how small µ(K) is, the cumulative regret of the proposed algorithm stays similar, which confirms our
theoretical predictions.

4. Conclusion

In this work we have proposed a new algorithm for multi-player multi-armed bandits without collision
sensing information. Through both analysis and numerical experiments, we have proven that it
performs significantly better than the state-of-the-art algorithms, while at the same time requiring no
input parameter other than the number of arms. The cornerstone of our approach is a novel, non trivial
distributed procedure to enable players to discover a good arm without any prior information other
than the number of arms. We believe that this result is a significant contribution to the problem as it
constitutes a step towards being able to solve multi-player multi-armed bandits in a practical setting
(for instance cognitive radios) where no prior information is known about the expected rewards of
the arms.
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Appendix A. Proofs

A.1. Technical results

We recall some well known concentration inequalities used for our analysis.

Proposition 6 (Multiplicative Chernoff Bound) Consider X1, ..., Xt i.i.d. random variables in
[0, 1] with expectation µ, then for all ε ∈ [0, 1]

P

(
1

t

t∑
s=1

Xs ≤ (1− ε)µ

)
≤ exp

(
−ε

2tµ

2

)
and P

(
1

t

t∑
s=1

Xs ≥ (1 + ε)µ

)
≤ exp

(
− ε

2tµ

2 + ε

)

Proposition 7 (Hoeffding’s Inequality) Consider X1, ..., Xt i.i.d. random variables in [0, 1] with
expectation µ, then for all ε ∈ [0, 1]

P

(
1

t

t∑
s=1

Xs ≤ µ− ε

)
≤ exp

(
−2tε2

)
and P

(
1

t

t∑
s=1

Xs ≥ µ+ ε

)
≤ exp

(
−2tε2

)
A.2. Proof of Lemma 1

When all players sample an arm uniformly at random, the probability that a player m does not
experience a collision is (1− 1

K )M−1, and the expected reward he obtains when selecting arm k is
therefore ρk = (1− 1

K )M−1µk.
For phase p ≥ 1, player m = 1, ...,M and arm k we denote by µ̂pk,m the empirical mean reward

received by player m from arm k during phase p, denote by tpk,m the corresponding number of
samples.

Acceptance in the first sub-phase Assume that ρk ≥ 22−p then:

P(µ̂pk,m ≤ 21−p) ≤ P(µ̂pk,m ≤ 21−p, tpk,m ≥ 3× 2p ln
2

δ
) + P(tpk,m ≤ 3× 2p ln

2

δ
)

Since µ̂pk,m is an empirical mean of tpk,m i.i.d. random variables in [0, 1] with expectation ρk ≥ 22−p

a Chernoff bound yields:

P(µ̂pk,m ≤ 21−p, tpk,m ≥ 3× 2p ln
2

δ
) ≤ exp(−4

3
ln

2

δ
) ≤ δ

2

Since tpk,m is an empirical mean of 6K2p ln 2
δ i.i.d. random variables in [0, 1] with expectation 1

K a
Chernoff bound yields:

P(tpk,m ≤ 3× 2p ln
2

δ
) ≤ exp(−3× 2p−2 ln

2

δ
) ≤ δ

2

We have proven that if ρk ≥ 22−p then P(µ̂pk,m ≤ 21−p) ≤ δ, so that arm k will be accepted at phase
p by player m with probability greater than 1− δ.

Rejection in the first sub-phase Assume that ρk ≤ 2−p then once again:

P(µ̂pk,m ≥ 21−p) ≤ P(µ̂pk,m ≥ 21−p, tpk,m ≥ 3× 2p ln
2

δ
) + P(tpk,m ≤ 3× 2p ln

2

δ
)
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Since µ̂pk,m is an empirical mean of tpk,m i.i.d. random variables in [0, 1] with expectation ρk ≤ 2−p a
Chernoff bound yields:

P(µ̂pk,m ≥ 21−p, tpk,m ≥ 3× 2p ln
2

δ
) ≤ exp(− ln

2

δ
) =

δ

2

Since tpk,m is an empirical mean of 6K2p ln 2
δ i.i.d. random variables in [0, 1] with expectation 1

K a
Chernoff bound yields:

P(tpk,m ≤ 3× 2p ln
2

δ
) ≤ exp(−3× 2p−2 ln

2

δ
) ≤ δ

2

We have proven that if ρk ≤ 2−p then P(µ̂pk,m ≥ 21−p) ≤ δ, so that arm k will be rejected by player
m at phase p with probability greater than 1− δ.

Confirmation in the second sub-phase Consider arm k. If there exists at least one player whom
did not accept this arm in the first phase then, by design, this arm cannot be confirmed. On the
other hand, assume that ρk ≥ 2−p and assume that all players accept arm k. Denote by Rpk,m the
total reward received by player m when attempting to confirm arm k, which is a sum of 2pK ln 2

δ
Bernoulli random variables with mean ρk

K so that:

P(Rpk,m = 0) = (1− ρk
K

)K2p ln 2
δ ≤ exp(−ρk2p ln

2

δ
) ≤ exp(− ln

2

δ
) =

δ

2

where we used the inequality 1− x ≤ e−x. We have proven that, if ρk ≥ 2−p and that all players
accept arm k, then arm k will be confirmed by player m in the second subphase with probability
greater than 1− δ

2 and the procedure will terminate with probability greater than 1− δ
2 .

Putting things together We can now check that all statements of the theorem are true. We will
use the fact that since ρk = µk(1− 1/K)M−1 and we have

(1− 1/e)µk ≤ (1− 1/K)K−1µk ≤ ρk ≤ µk.

Statement (i) Define k? ∈ arg maxk=1,...,K ρk. Define p? the smallest p such that ρk? ≥ 22−p.
With probability greater than 1 − O(Mδ) all players will accept arm k? in phase p? and with
probability greater than 1 − O(Mδ) all players will confirm arm k? so that the procedure will
terminate. So, with probability greater than 1−O(Mδ), the procedure terminates at or before phase
p?. The duration of phase p is (6 +K)K2p ln 1

δ , so that the duration of the procedure up to phase p?

is:

(6 +K)K ln
1

δ

p?∑
p=1

2p = O(K22p
?

ln
1

δ
) = O(

K2

ρk?
ln

1

δ
) = O(

K2

µk?
ln

1

δ
)

using the fact that ρk ≥ (1− 1/e)µk which is the announced duration. Furthermore, the amount of
regret caused by any procedure is at most Mµk? times its duration, therefore the procedure incurs
regret at most

O(K2M ln
1

δ
)

Statement (ii) Denote by k̃ the output of the procedure. Assume that ρk̃ ≤ 2−p
?

then There must
exist some player m that accepts this arm at some phase 1 ≤ p ≤ p?, and since ρk̃ ≤ 2−p, this
happens with probability at most O(δp?KM). On the other hand if ρk̃ ≥ 2−p

?
we have ρk̃ ≥

1
8ρk?
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so that µk̃ ≥
1
8µk? and k̃ is a good arm. Hence with probability at least 1−O(MKp?δ) the procedure

outputs a good arm.
Statement (iii) Assume that the procedure terminates at phase 1 ≤ p ≤ p?. With probability at

least 1−O(MKp?δ) we have that ρk̃ ≥ 2−p since k̃ must have been accepted by at least one player.
Therefore µk̃ ≥ ρk̃ ≥ 2−p = µ̄, and the output µ̄ is indeed a lower bound on the expected reward of
k̃ with probability at least 1−O(MKp?δ).

Statement (vi) By design of the procedure, all players must output the same arm unless they do
not exit simultaneously. Denote by k̃ the output of the procedure. If not all players exit the procedure
simultaneously, then there must exists a phase p = 1, ..., p? and an arm k such that all players accept
arm k but at least one of them does not confirm it. This happens with probability at most O(Mp?δ),
therefore, with probability at least 1−O(Mp?δ) all players exit the procedure simultaneously.

We also note that p? = O(ln 1
µk?

). This completes the proof.

A.3. Proof of Lemmas 2 and 3

By design VirtualMusicalChairs and VirtualNumberPlayers terminate after exactly Kτ and
2Kτ time steps respectively. Furthermore applying those two procedures is equivalent to running
the initialization phase of SIC-MMAB used by Boursier and Perchet (2019), in a system with K
identical arms with mean reward µk̃. Therefore, from Boursier and Perchet (2019)[Lemma 11], we
have that the both of those procedures succeed with probability at least 1−O(MKδ). Also, as stated
above, the amount of regret caused by any procedure is at most Mµk? times its duration, therefore
both procedures incurs regret at most

O(KτMµk?) = O(KM ln
1

δ
)

A.4. Proof of Lemma 4

We now analyze the DistributedExploration subroutine.
Maximal number of phases It is noted that phase p lasts |K|2pdln 1

δ e ≥ 2pdln 1
δ e. Since the

time horizon is T , the maximal number of phases p? must satisfy

2p
? ≤ 2p

?+1 ln
1

δ
= ln

1

δ

p?∑
p=1

2p ≤ T

therefore the number of phases is upper bounded by p? ≤ ln2 T.
Communication errors Consider the subroutines EncoderSendFloat and DecoderReceiveFloat

float, which allow to send/receive Q bits each time they are called. By design, in phase p the total
number of bits sent is at most

3KMQ = 3KMdp
2

+ 3e

Hence the total number of bits sent across phases is

O(KM(p?)2)

Since, by design of the communication protocol and the fact that τ = 1
µk̃

ln 1
δ , each time a bit is sent,

it is decoded correctly with probability greater than 1− δ. Therefore, with probability greater than
1−O(δKM(p?)2), there are no communication errors.
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Estimation errors Now assume that no communication errors have taken place, and denote by
µ̂pk the estimate of the mean reward of arm k computed by the leader in phase k, tpk the corresponding
number of samples and

Bp
k =

√
(2 ln

1

δ
)/tpk + 2−

p
2
−3

We say that there is an estimation error for k in phase p if |µ̂pk − µk| ≥ B
p
k . We have:

|µ̂pk − µk| ≤ |µ̂
p
k − E(µ̂pk)|+ |µk − E(µ̂pk)|

The first term is a random fluctuation and the second term is a quantification error due to the fact that
players send quantified estimates. Since Q = p

2 + 3 the error due to quantification is smaller than

|µk − E(µ̂pk)| ≤ 2−
p
2
−3

And using Hoeffding’s inequality yields an upper bound for the estimation error probability:

P(|µ̂pk − µk| ≥ B
p
k) ≤ P(|µ̂pk − E(µ̂pk)| ≥

√
(2 ln

1

δ
)/tpk) ≤ δ

Considering all arms and all phases, we have proven that with probability at least 1−O(δKp?), no
estimation error occurs during a run of the algorithm.

Behaviour on a clean run We say that we have a clean run if no communication errors and no
estimation errors occur throughout the run of the algorithm. We have already established that a clean
runs occurs with probability at least 1−O(δKM(p?)2). On a clean run, we always have that

µ̂pk +Bp
k ≤ µk

and
µ̂pk −B

p
k ≥ µk

so that one can readily check that if k is amongst the M best arm, it can never be rejected, and that if
k is not amongst the M best arms, if it is still active at phase p it will be rejected if 4Bp

k ≤ µ(M)−µk.
Following the same logic as Boursier and Perchet (2019), one can establish that k is selected at most

O(
ln 1
δ

(µ(M)−µk)2
) times, and that the maximal number of phases is upper bounded by:

p? ≤ O
(

ln

(
1

µ(M) − µ(M+1)

))
Regret on a clean run We can complete the proof by upper bounding the regret on a clean run.
We first turn to the regret caused by communication. Sending a bit using the described protocol

incurs at most Mµ(1)τ = M ln 1
δ regret and O(KM(p?)2) bits must be sent, therefore the regret

caused by communication is upper bounded by

O

(
KM2 ln

(
1

µ(M) − µ(M+1)

)2

ln
1

δ

)
Since no collisions occur, optimal arms are never eliminated, and any suboptimal arm k is selected at

most O( ln(1/δ)
(µ(M)−µk)2

) times, the total regret caused by exploration is O(
∑

k>M
ln 1
δ

µ(M)−µk
). Therefore,
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as announced, with probability at least than 1−O(δKM(lnT )2) a clean run occurs, and the resulting
regret is

O

(
KM2 ln

(
1

µ(M) − µ(M+1)

)2

ln
1

δ
+
∑
k>M

ln 1
δ

µ(M) − µk

)
which completes the proof.

Appendix B. Additional Subroutines

We provide here the pseudo-codes for the remaining subroutines. These subroutines are, we recall,
described from the point of view of a single player, which is the natural way to describe a decentralized
algorithm. It is noted that some subroutines are broken over several pages. EncoderSendFloat
and DecoderReceiveFloat allow to exchange floating point numbers, and can be modified in a
straighforward manner to deal with integers, yielding EncoderSendInt and DecoderReceiveInt,
whose pseudo-codes are omitted.
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Algorithm 6 ComLeader

Input: µ̂: estimates held by each player, N : number of samples held by players, K: set of active
arms, M ′: number of active players, Q message length, τ : sampling time, k̃: good arm, p: phase,
δ: confidence parameter

Output: f one of the M best arms to be assigned to player, K̄ updated version set of active arms,
M̄ ′ updated number of active players, µ̄ updated estimates held by players, N̄ updates number
of samples held by players
µ̄← µ̂, N̄ ← N
# receive the updated values of the estimates held by active players
for i← 2, . . . ,M do

for k ∈ K do
µ̄[k, i]← DecoderReceiveFloat(k̃, τ, Q)
N̄ [k, i]← N̄ [k, i] + 2p

⌈
ln 1

δ

⌉
end for

end for
# compute the estimates aggregated across all players decide which arms to accept / reject
for k ∈ K do

# compute the estimate aggregated across all players
ρ[k]← (

∑M
i=1 µ̄[k, i]N̄)/(

∑M
i=1 N̄ [k, i])

# compute confidence radius

B[k]←
√

(2 ln 1
δ )/(

∑M
i=1 N̄ [k, i]) + 2−

p
2
−3

# accept arm
if |{i ∈ K : ρ[k]−B[k] ≥ ρ[i] +B[i]}| ≥ |K| −M ′ then

Add k to C[., 1]
end if
# reject arm
if |{i ∈ K : ρ[i]−B[i] ≥ ρ[k] +B[k]}| ≥M ′ then

Add k to C[., 2]
end if

end for
# message size to send accepted / rejected arms
Q′ ← dlog2 |K|e
# send the size of the sets of accepted / rejected arms
for i← 2, . . . ,M ′ and s = 1, 2 do
EncoderSendInt(K, k̃, τ,Q′, length(C[., s]))

end for
# send the contents of the sets of accepted / rejected arms
for i← 2, . . . ,M ′ and s = 1, 2 and k ∈ C[., s] do
EncoderSendInt(K, k̃, τ,Q′, k)

end for
C ′ ← C and remove k̃ from C ′[, .1]
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if M ′ = length(C ′[., 1]) and C = C ′ then
f ← C[M ′, 1]

else if M ′ − 1 = length(C ′[., 1]) and C 6= C ′ then
# assign the good arm to the leader
f ← k̃

else
# otherwise make accepted and rejected arms inactive and update number of active players
M̄ ←M ′ − length(C[., 1])
K′ ← K
for k ∈ C ′ do

Remove k from K′
end for

end if
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Algorithm 7 ComFollow

Input: E: estimated reward of each arm by the player, j: rank of the player, K: set of active arms,
M ′: number of active players, Q: message size, τ : sampling time, k̃: a good arm

Output: , f one of the M best arms to be assigned to player, K̄ updated version set of active arms,
M̄ ′ updated number of active players
K′ ← K \ {k̃}
# send reward estimates of active arms to the leader
for i = 2, . . . ,M ′ do

if j = i then
for k ∈ K do
EncoderSendFloat(K, k̃, τ,Q,E[k])

end for
else

for t = 1, ..., |K|τQ do
Select the (j mod |K′|)-th arm in set K′

end for
end if

end for
# message size to send accepted / rejected arms
Q′ ← dlog2 |K|e
# receive the sizes of the sets of accepted and rejected arms
for i← 2, . . . ,M ′ do

if j = i then
for s = 1, 2 do
N [s]← DecoderReceiveInt(k̃, τ, Q′)

end for
else

for t = 1, ..., 2τQ′ do
Select the (j mod |K′|)-th arm in set K′

end for
end if

end for
# receive the contents of the sets of accepted and rejected arms
for i← 2, . . . ,M ′ do

if j = i then
for s = 1, 2 and q = 1, ..., N [s] do
C[q, s]← DecoderReceiveInt (k̃, τ, Q′)

end for
else

for t = 1, ..., τQ′(N [1] +N [2]) do
Select the (j mod |K′|)-th arm in set K′

end for
end if

end for
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# update the set of active arms, and the active players
# avoid assigning the good arm to followers
C ← C ′

Remove k̃ from C ′[., 1]
# if an accepted arm can be assigned to player then do so
if M ′ − j + 1 ≤ length(C ′[., 1]) then
f ← C ′[M ′ − j + 1, 1]
# otherwise make accepted and rejected arms inactive and update number of active players

else
M̄ ←M ′ − length(C ′[., 1])
K̄ ← K
for k ∈ C ′ do

Remove k from K̄
end for

end if

Algorithm 8 EncoderSendFloat

Input: K: a subset of arms, k̃: a good arm, τ : a sampling time, Q: the message size, µ ∈ [0, 1] a
real number to send
# convert the number to send to a binary message of size Q
S ←FloatToBinary(µ,Q)
# send each bit of the binary message
for q = 1, . . . , Q do

if S[q] = 1 then
# send a 1 bit
`← q mod |K\k̃|
k ← the `-th arm in set K\k̃

else
# send a 0 bit
k ← k̃

end if
for t = 1, . . . , τ do

Select arm k
end for

end for
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Algorithm 9 DecoderReceiveFloat

Input: k̃: a good arm, τ : a sampling time, Q: the message size
Output: µ ∈ [0, 1] a received real number to send

# decode each bit of the binary message
for q = 1, . . . , Q do
B[q]← 0
for t = 1, . . . , τ do

Select arm k̃ and observe reward r
# decode a 1 bit if at least one non zero reward is obtained
if r > 0 then
B[q]← 1

end if
end for

end for
# convert the received binary message to a real number
µ←BinaryToFloat(B,Q)
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