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Abstract
We contribute to advancing the understanding of Riemannian accelerated gradient methods. In
particular, we revisit “Accelerated Hybrid Proximal Extragradient” (A-HPE), a powerful framework
for obtaining Euclidean accelerated methods (Monteiro and Svaiter, 2013). Building on A-HPE,
we then propose and analyze Riemannian A-HPE. The core of our analysis consists of two key
components: (i) a set of new insights into Euclidean A-HPE itself; and (ii) a careful control of
metric distortion caused by Riemannian geometry. We illustrate our framework by obtaining a few
existing and new Riemannian accelerated gradient methods as special cases, while characterizing
their acceleration as corollaries of our main results.
Keywords: geodesic convexity; Riemannian accelerated gradient; proximal extragradient

1. Introduction

Convexity admits an elegant generalization beyond vector spaces to geodesic metric spaces. There,
through the lens of geodesic convexity one obtains a rich class of tractable nonconvex optimization
problems, which makes the study of geodesically convex optimization potentially of far-reaching
value. Main examples where geodesically convex optimization has been studied include certain
Riemannian manifolds (Rapcsák, 1991; Udriste, 2013; Boumal, 2022; Sra and Hosseini, 2015; Wiesel,
2012), Hadamard spaces (Bacák, 2014), and non-commutative groups (Bürgisser et al., 2019).

The interest in geodesic convexity is paralleled by the development of optimization algorithms.
Early works prove convergence for Riemannian proximal-point (Ferreira and Oliveira, 2002; de Car-
valho Bento et al., 2016) and Riemannian analogs of many other Euclidean methods (Rapcsák, 1991;
Smith, 1994; Absil et al., 2009), though these works in general do not exploit geodesic convexity,
and limit their analyses to asymptotic results. The work (Zhang and Sra, 2016) is the first to pro-
vide non-asymptotic rates (and iteration complexity) of first-order methods for geodesically convex
optimization on Hadamard manifolds. Subsequent works establish iteration complexities for other
optimization methods on Riemannian manifolds, such as variance-reduced methods (Zhang et al.,
2016; Sato et al., 2019), adaptive gradient methods (Kasai et al., 2019), Newton-type methods (Hu
et al., 2018; Agarwal et al., 2021), among many others.

A key open question is whether it is possible to develop accelerated gradient methods on
Riemannian manifolds. Zhang and Sra (2018) develop the first such method, and they show that the
method achieves acceleration in a small neighborhood of the global minimum. Later, Ahn and Sra
(2020) show that a Riemannian version of Nesterov’s method converges globally, at a rate strictly
faster than gradient descent and eventually attains full acceleration, which is defined as follows:
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Definition 1 We say that a gradient-based method eventually achieves acceleration if for optimiz-
ing an L-smooth, µ-geodesically strongly-convex function f , it outputs a sequence {wk}k≥1 with
computational complexity O(k) that satisfies

f(wk)− f∗ = O ((1− τ1)(1− τ2) · · · (1− τk)) , (1)

where τk ≥ cµL for some constant c > 0, and limk→+∞ τk = Ω(
√

µ/L).

Motivation of this work. The abovementioned work leads one to wonder whether we can develop
methods that attain full acceleration from the start, without a “burn in” period. Unfortunately, recent
work (Hamilton and Moitra, 2021; Criscitiello and Boumal, 2021b) shows that full acceleration is
impossible in general, which suggests that the best we can hope for is eventual acceleration.

Despite this recent progress on lower and upper bounds characterizing Riemannian acceleration,
there is a considerable gap between the study of acceleration in Euclidean space versus Riemannian
manifolds.1 While numerous Euclidean accelerated methods beyond the canonical one of Nesterov
have been studied, it is still unknown whether they also generalize to the Riemannian setting, and as
such, a systematic understanding of Riemannian acceleration is still lacking.

This gap motivates us to study Riemannian acceleration more closely. We start by revisiting
Accelerated Hybrid Proximal Extragradient (A-HPE), a powerful framework for convex optimiza-
tion (Monteiro and Svaiter, 2013). Indeed, it can be shown that Nesterov’s optimal method is a special
case of A-HPE; Monteiro and Svaiter (2013) also propose a second-order method A-NPE, which
is a specific implementation of their framework and has complexity Õ

(
ε−2/7

)
for ε-suboptimality.

A hitherto unknown property of A-HPE is that it can recover a wide range of accelerated methods
that have been independently proposed in past literature, e.g., the accelerated extragradient descent
method of Diakonikolas and Orecchia (2018), the algorithm with an extra gradient descent step in
(Chen and Luo, 2019, Section 4), the extra-point method of Huang and Zhang (2021), among others.

The A-HPE framework also has implications beyond usual first-order methods. A-NPE is used
to design optimal second-order method in (Arjevani et al., 2019), and more generally, a number of
works (Bubeck et al., 2019; Jiang et al., 2019) show that A-HPE can also induce optimal higher-
order methods for smooth convex functions. Carmon et al. (2020) considers a different setting
where one has access to a ball oracle, and they show that combining A-HPE with line search yields
an accelerated method that is near-optimal. Moreover, A-HPE was extended to strongly-convex
functions in (Barré et al., 2022; Marques Alves, 2022).

Overview and main contributions. In light of the above motivation, we believe that A-HPE can
help us uncover fundamental ideas behind the acceleration phenomenon. The main goal of this paper
is to propose a Riemannian version of A-HPE and provide global convergence guarantees for this
framework. To that end, the key contributions of our work may be summarized as follows:

– We revisit Euclidean A-HPE in Section 2, and propose to view it as the linear coupling of two
approximate proximal point iterates. This viewpoint produces a simple, new analysis of A-HPE.

– We introduce Riemannian A-HPE in Section 3, which we analyze by following our Euclidean
approach, while localizing the challenges posed by Riemannian geometry. Specifically, we
discover that besides the metric distortion that appears in previous works (Zhang and Sra, 2018;
Ahn and Sra, 2020), there is an additional distortion that must be controlled.

1. We limit our discussion to the convex case, and refer the reader to the recent work (Criscitiello and Boumal, 2021a)
that studies acceleration for non-geodesically-convex problems on manifolds.
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Algorithm 1 Accelerated hybrid proximal extragradient (A-HPE) method
Input :Objective function f , initial point x0, step size λk > 0, k = 1, 2, · · · , a sequence {σk} in

[0, 1], initial weight A0 ≥ 0
z0 = x0

for k = 1, 2, · · · do

ak+1 ←
(1+2µAk)λk+1+

√
(1+2µAk)

2λ2
k+1+4(1+µAk)Akλk+1

2
Ak+1 ← Ak + ak+1

yk ← xk +
ak+1(1+µAk)

Ak+1+µ(ak+1Ak+AkAk+1)
(zk − xk)

εk ←
σ2
k

2(1+λkµ)
2 ∥xk+1 − yk∥2

choose (xk+1, vk+1) ∈ iproxf (yk, λk, εk)
zk+1 ← zk +

ak+1

1+µAk+1
(µ (xk+1 − zk)− vk+1)

end

– In Section 3.4, we first consider the case without additional distortion, for which we prove
global eventual acceleration that not only generalizes (Ahn and Sra, 2020), but also offers global
guarantees for some other Riemannian counterparts of Euclidean first-order accelerated methods.

– In Section 3.5, we then tackle the general case with additional distortion, which we handle by
leveraging geometric bounds on Riemannian manifolds. For this general case, we obtain new local
acceleration results akin to (Zhang and Sra, 2018).

– Finally, in Section 4, we discuss a number of accelerated first-order methods as special cases.

Notation and terminology. Throughout the paper ⟨·, ·⟩ denotes inner product in a Euclidean
space, and ∥ · ∥ its induced norm. For a closed convex set X ∈ Rd, we define the projection
PX (x) := argminy∈X ∥x − y∥. For a convex function f : Rd → R, the proximal mapping of
f is given by proxf (x) := argminu∈Rd f(u) + 1

2∥u − x∥2. For a µ-strongly convex function
f : Rd → R, we define the quadratic function fw(x) := f(w) + ⟨x− w,∇⟩ + µ

2∥x − w∥2 for
w ∈ Rd and ∇ ∈ ∂f(w), so that fw(x) ≤ f(x) for all x.

2. A New Analysis of Euclidean A-HPE

We now revisit the Euclidean A-HPE framework—see Algorithm 1. We propose to analyze A-HPE
via the proximal point method, leading to a novel analysis that is simpler and more intuitive (in our
opinion) than previous approaches (Barré et al., 2022; Marques Alves, 2022). More importantly, this
analysis helps us develop Riemannian A-HPE, our main focus.

Throughout this section we assume that f is µ-strongly-convex. Our description follows (Barré
et al., 2022) and relies on the key concept of inexact proximal operators. Our definition below is
equivalent to the one in (Barré et al., 2022, Definition 2.3) that relies on the primal-dual gap of a
proximal function. We use our version for ease of analysis. Appendix A provides additional intuition
on this concept by relating it to ε-subgradients.

Definition 2 (Barré et al., 2022, Lemma 2.4) We write (x, v) ∈ iproxf (y, λ, ε) if

1

2(1 + λµ)2
∥x− y + λv∥2 + λ

1 + λµ

(
f(x)− f(w)− ⟨x− w, v⟩+ µ

2
∥x− w∥2

)
≤ ε, (2)
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where w ∈ Rd satisfies v − µx+ µw ∈ ∂f(w) and ε ≥ 0.

If ε = 0 and w = x, then v ∈ ∂f(x) and x+ λv = y, which recovers the exact proximal operator.
With Definition 2 in hand, up to the specification of the sequences {λk} and {σk}, all steps of

Algorithm 1 are implementable. Hence, we are ready to state the main result of this section.

Theorem 3 For the iterates produced by Algorithm 1, we have the function suboptimality bound

f(xk)−f(x∗) ≤
A0(f(x0)− f(x∗)) + 1+µA0

2 ∥x0 − x∗∥2

Ak
= O

(
Πk−1

i=1

(
1+max

{
µλi,

√
µλi

})−1)
.

Assuming that f is also L-smooth, a number of first-order methods (including Nesterov’s method)
can be considered as a special cases of Algorithm 1, with the choice λi = O(1/L). Theorem 3
then implies that these methods have the optimal convergence rate of O

(
(1 +

√
µ/L)−k

)
. We do

not present concrete examples here since this is not our main focus, but we will include detailed
discussions about such special cases for the Riemannian setting later in the paper.

2.1. Overview of the proof of Theorem 3

We now overview our proof technique for Theorem 3, which sheds light on the specific parameter
choices and updates that comprise Algorithm 1. To aid exposition, we trade simplicity for rigor in
our overview below, and defer a fully rigorous proof to Appendix B.

Motivated by (Allen-Zhu and Orecchia, 2017; Ahn, 2020), we view Algorithm 1 as a combi-
nation of two approximate PPM (proximal point method) updates, each using a different notion of
approximation. The first uses the inexact proximal operator from Theorem 2, while the second arises
from minimizing a quadratic lower-approximation of f . When properly combined, these two steps
allow us to prove the following theorem that immediately implies Theorem 3.

Theorem 4 The potential function pk := f(xk) +
1+µAk

2 ∥zk − x∗∥2 is decreasing for all k ≥ 0.

The potential function in Theorem 4 has two terms: the objective f(xk) and a distance term
involving ∥zk−x∗∥2. We analyze these terms separately; they are associated with the two approximate
PPM steps alluded to above, and the amount they change with k must be carefully combined to
ensure pk ≥ pk+1. We start with Theorem 5 to bound the change in function value.

Lemma 5 Denote ∇k+1 = vk+1 + µ (wk+1 − xk+1) ∈ ∂f(wk+1); when εk is small, we have

f(xk+1) ≲ f(wk+1) +
1
2µ

(
∥vk+1∥2 − ∥∇k+1∥2

)
(3a)

≤ f(xk)− µ
2∥xk − xk+1 + µ−1vk+1∥2 + 1

2µ∥vk+1∥2. (3b)

The proof of Theorem 5 is given in Appendix B. Inequality (3b) is not exact; we omit an
additional term that depends on εk for ease of presentation. Inequality (3) can be understood as a
descent inequality for the function value at xk, albeit with an error term ∥vk+1∥. When this term is
large, we may no longer be able to control the change in function values.

Next, we bound the change in the distance term. Observe that Line 8 of Algorithm 1 is nothing
but zk+1 ← 1+µAk

1+µAk+1
zk+

µak+1

1+µAk+1

(
wk+1 − µ−1∇k+1

)
= argminz{fwk+1

(z)+ 1+µAk
2ak+1

∥z−zk∥2},
where fwk+1

(z) := f(wk+1)+⟨∇k+1, z − wk+1⟩+µ
2∥z−wk+1∥2 is a lower quadratic approximation

of f . Theorem 6 then helps us bound this change.
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Lemma 6 (Approximate distance change) When εk is small, we have

1+µAk
2 ∥zk − x∗∥2 − 1+µAk+1

2 ∥zk+1 − x∗∥2

≥ ak+1(f(wk+1)− f(x∗)) +
µak+1(1+µAk)
2(1+µAk+1)

∥zk − wk+1 + µ−1∇k+1∥2 − ak+1

2µ ∥∇k+1∥2 (4a)

≳ ak+1(f(xk+1)− f(x∗)) +
µak+1(1+µAk)
2(1+µAk+1)

∥zk − xk+1 + µ−1vk+1∥2 − ak+1

2µ ∥vk+1∥2 . (4b)

Note that (4a) is very similar to the prox-grad inequality (Beck, 2017, Theorem 10.16) and the
fundamental inequality of mirror descent (Allen-Zhu and Orecchia, 2017, Section 2.2) that imply
contraction of distance with a proximal iteration. Inequality (4b) is not exact since it depends on εk.
Again, the term ∥vk+1∥ prevents us from directly deducing contraction of the distance to x∗.

The inequalities in Theorem 5 and Theorem 6 reveal a challenge faced when proving descent of
the potential function: we must control the magnitude of vk+1. Specifically, consider the situation
where the positive terms ∥xk − xk+1 + µ−1vk+1∥ in (3b) and ∥zk − xk+1 + µ−1vk+1∥ in (4b) are
small but ∥vk+1∥ is large. But when εk is small, Theorem 2 also implies that xk+1− yk ≈ −λkvk+1,
which further implies that yk − xk+1 + µ−1vk+1 ≈

(
µ−1 + λk

)
vk+1 is large. This observation

suggests that a contradiction is arrived at if we choose yk on the line segment connecting xk and
zk, i.e., yk = τxk + (1 − τ)zk. Why? Since in this case, if yk − xk+1 + µ−1vk+1 is large, then
we can directly deduce that (a convex combination) of the terms ∥xk − xk+1 + µ−1vk+1∥ and
∥zk−xk+1+µ−1vk+1∥ is large using Cauchy-Schwarz. Remarkably, this argument suggests that we
should choose τ such that τ : 1− τ is equal to ratio of the coefficients of ∥xk − xk+1 + µ−1vk+1∥2
and ∥zk − xk+1 + µ−1vk+1∥2. Therefore we can use these terms to cancel out the error induced by
vk+1, and ultimately attain the desired potential function descent, leading to Theorem 4.

3. From Euclidean to Riemannian A-HPE

We are now ready to generalize Euclidean A-HPE to the Riemannian setting (more precisely, to
Hadamard manifolds). In Section 3.1 we recall key notation for the Riemannian setting, and
Section 3.2 is dedicated to the analysis of our proposed framework, Riemannian A-HPE.

3.1. Riemannian preliminaries and notation

We refer the readers to standard textbooks, e.g., (Lee, 2006; Jost, 2008) for an in-depth introduction;
we recall below key notation and concepts.

A smooth manifoldM is called a Riemannian manifold if an inner product ⟨·, ·⟩x is defined in
the tangent space TxM for all x ∈M and the inner product varies smoothly in x. In this section, we
use the notation ⟨·, ·⟩ and omit the dependence on x, since it is clear from the context. We define
∥ · ∥ to be the norm induced by the inner product i.e., ∥v∥ :=

√
⟨v, v⟩.

A curve onM is called a geodesic if it is locally distance-minimizing. The exponential map,
denoted by Expx, maps a vector v ∈ TxM to a point y ∈ M such that there exists a geodesic
γ : [0, 1] → M such that γ(0) = x, γ(1) = y and γ′(0) = v. We assume that the sectional
curvature ofM is non-positive and lower bounded by−K, where K is a positive real number. Under
this assumption, any two points onM are connected by a unique geodesic, and thus the inverse
exponential map Exp−1

x :M→ TxM is well-defined.
We use d(x, y) to denote the Riemannian distance between x and y. The definition of exponential

map implies that d(x, y) =
∥∥Exp−1

x (y)
∥∥. We will also use the tangent space distance: dw(x, y) :=
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∥Exp−1
w (x)− Exp−1

w (y)∥. Note that dw(x, y) ≤ d(x, y) for all w, x, y ∈M. We say that a function
f :M→ R is µ-geodesically-strongly-convex for µ ≥ 0, if for any x ∈M there exists a non-empty
set ∂f(x), such that for all y ∈M and v ∈ ∂f(x) we have

f(y) ≥ f(x) + ⟨v, Exp−1
x (y)⟩+ µ

2d
2(x, y).

Thus fx(y) := f(x) + ⟨v, Exp−1
x (y)⟩+ µ

2d
2(x, y) is a lower approximation of f .

We use Γy
x to denote the parallel transport from TxM to TyM along the geodesic connecting

x and y. Using parallel transport, we can define a natural generalization of L-smoothness to the
Riemannian setting. We say that f :M→ R is L-smooth if for all x, y ∈M, we have

∥Γy
x∇f(x)−∇f(y)∥ ≤ L · d(x, y). (5)

3.2. The proposed Riemannian A-HPE framework

In this section, we first present a straightforward generalization of Euclidean A-HPE (Algorithm 1)
to the Riemannian setting—see Algorithm 2. Then, we introduce a number results useful in its
convergence analysis. Our presentation largely follows the Euclidean setting, except for a number of
new challenges posed by Riemannian geometry. Throughout, we assume that f is µ-geodesically
strongly convex, and that the sectional curvature ofM lies in [−K, 0].

Algorithm 2 Riemannian accelerated hybrid proximal extragradient method
Input : Objective function f , initial point x0, ‘reference’ step size λ > 0, σk ∈ (0, 1) and initial

weights A0, B0 ≥ 0
z0 ← x0

for k = 0, 1, · · · do
choose a valid distortion rate δk according to Theorem 10
θk ← the smaller root of Bk(1− θ)2 = µλkθ

(
(1− θ)Bk +

µ
2 δkAk

)
Bk+1 ← Bk

θkδk
, ak+1 ← 2µ−1(1− θk)Bk+1 and Ak+1 ← Ak + ak+1

yk ← Expxk

( θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
choose (xk+1, vk+1) ∈ iprox

wk+1

f (yk, λk, εk) with εk =
σ2
k

2(1+λkµ)
2d

2
wk+1

(xk+1, yk)

zk+1 ← Expwk+1

(
(1− θk)Exp

−1
wk+1

(xk+1) + θkExp
−1
wk+1

(zk)− 1−θk
µ vk+1

)
end

Beyond the natural replacement of vector space operations with their Riemannian counterparts,
there are two key differences between Algorithm 1 and Algorithm 2: (i) the latter uses a Riemannian
version of the iprox operator; and (ii) it uses additional parameters (Bk and δk) in its updates. We
define the Riemannian iprox operator as follows.

Definition 7 (Riemannian inexact proximal operator) For x, y, w ∈ M, v ∈ TwM and λ, ε ≥
0, we write (x, v) ∈ iproxwf (y, λ, ε) if we have the inequality

∥Exp−1
w (x)− Exp−1

w (y) + λv∥2

2(1 + λµ)2
+

λ
(
f(x)− f(w)−

〈
Exp−1

w (x), v
〉
+ µ

2d
2(x,w)

)
1 + λµ

≤ ε, (6)

and v − µExp−1
w (x) ∈ ∂f(w).
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Key among the additional parameters is δk, the distortion rate that is used to model the non-linearity
of the exponential map. The concept of distortion rate is not new, and was introduced in (Ahn and
Sra, 2020) to analyze potential function decrease. We will formally define it in Theorem 9. By
setting δk = 0 and Bk = 1+µAk

2 , Algorithm 2 recovers Algorithm 1 in the Euclidean setting. Before
discussing technical details, let us give an informal statement of our main result. In subsequent
sections, we sketch its proof and provide the formal statements, while full, rigorous proofs are
deferred to Appendix C.

Theorem 8 (informal version of Theorem 13 and Theorem 18) Under mild conditions on the
choice of wk+1, for µ-strongly convex and L-smooth function f , the following statements hold:

(1). Suppose wk+1 lies on the geodesic between xk and zk, then the iterates {xk} generated by
Algorithm 2 eventually achieve acceleration (cf. Theorem 1) with arbitrary initialization.

(2). In the general case, the iterates {xk} achieve acceleration as long as the initialization is in a
O
(
K−1/2

(
µ/L
)3/4) neighbourhood of x∗.

As we will see later, the Riemannian analogs of Nesterov’s method considered in (Zhang and Sra,
2018) and (Ahn and Sra, 2020) belong to the first case in Theorem 8, and thus, follow as corollaries
of our main result. We will also discuss additional instances of each case in Section 4.

3.3. Potential Function Analysis for Riemannian A-HPE

Similar to the Euclidean setting, we define the potential function

pk = Ak · (f(xk)− f(x∗)) +Bk · d2wk
(zk, x

∗). (7)

Note that in the above definiton, we use the tangent space distance dwk
rather than the Riemannian

distance d. Indeed, when generalizing our analysis to the Riemannian setting, we need to work with
vectors in tangent spaces, so that it is more convenient to use the tangent space distance here.

Our Euclidean analysis is based on a separate analysis of two approximate PPM schemes, one
leading to Theorem 5 for function value, and the other leading to Theorem 6 for distance to x∗. While
it is straightforward to generalize Theorem 5 to the Riemannian setting by using strong-convexity and
Theorem 7, it is hard to bound the distance term Bk · d2wk

(zk, x
∗)−Bk+1 · d2wk+1

(zk+1, x
∗) because

it involves vectors in two different tangent spaces Twk
M and Twk+1

M. Taking cue from (Ahn and
Sra, 2020), we also use the notion of distortion rates to overcome this issue.

Definition 9 We say that δk > 0 is a valid distortion rate if d2wk+1
(zk, x

∗) ≤ δkd
2
wk

(zk, x
∗).

To be able to use valid distortion rates in an actual algorithm, it is crucial to avoid dependence
on the unknown optimal point x∗. To that end, the next lemma shows that one can obtain a valid
distortion rate in terms of d(wk, zk) instead.

Lemma 10 ((Ahn and Sra, 2020, Lemma 4.1)) For any points x, y, z ∈ M, we have d2(x, y) ≤
TK(d(x, z))d2z(x, y), where the function TK(·) is defined as

TK(r) :=

max
{
1 + 4

( √
Kr

tanh(
√
Kr)
− 1
)
,
( sinh(2√K·r)

2
√
K·r

)2}
, if r > 0,

1, if r = 0.

In particular, δk = TK(d(wk, zk)) is a valid distortion rate.
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Assuming access to valid distortion rates, we can obtain the Riemannian analog to Theorem 6.

Lemma 11 Suppose that δk > 0 is a valid distortion rate, and Bk+1 =
Bk
θkδk

, then

Bkd
2
wk

(zk, x
∗)−Bk+1d

2
wk+1

(zk+1, x
∗) ≥ (1− θk)Bk+1

(
2
µ(f(wk+1)− f(x∗))− 1

µ2 ∥∇k+1∥2

+ θk
∥∥Exp−1

wk+1
(zk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥2).
Now, it remains to combine the two PPM schemes (based on function value and distance to x∗)

to obtain a bound for the potential function. Specifically, we can prove the following key lemma.

Lemma 12 Let ak+1 = Ak+1 −Ak = 2
µ(1− θk)Bk+1, and pk be given by (7). Then,

pk − pk+1 ≥ µ
2 (θkak+1 +Ak)

∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥2
+

Ak+1

2λkσk

∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥2
+

µθkak+1Ak

2(Ak+θkak+1)
d2wk+1

(xk, zk)− σkAk+1

2λk
d2wk+1

(xk+1, yk)− Ak+1

2µ ∥vk+1∥2,

(8)

where
y′k = Expwk+1

(
Ak

Ak+θkak+1
Exp−1

wk+1
(xk) +

θkak+1

Ak+θkak+1
Exp−1

wk+1
(zk)

)
. (9)

The main feature of Theorem 12 is the presence of a new point y′k in (8). In the Euclidean setting,
we combined the two approximate PPM schemes by choosing yk on the line segment between xk and
zk. Generalizing this update rule to the Riemannian setting, we naturally choose yk on the geodesic
connecting xk and zk. However, here a subtle complication arises: since we are working with
vectors in the tangent space Twk+1

, what we really want is that Exp−1
wk+1

(yk) be a convex combination
of Exp−1

wk+1
(xk) and Exp−1

wk+1
(zk). This subtlety explains why y′k as defined by (9) appears in the

bound (8). Further, note that since y′k depends on wk+1, it cannot be used as the update rule of yk.
In Euclidean A-HPE, y′k does not complicate matters since we always have yk = y′k. However,

yk ̸= y′k in general for the Riemannian setting, which prevents us from mimicking the Euclidean
analysis. Indeed, Theorem 12 highlights an additional distortion that arises for Riemannian A-HPE
and is not present in previous works that focus on Nesterov’s method (Zhang and Sra, 2018; Ahn
and Sra, 2020). Indeed, the algorithms analyzed in these previous works are a special case of the
general A-HPE framework, where the particular specialization of the updates bypasses the additional
distortion that arises more generally. We expand on these observations below.

3.4. Basic A-HPE: convergence without additional distortion

We first consider the special case where yk = y′k. This equality holds as long as wk+1 is chosen on
the geodesic connecting xk and zk. In this case, we can derive potential decrease from Theorem 12
by using an analysis similar to the Euclidean setting. Doing so, we obtain the following main result
regarding the convergence rate of Riemannian A-HPE.

Theorem 13 Suppose in Algorithm 2, we choose λk = λ and wk+1 lies on the geodesic connecting
xk and zk such that d(wk+1, yk) = O(1), then we have

f(xk)− f(x∗) ≤ p0/Ak, and lim
k→+∞

Ak+1/Ak = 1 + µλ+
√

µλ(1 + µλ). (10)

8
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Proof sketch: The first inequality follows directly from potential decrease. Define ξk = ak/Ak, then it

suffices to show that limk→+∞ ξk =
√

µλ
1+µλ . The proof relies on the following recursive equation:

δkξk+1

(
ξk+1 − µλ/1+µλ

)
= ξ2k(1− ξk+1). (11)

If δk = 1, then we can show that {ξk} converges to the fixed point of (11), which is
√

µλ
1+µλ . In our

setting, δk is not constant, but potential decrease implies that δk − 1 converges to 0 at a linear rate.
Therefore, we can still obtain the desired result. □

The assumption d(wk+1, yk) = O(1) ensures that the iterates of Algorithm 2 are uniformly
bounded; otherwise the distortion error can become arbitrarily large. This assumption is trivially true
when wk+1 = yk, which holds for a number first-order methods that we will discuss in Section 4.
Theorem 13 also immediately implies the following result, which plays a crucial role when studying
first-order methods as special cases of Algorithm 2.

Corollary 14 Suppose that f is L-smooth and λk = λ = Θ(1/L). Under the conditions in
Theorem 13, Algorithm 2 eventually achieves acceleration.

Finally, we bound the number of iterations sufficient for achieving full acceleration.

Theorem 15 Under the assumptions in Theorem 13, if f is L-smooth and λk = λ = O(1/L), then

we have ξk ≥ 1
2

√
µλ

1+µλ after T = Õ(L/µ) iterations, where Õ hides logarithmic terms. As a result,

Algorithm 2 achieves acceleration in at most Õ(L/µ) iterations.

3.5. The general case of A-HPE: handling additional distortion

In general, we do not have yk = y′k, so that an additional distortion appears in the analysis of
Riemannian A-HPE. To overcome the challenge posed by this distortion, we take an approach that is
based on deriving an upper bound for the tangent space distance between yk and y′k. We need the
following lemma, which is a variant of (Sun et al., 2019, Section B.3).

Lemma 16 (Sun et al., 2019, Lemma 3) Let x ∈M and y, a ∈ TxM. Let z = Expx(a), then

d (Expx(y + a), Expz (Γ
z
xy)) ≤ min{∥a∥, ∥y∥}SK(∥a∥+ ∥y∥),

where SK(r) = cosh(
√
Kr)− sinh(

√
Kr)/

√
Kr.

Note that a key feature of the function SK is that limr→0 SK(r) = 0. By using Theorem 16, we
can obtain an upper bound on dwk+1

(yk, y
′
k) in terms of SK(·) and a distance term.

Lemma 17 We have for all k ≥ 1 that

dwk+1
(yk, y

′
k) ≤ 2d∗(wk+1;xk, zk) · SK (d(xk, zk) + d∗(wk+1;xk, zk)) , (12)

where d∗(w;x, z) := min
{
d(w, y) | y = Expx(t · Exp−1

x (z)), t ∈ [0, 1]
}

is the distance from w to
the geodesic connecting x and z.

9
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When d2wk+1
(yk, y

′
k) is small, we can imagine that the algorithm still behaves similar to the

yk = y′k case studied in Section 3.4. From a technical standpoint, to lower-bound the potential
difference pk − pk+1, the key difference between the Riemannian setting with the Euclidean setting
is the presence of an additional negative term that depends on d2wk+1

(yk, y
′
k). As a result, potential

decrease can still be guaranteed if the RHS of (12) is smaller than the positive terms. This yields our
main result for the convergence of Algorithm 2 in the general case, as stated below.

Theorem 18 (informal) Suppose that f is L-smooth, σk = σ ∈ (0, 1) and λk = λ = O(1/L).
Under regularity conditions on the choice of wk+1, if the initialization satisfies d(x0, x

∗) =

O
(
K−1/2(µ/L)3/4

)
and B0 =

µ
2A0 > 0, then potential decrease holds, and ξk := ak

Ak
= Θ

(√ µλ
1+µλ

)
.

Proof sketch: The proof is by induction on k. When k = 0, by using regularity conditions on w1,
we can derive an upper bound for the RHS of (12), which implies potential decrease. Now suppose
that potential decrease holds for k. By the definition of the potential function pk, we can show that
d2(xk, x

∗) and d2(zk, x
∗) = O(K−1(µ/L)1/2).

Note that the distortion rate δk ≤ 1 +O
(
Kd2(wk, zk)

)
, and under regularity conditions on wk

we can bound δk by 1 +O(
√

µ/L); ξk+1 can then be lower-bounded using the recursive equation
(35) and the lower bound for ξk. Finally, the RHS of (12) can be directly upper-bounded using the
bounds for xk, zk and regularity conditions on wk+1, which implies potential decrease for k + 1. □

The regularity conditions on the sequence {wk} are described formally in Theorem 41, and they
play a crucial role in Theorem 18. In short, they require that {wk} is not too far away from the
sequence {xk} and {zk}, since otherwise the algorithm may suffer from large distortion error.

Theorem 18 implies that as long as the initialization is inside aO(K−1/2(µ/L)3/4) neighbourhood
of the global minimum x∗, then it can achieve the accelerated rate.

Corollary 19 Under the assumptions of Theorem 18, we have

f(xk)− f(x∗) ≤ c1K
−1L(µ/L)

3
2 ·
(
1− c2

√
µ/L
)k
,

for some numerical constants c1, c2 > 0.

4. Special cases of Riemannian A-HPE: acceleration of several first-order methods

Inspired by Nesterov’s method, a number of different accelerated methods have been proposed in the
Euclidean setting (Diakonikolas and Orecchia, 2018; Chen and Luo, 2019; Huang and Zhang, 2021).
These methods are empirically observed to be superior in some aspects (e.g., robustness to noise,
possibly smaller constants in convergence bounds, etc.) However, they are derived using a variety of
very different techniques, which obscures their common origin. In contrast, we observe that all of
them can be deduced from A-HPE quite naturally and straightforwardly.

At the same time, in the Riemannian setting only a generalized version of Nesterov’s method
is known to achieve acceleration (Zhang and Sra, 2018; Ahn and Sra, 2020). Can we design other
accelerated methods, similar to those in the Euclidean setting? The answer is “yes,” and we discuss
below several special cases obtained from our Riemannian A-HPE framework. We divide these
special cases into two categories: (i) those without additional distortion (Section 3.4), and which
eventually attain acceleration with arbitrary initialization due to Theorem 13; and (ii) those that
can suffer additional distortion studied in Section 3.5, for which local acceleration is ensured by
Theorem 18. Detailed derivations of the methods studied in this section are given in Appendix D.

10
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4.1. Accelerated methods without additional distortion

Riemannian Nesterov’s method. Nesterov’s method has a direct generalization to the Riemannian
setting, as proposed and analyzed in (Zhang and Sra, 2018; Ahn and Sra, 2020); it takes the form:

yk = Expxk

( θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
,

xk+1 = Expyk(−λ∇f(yk)),
zk+1 = Expyk(θkExp

−1
yk

(zk)− µ−1(1− θk)∇f(yk)).

(13)

We can derive this algorithm from Algorithm 2 by choosing wk+1 = yk, xk+1 = Expyk(−λk∇f(yk))
and vk+1 = ∇f(yk) + µExp−1

yk
(xk+1). Additional distortion is not present since wk+1 = yk. We

also recover the result of Ahn and Sra (2020) that (13) can eventually achieve acceleration; the local
acceleration result of Zhang and Sra (2018) can also be directly deduced from Theorem 18.

Riemannian Nesterov’s method with multiple gradient steps. We can also perform multiple
gradient descent (GD) steps from yk to obtain xk+1. Chen and Luo (2019, Algorithm 3) present a
method of this type in the Euclidean setting. Here we consider a Riemannian version of their method:

yk = Expxk

( θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
,

x̃k+1 = Expyk(−λ∇f(yk)),
xk+1 = Expx̃k+1

(−λ∇f(x̃k+1)),

zk+1 = Expyk

(
θkExp

−1
yk

(zk)− µ−1(1− θk)∇f(yk)
)
.

(14)

Method (14) can be derived from Algorithm 2 by choosing xk+1 as the result of two GD steps; the
other variables the same as Riemannian Nesterov’s method.

4.2. Accelerated methods with additional distortion

Riemannian accelerated extra-gradient descent (RAXGD). We consider a Riemannian version of
the accelerated extra-gradient method (AXGD) proposed by Diakonikolas and Orecchia (2018):

yk = Expxk

( θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
,

xk+1 = Expyk(−λ∇f(yk)),
zk+1 = Expxk+1

(
θkExp

−1
xk+1

(zk)− µ−1(1− θk)∇f(xk+1)
)
.

(15)

Method (15) can be recovered from Algorithm 2 by choosing v = ∇f(xk+1), and wk+1 = xk+1 =
Expyk(−λk∇f(yk)). While Diakonikolas and Orecchia (2018) obtain AXGD via a specifically
chosen discretization of suitable continuous-time dynamics, we observe that (R)AXGD can be
deduced from A-HPE quite straightforwardly.

We can also derive from Algorithm 2 a generalized version of RAXGD; please refer to Ap-
pendix D for more details and discussions.

The extra-point framework of Huang and Zhang (2021). Recently, a general framework was
proposed by Huang and Zhang (2021) for obtaining accelerated methods in the Euclidean setting (cf.
eq., (26) therein). We observe that their framework has a natural interpretation via the PPM viewpoint
discussed in Section 2, though upon using a less general version of update rules compared with

11
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A-HPE. A detailed comparison between their framework and A-HPE is provided in Appendix D.3,
where we also present a Riemannian generalization of their algorithm. Using our approach of
analyzing Riemannian A-HPE, local acceleration can be shown for the resulting algorithm, while
for a special case (corresponding to the algorithm described in (Huang and Zhang, 2021, eq.(38))),
global eventual acceleration can also be achieved.

5. Conclusion and future directions

In this paper, we propose an alternative viewpoint of the Euclidean A-HPE framework of (Monteiro
and Svaiter, 2013) via the proximal point method. This viewpoint allows us to derive a simple and
novel convergence analysis of A-HPE; it also plays a pivotal role in obtaining Algorithm 2, our
proposed generalization of A-HPE to the Riemannian setting. While most of our Euclidean proof
generalizes to the Riemannian setting, there is an additional distortion caused by the non-linearity of
the exponential map that we must overcome; we model this distortion by leveraging geometric tools
to complete the convergence analysis. Our main results include local acceleration of Riemannian
A-HPE in its most general form, which we sharpen to global (eventual) acceleration whenever
additional distortion is not present. We demonstrate the generality of our framework by discussing
several accelerated first-order methods as special cases, recovering the recent results (Zhang and Sra,
2018; Ahn and Sra, 2020) as special cases, obtaining Riemannian counterparts of other accelerated
(Euclidean) algorithms, and deriving new algorithms from our framework.

An aspect more basic worth noting is that this work also contributes toward a more thorough
understanding of accelerated methods on Riemannian manifolds. Even on Euclidean spaces, our
PPM-based approach may be of independent interest, since it provides a unified way for analyzing
several accelerated methods that have been proposed in the literature and analyzed using a number of
different techniques. Nonetheless, there are some important questions that remain unanswered.

First, we only show local convergence in the general case where additional distortion arises. It
is unclear whether Riemannian A-HPE can indeed fail to converge in some cases, or whether the
locality restriction is a shortcoming of our analysis. Nevertheless, we believe that some regularization
conditions on the specification of the iprox operator (e.g., the conditions in Theorem 41) are necessary,
since large distortion error would unavoidably impact the rate of convergence.

Second, in this paper we focus on accelerated first-order methods for strongly-convex functions
on non-positively curved manifolds. The main challenge of the convex setting is that the effect of
metric distortion would not asymptotically vanish as in the strong-convex setting. For manifolds with
positive curvature, it is necessary to restrict the iterates inside a convex set, for example by using
projection operators, but this may hurt the analysis of acceleration. Also, as discussed in Section 1,
the A-HPE framework can also lead to optimal higher-order methods in Euclidean setting. However,
to the best of our knowledge, optimal higher-order methods and their convergence rates are not
known in the Riemannian setting. It may be useful (and feasible) to design such methods based on
the Riemannian A-HPE framework introduced in this paper.

Finally, a broader goal in the study of acceleration is to develop theory and algorithms for
non-Euclidean settings beyond those offered by Riemannian geometry.

12
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Mathieu Barré, Adrien Taylor, and Francis Bach. A note on approximate accelerated forward-
backward methods with absolute and relative errors, and possibly strongly convex objectives.
arXiv preprint arXiv:2106.15536, 2021.
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Appendix A. Connection between iprox and ε-subgradient

In this section, we show the equivalence between the iprox operator (cf. Theorem 2) and the notion
of ε-subdifferential (Brøndsted and Rockafellar, 1965, Section 3).

Definition 20 Suppose that h : Rd → R is µ-strongly convex and x ∈ Rd. We say that u ∈ Rd is an
ε-subgradient of f at x if the inequality

f(y) ≥ f(x) + ⟨u, y − x⟩+ µ

2
∥y − x∥2 − ε

holds for all y ∈ Rd.

Note that the condition v − µx+ µw ∈ ∂f(w) in Theorem 2 implies that 0 ∈ ∂Φ(w), where

Φ(z) = f(x)− f(z)− ⟨x− z, v⟩+ µ

2
∥x− z∥2

Moreover, Φ(z) is concave since f is µ-strongly convex. Hence w ∈ argmaxz Φ(z), and for any z
we have

f(z) ≥ f(x) + ⟨z − x, v⟩+ µ

2
∥x− z∥2 − 1 + λµ

λ
ε.

In other words, v is an 1+λµ
λ ε-subgradient of f at x. The inequality (2) further implies that x+λv ≈ y.

Thus Theorem 2 indeed defines an approximation to the exact proximal point, for which x+ λv = y
and v ∈ ∂f(x).

Appendix B. Details and proofs of Section 2

We define the potential function

pk = Ak(f(xk)− f(x∗)) +
1 + µAk

2
∥zk − x∗∥2 (16)

our goal is to show that the sequence {pk} is non-increasing, so that we can obtain a bound for
f(xk)− f(x∗).

In the work (Barré et al., 2021) the authors also use a potential function approach to show
convergence of A-HPE. Motivated by our linear coupling viewpoint, we present our analysis in a
clearer way, which is helpful for addressing the key challenges that may arise in the Riemannian
setting.

We first present a simple lemma which will be used to simplify our analysis. It can be checked
using simple algebraic calculations, so we omit its proof here.

Lemma 21 (Interpolation implies contraction) For all p, q ∈ R such that p+ q > 0, we have

p∥x∥2 + q∥y∥2 = (p+ q)

∥∥∥∥ p

p+ q
x+

q

p+ q
y

∥∥∥∥2 + pq

p+ q
∥x− y∥2
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We define∇k+1 := vk+1 + µ (wk+1 − xk+1) ∈ ∂f(wk+1), so the last line of Algorithm 1 can
be re-written as

zk+1 ←
1 + µAk

1 + µAk+1
zk +

µak+1

1 + µAk+1
wk+1 −

ak+1

1 + µAk+1
∇k+1. (17)

The following lemma deals with the squared-distance terms in the potential function.

Lemma 22 We have

1 + µAk

2
∥zk − x∗∥2 − 1 + µAk+1

2
∥zk+1 − x∗∥2 ≥ ak+1(f(wk+1)− f(x∗))

+
µak+1(1 + µAk)

2(1 + µAk+1)
∥zk − wk+1 + µ−1∇k+1∥2 −

ak+1

2µ
∥∇k+1∥2

(18)

Proof: First note that

1 + µAk+1

2
∥zk+1 − x∗∥2 − 1 + µAk

2
∥zk − x∗∥2

=
µak+1

2

∥∥∥∥1 + µAk+1

µak+1
(zk+1 − x∗)− 1 + µAk

µak+1
(zk − x∗)

∥∥∥∥2 (19a)

− (1 + µAk)(1 + µAk+1)

2µak+1
∥zk+1 − zk∥2

=
µak+1

2
∥x∗ − wk+1 + µ−1∇k+1∥2 −

µak+1(1 + µAk)

2(1 + µAk+1)
∥zk − xk+1 + µ−1vk+1∥2 (19b)

where Theorem 21 is used in (19a), and (19b) follows from (17). Thus, by strong convexity of f and
the definition of wk+1 (see Theorem 2) we have

f(x∗) ≥ f(wk+1) + ⟨∇k+1, x
∗ − wk+1⟩+

µ

2
∥x∗ − wk+1∥2

= f(wk+1) +
µ

2
∥x∗ − wk+1 + µ−1∇k+1∥2 −

1

2µ
∥∇k+1∥2

so that

ak+1(f(x
∗)− f(wk+1)) ≥

1 + µAk+1

2
∥zk+1 − x∗∥2 − 1 + µAk

2
∥zk − x∗∥2

+
µak+1(1 + µAk)

2(1 + µAk+1)
∥zk − wk+1 + µ−1∇k+1∥2 −

ak+1

2µ
∥∇k+1∥2

as desired. □

Remark 23 The derivation of (19) reveals the connection between the choice of parameters in
the update (17) and the growth of coefficient of the distance term in the construction of potential
function. This observation will provide guidelines for choosing parameters in the Riemannian setting
(cf. Theorem 11).
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Now it suffices to deal with the function value terms. Strong convexity implies that

f(xk) ≥ f(wk+1) +
µ

2
∥xk − wk+1 + µ−1∇k+1∥2 −

1

2µ
∥∇k+1∥2 (20)

and

f(xk+1) ≥ f(wk+1) +
µ

2
∥µ−1vk+1∥2 −

1

2µ
∥∇k+1∥2 (21)

while the definition of wk+1 implies

σ2
k

2
∥xk+1 − yk∥2 ≥

1

2
∥xk+1 − yk + λkvk+1∥2

+ λk (1 + λkµ)

(
f (xk+1)− f (wk+1) +

1

2µ

(
∥∇k+1∥2 − ∥vk+1∥2

)) (22)

We now seek a correct linear combination of the above inequalities to match the coefficient of
pk − pk+1. Note that adding (21) and (22) leads to the following simpler inequality

∥xk+1 − yk + λkvk+1∥2 ≤ σ2
k∥xk+1 − yk∥2 (23)

The following lemma proves non-increasing of the potential function, which is based on the
above observations and results.

Lemma 24 We have for all k ≥ 0 that

pk − pk+1 ≥
µλkAk(1 + µAk)

2ak+1
∥xk − zk∥2 +

(1− σ2
k)Ak+1

2λk
∥xk+1 − yk∥2

Proof: By combining the inequalities (18),(20),(22) we have

pk − pk+1

=

(
1 + µAk

2
∥zk − x∗∥2 − 1 +Ak+1

2
∥zk+1 − x∗∥2 + ak+1 (f(x

∗)− f(wk+1))

)
︸ ︷︷ ︸

use Theorem 22

+Ak(f(xk)− f(wk+1))︸ ︷︷ ︸
use (20)

+Ak+1(f(wk+1)− f(xk+1))︸ ︷︷ ︸
use (22)

≥ µak+1(1 + µAk)

2(1 + µAk+1)
∥zk − xk+1 + µ−1vk+1∥2 +

µAk

2
∥xk − xk+1 + µ−1vk+1∥2

− Ak+1

2µ
∥∇k+1∥2 +

Ak+1

2µ

(
∥∇k+1∥2 − ∥vk+1∥2

)
+

Ak+1

λk(1 + λkµ)

(
1

2
∥xk+1 − yk + λkvk+1∥2 −

σ2
k

2
∥xk+1 − yk∥2

)

(24)

We now show that the last expression in the above inequality is positive. Recall that in Section 2.1
we made the intuitive argument which shows that the “positive term” of form θz∥zk − xk+1 +

18



RIEMANNIAN PROXIMAL EXTRAGRADIENT FRAMEWORK

µ−1vk+1∥2 + θx∥xk − xk+1 + µ−1vk+1∥2 cannot be small. Formally, the choice of yk implies that

µak+1(1 + µAk)

2(1 + µAk+1)
∥zk − xk+1 + µ−1vk+1∥2 +

µAk

2
∥xk − xk+1 + µ−1vk+1∥2

≥ µ (Ak+1 + µ(ak+1Ak +AkAk+1))

2(1 + µAk+1)
∥yk − xk+1 + µ−1vk+1∥2

+
µAkak+1(1 + µAk)

2 (Ak+1 + µ(ak+1Ak +AkAk+1))
∥xk − zk∥2

=
µa2k+1

2λk(1 + µAk+1)
∥yk − xk+1 + µ−1vk+1∥2 +

µλkAk(1 + µAk)

2ak+1
∥xk − zk∥2

where we have used the following equation

a2k+1 = λk (Ak+1 + µ(ak+1Ak +AkAk+1)) (25)

to simplify the expression. We can now deduce from (23) that the right hand side of (24) is lower
bounded by

µa2k+1

2λk(1 + µAk+1)
∥yk − xk+1 + µ−1vk+1∥2 +

µλkAk(1 + µAk)

2ak+1
∥xk − zk∥2

− Ak+1

2µ
∥vk+1∥2 +

Ak+1

λk

(
1
2∥xk+1 − yk + λkvk+1∥2 −

σ2
k
2 ∥xk+1 − yk∥2

)
.

Now except from the ∥xk − zk∥2 term which is non-negative, the rest can be written as

α∥xk+1 − yk∥2 + 2β ⟨xk+1 − yk, vk+1⟩+ γ∥vk+1∥2 (26)

where

α =
µa2k+1

2λk(1 + µAk+1)
+

1− σ2
k

2

Ak+1

λk

β =
a2k+1

2λk(1 + µAk+1)
− 1

2
Ak+1 = −

µa2k+1

2(1 + µAk+1)

γ =
a2k+1

2µλk(1 + µAk+1)
− Ak+1

2µ
+

1

2
λkAk+1

=
1

2
λkAk+1 −

a2k+1

2(1 + µAk+1)
=

µλka
2
k+1

2(1 + µAk+1)

where we have used (25) to simplify the expressions. Now it’s easy to see that the desired inequality
holds. □
We now make some remarks on the previous lemma.

1. Firstly, we can see from the proof that the choice of ak+1 guarantees that the quadratic function
(26) is non-negative. The correct way of obtaining ak+1 is to first deduce the quadratic function
and then determine a proper choice of ak+1 such that the function is always non-negative.
This approach will be used to derive the update rule of ak+1 in the Riemannian setting, where
additional parameters need to be introduced due to the distortion phenomenon.
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2. Secondly, as we have discussed before, xk and zk can both be regarded as an approximate
proximal point iterate, and the point yk is chosen on the segment between xk and zk in order
to combine these two approaches. The ratio ∥xk − yk∥ : ∥yk − zk∥ follows naturally from the
analysis and Theorem 21, which suggests the correct way of doing this combination.

Theorem 3 is now a direct corollary of Theorem 24.

Theorem 25 (Theorem 3 restated) For the iterates produced by Algorithm 1, we have

f(xk)− f(x∗) ≤ 1

Ak

(
A0(f(x0)− f(x∗)) +

1 + µA0

2
∥x0 − x∗∥2

)
= O

(
Πk

i=1

(
1 + max

{
µλi,

√
µλi

})−1
)

Proof: Since p0 ≥ pk ≥ Ak(f(xk)− f(x∗)), we have

f(xk)− f(x∗) ≤ 1

Ak
p0 =

1

Ak

(
A0(f(x0)− f(x∗)) +

1 + µA0

2
∥x0 − x∗∥2

)
.

Note that

ak+1 = Ak+1 −Ak =
(1 + 2µAk)λk+1 +

√
(1 + 2µAk)

2 λ2
k+1 + 4 (1 + µAk)Akλk+1

2

≥ Ak max
{
µλk+1,

√
µλk+1

}
,

so that the conclusion follows. □

Appendix C. Details of Section 3

C.1. Some useful properties of Algorithm 2

The following lemma characterize the growth rate of sequence {Ak}, which is closely related to the
convergence rate of Algorithm 2.

Lemma 26 For all k ≥ 0, we have Ak+1 = (1 + µλk)(θkak+1 +Ak).

Proof: Since
(1− θk)Bk = (1− θk)θkδkBk+1 =

µ

2
θkδkak+1,

the equation Bk(1− θk)
2 = µλkθk

(
(1− θk)Bk +

µ
2 δkAk

)
can be equivalently written as

(1− θk)
µ

2
θkδkak+1 = µλkθk ·

µ

2
δk(Ak + θkak+1)

⇔ (1− θk)ak+1 = µλk(Ak + θkak+1)

⇔ Ak+1 = Ak + ak+1 = (1 + µλk)(Ak + θkak+1).

The conclusion follows. □
The next lemma reveals the relationship between the ratio of coefficients Ak and Bk and an

important quantity ξk = ak
Ak

(defined in the proof of Theorem 13). Recall that in the Euclidean

setting, we have the equation Bk = 1+µAk
2 , but the situation is more complex in the Riemannian

setting due to the distortion rate δk.

20



RIEMANNIAN PROXIMAL EXTRAGRADIENT FRAMEWORK

Lemma 27 For any k ≥ 0, we have

Bk+1

Ak+1
=

1 + µλk

2λk

(
ak+1

Ak+1

)2

=
1 + µλk

2λk
ξ2k+1.

Proof: Recall that we have Ak+1 = (1+µλk)(θkak+1+Ak) = (1+µλk)(Ak+1− (1−θk)ak+1),
so that

1− θk =
µλkAk+1

(1 + µλk)ak+1
.

We can then obtain
Bk+1

Ak+1
=

µ

2

ak+1

(1− θk)Ak+1
=

1 + µλk

2λk

(
ak+1

Ak+1

)2

,

as desired. □

C.2. Potential function analysis

Lemma 28 (restatement of Theorem 11) Suppose that δk > 0 is a valid distortion rate and
Bk+1 =

Bk
θkδk

, then

Bkd
2
wk

(zk, x
∗)−Bk+1d

2
wk+1

(zk+1, x
∗) ≥ (1− θk)Bk+1

(
2

µ
(f(wk+1)− f(x∗))− 1

µ2
∥∇k+1∥2

)
+ θk(1− θk)Bk+1

∥∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
Proof: Since δk is a valid distortion rate, we have

Bkd
2
wk

(zk, x
∗) ≥ Bk

δk
d2wk+1

(zk, x
∗) (27)

This implies that

Bk+1d
2
wk+1

(zk+1, x
∗)−Bkd

2
wk

(zk, x
∗) ≤ Bk+1d

2
wk+1

(zk+1, x
∗)− θkBk+1d

2
wk+1

(zk, x
∗)

(28a)

= (1− θk)Bk+1

(
1

1− θk
dwk+1

(zk+1, x
∗)− θk

1− θk
dwk+1

(zk, x
∗)

)2

(28b)

− θk
1− θk

(
dwk+1

(zk+1, x
∗)− dwk+1

(zk, x
∗)
)2

= (1− θk)Bk+1

∥∥∥Exp−1
wk+1

(x∗)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2 (28c)

− θk(1− θk)Bk+1

∥∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
where (28a) follows from (27) and θkBk+1 =

Bk
δk

, (28b) uses Theorem 21, and (28c) follows from
the definition of zk+1. On the other hand, by strong convexity of f , we have

f(x∗)− f(wk+1) ≥
〈
Exp−1

wk+1
(x∗),∇k+1

〉
+

µ

2
∥Exp−1

wk+1
∥2

=
µ

2
∥Exp−1

wk+1
(x∗) + µ−1∇k+1∥2 −

1

2µ
∥∇k+1∥2

=
µ

2

∥∥∥Exp−1
wk+1

(x∗)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2 − 1

2µ
∥∇k+1∥2
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The conclusion follows by plugging this inequality into (28). Note that the steps after (28a) are
essentially the same as the Euclidean setting, because all the calculations are done in the tangent
space Twk+1

M. □

We then proceed to derive a Riemannian analog of Theorem 24, where we proved the potential
decrease in the Euclidean setting. By following the same approach as Theorem 24, we can see that
the inequality would involve an additional point y′k.

Lemma 29 (restatement of Theorem 12) Suppose that ak+1 = Ak+1 − Ak = 2
µ(1 − θk)Bk+1,

then

pk − pk+1 ≥
µ

2
(θkak+1 +Ak)

∥∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
+

Ak+1

2λkσk

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥∥2
+

µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk)−
σkAk+1

2λk
d2wk+1

(xk+1, yk)−
Ak+1

2µ
∥vk+1∥2

(29)

where

y′k = Expwk+1

(
Ak

Ak + θkak+1
Exp−1

wk+1
(xk) +

θkak+1

Ak + θkak+1
Exp−1

wk+1
(zk)

)
(30)

Proof: Recall the the argument in Theorem 24 basically uses strong convexity and the definition of
Euclidean iprox to lower bound the potential decrease with a quadratic function, and the choice of
parameters ensure that the quadratic is positive definite. In the Riemannian setting, since ‘vector’ on
a manifold is undefined, we need to work with vectors in a tangent space instead. In the following,
we work in the tangent space Twk+1

. This choice is quite natural, since straightforwardly generalizing
of the proof of Theorem 24 would involve exponential maps at wk+1. In Twk+1

, our goal is to derive
a quadratic function to lower bound pk − pk+1.

Strong convexity implies that

f(xk) ≥ f(wk+1) +
µ

2
∥Exp−1

wk+1
(xk) + µ−1∇k+1∥2 −

1

2µ
∥∇k+1∥2

and

f(xk+1) ≥ f(wk+1) +
µ

2
∥µ−1vk+1∥2 −

1

2µ
∥∇k+1∥2,

and the definition of Riemannian iprox operator (6) implies that

σ2
k

2
∥Exp−1

wk+1
(xk+1)− Exp−1

wk+1
(yk)∥2 ≥

1

2
∥Exp−1

wk+1
(xk+1)− Exp−1

wk+1
(yk) + λkvk+1∥2

+ λk(1 + λkµ)

(
f(xk+1)− f(wk+1) +

1

2µ

(
∥∇k+1∥2 − ∥vk+1∥2

))
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Combining the above inequalities, we have

pk − pk+1 =

(
Bkd

2
wk

(zk, x
∗)−Bk+1d

2
wk+1

(zk+1, x
∗) +

2

µ
(1− θk)Bk+1(f(x

∗)− f(wk+1))

)
(31a)

+Ak(f(xk)− f(wk+1)) +Ak+1(f(wk+1)− f(xk+1))

≥ µAk

2

∥∥∥Exp−1
wk+1

(xk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
+

µ

2
θkak+1

∥∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
+

Ak+1

2λkσk

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥∥2
− σkAk+1

2λk
d2wk+1

(xk+1, yk)−
Ak+1

2µ
∥vk+1∥2

where we use the condition ak+1 =
2
µ(1− θk)Bk+1 in (31a). Finally, Theorem 21 implies that

µAk

2

∥∥∥Exp−1
wk+1

(xk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
+

µ

2
θkak+1

∥∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
=

µ

2
(θkak+1 +Ak)

∥∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
+

µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk).

The conclusion follows. The final equation in the proof explains why y′k would appear in (29). □

C.3. Convergence without the additional distortion

In the Riemannian setting, it is not guaranteed that yk is the same as y′k, and this may give rise
to the additional distortion, as shown in Theorem 12. However, recall that our definition of iprox
allows flexible choices of xk+1, wk+1 and vk+1. We can see that in some special cases, we still have
yk = y′k. The following proposition provides sufficient condition for this to hold. It can be easily
derived from the definition of yk and y′k.

Proposition 30 Suppose that wk+1 lies on the geodesic connecting xk and zk, then yk = y′k.

We now move on to theoretical analysis under the condition yk = y′k. The right hand side of (8)
is a quadratic function of Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) and vk+1, after ignoring the non-negative

dwk+1
(xk, zk) term. We can then prove the following lemma for potential decrease. The equation

Ak+1 = (1 + µλk)(θkak+1 +Ak) plays a crucial role in the proof.
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Lemma 31 Suppose that σk < 1, then

(1− σk)Ak+1

2λk
d2wk+1

(xk+1, yk) ≤
µ

2
(θkak+1 +Ak)

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
+

Ak+1

2λk

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥∥2
− σkAk+1

2λk
d2wk+1

(xk+1, yk)−
Ak+1

2µ
∥vk+1∥2

Proof: First note that the difference of the right hand side and left hand side of the inequality can
be written in the following form (where we omit the d2wk+1

(xk, zk) term, which is non-negative):

RHS− LHS = αd2wk+1
(xk+1, yk) + 2β

〈
Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1), vk+1

〉
+ γ∥vk+1∥2

where

α =
µ

2
(θkak+1 +Ak) +

(1− σk)Ak+1

2λk
=

Ak+1

2

(
µ

1 + µλk
+

1− σk
λk

)
β =

1

2
(θkak+1 +Ak)−

Ak+1

2
= −Ak+1

2
· µλk

1 + µλk

γ =
1

2µ
(θkak+1 +Ak) +

λkAk+1

2
− Ak+1

2µ
=

Ak+1

2
·

µλ2
k

1 + µλk
.

Note that

β2 =

(
α− (1− σk)Ak+1

2λk

)
γ,

we can thus obtain

RHS− LHS ≥ (1− σk)Ak+1

2λk
d2wk+1

(xk+1, yk)

as desired. □
Combining Theorem 11 and Theorem 31, we can see that the potential sequence {pk} is non-

increasing:

Corollary 32 Suppose that yk = y′k, then the following inequality holds:

pk − pk+1 ≥
(1− σk)Ak+1

2λk
d2wk+1

(xk+1, yk) +
µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk).

In particular, we have pk+1 ≤ pk, so that pk ≤ p0 for all k ≥ 1.

Finally, we can prove the following theorem, which says that if wk+1 is chosen on the geodesic
connecting xk and zk, then Algorithm 2 provably achieves eventual acceleration with arbitrary
initialization.

Theorem 33 (restatement of Theorem 13) Suppose that in Algorithm 2, we choose λk = λ and
wk+1 lies on the geodesic connecting xk and zk s.t. d(wk+1, yk) = O(1), then we have

f(xk)− f(x∗) ≤ p0
Ak

, d2wk+1
(zk, x

∗) ≤ p0
Bk
≤ 2p0

µak
. (32)

Moreover, we have

lim
k→+∞

Ak+1

Ak
= 1 + µλ+

√
µλ(1 + µλ)
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Proof: The first two inequalities follow from Theorem 32 and

ak+1 = (1− θk)
Bk

δkθk
= 2µ−1(1− θk)Bk+1 < 2µ−1Bk+1, ∀k ≥ 0. (33)

We now prove (33). This is equivalent to

lim
k→+∞

ak
Ak

=

√
µλ

1 + µλ
.

Define ξk = ak
Ak

for k ≥ 1. Note that the update of θk and ak+1 in Algorithm 2 implies that

δka
2
k+1 − 2λ

(µ
2
δkAk +Bk

)
ak+1 − 2λAkBk = 0

Thus
δka

2
k+1 = 2λ

(
BkAk+1 +

µ

2
δkAkak+1

)
(1 + µλ)a2k+1 = 2δ−1

k λAk+1

(
Bk +

µ

2
δkak+1

)
= 2λAk+1Bk+1

(34)

As a result, we have Bk
Ak

= 1+µλ
2λ ξ2k . The above derivations only holds for k ≥ 1, we artificially define

ξ0 =
√

2λ
1+µλ

Bk
Ak

, so that for all k ≥ 0, rewrite the equation Bk+1 =
Bk
δk

+ µ
2ak+1 in terms of ξ as

δk
1 + µλ

2λ
ξ2k+1 =

1 + µλ

2λ
ξ2k(1− ξk+1) +

µ

2
δk+1ξk+1

or equivalently,

δkξ
2
k+1 = ξ2k(1− ξk+1) +

µλ

1 + µλ
δkξk+1 (35)

Before proceeding to analyze the recursive equation (35), we first prove that limk→+∞ δk = 1. This

is in fact necessary since otherwise {ξk} would not converge to the fixed point
√

µλ
1+µλ .

Since limk→+∞Ak = +∞, we have xk → x∗ and dwk+1
(xk+1, yk)→ 0, by Theorem 32. By

assumption, d(wk+1, yk) is bounded, so that

d(xk+1, yk) ≤ dwk+1
(xk+1, yk) + 2d(wk+1, yk)

is bounded, which implies that the sequence {yk} is bounded. Thus {wk} is also bounded.
Since Ak+1 ≥ (1+2µλ)Ak, we have ak+1 = Ak+1−Ak ≥ 2µλAk, so that limk→+∞ ak = +∞

and d2wk+1
(zk, x

∗) ≤ p0
ak
→ 0. Since wk+1 = O(1), the distortion inequality Theorem 10 implies that

d(zk, x
∗)→ 0. Note that wk+1 lies on the geodesic connecting xk and zk, andM has non-positive

curvature, we have
d(wk+1, x

∗) ≤ max{d(xk, x∗), d(zk, x∗)} → 0.

Hence δk = TK(d(wk, zk))→ 1 as k → +∞.
We now return to (35). We first show that for any ε > 0, we have

lim inf
k→+∞

ξk ≥ (1− ε)

√
µλ

1 + µλ
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Since d(wk+1, yk) ≤ Dk → 0 by assumption, and yk → x∗, we have wk+1 → x∗. The definition of
δk then implies that limk→+∞ δk = 1.

The recursive relation (35) can be rewritten as

δkξk+1

(
ξk+1 −

µλ

1 + µλ

)
= ξ2k(1− ξk+1)

Note that: if δk becomes larger and ξk becomes smaller, then ξk+1 also becomes smaller. Based on

this observation, we first choose k0 such that δk ≤ 1 + ε
√

µλ
1+µλ for all k ≥ k0, and then construct a

reference sequence {ζk}k≥k0 defined as

ζk0 = ξk0 , δζk+1

(
ζk+1 −

µλ

1 + µλ

)
= ζ2k(1− ζk+1), δ = 1 + ε

√
µλ

1 + µλ

Then we have ξk ≥ ζk for all k ≥ k0. Alternatively, we can write the recursion above as ζk+1 =
φ(ζk), where

φ(x) =
1

2δ

 µλ

1 + µλ
δ − x2 +

√(
x2 − µλ

1 + µλ
δ

)2

+ 4δx2

 (36)

We have

φ′(x) = −x

δ
+

x
(
x2 − µλ

1+µλδ
)
+ 2δx

δ

√(
x2 − µλ

1+µλδ
)2

+ 4δx2

The observation made above implies that φ′(x) ≥ 0. On the other hand,

φ′(x) < 1⇔
(
x

(
x2 − µλ

1 + µλ
δ

)
+ 2δx

)2

< (x+ δ)2

((
x2 − µλ

1 + µλ
δ

)2

+ 4δx2

)

⇐ 4δx2
(
x2 − µλ

1 + µλ
δ

)2

+ 4δ2x2 < (x+ δ)2 · 4δx2
(37)

which trivially holds, since δ > 1. Since φ is continuously differentiable, we have supx∈[0,1] φ
′(x) <

1 i.e. φ is a contraction mapping. Since ζk ∈ [0, 1], ∀k ≥ k0, it converges exponentially fast to a
fixed point of φ, which is the positive root of the equation x2 + (δ − 1)x− µλ

1+µλδ = 0. It’s easy to

check that this root is larger than (1− ε)
√

µλ
1+µλ , so that

lim inf
k→+∞

ξk ≥ lim inf
k→+∞

ζk ≥ (1− ε)

√
µλ

1 + µλ

To prove the desired result, it remains show that

lim sup
k→+∞

ξk ≤

√
µλ

1 + µλ
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This can be similarly shown by constructing a reference sequence with δ = 1 in the recursion, and

the reference sequence converges to the fixed point corresponding to δ = 1, which is
√

µλ
1+µλ . □

Although Theorem 13 shows that Algorithm 2 eventually achieves acceleration in the sense of
Theorem 1, it might also be helpful to know how fast the sequence {τk} (cf. Theorem 1) achieves

the order of O
(√

µ
L

)
i.e. how long the ‘burn-in’ period takes to achieve full acceleration. Since at

this point we are focusing on acceleration for smooth strongly-convex functions, in the following we
always assume that f is L-smooth.

Lemma 34 Suppose that d(wk+1, yk) = O(1), and λk = λ = c
L , where c ∈ (0, 1) is a numerical

constant, then

δk − 1 ≤ C0

(
1 + c

µ

L

)−k

where C0 is a constant that may depend on L, µ and initialization, but independent of k.

Proof: Let D be a uniform upper bound of d(wk+1, yk). Since ak ≥ cµLAk ≥ cµL
(
1 + cµL

)k
A0,

we have
d2wk+1

(zk, x
∗) ≤ 2L

µ2A0

(
1 + c

µ

L

)−k
p0

Recall that in the proof of Theorem 13 we have shown that {wk} is bounded, and it’s easy to see that
the upper bound only depends on initialization and d(wk+1, yk), by Theorem 10 we have

d2(zk, x
∗) ≤ 2C1L

cµ2A0

(
1 + c

µ

L

)−k
p0

for some C1 ≥ 1 that only depends on initialization and D. Since wk+1 lies on the geodesic between
xk and zk, we have

d2(wk+1, x
∗) ≤ max

{
d2(xk, x

∗), d2(zk, x
∗)
}

≤ max
{
2µ−1(f(xk)− f(x∗)), d2(zk, x

∗)
}
≤ 2C1L

cµ2A0

(
1 + c

µ

L

)−k
p0

As a result,

d2(wk, zk) ≤ 2
(
d2(wk, x

∗) + d2(zk, x
∗)
)
≤ 12C1L

cµ2A0

(
1 + c

µ

L

)−(k−1)
p0 (38)

Finally since TK(r) = 1 +O(r2) for small r, we have

δk − 1 = O
((

1 + c
µ

L

)−k
)
,

as desired. □

Theorem 35 (restatement of Theorem 15) Suppose that d(wk+1, yk) = O(1) and λk = λ =

O
(
1
L

)
, then we have ξk ≥ 1

2

√
µλ

1+µλ after T = Õ
(
L
µ

)
iterations, where Õ hides logarithmic terms

which may depend on L, µ and the initialization. As a result, Algorithm 2 achieves acceleration in at
most Õ

(
L
µ

)
iterations.
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Proof: We consider the recursive equation of ξk derived in the proof of Theorem 13:

δkξk+1

(
ξk+1 −

µλ

1 + µλ

)
= ξ2k(1− ξk+1) (39)

The previous lemma implies that

δk ≤ 1 +

√
µλ

1 + µλ
(40)

holds after Õ
(
L
µ

)
iterations, where Õ hides logarithmic terms. In the following, we study how many

iterations are needed for ξk ≥ 1
2

√
µλ

1+µλ after (40) is guaranteed to hold.

Indeed, note that smaller δk and larger ξk implies a larger ξk+1 in (39), it suffices to consider the

case δk = δ = 1 +
√

µλ
1+µλ .

Now we study the behavior of φ(x) defined in (36) more carefully. Its derivative φ′(x) can be
written as

φ′(x) =

2+µλ
1+µλδx(

x2 + 2+µλ
1+µλδ

)√
x4 + 4+2µλ

1+µλ δx2 +
(
x4 + 4+2µλ

1+µλ δx2
)

Hence for all δ, x > 0 we have φ′(x) ≤ 1√
2

. This implies that with a constant δ, (36) converges to its

fixed point in Õ(1) iterations. Since for δ = 1 +
√

µλ
1+µλ , its fixed point is larger than 1 + 1

2

√
µλ

1+µλ ,

we conclude that a total number of Õ
(
L
µ

)
iterations are needed for ξk ≥ 1

2

√
µλ

1+µλ to hold. □

C.4. The general case

This subsection provides details and proofs of our main results for the general case, where the
additional distortion is present. We begin with the following result, which shows that we need to
control the distance between yk and y′k.

Lemma 36 Suppose that σk < 1, then

pk − pk+1 ≥
(1− σk)Ak+1

4λk
d2wk+1

(xk+1, yk) +
µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk)

+
(1− σk)Ak+1

6

√
µλk

1 + µλk
dwk+1

(xk+1, yk)∥vk+1∥

− µ(θkak+1 +Ak)dwk+1
(yk, y

′
k) ·
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥
(41)
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Proof: Note that∥∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
≥
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥2
+ 2

〈
Exp−1

wk+1
(y′k)− Exp−1

wk+1
(yk), Exp

−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

〉
≥
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥2
− 2dwk+1

(yk, y
′
k) ·
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥
where the last line follows from Cauchy-Schwarz inequality. The remaining steps of the proof is simi-
lar to Theorem 31, except that we also need to incorporate the

〈
Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1), vk+1

〉
into the bound. Indeed we have

αd2wk+1
(xk+1, yk) + 2β

〈
Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1), vk+1

〉
+ γ∥vk+1∥2

≥ (1− σk)Ak+1

4λk
d2wk+1

(xk+1, yk) +Ak+1

√ µ2λ2
k

(1 + µλk)2
+

(1− σk)µλk

2(1 + µλk)
− µλk

1 + µλk

 ·
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1)

∥∥∥ ∥vk+1∥

≥ (1− σk)Ak+1

4λk
d2wk+1

(xk+1, yk) +
(1− σk)Ak+1

6

√
µλk

1 + µλk
dwk+1

(xk+1, yk)∥vk+1∥

where α, β and γ are the coefficients defined in Theorem 31. Hence, by Theorem 29 we have

pk − pk+1 ≥
µ

2
(θkak+1 +Ak)

∥∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥2
+

Ak+1

2λkσk

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥∥2
+

µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk)−
σkAk+1

2λk
d2wk+1

(xk+1, yk)−
Ak+1

2µ
∥vk+1∥2

≥ αd2wk+1
(xk+1, yk) + 2β

〈
Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1), vk+1

〉
+ γ∥vk+1∥2

+
µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk)

− µ(θkak+1 +Ak)dwk+1
(yk, y

′
k) ·
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥
≥ (1− σk)Ak+1

4λk
d2wk+1

(xk+1, yk) +
µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk)

+
(1− σk)Ak+1

6

√
µλk

1 + µλk
dwk+1

(xk+1, yk)∥vk+1∥

− µ(θkak+1 +Ak)dwk+1
(yk, y

′
k) ·
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥
as desired. □
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In order to ensure potential decrease, it suffices to control the magnitude of the error term
dwk+1

(yk, y
′
k), as shown in the corollary below:

Corollary 37 Suppose that

dwk+1
(yk, y

′
k) ≤

1− σk
6

min
{√

µλk, 1
}
dwk+1

(xk+1, yk),

then we have the following inequality which implies potential decrease:

pk − pk+1 ≥
(1− σk)Ak+1

12λk
d2wk+1

(xk+1, yk) +
µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk).

Proof: Under the given condition, we can see that

(1− σk)Ak+1

6

√
µλk

1 + µλk
dwk+1

(xk+1, yk)

≥ 1− σk
6

√
µλk(1 + µλk)(θkak+1 +Ak) ·

6

1− σk

1√
µλk

dwk+1
(yk, y

′
k)

≥ (θkak+1 +Ak)dwk+1
(yk, y

′
k)

and

(1− σk)Ak+1

6λk
dwk+1

(xk+1, yk) ≥
1 + µλk

λk
(θkak+1 +Ak)dwk+1

(yk, y
′
k) ≥ µ(θkak+1 +Ak)dwk+1

(yk, y
′
k)

Plugging the above inequalities into (41), we obtain the desired result. □

Lemma 38 (restatement of Theorem 16) Suppose that x ∈ M and y, a ∈ TxM. Let z =
Expx(a), then we have

d (Expx(y + a), Expz (Γ
z
xy)) ≤ min{∥a∥, ∥y∥}SK(∥a∥+ ∥y∥)

where

SK(r) = cosh
(√

Kr
)
−

sinh
(√

Kr
)

√
Kr

Proof: Define γ(t) = Expx(ta) and the curve

t→ c(r, t) = Expγ(t)

(
rΓγ(t)

x (y + (1− t)a)
)

for fixed r. Let Jnorm
t (r) = d

dtc(r, t), then it is shown in (Sun et al., 2019, Section B.3) that

d (Expx(y + a), Expz (Γ
z
xy)) ≤

∫ 1

0
∥Jnorm

t (1)∥ dt

Moreover, for fixed t ∈ [0, 1], let z̃ = Γ
γ(t)
x (y + (1− t)a) and ρt = ∥y + (1− t)a∥ = ∥z̃∥, then its

easy to see that ∥z∥ ≤ ∥y∥+ ∥a∥, and the proof in (Sun et al., 2019, Section B.3) implies that

∥Jnorm
t (1)∥ ≤ ∥Jnorm

t (0)∥SK(ρt) ≤
∥a∥ · ∥y∥

ρt
SK(ρt) ≤

∥a∥ · ∥y∥
∥a∥+ ∥y∥

SK(∥a∥+ ∥y∥),
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where the last step follows from the observation that r−1SK(r) is increasing in r, by Taylor’s
expansion. Hence the result follows. □

The following lemma gives an upper bound of dwk+1
(yk, y

′
k) in terms of function Sk and a

distance term.

Lemma 39 (restatement of Theorem 17) We have for all k ≥ 1 that

dwk+1
(yk, y

′
k) ≤ 2d∗(wk+1;xk, zk) · SK (d(xk, zk) + d∗(wk+1;xk, zk))

where d∗(w;x, z) = min
{
d(w, y) : y = Expx(t · Exp−1

x (z), t ∈ [0, 1]
}

is the distance from w to
the geodesic connecting x and z.

Proof: Let τ =
θkak+1

Ak+θkak+1
, then by definition

y′k = Expwk+1

(
(1− τ)Exp−1

wk+1
(xk) + τExp−1

wk+1
(zk)

)
Suppose that w is a point on the geodesic connecting xk and zk, then

yk = Expw
(
(1− τ)Exp−1

w (xk) + τExp−1
w (zk)

)
We moreover define

y′′k = Expwk+1

(
(1− τ)Γ

wk+1
w Exp−1

w (xk) + τΓ
wk+1
w Exp−1

w (zk) + Exp−1
wk+1

(w)
)

Applying Theorem 38 with x = w, z = wk+1 gives

d(yk, y
′′
k) ≤ d(wk+1, w) · SK (d(xk, zk) + 2d(wk+1, w))

On the other hand,

dwk+1
(y′k, y

′′
k) ≤ (1− τ)d

(
xk, Expwk+1

(
Γ
wk+1
w Exp−1

w (xk) + Exp−1
wk+1

(w)
))

+ τd
(
xk, Expwk+1

(
Γ
wk+1
w Exp−1

w (zk) + Exp−1
wk+1

(w)
))

≤ (1− τ)d(wk+1, w) · SK (d(w, xk) + 2d(w,wk+1))

+ τd(wk+1, w) · SK (d(w, zk) + 2d(w,wk+1))

≤ d(wk+1, w) · SK (d(xk, zk) + 2d(w,wk+1))

Combining the above inequalities, we obtain

dwk+1
(yk, y

′
k) ≤ 2d(wk+1, w) · SK (d(xk, zk) + 2d(w,wk+1))

The conclusion now follows from the definition of d∗. □

Corollary 40 Suppose that

12d∗(wk+1;xk, zk)·SK (d(xk, zk) + 2d∗(wk+1;xk, zk)) ≤ (1−σk)min
{√

µλk, 1
}
dwk+1

(xk+1, yk),

(42)
then we have the following inequality which implies potential decrease:

pk − pk+1 ≥
(1− σk)Ak+1

12λk
d2wk+1

(xk+1, yk) +
µθkak+1Ak

2(Ak + θkak+1)
d2wk+1

(xk, zk). (43)
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The corollary can be seen as a generalized version of the potential-decrease result we obtained in
Theorem 32. Indeed, when wk+1 lies on the geodesic between xk and zk, then the left hand side of
(43) equals zero, so that (43) is guaranteed to hold.

We are now ready to prove our main result.

Theorem 41 (formal version of Theorem 18) Assume f is L-smooth, and suppose that

• σk = σ ∈ (0, 1).

• The sequence {wk} satisfies d2(wk, x
∗) ≤ ωmax {d(xi, x∗), 0 ≤ i ≤ k; d(zj , z

∗), 0 ≤ j ≤ k − 1}.

• d∗(wk+1;xk, zk) ≤ ρ1dwk+1
(xk+1, yk) and d∗(wk+1;xk, zk) ≤ ρ2max {d(xk, x∗), d(zk, x∗)}.

• The step size λk = λ = c2

L where c ∈ (0, 1) is a fixed constant.

• The initialization satisfies d(x0, x∗) ≤ τ
20K

− 1
2

(µ
L

) 3
4 and B0 =

µ
2A0 > 0, where

τ ≤ min

{√
c

2(2ω + 5)
,

√
25(1− σ)c

2ρ1(7 + 10ρ22)

}
.

then for all k ≥ 0, the following statements hold:

(1). Potential decrease (43) holds.

(2). d2(xk, x
∗) ≤

(
L
µ + 1

)
d2(x0, x

∗) ≤ τ2

200K
−1
(µ
L

) 1
2 .

(3). The distortion rate δk ≤ 1 + 2ω+5
10 τ2

√
µ
L .

(4). ξk := ak
Ak
≥ 9

10

√
µλ

1+µλ and hence Bk
Ak
≥ 2

5µ.

(5). d2(zk, x
∗) ≤ 1

80K
−1
( µ
L

) 1
2 .

Proof: We prove the result by induction on k. Specifically, for k ≥ 0, we first prove (2),(3) and (5)
hold for k, and then use them to derive (1),(4) for k + 1, completing one round of induction step.
When k = 0, (2) follows from

δ0 ≤ 1 + 4Kd2(w0, z0) ≤ 1 + 8K
(
d2(w0, x

∗) + d2(z0, x
∗)
)
≤ 1 +

ω + 1

50
τ2
√

µ

L
,

and the rest follows from the assumptions. Now suppose that the statements hold for 1, 2, · · · , k − 1.
Consider the case for k.

The induction hypothesis implies that d2(xk, x∗) ≤ τ2

200K
−1
√

µ
L , and

d2wk
(zk, x

∗) ≤ 1

Bk
p0 ≤

5

2µ

1

A0

(
A0(f(x0)− f(x∗) +B0d

2
w0
(z0, x

∗)
)

≤ 5

2µ

(
L

2
d2(x0, x

∗) +
µ

2
d2(x0, x

∗)

)
=

5

4

(
L

µ
+ 1

)
d2(x0, x

∗) ≤ τ2

160
K−1

√
µ

L
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On the other hand, since

d2(wk, x
∗) ≤ ωd2(xk, x

∗) ≤ ωτ2

200
K−1

(µ
L

) 1
2
<

1

2K
, (44)

the distortion inequality (10) implies that

d2(zk, x
∗) ≤ (1 + 4Kd2(wk, x

∗))d2wk
(zk, x

∗) ≤ τ2

80
K−1

√
µ

L
. (45)

The inequalities (44) and (45) together implies that

d2(zk, wk) ≤ 2
(
d2(wk, x

∗) + d2(zk, x
∗)
)
≤ 2ω + 5

50
τ2K−1

√
µ

L

Hence, the distortion rate δk can be bounded as follows:

δk ≤ 1 + 4Kd2(wk, zk) < 1 +
2ω + 5

10
τ2
√

µ

L
≤ 1 +

c

20

√
µ

L
≤ 1 +

1

10

√
µλ

1 + µλ
.

The induction hypothesis implies that ξk ≥ 9
10

√
µλ

1+µλ =: ξ∗, and recall the equation

δkξk+1

(
ξk+1 −

µλ

1 + µλ

)
= ξ2k(1− ξk+1)

To show ξk+1 ≥ 9
10

√
µλ

1+µλ , it suffices to show that

δkξ∗

(
ξ∗ −

µλ

1 + µλ

)
≤ ξ2∗(1− ξ∗)⇔ δk

(
1− 10

9
ξ∗

)
≤ 1− ξ∗

The final equation holds since δ ≤ 1 + 1
9ξ∗.

Now it remains to show potential decrease pk+1 ≤ pk; it suffices to prove that (42) holds. Since
SK(r) ≤ 1

3Kr2 when Kr2 ≤ 1, the assumptions imply that

12d∗(wk+1;xk, zk) · SK (d(xk, zk) + 2d∗(wk+1;xk, zk))

≤ 4ρ1dwk+1
(xk+1, yk) ·K (d(xk, zk) + 2d∗(wk+1;xk, zk))

2

≤ 4ρ1K

(
7

100
τ2K−1 +

1

10
ρ22τ

2K−1

)√
µ

L
dwk+1

(xk+1, yk)

≤ 1− σ

2
c

√
µ

L
dwk+1

(xk+1, yk) ≤ (1− σ)
√
µλdwk+1

(xk+1, yk)

so that (42) holds. The proof is completed. □
Finally, we have the following corollary on acceleration for smooth functions.

Corollary 42 Under the assumptions of Theorem 41, we have

f(xk)− f(x∗) ≤ 1

Ak
p0 ≤

τ2

400
K−1L

(µ
L

) 3
2

(
1− 9

√
c

10
√
2

√
µ

L

)k
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Appendix D. Details of Section 4

In this section, we provide detailed description of the algorithms we discussed in Section 4 and
verification that they can be recovered from the Riemannian A-HPE framework. Throughout this
section, we assume that f is L-smooth.

D.1. Algorithms without the additional distortion

First, we look at the Riemannian Nesterov’s method, which is proposed and studied in Zhang and Sra
(2018); Ahn and Sra (2020) and, to the best of our knowledge, the only provably accelerated method
in our setting. The update of this method is given in Algorithm 3.

Algorithm 3 Riemannian Nesterov’s Method
Input :Objective function f , initial point x0, σ ∈

(
0, 34
)
, parameters L, µ, initial weight A0 ≥ 0

z0 ← x0 and λ← σ2

2L
for k = 0, 1, · · · do

choose a valid distortion rate δk according to Theorem 10
θk ← the smaller root of Bk(1− θ)2 = µλθ

(
(1− θ)Bk +

µ
2 δkAk

)
Bk+1 ← Bk

θkδk
, ak+1 ← 2µ−1(1− θk)Bk+1 and Ak+1 ← Ak + ak+1

yk ← Expxk

(
θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
xk+1 ← Expyk(−λ∇f(yk))
zk+1 ← Expyk

(
θkExp

−1
yk

(zk)− µ−1(1− θk)∇f(yk)
)

end

Proposition 43 Algorithm 3 can be recovered from Algorithm 2 by choosing σk = σ, λ ∈
(
0, σ2

2L

)
,

wk+1 = yk, xk+1 = Expyk(−λk∇f(yk)) and vk+1 = ∇f(yk) + µExp−1
yk

(xk+1).

Proof: It remains to check that the specified update rule satisfies the inequality (6) in the definition
of iprox. Indeed we have

LHS =
λk

2(1 + λkµ)

(
f(xk+1)− f(yk)−

〈
Exp−1

yk
(xk+1),∇f(yk)

〉)
+

(
λ2
kµ

2

2(1 + λkµ)2
− λkµ

2(1 + λkµ)

)
d2(yk, xk+1)

≤ λkL

2(1 + λkµ)
d2(yk, xk+1) ≤

σ2
k

2(1 + λkµ)2
d2(yk, xk+1) = RHS

so that the result follows. □
The second example is given in Algorithm 4. It is a direct generalization of the accelerated

method (Chen and Luo, 2019, Algorithm 3) to Riemannian setting, and can be viewed as a variant
of Nesterov’s method with an additional gradient descent step. To the best of our knowledge, the
algorithm is new and its convergence property is not known in Riemannian setting.
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Algorithm 4 Riemannian Nesterov’s method with an extra gradient step
Input :Objective function f , initial point x0, σ ∈

(
0, 34
)
, parameters L, µ, initial weight A0 ≥ 0

z0 ← x0 and λ← σ2

2L
for k = 0, 1, · · · do

choose a valid distortion rate δk according to Theorem 10
θk ← the smaller root of Bk(1− θ)2 = µλθ

(
(1− θ)Bk +

µ
2 δkAk

)
Bk+1 ← Bk

θkδk
, ak+1 ← 2µ−1(1− θk)Bk+1 and Ak+1 ← Ak + ak+1

xk ← Expx̃k
(−λ∇f(x̃k))

yk ← Expxk

(
θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
x̃k+1 ← Expyk(−λ∇f(yk))
zk+1 ← Expyk

(
θkExp

−1
yk

(zk)− µ−1(1− θk)∇f(yk)
)

end

Proposition 44 Algorithm 4 can be recovered from Algorithm 2 by choosing σk = σ = 3
4 , wk+1 =

yk, vk+1 = ∇f(yk) + µExp−1
yk

(xk+1) and xk+1 defined by

x̃k+1 = Expxk+1
(−λk∇f(xk+1)) , xk+1 = Expx̃k+1

(−λk∇f(x̃k+1)) .

Proof: It suffices to check that the iprox definition is satisfied. Smoothness implies that

f(xk+1)− f(yk)−
〈
Exp−1

yk
(xk+1),∇f(yk)

〉
≤ L

2
d2(xk+1, yk).

On the other hand, we can bound ∥Exp−1
yk

(xk+1) + λkvk+1∥2 as follows:

∥Exp−1
yk

(xk+1) + λkvk+1∥2 = ∥(1 + µλk)Exp
−1
yk

(xk+1) + λk∇f(yk)∥2

= (1 + µλk)
2d2(xk+1, yk) + 2λk(1 + µλk)

〈
Exp−1

yk
(xk+1),∇f(yk)

〉
+ λ2

k∥∇f(yk)∥2

≤ (1 + µλk)
2d2(xk+1, yk) + λ2

k∥∇f(yk)∥2

− 2λk(1 + µλk)
(
f(yk)− f(xk+1) +

µ

2
d2(yk, xk+1)

)
= (1 + µλk)d

2(xk+1, yk) + d2(yk, x̃k+1)

− 2λk(1 + µλk)

(
1

λk
− L

2

)(
d2(yk, x̃k+1) + d2(x̃k+1, xk+1)

)
≤ (1 + µλk)d

2(xk+1, yk)

− 2

(
(1 + µλk)

(
1− L

2
λk

)
− 1

2

)(
d2(yk, x̃k+1) + d2(x̃k+1, xk+1)

)
≤
(
L

2
λk(1 + µλk) +

1

2

)
d2(xk+1, yk)

(46)

Finally, the choice of λ satisfies Lλ(1 + µλ) ≤ 1
2 , hence the result follows. □

D.2. Algorithms with the additional distortion

In this section, we discuss specific examples of first-order methods that can be obtained from
Algorithm 2 as special cases. The setting considered here is more general than the previous subsection,
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in that we do not require that wk+1 is chosen on the geodesic connecting xk and zk, and we can
apply Theorem 19 to obtain local (full) acceleration.

We first present a method, called Riemannian accelerated extra-gradient descent (RAXGD), in
Algorithm 5. To see its difference with Riemannian Nesterov’s method, note that it uses two gradients
each iteration. RAXGD can be seen as a Riemannian and strongly-convex version of the accelerated
extra-gradient method proposed by Diakonikolas and Orecchia (2018). To the best of our knowledge,
this method has not been proposed or studied before.

Algorithm 5 Riemannian accelerated extra-gradient descent
Input :Objective function f , initial point x0, σk ∈ (0, 1), parameters L, µ, initial weight A0, B0 > 0
z0 ← x0 and λ← σ

L
for k = 0, 1, · · · do

choose a valid distortion rate δk according to Theorem 10
θk ← the smaller root of Bk(1− θ)2 = µλkθ

(
(1− θ)Bk +

µ
2 δkAk

)
Bk+1 ← Bk

θkδk
, ak+1 = 2µ−1(1− θk)Bk+1 and Ak+1 = Ak + ak+1

yk ← Expxk

(
θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
xk+1 ← Expyk(−λ∇f(yk))
zk+1 ← Expxk+1

(
θkExp

−1
xk+1

(zk)− µ−1(1− θk)∇f(xk+1)
)

end

The following proposition shows that Algorithm 5 can be considered as a special case of
Algorithm 2.

Proposition 45 Algorithm 5 can be recovered from Algorithm 2 by choosing σk = σ ∈ (0, 1),
λ ≤ σ

L , v = ∇f(xk+1) and wk+1 = xk+1 = Expyk(−λk∇f(yk)). Moreover, the conditions in
Theorem 41 are satisfied with ρ1 = ρ2 = ω = 1.

Proof: We have (xk+1, vk+1) ∈ iprox
wk+1

f (yk, λk, εk), since∥∥∥Exp−1
xk+1

(yk)− λk∇f(xk+1)
∥∥∥ = λk

∥∥Γxk+1
yk ∇f(yk)−∇f(xk+1)

∥∥
≤ Lλkd(yk, xk+1) ≤ σkd(xk+1, yk).

Finally, note that

d∗(wk+1;xk, zk) ≤ d(xk+1, yk) ≤
1

L
∥∇f(yk)∥ ≤ d(yk, x

∗),

the conclusion follows. □
We can also design new accelerated algorithms by choosing different realizations of the iprox

operator in Algorithm 2. This can lead to novel algorithms that are previously unknown even in
Euclidean setting. In the following we derive from Algorithm 2 a generalized version of RAXGD,
given in Algorithm 6.

Rather than obtain xk+1 directly from a gradient descent step, it allows arbitrary choices of xk+1

as long as a distance inequality

d(wk+1, xk+1) ≤
1− σ

3
d(yk, xk+1) (47)
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Algorithm 6 Generalized Riemannian accelerated extra-gradient descent
Input :Objective function f , initial point x0, σk ∈ (0, 1), parameters L, µ, initial weight A0, B0 > 0
z0 ← x0 and λ← σ

2L
for k = 0, 1, · · · do

choose a valid distortion rate δk according to Theorem 10
θk ← the smaller root of Bk(1− θ)2 = µλkθ

(
(1− θ)Bk +

µ
2 δkAk

)
Bk+1 ← Bk

θkδk
, ak+1 = 2µ−1(1− θk)Bk+1 and Ak+1 = Ak + ak+1

yk ← Expxk

(
θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
wk+1 ← Expyk(−λ∇f(yk))
choose xk+1 such that d(wk+1, xk+1) ≤ 1−σ

3 d(yk, xk+1)

zk+1 ← Expxk+1

(
θkExp

−1
xk+1

(zk)− µ−1(1− θk)∇f(xk+1)
)

end

is satisfied. The inequality is obviously satisfied when xk+1 = wk+1, which reduces to Algorithm 5.
Intuitively, (47) implies that xk+1 is obtained by starting from yk and following an ‘approximately
descent’ direction. In Euclidean setting, the solution set of (47) for xk+1 is a region enclosed by an
Apollonius circle that contains wk+1.

Proposition 46 Algorithm 6 is a special case of Algorithm 2. Moreover, the conditions in Theorem 41
holds with ρ1 = 4, ρ2 = 1 and ω = 3

2 .

Proof: To check that Algorithm 6 can be obtained from Algorithm 2, it suffices to verify that the
update of xk+1 satisfies (6).

Since f is L-smooth, we have

λ

1 + µλ

(
f(xk+1)− fwk+1

(xk+1)
)
≤ Lλ

2
d2(xk+1, wk+1) ≤

1

2
d2(xk+1, yk).

On the other hand

∥Exp−1
wk+1

(xk+1)− Exp−1
wk+1

(yk) + λvk+1∥2

= ∥(1 + µλ)Exp−1
wk+1

(xk+1)− Exp−1
wk+1

(yk) + λ∇f(wk+1)∥2

≤ 2(1 + µλ)2d2(wk+1, xk+1) + 2λ2
∥∥∇f(wk+1)− Γ

wk+1
yk ∇f(yk)

∥∥2
≤ 2(1 + µλ)2d2(wk+1, xk+1) + 2L2λ2d2(wk+1, yk)

≤ 2
(
(1 + µλ)2 + 2L2λ2

)
d2(wk+1, xk+1) + 4L2λ2d2(xk+1, yk)

≤ 3(1 + µλ)2d2(wk+1, xk+1) + σ2d2(xk+1, yk)

≤ (1 + µλ)2d2(xk+1, yk)

where the last step uses (47). Hence (6) holds. □
By Theorem 41, we deduce that Algorithm 6 achieves acceleration when initialized in an

O
(
K− 1

2

( µ
L

) 3
4

)
. To the best of our knowledge, Algorithm 6 has not been studied even for strongly-

convex functions in the Euclidean setting.
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We emphasize that the purpose of introducing Algorithm 6 is to show that Algorithm 2 can lead
to many different types of accelerated first-order methods. There are of course other ways to specify
the iprox operator, which would lead to many interesting algorithms.

D.3. Discussion of the extra-point framework in Huang and Zhang (2021)

In a recent work Huang and Zhang (2021), the authors propose an extra-point approach motivated
by the analysis of classical accelerated methods. Based on this idea, they propose a framework for
smooth strongly-convex optimization, which is in a quite general form and contains a total of 9
parameters. For convenience we give the detailed updates of their framework below.

pk ← t1xk + t2zk (48a)

yk ← a solution of ⟨∇f(yk), pk − yk⟩ ≥ 0 (48b)

x̃k+1 ← yk −
t3
L
∇f(yk) (48c)

xk+1 ← yk −
t4
L
∇f(x̃k+1)−

t5
L

(∇f(x̃k+1)−∇f(yk)) + t6 (x̃k+1 − yk) (48d)

zk+1 ← t7zk + t8yk − t9∇f(yk) (48e)

The authors derive sufficient conditions on the choice of ti, 1 ≤ i ≤ 9 so that (48) can achieve
acceleration. While their framework looks complicated, in the following we show that it can be
interpreted quite naturally from the PPM viewpoint introduced in Section 2.

First, (48e) is very similar to the update of zk+1 in A-HPE; one can see this by comparing it
with (17), with the choice wk+1 = yk and vk+1 = ∇f(yk) + µ (xk+1 − yk). With properly chosen
constants t7, t8, t9, (48e) can then be interpreted as an approximate PPM scheme.

Second, (48c) and (48d) together give a gradient-descent-type update formula of xk+1. In
particular, (48d) can also be written as

xk+1 ← yk −
t3t6 − t5

L
∇f(yk)−

t4 + t5
L
∇f(x̃k+1),

which is very similar to the Riemannian Nesterov’s method with multiple gradient steps that we
introduced in Algorithm 4. As a result, the update of xk+1 can also be interpreted as another
approximate PPM scheme.

Recall the arguments in Section 2 that the final step is to combine these two schemes and obtain
potential decrease. In A-HPE this is implemented by a simple convex combination of the iterates xk
and zk. However, in (48) the procedure is more complex: first a convex combination is obtained (i.e.
the update of pk), and then yk is chosen to be any solution of the inequality (48b).

This procedure, in fact, can be easily justified by one additional step in the analysis: intuitively,
yk is a refinement of the convex combination. Specifically, as argued in the proof of Theorem 24, the
combination of two PPM approaches is implemented by the following inequality:

θz∥zk − xk+1 + µ−1vk+1∥2 + θx∥xk − xk+1 + µ−1vk+1∥2 ≥ (θz + θx)∥pk − xk+1 + µ−1vk+1∥2.

Since xk+1 − µ−1vk+1 = yk − µ−1∇f(yk), we have

∥pk−xk+1+µ−1vk+1∥2 = ∥pk− yk +µ−1∇f(yk)∥2 ≥ ∥∇f(yk)∥2 = ∥yk−xk+1+µ−1vk+1∥2,
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where the inequality exactly follows from (48b)!
Now we have seen that the framework of (Huang and Zhang, 2021) uses the same idea of

approximate-PPM as A-HPE, except that the combination step is more general. On the other hand,
the framework is limited to the choice of wk+1 = yk in the definition of iprox, while A-HPE allows
more flexible choices.

Finally, we provide a natural extension of the framework to the Riemannian setting:

pk ← Expxk

(
t2Exp

−1
xk

(zk)
)

yk ← a solution of
〈
∇f(yk), Exp−1

yk
(pk)

〉
≥ 0

x̃k+1 ← Expyk

(
− t3
L
∇f(yk)

)
xk+1 ← Expx̃k+1

(
(1− t6)Exp

−1
x̃k+1

(yk)−
t4
L
∇f(x̃k+1)−

t5
L

(
∇f(x̃k+1)− Γ

x̃k+1
yk ∇f(yk)

))
zk+1 ← Expyk

(
t7Exp

−1
yk

(zk)− t9∇f(yk)
)

Local acceleration of the framework can be shown using our in approach Section 3. For the
special case yk = pk, the additional distortion disappears and the framework attains global eventual
acceleration.
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