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This paper1 considers the multi-armed bandit (MAB) problem and provides a new best-of-both-
worlds (BOBW) algorithm that works nearly optimally in both stochastic and adversarial settings.
In stochastic settings, some existing BOBW algorithms achieve tight gap-dependent regret bounds
of O(

∑
i:∆i>0

log T
∆i

) for suboptimality gap ∆i of arm i and time horizon T . On the other hand, it is

shown in Audibert et al. (2007) that the regret bound can be tightened toO(
∑

i:∆i>0(
σ2
i

∆i
+1) log T )

using the loss variance σ2
i of each arm i in the stochastic environments. In this paper, we propose

an algorithm based on the follow-the-regularized-leader method, which employs adaptive learning
rates that depend on the empirical prediction error of the loss. This is the first BOBW algorithm
with gap-variance-dependent bounds, showing that the variance information can be used even in the
possibly adversarial environment. Further, the leading constant factor in our gap-variance dependent
bound is only (almost) twice the value for the lower bound. In addition, the proposed algorithm
enjoys multiple data-dependent regret bounds in adversarial settings and works well in stochastic
settings with adversarial corruptions. Table 1 summarizes the achievable bounds in comparison with
UCB-V (Audibert et al., 2007), Tsallis-INF (Zimmert and Seldin, 2021) and LB-INF (Ito, 2021).

Table 1: Achievable regret bounds. C > 0 is the corruption level, L∗ is the cumulative loss for the
optimal arm, and Q∞ is the variation of the loss.

Environment Bound UCB-V Tsallis-INF LB-INF Proposed

Stochastic ∆-dependent X X X X
(∆, σ2)-dependent X X

Adversarial Worst case: Õ(
√
KT ) X X X

1st order: Õ(
√
KL∗) X X

2nd order: Õ(
√
KQ∞) X X

Stochastic with (∆, C)-dependent X X X
adversarial corruption (∆, σ2, C)-dependent X

1. Extended abstract. Full version appears as [arXiv:2206.06810, v1].
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