
Proceedings of Machine Learning Research vol 178:1–54, 2022 35th Annual Conference on Learning Theory

Sharper Rates for Separable Minimax and Finite Sum Optimization
via Primal-Dual Extragradient Methods

Yujia Jin YUJIAJIN@STANFORD.EDU
Stanford, CA, US

Aaron Sidford SIDFORD@STANFORD.EDU
Stanford, CA, US

Kevin Tian KJTIAN@STANFORD.EDU

Stanford, CA, US

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
We design accelerated algorithms with improved rates for several fundamental classes of optimiza-
tion problems. Our algorithms all build upon techniques related to the analysis of primal-dual
extragradient methods via relative Lipschitzness proposed recently by Cohen et al. (2021).

(1) Separable minimax optimization. We study separable minimax optimization problems of the form
minx maxy f(x) − g(y) + h(x, y), where f and g have smoothness and strong convexity parameters
(Lx, µx), (Ly, µy), and h is convex-concave with a (Λxx,Λxy,Λyy)-blockwise operator norm bounded

Hessian. We provide an algorithm using Õ
(√

Lx

µx +
√

Ly

µy + Λxx

µx + Λxy
√
µxµy + Λyy

µy

)
gradient queries.

Notably, for convex-concave minimax problems with bilinear coupling (e.g. quadratics), where Λxx =
Λyy = 0, our rate matches a lower bound of Zhang et al. (2019).

(2) Finite sum optimization. We study finite sum optimization problems of the form minx
1
n

∑
i∈[n] fi(x),

where each fi is Li-smooth and the overall problem is µ-strongly convex. We provide an algorithm
using Õ

(
n+

∑
i∈[n]

√
Li

nµ

)
gradient queries. Notably, when the smoothness bounds {Li}i∈[n] are

non-uniform, our rate improves upon accelerated SVRG (Lin et al., 2015; Frostig et al., 2015) and
Katyusha (Allen-Zhu, 2017) by up to a

√
n factor.

(3) Minimax finite sums. We generalize our algorithms for minimax and finite sum optimization to solve
a natural family of minimax finite sum optimization problems at an accelerated rate, encapsulating
both above results up to a logarithmic factor.

Keywords: convex optimization, first-order methods, stochastic optimization, minimax optimiza-
tion, acceleration

1. Introduction
We study several fundamental families of optimization problems, namely (separable) minimax op-
timization, finite sum optimization, and minimax finite sum optimization (which generalizes both).
These families have received widespread recent attention from the optimization community due to
their prevalence in modeling tasks arising in modern data science. For example, minimax optimiza-
tion has been used in both convex-concave settings and beyond to model robustness to (possibly
adversarial) noise in many training tasks (Madry et al., 2018; Rahimian and Mehrotra, 2019; Good-
fellow et al., 2020). Moreover, finite sum optimization serves as a fundamental subroutine in many
of the empirical risk minimization tasks of machine learning today (Bottou et al., 2018). Nonethe-
less, and perhaps surprisingly, there remain gaps in our understanding of the optimal rates for these

© 2022 Y. Jin, A. Sidford & K. Tian.

JIN SIDFORD TIAN

problems. Toward closing these gaps, we provide new accelerated algorithms improving upon the
state-of-the-art for each family of problems.

Our results build upon advances in using primal-dual extragradient methods to recover acceler-
ated rates for smooth convex optimization in Cohen et al. (2021), which considered the problem1

min
x∈X

f(x) +
µ

2
‖x‖2 for L-smooth and convex f, (1)

and its equivalent primal-dual formulation as an appropriate “Fenchel game”

min
x∈X

max
x∗∈X ∗

µ

2
‖x‖2 + 〈x∗, x〉 − f∗(x∗), where f∗ is the convex conjugate of f . (2)

Cohen et al. (2021) showed that applying extragradient methods (Nemirovski, 2004; Nesterov,
2007) and analyzing them through a condition the paper refers to as relative Lipschitzness recovers
an accelerated gradient query complexity for computing (1), known to be optimal (Nesterov, 2003).

Both the Fenchel game (Abernethy et al., 2018; Wang and Abernethy, 2018) and relative Lip-
schitzness (independently proposed in Stonyakina et al. (2020)) have a longer history, discussed in
Appendix A. This work is particularly motivated by their synthesis in Cohen et al. (2021), which
used these tools to give the following general recipe for designing accelerated methods.

(1) Choose a primal-dual formulation of an optimization problem and a regularizer, r.

(2) Bound iteration costs, i.e. the cost of implementing mirror steps with respect to r.

(3) Bound the relative Lipschitzness of the gradient operator of the problem with respect to r.

In Cohen et al. (2021), this recipe was applied with (2) as the primal-dual formulation and r(x, x∗) :=
µ
2 ‖x‖

2 + f∗(x∗). Further, it was shown that each iteration could be implemented (implicitly) with
O(1) gradient queries and that the gradient operator Φ of the objective (2) is O(

√
L/µ)-relatively

Lipschitz with respect to r. Combining these ingredients gave the accelerated rate for (2); we note
that additional tools were further developed in Cohen et al. (2021) for other settings including ac-
celerated coordinate-smooth optimization (see Section 1.2).

In this paper, we broaden the primal-dual extragradient approach of Cohen et al. (2021) and
add new recipes to the optimization cookbook. As a result, we obtain methods with improved
rates for minimax optimization, finite sum optimization, and minimax finite sum optimization. We
follow a similar recipe as Cohen et al. (2021) but change the ingredients with different primal-dual
formulations, regularizers, extragradient methods, and analyses. In Sections 1.1, 1.2, and 1.3, we
discuss each problem family, our results and approach, and situate them in the relevant literature.
We discuss further related work not covered by this introduction in Appendix A.

1.1. Minimax optimization

In Section 2, we study separable convex-concave minimax optimization problems of the form2

min
x∈X

max
y∈Y

Fmm(x, y) := f(x) + h(x, y)− g(y), (3)

1. Throughout, X ,Y are unconstrained, Euclidean spaces and ‖·‖ denotes the Euclidean norm (see Appendix B).
2. Our results in Section 2 apply generally to non-twice differentiable, gradient Lipschitz h, but we use these assump-

tions for simplicity in the introduction. All norms are Euclidean (see Appendix B for relevant definitions).

2

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

where f is Lx-smooth and µx-strongly convex, g is Ly-smooth and µy-strongly convex, and h is
convex-concave and twice-differentiable with

∥∥∇2
xxh
∥∥ ≤ Λxx,

∥∥∇2
xyh
∥∥ ≤ Λxy, and

∥∥∇2
yyh
∥∥ ≤

Λyy. Our goal is to compute a pair of points (x, y) with bounded duality gap with respect to Fmm:
GapFmm

(x, y) ≤ ε (we defer definitions used throughout the paper to Appendix B).
The problem family (3) contains as a special case the following family of convex-concave min-

imax optimization problems with bilinear coupling (with Λxx = Λyy = 0 and Λxy = ‖A‖):

min
x∈X

max
y∈Y

f(x) +
(
y>Ax− 〈b, y〉+ 〈c, x〉

)
− g(y). (4)

Problem (4) has been widely studied, dating at least to the classic work of Chambolle and Pock
(2011), which used (4) to relax optimization with affine constraints related to imaging inverse prob-
lems. Problem (4) also encapsulates convex-concave quadratics and is used to model problems in
reinforcement learning (Du et al., 2017) and decentralized optimization (Kovalev et al., 2020).

Our results. We give the following result on solving (3).

Theorem 1 (informal, cf. Theorem 14, Corollary 15) Define Gaph(x, y) := maxy′∈Y h(x, y′)−
minx′∈X h(x′, y), there is an algorithm that, given (x0, y0) ∈ X × Y satisfying GapFmm

(x0, y0) ≤
ε0, returns (x, y) with GapFmm

(x, y) ≤ ε using T gradient evaluations to f , h, and g, for

T = O
(
κmm log

(κmmε0
ε

))
, with κmm :=

√
Lx

µx
+

√
Ly

µy
+

Λxx

µx
+

Λxy

√
µxµy

+
Λyy

µy
.

In the special case of (4), Theorem 1 matches a lower bound of Zhang et al. (2019), which applies
to the family of quadratic minimax problems obeying our regularity bounds. More generally, The-
orem 1 matches the lower bound whenever Λxx and Λyy are sufficiently small compared to other
parameters, improving prior state-of-the-art rates (Wang and Li, 2020) in this regime.

By applying reductions based on explicit regularization used in Lin et al. (2020), Theorem 1 also
yields analogous accelerated rates depending polynomially on the desired accuracy when either f ,
g, or both are not strongly convex. For conciseness, in this paper we focus on the strongly convex
and strongly concave regime discussed previously in this section.

Our approach. Our algorithm for solving (3) is based on the simple observation that minimax
problems with the separable structure can be effectively “decoupled” by using convex conjugation
on the components f and g. In particular, following a similar recipe as the one in Cohen et al. (2021)
for smooth convex optimization, we rewrite (an appropriate regularized formulation of) the problem
(3) using convex conjugates as follows:

min
x∈X ,y∗∈Y∗

max
y∈Y,x∗∈X ∗

µx

2
‖x‖2 − µy

2
‖y‖2 + 〈x∗, x〉 − 〈y∗, y〉+ h(x, y)− f∗(x∗) + g∗(y∗).

This can be viewed as an equivalent reformulation of the problem (3) by simply replace f ←
f − µx

2 ‖x‖
2 and g ← g − µy

2 ‖y‖
2 and using the definition of convex conjugates. Further, we de-

fine the regularizer r(x, y, x∗, y∗) := µx

2 ‖x‖
2 + µy

2 ‖y‖
2 + f∗(x∗) + g∗(y∗). Finally, we apply an

extragradient method for strongly monotone operators to our problem, using this regularizer. As in
Cohen et al. (2021) we demonstrate efficient implementability, and analyze the relative Lipschitz-
ness of the problem’s gradient operator with respect to r, yielding Theorem 1. In the final gradient

3

JIN SIDFORD TIAN

oracle complexity, our method obtains the accelerated trade-off between primal and dual blocks
for µx

2 ‖x‖
2 + 〈x∗, x〉 − f∗(x∗) and µy

2 ‖y‖
2 + 〈y∗, y〉 − g∗(y∗), for the separable parts f and g

respectively. It also obtains an unaccelerated rate for the h component, by bounding the relative
Lipschitzness corresponding to h under our assumptions.

Prior work. Many recent works obtaining improved rates for minimax optimization under smooth-
ness and strong convexity restrictions concentrate on a more general family of problems of the form:

min
x∈X

max
y∈Y

F (x, y). (5)

Typically, these works assume for twice-differentiable F , ∇2
xxF is bounded between µxI and ΛxxI

everywhere, ∇2
yyF is bounded between µyI and ΛyyI everywhere, and ∇2

xyF is operator norm
bounded by Λxy. It is straightforward to see that (5) contains (3) as a special case, by setting
f ← µx

2 ‖·‖
2, g ← µy

2 ‖·‖
2, and h← F − f + g.

For (5), under gradient access to F , the works of Lin et al. (2020); Wang and Li (2020); Co-
hen et al. (2021) presented different approaches yielding a variety of query complexities. Letting
Λmax := max (Λxx,Λxy,Λyy), these complexities scaled respectively as3

Õ

√max (Λxx,Λxy,Λyy)2

µxµy

 , Õ

(√
Λxx

µx
+

√
Λyy

µy
+

√
ΛxyΛmax

µxµy

)
, Õ

(
Λxx

µx
+

Λyy

µy
+

Λxy

√
µxµy

)
.

The state-of-the-art rate (ignoring logarithmic factors) is due to Wang and Li (2020), which obtained
the middle gradient query complexity above.

For the comparison, we first note that for quadratic minimax problems, i.e. minx maxy F (x, y),
where F is convex-concave and ∇2F is constant, Theorem 1 obtains the optimal complexity (up
to a logarithmic term). To see this, setting f(x) and g(y) to be quadratics in ∇2

xxF and −∇2
yyF ,

h = F − f + g is bilinear and hence Theorem 1 matches the lower bound of Zhang et al. (2019)
(since Λxx = Λyy = 0). Notably in this case we improve Wang and Li (2020) (Corollary 3, Section
5, NeurIPS version) by a o(1) factor in the runtime exponent. Our method’s optimality extends “for
free” to cases when h is bilinear (but f and g may be non-quadratic). This setting naturally arises
in (relaxed) affine-constrained optimization (and structured composite problems f(Ax) + g(y)), as
well as applications in reinforcement learning and decentralized optimization. Further, if F can be
decomposed as f(x)− g(y) +h(x, y) where∇2

xxh � ΛxxI and∇2
yyh � ΛyyI for “small” Λxx,Λyy,

i.e. Λxx

µx + Λyy

µy = O(
√

Lx

µx +
√

Ly

µy + Λxy
√
µxµy

), Theorem 1 matches Zhang et al. (2019), whereas Wang
and Li (2020) does not (when max(Lx, Ly)� Λxy).

In the general regime where no such favorable decomposition exists and we may as well choose
f = µx

2 ‖ · ‖
2, g = µy

2 ‖ · ‖
2, Theorem 1 recovers Cohen et al. (2021) but does not improve Wang

and Li (2020) (short of saving logarithmic factors). This general application may improve Lin et al.
(2020), e.g. in the setting when Λxx � max(Λyy,Λxy) and µx � µy but Λxx

µx ≈
Λyy

µy . Each work
matches the lower bound of Zhang et al. (2019) in some (incomparable) parameter regimes.

From the algorithmic perspective, the method in Theorem 1 uses only a single loop, as opposed
to the multi-loop methods in Lin et al. (2020); Wang and Li (2020) which lose logarithmic factors.
It thus has an arguably simpler structure and may find advantage in practice.

3. Õ hides logarithmic factors throughout, see Appendix B.

4

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Concurrent work. A pair of independent and concurrent works (Kovalev et al., 2021; Thekumpara-
mpil et al., 2022) obtained variants of Theorem 1. Their results were stated under the restricted set-
ting of bilinear coupling (4), but they each provided alternative results under (different) weakenings
of strong convexity. The algorithm of Thekumparampil et al. (2022) is closer to the one developed
in this paper (also going through a primal-dual lifting), although the ultimate methods and analy-
ses are somewhat different. Though our results were obtained independently, our presentation was
informed by a reading of Kovalev et al. (2021); Thekumparampil et al. (2022) for a comparison.

1.2. Finite sum optimization

In Appendix E, we study finite sum optimization problems of the form

min
x∈X

Ffs(x) :=
1

n

∑
i∈[n]

fi(x), (6)

where fi is Li-smooth for each i ∈ [n], and 1
n

∑
i∈[n] fi is µ-strongly convex. We focus on the

strongly convex regime; through generic reductions (Zhu and Hazan, 2016), our results yield accel-
erated rates depending polynomially on the target accuracy, without strong convexity.

Methods for solving (6) have garnered substantial interest because of their widespread appli-
cability to empirical risk minimization problems over a dataset of n points, which encapsulate a
variety of (generalized) regression problems in machine learning (see Bottou et al. (2018)).

Our results. We give the following result on solving (6).

Theorem 2 (informal, cf. Theorem 25, Corollary 27) There is an algorithm that, given x0 ∈ X
satisfying Ffs(x0)−Ffs(x?) ≤ ε0 where x? minimizes Ffs, returns x ∈ X with EFfs(x)−Ffs(x?) ≤ ε
using T gradient evaluations (each to some fi) for

T = O
(
κfs log

(κfsε0
ε

))
, with κfs := n+

∑
i∈[n]

√
Li√
nµ

.

Our approach. Our algorithm for solving (6) builds upon an accelerated coordinate descent
method developed in Cohen et al. (2021), for which it used an analysis of a randomized extra-
gradient method. We consider an equivalent primal-dual formulation of (a regularized variant of)
(6), inspired by analogous developments in the ERM literature (Shalev-Shwartz and Zhang, 2013,
2016):

min
x∈X

max
{x∗i }i∈[n]⊂X ∗

µ

2
‖x‖2 +

1

n

∑
i∈[n]

(〈x∗i , x〉 − f∗i (x∗i)) .

Our algorithm then solves this regularized primal-dual game to high precision.
A key building block of our method is a randomized extragradient method which is compatible

with strongly monotone problems. To this end, we extend the randomized extragradient method in
Cohen et al. (2021) to also obtain high-precision guarantees under strong monotonicity. We proceed
as follows: for roughly κfs iterations (defined in Theorem 2) of our method, we run the non-strongly
monotone randomized mirror prox method of Cohen et al. (2021) to obtain a regret bound. We then
subsample a random iterate, which we show halves an appropriate potential in expectation via our
regret bound and strong monotonicity; recursing this procedure yields our high-precision solver.

5

JIN SIDFORD TIAN

Prior work. Developing accelerated algorithms for (6) under our regularity assumptions has been
the subject of a substantial amount of research effort in the community, see e.g. Lin et al. (2015);
Frostig et al. (2015); Shalev-Shwartz and Zhang (2016); Allen-Zhu (2017); Song et al. (2020) and
references therein. The particular approach of combining coordinate methods with primal-dual for-
mulations and its application to the ERM problem has also appeared in a variety of literature (Zhang
and Lin, 2015; Chambolle et al., 2018; Alacaoglu et al., 2020; Song et al., 2021). Previously, the
state-of-the-art gradient query complexities (up to logarithmic factors) for (6) were obtained by Lin
et al. (2015); Frostig et al. (2015); Allen-Zhu (2017); Song et al. (2020),4 and scaled as

Õ

n+

√∑
i∈[n] Li

µ

 . (7)

Rates such as (7), which scale as functions of
∑

i∈[n]
Li
µ , arise in known variance reduction-based

approaches (Johnson and Zhang, 2013; Defazio et al., 2014; Schmidt et al., 2017; Allen-Zhu, 2017)
due to their applications of a “dual strong convexity” lemma (e.g. Theorem 1, Johnson and Zhang
(2013) or Lemma 2.4, Allen-Zhu (2017)) of the form

‖∇fi(x)−∇fi(x̄)‖2 ≤ 2Li (fi(x̄)− fi(x)− 〈∇fi(x), x̄− x〉) .

The analyses of e.g. Johnson and Zhang (2013); Allen-Zhu (2017) sample i ∈ [n] proportional to
Li, yielding variance bounds on a gradient estimator by a quantity related to the Ffs divergence.

The rate in (7) is known to be optimal in the uniform smoothness regime (Woodworth and
Srebro, 2016), but in a more general setting its optimality is unclear. Theorem 2 shows that the
rate can be improved for sufficiently non-uniform Li, which may happen e.g. in regression with a
matrix A that has non-uniform row norms. In particular, Cauchy-Schwarz shows that the quantity
κfs is never worse than (7), and improves upon it by a factor asymptotically between 1 and

√
n

when the {Li}i∈[n] are non-uniform. The best improvement of
√
n is achievable in, e.g. extreme

cases when ∃i ∈ [n] with Lj ≈ 0, ∀j 6= i. Moreover, even in the uniform smoothness case,
Theorem 2 matches the tightest rate in Allen-Zhu (2017) up to an additive log κfs term, as opposed
to an additional multiplicative logarithmic overhead incurred by the reduction-based approaches of
Lin et al. (2015); Frostig et al. (2015).

Our rate’s improvement over (7) is comparable to a similar improvement that was achieved
previously in the literature on coordinate descent methods. In particular, Lee and Sidford (2013)
first obtained a (generalized) partial derivative query complexity comparable to (7) under coordinate
smoothness bounds, which was later improved to a query complexity comparable to Theorem 2
by Zhu et al. (2016); Nesterov and Stich (2017). Due to connections between coordinate-smooth
optimization and empirical risk minimization (ERM) previously noted in the literature (Shalev-
Shwartz and Zhang, 2013, 2016), it is natural to conjecture that the rate in Theorem 2 is achieveable
for finite sums (6) as well. However, prior to our work (to our knowledge) this rate was not known,
except in special cases e.g. linear regression (Agarwal et al., 2020).

4. There have been a variety of additional works which have also attained accelerated rates for either the problem (6)
or its ERM specialization, see e.g. Defazio (2016); Zhang and Xiao (2017); Lan et al. (2019); Zhou et al. (2019).
However, to the best of our knowledge these do not improve upon the state-of-the-art rate of Allen-Zhu (2017) in our
setting.

6

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

From the algorithmic perspective, our basic Algorithm 4 and Algorithm 1 of Allen-Zhu (2017)
both are “double loop” as they aggregate information every≈ O(n) iterations; we acknowledge Al-
gorithm 6 adds one loop, but point out the resulting complexity is only affected by a constant factor.
We agree finding a more direct approach is an interesting future direction.

Our method is based on using a primal-dual formulation of (6) to design our gradient estimators.
It attains Theorem 25 by sampling summands proportional to

√
Li, trading off primal and dual vari-

ances through a careful coupling. It can be viewed as a modified dual formulation to the coordinate
descent algorithm in Cohen et al. (2021), which used primal-dual couplings inspired by Zhu et al.
(2016); Nesterov and Stich (2017). We believe our result sheds further light on the duality between
coordinate-smooth and finite sum optimization, and gives an interesting new acceleration approach
for finite sum problems via algorithmically leveraging their primal-dual formulations.

1.3. Minimax finite sum optimization

In Appendix F, we study a family of minimax finite sum optimization problems of the form

min
x∈X

max
y∈Y

Fmmfs(x, y) :=
1

n

∑
i∈[n]

(fi(x) + hi(x, y)− gi(y)) . (8)

We assume fi is Lx
i -smooth, gi is Ly-smooth, and hi is convex-concave and twice-differentiable

with blockwise operator norm bounds Λxx
i , Λxy

i , and Λyy
i for each i ∈ [n]. We also assume the

whole problem is µx-strongly convex and µy-strongly concave.
We propose the family (8) because it encapsulates (5) and (6), and is amenable to techniques

from solving both. Moreover, (8) is a natural description of instances of (5) which arise from primal-
dual formulations of ERM problems, e.g. Zhang and Xiao (2017); Wang and Xiao (2017). It also
generalizes natural minimax finite sum problems previously considered in e.g. Carmon et al. (2019).

Our results. We give the following result on solving (8).

Theorem 3 (informal, cf. Theorem 39, Corollary 41) There is an algorithm that, given (x0, y0) ∈
X × Y satisfying GapFmmfs

(x0, y0) ≤ ε0, returns (x, y) with EGapFmmfs
(x, y) ≤ ε, using T gradient

evaluations, each to some fi, gi, or hi, where

T = O
(
κmmfs log (κmmfs) log

(κmmfsε0
ε

))
,

with κmmfs := n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy
+

Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

 .

The rate in Theorem 3 captures (up to a logarithmic factor) both of the rates in Theorems 1
and 2, when (8) is appropriately specialized. It can be more generally motivated as follows. When
n is not the dominant term in Theorem 2’s bound, the remaining term is

√
n times the average

rate attained by Nesterov’s accelerated gradient method (Nesterov, 1983) on each summand in (6).
This improves upon the factor of n overhead which one might naively expect from computing full
gradients. In similar fashion, Theorem 3 attains a rate (up to an additive n, and logarithmic factors)
which is

√
n times the average rate attained by Theorem 1 on each summand in (8).

7

JIN SIDFORD TIAN

Our approach. Our algorithm for solving (8) is a natural synthesis of the algorithms suggested in
Sections 1.1 and 1.2. However, to obtain our results we apply additional techniques to bypass com-
plications which arise from the interplay between the minimax method and the finite sum method,
inspired by Carmon et al. (2019). In particular, to obtain our tightest rate we would like to sub-
sample the components in our gradient operator corresponding to {fi}i∈[n] , {gi}i∈[n] , {hi}i∈[n] all
at different frequencies when applying the randomized extragradient method. These different sam-
pling distributions introduce dependencies between iterates, making our randomized estimators no
longer “unbiased” for the true gradient operator.

To circumvent this difficulty, we obtain our result via a partial decoupling, treating compo-
nents corresponding to {fi}i∈[n], {gi}i∈[n] and those corresponding to {hi}i∈[n] separately. For the
first two aforementioned components, which are separable and hence do not interact, we pattern
an expected relative Lipschitzness analysis for each block, similar to the finite sum optimization.
For the remaining component {hi}i∈[n], we develop a variance-reduced stochastic method which
yields a relative variance bound. We put these pieces together in Proposition 29, a new randomized
extragradient method analysis, to give a method with a convergence rate of roughly

n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy

+ (κhmmfs)
2, where κhmmfs :=

1

n

∑
i∈[n]

(
Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

)
.

The dependence on all pieces above is the same as in Theorem 3, except for the term corresponding
to the {hi}i∈[n]. We finally wrap our solver in an “outer loop” proximal point method which solves
a sequence of γ-regularized variants of (8). This outer loop does not harm the accelerated rate
obtained for {fi}i∈[n] and {gi}i∈[n] since the regularization does not change the relative condition
number of the separable components. It further allows us to trade off the terms n and (κhmmfs)

2

through our choice of γ, which yields the accelerated convergence rate of Theorem 3.

Prior work. To our knowledge, there have been relatively few results for solving (8) under our
fine-grained assumptions on problem regularity, although various stochastic minimax algorithms
have been developed in natural settings (Juditsky et al., 2011; Palaniappan and Bach, 2016; Hsieh
et al., 2019; Carmon et al., 2019; Chavdarova et al., 2019; Carmon et al., 2020; Alacaoglu and Mal-
itsky, 2021; Zhao, 2022). For the general problem of solving minx∈X maxy∈Y

1
n

∑
i∈[n] Fi(x, y)

where Fi is Li-smooth and convex-concave, and the whole problem is µx-strongly convex and µy-
strongly concave, perhaps the most direct comparisons are Section 5.4 of Carmon et al. (2019)
and Theorem 15 of Tominin et al. (2021). In particular, Carmon et al. (2019) provided a high-
precision solver using roughly Õ

(
n+ 1√

n

∑
i∈[n]

Li
µ

)
gradient queries, when µx = µy = µ.

This is recovered by Theorem 39 in the special setting of fi = gi ← 0, µx = µy ← µ, and
Λxx
i = Λxy

i = Λyy
i ← Li. More generally, Carmon et al. (2019) gave a result depending polynomi-

ally on the accuracy without the strongly convex and strongly concave assumptions, which follows
from a variant of Theorem 39 after applying the explicit regularization in Lin et al. (2020) that
reduces to the strongly convex-concave case.

Moreover, Theorem 15 of Tominin et al. (2021) provided a high-precision solver using roughly

Õ

n+
1√
n

∑
i∈[n]

Li√
µxµy


8

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

gradient queries. Our work recovers (and sharpens dependences in) this result for minimax finite
sum problems where each summand has the bilinear coupling (4). In the more general setting where
each summand only has a uniform smoothness bound, one can interpret the Tominin et al. (2021)
result as a finite sum analog of the main claim in Lin et al. (2020), which is incomparable to our
Theorem 1. In a similar way, the rate of Tominin et al. (2021) is incomparable to Theorem 3,
and each improves upon the other in different parameter regimes. We believe designing a single
algorithm which obtains the best of both worlds for (8) is an interesting future direction.

Paper organization. In the remainder of the main body, we provide an overview of our techniques
by presenting our main algorithm for proving Theorem 1 and its analysis for minimax optimization.
We defer helper proofs used in Section 2, proofs of Theorem 2 for finite sum optimization, proofs
of Theorem 3 for minimax finite sum optimization to the appendices. We provide abbreviated
preliminaries here and defer more detailed preliminaries to Appendix B.

General notation. We use Õ to hide logarithmic factors in problem parameters, X and Y to repre-
sent Euclidean spaces, and ‖·‖ for the Euclidean norm. We refer to blocks of z ∈ X ×Y by (zx, zy).
The Bregman divergence in differentiable, convex r is V r

x (x′) := r(x′)− r(x)− 〈∇r(x), x′ − x〉,
for any x, x′ ∈ X . When we omit superscripts, r = 1

2 ‖·‖
2 so Vx(x′) = 1

2 ‖x− x
′‖2.

Functions and operators. We say h : X × Y → R is convex-concave if h(·, y) and h(x, ·)
are respectively convex and concave, for any x ∈ X and y ∈ Y . The duality gap of (x, y) is
Gaph(x, y) := maxy′∈Y h(x, y′) − minx′∈X h(x′, y); a saddle point is (x?, y?) with zero duality
gap. We call operator Φ : Z → Z∗ monotone if 〈Φ(z)− Φ(z′), z − z′〉 ≥ 0 for all z, z′ ∈ Z . The
convex conjugate of f : X → R is defined as f∗(x∗) := maxx∈X 〈x, x∗〉 − f(x). We define the
proximal operation in r by

Proxrx(Φ) := argminx′∈X
{〈

Φ, x′
〉

+ V r
x (x′)

}
.

Regularity. Function f : X → R is L-smooth if ‖∇f(x)−∇f(x′)‖ ≤ L ‖x− x′‖ for all x, x′ ∈
X . Differentiable f : X → R is µ-strongly convex if V f

x (x′) ≥ µ
2 ‖x− x

′‖2 for all x, x′ ∈ X .
Operator Φ : Z → Z∗ is m-strongly monotone with respect to convex r : Z → R if for all
z, z′ ∈ Z , 〈Φ(z)− Φ(z′), z − z′〉 ≥ m 〈∇r(z)−∇r(z′), z − z′〉 = m

(
V r
z (z′) + V r

z′(z)
)
.

2. Minimax optimization
In this section, we provide efficient algorithms for computing an approximate saddle point of

min
x∈X

max
y∈Y

Fmm(x, y) for Fmm := f(x) + h(x, y)− g(y) . (9)

Here and throughout this section f : X → R and g : Y → R are differentiable, convex functions
and h : X × Y → R is a differentiable, convex-concave function. For the remainder, we focus on
algorithms for solving the following regularized formulation of (9):

min
x∈X

max
y∈Y

Fmm-reg(x, y) for Fmm-reg(x, y) := f(x) + h(x, y)− g(y) +
µx

2
‖x‖2 − µy

2
‖y‖2 . (10)

To instead solve an instance of (9) where f is µx-strongly convex and g is µy-strongly convex, we
may instead equivalently solve (10) by reparameterizing f ← f − µx

2 ‖·‖
2, g ← g − µy

2 ‖·‖
2. As it

is notationally convenient for our analysis, we focus on solving the problem (10) and then give the
results for (9) at the end of this section in Corollary 15.

In designing methods for solving (10) we make the following additional regularity assumptions.

9

JIN SIDFORD TIAN

Assumption 1 (Minimax regularity) We assume the following about (10).

(1) f is Lx-smooth and g is Ly-smooth.

(2) h has the following blockwise-smoothness properties: for all u, v ∈ X × Y ,

‖∇xh(u)−∇xh(v)‖ ≤ Λxx ‖ux − vx‖+ Λxy ‖uy − vy‖ ,
‖∇yh(u)−∇yh(v)‖ ≤ Λxy ‖ux − vx‖+ Λyy ‖uy − vy‖ .

(11)

Note that when h is twice-differentiable, (11) equates to everywhere operator norm bounds on
blocks of∇2h. Namely, for all w ∈ X × Y ,∥∥∇2

xxh(w)
∥∥ ≤ Λxx,

∥∥∇2
xyh(w)

∥∥ ≤ Λxy, and
∥∥∇2

yyh(w)
∥∥ ≤ Λyy.

In the particular case when h(x, y) = y>Ax − b>y + c>x is bilinear, clearly Λxx = Λyy = 0 (as
remarked in the introduction). In this case, we may then set Λxy := ‖A‖.

The remainder of this section is organized as follows. In Section 2.1, we state a primal-dual for-
mulation of (10) which we apply our methods to, and prove its equivalence to (10). In Section 2.2,
we give our algorithm and show it is efficiently implementable. In Section 2.3, we give the conver-
gence rate of our algorithm. In Section 2.4, we state and prove our main result, Theorem 14. We
defer all omitted proofs in this section to Appendix D.

2.1. Setup

To solve (10), we will instead find a saddle point to the expanded primal-dual function

Fmm-pd(z) :=
〈
zf
∗
, zx
〉
−
〈
zg
∗
, zy
〉

+
µx

2
‖zx‖2− µ

y

2
‖zy‖2 +h(zx, zy)−f∗(zf∗)+g∗(zg

∗
). (12)

We denote the domain of Fmm-pd by Z := X × Y × X ∗ × Y∗. For z ∈ Z , we refer to its blocks by
(zx, zy, zf

∗
, zg

∗
). The primal-dual function Fmm-pd is related to Fmm-reg in the following way.

Lemma 4 Let z? be the saddle point to (12). Then, (zx?, z
y
?) is a saddle point to (10).

We next define Φ, the gradient operator of Fmm-pd. Before doing so, it will be convenient to
define r : Z → R, which combines the (unsigned) separable components of Fmm-pd:

r(z) :=
µx

2
‖zx‖2 +

µy

2
‖zy‖2 + f∗(zf

∗
) + g∗(zg

∗
). (13)

The function r will also serve as a regularizer in our algorithm. With this definition, we decompose
Φ into three parts, roughly corresponding to the contributions from r, the bilinear portions of primal-
dual representations, and h. In particular, we define

Φr(z) := ∇r(z) =
(
µxzx, µyzy,∇f∗(zf∗),∇g∗(zg∗)

)
Φbilin(z) := (zf

∗
, zg

∗
,−zx,−zy),

Φh(z) := (∇xh(zx, zy),−∇yh(zx, zy), 0, 0) .

(14)

It is straightforward to check that Φ, the gradient operator of Fmm-pd, satisfies

Φ(z) := Φr(z) + Φbilin(z) + Φh(z). (15)

Finally, we note that by construction Φ is 1-strongly monotone with respect to r.

Lemma 5 (Strong monotonicity) The operator Φ (as defined in (15)) is 1-strongly monotone with
respect to the function r : Z → R as in (13).

10

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

2.2. Algorithm

Our algorithm will be an instantiation of strongly monotone mirror prox (Cohen et al., 2021) stated
as Algorithm 1, an alternative to the mirror prox algorithm in Nemirovski (2004) and the Halpern
iteration method in Diakonikolas (2020).

Algorithm 1: SM-MIRROR-PROX(λ, T, z0): Strongly monotone mirror prox Cohen et al.
(2021)

Input: Convex r : Z → R, m-strongly monotone Φ : Z → Z∗ (with respect to r), z0 ∈ Z
Parameter(s): λ > 0, T ∈ N
for 0 ≤ t < T do

zt+1/2 ← Proxrzt(
1
λΦ(zt))

zt+1 ← argminz∈Z{ 1
λ

〈
Φ(zt+1/2), z

〉
+ m

λ V
r
zt+1/2

(z) + V r
zt(z)}

end

In order to analyze Algorithm 1, we need to introduce a definition from Cohen et al. (2021).

Definition 6 (Relative Lipschitzness) We say operator Φ : Z → Z∗ is λ-relatively Lipschitz with
respect to convex r : Z → R over Zalg ⊆ Z if for every three z, w, u ∈ Zalg,

〈Φ(w)− Φ(z), w − u〉 ≤ λ (V r
z (w) + V r

w(u)) .

As an example of the above definition, we have the following bound when Φ = ∇r, which
follows directly from nonnegativity of Bregman divergences and (18).

Lemma 7 Let r : Z → R be convex. Then,∇r is 1-relatively Lipschitz with respect to r over Z .

As another example, Cohen et al. (2021) shows that if Φ is L-Lipschitz and r is µ-strongly
convex (the setup considered in Nemirovski (2004)), then Φ is L

µ -relatively Lipschitz with respect to
r over Z . This was generalized by Cohen et al. (2021) via Definition 6, who showed the following.

Proposition 8 (Proposition 3, Cohen et al. (2021)) If Φ is λ-relatively Lipschitz with respect to r
over Zalg containing all iterates of Algorithm 1, and its VI is solved by z?, Algorithm 1 satisfies

V r
zt(z?) ≤

(
1− m

λ

)t
V r
z0(z?), for all t ∈ [T].

Our algorithm for minimax optimization, Algorithm 2, will simply apply Algorithm 1 to the
operator-regularizer pair (Φ, r) defined in (15) and (13). Crucially, by using properties of convex
conjugates, we demonstrate that one can efficiently implement the steps which solved linearized
problems regularized by r. To do so, we implicitly maintain all dual iterates (in X ∗,Y∗) as ap-
propriate gradients of primal points (in X , Y). We give this implementation as pseudocode in
Algorithm 2, and show that it is a correct implementation of Algorithm 1 in the following lemma.

Lemma 9 Algorithm 2 implements Algorithm 1 with m = 1 on (Φ, r) defined in (15), (13).

11

JIN SIDFORD TIAN

Algorithm 2: MINIMAX-SOLVE(Fmm-reg, x0, y0): Separable minimax optimization

Input: (10) satisfying Assumption 1, (x0, y0) ∈ X × Y
Parameter(s): λ > 0, T ∈ N
(zx0, z

y
0)← (x0, y0), (zf0, z

g
0)← (x0, y0)

for 0 ≤ t < T do
Φx ← µxzxt +∇f(zft) +∇xh(zxt , z

y
t), Φy ← µyzyt +∇g(zgt)−∇yh(zxt , z

y
t).

zxt+1/2 ← zx − 1
λµx Φx and zyt+1/2 ← zy − 1

λµy Φy

zft+1/2 ← (1− 1
λ)zft + 1

λz
x
t and zgt+1/2 ← (1− 1

λ)zgt + 1
λz

y
t

Φx ← µxzxt+1/2 +∇f(zft+1/2) +∇xh(zxt+1/2, z
y
t+1/2),

Φy ← µyzyt+1/2 +∇g(zgt+1/2)−∇yh(zxt+1/2, z
y
t+1/2).

zxt+1 ← 1
1+λz

x
t+1/2 + λ

1+λz
x
t − 1

(1+λ)µx Φx and zyt+1 ← 1
1+λz

y
t+1/2 + λ

1+λz
y
t − 1

(1+λ)µy Φy

zft+1 ← λ
1+λz

f
t + 1

1+λz
x
t+1/2 and zgt+1 ← λ

1+λz
g
t + 1

1+λz
y
t+1/2

end

In particular, the proof of Lemma 9 shows that Algorithm 2 preserves the invariants that zf
∗
t =

∇f(zft) and zg
∗

t = ∇g(zgt), where zft and zgt are defined in Algorithm 2 (a similar invariant holds
for each zt+1/2). As a corollary, we have the following characterization of our iterates, recalling the
definitions of X ∗f and Y∗g from Appendix B.

Corollary 10 Define the product spaceZalg := X ×Y×X ∗f ×Y∗g , whereX ∗f := {∇f(x) | x ∈ X}
and Y∗g := {∇g(y) | y ∈ Y}. Then all iterates of Algorithm 2 lie in Zalg.

More generally, for z ∈ Zalg, we define zf := ∇f∗(zf∗) and zg := ∇g∗(zg∗) (see Fact 1).

2.3. Convergence analysis

In order to use Proposition 8 to analyze Algorithm 2, we require a strong monotonicity bound and a
relative Lipschitzness bound on the pair (Φ, r); the former is already given by Lemma 5. We state
the latter bound, which we prove using consequences of Assumption 1 shown in Lemma 16.

Lemma 11 (Relative Lipschitzness) Define Φ : Z → Z∗ as in (15), and define r : Z → R as in
(13). Then Φ is λ-relatively Lipschitz with respect to r over Zalg defined in Corollary 10 for

λ = 1 +

√
Lx

µx
+

√
Ly

µy
+

Λxx

µx
+

Λxy

√
µxµy

+
Λyy

µy
. (16)

Finally, we provide simple bounds regarding initialization and termination of Algorithm 2.

Lemma 12 Let (x0, y0) ∈ X × Y , and define z0 := (x0, y0,∇f(x0),∇g(y0)). Suppose we have
GapFmm-reg

(x0, y0) ≤ ε0. Then, letting z? be the solution to (12),

V r
z0(z?) ≤

(
1 +

Lx

µx
+
Ly

µy

)
ε0.

12

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Lemma 13 Let z ∈ Z have

V r
z (z?) ≤

(
µx + Lx + Λxx

µx
+
µy + Ly + Λyy

µy
+

(Λxy)2

µxµy

)
· ε

2
,

for z? the solution to (12). Then,
GapFmm-reg

(zx, zy) ≤ ε.

2.4. Main result

We now state and prove our main claim.

Theorem 14 Suppose Fmm-reg in (10) satisfies Assumption 1, and suppose we have (x0, y0) ∈
X ×Y such that GapFmm-reg

(x0, y0) ≤ ε0. Algorithm 2 with λ as in (16) returns (x, y) ∈ X ×Y with
GapFmm-reg

(x, y) ≤ ε in T iterations, using a total of O(T) gradient calls to each of f , g, h, where

T = O
(
κmm log

(κmmε0
ε

))
, for κmm :=

√
Lx

µx
+

√
Ly

µy
+

Λxx

µx
+

Λxy

√
µxµy

+
Λyy

µy
. (17)

Proof By Lemma 4, the points x? and y? are consistent between (10) and (12). The gradient com-
plexity of each iteration follows from observation of Algorithm 2.

Next, by Lemma 9, Algorithm 2 implements Algorithm 1 on the pair (15), (13). By substituting
the bounds on λ and m in Lemmas 11 and 5 into Proposition 8 (where we define Zalg as in Corol-
lary 10), it is clear that after T iterations (for a sufficiently large constant in the definition of T),
we will have V r

zT
(z?) is bounded by the quantity in Lemma 13, where we use the initial bound on

V r
z0(z?) from Lemma 12. The conclusion follows from setting (x, y)← (zxT , z

y
T).

As an immediate corollary, we have the following result on solving (9).

Corollary 15 Suppose for Fmm in (9) solved by (x?, y?), (f − µx

2 ‖·‖
2 , g − µy

2 ‖·‖
2 , h) satisfies

Assumption 1. There is an algorithm taking (x0, y0) ∈ X × Y satisfying GapFmm
(x0, y0) ≤ ε0,

which performs T iterations for T in (17), returns (x, y) ∈ X ×Y satisfying GapFmm
(x, y) ≤ ε, and

uses a total of O(T) gradient calls to each of f , g, h.

13

JIN SIDFORD TIAN

Acknowledgments
We thank anonymous reviewers and Arun Jambulapati for helpful suggestions and pointing out ty-
pos. AS was supported in part by a Microsoft Research Faculty Fellowship, NSF CAREER Award
CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research Fellow-
ship. KT was supported in part by a Google Ph.D. Fellowship, a Simons-Berkeley VMware Re-
search Fellowship, a Microsoft Research Faculty Fellowship, NSF CAREER Award CCF-1844855,
NSF Grant CCF-1955039, and a PayPal research award. YJ was supported on a Stanford Graduate
Fellowship and the Dantzig-Lieberman Operations Research Fellowship.

References
Jacob D. Abernethy, Kevin A. Lai, Kfir Y. Levy, and Jun-Kun Wang. Faster rates for convex-

concave games. In 31st Annual Conference on Computational Learning Theory (COLT), pages
1595–1625, 2018.

Naman Agarwal, Sham M. Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli, and Aaron
Sidford. Leverage score sampling for faster accelerated regression and ERM. In Algorithmic
Learning Theory, ALT 2020, pages 22–47, 2020.

Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality meth-
ods. arXiv e-prints, abs/2102.08352, 2021.

Ahmet Alacaoglu, Olivier Fercoq, and Volkan Cevher. Random extrapolation for primal-dual coor-
dinate descent. In International conference on machine learning, pages 191–201. PMLR, 2020.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. J. Mach.
Learn. Res., 18:221:1–221:51, 2017.

Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz gradient
continuity: First-order methods revisited and applications. Math. Oper. Res., 42(2):330–348,
2017.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Rev., 60(2):223–311, 2018.

Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Variance reduction for matrix games. In
Advances in Neural Information Processing Systems 32 (NeurIPS), pages 11377–11388, 2019.

Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Coordinate methods for matrix games.
In 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 283–293,
2020.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

Antonin Chambolle, Matthias J Ehrhardt, Peter Richtárik, and Carola-Bibiane Schonlieb. Stochastic
primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM
Journal on Optimization, 28(4):2783–2808, 2018.

14

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing noise
in GAN training with variance reduced extragradient. In Advances in Neural Information Pro-
cessing Systems 32 (NeurIPS), pages 391–401, 2019.

Michael B. Cohen, Aaron Sidford, and Kevin Tian. Relative lipschitzness in extragradient methods
and a direct recipe for acceleration. In 12th Conference on Innovations in Theoretical Computer
Science (ITCS), pages 62:1–62:18, 2021.

Aaron Defazio. A simple practical accelerated method for finite sums. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 29 (NeurIPS), pages 676–684, 2016.

Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural Infor-
mation Processing Systems 27 (NeurIPS), pages 1646–1654, 2014.

Jelena Diakonikolas. Halpern iteration for near-optimal and parameter-free monotone inclusion and
strong solutions to variational inequalities. In Conference on Learning Theory, pages 1428–1451.
PMLR, 2020.

Radu-Alexandru Dragomir, Adrien Taylor, Alexandre d’Aspremont, and Jérôme Bolte. Optimal
complexity and certification of bregman first-order methods. arXiv e-prints, abs/1911.08510,
2019.

Simon S. Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic variance re-
duction methods for policy evaluation. In 34th International Conference on Machine Learning
(ICML), pages 1049–1058, 2017.

Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Un-regularizing: approximate proxi-
mal point and faster stochastic algorithms for empirical risk minimization. In 32nd International
Conference on Machine Learning (ICML), pages 2540–2548, 2015.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. Commun. ACM, 63
(11):139–144, 2020.

Filip Hanzely, Peter Richtarik, and Lin Xiao. Accelerated bregman proximal gradient methods for
relatively smooth convex optimization. arXiv e-prints, abs/1808.03045, 2018.

Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos. On the convergence
of single-call stochastic extra-gradient methods. In Advances in Neural Information Processing
Systems 32 (NeurIPS), pages 6936–6946, 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems 26 (NeurIPS), pages 315–323,
2013.

Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

15

JIN SIDFORD TIAN

Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Applications of strong convexity–
strong smoothness duality to learning with matrices. arXiv e-prints, abs/0910.0610, 2009.

G. M. Korpelevich. An extragradient method for finding saddle points and for other problems.
Ekonomika i Matematicheskie Metody, 12(4):747–756, 1976.

Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for smooth
and strongly convex decentralized optimization. In Advances in Neural Information Processing
Systems 33 (NeurIPS), pages 18342–18352, 2020.

Dmitry Kovalev, Alexander V. Gasnikov, and Peter Richtárik. Accelerated primal-dual gradient
method for smooth and convex-concave saddle-point problems with bilinear coupling. arXiv
e-prints, abs/2112.15199, 2021.

Guanghui Lan, Zhize Li, and Yi Zhou. A unified variance-reduced accelerated gradient method
for convex optimization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32 (NeurIPS), pages 10462–10472, 2019.

Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster algo-
rithms for solving linear systems. In 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 147–156, 2013.

Hongzhou Lin, Julien Mairal, and Zaı̈d Harchaoui. A universal catalyst for first-order optimization.
In Advances in Neural Information Processing Systems 28 (NeurIPS), pages 3384–3392, 2015.

Tianyi Lin, Chi Jin, and Michael I. Jordan. Near-optimal algorithms for minimax optimization. In
33rd Annual Conference on Computational Learning Theory (COLT), pages 2738–2779, 2020.

Haihao Lu, Robert M. Freund, and Yurii E. Nesterov. Relatively smooth convex optimization by
first-order methods, and applications. SIAM J. Optim., 28(1):333–354, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference
on Learning Representations (ICLR), 2018.

Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004.

Yurii Nesterov. A method for solving a convex programming problem with convergence rate
O(1/k2). Doklady AN SSSR, 269:543–547, 1983.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume I. 2003.

Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and related
problems. Math. Program., 109(2-3):319–344, 2007.

Yurii E. Nesterov and Sebastian U. Stich. Efficiency of the accelerated coordinate descent method
on structured optimization problems. SIAM J. Optim., 27(1):110–123, 2017.

16

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Balamurugan Palaniappan and Francis R. Bach. Stochastic variance reduction methods for saddle-
point problems. In Advances in Neural Information Processing Systems 29 (NeurIPS), pages
1408–1416, 2016.

Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv
e-prints, abs/1908.05659, 2019.

R.T̃yrell Rockafellar. Convex Analysis. Princeton University Press, 1970a.

R Tyrrell Rockafellar. Monotone operators associated with saddle-functions and minimax problems.
Nonlinear functional analysis, 18(part 1):397–407, 1970b.

Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing finite sums with the stochas-
tic average gradient. Math. Program., 162(1-2):83–112, 2017.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss. J. Mach. Learn. Res., 14(1):567–599, 2013.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. Math. Program., 155(1-2):105–145, 2016.

Jonah Sherman. Area-convexity, l∞ regularization, and undirected multicommodity flow. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, 49th Annual ACM Symposium on Theory of
Computing (STOC), pages 452–460. ACM, 2017.

Chaobing Song, Yong Jiang, and Yi Ma. Variance reduction via accelerated dual averaging for
finite-sum optimization. Advances in Neural Information Processing Systems, 33:833–844, 2020.

Chaobing Song, Stephen J Wright, and Jelena Diakonikolas. Variance reduction via primal-dual
accelerated dual averaging for nonsmooth convex finite-sums. In International Conference on
Machine Learning, pages 9824–9834. PMLR, 2021.

Fedor Stonyakina, Alexander Tyurin, Alexander Gasnikov, Pavel Dvurechensky, Artem Agafonov,
Darina Dvinskikh, Dmitry Pasechnyuk, Sergei Artamonov, and Victorya Piskunova. Inexact
relative smoothness and strong convexity for optimization and variational inequalities by inexact
model. arXiv e-prints, abs/2001.09013, 2020.

Kiran Koshy Thekumparampil, Niao He, and Sewoong Oh. Lifted primal-dual method for bi-
linearly coupled smooth minimax optimization. In 25th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2022.

Vladislav Tominin, Yaroslav Tominin, Ekaterina Borodich, Dmitry Kovalev, Alexander Gasnikov,
and Pavel Dvurechensky. On accelerated saddle-point problems with composite structure. arXiv
e-prints, abs/2103.09344v2, 2021.

Jialei Wang and Lin Xiao. Exploiting strong convexity from data with primal-dual first-order al-
gorithms. In 34th International Conference on Machine Learning (ICML), pages 3694–3702,
2017.

Jun-Kun Wang and Jacob D. Abernethy. Acceleration through optimistic no-regret dynamics. In
Advances in Neural Information Processing Systems 31 (NeurIPS), pages 3828–3838, 2018.

17

JIN SIDFORD TIAN

Yuanhao Wang and Jian Li. Improved algorithms for convex-concave minimax optimization. In
Advances in Neural Information Processing Systems 33 (NeurIPS), pages 4800–4810, 2020.

Blake E. Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objec-
tives. In Advances in Neural Information Processing Systems 29 (NeurIPS), pages 3639–3647,
2016.

Junyu Zhang, Minyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for the
saddle point problems. arXiv e-prints, abs/1912.07481, 2019.

Yuchen Zhang and Xiao Lin. Stochastic primal-dual coordinate method for regularized empirical
risk minimization. In International Conference on Machine Learning, pages 353–361. PMLR,
2015.

Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized empirical
risk minimization. J. Mach. Learn. Res., 18:84:1–84:42, 2017.

Renbo Zhao. Accelerated stochastic algorithms for convex-concave saddle-point problems. Math-
ematics of Operations Research, 47(2):1443–1473, 2022.

Kaiwen Zhou, Qinghua Ding, Fanhua Shang, James Cheng, Danli Li, and Zhi-Quan Luo. Direct
acceleration of SAGA using sampled negative momentum. In 22nd International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 1602–1610. PMLR, 2019.

Zeyuan Allen Zhu and Elad Hazan. Optimal black-box reductions between optimization objectives.
In Advances in Neural Information Processing Systems 29 (NeurIPS), pages 1606–1614, 2016.

Zeyuan Allen Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even faster accelerated coordinate
descent using non-uniform sampling. In 33rd International Conference on Machine Learning
(ICML), pages 1110–1119, 2016.

18

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Appendix A. Additional related work
We give a brief discussion of several lines of work which our results build upon, and their connection
with the techniques used in this paper, in addition to the works reviewed in Section 1.

Acceleration via primal-dual extragradient methods. Our algorithms are based on extragra-
dient methods, a framework originally proposed by Korpelevich (1976) which was later shown to
obtain optimal rates for solving Lipschitz variational inequalities in Nemirovski (2004); Nesterov
(2007). There have been various implementations of extragradient methods including mirror prox
(Nemirovski, 2004) and dual extrapolation (Nesterov, 2007); we focus on adapting the former in this
work. Variations of extragradient methods have been studied in the context of primal-dual formu-
lations of smooth convex optimization (Abernethy et al., 2018; Wang and Abernethy, 2018; Cohen
et al., 2021), and are known to obtain optimal (accelerated) rates in this setting. In particular, the
relative Lipschitzness analysis of acceleration in Cohen et al. (2021) is motivated by developments
in the bilinear setting, namely the area convexity framework of Sherman (2017). We build upon
these works by using primal-dual formulations to design accelerated algorithms in various settings
beyond smooth convex optimization, namely (3), (6), and (8).

Acceleration under relative regularity assumptions. Our analysis builds upon a framework
for analyzing extragradient methods known as relative Lipschitzness, proposed independently by
Stonyakina et al. (2020); Cohen et al. (2021). We demonstrate that this framework (and randomized
variants thereof) obtains improved rates for primal-dual formulations beyond those studied in prior
works.

Curiously, our applications of the relative Lipschitzness framework reveal that the regularity
conditions our algorithms require are weaker than standard assumptions of smoothness in a norm.
In particular, several technical requirements of specific components of our algorithms are satisfied
by setups with regularity assumptions generalizing and strengthening the relative smoothness as-
sumption of Bauschke et al. (2017); Lu et al. (2018). This raises interesting potential implications
in terms of the necessary regularity assumptions for non-Euclidean acceleration, because relative
smoothness is known to be alone insufficient for obtaining accelerated rates in general (Dragomir
et al., 2019). Notably, Hanzely et al. (2018) also developed an acceleration framework under a
strengthened relative smoothness assumption, which requires strengthened bounds on divergences
between three points. We further elaborate on these points in Appendix D, when deriving relative
Lipschitzness bounds through weaker assumptions in Lemma 16. We focus on the Euclidean setup
in this paper, but we believe an analogous study of non-Euclidean setups is interesting and merits
future exploration.

Appendix B. Preliminaries
We provide detailed preliminaries, introducing notations and definitions used throughout the paper.

General notation. We use Õ to hide logarithmic factors in problem regularity parameters, initial
radius bounds, and target accuracies when clear from context. We denote [n] := {i ∈ N | i ≤ n}.
Throughout the paper, X (and Y , when relevant) represent Euclidean spaces, and ‖·‖ will mean the
Euclidean norm in appropriate dimension when applied to a vector. For a variable on a product
space, e.g. z ∈ X × Y , we refer to its blocks as (zx, zy) when clear from context. For a bilinear
operator A : X → Y∗, ‖·‖ will mean the (Euclidean) operator norm, i.e.

‖A‖ := sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

sup
‖y‖=1

y>Ax.

19

JIN SIDFORD TIAN

Complexity model. Throughout the paper, we evaluate the complexity of methods by their gra-
dient oracle complexity, and do not discuss the cost of vector operations (which typically are sub-
sumed by the cost of the oracle). In Section 2, the gradient oracle returns ∇f , ∇g, or ∇h at any
point; in Appendix E (respectively, Appendix F), the oracle returns ∇fi at a point for some i ∈ [n]
(respectively,∇fi, ∇gi, or∇hi at a point for some i ∈ [n]).

Divergences. The Bregman divergence induced by differentiable, convex r is V r
x (x′) := r(x′)−

r(x)− 〈∇r(x), x′ − x〉, for any x, x′ ∈ X . For all x, V r
x is nonnegative and convex. Whenever we

use no superscript r, we assume r = 1
2 ‖·‖

2 so that Vx(x′) = 1
2 ‖x− x

′‖2. Bregman divergences
satisfy the equality

〈∇r(w)−∇r(z), w − u〉 = V r
z (w) + V r

w(u)− V r
z (u). (18)

We define the proximal operation in r by

Proxrx(Φ) := argminx′∈X
{〈

Φ, x′
〉

+ V r
x (x′)

}
.

Functions and operators. We say h : X × Y → R is convex-concave if its restrictions h(·, y)
and h(x, ·) are respectively convex and concave, for any x ∈ X and y ∈ Y . The duality gap
of a pair (x, y) is Gaph(x, y) := maxy′∈Y h(x, y′) − minx′∈X h(x′, y); a saddle point is a pair
(x?, y?) ∈ X × Y with zero duality gap.

We call operator Φ : Z → Z∗ monotone if 〈Φ(z)− Φ(z′), z − z′〉 ≥ 0 for all z, z′ ∈ Z . We
say z? solves the variational inequality (VI) in Φ if 〈Φ(z?), z? − z〉 ≤ 0 for all z ∈ Z . We equip
differentiable convex-concave hwith the “gradient operator” Φ(x, y) := (∇xh(x, y),−∇yh(x, y)).
The gradient of convex f and the gradient operator of convex-concave h are both monotone. Their
VIs are respectively solved by any minimizers of f and saddle points of h.

Regularity. We say function f : X → R is L-smooth if ‖∇f(x)−∇f(x′)‖ ≤ L ‖x− x′‖ for all
x, x′ ∈ X ; if f is twice-differentiable, this is equivalent to (x′−x)>∇2f(x)(x′−x) ≤ L ‖x′ − x‖2

for all x, x′ ∈ X . We say differentiable function f : X → R is µ-strongly convex if V f
x (x′) ≥

µ
2 ‖x− x

′‖2 for all x, x′ ∈ X ; if f is twice-differentiable, this is equivalent to (x′−x)>∇2f(x)(x′−
x) ≥ µ ‖x′ − x‖2 for all x, x′ ∈ X . Finally, we say operator Φ : Z → Z∗ is m-strongly monotone
with respect to convex r : Z → R if for all z, z′ ∈ Z ,〈

Φ(z)− Φ(z′), z − z′
〉
≥ m

〈
∇r(z)−∇r(z′), z − z′

〉
= m

(
V r
z (z′) + V r

z′(z)
)
.

Convex conjugates. The (Fenchel dual) convex conjugate of a convex f : X → R is denoted

f∗(x∗) := max
x∈X
〈x, x∗〉 − f(x).

We allow f∗ to take the value∞. We recall the following facts about convex conjugates.

Fact 1 Let f : X → R be differentiable.

(1) For all x ∈ X ,∇f(x) ∈ argmaxx∗∈X ∗ 〈x∗, x〉 − f∗(x∗).

(2) (f∗)∗ = f .

(3) If f∗ is differentiable, for all x ∈ X ,∇f∗(∇f(x)) = x.

20

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

(4) If f is L-smooth, then for all x, x′ ∈ X ,

f(x′)− f(x)−
〈
∇f(x), x′ − x

〉
≥ 1

2L

∥∥∇f(x′)−∇f(x)
∥∥2
.

If f is µ-strongly convex, f∗ is 1
µ -smooth.

Proof The first three items all follow from Chapter 11 of Rockafellar (1970a). The first part of the
fourth item is shown in Appendix A of Cohen et al. (2021), and the second part is shown in Kakade
et al. (2009).

For a function f : X → R, we define the set X ∗f ⊂ X ∗ to be the set of points realizable as a
gradient, namely X ∗f := {∇f(x) | x ∈ X}. This will be come relevant in applications of Item 4 in
Fact 1 throughout the paper, when∇f is not surjective onto X ∗.

Appendix C. Helper facts
Here for completeness we state two helper facts that we use throughout the analysis. The first gives
a few properties on monotone operators. We first recall by definition, an operator Φ : Z → Z∗ is
monotone if 〈

Φ(z)− Φ(z′), z − z′
〉
≥ 0, for all z, z′ ∈ Z.

An operator Φ is m-strongly monotone with respect to convex r : Z → R if for all z, z′ ∈ Z ,〈
Φ(z)− Φ(z′), z − z′

〉
≥ m

〈
∇r(z)−∇r(z′), z − z′

〉
, for all z, z′ ∈ Z.

We state the following standard facts about monotone operators and their specialization to
convex-concave functions, and include references or proofs for completeness.

Fact 2 The following facts about monotone operators hold true:

(1) Given a convex function f(x) : X → R, its induced operator Φ = ∇f : X → X ∗ is
monotone.

(2) Given a convex-concave function h(x, y) : X × Y → R, its induced operator Φ(x, y) =
(∇xh(x, y),−∇yh(x, y)) : X × Y → X ∗ × Y∗ is monotone.

(3) Given a convex function f , its induced operator Φ = ∇f is 1-strongly monotone with respect
to itself.

(4) Monotonicity is preserved under addition: For any m,m′ ≥ 0, if Φ is m-strongly monotone
and Ψ is m′-strongly monotone with respect to convex r, then Φ + Ψ is (m + m′)-strongly
monotone with respect to r.

Proof The first two items are basic fact of convexity and minimax optimization (Rockafellar,
1970b). For the third item, we note that for any x, x′ ∈ X〈

Φ(x)− Φ(x′), x− x′
〉

=
〈
∇f(x)−∇f(x′), x− x′

〉
,

which satisfies 1-strong monotonicity with respect to f by definition.

21

JIN SIDFORD TIAN

For the fourth item, we note that for any m,m′ ≥ 0 and assumed Φ,Ψ,〈
Φ(z)− Φ(z′), z − z′

〉
≥ m

〈
∇r(z)−∇r(z′), z − z′

〉
,〈

Ψ(z)−Ψ(z′), z − z′
〉
≥ m′

〈
∇r(z)−∇r(z′), z − z′

〉
,

=⇒
〈
Φ(z) + Ψ(z)−

(
Φ(z′) + Ψ(z′)

)
, z − z′

〉
≥ (m+m′)

〈
∇r(z)−∇r(z′), z − z′

〉
.

These facts about monotone operators find usage in proving (relative) strong monotonicity of
our operators; see Lemma 5, 18 and 32.

The second fact bounds the smoothness of best-response function of some given convex-concave
function h : X × Y → R. We refer readers to Fact 1 of Wang and Li (2020) for a complete proof.

Fact 3 (Fact 1, Wang and Li (2020)) Suppose h satisfies the blockwise-smoothness properties:
for all u, v ∈ X × Y ,

‖∇xh(u)−∇xh(v)‖ ≤ Λxx ‖ux − vx‖+ Λxy ‖uy − vy‖ ,
‖∇yh(u)−∇yh(v)‖ ≤ Λxy ‖ux − vx‖+ Λyy ‖uy − vy‖ ,

(19)

and suppose h is µx-strongly convex in x and µy-strongly concave in y. The best response func-
tion hy(x) := maxy∈Y h(x, y) is µx-strongly convex and

(
Λxx + (Λxy)2

µy

)
-smooth, and hx(y) :=

minx∈Y h(x, y) is µy-strongly concave and
(

Λyy + (Λxy)2

µx

)
-smooth.

We use this fact when converting radius bounds to duality gap bounds in Lemma 12 and 13.

Appendix D. Proofs for Section 2
D.1. Proofs for Section 2.1

Lemma 4 Let z? be the saddle point to (12). Then, (zx?, z
y
?) is a saddle point to (10).

Proof By performing the maximization over zf
∗

and minimization over zg
∗
, we see that the problem

of computing a saddle point to the objective in (12) is equivalent to

min
zx∈X

max
zy∈Y

µx

2
‖zx‖2 − µy

2
‖zy‖2 + h(zx, zy)

+

(
max
zf∗∈X ∗

〈
zf
∗
, zx
〉
− f∗(zf∗)

)
−
(

max
zg∗∈Y∗

〈
zg
∗
, zy
〉
− g∗(zg∗)

)
.

By Item 2 in Fact 1, this is the same as (10).

Lemma 5 (Strong monotonicity) The operator Φ (as defined in (15)) is 1-strongly monotone with
respect to the function r : Z → R as in (13).

Proof Consider the decomposition of Φ = Φr + Φbilin + Φh defined in (14) and (15). By definition
and Items (1) to (3) from Fact 2, we know the operators Φh and Φbilin are monotone, and Φr = ∇r
is 1-strongly monotone with respect to r. Combining the three operators and using additivity of
monotonicity in Item (4) of Fact 2 yields the claim.

22

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

D.2. Proofs for Section 2.2

Lemma 9 Algorithm 2 implements Algorithm 1 with m = 1 on (Φ, r) defined in (15), (13).

Proof Let {zt, zt+1/2}0≤t≤T be the iterates of Algorithm 1. We will inductively show that Algo-
rithm 2 preserves the invariants

zt =
(
zxt , z

y
t ,∇f

(
zft

)
,∇g

(
zgt
))
, zt+1/2 =

(
zxt+1/2, z

y
t+1/2,∇f

(
zft+1/2

)
,∇g

(
zgt+1/2

))
,

for the iterates of Algorithm 2. Once we prove this claim, it is clear from inspection that Algorithm 2
implements Algorithm 1, upon recalling the definitions (15), (13).

The base case of our induction follows from our initialization so that (∇f(zf0),∇g(zg0)) ←
(∇f(x0),∇f(y0)). Next, suppose for some 0 ≤ t < T , we have zf

∗
t = ∇f(zft) and zg

∗

t = ∇g(zgt).
By the updates in Algorithm 1,

zf
∗

t+1/2 ← argminzf∗∈X ∗
{

1

λ

〈
∇f∗(zf∗t)− zxt , zf

∗
〉

+ V f∗

zf
∗
t

(zf
∗
)

}
= argminzf∗∈X ∗

{
1

λ

〈
zft − zxt , zf

∗
〉
−
〈
zft , z

f∗
〉

+ f∗(zf
∗
)

}
= argmaxzf∗∈X ∗

{〈(
1− 1

λ

)
zft +

1

λ
zxt , z

f∗
〉
− f∗(zf∗)

}
= ∇f

((
1− 1

λ

)
zft +

1

λ
zxt

)
.

The second line used our inductive hypothesis and Item 3 in Fact 1, and the last used Item 1 in
Fact 1. Hence, the update to zft+1/2 in Algorithm 2 preserves our invariant; a symmetric argument

yields zg
∗

t+1/2 = ∇g(zgt+1/2) where zgt+1/2 := (1− 1
λ)zgt + 1

λz
y
t .

Similarly, we show we may preserve this invariant for zt+1:

zf
∗
t+1 ← argminzf∗∈X ∗

{
1

λ

〈
zft+1/2 − z

x
t+1/2, z

f∗
〉
− 1

λ

〈
zft+1/2, z

f∗
〉
−
〈
zft , z

f∗
〉

+

(
1 +

1

λ

)
f∗(zf

∗
)

}
= argmaxa∈X ∗

{〈
zft +

1

λ
zxt+1/2, z

f∗
〉
−
(

1 +
1

λ

)
f∗(zf

∗
)

}
= ∇f

(
λ

1 + λ
zft +

1

1 + λ
zxt+1/2

)
.

Hence, we may set zft+1 := λ
1+λz

f
t + 1

1+λz
x
t+1/2 and similarly, zgt+1 := λ

1+λz
g
t + λ

1+λz
y
t+1/2.

D.3. Proofs for Section 2.3

We build up to our relative Lipschitzness bound by first giving the following consequences of As-
sumption 1.

Lemma 16 (Minimax smoothness implications) Let convex f : X → R and g : Y → R, and
convex-concave h : X × Y → R satisfy Assumption 1. Then, the following hold.

(1) |〈∇f (v)−∇f (w) , x− y〉| ≤ αLxV f
v (w) + α−1Vx(y) for all v, w, x, y ∈ X and α > 0.

(2) |〈∇g (v)−∇g (w) , x− y〉| ≤ αLyV g
v (w) + α−1Vx(y) for all v, w, x, y ∈ Y and α > 0.

(3) Φh is 1-relatively Lipschitz with respect to rhα : Z → R defined for all z ∈ Z and α > 0 by
rhα(z) := 1

2 (Λxx + αΛxy) ‖zx‖2 + 1
2

(
Λyy + α−1Λxy

)
‖zy‖2.

Proof We will prove Items 1 and 3, as Item 2 follows symmetrically to Item 1.

23

JIN SIDFORD TIAN

Proof of Item (1). We compute:

|〈∇f(v)−∇f(w), x− y〉| ≤ ‖∇f(v)−∇f(w)‖ ‖x− y‖

≤ α

2
‖∇f(v)−∇f(w)‖2 +

1

2α
‖x− y‖2

≤ αLxV f∗

∇f(w)(∇f(v)) + α−1Vx(y) = αLxV f
v (w) + α−1Vx(y).

The first inequality was Cauchy-Schwarz, the second was Young’s inequality, and the third used
Items 3 and 4 in Fact 1. The last equality follows from Fact 1.

Proof of Item (3). Let w, v, z ∈ Z be arbitrary. We have,〈
Φh(w)− Φh(z), w − v

〉
= 〈∇xh(wx, wy)−∇xh(zx, zy), wx − vx〉 − 〈∇yh(wx, wy)−∇yh(zx, zy), wy − vy〉 .

Applying Cauchy-Schwarz, Young’s inequality, and Assumption 1 yields

〈∇xh(wx, wy)−∇xh(zx, zy), wx − vx〉 ≤ ‖∇xh(wx, wy)−∇xh(zx, zy)‖ ‖wx − vx‖
≤ (Λxx ‖wx − zx‖+ Λxy ‖wy − zy‖) ‖wx − vx‖

≤ Λxx

2
‖wx − zx‖2 +

Λxx

2
‖wx − vx‖2 + Λxy ‖wy − zy‖ ‖wx − vx‖ .

Symmetrically,

〈∇yh(wx, wy)−∇yh(zx, zy), wy − vy〉

≤ Λyy

2
‖wy − zy‖2 +

Λyy

2
‖wy − vy‖2 + Λxy ‖wx − zx‖ ‖wy − vy‖ .

Applying Young’s inequality again yields

Λxy ‖wy − zy‖ ‖wx − vx‖ ≤ αΛxy

2
‖wx − vx‖2 +

Λxy

2α
‖wy − zy‖2 ,

and Λxy ‖wx − zx‖ ‖wy − vy‖ ≤ αΛxy

2
‖wx − zx‖2 +

Λxy

2α
‖wy − vy‖2 .

Combining these inequalities yields the desired bound of〈
Φh(w)− Φh(z), w − v

〉
≤ (Λxx + αΛxy) (Vzx(w

x) + Vwx(vx)) + (Λyy + αΛxy) (Vzy(w
y) + Vwy(vy))

= V rhα
z (w) + V rhα

w (v).

Leveraging Lemma 16 and Lemma 7, we prove relative Lipschitzness of Φ with respect to r
in Lemma 11. Interestingly, the implications in Lemma 16 are sufficient for this proof, and this
serves as a (potentially) weaker replacement for Assumption 1 in yielding a convergence rate for
our method.

24

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

This is particularly interesting when the condition in Item (1) is replaced with a non-Euclidean
divergence, namely |〈∇f (v)−∇f (w) , x− y〉| ≤ αLxV f

v (w) + α−1V ω
x (y) for some convex ω :

X → R. Setting, setting v = y, w = x, α = 1
Lx in this condition yields V f

x (y) ≤ LV ω
x (y). Hence,

this extension to Item (1) generalizes relative smoothness between f and ω, a condition introduced
by Bauschke et al. (2017); Lu et al. (2018). It has been previously observed (Hanzely et al., 2018;
Dragomir et al., 2019) that relative smoothness alone does not suffice for accelerated rates. Item (1)
provides a new strengthening of relative smoothness which, as shown by its (implicit) use in Cohen
et al. (2021), suffices for acceleration. We believe a more thorough investigation comparing these
conditions is an interesting avenue for future work.

Lemma 11 (Relative Lipschitzness) Define Φ : Z → Z∗ as in (15), and define r : Z → R as in
(13). Then Φ is λ-relatively Lipschitz with respect to r over Zalg defined in Corollary 10 for

λ = 1 +

√
Lx

µx
+

√
Ly

µy
+

Λxx

µx
+

Λxy

√
µxµy

+
Λyy

µy
. (16)

Proof Let w, v, z ∈ Zalg. We wish to show (cf. Definition 6)

〈Φ(w)− Φ(z), w − v〉 ≤ λ (V r
z (w) + V r

w(v)) .

Since Φ = Φr + Φbilin + Φh (cf. (15)), we bound the contribution of each term individually. The
conclusion follows from combining (20), (21), and (22).

Bound on Φr: By applying Lemma 7 to r,

〈Φr(w)− Φr(z), w − v〉 = 〈∇r(w)−∇r(z), w − v〉 ≤ V r
z (w) + V r

w(v). (20)

Bound on Φbilin: For all a ∈ Zalg, we may write for some af ∈ X and ag ∈ Y ,

Φbilin(a) = (af
∗
, ag

∗
,−ax,−ay) = (∇f(af),∇g(ag),−ax,−ay)

and a = (ax, ay, af
∗
, ag

∗
) = (ax, ay,∇f(af),∇g(ag)).

Consequently,〈
Φbilin(w)− Φbilin(z), w − v

〉
=
〈
∇f(wf)−∇f(zf), wx − vx

〉
+
〈
∇g(wf)−∇g(zf), wy − vy

〉
−
〈
wx − zx,∇f(wf)−∇f(vf)

〉
− 〈wy − zy,∇g(wg)−∇g(vg)〉 .

Applying Lemma 16 (Item (1) and Item (2)) to each term, with α = (µxLx)−
1
2 for terms involving

f and α = (µyLy)−
1
2 for terms involving g yields

〈
Φbilin(w)− Φbilin(z), w − v

〉
≤

√
Lx

µx

(
V f
wf (z

f) + V f
vf

(wf)
)

+

√
Lx

µx
(µxVwx(vx) + µxVzx(w

x))

+

√
Ly

µy
(V g
wg(zg) + V g

vg(w
g)) +

√
Ly

µy
(µyVwy(vy) + µyVzy(w

y)) .

Applying Item 3 in Fact 1 and recalling the definition of r (13) yields

〈
Φbilin(w)− Φbilin(z), w − v

〉
≤

(√
Lx

µx
+

√
Ly

µy

)
(V r
z (w) + V r

w(v)) . (21)

25

JIN SIDFORD TIAN

Bound on Φh: Applying Lemma 16 (Item (3) with α =
√
µx/µy), we have that Φh is 1-relatively

Lipschitz with respect to rhα : Z → R defined for all z ∈ X and α > 0 by

rhα(z) :=
1

2
(Λxx + αΛxy) ‖zx‖2 +

1

2

(
Λyy + α−1Λxy

)
‖zy‖2

=

(
Λxx

µx
+

Λxy

√
µxµy

)
· µ

x

2
‖zx‖2 +

(
Λyy

µy
+

Λxy

√
µxµy

)
· µ

y

2
‖zy‖2 .

Leveraging the nonnegativity of Bregman divergences, we conclude〈
Φh(w)− Φh(z), w − v

〉
≤ V rhα

z (w) + V rhα
w (v)

≤
(

Λxx

µx
+

Λxy

√
µxµy

+
Λyy

µy

)
(V r
z (w) + V r

w(v)) . (22)

Lemma 12 Let (x0, y0) ∈ X × Y , and define z0 := (x0, y0,∇f(x0),∇g(y0)). Suppose we have
GapFmm-reg

(x0, y0) ≤ ε0. Then, letting z? be the solution to (12),

V r
z0(z?) ≤

(
1 +

Lx

µx
+
Ly

µy

)
ε0.

Proof By the characterization in Lemma 4, we have by Item 1 in Fact 1:

z? = (x?, y?,∇f(x?),∇g(y?)) .

Hence, we bound

V r
z0(z?) = µxVx0(x?) + V f

x?(x0) + µyVy0(y?) + V g
y?(y0)

≤ µxVx0(x?) +
Lx

2
‖x0 − x?‖2X + µyVy0(y?) +

Ly

2
‖y0 − y?‖2Y

=

(
Lx

µx
+ 1

)
µxVx0(x?) +

(
Ly

µy
+ 1

)
µyVy0(y?)

≤
(
Lx

µx
+
Ly

µy
+ 1

)
ε0.

The first line used Item 3 in Fact 1, and the second used smoothness of f and g (Assumption 1). To
obtain the last line, define the functions

F x
mm-reg(x) := max

y∈Y
Fmm-reg(x, y) and F y

mm-reg(y) := min
x∈X

Fmm-reg(x, y).

Fact 3 shows F x
mm-reg is µx-strongly convex and F y

mm-reg is µy-strongly concave, so

GapFmm-reg
(x0, y0) =

(
F x

mm-reg(x0)− F x
mm-reg(x?)

)
+
(
F y

mm-reg(y?)− F y
mm-reg(y0)

)
≥ µxVx0(x?) + µyVy0(y?).

26

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Lemma 13 Let z ∈ Z have

V r
z (z?) ≤

(
µx + Lx + Λxx

µx
+
µy + Ly + Λyy

µy
+

(Λxy)2

µxµy

)
· ε

2
,

for z? the solution to (12). Then,
GapFmm-reg

(zx, zy) ≤ ε.

Proof We follow the notation of Lemma 12. From Fact 3 we know F x
mm-reg isLx-smooth and F y

mm-reg
is Ly-smooth, where

Lx := µx + Lx + Λxx +
(Λxy)2

µy
and Ly := µy + Ly + Λyy +

(Λxy)2

µx
,

under Assumption 1. Moreover, by Lemma 4 and the definition of saddle points, x? := zx? is the
minimizer to F x

mm-reg, and y? := zy? is the maximizer to F y
mm-reg. We conclude via

GapFmm-reg
(zx, zy) =

(
F x

mm-reg(x)− F x
mm-reg(x?)

)
+
(
F y

mm-reg(y?)− F y
mm-reg(zy)

)
≤
(
µx + Lx + Λxx +

(Λxy)2

µy

)
‖x− x?‖2

+

(
µy + Ly + Λyy +

(Λxy)2

µx

)
‖y − y?‖2

≤ 2

(
µx + Lx + Λxx

µx
+
µy + Ly + Λyy

µy
+

(Λxy)2

µxµy

)
V r
z (z?) ≤ ε.

The first inequality was smoothness of F x
mm-reg and F y

mm-reg (where we used that the gradients at x?
and y? vanish because the optimization problems they solve are over unconstrained domains), and
the last inequality was nonnegativity of Bregman divergences.

Appendix E. Finite sum optimization
In this section, we give an algorithm for efficiently finding an approximate minimizer of the follow-
ing finite sum optimization problem:

Ffs(x) :=
1

n

∑
i∈[n]

fi(x). (23)

Here and throughout this section fi : X → R is a differentiable, convex function for all i ∈ [n]. For
the remainder, we focus on algorithms for solving the following regularized formulation of (23):

min
x∈X

Ffs-reg(x) for Ffs-reg(x) :=
1

n

∑
i∈[n]

fi(x) +
µ

2
‖x‖2 . (24)

As in Section 2, to solve an instance of (23) where each fi is µ-strongly convex, we may instead
equivalently solve (24) by reparameterizing fi ← fi− µ

2 ‖·‖
2 for all i ∈ [n]. We further remark that

our algorithms extend to solve instances of (23) where Ffs is µ-strongly convex in ‖·‖, but individual
summands are not. We provide this result at the end of the section in Corollary 27.

In designing methods for solving (24) we make the following additional regularity assumptions.

27

JIN SIDFORD TIAN

Assumption 2 For all i ∈ [n], fi is Li-smooth.

The remainder of this section is organized as follows.

(1) In Appendix E.1, we state a primal-dual formulation of (24) which we will apply our methods
to, and prove that its solution also yields a solution to (24).

(2) In Appendix E.2, we give our algorithm and prove it is efficiently implementable.

(3) In Appendix E.3, we prove the convergence rate of our algorithm.

(4) In Appendix E.4, we state and prove our main result, Theorem 25.

E.1. Setup

To solve (24), we instead find a saddle point to the primal-dual function

Ffs-pd (z) :=
1

n

∑
i∈[n]

(〈
zf
∗
i , zx

〉
− f∗i (zf

∗
i)
)

+
µ

2
‖zx‖2 . (25)

We denote the domain of Ffs-pd by Z := X × (X ∗)n. For z ∈ Z , we refer to its blocks by
(zx,

{
zf
∗
i

}
i∈[n]

). The primal-dual function Ffs-pd is related to Ffs-reg in the following way.

Lemma 17 Let z? be the saddle point to (25). Then, zx? is a minimizer of (24).

Proof By performing the maximization over each zf
∗
i , we see that the problem of computing a

minimizer to the objective in (25) is equivalent to

min
zx∈X

µ

2
‖zx‖2 +

1

n

∑
i∈[n]

(
max
z
f∗
i ∈X ∗

〈
zf
∗
i , zx

〉
− f∗i (zf

∗
i)

)
.

By Item 2 in Fact 1, this is the same as (24).

As in Section 2.1, it will be convenient to define the convex function r : Z → R, which
combines the (unsigned) separable components of Ffs-pd:

r (z) :=
µ

2
‖zx‖2 +

1

n

∑
i∈[n]

f∗i (zf
∗
i). (26)

Again, r serves as a regularizer in our algorithm. We next define Φ, the gradient operator of Ffs-pd:

Φ(z) :=

 1

n

∑
i∈[n]

zf
∗
i + µzx,

{
1

n

(
∇f∗i (zf

∗
i)− zx

)}
i∈[n]

 . (27)

By construction, Φ is 1-strongly monotone with respect to r.

Lemma 18 (Strong monotonicity) Define Φ : Z → Z∗ as in (27), and define r : Z → R as in
(26). Then Φ is 1-strongly-monotone with respect to r.

Proof The proof is identical to Lemma 5 without the Φh term: the bilinear component cancels in
the definition of strong monotonicity, and the remaining part is exactly the gradient of r.

28

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

E.2. Algorithm

Our algorithm is an instantiation of randomized mirror prox Cohen et al. (2021) stated as Algo-
rithm 3 below, an extension to mirror prox allowing for randomized gradient estimators. We note
that the operators Φi need only be defined on iterates of the algorithm.

Algorithm 3: RAND-MIRROR-PROX({Φi}i∈[n], w0): Randomized mirror prox Cohen et al.
(2021)

Input: Convex r : Z → R, probability distribution p : [n]→ R≥0 with
∑

i∈[n] pi = 1,
operators {Φi}i∈[n] : Z → Z∗, z0 ∈ Z;
Parameter(s): λ > 0, S ∈ N ;
for 0 ≤ s < S do

Sample i ∼ p;
ws+1/2 ← Proxrwt(

1
λΦi(ws));

ws+1 ← Proxrwt(
1
λΦi(ws+1/2));

end

We provide the following result from Cohen et al. (2021) giving a guarantee on Algorithm 3.

Proposition 19 (Proposition 2, Cohen et al. (2021)) Suppose {Φi}i∈[n] are defined so that in each
iteration s, for all u ∈ Z , there exists a point w̄s ∈ Z and a monotone operator Φ : Z → Z∗ such
that (where all expectations fix ws, and condition only on the randomness in iteration s)

Ei∼p
[〈

Φi(ws+1/2), ws+1/2 − u
〉]

= 〈Φ(w̄s), w̄s − u〉 for all u ∈ Z,

Ei∼p
[〈

Φi(ws+1/2)− Φi(ws), ws+1/2 − ws+1

〉]
≤ λEi∼p

[
V r
ws(ws+1/2) + V r

ws+1/2
(ws+1)

]
.

(28)
Then (where the expectation below is taken over the randomness of the entire algorithm):

E

 1

S

∑
0≤s<S

〈Φ(w̄s), w̄s − u〉

 ≤ λV r
w0

(u)

S
, for all u ∈ Z.

The first condition in (28) is an “unbiasedness” requirement on the operators {Φi}i∈[n] with
respect to the operator Φ, for which we wish to conclude a regret guarantee. The second posits that
relative Lipschitzness (Definition 6) holds in an expected sense. We recall that Algorithm 3 requires
us to specify a set of sampling probabilities {pi}i∈[n]. We define

pi :=

√
Li

2
∑

j∈[n]

√
Lj

+
1

2n
for all i ∈ [n]. (29)

This choice crucially ensures that all pi ≥ 1
2n , and that all

√
Li
pi
≤ 2

∑
j∈[n]

√
Lj .

Our algorithm, Algorithm 4, recursively applies Algorithm 3 to the operator-pair (Φ, r) defined
in (27) and (26), for an appropriate specification of {Φi}i∈[n]. We give this implementation as
pseudocode in Algorithms 4 and 5 below, and show that Algorithm 5 is a correct implementation of
Algorithm 3 with respect to our specified {Φi}i∈[n] in the remainder of the section.

29

JIN SIDFORD TIAN

Algorithm 4: FINITE-SUM-SOLVE(Ffs-reg, x0): Finite sum optimization

Input: (24) satisfying Assumption 2, x0 ∈ X ;
Parameter(s): T ∈ N;

zx0 ← x0, zfi0 ← x0, zf
∗
i

0 ← ∇fi(x0) for all i ∈ [n];
for 0 ≤ t < T do

zt+1 ← FINITE-SUM-ONE-PHASE(Ffs-reg, zt);
end

Algorithm 5: FINITE-SUM-ONE-PHASE(Ffs-reg, w0): Finite sum optimization subroutine

Input: (24) satisfying Assumption 2, w0 ∈ Z specified by wx
0, {w

fi
0}i∈[n] ∈ X ;

Parameter(s): λ ≥ 2, S ∈ N;
Sample 0 ≤ σ < S uniformly at random;
for 0 ≤ s ≤ σ do

Sample j ∈ [n] according to p defined in (29);
wx
s+1/2 ← wx

s − 1
λµ(µwx

s + 1
n

∑
i∈[n]∇fi(wfi

s));

w
fj
s+1/2 ← (1− 1

λpj
)w

fj
s + 1

λpj
wx
s;

wfi
s+1/2 ← wfi

s for all i 6= j;

∆s ← ∇fj(w
fj
s+1/2)−∇fj(w

fj
s);

wx
s+1 ← wx

s − 1
λµ(µwx

s+1/2 + 1
n

∑
i∈[n]∇fi(wfi

s) + 1
npj

∆s);

w
fj
s+1 ← w

fj
s + 1

λpj
(wx

s+1/2 − w
fj
s+1/2);

wfi
s+1 ← wfi

s for all i 6= j;
end
Return: (wx

σ+1/2, {∇fi((1−
1
λpi

)wfi
σ + 1

λpi
wx
σ)}i∈[n])

We next describe the operators {Φi}i∈[n] used in our implementation of Algorithm 3. Fix some
0 ≤ s < S, and consider some iterates {w,waux(j)} := {ws, ws+1/2} of Algorithm 3 (where we
use the notation (j) to mean the iterate that would be taken if j ∈ [n] was sampled in iteration s,
and we drop the subscript s for simplicity since we only focus on one iteration). We denote the X
block of waux(j) by wx

aux, since (as made clear in the following) conditioned on w, wx
aux is always

the same regardless of the sampled j ∈ [n]. For all j ∈ [n], we then define the operators

Φj (w) :=

 1

n

∑
i∈[n]

wf∗i + µwx,

{
1

npi
(∇f∗i (wf∗i)− wx) · 1i=j

} ,

Φj (waux(j)) :=

 1

n

∑
i∈[n]

wf∗i +
1

npj

(
w

f∗j
aux(j)− wf∗j

)
+ µwx

aux,

{
1

npi

(
∇f∗i

(
w

f∗i
aux(i)

)
− wx

aux

)
· 1i=j

} ,

(30)
where 1i=j is a zero-one indicator. In other words, Φj(w) and Φj(waux(j)) both only have two
nonzero blocks, corresponding to the X and jth X ∗ blocks. We record the following useful obser-

30

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

vation about our randomized operators (30), in accordance with the first condition in (28). To give a
brief interpretation of our “aggregate point” defined in (31), the X coordinate is updated determin-
istically from wx according to the corresponding block of Φ, and every dual block j ∈ [n] of w̄ is
set to the corresponding dual block had j been sampled in that step.

Lemma 20 (Expected regret) Define {Φj}j∈[n] : Z → Z∗ as in (30), and the “aggregate point”

w̄ :=

(
wx
aux,

{
w

f∗j
aux(j)

}
j∈[n]

)
. (31)

Then, for all u ∈ Z , defining Φ as in (27),

Ej∼p [〈Φj(waux(j)), waux(j)− u〉] = 〈Φ(w̄), w̄ − u〉 .

Proof We expand the expectation, using (30) and taking advantage of the sparsity of Φj :

Ej∼p [〈Φj(waux(j)), waux(j)− u〉]

=

〈∑
j∈[n]

pj

 1

n

∑
i∈[n]

wf∗i +
1

npj

(
w

f∗j
aux(j)− wf∗j

)
+ µwx

aux

 , wx
aux − ux

〉

+
∑
j∈[n]

pj

〈
1

npj

(
∇f∗j

(
w

f∗j
aux(j)

)
− wx

aux

)
, w

f∗j
aux(j)− uf

∗
j

〉

=

〈
1

n

∑
j∈[n]

w
f∗j
aux(j) + µwx

aux, w
x
aux − ux

〉

+
∑
j∈[n]

〈
1

n

(
∇f∗j

(
w

f∗j
aux(j)

)
− wx

aux

)
, w

f∗j
aux(j)− uf

∗
j

〉
= 〈Φ(w̄), w̄ − u〉 .

We conclude this section by demonstrating that Algorithm 5 is an appropriate implementation of
Algorithm 3.

Lemma 21 (Implementation) Algorithm 5 implements Algorithm 3 on ({Φi}i∈[n] , r) defined in
(30), (26), for σ iterations, and returns w̄σ, following the definition (31). Each iteration s > 0 is
implementable in O(1) gradient calls to some fi, and O(1) vector operations on X .

Proof Let {ws, ws+1/2}0≤s≤σ be the iterates of Algorithm 3. We will inductively show that Algo-
rithm 5 preserves the invariants

ws =

(
wx
s,
{
∇fi(wfi

s)
}
i∈[n]

)
, ws+1/2 =

(
wx
s,
{
∇fi(wfi

s+1/2)
}
i∈[n]

)
for all 0 ≤ s ≤ σ. Once we prove this claim, it is clear from inspection that Algorithm 5 implements
Algorithm 3 and returns w̄σ, upon recalling the definitions (30), (26), and (31).

31

JIN SIDFORD TIAN

The base case of our induction follows from the initialization guarantee of Algorithm 4 in Al-
gorithm 5. Next, suppose for some 0 ≤ s ≤ σ, we have wf∗i

s = ∇f(wfi
s) for all i ∈ [n]. By the

updates in Algorithm 3, if j ∈ [n] was sampled on iteration s,

w
f∗j
s+1/2 ← argmin

w
f∗
j ∈X ∗

{
1

λnpj

〈
w

f∗j
s − wx

s, w
f∗j
〉
− 1

n

〈
w

f∗j
s , w

f∗j
〉

+
1

n
f∗j

(
wf∗j
)}

= argmax
w

f∗
j ∈X ∗

{〈(
1− 1

λpj

)
w

f∗j
s +

1

λpj
wx
s, w

f∗j

〉
− f∗j

(
wf∗j
)}

= ∇fj
((

1− 1

λpj

)
w

f∗j
s +

1

λpj
wx
s

)
.

Here, we used the first item in Fact 1 in the last line. Hence, the update to w
f∗j
s+1/2 in Algorithm 5

preserves our invariant, and all other wf∗i
s+1/2, i 6= j do not change by sparsity of Φj . An analogous

argument shows the update to each wf∗i
s+1 preserves our invariant. Finally, in every iteration s > 0,

the updates to wx
s+1/2 and wx

s+1 only require evaluating one new gradient each, by 1-sparsity of the
dual block updates in the prior iteration.

E.3. Convergence analysis

In this section, we prove a convergence result on Algorithm 5 via an application of Proposition 19.
To begin, we require a bound on the quantity λ in (28).

Lemma 22 (Expected relative Lipschitzness) Define {Φj}j∈[n] : Z → Z∗ as in (30), and define
r : Z → R as in (26). Letting w+(j) be ws+1 in Algorithm 3 if j ∈ [n] was sampled in iteration s,

Ej∼p [〈Φj(waux(j))− Φj(w), waux(j)− w+(j)〉] ≤ Ej∼p
[
V r
w (waux(j)) + V r

waux(j)
(w+(j))

]
for

λ = 2n+
2
∑

j∈[n]

√
Lj

√
nµ

. (32)

Proof We begin by expanding the expectation of the left-hand side:

Ej∼p [〈Φj(waux(j))− Φj(w), waux(j)− w+(j)〉] = Ej∼p
[〈
µwx

aux − µwx, wx
aux − wx

+(j)
〉]

+ Ej∼p
[

1

npj

〈
∇f∗j

(
w

f∗j
aux(j)

)
−∇f∗j

(
wf∗j
)
, w

f∗j
aux(j)− w

f∗j
+ (j)

〉]
+ Ej∼p

[
1

npj

〈
w

f∗j
aux(j)− wf∗j , wx

aux − wx
+(j)

〉]
+ Ej∼p

[
1

npj

〈
wx − wx

aux, w
f∗j
aux(j)− w

f∗j
+ (j)

〉]
. (33)

To bound the first two lines of (33), fix some j ∈ [n]. We apply Lemma 7 to the functions µ
2 ‖·‖

2

and 1
n∇f

∗
j , and use nonnegativity of Bregman divergences, to conclude〈

µwx
aux − µwx, wx

aux − wx
+(j)

〉
+

1

npj

〈
∇f∗j

(
w

f∗j
aux(j)

)
−∇f∗j

(
wf∗j
)
, w

f∗j
aux(j)− w

f∗j
+ (j)

〉
≤ 2n

(
V r
w (waux(j)) + V r

waux(j)
(w+(j))

)
.

32

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

In particular, we used 1
pj
≤ 2n by assumption, and noted we only need to handle the case where the

second inner product term above is positive (in the other case, the above inequality is clearly true).
Hence, taking expectations the first two lines in (33) contribute 2n to λ in the final bound.

To bound the last two lines of (33), fix j ∈ [n]. By applying Item (1) in Lemma 16 to the pair
(µ2 ‖·‖

2 , nfi), we have

1

n

〈
w

f∗j
aux(j)− wf∗j , wx

aux − wx
+(j)

〉
+

1

n

〈
wx − wx

aux, w
f∗j
aux(j)− w

f∗j
+ (j)

〉
≤ 1

n

√
nLj
µ

(
µVwx

aux

(
wx

+(j)
)

+ V
f∗j

w
f∗
j

(
w

f∗j
aux(j)

))
+

1

n

√
nLj
µ

(
µVwx (wx

aux) + V
f∗j

w
f∗
j
aux(j)

(
w

f∗j
+ (j)

))

=

√
Lj
nµ

(
V r
w (waux(j)) + V r

waux(j)
(w+(j))

)
.

Using
√
Li
pi
≤ 2

∑
j∈[n]

√
Lj and taking expectations over the above display,

Ej∼p
[

1

npj

〈
w

f∗j
aux(j)− wf∗j , wx

aux − wx
+(j)

〉
+

1

npj

〈
wx − wx

aux, w
f∗j
aux(j)− w

f∗j
+ (j)

〉]
≤

2
∑

j∈[n]

√
Lj

√
nµ

Ej∼p
[
V r
w (waux(j)) + V r

waux(j)
(w+(j))

]
.

Hence, the last two lines in (33) contribute
2
∑
j∈[n]
√
Lj√

nµ to λ in the final bound.

We next apply Proposition 19 to analyze the convergence of Algorithm 5.

Lemma 23 Let w0 := (wx
0, {∇fi(w

fi
0)}i∈[n]), which is the input zt to Algorithm 5 at iteration t. If

S ≥ 2λ in Algorithm 5 with λ as in (32), then Algorithm 5 returns w̃ ← w̄σ as defined in (31) such
that for z? as the saddle point to (25),

EV r
w̃(z?) ≤

1

2
V r
w0

(z?).

Proof We apply Proposition 19, where (28) is satisfied via Lemmas 20 and 22. By Proposition 19
with u = z? and S ≥ 2λ,

E

 1

S

∑
0≤s<S

〈Φ(w̄s), w̄s − z?〉

 ≤ 1

2
V r
w0

(z?).

Moreover, since σ is uniformly chosen in [0, S − 1], we have

E [〈Φ(w̄σ), w̄σ − z?〉] ≤
1

2
V r
w0

(z?).

Finally, Lemma 21 shows that (an implicit representation of) w̄σ is indeed returned. We conclude
by applying Lemma 18 and using that z? solves the VI in Φ, yielding

E [〈Φ(w̄σ), w̄σ − z?〉] ≥ E [〈Φ(w̄σ)− Φ(z?), w̄σ − z?〉] ≥ V r
w̄σ(z?).

Finally, we provide a simple bound regarding initialization of Algorithm 4.

33

JIN SIDFORD TIAN

Lemma 24 Let x0 ∈ X , and define

z0 :=
(
x0, {∇fi(x0)}i∈[n]

)
. (34)

Moreover, suppose that for x? the solution to (24), Ffs-reg(x0) − Ffs-reg(x?) ≤ ε0. Then, letting z?
be the solution to (25), we have

V r
z0(z?) ≤

(
1 +

∑
i∈[n] Li

nµ

)
ε0.

Proof By the characterization in Lemma 17, we have by Item 1 in Fact 1:

z? =
(
x?, {∇fi(x?)}i∈[n]

)
.

Hence, we bound analogously to Lemma 12:

V r
z0(z?) ≤ µVx0(x?) + V

1
n

∑
i∈[n] fi

x? (x0)

≤ µVx0(x?) +

∑
i∈[n] Li

2n
‖x0 − x?‖2

≤

(
1 +

∑
i∈[n] Li

nµ

)
µVx0(x?) ≤

(
1 +

∑
i∈[n] Li

nµ

)
ε0.

The last line applied strong convexity of Ffs-reg.

E.4. Main result

We now state and prove our main claim.

Theorem 25 Suppose Ffs-reg satisfies Assumption 2 and has minimizer x?, and suppose we have
x0 ∈ X such that Ffs-reg(x0) − Ffs-reg(x?) ≤ ε0. Algorithm 4 using Algorithm 5 with λ as in (32)
returns x ∈ X with EFfs-reg(x)−Ffs-reg(x?) ≤ ε in Ntot iterations, using a total of O(Ntot) gradient
calls each to some fi for i ∈ [n], where

Ntot = O
(
κfs log

(κfsε0
ε

))
, for κfs := n+

∑
i∈[n]

√
Li

√
nµ

. (35)

Proof By Lemma 17, the point x? is consistent between (23) and (25). We run Algorithm 4 with

T = O
(

log
(κfsε0

ε

))
.

By recursively applying Lemma 23 for T times, we obtain a point z such that

EV r
z (z?) ≤

εµ

L
for L = µ+

1

n

∑
i∈[n]

Li,

and hence applying L-smoothness of Ffs-reg and optimality of zx? yields the claim. The complexity
follows from Lemma 9, and spending O(n) gradient evaluations on the first and last iterates of each
call to Algorithm 5 (which is subsumed by the fact that S = Ω(n)).

34

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Algorithm 6: REDX-CONVEX: Strongly convex optimization reduction

Input: µ-strongly convex f : X → R, x0 ∈ X
Parameter(s): K ∈ N
for 0 ≤ k < K do

xk+1 ← any (possibly random) point satisfying

EVxk+1
(x?k+1) ≤ 1

4
Vxk(x?k+1), where x?k+1 := argminx∈X f(x) +

µ

4
Vxk(x)

end

We now revisit the problem (23), and design a method which applies when Ffs is strongly
convex but no summand necessarily is. To do so, we give the following generic reduction for
strongly convex optimization in the form of an algorithm. Similar reductions are standard in the
literature (Frostig et al., 2015), but we include the algorithm and full analysis here for completeness.

Lemma 26 In Algorithm 6, letting x? minimize f , we have for every k ∈ [K]:

EVxk (x?) ≤
1

2k
Vx0 (x?) .

Proof By applying the optimality condition on x?k+1, strong convexity of f , and (18),

〈
∇f(x?k+1), x?k+1 − x?

〉
≤ µ

4

〈
xk − x?k+1, x

?
k+1 − x?

〉
=⇒ µVx?k+1

(x?) ≤ f(x?k+1)− f(x?)

≤
〈
∇f(x?k+1), x?k+1 − x?

〉
≤ µ

4
Vxk(x?)−

µ

4
Vx?k+1

(x?)−
µ

4
Vxk(x?k+1).

Further by the triangle inequality and (a+ b)2 ≤ 2a2 + 2b2, we have

Vxk+1
(x?) ≤ 2Vxk+1

(x?k+1) + 2Vx?k+1
(x?).

Hence, combining these pieces,

EVxk+1
(x?) ≤ 2Vx?k+1

(x?) + 2EVxk+1
(x?k+1)

≤ 2Vx?k+1
(x?) +

1

2
Vxk(x?k+1)

≤ 1

2
Vxk(x?)−

1

2
Vx?k+1

(x?) ≤
1

2
Vxk(x?).

We apply this reduction in order to prove Corollary 27.

35

JIN SIDFORD TIAN

Corollary 27 Suppose the summands {fi}i∈[n] in (23) satisfy Assumption 2, and Ffs is µ-strongly
convex with minimizer x?. Further, suppose we have x0 ∈ X such that Ffs(x0) − Ffs(x?) ≤ ε0.
Algorithm 6 using Algorithm 4 to implement steps returns x ∈ X with EFfs(x) − Ffs(x?) ≤ ε in
Ntot iterations, using a total of O(Ntot) gradient calls each to some fi for i ∈ [n], where

Ntot = O
(
κfs log

(κfsε0
ε

))
, for κfs := n+

∑
i∈[n]

√
Li√
nµ

.

Proof The overhead K is asymptotically the same here as the parameter T in Theorem 25, by
analogous smoothness and strong convexity arguments. Moreover, we use Theorem 25 to solve each
subproblem required by Algorithm 6; in particular, the subproblem is equivalent to approximately
minimizing Ffs + µ

8 ‖·‖
2, up to a linear shift which does not affect any smoothness bounds, and a

constant in the strong convexity. We note that we will initialize the subproblem solver in iteration k
with xk. We hence can set T = 2 and S = O(κfs), yielding the desired iteration bound.

Appendix F. Minimax finite sum optimization
In this section, we provide efficient algorithms for computing an approximate saddle point of the
following minimax finite sum optimization problem:

min
x∈X

max
y∈Y

Fmmfs(x, y) :=
1

n

∑
i∈[n]

(fi(x) + hi(x, y)− gi(y)) . (36)

Here and throughout this section {fi : X → R}i∈[n], {gi : Y → R}i∈[n] are differentiable con-
vex functions, and {hi : X × Y → R}i∈[n] are differentiable convex-concave functions. For the
remainder, we focus on algorithms for solving the following regularized formulation of (36):

min
x∈X

max
y∈Y

Fmmfs-reg(x, y) :=
1

n

∑
i∈[n]

(fi(x) + hi(x, y)− gi(y)) +
µx

2
‖x‖2 − µy

2
‖y‖2 . (37)

As in Section 2 and Appendix E, to instead solve an instance of (36) where each fi is 2µx-
strongly convex and each gi is 2µy-strongly convex, we may instead equivalently solve (37) by
reparameterizing fi ← fi − µx ‖·‖2, gi ← gi − µy ‖·‖2 for each i ∈ [n]. The extra factor of 2 is
so we can make a strong convexity assumption in Assumption 3 about separable summands, which
only affects our final bounds by constants. We further remark that our algorithms extend to solve
instances of (36) where f , g is µx and µy-strongly convex in ‖·‖, but individual summands are not.
We provide this result at the end of the section in Corollary 41.

In designing methods for solving (37) we make the following additional regularity assumptions.

Assumption 3 We assume the following about (37) for all i ∈ [n].

(1) fi is Lx
i -smooth and µxi -strongly convex and gi is Ly

i -smooth and µyi -strongly convex.

(2) hi has the following blockwise-smoothness properties: for all u, v ∈ X × Y ,

‖∇xhi(u)−∇xhi(v)‖ ≤ Λxx
i ‖ux − vx‖+ Λxy

i ‖u
y − vy‖ and

‖∇yhi(u)−∇yhi(v)‖ ≤ Λxy
i ‖u

x − vx‖+ Λyy
i ‖u

y − vy‖ .
(38)

36

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

The remainder of this section is organized as follows.

(1) In Appendix F.1, we state a primal-dual formulation of (37) which we will apply our methods
to, and prove that its solution also yields a solution to (37).

(2) In Appendix F.2, we give our algorithm, which is composed of an outer loop and an inner
loop, and prove it is efficiently implementable.

(3) In Appendix F.3, we prove the convergence rate of our inner loop.

(4) In Appendix F.4, we prove the convergence rate of our outer loop.

(5) In Appendix F.5, we state and prove our main result, Theorem 39.

F.1. Setup

To solve (37), we will instead find a saddle point to the primal-dual function

Fmmfs-pd (z) :=
µx

2
‖zx‖2 − µy

2
‖zy‖2

+
1

n

∑
i∈[n]

(
hi(z

x, zy) +
〈
zf
∗
i , zx

〉
−
〈
zg
∗
i , zy

〉
− f∗i

(
zf
∗
i

)
+ g∗i (z

g∗i)
)
.

(39)

We denote the domain of Fmmfs-pd by Z := X × Y × (X ∗)n × (Y∗)n. For z ∈ Z , we refer to its
blocks by (zx, zy, {zf∗i }i∈[n], {zg

∗
i }i∈[n]). The primal-dual function Fmmfs-pd is related to the original

function Fmmfs in the following way; we omit the proof, as it follows analogously to the proofs of
Lemmas 4 and 17.

Lemma 28 Let z? = (zx?, z
y
?, {z

f∗i
? }i∈[n], {z

g∗i
? }i∈[n]) be the saddle point to (39). Then, (zx?, z

y
?) is a

saddle point to (37).

As in Section 2.1, it will be convenient to define the convex function r : Z → R, which
combines the (unsigned) separable components of Fmmfs-pd:

r

(
zx, zy,

{
zf
∗
i

}
i∈[n]

,
{
zg
∗
i

}
i∈[n]

)
:=

µx

2
‖zx‖2 +

µy

2
‖zy‖2 +

1

n

∑
i∈[n]

f∗i

(
zf
∗
i

)
+

1

n

∑
i∈[n]

g∗i

(
zg
∗
i

)
.

(40)
Again, r serves as a regularizer in our algorithm. We next define Φmmfs-pd, the gradient operator

of Fmmfs-pd. We decompose Φmmfs-pd into three parts, roughly corresponding to the contribution
from r, the contributions from the primal-dual representations of {fi}i∈[n] and {gi}i∈[n], and the

37

JIN SIDFORD TIAN

contribution from {hi}i∈[n]. In particular, we define

Φmmfs-pd(z) := ∇r(z) + Φh(z) + Φbilin(z),

∇r (z) :=

(
µxzx, µyzy,

{
1

n
∇f∗i

(
zf
∗
i

)}
i∈[n]

,

{
1

n
∇g∗i

(
zg
∗
i

)}
i∈[n]

)
,

Φh (z) :=

 1

n

∑
i∈[n]

∇xhi(zx, zy),−
1

n

∑
i∈[n]

∇yhi(zx, zy), {0}i∈[n] , {0}i∈[n]

 ,

Φbilin (z) :=

 1

n

∑
i∈[n]

zf
∗
i ,

1

n

∑
i∈[n]

zg
∗
i ,

{
− 1

n
zx
}
i∈[n]

,

{
− 1

n
zy
}
i∈[n]

 .

(41)

F.2. Algorithm

In this section we present our algorithm which consists of the following two parts; its design is
inspired by a similar strategy used in prior work (Carmon et al., 2019, 2020).

(1) Our “outer loop” is based on a proximal point method (Algorithm 7, adapted from Nemirovski
(2004)).

(2) Our “inner loop” solves each proximal subproblem to high accuracy via a careful analysis of
randomized mirror prox (Algorithm 8, adapted from Algorithm 3).

At each iteration t of the outer loop (Algorithm 7), we require an accurate approximation

zt+1 ≈ z?t+1 which solves the VI in Φ := Φmmfs-pd(z) + γ (∇r(z)−∇r(zt)) , (42)

where we recall the definitions of gtot and r from (41) and (40), and when zt is clear from context
(i.e. we are analyzing a single implementation of the inner loop).

To implement our inner loop (i.e. solve the VI in Φ), we apply randomized mirror prox (Al-
gorithm 3) with a new analysis. In particular, we will not be able to obtain the expected relative
Lipschitzness bound required by Proposition 19 for our randomized gradient estimators, so we de-
velop a new “partial variance” analysis of Algorithm 3 to obtain our rate. We use this terminology
because we use variance bounds on a component of Φ for which we cannot directly obtain expected
relative Lipschitzness bounds.

Proposition 29 (Partial variance analysis of randomized mirror prox) Suppose (possibly ran-
dom) Φ̃ is defined so that in each iteration s, for all u ∈ Z and all ρ > 0, there exists a (possibly
random) point w̄s ∈ Z and a γ-strongly monotone operator Φ : Z → Z∗ (with respect to r) such
that

E
[〈

Φ̃(ws+1/2), ws+1/2 − w?
〉]

= E [〈Φ(w̄s), w̄s − w?〉] ,

E
[〈

Φ̃(ws+1/2)− Φ̃(ws), ws+1/2 − ws+1

〉]
≤
(
λ0 +

1

ρ

)
E
[
V r
ws(ws+1/2) + V r

ws+1/2
(ws+1)

]
+ ρλ1E

[
V r
w0

(w?) + V r
w̄s(w?)

]
,

(43)

38

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

where w? solves the VI in Φ. Then by setting

ρ← γ

5λ1
, λ← λ0 +

1

ρ
, T ← 5λ

γ
=

5λ0

γ
+

25λ1

γ2
,

in Algorithm 3, and returning w̄σ for 0 ≤ σ < S sampled uniformly at random,

E
[
V r
w̄σ (w?)

]
≤ 1

2
V r
w0

(w?).

Proof First, consider a single iteration 0 ≤ s < S, and fix the point ws in Algorithm 3. By the
optimality conditions on ws+1/2 and ws+1, we have

1

λ

〈
Φ̃(ws), ws+1/2 − ws+1

〉
≤ V r

ws(ws+1)− V r
ws+1/2

(ws+1)− V r
ws(ws+1/2),

1

λ

〈
Φ̃(ws+1/2), ws+1 − w?

〉
≤ V r

ws(w?)− V
r
ws+1

(w?)− V r
ws(ws+1).

Summing the above, rearranging, and taking expectations yields

E
[

1

λ
〈Φ(w̄s), w̄s − w?〉

]
= E

[
1

λ

〈
Φ̃(ws+1/2), ws+1/2 − w?

〉]
≤ E

[
V r
ws(w?)− V

r
ws+1

(w?)
]

+ E
[

1

λ

〈
Φ̃(ws+1/2)− Φ̃(ws), ws+1/2 − ws+1

〉
− V r

ws(ws+1/2) + V r
ws+1/2

(ws+1)

]
≤ E

[
V r
ws(w?)− V

r
ws+1

(w?)
]

+
ρλ1

λ
E
[
V r
w0

(w?) + V r
w̄s(w?)

]
.

In the last line we used the assumption (43). Sincew? solves the VI in Φ, adding E 1
λ 〈Φ(w?), w? − w̄s〉

to the left-hand side above and applying strong monotonicity of g in r yields

E
[

1

λ
V r
w̄s(w?)

]
≤ E

[
V r
ws(w?)− V

r
ws+1

(w?)
]

+
ρλ1

λ
E
[
V r
w0

(w?) + V r
w̄s(w?)

]
.

Telescoping the above for 0 ≤ s < S and using nonnegativity of Bregman divergences yields

(γ − ρλ1)E

 1

T

∑
0≤t<T

V r
w̄s(w?)

 ≤ (λ
T

+ ρλ1

)
V r
w0

(w?).

Substituting our choices of w̄s, ρ, λ, and T yields the claim.

For simplicity in the following we denote z̄ := zt whenever we discuss a single proximal
subproblem. We next introduce the gradient estimator Φ̃ we use in each inner loop, i.e. finding a
solution to the VI in Φ defined in (42). We first define three sampling distributions p, q, r, via

pj :=

√
Lx
j

2
∑

i∈[n]

√
Lx
i

+
1

2n
for all j ∈ [n], qk :=

√
Ly
k

2
∑

i∈[n]

√
Ly
i

+
1

2n
for all k ∈ [n],

and r` :=
Λtot
`

2
∑

i∈[n] Λtot
i

+
1

2n
for all ` ∈ [n], where Λtot

i :=
Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy
for all i ∈ [n].

(44)

39

JIN SIDFORD TIAN

Algorithm 8 will run in logarithmically many phases, each initialized at an “anchor point” w0

(cf. Algorithm 8). We construct gradient estimators for Algorithm 3 of Φ(w) = Φmmfs-pd(w) +
γ(∇r(w) − ∇r(z̄)) as defined in (42) as follows. In each iteration, for a current anchor point w0,
we sample four coordinates j ∼ p, k ∼ q, and `, `′ ∼ r, all independently. We believe that it is
likely that other sampling schemes, e.g. sampling j and k non-independently, will also suffice for
our method but focus on the independent scheme for simplicity. We use gxy to refer to the X × Y
blocks of a vector g in Z∗, and f∗g∗ to refer to all other blocks corresponding to (X ∗)n × (Y∗)n.
Then we define for an iterate w = ws of Algorithm 8 (where Φh is as in (41)):

Φ̃(w) := Φjk`(w) := Φh
jk`(w) + Φ

sep
jk`(w) + Φbilin

jk` (w),[
Φh
jk`(w)

]x
:=
[
Φh(w0)

]x
+

1

nr`

(
∇xh`(wx, wy)−∇xh`(wx

0, w
y
0)
)
,[

Φh
jk`(w)

]y
:=
[
Φh(w0)

]y
− 1

nr`

(
∇yh`(wx, wy)−∇yh`(wx

0, w
y
0)
)
,[

Φh
jk`(w)

]f∗g∗
:=
(
{0}i∈[n] , {0}i∈[n]

)
,[

Φ
sep
jk`(w)

]xy
:= (1 + γ) (µxwx, µywy)− γ (µxz̄x, µyz̄y) ,[

Φ
sep
jk`(w)

]f∗g∗
:= (1 + γ)

({
1

npj
∇f∗j

(
wf∗j
)
· 1i=j

}
i∈[n]

,

{
1

nqk
∇g∗k

(
wf∗k

)
· 1i=k

}
i∈[n]

)

− γ

({
1

npj
∇f∗j

(
z̄f
∗
j

)
· 1i=j

}
i∈[n]

,

{
1

nqk
∇g∗k

(
z̄g
∗
k

)
· 1i=k

}
i∈[n]

)
,

[
Φbilin
jk` (w)

]xy
:=

 1

n

∑
i∈[n]

wf∗i ,
1

n

∑
i∈[n]

wg∗i

 ,

[
Φbilin
jk` (w)

]f∗g∗
:=

({
− 1

npj
wx · 1i=j

}
i∈[n]

,

{
− 1

nqk
wy · 1i=k

}
i∈[n]

)
.

(45)
In particular, the estimator Φjk`(w) only depends on the sampled indices j, k, `, and not `′. Next,
consider taking the step waux(jk`)← Proxrw(1

λgjk`(w)) as in Algorithm 3, where we use the short-
handwaux(jk`) = ws+1/2 to indicate the iterate of Algorithm 3 taken fromws assuming j, k, `were
sampled. Observing the form of gjk`, we denote the blocks of waux(jk`) by

waux(jk`) :=

(
wx
aux(`), w

y
aux(`),

{
w

f∗i
aux(j)

}
i∈[n]

,
{
w

g∗i
aux(k)

}
i∈[n]

)
,

where we write wx
aux(`) to indicate that it only depends on the random choice of ` (and not j or k);

we use similar notation for the other blocks. We also define

∆x(j) := w
f∗j
aux(j)− wf∗j (j), ∆y(k) := w

g∗k
aux(k)− wg∗k (k),

40

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

and then set (where we use the notation Φjk`′ to signify its dependence on j, k, `′, and not `):

Φ̃(waux(jk`)) := Φjk`′(waux(jk`)) := Φh
jk`′(waux(jk`)) + Φ

sep
jk`′(waux(jk`)) + Φbilin

jk`′(waux(jk`)),[
Φh
jk`′(waux(jk`))

]x
:=
[
Φh(w0)

]x
+

1

nr`′

(
∇xh`′(wx

aux(`), w
y
aux(`))−∇xh`′(wx

0, w
y
0)
)
,[

Φh
jk`′(waux(jk`))

]y
:=
[
Φh(w0)

]y
− 1

nr`′

(
∇yh`′(wx

aux(`), w
y
aux(`))−∇yh`′(wx

0, w
y
0)
)
,[

Φh
jk`′(waux(jk`))

]f∗g∗
:=
(
{0}i∈[n] , {0}i∈[n]

)
,[

Φ
sep
jk`′(waux(jk`))

]xy
:= (1 + γ) (µxwx

aux(`), µ
ywy

aux(`))− γ (µxz̄x, µyz̄y) ,[
Φ

sep
jk`′(waux(jk`))

]f∗g∗
:= (1 + γ)

({
1

npj
∇f∗j

(
w

f∗j
aux

)
· 1i=j

}
i∈[n]

,

{
1

nqk
∇g∗k

(
w

f∗k
aux

)
· 1i=k

}
i∈[n]

)

− γ

({
1

npj
∇f∗j

(
z̄f
∗
j

)
· 1i=j

}
i∈[n]

,

{
1

nqk
∇g∗k

(
z̄g
∗
k

)
· 1i=k

}
i∈[n]

)
,

[
Φbilin
jk`′(waux(jk`))

]xy
:=

 1

n

∑
i∈[n]

wf∗i +
1

npj
∆x(j),

1

n

∑
i∈[n]

wg∗i +
1

nqk
∆y(k)

 ,

[
Φbilin
jk`′(waux(jk`))

]f∗g∗
:=

({
− 1

npj
wx
aux(`) · 1i=j

}
i∈[n]

,

{
− 1

nqk
wy
aux(`) · 1i=k

}
i∈[n]

)
.

(46)
We also define the random “aggregate point” we will use in Proposition 29:

w̄(`) := w +
(
wx

aux
(`)− wx, wy

aux
(`)− wy, {∆x(j)}j∈[n], {∆y(k)}k∈[n]

)
. (47)

Notably, w̄(`) depends only on the randomly sampled `. We record the following useful observation
about our randomized operators (45), (46), in accordance with the first condition in (43).

Lemma 30 Define {Φjk`,Φjk`′} : Z → Z∗ as in (45), (46), and the random “aggregate point”
w̄(`) as in (47). Then, for all u ∈ Z , recalling the definition of Φ = Φmmfs-pd + γ(∇r − ∇r(z̄))
from (42),

E
[〈

Φjk`′(waux(jk`)), waux(jk`)− u
〉]

= E`∼r [〈Φ(w̄(`)), w̄(`)− u〉] .

Proof We demonstrate this equality for theX and (X ∗)n blocks; the others (theY and (Y∗)n blocks)
follow symmetrically. We will use the definitions of Φh and Φbilin from (41).

X block. Fix ` ∈ [n]. We first observe that

E`′∼r
[[

Φh
jk`′(waux(jk`))

]x]
=
[
Φh(w̄(`))

]x
,

E`′∼r
[[

Φ
sep
jk`′(waux(jk`))

]x]
= (1 + γ) [∇r(w̄(`))]x − γ [∇r(z̄)]x .

41

JIN SIDFORD TIAN

Moreover, by expanding the expectation over j ∼ p,

Ej∼p
[〈[

Φbilin
jk`′(waux(jk`))

]x
, wx

aux(`)− ux
〉]

=

〈
1

n

∑
j∈[n]

(wf∗j + ∆x(j)), wx
aux(`)− ux

〉

=
〈[

Φbilin(w̄(`))
]x
, wx

aux(`)− ux
〉
.

Summing, we conclude that for fixed ` and taking expectations over j, k, `′,

E
[〈[

Φjk`′(waux(jk`))
]x
, wx

aux(`)− ux
〉]

= 〈[Φ(w̄(`))]x , wx
aux(`)− ux〉 .

The conclusion for the X block follows by taking expectations over `.

X ∗ blocks. Note that the [Φh
jk`′]

f∗ blocks are always zero. Next, for the [Φ
sep
jk`′]

f∗ component, by
expanding the expectation over j ∼ p and taking advantage of sparsity, for any ` ∈ [n],

Ej∼p
[〈[

Φ
sep
jk`′(waux(jk`))

]f∗
, wf∗

aux(jk`)− uf
∗
〉]

= (1 + γ)
∑
j∈[n]

〈
1

n
∇f∗j

(
w

f∗j
aux

)
, w

f∗j
aux − uf

∗
j

〉
− γ

∑
j∈[n]

〈
1

n
∇f∗j

(
z̄f
∗
j

)
, w

f∗j
aux − uaj

〉
=
〈

(1 + γ) [∇r(w̄(`))]f
∗
− γ [∇r(z̄)]f

∗
, w̄f∗(`)− uf∗

〉
.

Here, we recall f∗j denotes the block corresponding to the jth copy of X ∗. Finally, for the [Φbilin
jk`′]

f∗

component, fix ` ∈ [n]. Expanding the expectation over j ∼ p and taking advantage of sparsity,

Ej∼p
[〈[

Φbilin
jk`′(waux(jk`))

]f∗
, [waux(jk`)]

f∗ − uf∗
〉]

=
〈[

Φbilin(w̄(`))
]f∗

, w̄f∗(`)− uf∗
〉
.

Summing, we conclude that for fixed ` and taking expectations over j, k, `′,

E
〈[
gjk`′(waux(jk`))

]f∗
, [waux(jk`)]

f∗ − uf∗
〉

=
〈

[gtot(w̄(`))]f
∗
, w̄f∗(`)− uf∗

〉
.

The conclusion for the X ∗ blocks follows by taking expectations over `.

Finally, we give a complete implementation of our method as pseudocode below in Algorithms 7
(the outer loop) and 8 (the inner loop). We also show that it is a correct implementation in the
following Lemma 31.

Lemma 31 The inner for loop of Algorithm 8 implements Algorithm 3 on ({Φ̃}, r) defined in (45),
(46), (40), for σ iterations, and returns w̄σ, following the definition (47). Each iteration s > 0 is
implementable in O(1) gradient calls to some {fj , gk, hl}, and O(1) vector operations on X and
Y .

Proof Let {ws, ws+1/2}0≤s≤σ be the iterates of Algorithm 3. We will inductively show that some
run of the inner for loop in Algorithm 8 preserves the invariants

ws =

(
wx
s, w

y
s,
{
∇fi(wfi

s)
}
i∈[n]

, {∇fi(wgi
s)}i∈[n]

)
,

ws+1/2 =

(
wx
s+1/2, w

y
s+1/2,

{
∇fi(wfi

s+1/2)
}
i∈[n]

,
{
∇fi(wgi

s+1/2)
}
i∈[n]

)

42

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Algorithm 7: MINIMAX-FINITESUM-SOLVE(Fmmfs-reg, x0, y0): Minimax finite sum opti-
mization

Input: (37) satisfying Assumption 3, (x0, y0) ∈ X × Y
Parameter(s): T ∈ N
zx0 ← x0, zy0 ← y0, zfi0 ← x0, z

f∗i
0 ← ∇fi(x0), zgi0 ← y0, z

g∗i
0 ← ∇gi(y0) for all i ∈ [n]

for 0 ≤ t < T do
zt+1 ← MINIMAX-FINITESUM-INNER(Fmmfs-reg, {zxt , z

y
t , {z

fi
t }i∈[n], {z

gi
t }i∈[n]})

end
Return: (zxT , z

y
T)

for all 0 ≤ s ≤ σ. Once we prove this claim, it is clear that the inner for loop in Algorithm 8
implements Algorithm 3 and returns w̄σ, upon recalling the definitions (45), (46), (40), and (47).

The base case of our induction follows from the way w0 is initialized. Next, suppose for some

0 ≤ s ≤ σ, our inductive claim holds. By the update for w
f∗j
s+1/2, if j ∈ [n] was sampled in iteration

s, using the first item in Fact 1,

w
f∗j
s+1/2 ← argmin

w
f∗
j ∈X ∗

{〈
1

nλpj

(
(1 + γ)w

fj
s − γz̄fj − wx

s

)
, wf∗j

〉
+ V

f∗j

w
f∗
j
s

(
wf∗j
)}

= ∇fj
(
w

fj
s −

1

nλpj

(
(1 + γ)w

fj
s − γz̄fj − wx

s

))
.

Similarly, if k ∈ [n] was sampled in iteration s,

w
g∗k
s+1/2 ← argmin

w
g∗
k

〈
1

nλqk
((1 + γ)wgk

s − γz̄gk − wy
s) , w

g∗k

〉
+ V

g∗k

w
g∗
k
s

(
wg∗k

)
.

= ∇gk
(
wgk
s −

1

nλqk
((1 + γ)wgk

s − γz̄gk − wy
s)

)
.

Hence, the updates to w
f∗j
s+1/2 and wg∗k

s+1/2 preserve our invariant, and all other wf∗i
s+1/2, i 6= j and

w
g∗i
s+1/2, i 6= k do not change by sparsity of Φjk`. Analogously the updates to each wf∗i

s+1 and wg∗i
s+1

preserve our invariant. Finally, in every iteration s > 0, the updates towxy
s+1/2 andwxy

s+1 only require
evaluating O(1) new gradients each, by 1-sparsity of the dual block updates.

F.3. Inner loop convergence analysis

We give a convergence guarantee on Algorithm 8 for solving the VI in Φ := gtot + γ(∇r−∇r(z̄)).
In order to use Proposition 29 to solve our problem, we must prove strong monotonicity of Φ and
specify the parameters λ0, λ1 and ρ in (43); note that Lemma 30 handles the first condition in (43).
To this end we give the following properties on Φ, Φ̃ as defined in (45) and (46).

Strong monotonicity. We begin by proving strong monotonicity of Φ.

Lemma 32 (Strong monotonicity) Define Φ : Z → Z∗ as in (42), and define r : Z → R as in
(40). Then Φ is (1 + γ)-strongly monotone with respect to r.

43

JIN SIDFORD TIAN

Algorithm 8: MINIMAX-FINITESUM-INNER(Fmmfs-reg, z̄
x, z̄y, {z̄fi}i∈[n], {z̄gi}i∈[n]): Mini-

max finite sum optimization subroutine

Input: (37) satisfying Assumption 3, z̄x, {z̄fi}i∈[n] ∈ X , z̄y, {z̄gi}i∈[n] ∈ Y
Parameter(s): γ ≥ 1, λ > 0, N,S ∈ N
w0 ← z̄
for 0 ≤ τ < N do

Sample 0 ≤ σ < S uniformly at random
for 0 ≤ s ≤ σ do

Sample j, k, `, `′ ∈ [n] independently according to p, q, r, r respectively defined in (44),
and define

[Φsep]x := (1 + γ)µxwx
s − γµxz̄x, [Φsep]y = (1 + γ)µywy

s − γµyz̄y,[
Φbilin]x :=

∑
i∈[n]∇fi

(
wfi
s

)
n

,
[
Φbilin]y :=

∑
i∈[n]∇gi

(
wgi
s

)
n

,

Φx :=
[
Φh(w0)

]x
+
∇xh`(wx

s, w
y
s)−∇xh`(wx

0, w
y
0)

nr`
+ [Φsep]x +

[
Φbilin]x ,

Φy :=
[
Φh(w0)

]y
− ∇yh`(w

x
s, w

y
s)−∇yh`(wx

0, w
y
0)

nr`
+ [Φsep]y +

[
Φbilin]y

wx
s+1/2 ← wx

s − 1
λµx Φx, wy

s+1/2 ← wy
s − 1

λµy Φy

w
fj
s+1/2 ← w

fj
s − 1

nλpj

(
(1 + γ)w

fj
s − γz̄fj − wx

s

)
wgk
s+1/2 ← wfk

s − 1
nλpk

(
(1 + γ)wgk

s − γz̄gk − wy
s

)
Define

[Φsep]x := (1 + γ)µxwx
s+1/2 − γµ

xz̄x, [Φsep]y := (1 + γ)µywy
s+1/2 − γµ

yz̄y,

[
Φbilin]x :=

∑
i∈[n]∇fi

(
wfi
s

)
n

+
∇fj

(
w

fj
s+1/2

)
−∇fj

(
w

fj
s

)
npj

,

[
Φbilin]y :=

∑
i∈[n]∇gi

(
wgi
s

)
n

+
∇gk

(
wgk
s+1/2

)
−∇gk

(
wgk
s

)
nqk

,

Φx :=
[
Φh(w0)

]x
+
∇xh`′(wx

s+1/2, w
y
s+1/2)−∇xh`′(wx

0, w
y
0)

nr`′
+ [Φsep]x +

[
Φbilin]x ,

Φy :=
[
Φh(w0)

]y
−
∇yh`′(wx

s+1/2, w
y
s+1/2)−∇yh`′(wx

0, w
y
0)

nr`′
+ [Φsep]y +

[
Φbilin]y

wx
s+1 ← wx

s − 1
λµx Φx, wy

s+1 ← wy
s − 1

λµy Φy

w
fj
s+1 ← w

fj
s − 1

nλpj

(
(1 + γ)w

fj
s+1/2 − γz̄

fj − wx
s+1/2

)
wgk
s+1 ← wfk

s − 1
nλpk

(
(1 + γ)wgk

s+1/2 − γz̄
gk − wy

s+1/2

)
end
w̄fi ← wfi

σ − 1
nλpi

(
(1 + γ)wfi

σ − γz̄fi − wx
σ

)
for each i ∈ [n]

w̄gi ← wgi
σ − 1

nλqi

(
(1 + γ)wgi

σ − γz̄gi − wy
σ

)
for each i ∈ [n]

wxy
0 ← wxy

σ+1/2, wfi
0 ← w̄fi , wgi

0 ← w̄gi for all i ∈ [n]

end
Return: (wx

0, w
y
0, {∇fi(w

fi
0)}i∈[n], {∇gi(w

gi
0)}i∈[n])

44

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Proof We decompose Φ(z) = (1 + γ)∇r(z) + Φbilin(z) + Φh(z) − γ∇r(z̄), using the definitions
in (41). By a similar argument as Lemma 5, we obtain the claim.

Expected relative Lipschitzness. We next provide bounds on the components of (43) correspond-
ing to Φsep and Φbilin, where we use the shorthand Φsep := (1 + γ)∇r − γ∇r(z̄) in the remainder
of this section. In particular, we provide a partial bound on the quantity λ0.

Lemma 33 Define {Φjk`,Φjk`′} : Z → Z∗ as in (45), (46), and define r : Z → R as in (40).
Letting w+(jk``′) be ws+1 in Algorithm 8 if j, k, `, `′ were sampled in iteration s, defining

Φfg
jk`(w) := Φ

sep
jk`(w) + Φbilin

jk` (w),

Φfg
jk`′(waux(jk`)) := Φ

sep
jk`′(waux(jk`)) + Φbilin

jk`′(waux(jk`)),

we have

E
[〈

Φfg
jk`′(waux(jk`))− Φfg

jk`(w), waux(jk`)− w+(jk``′)
〉]

≤ λfgE
[
V r
w (waux(jk`)) + V r

waux(jk`)

(
w+(jk``′)

)]
,

for

λfg = 2n(1 + γ) +

∑
i∈[n]

√
Lx
i√

nµx
+

∑
i∈[n]

√
Ly
i√

nµy
.

Proof This is immediate upon combining the following Lemmas 34 and 35.

Lemma 34 Following notation of Lemma 33, for λsep := 2n(1 + γ), we have

E
[〈

Φ
sep
jk`′(waux(jk`))− Φ

sep
jk`(w), waux(jk`)− w+(jk``′)

〉]
≤ λsepE

[
V r
w (waux(jk`)) + V r

waux(jk`)

(
w+(jk``′)

)]
.

Proof The proof is similar to (part of) the proof of Lemma 22. We claim that for any j, k, `, `′,〈
Φ

sep
jk`′(waux(jk`))− Φ

sep
jk`(w), waux(jk`)− w+(jk``′)

〉
≤ λsep

(
V r
w (waux(jk`)) + V r

waux(jk`)

(
w+(jk``′)

))
.

Fix j, k, `, `′. Since all pj and qk are lower bounded by 1
2n by assumption, applying Lemma 7 to the

relevant blocks of r and nonnegativity of Bregman divergences proves the above display.

Lemma 35 Following notation of Lemma 33, for

λcross :=
2
∑

i∈[n]

√
Lx
i√

nµx
+

2
∑

i∈[n]

√
Ly
i√

nµy
,

we have

E
[〈

Φbilin
jk`′(waux(jk`))− Φbilin

jk` (w), waux(jk`)− w+(jk``′)
〉]

≤ λcrossE
[
V r
w (waux(jk`)) + V r

waux(jk`)

(
w+(jk``′)

)]
.

45

JIN SIDFORD TIAN

Proof The proof is similar to (part of) the proof of Lemma 22. We claim that for any j, k, `, `′,〈
Φbilin
jk`′(waux(jk`))− Φbilin

jk` (w), waux(jk`)− w+(jk``′)
〉

≤ λcross
(
V r
w (waux(jk`)) + V r

waux(jk`)

(
w+(jk``′)

))
.

Fix j, k, `, `′. By applying Item (1) in Lemma 16 with f = fj , α = (Lx
jµ

x)−
1
2 ,

Ej
[

1

npj

〈
w

f∗j
aux − wf∗j , wx

aux(`)− wx
+(jk``′)

〉
+

1

npj

〈
wx − wx

aux(`), w
f∗j
aux − w

f∗j
+ (jk``′)

〉]
≤

2
∑

i∈[n]

√
Lx
i√

nµx

(
V r
w (waux(jk`)) + V r

waux(jk`)

(
w+(jk``′)

))
.

Similarly, by applying Item (1) in Lemma 16 with f = gk, α = (Ly
kµ

y)−
1
2 ,

Ej
[

1

nqk

〈
w

g∗k
aux − wg∗k , wy

aux(`)− w
y
+(jk``′)

〉
+

1

nqk

〈
wy − wy

aux(`), w
g∗k
aux − w

g∗k
+ (jk``′)

〉]
≤

2
∑

i∈[n]

√
Ly
i√

nµy

(
V r
w (waux(jk`)) + V r

waux(jk`)

(
w+(jk``′)

))
.

Summing the above displays yields the desired claim.

Partial variance bound. Finally, we provide bounds on the components of (43) corresponding to
Φh. Namely, we bound the quantity λ1, and complete the bound on λ0 within Proposition 29.

Lemma 36 Following notation of Lemma 33, and recalling the definition (48), for

λ1 := 32(λh)2,

where we define

λh :=
1

n

∑
i∈[n]

(
Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

)
. (48)

we have for any ρ > 0,

E
[〈

Φh
jk`′(waux(jk`))− Φh

jk`(w), waux(jk`)− w+(jk``′)
〉]

≤
(

2λh +
1

ρ

)
E
[
V r
w (waux(jk`)) + V r

waux(jk`)

(
w+(jk``′)

)]
+ ρλ1E

[
V r
w0

(w?) + V r
w̄(`)(w?)

]
.

(49)

Proof The proof is similar to (part of) the proof of Lemma 11. Fix j, k, `, `′. By definition,[
Φh
jk`′(waux(jk`))− Φh

jk`(w)
]xy

=
1

nr`′

(
∇xh`′(wx

aux(`), w
y
aux(`))−∇xh`′(wx

0, w
y
0),∇yh`′(wx

0, w
y
0)−∇yh`′(wx

aux(`), w
y
aux(`))

)
− 1

nr`

(
∇xh`(wx, wy)−∇xh`(wx

0, w
y
0),∇yh`(wx

0, w
y
0)−∇yh`(wx, wy)

)
.

46

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

We decompose the x blocks of the left-hand side of (49) as

〈[
Φh
jk`′(waux(jk`))− Φh

jk`(w)
]x
, wx

aux(`)− wx
+(jk``′)

〉
= 1 + 2 + 3 ,

1 :=
1

nr`′

〈
∇xh`′(wx

aux(`), w
y
aux(`))−∇xh`′(wx

0, w
y
0), wx

aux(`)− wx
+(jk``′)

〉
,

2 :=
1

nr`

〈
∇xh`(wx

0, w
y
0)−∇xh`(wx

aux(`), w
y
aux(`)), w

x
aux(`)− wx

+(jk``′)
〉
,

3 :=
1

nr`

〈
∇xh`(wx

aux(`), w
y
aux(`))−∇xh`(wx, wy), wx

aux(`)− wx
+(jk``′)

〉
.

By the Lipschitzness bounds in (38) and Young’s inequality,

1 ≤ 1

nr`′

∥∥∇xh`′(wx
aux(`), w

y
aux(`))−∇xh`′(wx

0, w
y
0)
∥∥∥∥wx

aux(`)− wx
+(jk``′)

∥∥
≤ 1

nr`′
Λxx
`′ ‖wx

aux(`)− wx
0‖
∥∥wx

aux(`)− wx
+(jk``′)

∥∥
+

1

nr`′
Λxy
`′

∥∥wy
aux(`)− w

y
0

∥∥∥∥wx
aux(`)− wx

+(jk``′)
∥∥

≤
2ρ(Λxx

`′)
2

µxn2r2
`′
‖wx

aux(`)− wx
0‖

2 +
2ρ(Λxy

`′)
2

µxn2r2
`′

∥∥wy
aux(`)− w

y
0

∥∥2
+
µx

4ρ

∥∥wx
aux(`)− wx

+(jk``′)
∥∥2
.

Symmetrically, we bound

2 ≤
2ρ(Λxx

`)2

µxn2r2
`

‖wx
aux(`)− wx

0‖
2 +

2ρ(Λxy
`)2

µxn2r2
`

∥∥wy
aux(`)− w

y
0

∥∥2
+
µx

4ρ

∥∥wx
aux(`)− wx

+(jk``′)
∥∥2
.

Finally, we have

3 ≤ 1

nr`
‖∇xh`(wx

aux(`), w
y
aux(`))−∇xh`(wx, wy)‖

∥∥wx
aux(`)− wx

+(jk``′)
∥∥

≤ 1

nr`
Λxx
` ‖wx

aux(`)− wx‖
∥∥wx

aux(`)− wx
+(jk``′)

∥∥
+

1

nr`
Λxy
` ‖w

y
aux(`)− wy‖

∥∥wx
aux(`)− wx

+(jk``′)
∥∥

≤ 1

nr`

(
Λxx
`

µx

(
µx

2
‖wx

aux(`)− wx‖2 +
µx

2

∥∥wx
aux(`)− wx

+(jk``′)
∥∥2
))

+
1

nr`

(
Λxy
`√
µxµy

(
µy

2
‖wy

aux(`)− wy‖2 +
µx

2

∥∥wx
aux(`)− wx

+(jk``′)
∥∥2
))

.

47

JIN SIDFORD TIAN

We may similarly decompose the y blocks of the left-hand side of (49) as 4 + 5 + 6 , where
symmetrically, we have

4 ≤
2ρ(Λyy

`′)
2

µyn2r2
`′

∥∥wy
aux(`)− w

y
0

∥∥2
+

2ρ(Λxy
`′)

2

µyn2r2
`′
‖wx

aux(`)− wx
0‖

2 +
µy

4ρ

∥∥wy
aux(`)− w

y
+(jk``′)

∥∥2
,

5 ≤
2ρ(Λyy

`)2

µyn2r2
`

∥∥wy
aux(`)− w

y
0

∥∥2
+

2ρ(Λxy
`)2

µyn2r2
`

‖wx
aux(`)− wx

0‖
2 +

µy

4ρ

∥∥wy
aux(`)− w

y
+(jk``′)

∥∥2
,

6 ≤ 1

nr`

(
Λyy
`

µy

(
µy

2
‖wy

aux(`)− wy‖2 +
µy

2

∥∥wy
aux(`)− w

y
+(jk``′)

∥∥2
))

+
1

nr`

(
Λxy
`√
µxµy

(
µx

2
‖wx

aux(`)− wx‖2 +
µy

2

∥∥wy
aux(`)− w

y
+(jk``′)

∥∥2
))

.

We first observe that by definition of r and nonnegativity of Bregman divergences,

3 + 6 ≤ 1

nr`

(
Λxx
`

µx
+

Λxy
`√
µxµy

+
Λyy
`

µy

)(
V r
w(waux(jk`)) + V r

waux(jk`)
(w+(jk``′))

)
≤ 2λh

(
V r
w(waux(jk`)) + V r

waux(jk`)
(w+(jk``′))

)
.

Moreover, since by the triangle inequality and (a+ b)2 ≤ 2a2 + 2b2,

‖wx
aux(`)− wx

0‖
2 ≤ 2 ‖wx

aux(`)− wx
?‖

2 + 2 ‖wx
0 − wx

?‖
2 ,∥∥wy

aux(`)− w
y
0

∥∥2 ≤ 2 ‖wy
aux(`)− wy

?‖
2 + 2

∥∥wy
0 − w

y
?

∥∥2
,

we have by definition of r and λ1,

1 + 2 + 4 + 5 ≤ 1

ρ

(
V r
w(waux(jk`)) + V r

waux(jk`)
(w+(jk``′))

)
+ ρλ1

(
V r
w0

(w?) + V r
w̄(`)(w?)

)
.

Summing the above displays and taking expectations yields the claim.

Combining the properties we prove above with Proposition 29, we obtain the following conver-
gence guarantee for each loop 0 ≤ τ < N in Algorithm 8.

Proposition 37 Consider a run of the inner for loop in Algorithm 8 initialized at w0 ∈ Z , with

λ←

(
2n(1 + γ) +

2
∑

i∈[n]

√
Lx
i√

nµx
+

2
∑

i∈[n]

√
Ly
i√

nµy
+ 2λh

)
+

160(λh)2

γ
, S ← 5λ

γ
, (50)

where λh is defined in (48). Letting w̃ be the new setting of w0 in Line 8 at the end of the run,

E [V r
w̃(w?)] ≤ 1

2
V r
w0

(w?),

where w? solves the VI in Φ (defined in (42)).

48

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

F.4. Outer loop convergence analysis

We state the following convergence guarantee on our outer loop, Algorithm 7. The analysis is
a somewhat technical modification of the standard proximal point analysis for solving VIs (Ne-
mirovski, 2004), to handle approximation error.

Proposition 38 Consider a single iteration 0 ≤ t < T of Algorithm 7, and let z? is the saddle
point to Fmmfs-pd (defined in (39)). Setting S as in (50) and

N := O (log (γλ)) , (51)

for an appropriately large constant in our implementation of Algorithm 8 and λ as in (50), we have

EV r
zt+1

(z?) ≤
4γ

1 + 4γ
V r
zt(z?).

Proof Fix an iteration t ∈ [T] of Algorithm 7, and let z?t+1 be the exact solution to the VI in
Φmmfs-pd + γ∇r − ∇r(zt). By the guarantee of Proposition 37, after the stated number of NS
iterations in Algorithm 8 (for an appropriately large constant), we obtain a point zt+1 such that

E
[
V r
zt+1

(z?t+1)
]
≤ 1

1 + 3γκ̃
V r
zt(ẑt+1), where κ̃ := 10

∑
i∈[n]

(
Lx
i + Λxx

i

µx
+
Ly
i + Λyy

i

µy
+

Λxy
i√
µxµy

)2

.

(52)
The optimality condition on z?t+1 yields〈

Φmmfs-pd (z?t+1

)
, z?t+1 − z?

〉
≤ γV r

zt (z?)− γV r
z?t+1

(z?)− γVzt
(
z?t+1

)
.

Rearranging terms then gives:〈
Φmmfs-pd (zt+1) , zt+1 − z?

〉
≤ γV r

zt (z?)− γV r
zt+1

(z?)− γV r
zt

(
z?t+1

)
+ γ

(
V r
zt+1

(z?)− V r
z?t+1

(z?)
)

+
〈
Φmmfs-pd (zt+1)− Φmmfs-pd (z?t+1

)
, z?t+1 − z?

〉
+
〈
Φmmfs-pd (zt+1) , zt+1 − z?t+1

〉
= γV r

zt (z?)− γV r
zt+1

(z?)− γV r
zt

(
z?t+1

)
+ γV r

zt+1

(
z?t+1

)
+ γ

〈
∇r (zt+1)−∇r

(
z?t+1

)
, z?t+1 − z?

〉
+
〈
Φmmfs-pd (zt+1)− Φmmfs-pd (z?t+1

)
, z?t+1 − z?

〉
+
〈
Φmmfs-pd (zt+1) , zt+1 − z?t+1

〉
≤ γV r

zt (z?)− γV r
zt+1

(z?)− γV r
zt

(
z?t+1

)
+ γV r

zt+1

(
z?t+1

)
+ γ

〈
∇r (zt+1)−∇r

(
z?t+1

)
, zt+1 − z?

〉
+
〈
Φmmfs-pd (zt+1)− Φmmfs-pd (z?t+1

)
, zt+1 − z?

〉
+
〈
Φmmfs-pd (zt+1)− Φmmfs-pd (z?) , zt+1 − z?t+1

〉
. (53)

In the only equality, we used the identity (18). The last inequality used monotonicity of the
operators γ∇r and Φmmfs-pd, as well as Φmmfs-pd(z?) = 0 because it is an unconstrained minimax
optimization problem. In the remainder of the proof, we will bound the last three lines of (53).

49

JIN SIDFORD TIAN

First, for any α > 0, we bound:

〈
∇r (zt+1)−∇r

(
z?t+1

)
, zt+1 − z?

〉
= µx

〈
zxt+1 − (z?t+1)x, zxt+1 − zx?

〉
+ µy

〈
zyt+1 − (z?t+1)y, zyt+1 − z

y
?

〉
+

1

n

∑
i∈[n]

〈
∇f∗i (z

f∗i
t+1)−∇f∗i ((z?t+1)f

∗
i), z

f∗i
t+1 − z

f∗i
?

〉
+

1

n

∑
i∈[n]

〈
∇g∗i (z

g∗i
t+1)−∇g∗i ((z?t+1)g

∗
i), z

g∗i
t+1 − z

g∗i
?

〉
≤ 2αµx

∥∥zxt+1 − (z?t+1)x
∥∥2

+
µx

8α

∥∥zxt+1 − zx?
∥∥2

+ 2αµy
∥∥zyt+1 − (z?t+1)y

∥∥2
+
µy

8α

∥∥zyt+1 − z
y
?

∥∥2

+
1

n

∑
i∈[n]

(
2αLx

i

(µx)2

∥∥∥zf∗it+1 − (z?t+1)f
∗
i

∥∥∥2
+

1

8αLx
i

∥∥∥zf∗it+1 − z
f∗i
?

∥∥∥2
)

+
1

n

∑
i∈[n]

(
2αLy

i

(µy)2

∥∥∥zg∗it+1 − (z?t+1)g
∗
i

∥∥∥2
+

1

8αLy
i

∥∥∥zg∗it+1 − z
g∗i
?

∥∥∥2
)

≤ 1

4α
V r
zt+1

(z?) + κ̃αV r
zt+1

(z?t+1). (54)

The equality used the definition of r in (40). The first inequality used Young’s and Cauchy-Schwarz
on the X × Y blocks, as well as 1

µxi
-smoothness of the f∗i from Assumption 3 and Item 4 in Fact 1

(and similar bounds on each g∗i). The last inequality used strong convexity of each piece of r.

Similarly, by definition of Φmmfs-pd (41) which we denote for Φ for brevity in the following:

〈
Φ (zt+1)− Φ

(
z?t+1

)
, zt+1 − z?

〉
≤ 1

8
V r
zt+1

(z?) + 2κ̃V r
zt+1

(z?t+1) +
1

n

∑
i∈[n]

〈
∇xhi(zxt+1, z

y
t+1)−∇xhi((z?t+1)x, (z?t+1)y), zxt+1 − zx?

〉
+

1

n

∑
i∈[n]

〈
∇yhi(zxt+1, z

y
t+1)−∇yhi((z?t+1)x, (z?t+1)y), zyt+1 − z

y
?

〉
+

1

n

∑
i∈[n]

(〈
z
f∗i
t+1 − (z?t+1)f

∗
i , zxt+1 − zx?

〉
+
〈
z
g∗i
t+1 − (z?t+1)g

∗
i , zyt+1 − z

y
?

〉)
− 1

n

∑
i∈[n]

(〈
zxt+1 − (z?t+1)x, z

f∗i
t+1 − z

f∗i
?

〉
+
〈
zyt+1 − (z?t+1)y, z

g∗i
t+1 − z

g∗i
?

〉)

50

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

where we used (54) to bound the∇r terms. Consequently,〈
Φ (zt+1)− Φ

(
z?t+1

)
, zt+1 − z?

〉
≤ 1

8
V r
zt+1

(z?) + 2κ̃V r
zt+1

(z?t+1) +
1

n

∑
i∈[n]

(
µx

16
Vzxt+1

(zx?) +
µy

16
Vzyt+1

(zy?)

)

+
1

n

∑
i∈[n]

(
16

(
(Λxx

i)2

µx
+

(Λxy
i)2

µy

)
Vzxt+1

((z?t+1)x)

)

+
1

n

∑
i∈[n]

(
16

(
(Λxy

i)2

µx
+

(Λyy
i)2

µy

)
Vzyt+1

((z?t+1)y)

)

+
1

n

∑
i∈[n]

(
µx

16
Vzxt+1

(zx?) +
µy

16
Vzyt+1

(zy?)

)

+
1

n

∑
i∈[n]

(
8

µx

∥∥∥zf∗it+1 − (z?t+1)f
∗
i

∥∥∥2
+

8

µy

∥∥∥zg∗it+1 − (z?t+1)g
∗
i

∥∥∥2
)

+
1

n

∑
i∈[n]

(
1

8
V
f∗i

z
f∗
i
t+1

(
z
f∗i
?

)
+

1

8
V
g∗i

z
g∗
i
t+1

(
z
g∗i
?

))

+
1

n

∑
i∈[n]

(
8Lx

iVzxt+1
((z?t+1)x) + 8Ly

iVzyt+1
((z?t+1)y)

)
≤ 1

4
V r
zt+1

(z?) + κ̃V r
zt+1

(z?t+1). (55)

In the first inequality, we used Cauchy-Schwarz, Young’s, and our various smoothness assumptions
(as well as strong convexity of each f∗i and g∗i). The last inequality used strong convexity of each
piece of r.

For the last term, by a similar argument as in the previous bounds, we have〈
Φ(zt+1)− Φ(z?), zt+1 − z?t+1

〉
≤ 1

4
V r
zt+1

(z?) + κ̃V r
zt+1

(z?t+1). (56)

Plugging the inequalities (54) with α = γ, (55) and (56) back into (53), this implies〈
Φmmfs-pd (zt+1) , zt+1 − z?

〉
≤ γV r

zt (z?)− γV r
zt+1

(z?)− γV r
zt

(
z?t+1

)
+ γV r

zt+1

(
z?t+1

)
(57)

+
3

4
V r
zt+1

(z?) + 3κ̃γ2V r
zt+1

(z?t+1). (58)

By strong monotonicity of Φmmfs-pd with respect to r, we also have〈
Φmmfs-pd (zt+1) , zt+1 − z?

〉
≥
〈
Φmmfs-pd (zt+1)− Φmmfs-pd (z?) , zt+1 − z?

〉
≥ V r

zt+1
(z?) . (59)

Combining (58) and (59) with the assumption (52), and taking expectations, we obtain(
1

4
+ γ

)
EV r

zt+1
(z?) ≤ γV r

zt(z?) =⇒ EV r
zt+1

(z?) ≤
4γ

1 + 4γ
V r
zt(z?).

51

JIN SIDFORD TIAN

F.5. Main result

We now state and prove our main claim.

Theorem 39 Suppose Fmmfs in (37) satisfies Assumption 3, and has saddle point (x?, y?). Further,
suppose we have (x0, y0) ∈ X × Y such that GapFmmfs-reg

(x0, y0) ≤ ε0. Algorithm 7 using Algo-
rithm 8 with λ as in (50) returns (x, y) ∈ X × Y with EGapFmmfs-reg

(x, y) ≤ ε in Ntot iterations,
using a total of O(Ntot) gradient calls each to some fi, gi, or hi for i ∈ [n], where

Ntot = O
(
κmmfs log (κmmfs) log

(κmmfsε0
ε

))
,

for κmmfs := n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy
+

Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

 .
(60)

In particular, we use Ntot = NTS for

T = O
(
γ log

(κfsε0
ε

))
, N = O (log (κmmfs)) , S = O

(
n+

κmmfs

γ
+

(λh)2

γ2

)
, γ =

λh√
n
.

Proof By Lemma 28, the point (x?, y?) is consistent between (37) and (39). The complexity of each
iteration follows from observation of Algorithm 7 and 8.

Next, by Proposition 37 and Proposition 38, and our choices of T , N , and S for appropriately
large constants, we obtain a point (x, y) ∈ X × Y such that

EV r
(x,y)(z?) ≤

ε

4

(
1

κmmfs

)2

.

Here we used an analogous argument to Lemma 12 to bound the initial divergence. We then use a
similar bound as in Lemma 13 to obtain the desired duality gap bound.

We now revisit the problem (36). We apply a generic reduction framework for minimax op-
timization to develop a solver for this problem under a relaxed version of Assumption 3, without
requiring strong convexity of individual summands.

Assumption 4 We assume the following about (36) for all i ∈ [n].

(1) fi is Lx
i -smooth, and gi is Ly

i -smooth.

(2) h has the following blockwise-smoothness properties: for all u, v ∈ X × Y ,

‖∇xhi(u)−∇xhi(v)‖ ≤ Λxx
i ‖ux − vx‖+ Λxy

i ‖u
y − vy‖ ,

‖∇yhi(u)−∇yhi(v)‖ ≤ Λxy
i ‖u

x − vx‖+ Λyy
i ‖u

y − vy‖ .
(61)

First, we give the following generic reduction for strongly convex-concave optimization in the
form of an algorithm. For simplicity we define for z = (zx, zy) ∈ X × Y ,

ω(z) :=
µx

2
‖zx‖2 +

µy

2
‖zy‖2 .

52

SHARPER RATES FOR MINIMAX AND FINITE SUM OPTIMIZATION

Algorithm 9: REDX-MINIMAX: Reduction for minimax
Input: F : X × Y → R such that F (·, y) is µx-strongly convex for all y ∈ Y and F (x, ·)
µy-strongly concave for all x ∈ X , z0 ∈ X × Y
Parameter(s): K ∈ N
for 0 ≤ k < K do

zk+1 ← any (possibly random) point satisfying

E
[
V ω
zk+1

(
z?k+1

)]
≤ 1

4

(
V ω
zk

(
z?k+1

))
,

where z?k+1 := argminzx∈X argmaxzy∈YF (zx, zy) +
µx

4
Vzxk (zx)− µy

4
Vzyk

(zy)

end

Lemma 40 In Algorithm 9, letting (x?, y?) be the saddle point of F , we have for every k ∈ [K]:

E
[
V ω
zk

(z?)
]
≤ 1

2k
V ω
z0(z?).

Proof By applying the optimality conditions on z?k+1, strong convexity-concavity of F , and (18),
and letting ΦF be the gradient operator of F ,

〈
ΦF (z?k+1), z?k+1 − z?

〉
≤ µx

4

〈
zxk − [z?k+1]x, [z?k+1]x − zx?

〉
+
µy

4

〈
zyk − [z?k+1]y, [z?k+1]y − zy?

〉
=⇒ V ω

z?k+1
(z?) ≤

〈
ΦF (z?k+1), z?k+1 − z?

〉
≤ 1

4
V ω
zk

(z?)−
1

4
V ω
z?k+1

(z?)−
1

4
Vzk(z?k+1).

Further by the triangle inequality and (a+ b)2 ≤ 2a2 + 2b2, we have

V ω
zk+1

(z?) ≤ 2V ω
zk+1

(z?k+1) + 2V ω
z?k+1

(z?).

Hence, combining these pieces,

EV ω
zk+1

(z?) ≤ 2V ω
z?k+1

(z?) + 2EV ω
zk+1

(z?k+1)

≤ 2V ω
z?k+1

(z?) +
1

2
V ω
zk

(z?k+1)

≤ 1

2
V ω
zk

(z?)−
1

2
V ω
z?k+1

(z?) ≤
1

2
V ω
zk

(z?).

We apply this reduction in order to prove Corollary 41, for minimax finite sum optimization
problems with the set of relaxed conditions in Assumption 4.

53

JIN SIDFORD TIAN

Corollary 41 Suppose the summands {fi, gi, hi}i∈[n] in (36) satisfy Assumption 4, and Fmmfs is
µx-strongly convex in x, µy-strongly convex in y, with saddle point (x?, y?). Further, suppose we
have (x0, y0) ∈ X × Y such that GapFmmfs

(x0, y0) ≤ ε0. Algorithm 6 using Algorithm 7 and 8 to
implement steps returns (x, y) ∈ X × Y with EGap(x, y) ≤ ε in Ntot iterations, using a total of
O(Ntot) gradient calls each to some fi, gi, or hi for i ∈ [n], where

Ntot = O
(
κmmfs log(κmmfs) log

(κmmfsε0
ε

))
,

for κmmfs := n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy
+

Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

 .

Proof The overhead K is asymptotically the same here as the logarithmic term in the parameter
T in Theorem 39, by analogous smoothness and strong convexity arguments. Moreover, we use
Theorem 39 with µx, µy rescaled by constants to solve each subproblem required by Algorithm 9;
in particular, the subproblem is equivalent to approximately finding a saddle point to Ffs(z) +
µx

8 ‖z
x‖2 − µy

8 ‖z
y‖2, up to a linear shift which does not affect any smoothness bounds. We note

that we will initialize the subproblem solver in iteration k with zk. We hence can set T = O(γ),
yielding the desired iteration bound.

54

	Introduction
	Minimax optimization
	Finite sum optimization
	Minimax finite sum optimization

	Minimax optimization
	Setup
	Algorithm
	Convergence analysis
	Main result

	Additional related work
	Preliminaries
	Helper facts
	Proofs for sec:minimax
	Proofs for ssec:mmsetup
	Proofs for ssec:mmalgo
	Proofs for ssec:mmconv

	Finite sum optimization
	Setup
	Algorithm
	Convergence analysis
	Main result

	Minimax finite sum optimization
	Setup
	Algorithm
	Inner loop convergence analysis
	Outer loop convergence analysis
	Main result

