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Abstract

We design accelerated algorithms with improved rates for several fundamental classes of optimiza-
tion problems. Our algorithms all build upon techniques related to the analysis of primal-dual
extragradient methods via relative Lipschitzness proposed recently by Cohen et al. (2021).

(1) Separable minimax optimization. We study separable minimax optimization problems of the form
min, max, f(x) — g(y) + h(z,y), where f and g have smoothness and strong convexity parameters
(L™, 1), (LY, 1Y), and h is convex-concave with a (A A’ AYY)-blockwise operator norm bounded

. . . . ~ X Ly A A AYY . .
Hessian. We provide an algorithm using O <1 [t T s T T W) gradient queries.
Notably, for convex-concave minimax problems with bilinear coupling (e.g. quadratics), where A =

AYY = 0, our rate matches a lower bound of Zhang et al. (2019).

(2) Finite sum optimization. We study finite sum optimization problems of the form min,, % D ic in] fi(x),
where each f; is L;-smooth and the overall problem is p-strongly convex. We provide an algorithm
using O (n + 2 e o /57) gradient queries. Notably, when the smoothness bounds {L;},¢,
non-uniform, our rate improves upon accelerated SVRG (Lin et al., 2015; Frostig et al., 2015) and
Katyusha (Allen-Zhu, 2017) by up to a /n factor.

p) are

(3) Minimax finite sums. We generalize our algorithms for minimax and finite sum optimization to solve
a natural family of minimax finite sum optimization problems at an accelerated rate, encapsulating
both above results up to a logarithmic factor.

Keywords: convex optimization, first-order methods, stochastic optimization, minimax optimiza-
tion, acceleration

1. Introduction

We study several fundamental families of optimization problems, namely (separable) minimax op-
timization, finite sum optimization, and minimax finite sum optimization (which generalizes both).
These families have received widespread recent attention from the optimization community due to
their prevalence in modeling tasks arising in modern data science. For example, minimax optimiza-
tion has been used in both convex-concave settings and beyond to model robustness to (possibly
adversarial) noise in many training tasks (Madry et al., 2018; Rahimian and Mehrotra, 2019; Good-
fellow et al., 2020). Moreover, finite sum optimization serves as a fundamental subroutine in many
of the empirical risk minimization tasks of machine learning today (Bottou et al., 2018). Nonethe-
less, and perhaps surprisingly, there remain gaps in our understanding of the optimal rates for these
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problems. Toward closing these gaps, we provide new accelerated algorithms improving upon the
state-of-the-art for each family of problems.

Our results build upon advances in using primal-dual extragradient methods to recover acceler-
ated rates for smooth convex optimization in Cohen et al. (2021), which considered the problem!

min f(z) + 7 ||||* for L-smooth and convex f, (1)
TEX 2
and its equivalent primal-dual formulation as an appropriate ‘“Fenchel game”

min max o |z||? + («*, ) — f*(z*), where f* is the convex conjugate of f . (2)
TEX zreX* 2
Cohen et al. (2021) showed that applying extragradient methods (Nemirovski, 2004; Nesterov,
2007) and analyzing them through a condition the paper refers to as relative Lipschitzness recovers
an accelerated gradient query complexity for computing (1), known to be optimal (Nesterov, 2003).
Both the Fenchel game (Abernethy et al., 2018; Wang and Abernethy, 2018) and relative Lip-
schitzness (independently proposed in Stonyakina et al. (2020)) have a longer history, discussed in
Appendix A. This work is particularly motivated by their synthesis in Cohen et al. (2021), which
used these tools to give the following general recipe for designing accelerated methods.

(1) Choose a primal-dual formulation of an optimization problem and a regularizer, r.
(2) Bound iteration costs, i.e. the cost of implementing mirror steps with respect to r.
(3) Bound the relative Lipschitzness of the gradient operator of the problem with respect to r.

In Cohen et al. (2021), this recipe was applied with (2) as the primal-dual formulation and r(z, x*) :=
g |z||? + f*(x*). Further, it was shown that each iteration could be implemented (implicitly) with
O(1) gradient queries and that the gradient operator ® of the objective (2) is O(+/L/u)-relatively
Lipschitz with respect to . Combining these ingredients gave the accelerated rate for (2); we note
that additional tools were further developed in Cohen et al. (2021) for other settings including ac-
celerated coordinate-smooth optimization (see Section 1.2).

In this paper, we broaden the primal-dual extragradient approach of Cohen et al. (2021) and
add new recipes to the optimization cookbook. As a result, we obtain methods with improved
rates for minimax optimization, finite sum optimization, and minimax finite sum optimization. We
follow a similar recipe as Cohen et al. (2021) but change the ingredients with different primal-dual
formulations, regularizers, extragradient methods, and analyses. In Sections 1.1, 1.2, and 1.3, we
discuss each problem family, our results and approach, and situate them in the relevant literature.
We discuss further related work not covered by this introduction in Appendix A.

1.1. Minimax optimization

In Section 2, we study separable convex-concave minimax optimization problems of the form?

minma Fo(z,y) = £(z) + h(z,y) = g(0). (3)

1. Throughout, X', Y are unconstrained, Euclidean spaces and ||-|| denotes the Euclidean norm (see Appendix B).
2. Our results in Section 2 apply generally to non-twice differentiable, gradient Lipschitz h, but we use these assump-
tions for simplicity in the introduction. All norms are Euclidean (see Appendix B for relevant definitions).
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where f is L*-smooth and p*-strongly convex, g is LY-smooth and p”-strongly convex, and h is
< x%, [VE,n]] < A%, and [V2,0]] <
AYY. Our goal is to compute a pair of points (z,y) with bounded duality gap with respect to Fiy:
Gapy. (x,y) < e (we defer definitions used throughout the paper to Appendix B).

The problem family (3) contains as a special case the following family of convex-concave min-

imax optimization problems with bilinear coupling (with A** = AYY = 0 and A = || A|)):
T
Az — (b, : ) — (). 4
min mix f(2) + (y7 Az = (b.) + (e.2)) — 9(0) )

Problem (4) has been widely studied, dating at least to the classic work of Chambolle and Pock
(2011), which used (4) to relax optimization with affine constraints related to imaging inverse prob-
lems. Problem (4) also encapsulates convex-concave quadratics and is used to model problems in
reinforcement learning (Du et al., 2017) and decentralized optimization (Kovalev et al., 2020).

Our results. We give the following result on solving (3).

Theorem 1 (informal, cf. Theorem 14, Corollary 15) Define Gap,, (z,y) := max,cy h(z,y’) —
mingex h(z',y), there is an algorithm that, given (xo,yo) € X x Y satisfying Gapy, (o, y0) <
€o, returns (x,y) with Gapp. (x,y) < € using I" gradient evaluations to f, h, and g, for

. Kmm€0 . L Lx Ly A A AYY
T—O(/{mmlog< ; )),wzthmmm.—1/?+’/ﬁ+y+7w+y_

In the special case of (4), Theorem 1 matches a lower bound of Zhang et al. (2019), which applies
to the family of quadratic minimax problems obeying our regularity bounds. More generally, The-
orem | matches the lower bound whenever A and AYY are sufficiently small compared to other
parameters, improving prior state-of-the-art rates (Wang and Li, 2020) in this regime.

By applying reductions based on explicit regularization used in Lin et al. (2020), Theorem 1 also
yields analogous accelerated rates depending polynomially on the desired accuracy when either f,
g, or both are not strongly convex. For conciseness, in this paper we focus on the strongly convex
and strongly concave regime discussed previously in this section.

Our approach. Our algorithm for solving (3) is based on the simple observation that minimax
problems with the separable structure can be effectively “decoupled” by using convex conjugation
on the components f and g. In particular, following a similar recipe as the one in Cohen et al. (2021)
for smooth convex optimization, we rewrite (an appropriate regularized formulation of) the problem
(3) using convex conjugates as follows:

y 2 * * Y K (K
xeg}ln@* oA . H 1> - 5 IYlI™ + %) = (" y) + ki@, y) = f7(27) + 97 (y).
This can be viewed as an equivalent reformulation of the problem (3) by simply replace f <
f- %x |z||* and g + g — & ||y|| and usmg the definition of convex conjugates. Further, we de-
fine the regularizer r(x, y, z* ,y *) =5 =) + “2y lyll® + f*(x*) + g*(y*). Finally, we apply an
extragradient method for strongly monotone operators to our problem, using this regularizer. As in
Cohen et al. (2021) we demonstrate efficient implementability, and analyze the relative Lipschitz-
ness of the problem’s gradient operator with respect to r, yielding Theorem 1. In the final gradient
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oracle complexity, our method obtains the accelerated trade-off between primal and dual blocks
for “ |2||* + («*,2) — f*(«*) and “ Ilyll* + (y*,y) — g*(y*), for the separable parts f and g
respectlvely It also obtains an unaccelerated rate for the h component, by bounding the relative
Lipschitzness corresponding to h under our assumptions.

Prior work. Many recent works obtaining improved rates for minimax optimization under smooth-
ness and strong convexity restrictions concentrate on a more general family of problems of the form:

F 5
min ma (2,9)- Q)

Typically, these works assume for twice-differentiable F, V2_F is bounded between p*I and A1
everywhere, V2, F" is bounded between 1¥T and AYI everywhere, and V2 F is operator norm
bounded by AY. Tt is straightforward to see that (5) contains (3) as a special case, by setting
[« 5 2,g<—%y 2andh+ F— f+g.

For (5), under gradient access to ', the works of Lin et al. (2020); Wang and Li (2020); Co-
hen et al. (2021) presented different approaches yielding a variety of query complexities. Letting
A™MaX = max (A, AV, AY), these complexities scaled respectively as®

5 \/ max (A%, A%, AYY)? \/ A \/ AYY \/ Ay Amax <AXX LA A )

T ey )7 o Ny
The state-of-the-art rate (ignoring logarithmic factors) is due to Wang and Li (2020), which obtained
the middle gradient query complexity above.

For the comparison, we first note that for quadratic minimax problems, i.e. min, max, F'(z, y),
where F is convex-concave and V2F is constant, Theorem 1 obtains the optimal complexity (up
to a logarithmic term). To see this, setting f(x) and g(y) to be quadratics in V2, F and —V2 F
h = F — f + g is bilinear and hence Theorem 1 matches the lower bound of Zhang et al. (2019)
(since A = AYY = 0). Notably in this case we improve Wang and Li (2020) (Corollary 3, Section
5, NeurIPS version) by a o(1) factor in the runtime exponent. Our method’s optimality extends “for
free” to cases when h is bilinear (but f and g may be non-quadratic). This setting naturally arises
in (relaxed) affine-constrained optimization (and structured composite problems f(Az) + g(y)), as

well as applications in reinforcement learning and decentralized optimization. Further, if F' can be
decomposed as f(x) — g(y) + h(z,y) where V2, h < A*Tand V2, h < AT for “small” A, AYY,

AXX + M =0(\/1x L Ly C o+ Axy = )» Theorem 1 matches Zhang et al. (2019), whereas Wang

and L1 (2020) does not (when Jrnam(L)< Ly) > AY).

In the general regime where no such favorable decomposition exists and we may as well choose
f= %XH %9 = %YH - ||?, Theorem 1 recovers Cohen et al. (2021) but does not improve Wang
and Li (2020) (short of saving logarithmic factors). This general application may improve Lin et al.
(2020), e.g. in the setting when A > max(AYY, A*¥) and p* > 1Y but % R~ % Each work
matches the lower bound of Zhang et al. (2019) in some (incomparable) parameter regimes.

From the algorithmic perspective, the method in Theorem 1 uses only a single loop, as opposed
to the multi-loop methods in Lin et al. (2020); Wang and Li (2020) which lose logarithmic factors.
It thus has an arguably simpler structure and may find advantage in practice.

3. O hides logarithmic factors throughout, see Appendix B.
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Concurrent work. A pair of independent and concurrent works (Kovalev et al., 2021; Thekumpara-
mpil et al., 2022) obtained variants of Theorem 1. Their results were stated under the restricted set-
ting of bilinear coupling (4), but they each provided alternative results under (different) weakenings
of strong convexity. The algorithm of Thekumparampil et al. (2022) is closer to the one developed
in this paper (also going through a primal-dual lifting), although the ultimate methods and analy-
ses are somewhat different. Though our results were obtained independently, our presentation was
informed by a reading of Kovalev et al. (2021); Thekumparampil et al. (2022) for a comparison.

1.2. Finite sum optimization

In Appendix E, we study finite sum optimization problems of the form

min Fy(z) := % Z fi(x), (6)

reX :
1€[n]

where f; is L;-smooth for each i € [n], and %Ziew fi is p-strongly convex. We focus on the
strongly convex regime; through generic reductions (Zhu and Hazan, 2016), our results yield accel-
erated rates depending polynomially on the target accuracy, without strong convexity.

Methods for solving (6) have garnered substantial interest because of their widespread appli-
cability to empirical risk minimization problems over a dataset of n points, which encapsulate a
variety of (generalized) regression problems in machine learning (see Bottou et al. (2018)).

Our results. We give the following result on solving (6).
Theorem 2 (informal, cf. Theorem 25, Corollary 27) There is an algorithm that, given xo € X

satisfying Fg(xo) — Fs(x) < €g where x, minimizes Fys, returns x € X with EFg(x)— Fis(24) < €
using 1" gradient evaluations (each to some f;) for

. VLi
T=0 (KJfS log (f‘\?f260)> , With kg :=n + Z%;} \/?%

Our approach. Our algorithm for solving (6) builds upon an accelerated coordinate descent
method developed in Cohen et al. (2021), for which it used an analysis of a randomized extra-
gradient method. We consider an equivalent primal-dual formulation of (a regularized variant of)
(6), inspired by analogous developments in the ERM literature (Shalev-Shwartz and Zhang, 2013,
2016):

. K 2 1 * * (o
min  max = ||z||" 4+ — (zi,z) — fi(27)).
2€X {a} bigpm CX* 2 H " g[;] Z o

Our algorithm then solves this regularized primal-dual game to high precision.

A key building block of our method is a randomized extragradient method which is compatible
with strongly monotone problems. To this end, we extend the randomized extragradient method in
Cohen et al. (2021) to also obtain high-precision guarantees under strong monotonicity. We proceed
as follows: for roughly kg iterations (defined in Theorem 2) of our method, we run the non-strongly
monotone randomized mirror prox method of Cohen et al. (2021) to obtain a regret bound. We then
subsample a random iterate, which we show halves an appropriate potential in expectation via our
regret bound and strong monotonicity; recursing this procedure yields our high-precision solver.
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Prior work. Developing accelerated algorithms for (6) under our regularity assumptions has been
the subject of a substantial amount of research effort in the community, see e.g. Lin et al. (2015);
Frostig et al. (2015); Shalev-Shwartz and Zhang (2016); Allen-Zhu (2017); Song et al. (2020) and
references therein. The particular approach of combining coordinate methods with primal-dual for-
mulations and its application to the ERM problem has also appeared in a variety of literature (Zhang
and Lin, 2015; Chambolle et al., 2018; Alacaoglu et al., 2020; Song et al., 2021). Previously, the
state-of-the-art gradient query complexities (up to logarithmic factors) for (6) were obtained by Lin
et al. (2015); Frostig et al. (2015); Allen-Zhu (2017); Song et al. (2020),* and scaled as

~ Zze[n] L

O|n+ (N
I

Rates such as (7), which scale as functions of Zie[n} %, arise in known variance reduction-based
approaches (Johnson and Zhang, 2013; Defazio et al., 2014; Schmidt et al., 2017; Allen-Zhu, 2017)
due to their applications of a “dual strong convexity” lemma (e.g. Theorem 1, Johnson and Zhang
(2013) or Lemma 2.4, Allen-Zhu (2017)) of the form

IV fi(z) = V£:(@)I° < 2L; (fi(7) — filz) — (Vfi(z), & — x)).

The analyses of e.g. Johnson and Zhang (2013); Allen-Zhu (2017) sample ¢ € [n] proportional to
L;, yielding variance bounds on a gradient estimator by a quantity related to the Fis divergence.

The rate in (7) is known to be optimal in the uniform smoothness regime (Woodworth and
Srebro, 2016), but in a more general setting its optimality is unclear. Theorem 2 shows that the
rate can be improved for sufficiently non-uniform L;, which may happen e.g. in regression with a
matrix A that has non-uniform row norms. In particular, Cauchy-Schwarz shows that the quantity
ks is never worse than (7), and improves upon it by a factor asymptotically between 1 and /n
when the {Li}z‘e[n] are non-uniform. The best improvement of \/n is achievable in, e.g. extreme
cases when 37 € [n] with L; =~ 0, Vj # i. Moreover, even in the uniform smoothness case,
Theorem 2 matches the tightest rate in Allen-Zhu (2017) up to an additive log k¢ term, as opposed
to an additional multiplicative logarithmic overhead incurred by the reduction-based approaches of
Lin et al. (2015); Frostig et al. (2015).

Our rate’s improvement over (7) is comparable to a similar improvement that was achieved
previously in the literature on coordinate descent methods. In particular, Lee and Sidford (2013)
first obtained a (generalized) partial derivative query complexity comparable to (7) under coordinate
smoothness bounds, which was later improved to a query complexity comparable to Theorem 2
by Zhu et al. (2016); Nesterov and Stich (2017). Due to connections between coordinate-smooth
optimization and empirical risk minimization (ERM) previously noted in the literature (Shalev-
Shwartz and Zhang, 2013, 2016), it is natural to conjecture that the rate in Theorem 2 is achieveable
for finite sums (6) as well. However, prior to our work (to our knowledge) this rate was not known,
except in special cases e.g. linear regression (Agarwal et al., 2020).

4. There have been a variety of additional works which have also attained accelerated rates for either the problem (6)
or its ERM specialization, see e.g. Defazio (2016); Zhang and Xiao (2017); Lan et al. (2019); Zhou et al. (2019).
However, to the best of our knowledge these do not improve upon the state-of-the-art rate of Allen-Zhu (2017) in our
setting.



SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

From the algorithmic perspective, our basic Algorithm 4 and Algorithm 1 of Allen-Zhu (2017)
both are “double loop” as they aggregate information every ~ O(n) iterations; we acknowledge Al-
gorithm 6 adds one loop, but point out the resulting complexity is only affected by a constant factor.
We agree finding a more direct approach is an interesting future direction.

Our method is based on using a primal-dual formulation of (6) to design our gradient estimators.
It attains Theorem 25 by sampling summands proportional to v/L;, trading off primal and dual vari-
ances through a careful coupling. It can be viewed as a modified dual formulation to the coordinate
descent algorithm in Cohen et al. (2021), which used primal-dual couplings inspired by Zhu et al.
(2016); Nesterov and Stich (2017). We believe our result sheds further light on the duality between
coordinate-smooth and finite sum optimization, and gives an interesting new acceleration approach
for finite sum problems via algorithmically leveraging their primal-dual formulations.

1.3. Minimax finite sum optimization

In Appendix F, we study a family of minimax finite sum optimization problems of the form

1
R )y o (K ) 0 ®

We assume f; is L¥-smooth, g; is LY-smooth, and h; is convex-concave and twice-differentiable
with blockwise operator norm bounds A%, A%, and A}’ for each i € [n]. We also assume the
whole problem is p*-strongly convex and p¥-strongly concave.

We propose the family (8) because it encapsulates (5) and (6), and is amenable to techniques
from solving both. Moreover, (8) is a natural description of instances of (5) which arise from primal-
dual formulations of ERM problems, e.g. Zhang and Xiao (2017); Wang and Xiao (2017). It also
generalizes natural minimax finite sum problems previously considered in e.g. Carmon et al. (2019).

Our results. We give the following result on solving (8).

Theorem 3 (informal, cf. Theorem 39, Corollary 41) There is an algorithm that, given (xq, yo) €
X x Y satisfying Gapg, (w0, y0) < €o, returns (z,y) with EGapg, _ (v,y) < €, using T’ gradient

evaluations, each to some f;, g;, or h;, where

T=0 (’immfs IOg Kmmfs IOg (M>>

LX Ly AXX AXY Ayy
With Kmmfs := T + +
My % Hy w

The rate in Theorem 3 captures (up to a logarithmic factor) both of the rates in Theorems 1
and 2, when (8) is appropriately specialized. It can be more generally motivated as follows. When
n is not the dominant term in Theorem 2’s bound, the remaining term is y/n times the average
rate attained by Nesterov’s accelerated gradient method (Nesterov, 1983) on each summand in (6).
This improves upon the factor of n overhead which one might naively expect from computing full
gradients. In similar fashion, Theorem 3 attains a rate (up to an additive n, and logarithmic factors)
which is y/n times the average rate attained by Theorem 1 on each summand in (8).
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Our approach. Our algorithm for solving (8) is a natural synthesis of the algorithms suggested in
Sections 1.1 and 1.2. However, to obtain our results we apply additional techniques to bypass com-
plications which arise from the interplay between the minimax method and the finite sum method,
inspired by Carmon et al. (2019). In particular, to obtain our tightest rate we would like to sub-
sample the components in our gradient operator corresponding to { fi};c,) - {9i}icp) » {Riticpy all
at different frequencies when applying the randomized extragradient method. These different sam-
pling distributions introduce dependencies between iterates, making our randomized estimators no
longer “unbiased” for the true gradient operator.

To circumvent this difficulty, we obtain our result via a partial decoupling, treating compo-
nents corresponding to {f;};c(,;» {9i};ep,) and those corresponding to {h;} ¢, separately. For the
first two aforementioned components, which are separable and hence do not interact, we pattern
an expected relative Lipschitzness analysis for each block, similar to the finite sum optimization.
For the remaining component {hi}ie[n], we develop a variance-reduced stochastic method which
yields a relative variance bound. We put these pieces together in Proposition 29, a new randomized
extragradient method analysis, to give a method with a convergence rate of roughly

x| 1 A% AY Y

n + N ;L( + (’ir};lmfs)Qa where ’ir];rnfs = § < -+ = + — ) :
y X Xy y
ZGM I n RV T

i€[n]

The dependence on all pieces above is the same as in Theorem 3, except for the term corresponding
to the {h;} icn]- We finally wrap our solver in an “outer loop” proximal point method which solves
a sequence of y-regularized variants of (8). This outer loop does not harm the accelerated rate
obtained for { f;};c[n and {gi};c[,) since the regularization does not change the relative condition
number of the separable components. It further allows us to trade off the terms n and (k mmfs)2
through our choice of v, which yields the accelerated convergence rate of Theorem 3.

Prior work. To our knowledge, there have been relatively few results for solving (8) under our
fine-grained assumptions on problem regularity, although various stochastic minimax algorithms
have been developed in natural settings (Juditsky et al., 2011; Palaniappan and Bach, 2016; Hsieh
etal., 2019; Carmon et al., 2019; Chavdarova et al., 2019; Carmon et al., 2020; Alacaoglu and Mal-
itsky, 2021; Zhao, 2022). For the general problem of solving min, ¢y maxyey Z Fi(z,y)
where F; is L;-smooth and convex-concave, and the whole problem is p* strongly convex and pY-
strongly concave, perhaps the most direct comparisons are Section 5.4 of Carmon et al. (2019)
and Theorem 15 of Tominin et al. (2021) In particular, Carmon et al. (2019) provided a high-
precision solver using roughly 9] (n + \F Zze[n —) gradient queries, when p* = p¥ = pu.
This is recovered by Theorem 39 in the special setting of f; = ¢g; < 0, * = ¥ + u, and
A =AY = AY « L;. More generally, Carmon et al. (2019) gave a result depending polynomi-
ally on the accuracy without the strongly convex and strongly concave assumptions, which follows
from a variant of Theorem 39 after applying the explicit regularization in Lin et al. (2020) that
reduces to the strongly convex-concave case.

Moreover, Theorem 15 of Tominin et al. (2021) provided a high-precision solver using roughly

ze [n]

VI uy
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gradient queries. Our work recovers (and sharpens dependences in) this result for minimax finite
sum problems where each summand has the bilinear coupling (4). In the more general setting where
each summand only has a uniform smoothness bound, one can interpret the Tominin et al. (2021)
result as a finite sum analog of the main claim in Lin et al. (2020), which is incomparable to our
Theorem 1. In a similar way, the rate of Tominin et al. (2021) is incomparable to Theorem 3,
and each improves upon the other in different parameter regimes. We believe designing a single
algorithm which obtains the best of both worlds for (8) is an interesting future direction.

Paper organization. In the remainder of the main body, we provide an overview of our techniques
by presenting our main algorithm for proving Theorem 1 and its analysis for minimax optimization.
We defer helper proofs used in Section 2, proofs of Theorem 2 for finite sum optimization, proofs
of Theorem 3 for minimax finite sum optimization to the appendices. We provide abbreviated
preliminaries here and defer more detailed preliminaries to Appendix B.

General notation. We use O to hide logarithmic factors in problem parameters, X and ) to repre-
sent Euclidean spaces, and ||-|| for the Euclidean norm. We refer to blocks of z € X’ x ) by (2%, 2Y).
The Bregman divergence in differentiable, convex r is V! (2') := r(a’) — r(z) — (Vr(z), 2’ — ),
for any x,2’ € X. When we omit superscripts, 7 = 3 -] so Vi (a') = 3z —2/||%.

Functions and operators. We say h : X x ) — R is convex-concave if h(-,y) and h(z,-)
are respectively convex and concave, for any x € X and y € ). The duality gap of (z,y) is
Gapy,(z,y) = maxycy h(z,y') — mingcx h(2',y); a saddle point is (x4, y,) with zero duality
gap. We call operator ® : Z — Z* monotone if (®(z) — ®(2'),z — 2’y > 0forall 2,2’ € Z. The
convex conjugate of f : X — R is defined as f*(z*) := max,ecx (z,2*) — f(x). We define the
proximal operation in 7 by

Prox[,(®) := argming . {(®,2") + V] ()} .

Regularity. Function f : X — Ris L-smooth if |V f(x) — Vf(2")|| < L || — 2/|| forall z, 2’ €
X. Differentiable f : X — R is p-strongly convex if Vi/ (/) > Sz —a 1 for all z,2’ € X.
Operator ® : Z — Z* is m-strongly monotone with respect to convex r : Z — R if for all
2,2 € Z,(®(2) — ®(2)), 2 — 2') >m(Vr(z) = Vr(2),z — ') = m (VI (') + V1 (2)).

2. Minimax optimization

In this section, we provide efficient algorithms for computing an approximate saddle point of

min max Fm(z, y) for Fum == f(z) + h(z,y) — g(y) . )
zeX yey
Here and throughout this section f : X — R and g : ) — R are differentiable, convex functions
and h : X x Y — R is a differentiable, convex-concave function. For the remainder, we focus on
algorithms for solving the following regularized formulation of (9):

x y
min max Fumreg (2, ) f0r Fumreg (2, 5) = F(2) + h(z,y) — g(y) + = > = =yl (10)
reX yey 2 2

To instead solve an instance of (9) where f is p*-strongly convex and g is pY-strongly convex, we
may instead equivalently solve (10) by reparameterizing f < f — %X 1% g < g — %y -2, As it
is notationally convenient for our analysis, we focus on solving the problem (10) and then give the
results for (9) at the end of this section in Corollary 15.

In designing methods for solving (10) we make the following additional regularity assumptions.
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Assumption 1 (Minimax regularity) We assume the following about (10).
(1) fis L*-smooth and g is LY-smooth.

(2) h has the following blockwise-smoothness properties: for all u,v € X x ),
IVah(u) = Veh(v)|| < A% [Jw — o[ + A flu” — 7],

1D
IVyh(u) = Vyh(v)| < A =] + A [lu’ = 7]

Note that when h is twice-differentiable, (11) equates to everywhere operator norm bounds on
blocks of V2h. Namely, forallw € X x Y,

92, b < 4% [[92,hw)]| < A%, and [[92,hu)| < 7.

In the particular case when h(z,y) = y' Az — by + ¢' is bilinear, clearly A = AYY = 0 (as
remarked in the introduction). In this case, we may then set A := ||A]|.

The remainder of this section is organized as follows. In Section 2.1, we state a primal-dual for-
mulation of (10) which we apply our methods to, and prove its equivalence to (10). In Section 2.2,
we give our algorithm and show it is efficiently implementable. In Section 2.3, we give the conver-
gence rate of our algorithm. In Section 2.4, we state and prove our main result, Theorem 14. We
defer all omitted proofs in this section to Appendix D.

2.1. Setup

To solve (10), we will instead find a saddle point to the expanded primal-dual function
* * X y * *
Fampalz) 1= (27, 2) = (35,2 ) 2 22 - 2 |22 h(, ) = 1) 407 (). (1)
We denote the domain of Fiympa by 2 := & x V x X* x Y*. For z € Z, we refer to its blocks by
(2%, 2, AN ). The primal-dual function Fiym-pq is related to Fiyy.reg in the following way.
Lemma 4 Let z, be the saddle point to (12). Then, (2%, z}) is a saddle point to (10).
We next define ®, the gradient operator of Fiyypd. Before doing so, it will be convenient to
define r : Z — R, which combines the (unsigned) separable components of Fiym.pd:
,_MX x2 W y (12 S i *(_g*
r(2) = I+ 5 127+ f7(E) + 97 (). (13)

The function r will also serve as a regularizer in our algorithm. With this definition, we decompose
® into three parts, roughly corresponding to the contributions from r, the bilinear portions of primal-
dual representations, and h. In particular, we define

O7(2) = Vr(z) = (2, @2, V() Vg (5))
oiin () 1= (2F7, 287, _ X ), (14)
" (2) := (VLh(2%,2Y), =V, h(25,2Y),0,0) .
It is straightforward to check that @, the gradient operator of Fiym_pd, satisfies
B(2) := O (2) + ®"IN(2) + d"(2). (15)
Finally, we note that by construction ® is 1-strongly monotone with respect to 7.

Lemma 5 (Strong monotonicity) The operator ® (as defined in (15)) is 1-strongly monotone with
respect to the functionr : Z — R as in (13).

10
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2.2. Algorithm

Our algorithm will be an instantiation of strongly monotone mirror prox (Cohen et al., 2021) stated
as Algorithm 1, an alternative to the mirror prox algorithm in Nemirovski (2004) and the Halpern
iteration method in Diakonikolas (2020).

Algorithm 1: SM-MIRROR-PROX(\, T, zp): Strongly monotone mirror prox Cohen et al.
(2021)

Input: Convex r : Z — R, m-strongly monotone ¢ : Z — Z* (with respect to r), 29 € Z
Parameter(s): A > 0,7 € N
for 0 <t<Tdo

Ziy1/2 Prox’;t(%fb(zt))

2p41 argminzez{§ <<I>(zt+1/2), z> + V] (2)+V](2)}

Zt41/2

end

In order to analyze Algorithm 1, we need to introduce a definition from Cohen et al. (2021).

Definition 6 (Relative Lipschitzness) We say operator ® : Z — Z* is A-relatively Lipschitz with
respect to convex r : Z — R over Zy, C Z if for every three z, w,u € Zyg,

(@(w) = @(2), w —u) <AV (w) + Vi (u).

As an example of the above definition, we have the following bound when ® = Vr, which
follows directly from nonnegativity of Bregman divergences and (18).

Lemma 7 Letr: Z — R be convex. Then, Vr is 1-relatively Lipschitz with respect to r over Z.

As another example, Cohen et al. (2021) shows that if ® is L-Lipschitz and r is p-strongly
convex (the setup considered in Nemirovski (2004)), then ® is ﬁ—relatively Lipschitz with respect to
r over Z. This was generalized by Cohen et al. (2021) via Definition 6, who showed the following.

Proposition 8 (Proposition 3, Cohen et al. (2021)) If ® is A-relatively Lipschitz with respect to r
over Zy, containing all iterates of Algorithm 1, and its VI is solved by z,, Algorithm 1 satisfies

Vo (2) < (1 — %)t V) (24), forallt € [T7].
Our algorithm for minimax optimization, Algorithm 2, will simply apply Algorithm 1 to the
operator-regularizer pair (®,r) defined in (15) and (13). Crucially, by using properties of convex
conjugates, we demonstrate that one can efficiently implement the steps which solved linearized
problems regularized by r. To do so, we implicitly maintain all dual iterates (in X'*, V*) as ap-
propriate gradients of primal points (in X, ))). We give this implementation as pseudocode in
Algorithm 2, and show that it is a correct implementation of Algorithm 1 in the following lemma.

Lemma 9 Algorithm 2 implements Algorithm 1 with m = 1 on (®,r) defined in (15), (13).

11
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Algorithm 2: MINIMAX-SOLVE(Finm-reg, 0, Y0): Separable minimax optimization

Input: (10) satisfying Assumption 1, (g, yp) € X X Y
Parameter(s): A > 0,7 € N

(25, 23) < (z0,90), (28, 28) < (w0, 90)

for0 <t<Tdo

f y y g y
D W+ Vf(2) + Veh(2f, 2{), O« 1’2 +Vg(z7) — Vyh(25, 2).
X x 1 xx y y _ 1 &y
AR /\ux@ and Ziiyyg &2 /\“yq)
f IV f o 1o g 1y, 1.y
zt+1/2e(1—A)zt+Azt andzt+1/2<—(1 )% + 52
X X X f X y
O = 12y + V(21 )0) + Vahl(Z /00 21 0)s
A R v9(2t+1/2> Vyh(2511 /25 Zt+1/2)'
X 1 _x A X 1 X y 1 .y ALY 1 y
21 S T A2 T A T ayr @ and 2t < xzi e T i aeoe @
f A f 1 _x g A8 1y
Zeel 7 TenA T T fgr2 A 20 < TR T TR A0

end

In particular, the proof of Lemma 9 shows that Algorithm 2 preserves the invariants that zf =
V/(zf) and 28 = Vg(28), where = and z& are defined in Algorithm 2 (a similar invariant holds
for each z; 1 /). As a corollary, we have the following characterization of our iterates, recalling the
definitions of X ; and ); from Appendix B.

Corollary 10 Define the product space Zyg := X x Y x Xj x Vg, where X = {V f(z) | x € X}
and Yy :={Vg(y) | y € Y}. Then all iterates of Algorithm 2 lie in Zy,.

More generally, for z € Z,,, we define 2F = V(") and 28 := Vg*(28") (see Fact 1).
2.3. Convergence analysis

In order to use Proposition 8 to analyze Algorithm 2, we require a strong monotonicity bound and a
relative Lipschitzness bound on the pair (®, r); the former is already given by Lemma 5. We state
the latter bound, which we prove using consequences of Assumption 1 shown in Lemma 16.

Lemma 11 (Relative Lipschitzness) Define ® : Z — Z* as in (15), and define r : Z — R as in
(13). Then ® is A-relatively Lipschitz with respect to r over Z,, defined in Corollary 10 for

N Lx Ly  AX A AYY 16)
=l4+4/— 4+ =+ —+—+ —.
X N AV L

Finally, we provide simple bounds regarding initialization and termination of Algorithm 2.

Lemma 12 Let (zg,y0) € X x Y, and define zy := (xo,yo, Vf(x0), Vg(yo)). Suppose we have
Gap Fomree (x0,Y0) < €o. Then, letting z, be the solution to (12),

; N 2
VZO(Z*) S <1 + ﬁ + /ﬁ’) €0-

12
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Lemma 13 Let z € Z have

X L* XX y LY AYY Axy2
Vz’"(z*)§<“+ AT A DA >>;

IZa Y Y
for z, the solution to (12). Then,
Gapp,, .. (2" 7)) < e

2.4. Main result

We now state and prove our main claim.

Theorem 14  Suppose Fim-reg in (10) satisfies Assumption 1, and suppose we have (xo,yo) €
X x Y such that Gapp, (0, Y0) < €o. Algorithm 2 with X as in (16) returns (x,y) € X x Y with
Gapp e (z,y) < ein T iterations, using a total of O(T) gradient calls to each of f, g, h, where

T = O(chmlo (“mmeo)) for fumm :_\/> \/T A~ MXLer[;yyy. 17)

Proof By Lemma 4, the points z, and y, are consistent between (10) and (12). The gradient com-
plexity of each iteration follows from observation of Algorithm 2.

Next, by Lemma 9, Algorithm 2 implements Algorithm 1 on the pair (15), (13). By substituting
the bounds on A and m in Lemmas 11 and 5 into Proposition 8 (where we define Z,, as in Corol-
lary 10), it is clear that after 7" iterations (for a sufficiently large constant in the definition of T'),
we will have V (z,) is bounded by the quantity in Lemma 13, where we use the initial bound on
VI (2*) from Lemma 12. The conclusion follows from setting (z,y) < (2, 27.). [

As an immediate corollary, we have the following result on solving (9).

Corollary 15 Suppose for Fy in (9) solved by (z4,ys), (f — %x -1, g — %y I-|[*, k) satisfies
Assumption 1. There is an algorithm taking (xo,y0) € X x Y satisfying Gapp. (x0,%0) < €o,
which performs T iterations for T'in (17), returns (z,y) € X x Y satisfying Gapp, (x,y) < €, and
uses a total of O(T') gradient calls to each of f, g, h

13
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Appendix A. Additional related work

We give a brief discussion of several lines of work which our results build upon, and their connection
with the techniques used in this paper, in addition to the works reviewed in Section 1.

Acceleration via primal-dual extragradient methods. Our algorithms are based on extragra-
dient methods, a framework originally proposed by Korpelevich (1976) which was later shown to
obtain optimal rates for solving Lipschitz variational inequalities in Nemirovski (2004); Nesterov
(2007). There have been various implementations of extragradient methods including mirror prox
(Nemirovski, 2004) and dual extrapolation (Nesterov, 2007); we focus on adapting the former in this
work. Variations of extragradient methods have been studied in the context of primal-dual formu-
lations of smooth convex optimization (Abernethy et al., 2018; Wang and Abernethy, 2018; Cohen
et al., 2021), and are known to obtain optimal (accelerated) rates in this setting. In particular, the
relative Lipschitzness analysis of acceleration in Cohen et al. (2021) is motivated by developments
in the bilinear setting, namely the area convexity framework of Sherman (2017). We build upon
these works by using primal-dual formulations to design accelerated algorithms in various settings
beyond smooth convex optimization, namely (3), (6), and (8).

Acceleration under relative regularity assumptions. Our analysis builds upon a framework
for analyzing extragradient methods known as relative Lipschitzness, proposed independently by
Stonyakina et al. (2020); Cohen et al. (2021). We demonstrate that this framework (and randomized
variants thereof) obtains improved rates for primal-dual formulations beyond those studied in prior
works.

Curiously, our applications of the relative Lipschitzness framework reveal that the regularity
conditions our algorithms require are weaker than standard assumptions of smoothness in a norm.
In particular, several technical requirements of specific components of our algorithms are satisfied
by setups with regularity assumptions generalizing and strengthening the relative smoothness as-
sumption of Bauschke et al. (2017); Lu et al. (2018). This raises interesting potential implications
in terms of the necessary regularity assumptions for non-Euclidean acceleration, because relative
smoothness is known to be alone insufficient for obtaining accelerated rates in general (Dragomir
et al., 2019). Notably, Hanzely et al. (2018) also developed an acceleration framework under a
strengthened relative smoothness assumption, which requires strengthened bounds on divergences
between three points. We further elaborate on these points in Appendix D, when deriving relative
Lipschitzness bounds through weaker assumptions in Lemma 16. We focus on the Euclidean setup
in this paper, but we believe an analogous study of non-Euclidean setups is interesting and merits
future exploration.

Appendix B. Preliminaries
We provide detailed preliminaries, introducing notations and definitions used throughout the paper.

General notation. We use O to hide logarithmic factors in problem regularity parameters, initial
radius bounds, and target accuracies when clear from context. We denote [n] := {i € N | i < n}.
Throughout the paper, X’ (and ), when relevant) represent Euclidean spaces, and ||-|| will mean the
Euclidean norm in appropriate dimension when applied to a vector. For a variable on a product
space, e.g. z € X x )Y, we refer to its blocks as (2%, z¥) when clear from context. For a bilinear
operator A : X — Y*, ||-|| will mean the (Euclidean) operator norm, i.e.

|A| := sup ||Az||= sup sup y'Az.
[lzl|=1 llzll=1 [lyll=1
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Complexity model. Throughout the paper, we evaluate the complexity of methods by their gra-
dient oracle complexity, and do not discuss the cost of vector operations (which typically are sub-
sumed by the cost of the oracle). In Section 2, the gradient oracle returns V f, Vg, or VA at any
point; in Appendix E (respectively, Appendix F), the oracle returns V f; at a point for some i € [n]
(respectively, V f;, Vg;, or Vh; at a point for some i € [n]).

Divergences. The Bregman divergence induced by differentiable, convex r is V' (z') := r(2') —
r(z) — (Vr(x),z’ — x), forany z,2’ € X. For all z, V] is nonnegative and convex. Whenever we
use no superscript 7, we assume 7 = 3 ||| so that Vy(z') = Tz — 2'||*. Bregman divergences
satisfy the equality

(Vr(w) = Vr(z),w —u) = V] (w) + V, (u) — V] (u). (18)

z

We define the proximal operation in r by
Prox[,(®) := argming . {(®,2") + V] ()} .

Functions and operators. We say h : X X ) — R is convex-concave if its restrictions h(-,y)
and h(z,-) are respectively convex and concave, for any z € X and y € ). The duality gap
of a pair (z,y) is Gapy(z,y) := maxycy h(z,y’) — mingcx h(2,y); a saddle point is a pair
(Zs, Yx) € X x ) with zero duality gap.

We call operator ® : Z — Z* monotone if (®(z) — ®(2'),z —2') > 0forall 2,2’ € Z. We

say z, solves the variational inequality (VI) in @ if (®(z,), 2, — z) < 0 for all z € Z. We equip
differentiable convex-concave h with the “gradient operator” ®(z,y) := (V h(z,y), —Vyh(z,y)).
The gradient of convex f and the gradient operator of convex-concave h are both monotone. Their
VIs are respectively solved by any minimizers of f and saddle points of h.
Regularity. We say function f : X — R is L-smooth if |V f(z) — V f(2')|| < L ||z — 2| for all
z,2' € X;if f is twice-differentiable, this is equivalent to (' — )T V2f () (2/ — ) < L |2’ — z|°
for all z,2’ € X. We say differentiable function f : X — R is p-strongly convex if Vi (z/) >
Elle— /|| forall z, 2’ € X if f is twice-differentiable, this is equivalent to (z' —z) T V2f () (2 —
z) > p ||z’ — z||? for all z, 2’ € X. Finally, we say operator & : Z — Z* is m-strongly monotone
with respect to convex 7 : Z — Rif forall 2,2’ € Z,

((2) — ®(2'), 2 — ') > m(Vr(z) = Vr(2),z = 2') = m (V] () + VI (2)) .
Convex conjugates. The (Fenchel dual) convex conjugate of a convex f : X — R is denoted

fH(x¥) == max (z, ™) — f(z).

reX
We allow f* to take the value co. We recall the following facts about convex conjugates.
Fact1 Ler f: X — R be differentiable.
(1) Forallz € X, V f(x) € argmax .y« (x*, x) — f*(z*).
(2) (f) =/
(3) If f* is differentiable, for all x € X, V f*(V f(x)) = z.
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(4) If f is L-smooth, then for all x,z' € X,

f@) = f(z) = (V(@),2' —2) > —||[Vf() - V@)

1
2L
If f is p-strongly convex, f* is %-smooth.
Proof The first three items all follow from Chapter 11 of Rockafellar (1970a). The first part of the

fourth item is shown in Appendix A of Cohen et al. (2021), and the second part is shown in Kakade
et al. (2009). |

For a function f : X — R, we define the set X }" C X* to be the set of points realizable as a
gradient, namely X7 := {Vf(z) | z € X}. This will be come relevant in applications of Item 4 in
Fact 1 throughout the paper, when V f is not surjective onto X*.

Appendix C. Helper facts

Here for completeness we state two helper facts that we use throughout the analysis. The first gives
a few properties on monotone operators. We first recall by definition, an operator ¢ : Z — Z* is
monotone if

(®(2) — @(z),z—2') >0, forallz,2' € Z.

An operator ® is m-strongly monotone with respect to convex r : Z — Rif forall 2,2’ € Z,
(®(2) — ®(2'),z— ') >m(Vr(z) = Vr(z'),z — 2), forallz,2 € Z.

We state the following standard facts about monotone operators and their specialization to
convex-concave functions, and include references or proofs for completeness.

Fact 2 The following facts about monotone operators hold true:

(1) Given a convex function f(x) : X — R, its induced operator ® = Vf : X — X*is
monotone.

(2) Given a convex-concave function h(z,y) : X x Y — R, its induced operator ®(z,y) =
(Vah(z,y), =Vyh(z,y)) : X x Y = X* x Y* is monotone.

(3) Given a convex function f, its induced operator ® = V f is 1-strongly monotone with respect
to itself.

(4) Monotonicity is preserved under addition: For any m,m’' > 0, if ® is m-strongly monotone
and 'V is m’-strongly monotone with respect to convex r, then ® + W is (m + m/)-strongly
monotone with respect to r.

Proof The first two items are basic fact of convexity and minimax optimization (Rockafellar,
1970b). For the third item, we note that for any =, 2’ € X

<<I>(x) —®(z'),z — x'> = <Vf(:v) —Vf),z - :c'> ,

which satisfies 1-strong monotonicity with respect to f by definition.
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For the fourth item, we note that for any m,m’ > 0 and assumed ®, ¥,

(®(2) — ®(2'),z— ') >m(Vr Vr(z'),z—2'),
(U(2) = ¥(2),z—2") >m/(Vr Z)Z—Z,>a
= <<I>(z) + U(z) — (q)(z’) + (2 )) —z > ( +m/ <Vr —Vr(?),z — z'> .
|

These facts about monotone operators find usage in proving (relative) strong monotonicity of
our operators; see Lemma 5, 18 and 32.

The second fact bounds the smoothness of best-response function of some given convex-concave
function h : X x Y — R. We refer readers to Fact 1 of Wang and Li (2020) for a complete proof.

Fact 3 (Fact 1, Wang and Li (2020)) Suppose h satisfies the blockwise-smoothness properties:
forallu,v € X x ),

IVah(u) = Veh(u)[| < A% u = o) + A [lu” = o7, (19)
IVyh(u) = Vyh()| < A o = o*]| + A [lu’ = 27|,

and suppose h is *-strongly convex in x and ¥ -strongly concave in y. The best response func-
xy)2
tion W (zx) = maxycy h(z,y) is p*-strongly convex and (AXX + %)-smooth, and h*(y) :=

mingey h(x,y) is pY-strongly concave and (Ayy + (/\;71)2) -smooth.

We use this fact when converting radius bounds to duality gap bounds in Lemma 12 and 13.
Appendix D. Proofs for Section 2
D.1. Proofs for Section 2.1
Lemma 4 Let 2, be the saddle point to (12). Then, (2%, z)) is a saddle point to (10).

Proof By performing the maximization over 2~ and minimization over 28", we see that the problem
of computing a saddle point to the objective in (12) is equivalent to

% 2 2
glelgglgigglllel = 5 2117+ Az, 2Y)

+ < max <zf*,zx> - f*(zf*)> - ( max <zg*,zy> —g*(zg*)> .
P 28" e+

By Item 2 in Fact 1, this is the same as (10). |

Lemma 5 (Strong monotonicity) The operator ® (as defined in (15)) is 1-strongly monotone with
respect to the functionr : Z — R as in (13).

Proof Consider the decomposition of ® = ®” 4 ®Ylin 1 & defined in (14) and (15). By definition
and Items (1) to (3) from Fact 2, we know the operators ® and ®!i" are monotone, and ®” = Vr
is 1-strongly monotone with respect to 7. Combining the three operators and using additivity of
monotonicity in Item (4) of Fact 2 yields the claim. |
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D.2. Proofs for Section 2.2
Lemma 9 Algorithm 2 implements Algorithm 1 withm = 1 on (®, ) defined in (15), (13).

Proof Let {2, 2,41 /2 }o<t<T be the iterates of Algorithm 1. We will inductively show that Algo-
rithm 2 preserves the invariants

zp = (zf,zZ,Vf (z{) , Vg (zf)) s 2t41/2 = (zfﬂ/z,zzH/Q,Vf <z§+1/2) , Vg (ztgﬂ/z)) ,

for the iterates of Algorithm 2. Once we prove this claim, it is clear from inspection that Algorithm 2
implements Algorithm 1, upon recalling the definitions (15), (13).

The base case of our induction follows from our initialization so that (V f(zf), Vg(z§)) +
(Vf(20), Vf(y0)). Next, suppose for some 0 < t < T, we have 2{ = V f(2f) and ztg* = Vyg(2§).
By the updates in Algorithm 1,

* . ]. * * * * *
Z£+1/2 < argmin e  y. {/\ <Vf (") = 25, 2f > + V;E (f )}

. 1 * * % *
= argmin, e .y {)\<z{—z?,zf >— <z{,zf >+f (=f )}

1 1 . * 1 1
= argmax ¢ y» {<(1 — )\> 2+ Xz,’f,zf > — )} =Vf <(1 — )\> 2+ Xsz) .

The second line used our inductive hypothesis and Item 3 in Fact 1, and the last used Item 1 in

Fact 1. Hence, the update to z{ +1/2 in Algorithm 2 preserves our invariant; a symmetric argument
g*

; — g g o 1\,8 4 1.y
yleld§ Zrp12 T vQ(zt+1/2) where “141)2 '_—.(1 __X)Zt + X%
Similarly, we show we may preserve this invariant for z;1:

* . 1 * 1 * * 1 * *
z;tf+1 S argmin o oy {)\ <Z{+1/2 - thﬂ/zvz'F > DY <th+1/2vzf > - <Z{’Zf > + <1 + )\> e )}

1 x * 1 x 0 f* A 1 X
= argmax ,c y« {<z{+)\zt+1/272f >_ <1+ A) (s )} =Vf <1+)\ztf+ 1+)\zt+1/2>.

A _f 1 x T g ._ A 8 ALY
T3t Tx %12 and similarly, z;, | = 77527 + TEX2141/2° u

foo_
Hence, we may set z;, | :=

D.3. Proofs for Section 2.3

We build up to our relative Lipschitzness bound by first giving the following consequences of As-
sumption 1.

Lemma 16 (Minimax smoothness implications) Lef convex f : X — Rand g : Y — R, and
convex-concave h : X x Y — R satisfy Assumption 1. Then, the following hold.

(1) {Vf(v)=Vf(w),z—y)| < Vi (w) + o~V (y) for all v,w,z,y € X and o > 0.
(2) (Vg (v) —Vg(w),r—y)| <alYV{ (w)+ a 'V, (y) forallv,w,z,y € Y and o > 0.

(3) ®" is I-relatively Lipschitz with respect to " : Z — R defined for all z € Z and o > 0 by
rh(2) == 3 (A ) [|2%)° + 3 (A + a7 TAY) |12V

«

Proof We will prove Items 1 and 3, as Item 2 follows symmetrically to Item 1.
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Proof of Item (1). We compute:

(V1) = V(). )] < [VF@) ~ V)] 2~y
< SIVS@) - Vi) + 5 o = ol
< ALV} (VI0) + 0~ Waly) = LV (w) + 0 Valy).

The first inequality was Cauchy-Schwarz, the second was Young’s inequality, and the third used
Items 3 and 4 in Fact 1. The last equality follows from Fact 1.

Proof of Item (3). Let w, v,z € Z be arbitrary. We have,
<<I>h(w) — M (2),w— v>
= (Vah(w*, w¥) — Voh(2%, 2Y),w —v*) — (Vyh(w*,w’) — V, h(25, 2¥), w¥ —vY).
Applying Cauchy-Schwarz, Young’s inequality, and Assumption 1 yields

(Vzh(w,w¥) — Vzh(2%, 2Y), w* —v*) < ||Vah(w*,wY) — Vzh(2%, 27)]] ||w* — v
< (W[l = 2 + A [Jw? = 27]) [l = o

XX XX

X . x||2
ot - 2+

< l™ =%+ A [|w” — 2| [Jw — o] .

Symmetrically,

Applying Young’s inequality again yields

Y A
A ¥ — 2| — v < S o — o2 St — 2
«
AV AV
and A% — 2| o = o £ Lo = 2P+ Tt — |
(e}

Combining these inequalities yields the desired bound of

<<I>h(w) — M), w — u>
< (N 4 aNY) (Vix (W) + Vi (07)) + (A + aAY) (Viy (w0Y) + Vi (vY))
= V7% (w) + Vit (v).
[ |

Leveraging Lemma 16 and Lemma 7, we prove relative Lipschitzness of ® with respect to r
in Lemma 11. Interestingly, the implications in Lemma 16 are sufficient for this proof, and this
serves as a (potentially) weaker replacement for Assumption 1 in yielding a convergence rate for
our method.
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This is particularly interesting when the condition in Item (1) is replaced with a non-Euclidean
divergence, namely [(Vf (v) = Vf (w),z —y)| < aL*V (w) + a1V (y) for some convex w :
X — R. Setting, setting v = y,w = z, = 7 in this condition yields Vi (y) < LV¥(y). Hence,
this extension to Item (1) generalizes relative smoothness between f and w, a condition introduced
by Bauschke et al. (2017); Lu et al. (2018). It has been previously observed (Hanzely et al., 2018;
Dragomir et al., 2019) that relative smoothness alone does not suffice for accelerated rates. Item (1)
provides a new strengthening of relative smoothness which, as shown by its (implicit) use in Cohen
et al. (2021), suffices for acceleration. We believe a more thorough investigation comparing these
conditions is an interesting avenue for future work.

Lemma 11 (Relative Lipschitzness) Define ® : Z — Z* as in (15), and definer : Z — R as in
(13). Then ® is A-relatively Lipschitz with respect to r over Z,, defined in Corollary 10 for

N1 Lx Ly A AV AYY (16)
=144 /—+4/—+ + + —.

% Y % VI
Proof Let w, v, z € Z,,. We wish to show (cf. Definition 6)

(@(w) = (2), w —v) <AV} (w) + V;(v)) .

Since ® = ®" 4 @Pilin 4 H* (cf. (15)), we bound the contribution of each term individually. The
conclusion follows from combining (20), (21), and (22).

Bound on ®": By applying Lemma 7 to r,

(" (w) — P"(2),w —v) = (Vr(w) — Vr(z),w —v) < V] (w) + V, (v). (20)
Bound on ®PI":  Forallag Za1g, We may write for some af € Xand a8 €,

PN () = (af | a8 —a*, —a¥) = (Vf(a'), Vg(a®), —a*, —a¥)
and a = (a*,a’,a"",a8") = (a*, 0¥, Vf(a"), Vg(a®)).
Consequently,
<(I)bilin(w) — @biling) 4y — v) = <vf(wf) V), w — ,Ux> + <vg(wf) ~Vg(h), Y — vy>
— (w* = 2 V() = V) = (0’ = 2, Vg(ws) = Vg(vF)).

Applying Lemma 16 (Item (1) and Item (2)) to each term, with o = ( uXLX)_% for terms involving
fanda = (uyLy)_% for terms involving g yields

(@1 (1) — BV (2w — v) < i’: (ij(zf) + Vj(w@) + \/g (1 Vi (%) + 1V (w))

+ \/E(Vg (28) + Vie (w®)) + \/E(MVV (v”) 4+ 1/ Vor (w)
Ny w8 V8 My wY 2y .

Applying Item 3 in Fact 1 and recalling the definition of r (13) yields

(@O (1) — PPN (2) 4y — v) < <\/§ + ﬁ) (VZ (w) + Vi (v)) . @21
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Bound on ®":  Applying Lemma 16 (Item (3) with o = /X/ 1Y), we have that ®" is 1-relatively
Lipschitz with respect to r” : Z — R defined for all z € X and a > 0 by

1 1
rh(z) 1= 5 (X4 ah¥) [P + 5 (A% + a7 ) ||

(0%
= A + A . &X ”ZX||2 + ﬂ + A . 'LLy sz||2
w2 W) 2 ‘

Leveraging the nonnegativity of Bregman divergences, we conclude

(@' (w) = @"(2),w —v) < VI (w) + VA (v)
(AXX A AYY
<

i) @ ). @

Lemma 12 Let (xg,y0) € X x )Y, and define zy := (0,40, Vf(x0), Vg(yo)). Suppose we have
Gap Fiumree (z0,y0) < €. Then, letting z, be the solution to (12),

Vi (z:) < <1 + i - ij) €0
Proof By the characterization in Lemma 4, we have by Item 1 in Fact 1:

2o = (T, Y, VI (24), Vg (1) -
Hence, we bound

Vi (20) = 10Vay (20) + VI, (20) + 1/ Vi (3:) + Vil (0)

X L 2 y Ly 2
<p Vwo(x*) + 7 H"EU - x*”x +p V;Jo(y*) + 7 ||y0 - Z/*Hy
L . LY ,
- E + 1 12 on ($*) + ﬁ + 1 1% Vyo (y*)

L Yy

< (X +— + 1) €0-
% Y

The first line used Item 3 in Fact 1, and the second used smoothness of f and g (Assumption 1). To

obtain the last line, define the functions

Fl’)r(lm—reg(x) = Igfle%}/{ me—reg (55, y) and Fg]m—reg (y) = gél}(l me—reg(xa y)

Fact 3 shows F} is p*-strongly convex and Fim.reg is p¥-strongly concave, so

mm-reg

Gameng (ZL’(), yO) = (Frim—reg(l‘o) - F131<1m—reg ($*)) + (Frzllm—reg (y*) - Fglm—reg (y()))
> Vi, (%) + W Vo (y").
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Lemma 13 Let z € Z have
VI (2) < ,uX+LX+AXX+,uy+Ly—|—AW+(Axy)2 €
== p p ) 2

z

for z, the solution to (12). Then,
Gap Fiumres (%,2) <e.

Proof We follow the notation of Lemma 12. From Fact 3 we know F reg is £*-smooth and Frymn_reg
is £Y-smooth, where
AY 2 A
L=+ L+ N+ ( y) and[,y—uy—i-Ly+Ayy+( ),
w *

under Assumption 1. Moreover, by Lemma 4 and the definition of saddle points, x, := 25 is the
minimizer to FJ - reg? and v, := 2] is the maximizer to Fﬁ;m_reg. We conclude via

Gamem_,eg (ZX, Zy) (Fr)r(lm—reg (x) mm reg( )) ( mm- reg(y*) - Fri/lm—reg(zy))

A)?
g e A uy) ) o — ||

Axy2
+< Y+LY+AW+(M) >||y—y*||2
2

ux + X + A My + LY + AYY (Axy)2
- + +
H w e

> VI(z) < e

The first inequality was smoothness of £} reg and Fg,m_reg (where we used that the gradients at x,
and y, vanish because the optimization problems they solve are over unconstrained domains), and

the last inequality was nonnegativity of Bregman divergences. |

Appendix E. Finite sum optimization

In this section, we give an algorithm for efficiently finding an approximate minimizer of the follow-
ing finite sum optimization problem:

Fi(z) : Z filw (23)

ze [n]

Here and throughout this section f; : X — R is a differentiable, convex function for all i € [n]. For
the remainder, we focus on algorithms for solving the following regularized formulation of (23):

gg/{}Ffs—reg( ) for Ffs reg Z fz g H$H2 (24)

ZE [n]

As in Section 2, to solve an instance of (23) where each f; is u-strongly convex, we may instead
equivalently solve (24) by reparameterizing f; < f; — 5 ||- ||? for all i € [n]. We further remark that
our algorithms extend to solve instances of (23) where Fi; i
summands are not. We provide this result at the end of the section in Corollary 27.

In designing methods for solving (24) we make the following additional regularity assumptions.
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Assumption 2 For alli € [n], f; is L;-smooth.
The remainder of this section is organized as follows.

(1) In Appendix E.1, we state a primal-dual formulation of (24) which we will apply our methods
to, and prove that its solution also yields a solution to (24).

(2) In Appendix E.2, we give our algorithm and prove it is efficiently implementable.
(3) In Appendix E.3, we prove the convergence rate of our algorithm.

(4) In Appendix E.4, we state and prove our main result, Theorem 25.

E.1. Setup
To solve (24), we instead find a saddle point to the primal-dual function
1 £ 0 fF H 2
Fiopa (2) = — GX[)] (<z ,zX> — [7 (" )) +5 1207 (25)
en

We denote the domain of Fy.pg by Z := X x (X*)". For z € Z, we refer to its blocks by
(2%, { 2 }ie[n} ). The primal-dual function Fispa 1s related to Ffg e in the following way.

Lemma 17 Let z, be the saddle point to (25). Then, 2} is a minimizer of (24).

Proof By performing the maximization over each 2", we see that the problem of computing a
minimizer to the objective in (25) is equivalent to

M X112 1 f* X x/ _f*

EIE Y <glax*<zuz >—fi<z'>>-
i€[n] \*' ex

By Item 2 in Fact 1, this is the same as (24). |

As in Section 2.1, it will be convenient to define the convex function » : Z — R, which
combines the (unsigned) separable components of Ffs_pd:

r(z) = !Xll += Zf : (26)
ze[n

Again, 7 serves as a regularizer in our algorithm. We next define @, the gradient operator of Fi;_pq:
1 w0 f* X
Zz-+uz —(Vfi(z')—z) . 27
[y o n icn]
By construction, ® is 1-strongly monotone with respect to 7.

Lemma 18 (Strong monotonicity) Define @ : Z — Z* as in (27), and definer : Z — R as in
(26). Then ® is 1-strongly-monotone with respect to r.

Proof The proof is identical to Lemma 5 without the ®” term: the bilinear component cancels in
the definition of strong monotonicity, and the remaining part is exactly the gradient of 7. |
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E.2. Algorithm

Our algorithm is an instantiation of randomized mirror prox Cohen et al. (2021) stated as Algo-
rithm 3 below, an extension to mirror prox allowing for randomized gradient estimators. We note
that the operators ®; need only be defined on iterates of the algorithm.

Algorithm 3: RAND-MIRROR-PROX({®; };c[n], wo): Randomized mirror prox Cohen et al.
(2021)
Input: Convex r : Z — R, probability distribution p : [n] = R>o with 3,y pi = 1,
operators {®; }icpn) 1 £ — 27, 20 € Z;
Parameter(s): A > 0,5 € N;
for 0 <s < Sdo

Sample ¢ ~ p;
Wer1/2 ¢ Prox],, (3Pi(ws)):
W1 < PI'OXZ)t(%(I)z(ws-l-l/Q))

end

We provide the following result from Cohen et al. (2021) giving a guarantee on Algorithm 3.

Proposition 19 (Proposition 2, Cohen et al. (2021)) Suppose {®;};c[,) are defined so that in each
iteration s, for all u € Z, there exists a point ws € Z and a monotone operator ® : Z — Z* such
that (where all expectations fix ws, and condition only on the randomness in iteration s)

Eip [<<I>i(ws+1/2),w8+1/2 — u>] = (®(ws),ws — u) forallu € Z,

Einp [(®i(wsi1/2) — Pi(ws), wyi1/o — wsi1)] < AEinp [V (Wey1/2) +V, S+1/2(7~Us+1) .
(28)

Then (where the expectation below is taken over the randomness of the entire algorithm):

AV
IEJl§:<®@ng—m <1§w%ﬁHMU€Z.

0<s<S

The first condition in (28) is an “unbiasedness” requirement on the operators {(I)Z-}ie[n] with
respect to the operator ¢, for which we wish to conclude a regret guarantee. The second posits that
relative Lipschitzness (Definition 6) holds in an expected sense. We recall that Algorithm 3 requires
us to specify a set of sampling probabilities {p; };c[,). We define

e VL
25 e VL

This choice crucially ensures that all p; > 2 , and that all \pﬁ <23 ieln] \/E .

Our algorithm, Algorithm 4, recursively applies Algorithm 3 to the operator-pair (¥, ) defined
in (27) and (26), for an appropriate specification of {(I%}Ze m- We give this implementation as
pseudocode in Algorithms 4 and 5 below, and show that Algorithm 5 is a correct implementation of
Algorithm 3 with respect to our specified {@i}ie[n] in the remainder of the section.

—|— — for all i € [n]. (29)
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Algorithm 4: FINITE-SUM-SOLVE(Fjs reg, %0): Finite sum optimization

Input: (24) satisfying Assumption 2, xy € X;
Parameter(s): T € N;
z§ < o, z(f)‘ — 0, zg + Vfi(xo) forall i € [n];
for0 <t<Tdo

241 < FINITE-SUM-ONE-PHASE (Fig reg; 2t);
end

Algorithm 5: FINITE-SUM-ONE-PHASE (Fjs.reg, wo): Finite sum optimization subroutine

Input: (24) satisfying Assumption 2, wy € Z specified by wg, {wg }iepn) € X
Parameter(s): A > 2,5 ¢ N;

Sample 0 < ¢ < S uniformly at random;

for0 < s<odo

Sample j € [n] according to p defined in (29);

Wy g S W5 — ﬁ(uwé + %Zie[n} V fi(wh));

fj 1 fi 1 . .x.
w.9+1/2 < (]. — /\7177)’11)5 + st,

fi fi . ..
Wi yp W for all i # j;

f; fj
Ag ij(w;+1/2) - vfj(wSJ);

Wiy Wi — ﬁ(ﬂwzﬂ/z + %Zie[n} V fi(wh) + %As%

fj f] 1 ()% fj .
Wyyq < ws + m(ws+1/z - ws+1/2)’

wEH <« wfi forall i # j;
end
Return: (w§+1/27 {vfl((l - )\Lpi)w(ﬁ' + )\Lplw:;)}le[n})

We next describe the operators {@i}ie[n] used in our implementation of Algorithm 3. Fix some
0 < s < S, and consider some iterates {w, Waux(j)} := {ws, wsy1/2} of Algorithm 3 (where we
use the notation (j) to mean the iterate that would be taken if j € [n] was sampled in iteration s,
and we drop the subscript s for simplicity since we only focus on one iteration). We denote the X
block of waux(j) by wX,,, since (as made clear in the following) conditioned on w, wY,, is always
the same regardless of the sampled j € [n]. For all j € [n], we then define the operators

; (w) = fLZwﬂ*wwxv{ 1 <Vf:<wﬂ*>—wX>~1i=j} 7

i€[n] npi

) 1 * 1 £ .* < 1 w [ fr . .
D (Waux(4)) == n Z wfi +— (wajux(]) — w ) + HwWyyy, {np (vfz (waux(z)> - waux) ) 1i=j} )

(30)
where 1;—; is a zero-one indicator. In other words, ®;(w) and ®;(waux(j)) both only have two
nonzero blocks, corresponding to the X’ and j™ X* blocks. We record the following useful obser-

30



SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

vation about our randomized operators (30), in accordance with the first condition in (28). To give a
brief interpretation of our “aggregate point” defined in (31), the X coordinate is updated determin-
istically from w* according to the corresponding block of @, and every dual block j € [n] of w is
set to the corresponding dual block had j been sampled in that step.

Lemma 20 (Expected regret) Define {®;}ci, : £ — Z* as in (30), and the “aggregate point”

fx .
@ = (w;‘ux,{w;ux(])}‘ ) 31)
j€n]
Then, for all u € Z, defining ® as in (27),
Ejep [<‘I’j(’waux(j)), Waux(J) — u)] = (®(w), w — u).
Proof We expand the expectation, using (30) and taking advantage of the sparsity of ®;:

Ejp (P (waux (1)), Waux (§) — )]

:<ij Zwl +7<waux(¢7)_wfj*)+uw:ux 7w§ux_ux>

j€[n] ze [n]

y £ . £ *
+ Z pj <TL <Vf] (wajux(.j)> - waux) 7waJUX(]) B ufJ >
: Dj
Jjeln]
= < Z wauX + :uwaum :ux - UX>

JEMN]

+3 < (V17 (wdoe(d)) = whue) s whun(5) — uf> — (@ (@), @ — ).

JEN]

We conclude this section by demonstrating that Algorithm 5 is an appropriate implementation of
Algorithm 3.

Lemma 21 (Implementation) Algorithm 5 implements Algorithm 3 on ({®; }ZE ] r) defined in
(30), (26), for o iterations, and returns W, following the definition (31). Each iteration s > 0 is
implementable in O(1) gradient calls to some f;, and O(1) vector operations on X.

Proof Let {ws, wy, /2 }o<s<o be the iterates of Algorithm 3. We will inductively show that Algo-
rithm 5 preserves the invariants

ws = (wE, {Vfi(wi‘)}ie[nJ » Wst1/2 = ( {Vf’( 8*1/2)} M)

forall 0 < s < 0. Once we prove this claim, it is clear from inspection that Algorithm 5 implements
Algorithm 3 and returns w,, upon recalling the definitions (30), (26), and (31).
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The base case of our induction follows from the initialization guarantee of Algorithm 4 in Al-
gorithm 5. Next, suppose for some 0 < s < o, we have wii = Vf(wh) for all i € [n]. By the
updates in Algorithm 3, if j € [n] was sampled on iteration s,

f* 1 f* £* 1 f* £ 1 £
] in ¢ b wrt wi Yy — = J i ZfF ] )
Wepryp < ATSMUD 6\, {)\npj <ws Wss W0 > n <w8 » W > + nfj (w

1 f* ]_ £* £*
— . R IO T P _
= argmax e {<<1 )\pj> ws + )\pjws,wJ> j (w; )}
1 f 1
=Vfiilll-—)w +—w;].
f << APJ')ws i Apjws>

Here, we used the first item in Fact 1 in the last line. Hence, the update to w

.*
]
s+1/2

. . fx . . .
preserves our invariant, and all other w_, Jos # j do not change by sparsity of ®;. An analogous

argument shows the update to each w,, ; preserves our invariant. Finally, in every iteration s > 0,
the updates to wy_ /2 and wy, ; only require evaluating one new gradient each, by 1-sparsity of the
dual block updates in the prior iteration. |

in Algorithm 5

E.3. Convergence analysis

In this section, we prove a convergence result on Algorithm 5 via an application of Proposition 19.
To begin, we require a bound on the quantity A in (28).

Lemma 22 (Expected relative Lipschitzness) Define {®;};ci, : 2 — Z* as in (30), and define
r: Z — Rasin (26). Letting w(j) be wsy1 in Algorithm 3 if j € [n] was sampled in iteration s,

Ejp [<(I)j(waux(j)) - (I)j(w)awaux(j) - ’LU+(])>] < Ejep [VJ; (waux (7)) + szaux(j) (er(]))]

for
2 Zje[n} V Lj
VI

Proof We begin by expanding the expectation of the left-hand side:

A=2n+ (32)

EJNP [<(I)j(waux(j)) - (I)j(w)> waux(j) - w+(])>] = Eij [<:uw)a(ux — pw*, w)a(ux - wi(])ﬂ

B | (917 (o) = 947 () 0nti) = ol )]
# By | (0nli) = 0 = 1))
+ By | o (0 = e wint) - ] (j)}} . (33)

To bound the first two lines of (33), fix some j € [n]. We apply Lemma 7 to the functions & ]2
and %V f¥, and use nonnegativity of Bregman divergences, to conclude

(e = o, whe = w5 () + n; (V17 (wdo)) = V17 (05)  wi) = w ()

<o (vu’; (waux(3)) + Vi ) (w+(j>)) '
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In particular, we used p%. < 2n by assumption, and noted we only need to handle the case where the
second inner product term above is positive (in the other case, the above inequality is clearly true).
Hence, taking expectations the first two lines in (33) contribute 2n to A in the final bound.

To bound the last two lines of (33), fix j € [n]. By applying Item (1) in Lemma 16 to the pair
(&]]-|*, nf;), we have

1 £x . 1 P fx
n <w5ux(j> — W W wi<j)> T <wx — W Wau(J) — w] (j>>
nlL; X [ frooe 1 |nL; f* o
S E U (/"LVwaux ( +(j)> + Vw%* (U)ajux(]))) + n\/7 <Mwa ( aux) + waj’:x(‘]) (w—:_ (J)))
L; ‘
= \/; (V'LZ (waux( )) + V’Lzaux(]) (w+(]))> .

g <2 jein] V L; and taking expectations over the above display,

1 iz £ . 1 fr £
@w{<wmw—wuww—mo»+@M—aw%wm—wuﬁﬂ

np; np;
<~ gV (waueli)) + Vi) (w5 (G))]

Vv
Hence, the last two lines in (33) contrlbute J \e/[i\/» to A in the final bound. |

We next apply Proposition 19 to analyze the convergence of Algorithm 5.

Lemma 23 Let wy := (w(, {sz(wo)}ze[n]) which is the input z; to Algorithm 5 at iteration t. If
S > 2\ in Algorithm 5 with X as in (32), then Algorithm 5 returns w <— W, as defined in (31) such
that for z, as the saddle point to (25),

EVZ(ze) < V’" (2).

2 o
Proof We apply Proposition 19, where (28) is satisfied via Lemmas 20 and 22. By Proposition 19
with v = z, and S > 2,

1 L
E | D (D(wy), W — 24) < Vi (2):

0<s<S

Moreover, since o is uniformly chosen in [0,.S — 1], we have

E[(®(ws), Wo — 24)] < HEN)

< 5 Vwo
Finally, Lemma 21 shows that (an implicit representation of) w, is indeed returned. We conclude
by applying Lemma 18 and using that z, solves the VI in @, yielding

E[(@(w,), w5 = 2:)] 2 E[(@(w5) — D(24), 05 — 2:)] > Vi, (2)-

Finally, we provide a simple bound regarding initialization of Algorithm 4.
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Lemma 24 Let x¢ € X, and define

zZ0 = (.CL’(), {sz(wo)}lem) . (34)

Moreover, suppose that for x, the solution to (24), Fisreg(20) — Froreg(+) < €0. Then, letting z,

be the solution to (25), we have
L
V7 (2) < (1 + ZEW) 0.
nuy

Proof By the characterization in Lemma 17, we have by Item 1 in Fact 1:
2= (2o AV i@ g -

Hence, we bound analogously to Lemma 12:

- Y iem fi
Vi (2x) < Vg (24) + Vi, (z0)

< WV () + 5=

i1 Li et Li
< (1 + ZZZT) ,Uon(x*) < <1 + Zd}) €0-

lzo — z.|I”

nu

The last line applied strong convexity of Ffg reg. |

E.4. Main result

We now state and prove our main claim.

Theorem 25 Suppose Fis ey satisfies Assumption 2 and has minimizer x, and suppose we have
xo € X such that Fireg(20) — Frsreg(24) < €o. Algorithm 4 using Algorithm 5 with X as in (32)

returns x € X with EFfg.ree () — Fioreg(®4) < € in Ny iterations, using a total of O(N) gradient
calls each to some f; fori € [n], where

)) , Jor kgs == n + 7\/7@ . (35)

Proof By Lemma 17, the point x, is consistent between (23) and (25). We run Algorithm 4 with

10 s (47)).

By recursively applying Lemma 23 for 7" times, we obtain a point z such that

Kfs€0

Nigt = O (K,fs log (

€ 1

EVI () < 7 for £ = p+ ~ > L
i€[n]

and hence applying £-smoothness of Fj.r.; and optimality of 2} yields the claim. The complexity

follows from Lemma 9, and spending O(n) gradient evaluations on the first and last iterates of each

call to Algorithm 5 (which is subsumed by the fact that S = Q(n)). [ |
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Algorithm 6: REDX-CONVEX: Strongly convex optimization reduction

Input: p-strongly convex f: X - R,z € X
Parameter(s): X ¢ N

for 0 <k < Kdo
Tr+1 < any (possibly random) point satisfying

Vi (af.4), where i, := argming e f(2) + 5 Vi, (@)

=

]vak+1 (1:2-1-1) <

end

We now revisit the problem (23), and design a method which applies when Fg is strongly
convex but no summand necessarily is. To do so, we give the following generic reduction for
strongly convex optimization in the form of an algorithm. Similar reductions are standard in the
literature (Frostig et al., 2015), but we include the algorithm and full analysis here for completeness.

Lemma 26 In Algorithm 6, letting x, minimize f, we have for every k € [K]:
1
BV, (24) < 27on ().
Proof By applying the optimality condition on z7__,, strong convexity of f, and (18),

w
(VF(@fg1)s 0 — @) < 4 (T — Thy1, Thgr — T)
e WVa (2) < flah) — flo)
< <vf(372+1)7 x2+1 - a;*>
0 1 7
< ZVwk(ﬁU*) - va;+1(w*) - vak (@F41)-
Further by the triangle inequality and (a + b)? < 2a? + 2b%, we have
ka+1 (‘77*) < 2V$k+1 (xZ—i-l) + 2V332+1 (x*)
Hence, combining these pieces,
EVz,,, (24) < 2‘/9%r1 (24) + 2EV, , (2541)
1
< 2sz+1 (Z‘*) + ivxk (‘r2+1)

1 1 1
< §ka($*) - §Vz2+l($*) < ivfk(x*)

We apply this reduction in order to prove Corollary 27.
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Corollary 27 Suppose the summands { fi}ie[n} in (23) satisfy Assumption 2, and Fi is p-strongly
convex with minimizer x,. Further, suppose we have o € X such that Fg(xo) — Fys(z4) < €.
Algorithm 6 using Algorithm 4 to implement steps returns x € X with EFg(x) — Fi(2y) < € in
Niot iterations, using a total of O(Nyot) gradient calls each to some f; for i € [n], where

s VL
Nigt = O <lifs log <l€f€€0)) , for kg :==n + ZEZ[?;} \/TTM

Proof The overhead K is asymptotically the same here as the parameter 7' in Theorem 25, by
analogous smoothness and strong convexity arguments. Moreover, we use Theorem 25 to solve each
subproblem required by Algorithm 6; in particular, the subproblem is equivalent to approximately
minimizing Frs + § ||I%, up to a linear shift which does not affect any smoothness bounds, and a
constant in the strong convexity. We note that we will initialize the subproblem solver in iteration k
with ;. We hence can set 7' = 2 and S = O(kg), yielding the desired iteration bound. |

Appendix F. Minimax finite sum optimization

In this section, we provide efficient algorithms for computing an approximate saddle point of the
following minimax finite sum optimization problem:

, 1 . . o
miy glea:)}}(mefs(x7y) = ZEZM (fi(z) + hi(z,y) — gi(y)) - (36)

Here and throughout this section {f; : X — R};cy 19i 1 YV — R}igpy are differentiable con-
vex functions, and {h; : X x J) — R}, are differentiable convex-concave functions. For the
remainder, we focus on algorithms for solving the following regularized formulation of (36):

1

: ‘ _ 1 ‘ . o AN R LT
gél)gr;leagmets.reg(iB,y) = EZ[:] (filx) + hi(z,y) — 9i(y)) + 5 (||| 5 lyll=.  @37)

As in Section 2 and Appendix E, to instead solve an instance of (36) where each f; is 2u*-
strongly convex and each g; is 2uY-strongly convex, we may instead equivalently solve (37) by
reparameterizing f; < fi — ;% ||-|>, gi < gi — p¥ ||-||* for each i € [n]. The extra factor of 2 is
so we can make a strong convexity assumption in Assumption 3 about separable summands, which
only affects our final bounds by constants. We further remark that our algorithms extend to solve
instances of (36) where f, g is ©* and pY-strongly convex in ||-||, but individual summands are not.
We provide this result at the end of the section in Corollary 41.

In designing methods for solving (37) we make the following additional regularity assumptions.

Assumption 3 We assume the following about (37) for all i € [n].
(1) fi is L -smooth and i} -strongly convex and g; is Lz’—smooth and uzy-strongly convex.
(2) h; has the following blockwise-smoothness properties: for all u,v € X x Y,

IVahi(u) = Vahi(o)]| < A7 [lw* = || + A [u’ = v”|| and

A (38)
IVyhi(u) = Vyhi()[] < A [[w = o[ + AP [Ju” = "]}
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The remainder of this section is organized as follows.

(1) In Appendix F.1, we state a primal-dual formulation of (37) which we will apply our methods
to, and prove that its solution also yields a solution to (37).

(2) In Appendix F.2, we give our algorithm, which is composed of an outer loop and an inner
loop, and prove it is efficiently implementable.

(3) In Appendix F.3, we prove the convergence rate of our inner loop.
(4) In Appendix F.4, we prove the convergence rate of our outer loop.

(5) In Appendix E.5, we state and prove our main result, Theorem 39.

F.1. Setup

To solve (37), we will instead find a saddle point to the primal-dual function

MX 2 My 2
mefs-pd (Z) = ||ZX|| — 5 ||Zy||

LS (i () - (.2) 1 () )

zE [n]

(39)

We denote the domain of Fiyyfspa by Z := & x Y x (X*)" x (V*)". For z € Z, we refer to its
blocks by (2%, 2, {2 Yieln)s {28 }ic (n))- The primal-dual function Fiymfs pa is related to the original
function Fin in the following way; we omit the proof, as it follows analogously to the proofs of
Lemmas 4 and 17.

Lemma 28 Let z, = (2%, 21, {z,fg* Yieln)s {zf‘* }ieln)) be the saddle point to (39). Then, (2%, 2)) is a
saddle point to (37).

As in Section 2.1, it will be convenient to define the convex function » : Z — R, which
combines the (unsigned) separable components of Fiymfs-pd:

(2 ) {5 ) = 5 WA 12 T () 5t ().

16 [n] i€[n]
(40)
Again, 7 serves as a regularizer in our algorithm. We next define ®™™4  the gradient operator
of Fiumfspa- We decompose dmmispd into three parts, roughly corresponding to the contribution
from r, the contributions from the primal-dual representations of {f;};c(,) and {g;};c[,. and the
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contribution from {h; },[,,;. In particular, we define

q)mmfs—pd(z) . VT‘(Z) + @h(z) + (I)bilin(z)’

et (e flon () ()} )

! x 1 x 41
(ph (Z) = E Z Vxhl(z 7Zy)7 _ﬁ Z Vyhi(z 7Zy)7 {O}ZG[TL] s {O}ZE[H] , ( )
i€[n] i€[n]
(I)bllm (Z) = | = Z Zﬁ ,— Z 28 ’ {ZX} ,{Zy}
"iem e )i n ) ien]

F.2. Algorithm

In this section we present our algorithm which consists of the following two parts; its design is
inspired by a similar strategy used in prior work (Carmon et al., 2019, 2020).

(1) Our “outer loop” is based on a proximal point method (Algorithm 7, adapted from Nemirovski
(2004)).

(2) Our “inner loop” solves each proximal subproblem to high accuracy via a careful analysis of
randomized mirror prox (Algorithm 8, adapted from Algorithm 3).

At each iteration ¢ of the outer loop (Algorithm 7), we require an accurate approximation
Zt41 ~ 27,1 which solves the VIin & := ®™5Pd(2) 4 v (Vr(2) — Vr(z)), (42)

where we recall the definitions of g, and ~ from (41) and (40), and when z; is clear from context
(i.e. we are analyzing a single implementation of the inner loop).

To implement our inner loop (i.e. solve the VI in ®), we apply randomized mirror prox (Al-
gorithm 3) with a new analysis. In particular, we will not be able to obtain the expected relative
Lipschitzness bound required by Proposition 19 for our randomized gradient estimators, so we de-
velop a new “partial variance” analysis of Algorithm 3 to obtain our rate. We use this terminology
because we use variance bounds on a component of ® for which we cannot directly obtain expected
relative Lipschitzness bounds.

Proposition 29 (Partial variance analysis of randomized mirror prox) Suppose (possibly ran-
dom) ® is defined so that in each iteration s, for all w € Z and all p > 0, there exists a (possibly
random) point ws € Z and a y-strongly monotone operator ® : Z — Z* (with respect to ) such
that

B [(®(wos1/2)s wesrj2 — wa)] = E[(@(@0), @5 —w,)],
E [<‘5(ws+1/z) — (ws), Wey1y2 — ws+1>} < </\0 + ;) E [VZJS (Wsy1/2) + Vi, o (Wsg1)

—+ p/\lE [VUT;O (’LU*) + ngs (w*)} ’
(43)

38



SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

where w, solves the VI in ®. Then by setting

5)\ SA 25
240 1

g
P ——, A+ Ao + -, T« ,
5A1 p’ v 72
in Algorithm 3, and returning w, for 0 < o < S sampled uniformly at random,

E [V}U"U (w*)] < ivg;o (wy).
Proof First, consider a single iteration 0 < s < S, and fix the point w;, in Algorithm 3. By the
optimality conditions on w1 /o and ws41, we have
1/~
3 <‘I’(ws), Wsi1/2 — ws+1> < VJ;S (wst1) — VJJSH/Q (ws41) —

A
1/~ . . .
X <(I)(ws+l/2)a Wg41 — *> S sz ('LU*) — sz+1 (’LU*) — sz (w8+1)-

Summing the above, rearranging, and taking expectations yields

ijs (ws+1/2)7

E [i (®(ws), Ws — w*>] =K [i <5(ws+1/2)a Wst1/2 — w*>]

<E|Vi,(w) =V, (w)]
1
B34
+E[]
r r pM
<E |V, (w) =V, (w)| + BLE
In the last line we used the assumption (43). Since wy solves the VIin ®, adding E5 (P (w), ws

to the left-hand side above and applying strong monotonicity of g in r yields

()] + 22 [V, 102) + Vi ()]

VT

ws+1/2 (w5+1)

B(wsy1/2) = D), Wes1/2 = Wern ) = Vi, (wyg10) +
(Voo (we) + Vi (wy)] -
_ U_Js>

1 T T T
B |V ()] < B[V () - i (0

Telescoping the above for 0 < s < S and using nonnegativity of Bregman divergences yields

(- pME | £ Y Vi (w)| < (; +pA1) VE ().

0<t<T
|

Substituting our choices of ws, p, A, and T yields the claim.
For simplicity in the following we denote z := z; whenever we discuss a single proximal
subproblem. We next introduce the gradient estimator & we use in each inner loop, i.e. finding a

solution to the VI in ® defined in (42). We first define three sampling distributions p, g, r, via

CWE Ly, 1
pj = 7+ gy Pralld €l aim ot o forall ke o)
2 zze[n] \/ 2 Zze[n \% 7, 2n
XX AXY Ayy )
7 7 ) [n] )

Atot
and ry := m forallﬁe[ ], where A{* ::?—FW

(44)
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Algorithm 8 will run in logarithmically many phases, each initialized at an “anchor point” wg
(cf. Algorithm 8). We construct gradient estimators for Algorithm 3 of ®(w) = ®™™5Pd(yy) +
~v(Vr(w) — Vr(z)) as defined in (42) as follows. In each iteration, for a current anchor point wy,
we sample four coordinates j ~ p, k ~ ¢, and £,/ ~ r, all independently. We believe that it is
likely that other sampling schemes, e.g. sampling j and k non-independently, will also suffice for
our method but focus on the independent scheme for simplicity. We use ¢*¥ to refer to the X x Y
blocks of a vector g in Z*, and F'8" to refer to all other blocks corresponding to (X*)"™ x (V*)".
Then we define for an iterate w = w of Algorithm 8 (where d" is as in (41)):

B(w) = Bjpe(w) = pp(w) + P (w) + BYP (w),

[q)?ke(w)r . {@h(wo)r + i (thE(wx,wy) — Vahe(w, wp))
[Bhatw)] =
[ )]

@5 w)]”
[(I)E‘E(W)T*g* =(147) ({Vf ( f’) 1i:j}i€[n] {nquQk< ) '1i:k}i6[n}>
= ({%Vf ( ) '1i:j}i€[n} ; {nqugk (ng> 'L‘:k}ie[n]) ;
o] = | S 5w

frg* 1 1
[t (w)] " = ({—ww»} {1 )
! npj ’ i€[n] N4k i€[n]
(45)

In particular, the estimator ®,,(w) only depends on the sampled indices j, k, ¢, and not ¢'. Next,
consider taking the step wayx(jk¢) < Prox, (3 gjke(w)) as in Algorithm 3, where we use the short-
hand w,x(jk€) = w1 /9 to indicate the iterate of Algorithm 3 taken from wy assuming j, k, £ were
sampled. Observing the form of g;x¢, we denote the blocks of waux(jk¢) by

N— (v ho(w*, w) = Vyhe(ws, wi))

2w
(10 iequ {ow) ,

(14 7) (Ww*, Ww¥) —~ (w2, W 2%),

Waux (kL) = <w:ux(€)7 Wi (6), {wgt‘x(j)}ie[n} ’ {wghx(k)}iE[n]> ’

where we write wy . (¢) to indicate that it only depends on the random choice of ¢ (and not j or k);
we use similar notation for the other blocks. We also define

*

() = win(d) —w (7). AY () = win (k) — wb (k).
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and then set (where we use the notation ® s to signify its dependence on j, k, ¢/, and not £):

O (waux (JEL)) = ®jper (wanx (FEL)) = Oy (waux (jkC)) + O30 (wan (L)) + OO (waux(FKL)),

[ a0 = [#°0)] - (Voo (w50e(6), w4 (0) = Ve ()

@ (wane(70)] L (T (W30, 00 (0) — Ty ()

:| nry
f*g*

= [P
}D?ky(u@ux(ka)) ({0}26 {0}z6hﬂ>
(1+

BT, (waun(G00))] 1=

1f*g* 1 f* 1 £
(I)sep/ ux 4 = (1 - H aJux : ]-z':' - L akux : ]-z’:
gkt (wa (j ))' ( - ’Y) <{ npj ij <w ) ! }ze[n} { ngk vgk <w ) g }16[74)

-5 <{n;jvf; (gfj*> 'li:j}ie[n} {”%vgk (ng) ‘1i:k}ie[n]> ’

[‘I)?gler}(waux@ke))]xy = Z wf + —AX Z w8 4+ T%Ay(k) 7
ze [n] le [n]

- 1 1
bilin Waux (K¢ e = {_w:ux 0) - 11’:'} , {_wgux f) - 1;,— } .
[ @b (1, (k1)) o (6) - Lizy e’ U s (£) - Lik .

We also define the random “aggregate point” we will use in Proposition 29:

) (:u waux(g)v Mngux(g)) -7 (szx’ /‘yzy) )

(46)

w(0) = w + (w), (0) — w*,w), (0) — w, {&(5)} jen), {AY (k)Y repn) - 47)

Notably, w(¢) depends only on the randomly sampled ¢. We record the following useful observation
about our randomized operators (45), (46), in accordance with the first condition in (43).

Lemma 30 Define {® e, Pjpe} : Z2 — Z* as in (45), (46), and the random “aggregate point”
w(l) as in (47). Then, for all u € Z, recalling the definition of ® = ®™™Pd 4 ~(Vr — V(7))
from (42),

E [(® 10 (waue (756)). waun(jK0) — u)] = B [(@(a(6)), 0(0) — ).

Proof We demonstrate this equality for the X and (X™*)" blocks; the others (the ) and ()*)" blocks)
follow symmetrically. We will use the definitions of ®" and ®"i" from (41).

X block. Fix ¢ € [n]. We first observe that

Eper [ [ @l (wan(80))] | = [@"(@(0))] ",

Epnr [ @5 (waun(80)] | = (L4 2) 97 (@(0) =7 [Vr()]".
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Moreover, by expanding the expectation over j ~ p,
By [ [@58 (waun(760)] wue(6) — )] = <i S + A%(7)), win(0) - u>
j€ln]
= (@ (@(0)], wiiuel0) — ).
Summing, we conclude that for fixed ¢ and taking expectations over j, k, ¢/,
E [{[®00 (waue (FO)]" 00e(€) = 1] = ([(@(0)]*, w(0) = 7).

The conclusion for the X" block follows by taking expectations over ¢.

X* blocks. Note that the [/, ,]"" blocks are always zero. Next, for the [®7F,]"" component, by
expanding the expectation over j ~ p and taking advantage of sparsity, for any ¢ € [n],

By [ {050 ] o)
e S (2o (o) w0 5 (o () )

J€ln] J€ln]
= {1+ [Vr(@(0)) =y [vrE)" " (@) - ).

Here, we recall i denotes the block corresponding to the 7" copy of X*. Finally, for the [@?}i‘g‘}]
component, fix £ € [n]. Expanding the expectation over j ~ p and taking advantage of sparsity,

By | (@505 (wane(70)] s [waun(ikO) = )| = ([@(w(e)]" " () — u"").
Summing, we conclude that for fixed ¢ and taking expectations over 7, k, ¢/,
E ([gjne (wan(ik0)] s waun(iOI" =) = (lgra@(©))) 0" (0) =)
The conclusion for the X'* blocks follows by taking expectations over £. |

Finally, we give a complete implementation of our method as pseudocode below in Algorithms 7
(the outer loop) and 8 (the inner loop). We also show that it is a correct implementation in the
following Lemma 31.

Lemma 31 The inner for loop of Algorithm 8 implements Algorithm 3 on ({CT)}, 1) defined in (45),
(46), (40), for o iterations, and returns ., following the definition (47). Each iteration s > 0 is
implementable in O(1) gradient calls to some { f;, gi, i}, and O(1) vector operations on X and

V.

Proof Let {ws, Wy 12} 0<s<o be the iterates of Algorithm 3. We will inductively show that some
run of the inner for loop in Algorithm 8 preserves the invariants

we= (wiwl {VAGD} | ATH@E ).

Wy1/z = (wiﬂ/zawiﬂ/z?{m( S, [n}’{vfi(wil/2)}z’e[n]>
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Algorithm 7: MINIMAX-FINITESUM-SOLVE(Fiymfs-reg, 0, %0): Minimax finite sum opti-
mization

Input: (37) satisfying Assumption 3, (g, yp) € X X Y

Parameter(s): 7' € N

28 4 0, Z) <+ Yo, z(f]i +— T, zg* — Vfi(zo), 2§ + yo, zg‘* + Vygi(yo) forall i € [n]
for 0 <t<Tdo

‘ Zt+1 < MINIMAX-FINITESUM-INNER (Fnmfs-reg, {275 21 » {z{i Yiem)> 128 Yiem)})
end
Return: (27, 27

forall 0 < s < 0. Once we prove this claim, it is clear that the inner for loop in Algorithm 8
implements Algorithm 3 and returns w,,, upon recalling the definitions (45), (46), (40), and (47).
The base case of our induction follows from the way wy is initialized. Next, suppose for some

f
0 < s < o, our inductive claim holds. By the update for w SJ 120 if j € [n] was sampled in iteration
s, using the first item in Fact 1,

£*

; . 1 f; _f. X f* I7 f*
wsj+1/2 — argmmwfj* e {<n)\pj ((1 + fy)w; — vzl — ws) ,wi y+V fjj* (’U)J >

f; 1 f; _f x
=V <ws’ Yy ((1—i—’y)wsJ — Yz —ws)> :

Similarly, if & € [n] was sampled in iteration s,

*

. 1 _ * * *
wf‘_‘H/Q ¢ argmin_g- < (1 + 7)ws — vz8 — wY) ’wgk> + Vg;} (wgk) )

n/\Qk Wg
= Vg | ws — 1 wek — yZ8 —w?) | .
e (08 = () uf = 58— )
f* * -
Hence, the updates to w 172 and wffH /2 Preserve our invariant, and all other wiﬂ/?’ i # j and
wfiﬂ /2 i # k do not change by sparsity of ® ;.. Analogously the updates to each wii 1 and wirl
preserve our invariant. Finally, in every iteration s > 0, the updates to w’, | /o and wy, | only require
evaluating O(1) new gradients each, by 1-sparsity of the dual block updates. |

F.3. Inner loop convergence analysis

We give a convergence guarantee on Algorithm 8 for solving the VIin ® := gyt +y(Vr — Vr(2)).
In order to use Proposition 29 to solve our problem, we must prove strong monotonicity of ® and
specify the parameters \g, A\; and p in (43); note thgt Lemma 30 handles the first condition in (43).
To this end we give the following properties on ®, ® as defined in (45) and (46).

Strong monotonicity. We begin by proving strong monotonicity of ®.

Lemma 32 (Strong monotonicity) Define ® : Z — Z* as in (42), and definer : Z — R as in
(40). Then @ is (1 + ~y)-strongly monotone with respect to r.
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Algorithm 8: MINIMAX—FINITESUM—INNER(mefs_reg,ZX,Zy,{Zf‘}ie[n},{igi}ie[n]): Mini-
max finite sum optimization subroutine

Input: (37) satisfying Assumption 3, 2%, { zf Yiepn) € X, 2, {28 }ig

Parameter(s): v > 1, A >0, N,S € N

wo < 2z

for0 <7< Ndo

Sample 0 < ¢ < S uniformly at random

for0 < s<odo

Sample j, k, 0, ¢ €
and define

n]ey

[n] independently according to p, g, r, r respectively defined in (44),

[B5P] i= (1 4 ) pwy — 2", [@°PP = (1 +7) Ww) —yp¥2,

>icpn) Vi (wS)

Pbilin]* . Pbilin]Y .
@t TR e LA
P* — [‘I)h(wo)r-i- Vahe(w}, wl) =V, hf(wmwo) S [DSP] 4 [(I,bilin]X7
nre
dY — [@h(wo)}y Vv hf(w ) \% hf(wOawO) [(I)sep]y + [q)bilin]y
nry
w§+1/2 — wk— /\%XCDX, wZH/z — wl — /\LYQJY
f; f; f;
Wy g $ Ws — % ((1 +7) wsJ — 2 — s)
wfil/z — wl — n)\pk ((1 + ) wsk — 7z — wZ)
Define
[P = (L) frwiyy g — Y2, [P 1= (L+ ) prwly o — v’ 2,
3 fj
[(I)bilin}x . Zie[n] sz (wg') vf] (ws+l/2) - vfj (QUSJ>
’ n npj ’
i _ gk
[q)bilin]y _: Zie[n] Vgi (wf) n Vi ( S+1/2) Vo ()
' n ngk ’
V h , X y _ v h , X y
O [‘I’h(wo)]x LV ¢ (w5+1/2>ws47.11752) che (W, wy) @) [
2/
h , X y _ h , X y
Y — [‘I)h(wo ]y B Vyhe (ws+1/2aws+1/2) Vyhe (wﬂvwo) n [q)sep]y + [(I)bilin]y
nry
Wiy ¢ Wy — @X S+1<—ws—%®y
f; f; ¢
Wy g ¢ Wws — n/\p ((1 +7)w S+1/2 — vz - w>5(+1/2>
wfﬂ‘H — wlc — n/\pk ((1 +vy)w +1/2 — yz8 — wZ+1/2>
end
ol wli — n}\p (1 +7) whi — 42 — wX) foreach i € [n]
W8 — w§ — - (14 ’y) — 28 — wy) for each i € [n]
Y w0+1/2, wg — wfi, w§ « w8 foralli € [n]
end 44

Return: (wg, w}, {V fi(

wi) i) {V9:(wWE) Yicp)
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Proof We decompose ®(z) = (1 + v)Vr(z) + ®°lin(2) + &"(2) — yVr(Z), using the definitions
in (41). By a similar argument as Lemma 5, we obtain the claim. |

Expected relative Lipschitzness. We next provide bounds on the components of (43) correspond-
ing to ®*°P and " where we use the shorthand ®*P := (1 + v)Vr — 4Vr(Z) in the remainder
of this section. In particular, we provide a partial bound on the quantity Ag.

Lemma 33 Define {®jie, ®jne} 1 Z — Z* as in (45), (46), and define r : Z — R as in (40).
Letting w (jkO0") be ws1 in Algorithm 8 if j, k, £, ¢’ were sampled in iteration s, defining

I, (w) = B3 (w) + PP (w),
O, (wan(jk0)) 1= B3P, (wan (70)) + PULE (waux (jKL)),

we have
E [<@£Ig@(wauxgk@> - q’fiﬁﬂ)%waux(jkﬁ) - w+(jk€£’)>}
< AIE [v;,; (waux (GKE)) + VI iuay (wo (RCC ))}
for
A9 = 9n(1 1) + >icin) VLT N Diem VI
K npX Y
Proof This is immediate upon combining the following Lemmas 34 and 35. |

Lemma 34 Following notation of Lemma 33, for AP := 2n(1 + ), we have
E [( @55, (waun(ike)) = 50(w), waun (i) — s (jRel) )|
< XPE [V (waun(50)) + V2, ey (w0 (GRE0))
Proof The proof is similar to (part of) the proof of Lemma 22. We claim that for any 7, k, ¢, ¢/,
(D558, (waun(G0)) — BT (), waunjO) — w4 (jRLE))
<X (V7 (waun(GKO) + Vi ey (03 (GRLE)) )

Fix j, k, ¢, ¢ Since all p; and ¢, are lower bounded by ﬁ by assumption, applying Lemma 7 to the
relevant blocks of r and nonnegativity of Bregman divergences proves the above display. |

Lemma 35 Following notation of Lemma 33, for

\eross . 22l VI; N 22 e VL]

nu* nuy

we have
E [<(I)?}ilél’1(waUX(Jk€)) - l])lkhén( ), Waux (kL) — w—&—(jk%/»]
< X |V (waun(760) + Vi, ey (w3 (G|
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Proof The proof is similar to (part of) the proof of Lemma 22. We claim that for any 7, k, ¢, ¢/,
<(I)?2ifr}(wauxuk€)) - (I’%ien(w)v Waux(JKL) — w4 (jkwl»
<X (V5 (wau(GK0) + Vi, ey (w04 (G5E0)) )

1
2

Fix j, k, ¢,¢'. By applying Item (1) in Lemma 16 with f = f;, a = (Lju)" 2,

E; [1 <w§2x —w' Wy (0) — wi(jkzg')> + ni <wx _ wéux(ﬁ),wix _ w:f (jk%’)ﬂ

np; Dj
< 22@6[11} V L:

D (Vi aGR0) + Vi vy (G2 )

Similarly, by applying Item (1) in Lemma 16 with f = gy, o = (L ¥)" 2,
* * 1 ) .
Ej |: <1U§hx — wsk ) ’wgux(g) - wi(]kﬁf’)> + — <wy — wgux(£)7 wfhx _ wik (]k€€/)>:|

nqk ngk
< 2 Z'Le[n} V L}z/
= —,—nuy

Summing the above displays yields the desired claim. |

(Vi (wanel80) + V3, rey (s GREC)) )

Partial variance bound. Finally, we provide bounds on the components of (43) corresponding to
®". Namely, we bound the quantity \;, and complete the bound on Ao within Proposition 29.

Lemma 36 Following notation of Lemma 33, and recalling the definition (48), for

A1 = 32(AM)2,
where we define
1 N A AV
h._ — ) i %
Yo ”iez[r;] ( w e > ‘ @

we have for any p > 0,

E [ (@ (waunG50)) — 1), wane(50) — w, (L))

1 - T N T T
< <2/\h + p> E [qu (Waux(7K0)) + Vg (ko) (w+(jk€€’))} + pME [VwO (W) + Vg (we) | -
(49)

Proof The proof is similar to (part of) the proof of Lemma 11. Fix j, k, ¢, ¢'. By definition,

[@;‘Lke’ (waux (7K€) — q,?u(w)ry

1 X X X X
= nre (vﬂﬂhf’(waux(e)? wgux(g)) — Vzhy (w07 w(})/)7 vyhf’ (w07 w();) - vyhg/ (waux(€)7 wgux(g)))
1
- (Vahe(w*, w¥) — Vahe(wy, wl), Vyhe(wy, wg) — Vyhe(w*, wY)) .
J4
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SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

We decompose the x blocks of the left-hand side of (49) as

( [@?M (wau40)) = By w)] wiunO) = wi (G0 ) = D+ @)+ B),

O W <V her (Wi (), W (0)) — Vhor (i, w)), wo (£) — w (7k0¢))
@ — <V ho( wo,wo) Vehe (W} (0), wY o (€)), wh«(£) _wi(jk€€/)>,

®:= n<vmuu&w¢m Vhe(w™, w?), why,(0) = w (L))

By the Lipschitzness bounds in (38) and Young’s inequality,

< o |Vt e (), () — ()| () — w7 G0 |
< zf\|w:ux<e> Wl Jwee(€) — w (R0 |
4 ut(O) — ) [an(6) — w3 G020
< Qj(nAfj Ju(6) = i + m 105 = w1 + 2 5e®) = (e

Symmetrically, we bound

2p(A7) 2, 2PN e % (;
@ < e Mo ©) =l + 205 €)= [+ 5 i ©) = wf e

Finally, we have

@ < — ”V hf( aux( ) aux(g)) \Y h“@(w wy H Hwaux E) - wi(jkffl)“
S || aux( ) wXH Hw:ux(£) - wj—(Jk‘Eﬂ)H

+ WAXy Hwaux( ) wy” Hwaux K) - wj_(jkﬁﬂ,)u

1 AXX X X2 tu‘x X X [ 2
o (B8 (1 ) - ) il i) )
1 i _ 2
b (s (5 1000 — 0 4 5 ) — wi e ) )
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We may similarly decompose the y blocks of the left-hand side of (49) as @ + @ + @, where
symmetrically, we have

2p(A}))? 20(A)? y y .
@< M |[wdux (€) — wh||* + M [ (£) — w||? + Z— [l () — ¥ (jkee)||?,

2p(A; )2 2 Ay
@Siy(nQZH Waux 6)7100“ +55n22‘ aux() OH jL7Hwaux 7w¥§—(]k££,)H2v

® = (58 (5t — w1 + £ )l e

nry

LN o :
+ TT@ <\/,U,iiuy <2 Hwaux( ) H + 5 Hwaux wi(jkgg/)‘f)) .

We first observe that by definition of r and nonnegativity of Bregman divergences,

1 Axx A?y Azy . ] . ] ,
@+@ nry < xSy + My) (Vw(waux(ﬂf@) + Vwaux(jke)(er(JkM)))

< 2\h <V’"(waux(9kf)) F Vit (W (L ))>

Moreover, since by the triangle inequality and (a + b)? < 2a? + 22,

0) = Wil + 2 ws — wi]?,

[l () — wh||? < 2wl (€) — wd||? + 2wy — w||”,

w3 (£) = w1 < 2 [l

aux( aux(

we have by definition of r and Ay,

D+ @+ @+ O = 5 (Vi wanlih0) + Vi ey (01 GEEE))
+m4mmm+m@mn.
Summing the above displays and taking expectations yields the claim. |

Combining the properties we prove above with Proposition 29, we obtain the following conver-
gence guarantee for each loop 0 < 7 < N in Algorithm 8.

Proposition 37 Consider a run of the inner for loop in Algorithm 8§ initialized at wy € Z, with

. LY 23T ALY h)2
Zzé[n] i 4 ZZE[TL} i +2)\h) I 160{}/)\ ) . 5\ (50)

)

A+ | 2n(1 o
( n(l+7) + R o
where N\ is defined in (48). Letting w be the new setting of wy in Line 8 at the end of the run,

E[Vi(wh)] <

where w* solves the VI in ® (defined in (42)).
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F.4. Outer loop convergence analysis

We state the following convergence guarantee on our outer loop, Algorithm 7. The analysis is
a somewhat technical modification of the standard proximal point analysis for solving VIs (Ne-
mirovski, 2004), to handle approximation error.

Proposition 38 Consider a single iteration 0 < t < T of Algorithm 7, and let z, is the saddle
point to Fryms-pa (defined in (39)). Setting S as in (50) and

N =0 (log (vA)), (51

for an appropriately large constant in our implementation of Algorithm 8 and A as in (50), we have

dy
EVZ:_'.l (Z*) S 1 + 47‘/21:5(2:*)
Proof Fix an iteration ¢ € [T'] of Algorithm 7, and let z;,, be the exact solution to the VI in
dmmispd 4 4V — Vr(z). By the guarantee of Proposition 37, after the stated number of N.S
iterations in Algorithm 8 (for an appropriately large constant), we obtain a point z;41 such that

1 ) N DA L+ AY AY 2
E [Vztﬂ(zfﬂ)} < mv,;;(zt—i—l)v where k := 102 ( : I —+ v -+ \/ﬁ :

i€[n]
(52)
The optimality condition on z, ; yields

fs-
<‘I>mm spd (Z:-;-l) 72;—&—1 - Z*> < VVz: (2x) — VVZT;H (2) =YV (fo+1) .
Rearranging terms then gives:

(@MY (240, Zeg1 — )
S 7‘/;; (Z*) - V‘/Z:+1 (Z*) - 7‘/2',; (ZZ—l—l) + ’y (VZZ+1 (Z*) - VZZ;(+1 (Z*)>
+ <(I,mmfs—pd (Zt+1> _ (I)mmfs—pd (Zz(-i-l) 72;—%1 . Z*>
+ <‘I’mmfs_pd (2e41) 5 241 — 2711)
= ’YVZC (2x) — 'YVZZH (24) — ’Y‘/Z: (Zt*+1) + 'YV;;H (Zt*+1)
+ <Vr (zt41) — Vr (z;fﬂ) ) 21 — z*>
+ <(I)mmfs—pd (Zt+1) _ (I)mmfs—pd (ZZ(Jrl) 7zz(+1 . Z*> + <(I>mmfs—pd (Zt—f—l) el — Z;+1>
S 7‘/27; (Z*) - ’Y‘/vZT;+1 (2*) - 7‘/;: (ZZ(+1) + 7‘/Z1;+1 (zzii»l)
+ (VT (2141) = V7 (2541) » 2641 — 24)
+ <q>mmfs-pd (Zt+1) o (I)mmfs-pd (Z;—l—l) el — Z*>
+ <(I>mmfs-pd (Zt+l) . (I)mmfs-pd (Z*) el — Zz(+1> ) (53)
In the only equality, we used the identity (18). The last inequality used monotonicity of the

operators 7YV and ®™™5Pd a5 well as d™M5Pd (2, ) = 0 because it is an unconstrained minimax
optimization problem. In the remainder of the proof, we will bound the last three lines of (53).
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First, for any o > 0, we bound:

<V7" (zt41) = Vr (Zt*ﬂ) y 241 — 2’*>
= i (2 — () 2t — 20 + 7 (2 — (550)%, 2l — 2)
1 w f * £ £ f*
+ n Z <vfi (z1) = VI ((2500)7 ) 20 — 24 >

i€[n]

LS (a8 - (). 2 — )

ze [n]

X || X (% \X ix x o x||2 YIY  (ax WIP e Py L2
< 2op H'Zt—',-l i)’ T 30 28 = 27 + 200 || 2y — (20 T 30 2241 — ||

20L7 || ¢ e [|2 1 fr fr
+ - Z < Hzt'ﬂ — (257 || + Sal” 21— R« )
ze [n] )
2aL * * 2 1 g gl* 2
n Z < 2oy — ()8 ||+ SaL’ Hthrl — Zx >
ze [n] i
< 4—VZ’;+1 (zx) + fionZrt+1 (2541)- (54)

The equality used the definition of r in (40). The first inequality used Young’s and Cauchy-Schwarz
on the X' x ) blocks, as well as %—smoothness of the f from Assumption 3 and Item 4 in Fact 1

(and similar bounds on each g;"). The last inequality used strong convexity of each piece of 7.

Similarly, by definition of ®™™Pd (41) which we denote for ® for brevity in the following:

<‘I’ (Zt+1) - (Zt*ﬂ) » A4+l — Z*>
T T 1 X * X * X X
> sztH(z*) + 2"€Vzt+1(z:+1) + n Z <vrhi(3t+17 Zz+1) - thi((ZtH) 7(Zt+1)y)7 Ri+1 — z*>

i€[n]
1
+ n Z <Vyhi(zi(+17 Zty+1) = Vyhi((2{1)" (251)Y), Z%/—i-l - Zi/>
le[n]
£ g’ *
T Z (<Zt+1 (2531)" 5 2141 — Z:> + <Zt+1 — (241)® ’Zty—l—l - Z¥>>
ze [n]
X fi* fi* y * y g g.
- Z zi — () 2l — )+ (2 — () 20 — %
ze [n]

50



SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

where we used (54) to bound the Vr terms. Consequently,
(@ (2141) — @ (2741) s 2041 — 24)

1 roo(x 1 w* N
Va0 VL )+ 3 (Vi (0 + gV, (D)

16 "t
i€[n]

#25 (10 (A B v et

% W

#2316 (BE L AP vy ()

% I

<

2 8 g L2
+ w Hzt-li-l — (2441)® H >

(
(

+ % 2 <l1LfX3VZt+1(Z )+ 16VZ¥+1(ZX)>
(

23 (W () ()

Zt+1

(BL3 Vi, () + 8LV, ()

*V,z’;H( o) + RV, (2040)- (55)

In the first inequality, we used Cauchy-Schwarz, Young’s, and our various smoothness assumptions
(as well as strong convexity of each f; and g;). The last inequality used strong convexity of each
piece of 7.

For the last term, by a similar argument as in the previous bounds, we have

<¢(Zt+1) - @(Z*) Zt41 — Zt+1> < ‘/Z’:_t,_l (z*) + HV21+1(ZZ(—|-1)' (56)
Plugging the inequalities (54) with o = ~y, (55) and (56) back into (53), this implies
(@M (2141) , 2041 — 2) < W" (2) = WVE,, (2) =2VE, (e0) +9V2L, (36) - 5T

+v7"

2t+1

(24) + 3RYV2VL (2501)- (58)

Zt4+1
By strong monotonicity of ®™™5Pd with respect to r, we also have

<(I)mmfs—pd (Zt+1) 24l — Z*> > <¢,mmfs—pd (Zt+1) _ (I)mmfs—pd (z*) , Zerl — Z*> > VT ( *) . (59)

Zt+1

Combining (58) and (59) with the assumption (52), and taking expectations, we obtain

) ) i . 4
<4 )E‘Qtﬂ(a)S’VVZt(Z*) = EVan(@) < g Valz:
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F.5. Main result

We now state and prove our main claim.

Theorem 39 Suppose Fimgs in (37) satisfies Assumption 3, and has saddle point (2, yy ). Further,
suppose we have (xo,yo) € X x ) such that Gapg, reé( x0,Y0) < €o. Algorithm 7 using Algo-

rithm 8 with X as in (50) returns (x,y) € X x Y with EGapp

mmfs- reé

(z,y) < €in Ny iterations,
using a total of O(Nyot) gradient calls each to some f;, g;, or h; fori € [n], where

Kmmfs€
Nt = O <’fmmfs log Kmmfs 10g <M>) )

Lx Ly Axx Xy A}"y (60)
Jfor Kmmfs :=n —l— — A + - .
Ze[n] uy Vi

In particular, we use Nyox = NT'S for

S mmis )\h2 )\h
7= 0 (y1g (2}, ¥ = 0 (g () 5 =0 (24 OF) = 2

Proof By Lemma 28, the point (x,, y) is consistent between (37) and (39). The complexity of each
iteration follows from observation of Algorithm 7 and 8.

Next, by Proposition 37 and Proposition 38, and our choices of 7', IV, and S for appropriately
large constants, we obtain a point (x,y) € X’ x ) such that

€ 1 2
BV < § ()

Kmmfs

Here we used an analogous argument to Lemma 12 to bound the initial divergence. We then use a
similar bound as in Lemma 13 to obtain the desired duality gap bound. |

We now revisit the problem (36). We apply a generic reduction framework for minimax op-
timization to develop a solver for this problem under a relaxed version of Assumption 3, without
requiring strong convexity of individual summands.

Assumption 4 We assume the following about (36) for all i € [n].
(1) fiis L -smooth, and g; is Lly—smooth.
(2) h has the following blockwise-smoothness properties: for all u,v € X x ),

IVahi(u) = Vahi(o)|| < AP o = || + A [ = 0],

Wk (61)
IVyhi(u) = Vyhi()l] < A o = o[ + AP [Ju” = "]}

First, we give the following generic reduction for strongly convex-concave optimization in the
form of an algorithm. For simplicity we define for z = (zx, 2Y)e X x),

w(z) = *H X||+ e

52



SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Algorithm 9: REDX-MINIMAX: Reduction for minimax
Input: F : X x Y — R such that F'(-, y) is @*-strongly convex for all y € J and F'(z, -)
Y -strongly concave forallz € X, zp € X x Y
Parameter(s): K ¢ N

for 0 < k < K do
zk+1 < any (possibly random) point satisfying

w 1 w
E [V, ()] <7 (V2 ()
W

X
where zj, | 1= argmin_«c yargmax cy, F'(2%, 2¥) + MZVZZ (z%) — szi (2¥)

end

Lemma 40 In Algorithm 9, letting (2., ysx) be the saddle point of F, we have for every k € [K]:

1
ox Veo (20)-

E V()] < 5

Proof By applying the optimality conditions on z} ;, strong convexity-concavity of F', and (18),
and letting &' be the gradient operator of F,

F e
(D" (2h41) 21 — 2x) < Z< — (g1 i = 25)
4 y _ Ly
+ z< — a1 s i) — 2)
= Vi (2 < (D" (2141) Zogs — 24)
1

1 1
< L) - Ve 0 - i),
Further by the triangle inequality and (a + b)? < 2a? + 2b%, we have

VE L (2) S 2V (ahen) + 2V (20),
Hence, combining these pieces,

EVY (z,) < 2VZw (z*)+2E‘/;“I:+1(Z]:+1)

1
< 2V;§+1 (2) + §V;;(ZIZ+1)
1 1 1
< ivzwk(z*) 5 oy 1(2*) 5‘/22(2*)

We apply this reduction in order to prove Corollary 41, for minimax finite sum optimization
problems with the set of relaxed conditions in Assumption 4.
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Corollary 41 Suppose the summands { f;, g, hi}ie[n] in (36) satisfy Assumption 4, and Fymes is
w-strongly convex in x, 11Y-strongly convex in y, with saddle point (., yy). Further, suppose we
have (xo,y0) € X x Y such that Gapp  (%o,y0) < €o. Algorithm 6 using Algorithm 7 and 8 to
implement steps returns (z,y) € X X y wn‘h EGap(z,y) < € in Ny iterations, using a total of
O(Nyot) gradient calls each to some f;, g;, or h; for i € [n], where

Kmmfs€0
Nt = O <"immfs log /immfs ( — )) ,

Lx Ly N >§y A}’y
Jfor Emmfs :=n —|— - A A, y o
ze[n] K 'u H

Proof The overhead K is asymptotically the same here as the logarithmic term in the parameter
T in Theorem 39, by analogous smoothness and strong convexity arguments. Moreover, we use
Theorem 39 with >, p¥ rescaled by constants to solve each subproblem required by Algorithm 9;
in particular, the subproblem is equivalent to approximately finding a saddle point to Fy(z) +
%x 24| — %y ||2Y||%, up to a linear shift which does not affect any smoothness bounds. We note
that we will initialize the subproblem solver in iteration & with z;. We hence can set 7' = O(7),
yielding the desired iteration bound. |
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