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Abstract
We examine one-hidden-layer neural networks with random weights. It is well-known that in
the limit of infinitely many neurons they simplify to Gaussian processes. For networks with a
polynomial activation, we demonstrate that the rate of this convergence in 2-Wasserstein metric is
O(n− 1

2 ), where n is the number of hidden neurons. We suspect this rate is asymptotically sharp.
We improve the known convergence rate for other activations, to power-law in n for ReLU and
inverse-square-root up to logarithmic factors for erf. We explore the interplay between spherical
harmonics, Stein kernels and optimal transport in the non-isotropic setting.
Keywords: Deep learning theory, wide neural networks, Gaussian processes, CLT, neural priors

1. Introduction

We are concerned with a 1-hidden-layer neural network Pn of width n. This is a random function
from the sphere

√
dSd−1 =

{
x ∈ Rd : ∥x∥2 = d

}
to R, defined by

Pn(x) = 1√
n

n∑
i=1

siϕ
(
wi.x√

d

)
where ϕ is a fixed function R → R called activation. The randomness of Pn comes from the
weights si, wi, which are random variables taking values in R and Rd respectively. We assume they
are independent and identically distributed across i.

Under relatively mild regularity conditions, Pn converges to a Gaussian process (GP) as n →
∞. This fact was first noticed in Neal (1996), and discussed in greater generality in Hanin (2021). A
number of works aimed to go beyond the limit and understand the phenomena in its neighbourhood.
The distribution of preactivations1 was studied perturbatively in Yaida (2020). The behaviour of
observables – scalars summarizing the distribution, analogous to the moments of a random variable
– was analysed in Dyer and Gur-Ari (2020) and Aitken and Gur-Ari (2020). Here we investigate the
rate of convergence from the angle of functional metrics. This line of work was initiated in Eldan
et al. (2021), where it was shown that Pn is within O

(
n− 1

6

)
from a GP in the ∞-Wasserstein

distance when ϕ is a polynomial. We extend their method and obtain a rate of O(n− 1
2 ) in the

2-Wasserstein metric, which is asymptotically sharp.
This work is closely tied to Stein’s method and optimal transport. Given a vector-valued ran-

dom variable X , a Stein kernel for X is any matrix-valued function τ satisfying E[X.f(X)] =
E⟨τ(X),∇f⟩HS for any test function f , where ⟨•, •⟩HS is the Hilbert-Schmidt inner product. They

1. Intermediate vectors, or neuron outputs, in deep networks comprising multiple stacked affine maps and coordinate-
wise activations
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were introduced in Stein (1986); for an overview see for example Mijoule et al. (2018) or Az-
moodeh et al. (2021). They are strongly related to quantitative and multi-dimensional forms of
CLT Courtade et al. (2019). It was shown in Ledoux et al. (2015) using the Orstein-Uhlenbeck
diffusion semigroup that the Wasserstein distance to a Gaussian can be controlled by the discrep-
ancy between the kernel and a constant matrix. Here we show how to exploit the rich symmetries
of spherical harmonics to construct Stein kernels. Also, we explore generalizations of diffusive
methods Ledoux et al. (2015),Otto and Villani (2000) to relate Wasserstein distance and Stein dis-
crepancy in a non-isotropic2 setting.

Organization: In the rest of this section we define the notation and then describe the main
results. Section 2 relates random functions to vector-valued random variables. We prove our main
result about polynomial networks in section 3, and analyse general activations in section 4. Spherical
harmonics are explained in appendix A, and Stein kernels and optimal transport are described in
appendix B.

1.1. Notation

We denote the inner product and induced norm of vectors as

u.v =
∑
i

uivi ∥u∥2 = u.u

Both will often be accompanied by normalizing factors. We will mostly be working on the sphere√
dSd−1 = {x ∈ Rd : ∥x∥2 = d}, and we denote the uniform distribution on it by

√
dUSd−1.

We denote the Hilbert-Schmidt product of matrices as

⟨A,B⟩HS = Tr AB⊤ =
∑
i,j

Ai,jBi,j

The metric suitable for comparing random objects is the 2-Wasserstein distance, defined for
random vectors X,Y and random functions f, g as

W2(X,Y )2 = E
[∥∥X − Y

∥∥2] W2(f, g)
2 = E

∫
√
dSd−1

∣∣f(x)− g(x)
∣∣2dx

When the two vectors do not share a common probability space, we defineW2(X,Y )= inf
(X,Y)

W2(X,Y ),

where the infimum is taken over all couplings (joint distributions having X,Y as marginals); the
definition for random functions is analogous.

Random function G is a Gaussian process (GP) if the vector
(
G(x)

)
x∈X has multivariate normal

distribution for any finite set of arguments X .
We will make heavy use of spherical harmonics – a set of functions Yl,m :

√
dSd−1 → R

indexed by l ∈ N0, 1 ≤ m ≤ d–l. They are discussed in detail in appendix A. Their key property is
orthonormality, meaning ∫

√
dSd−1

Yl,m(x)Yl′,m′(x)dx = δll′δmm′

also, they span the Hilbert space of square-integrable functions L2
(√

dSd−1
)
. They give rise to the

orthogonal family of Gegenbauer polynomials Pl.

2. In this paper by isotropic variables we mean those with covariance matrix equal to identity
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1.2. Overview of results and main ideas

Our main result (with some technicalities omitted) is
Theorem 1 (simplified). Assume that si satisfies E[s2] = 1, wi are uniformly distributed on the

sphere wi ∼
√
dUSd−1, and the activation ϕ is a polynomial. Then there exists a Gaussian process

G such that
W2(Pn,G) ≤ C√

n

where C2 = O
(
(d+ deg ϕ)d · E

[
s4
]
· E
[
ϕ′(N (0, 1)

)2]).
The precise statement is theorem 1 in section 3. By approximating the activation with polyno-

mials (section 4) we obtain
Theorem 2 (simplified). Assume P(si = 1) = P(si = −1) = 1

2 , wi ∼
√
dUSd−1. For the

rectified linear unit3 activation ϕ = ReLU we have

W2 (Pn,G) ≤ 7n
− 3

2(2d−1)

while for the error function4 ϕ = erf we have

W2 (Pn,G) ≤ Cd(log n)
d−2
2 · n− 1

2

The first main idea is to find a Hilbert space V together with an embedding E :
√
dSd−1 ↪→ V

satisfying ϕ
(
w.x√

d

)
= E(w).E(x), and use it to express the neural network as an inner product in

V as

Pn(x) =

(
1√
n

n∑
i=1

siE(wi)

)
︸ ︷︷ ︸

w̃

.E(x) (1)

This description separates “random” from “function” – the first bracket w̃ does not depend on the
argument x, while the second is a deterministic function of x.

The next step is approximating the first factor w̃ by a multivariate normal, using a variant of
quantitative CLT. This can then be translated this into an approximation of the network Pn by a
Gaussian process.

In Eldan et al. (2021) an embedding into V =
(
Rd
)⊗0 ⊕ · · · ⊕

(
Rd
)⊗ deg ϕ was obtained by

expanding all monomials (w.x)k of ϕ(w.x). Here we use an expansion in the basis of spherical
harmonics. This approach gives a simple covariance structure of the random vector w̃ – its matrix
is diagonal with explicit eigenvalues. In fact, this expansion enables us to isometrically translate
the problem into a question about countably-dimensional random vectors. Then we employ the
machinery of Stein kernels, and construct one by leveraging the geometry of spherical harmonics.

2. Harmonic decomposition

Here we exhibit a Gaussianity-preserving linear Wasserstein-isometry between random functions
and random vectors. Any random function f on the sphere can be expanded in the basis of spherical

3. ReLU(x) = max{0, x}
4. erf(x) = 2√

π

∫ x

0
e−y2

dy
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harmonics, giving a Rd–0+d–1+...-valued random variable

Xl,m =

∫
√
dSd−1

Yl,m(x)f(x)dx

Conversely, every Rd–0+d–1+...-valued random variable Xl,m naturally defines a random function via

f(x) =
∞∑
l=0

d–l∑
m=1

Xl,mYl,m(x)

Spherical harmonics form a complete orthonormal basis, so these transformations are mutually
inverse. When restricted to sufficiently nice spaces, they define correspondences

random functions on
√
dSd−1 ←→ Rd–0+d–1+...-valued random variables (2)

E
∫
√
dSd−1

∣∣f1(x)− f2(x)
∣∣2dx ←→ E∥X(1) −X(2)∥2 (3)

Gaussian processeses ←→ multivariate normal variables (4)

NNs Pn = 1√
n

n∑
i=1

siϕ
(
wi.x√

d

)
←→ 1√

n

n∑
i=1

ϕ̂l√
d–l
siYl,m(wi) (5)

Line 3 states that we are dealing with an isometry with respect to appropriate 2-Wasserstein
metrics. This is a consequence of the orthonormality of harmonics

E
∫
√
dSd−1

∣∣f1(x)− f2(x)
∣∣2dx = E

∫ ∑
l,m

(
X

(1)
l,m −X

(2)
l,m

)
Yl,m(x)

2

dx =

= E
∑

l,m,l′,m′

(
X

(1)
l,m −X

(2)
l,m

)(
X

(1)
l′,m′ −X

(2)
l′,m′

)∫
Yl,m(x)Yl′,m′(x)dx =

= E
∑
l,m

(
X

(1)
l,m −X

(2)
l,m

)2
= E

∥∥X(1) −X(2)
∥∥2

Preservation of Gaussianity 4 holds because the maps are linear.
In equation 5, the coefficients ϕ̂l come from the expansion ϕ =

∑∞
l=0 ϕ̂lPl of the activation

function ϕ into Gegenbauer polynomials Pl. Equation 17 from appendix A.2 states that their value
at a dot product is expressible in terms of spherical harmonics as

Pl

(
w.x√

d

)
= 1√

d–l

d–l∑
m=1

Yl,m(w)Yl,m(x)

this allows us to interpret the network as an Euclidean inner product in an enlarged space

Pn(x) =
∞∑
l=0

d–l∑
m=1

n∑
i=1

1√
n
· ϕ̂l√

d–l
· siYl,m(wi)Yl,m(x) =

=

(
1√
n

n∑
i=1

ϕ̂l√
d–l
· siYl,m(wi)

)
l,m

.
(
Yl,m(x)

)
l,m

(6)

4
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3. Polynomial networks

Theorem 1 Assume that the weights si obey E[s2] = 1, the weights wi are distributed uniformly on
the sphere wi ∼

√
dUSd−1, and the activation ϕ is a polynomial of degree k satisfying E

[
ϕ(x1)

∣∣x ∼√
dUSd−1

]
= 0. Then, for each n, there exists a Gaussian process G such that

W2(Pn,G) ≤ C√
n

where

C2 = 6d(d+k)d−2

(d−1)! · E
[
s4
]
E
[
ϕ′(N (0, 1)

)2]
+ var

[
s2
]
E
[
ϕ(x1)

2
∣∣∣x ∼ √dUSd−1

]
Idea of proof: Note it is enough to bound the distance between the random bracket from

equation 6 and a Gaussian. We achieve this by exhibiting a Stein kernel for the random variable
ϕ̂l√
d–l
Yl,m(w)

∣∣∣ w ∼ √dUSd−1.
Our construction for l = 1 is illustrated on the right. Let f
be a test function, and recall that Y1,i(w) = wi. For each i,
we pair up the points w+, w− that differ only by the sign of
the i-th coordinate

E[wif(w)] =
1
2E
[
|wi|
(
f(w+)− f(w−)

)]
We join them with the shortest curve γ, and apply the fun-
damental theorem of calculus to the difference

f(w+)− f(w−) =

∫
γ
∇f .dγ = E

w∈γ

[
γ̇(w).∇f(w)

]
Averaging over the sphere gives an equation of the form

E[wif(w)] = E
[
(some vector field).∇f

]
Which is precisely the form of a Stein kernel.

w−=


...
−wi

...




...
wi
...

=w+

γ

It is not immediately clear how to generalize this construction beyond l = 1. However, it turns out
that the vector field we obtain is precisely the gradient of Y1,i tangent to the sphere

√
dSd−1. This

interpretation makes sense for any l,m. Thus, what we actually do is the calculation of average
derivative of test functions in the direction of ∇Yl,m. It turns out that every spherical harmonic
except Yl,m is annihilated.

Once we construct the kernel, we compute its Stein discrepancy S using identities from ap-
pendix A.1. We finish by invoking lemmas from appendix B to extract a bound on the Wasserstein
distance from the discrepancy.

3.1. Proof of theorem 1

3.1.1. NOTATION AND QUOTED RESULTS

For 1 ≤ l ≤ k denote
Ỹl,m(w) = ϕ̂l√

d–l
Yl,m(w)

5
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This is an embedding Ỹ :
√
dSd−1 ↪→ Rd–1+···+d–k , whose left inverse is the projection onto the first

d–1 = d coordinates. We will be concerned with the random variable ỹ = Ỹ (w)
∣∣w ∼ √dUSd−1.

We will need the rotation matrices Rα
ab that act on the basis vectors ei as

Rα
abea =cosα ea − sinα eb

Rα
abeb =sinα ea + cosα ab

Rα
abec =ec when c /∈ {a, b}

and the operators

∂r
def
= w.∇ =

d∑
i=1

wi∂i Lab
def
= wa∂b − wb∂a L2 def

=
∑
a<b

L2
ab

Finally we recall the following identities from appendix A(
Labf

)
(x) =− ∂αf(R

α
abx)

∣∣∣
α=0

(equation 14)

r2∇2 =L2 + ∂r(∂r + d− 2) (equation 15)

0 =(d− t2)P ′′
l (t)− (d− 1)tP ′

l (t) + l(l + d− 2)Pl(t) (equation 19)

Where ∇2 =
∑d

i=1 ∂
2
i is the Laplacian.

3.1.2. CONSTRUCTION OF THE KERNEL

We want to build a Stein kernel for ỹ. Consider a test function f : Rd–1+···+d–k → R. We would like
to understand

E [ỹl,mf(ỹ)] = ϕ̂l√
d–l

E
[
Yl,m(w)f(Ỹ (w))

]
The second expectation is simply the coefficient standing next to Yl,m in the harmonic expansion of
f ◦ Ỹ . We will temporarily move from Rd–1+···+d–k with the test function f to Rd ⊇

√
dSd−1 with

the test function f ◦ Ỹ . As promised, consider the tangent gradient

∇Yl,m − l
dYl,mw and the corresponding operator

(
∇Yl,m − l

dYl,mw
)
.∇ (7)

Viewed in Rd, Yl,m is a homogeneous polynomial of degree l, so w.∇Yl,m = lYl,m. Hence the
operator annihilates r2 = ∥w∥2, so this vector field is tangent to the sphere

√
dSd−1.

Let us look at how does this vector field affect harmonic expansions. Remembering equation 15
and E[L2g] = 0, we can rewrite the action of 7 on spherical harmonics as

E
[ (
∇Yl,m − l

dYl,mw
)
.∇Yl′,m′

∣∣∣w ∼ √dUSd−1
]
=

= E
[

1
2dr

2∇2
(
Yl,mYl′,m′

)
− l

dYl,m∂rYl′,m′

]
=

= E
[

1
2d

(
L2 + ∂r(∂r + d− 2)

)(
Yl,mYl′,m′

)
− ll′

2dYl,mYl′,m′

]
=

=
(
(l+l′)(l+l′+d−2)

2d − ll′

d

)
E
[
Yl,mYl′,m′

]
=

= l2+l′2+(l+l′)(d−2)
2d δll′δmm′

6
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In expectation, this vector field annihilates every spherical harmonic other than Yl,m itself, which
is sent to l(l+d−2)

d . Therefore we can filter the coefficients of f ◦ Ỹ using the identity

E
[
Yl,m(w)(f ◦ Ỹ )(w)

]
= d

l(l+d−2)E
[(
∇Yl,m − l

dYl,mw
)
.∇(f ◦ Ỹ )

]
Now we need to return from the sphere

√
dUSd−1 and go back to Rd–1+···+d–k . We do it using

chain rule(
∇Yl,m − l

dYl,mw
)
.∇(f ◦ Ỹ ) =

∑
l′,m′

ϕ̂l√
d–l

(
∇Yl,m − l

dYl,mw
)
.∇Yl′,m′∂l′,m′f

Therefore

E [ỹl,mf(ỹ)] =E

∑
l′,m′

τl,m;l′,m′∂l′,m′f(ỹ)


where τl,m;l′,m′

(
Ỹ (w)

)
=

ϕ̂lϕ̂l′√
d–ld–l′

d
l(l+d−2)

(
∇Yl,m − l

dYl,mw
)
.∇Yl′,m′

This means that τ is a Stein kernel for ỹ.

3.1.3. HILBERT-SCHMIDT NORM OF BLOCKS

Let us rewrite the kernel as

τl,m;l′,m′ =
ϕ̂lϕ̂l′√

d–ld–l′
1

2l(l+d−2)

[
r2∇2

(
Yl,mYl′,m′

)
− 2ll′Yl,mYl′,m′

]
expanding the Laplacian according to equation 15 we get

r2∇2
(
Yl,mYl′,m′

)
− ll′Yl,mYl′,m′ =

=− (l(l + d− 2) + l′(l′ + d− 2))Yl,mYl′,m′ + (l + l′)(l + l′ + d− 2)Yl,mYl′,m′+

+
∑
a,b

LabYl,m · LabYl′,m′ − 2ll′Yl,mYl′,m′ =

=
∑
a,b

LabYl,m · LabYl′,m′

which means
τl,m;l′,m′ =

ϕ̂lϕ̂l′√
d–ld–l′

1
2l(l+d−2)

∑
a,b

LabYl,m · LabYl′,m′

We will calculate the Hilbert-Schmidt norm of (l, l′)-block of τ . We have

∑
m,m′

∑
a,b

LabYl,m · LabYl′,m′

2

=

=
∑

a,b,c,d,m,m′

LabYl,mLabYl′,m′LcdYl,mLcdYl′,m′ =

=
∑
a,b,c,d

(∑
m

LabYl,mLcdYl,m

)(∑
m′

LabYl′,m′LcdYl′,m′

)

7
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We will calculate the sums for fixed l. Denote (Sab)ij =
(
∂αR

α
ab

∣∣
α=0

)
ij

= δaiδbj − δajδbi.
Recalling equation 14, we can compute the action of L-operators∑
m

LabYl,mLcdYl,m =
∑
m

∂αYl,m
(
Rα

abx
)∣∣∣

α=0
∂βYl,m

(
Rβ

cdx
)∣∣∣

β=0
=

=∂α∂β
∑
m

Yl,m
(
Rα

abx
)
Yl,m

(
Rβ

cdx
)∣∣∣

α=β=0
=

=
√

d–l∂α∂βPl

(
1√
d
x⊤R−α

ab Rβ
cdx
)∣∣∣

α=β=0
=

=
√

d–l
d P ′′

l (
√
d) · ∂αx⊤R−α

ab x
∣∣∣
α=0
· ∂βx⊤Rβ

cdx
∣∣∣
β=0

+

√
d–l
d P

′
l (
√
d) · x⊤∂αR−α

ab

∣∣∣
α=0

∂βR
β
cd

∣∣∣
β=0

x =

=−
√

d–l
d P ′′

l (
√
d) · x⊤Sabx · x⊤Scdx−

√
d–l
d P

′
l (
√
d) · x⊤SabScdx =

=−
√

d–l
d P

′
l (
√
d)
(
δadxbxc − δbdxaxc − δacxbxd + δbcxaxd

)
This gives∑

m,m′

τ2l,m;l′,m′ =
ϕ̂2
l ϕ̂

2
l′

d–ld–l′
1

4l2(l+d−2)2

√
d–ld–l′
d P ′

l (
√
d)P ′

l′(
√
d)
∑
a,b,c,d

(
δadxbxc − δbdxaxc − δacxbxd + δbcxaxd

)2
=

=
ϕ̂2
l ϕ̂

2
l′√

d–ld–l′
1

4dl2(l+d−2)2
P ′
l (
√
d)P ′

l′(
√
d) · 4(d− 1)r4

We substitute x =
√
d into the differential equation 19 for Gegenbauer polynomials to deduce

P ′
l (
√
d) = l(l+d−2)

(d−1)
√
d
Pl(
√
d) = l(l+d−2)

(d−1)
√
d

√
d–l

Finally ∑
m,m′

τ2l,m;l′,m′ =
ϕ̂2
l ϕ̂

2
l′

d−1
l′(l′+d−2)
l(l+d−2) (8)

3.1.4. FINAL BOUND

Let Σl,m;l′,m′ = δll′δmm′
ϕ̂2
l

d–l
. Equation 8 gives

S
(
ỹ,Σ

)2
≤
∥∥Σ− 1

2 τ
∥∥2
HS

=
∑
l,l′

d–l
ϕ̂2
l

· ϕ̂
2
l ϕ̂

2
l′

d−1
l′(l′+d−2)
l(l+d−2) = 1

d−1

(
k∑

l=1

d–l
l(l+d−2)

)(
k∑

l=1

ϕ̂2
l l(l + d− 2)

)
(9)

Substituting d–l =
(
d+l−1
d−1

)
−
(
d+l−3
d−1

)
, for d ≥ 4 we can bound the first term by

k∑
l=1

d–l
l(l+d−2) =

k∑
l=1

d2+2dl−3d−3l+2
l+d−2 · (d+l−3)...(l+1)

(d−1)! ≤ k · 2d · (d+k)d−3

(d−1)! ≤
2d(d+k)d−2

(d−1)!

We can check by hand that this also holds for d = 2, 3. The second term of 9 can be simplified by
recalling the orthonormality of Pl with respect to the density of single coordinate (equation 18 from
appendix A.2)∫ √

d

−
√
d
Pl(t)Pl′(t)ξ(t)dt = δll′ where ξ(t) =

Γ( d
2 )

Γ( d−1
2 )

√
πd

(
1− t2

d

) d−3
2

8
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which gives

∞∑
l=0

ϕ̂2
l l(l + d− 2) =

∫ √
d

−
√
d

( ∞∑
l=0

ϕ̂lPl

)( ∞∑
l=0

ϕ̂ll(l + d− 2)Pl

)
ξ(t)dt (10)

Recalling the ODE 19 for Gegenbauer polynomials, we note

∞∑
l=0

ϕ̂ll(l + d− 2)Pl = −(d− t2)ϕ′′ + (d− 1)tϕ′ = −d
(
1− t2

d

)− d−3
2

((
1− t2

d

) d−1
2

ϕ′
)′

substituting this relation and the explicit form of ξ yields

∞∑
l=0

ϕ̂2
l l(l + d− 2) =− Γ( d

2 )
Γ( d−1

2 )

√
d
π

∫ √
d

−
√
d
ϕ(t) ·

((
1− t2

d

) d−1
2

ϕ′
)′

dt =

=
Γ( d

2 )
Γ( d−1

2 )

√
d
π

∫ √
d

−
√
d
ϕ′(t)2

(
1− t2

d

) d−1
2

dt ≤

≤
√

d−1
2

√
d
π

∫ √
d

−
√
d
ϕ′(t)2 · 2e−

t2

2 dt ≤ 2
√
d(d− 1)E

[
ϕ′(N (0, 1)

)2]
Finally, equation 9 becomes

S(ỹ,Σ)2 ≤ 6d(d+k)d−2

(d−1)! · E
[
ϕ′(N (0, 1)

)2]
Now we only need to translate the discrepancy into Wasserstein distance. Lemma 5 implies

S(sỹ,Σ)2 ≤ E
[
s4
]
S(ỹ,Σ)2 + var

[
s2
]
· ∥ỹ∥2

The norm of ỹ is
∑k

l=1 ϕ̂
2
l ≤

∑∞
l=1 ϕ̂

2
l = E

[
ϕ(x1)

2
∣∣∣x ∼ √dUSd−1

]
. By corollary 6,

W2

(
1√
n

n∑
i=1

siỹi,N (0,Σ)

)
≤ 1√

n
S (sỹ,Σ)

And according to the theory from section 2, this translates isometrically to a distance between Pn
and some Gaussian process.

■

4. Non-polynomial activations

Here we obtain approximations of networks with ReLU and erf activations. We do this by truncating
the expansion of the activation function into (normalized) Hermite polynomials hl. This is a family

of polynomials orthonormal with respect to the Gaussian weight 1√
2π
e−

t2

2 . They can be viewed as
the “limit” of Gegenbauer polynomials as d→∞. We will make use of the generating function for
the normalized Hermite polynomials

etx−
t2

2 =
∞∑
l=0

hl(x)t
l

√
l!

(11)

9
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Theorem 2 Assume d ≥ 3, si ∼ U{−1, 1}, wi ∼
√
dUSd−1. With ϕ = ReLU, for sufficiently

large n there exists a Gaussian process G satisfying

W2 (Pn,G) ≤ 7n
− 3

2(2d−1)

while with ϕ = erf

W2 (Pn,G) ≤
√

e
log 3

2

d
· (logn)

d−2
2√

n

4.1. Proof

4.1.1. GENERAL ACTIVATIONS

Let ϕ =
∑∞

l=0 alhl be the expansion of ϕ in the basis of normalized Hermite polynomials. Denote

the truncations as ϕ =
∑k

l=0 alhl and Pn(x) = 1√
n

∑
i=1 siϕ

(
wi.x√

d

)
. Then a simple calculation

shows

W2

(
Pn,Pn

)2
=

∫ √
d

−
√
d

(
ϕ(t)− ϕ(t)

)2
ξ(t)dt

Since ξ(t) ≤ 5√
2π
e−

t2

2 (which follows from the explicit formula 16 in appendix A.1), this is at most

5

∫ ∞

−∞

(
ϕ(t)− ϕ(t)

)2 · e− t2

2 dt√
2π

= 5
∞∑

l=k+1

a2l

By theorem 1, the truncated network Pn can be approximated by some Gaussian process G as

W2

(
Pn,G

)
≤
√

6d(d+k)d−2

n(d−1)! · E
[
ϕ′(x)2

∣∣x ∼ N (0, 1)
]

Using the triangle inequality, and simplifying d(d+k)d−2

(d−1)! < dd−1kd−2

(d−1)! < ed−1kd−2, we obtain

W2 (Pn,G) ≤

√√√√5
∞∑

l=k+1

a2l +

√
3edkd−2

n · E
[
ϕ′(x)2

∣∣x ∼ N (0, 1)
]

(12)

4.1.2. RELU

Using the equation 11, the coefficients of ReLU satisfy

∞∑
l=0

alt
l

√
l!
=

∫ ∞

0
xe−

(x−t)2

2 dx√
2π

= e−
t2

2√
2π

+ t
2 + t√

2π

∫ t

0
e−

x2

2 dx = 1√
2π

+ t
2 + 1√

2π

∞∑
l=1

(−1)l−1t2l

l!·2l·(2l−1)

Which means

a0 =
1√
2π

a1 =
1
2 al =

(−1)
l
2−1

√
l!

√
2π·( l

2
!)·2

l
2 ·(l−1)

· 12|l for l > 1

10
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By Stirling’s formula a2l ∼
1

π
√
2π
l−

5
2 . Therefore for large enough l we have a2l < 1

7 l
− 5

2 , and as a

consequence
∑∞

l=k+1 a
2
l <

1
7

∑∞
l=k+1 l

− 5
2 < 1

7

∫∞
k l−

5
2dl = 2

21k
− 3

2 . Inequality 12 becomes

W2 (Pn,G) ≤ k−
3
4 +

√
2edkd−2

n

Picking 1
3n

2
2d−1 < k < e−1n

2
2d−1 makes the two terms be of comparable order, and gives

W2 (Pn,G) ≤ 3n
− 3

2(2d−1) +

√
2ede−d+2n− 3

2d−1 < 7n
− 3

2(2d−1)

4.1.3. ERF

Again, using the generating function 11 we find

∂
∂t

∫ ∞

−∞
erf(x) · etx−

t2

2 · e−
x2

2 dx√
2π

=

∞∑
l=0

ltl−1
√
l!
al

On the other hand

∂
∂t

∫ ∞

−∞
erf(x) · e−

(x−t)2

2 dx√
2π

=

∫ ∞

−∞
erf(x) ·

(
− ∂

∂xe
− (x−t)2

2

)
dx√
2π

=

=− erf(x)e−
(x−t)2

2

∣∣∣∣∣
∞

−∞

+

∫ ∞

−∞
erf′(x) · e−

(x−t)2

2 dx√
2π

=

=
√
2

π

∫ ∞

−∞
e−

3x2

2
+xt− t2

2 dx = 2√
3π
e−

t2

3

Comparing the coefficients we obtain al =
2(−1)

l−1
2
√

(l−1)!
√
πl
√
3
l
( l−1

2
!)
· 12∤l.

From Stirling’s formula a2l ∼
(
2
πl

) 3
2
(
2
3

)l, so eventually a2l <
(
2
3

)l and
∑∞

l=k+1 a
2
l < 2

(
2
3

)k.
Then equation 12 together with |erf′| ≤ 1 give

W2 (Pn,G) ≤
√
10
(
2
3

) k
2 +

√
3edkd−2

n

Setting k ∼ logn

log 3
2

completes the proof.

■

5. Discussion

We have demonstrated that one-hidden-layer neural networks with polynomial activation approach
GPs at the rate O(n− 1

2 ) in 2-Wasserstein distance. A natural question to ask is how far can our
result be generalized. Can the condition of a polynomial activation be dropped? Can we retain a
polynomial dependence on the input dimension from the bounds in Eldan et al. (2021)? How about
p-Wasserstein metrics for p > 2? One source of difficulty with these questions seems to originate
from Σ−1 in the definition of S in lemma 7. This factor does not appear in the isotropic case,

11
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and for general covariances one may define S in a few different ways and still obtain bounds on
W . However, dimensional analysis suggests that Σ−1 is more than just an artifact of a particular
wording of Cauchy-Schwarz inequality: if we scale every variable by λ, then W(X,N )2 scales
like λ2 but plain ∥τ − Σ∥2HS scales like λ4. In our proof, construction of the kernel and relating
the distance to discrepancy are largely independent, so we hope that deeper understanding of the
relationship between Wasserstein distance and Stein discrepancy will allow to improve our result
for little extra effort.

In classical CLT the convergence of a normalized sum to a Gaussian is not faster than O(n− 1
2 ),

provided that the variables being averaged have non-zero fourth cumulant. Therefore the bound
from theorem 1 is asymptotically sharp in n. As a concrete example, using notation from thm 1,
one can take P(s = −1) = P(s = 1) = 1

2 and ϕ = id. Then the 2-Wasserstein distance of the
resulting neural network Pn to any GP is not smaller that the minimal distance of its coefficient X1,1

to a normal random variable. It is not too difficult to see that X1,1 = 1√
nd

∑n
i=1(wi)1, where (wi)1

is the first coordinate of wi. The cumulant of (wi)1 is equal E[(wi)
4
1]− 3E[(wi)

2
1]
2 = − 6

d+2 , so the
cumulant of X1,1 is− 6

nd(d+2) . Since cumulant of any Gaussian is zero, it is possible to lower-bound

the distance to a normal in terms of the cumulant, which then shows that the rate O(n− 1
2 ) cannot be

improved.
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Appendix A. Spherical harmonics

There are at least three equivalent ways to think about spherical harmonics

• Algebraic: harmonic (i.e. ∇2Y = 0) homogeneous polynomials in d variables

• Representation-theoretic: irreducible representations of SO(d)

• Analytic: basis of the Hilbert space L2(
√
dSd−1) of functions on the sphere

In the discussion below, we will typically start with the algebraic picture, viewing polynomials
as elements of the ring R[X1, . . . , Xd] and operators Lab as R-linear derivations5 over this ring.
Then we proceed to the analytic picture – remind ourselves that polynomials can be treated as func-
tions on the sphere

√
dSd−1, and think of Lab as infinitesimal generators of rotations; we translate

the algebraic results and explore the consequences of acquiring an inner product. Representation-
theoretic picture will be present in the background and manifest itself whenever we talk about the
symmetries of spherical harmonics.

A.1. Rotations and operators

Special orthogonal group SO(d) acts on points from
√
dSd−1 by R : x 7→ Rx, preserving geometry

x1.x2. This induces an action on functions L2(
√
dSd−1) by R : f 7→ f ◦R−1, which preserves the

inner product∫
√
dSd−1

f1(x)f2(x)dx = E
[
f1(x)f2(x)

∣∣x ∼ √dUSd−1
]

with normalization
∫

1dx = 1

(13)

5. Operator L is a derivation if it satisfies the Leibniz rule L(fg) = Lf · g + f · Lg

13
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The group is generated by rotations of the form Rα
ab = exp(αSab) for anti-symmetric matrices

(Sab)ij = δaiδbj − δajδbi. They act on the basis vectors as

Rα
abea =cosα ea − sinα eb

Rα
abeb =sinα ea + cosα ab

Rα
abec =ec when c /∈ {a, b}

The infinitesimal generators of such rotations are

∂αR
α
abf
∣∣∣
α=0

= Labf where Lab = Xa∂b −Xb∂a (14)

In particular, E[Labf(x)|x ∼
√
dUSd−1] = ∂αE[Rα

abf ]
∣∣
α=0

= 0.
Define the Laplace-Beltrami operator as

L2 def
=
∑
a<b

L2
ab =

1
2

∑
a,b

L2
ab

it is straightforward to verify
r2∇2 = L2 + ∂r(∂r + d− 2) (15)

where

∂r
def
= x.∇ =

d∑
i=1

Xi∂i

Let us note the algebraic properties of these operators. The simplest is ∂r – it multiplies a polynomial
by its degree. Operators Lab are derivations annihilating r2

def
= X2

1 + · · ·+X2
d , so Laplace-Beltrami

operator satisfies L2(r2f) = r2L2f , and by identity 15 is multiplies harmonic homogeneous poly-
nomials of degree l by −l(l + d − 2). Both ∂r and L2 are invariant under rotations (equivalently,
commute with each Lab).

Now we describe their basic analytic properties. The operators Lab are tangent6 to the sphere, so
they and L2 have well-defined restrictions7 to L2(

√
dSd−1). Inner product of functions is invariant

under rotations and Lab obey Leibniz rule, so they are anti-self-adjoint∫
√
dSd−1

Labf1 · f2dx = −
∫
√
dSd−1

f1 · Labf2dx

As a consequence, L2 is self-adjoint (with respect to 13). Also, Lab annihilate the constant function,
so again E[Labf(x)|x ∼

√
dUSd−1] = 0.

Finally let us note a geometric fact about the sphere. It will be usefult later to know the distri-
bution of a single coordinate x1 when we draw x uniformly from the sphere

√
dSd−1. Its density is

supported on the interval [−
√
d,
√
d] and equals

ξ(x) =
Γ( d

2 )
Γ( d−1

2 )
√
πd

(
1− x2

d

) d−3
2 (16)

6. In the sense Labr
2 = 0, or Lab = v.∇ where the vector field v is tangent to

√
dSd−1

7. Any derivation J on R[X1, . . . , Xd] annihilating r2 gives rise to an operator on L2(
√
dSd−1) as follows. For a

function f that is the restriction of a polynomial F to
√
dSd−1 we send f 7→ J(F )

∣∣√
dSd−1 . This is well defined,

because if F
∣∣√

dSd−1 = F ′∣∣√
dSd−1 then F − F ′ = (r2 − d)G for some G, so J(F − F ′) is the zero function on√

dSd−1. Conversely, a differential operator
∑d

i=1 Pi∂i acting on L2(
√
dSd−1) with Pi ∈ R[X1, . . . , Xd] can be

naturally reinterpreted as a derivation on R[X1, . . . , Xd].

14
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One way to see this is by noting that x2
1
d for x ∼

√
dUSd−1 has the same distribution as z21

∥z∥2 for

z ∼ N (0, Id), that is B
(
1
2 ,

d−1
2

)
.

A.2. Spherical harmonics

Lemma 3 Every homogeneous polynomial f ∈ R[X1, . . . , Xd] can be uniquely written as

f = f0 + r2f1 + r4f2 + . . .

where fi are homogeneous harmonic polynomials.

Proof We proceed by induction on l = deg f . For l = 0, 1 the statement is trivial. For l ≥ 1, by
inductive assumption we may write

∇2f = g0 + r2g1 + · · ·+ r2⌊
l−2
2 ⌋g⌊ l−2

2 ⌋

for harmonic gi of degree l − 2− 2i. Now, construct

g =

⌊ l−2
2 ⌋∑

i=0

r2igi
2(i+ 1)(2l − 2i− 4 + d)

then, either by writing ∇2(r2•) = L2 + ∂2
r + (d + 2)∂r + 2d and recalling the eigenvalues of L2

and ∂r, or by direct calculation, we can see that

∇2(r2g) =

⌊ l−2
2 ⌋∑

i=0

r2igi = ∇2f

Therefore, the Laplacian of f − r2g is zero, and f can be decomposed as

f =
(
f − r2g

)︸ ︷︷ ︸
f0

+

⌊ l−2
2 ⌋∑

i=0

r2i+2 gi
2(i+ 1)(2l − 2i− 4 + d)

To see uniqueness, note that each factor is an eigen-element of L2 with a different eigenvalue.

Let us denote the space of degree l homogeneous harmonic polynomials as Hl. By the lemma
3 above, we have

{deg -l homog polys} = Hl ⊕ r2{deg -(l − 2) homog polys} = Hl ⊕ r2Hl−2 ⊕ r4Hl−4 ⊕ . . .

this allows to deduce their dimensions

d–l
def
= dimHl =

(
d+ l − 1

d− 1

)
−
(
d+ l − 3

d− 1

)
Harmonicity and homogeneity of given degree are preserved by rotations, so each Hl is closed
under SO(d), and each r2kHl is a subrepresentation of SO(d) inside R[X1, . . . , Xd]. Note that by
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equation 15 we have Hl = kerL2 + l(l+ d− 2) (in algebraic sense, with Xi considered as abstract
symbols).

Now let us think about restrictions of polynomials R[X1, . . . , Xn] to
√
dSd−1. By Stone-

Weierstrass theorem, they are dense in C(
√
dSd−1,R) with supremum norm. Thus with ℓ2-norm

we must have

L2
(√

dSd−1
)
=

∞⊕
l=0

Hl

with each Hl closed under SO(d). Also, Hl = kerL2 + l(l + d − 2) (in analytic sense, with Hl

considered as functions on the sphere and L2 as a second-order differential operator); the operator
L2 is self-adjoint, so different Hl are orthogonal.

We take spherical harmonics Yl,1, . . . , Yl,d–l to be any orthonormal basis of Hl. Then

E
[
Yl,m(w)Yl′,m′(w)

∣∣w ∼ √dUSd−1
]
= δll′δmm′

Each Hl comes with a representation ρ of SO(d)

RYl,m = Yl,m(R−1x) =

d–l∑
m′=1

ρ(R)m,m′Yl,m′(x)

Such matrices ρ(R) are also orthogonal, which follows from the invariance of the inner product:(
ρ(R)ρ(R)⊤

)
m,m′′ =

∑
m′

ρ(R)m,m′ρ(R)m′′,m′ =
∑

m′,m′′′

ρ(R)m,m′ρ(R)m′′,m′′′
〈
Yl,m′ , Yl,m′′′

〉
=

=
〈
RYl,m, RYl,m′′

〉
=
〈
Yl,m, Yl,m′′

〉
= δm,m′′

Now we look at the relation between spherical harmonics at different points, which will eventu-
ally lead to Gegenbauer polynomials. Consider

P̌l,x(x
′)

def
= 1√

d–l

d–l∑
m=1

Yl,m(x)Yl,m(x′)

By construction P̌l,x ∈ Hl. Also, for any rotation R ∈ SO(d) we have

P̌l,Rx(Rx′) = 1√
d–l
Yl,:(Rx)⊤Yl,:(Rx′) =

= 1√
d–l
Yl,:(x)

⊤ρ(R−1)⊤ρ(R−1)Yl,:(x
′) =

= 1√
d–l
Yl,:(x)

⊤Yl,:(x
′) =

=P̌l,x(x
′)

Therefore P̌l,x(x
′) depends only on the angle between x, x′ and not on their absolute position on the

sphere, i.e. Pl,x(x
′) = Pl

(
x.x′
√
d

)
for some function Pl; it must be a polynomial of degree at most l.

This gives us the key identity

Pl

(
x.x′
√
d

)
= 1√

d–l

d–l∑
m=1

Yl,m(x)Yl,m(x′) (17)

16



RATE OF CONVERGENCE OF POLYNOMIAL NETWORKS TO GAUSSIAN PROCESSES

The Pl are called Gegenbauer polynomials8. They are the unique (up to scaling) functions for
which the map x 7→ Pl(x1) belongs to Hl. Orthogonality of the spaces Hl for different l means
that Gegenbauer polynomials are orthogonal with respect to the single-coordinate density ξ from
equation 16

Pl(
√
d) = 1√

d–l

d–l∑
m=1

E [Yl,m(x)Yl,m(x)] =
√

d–l

∫ √
d

−
√
d
Pl(t)Pl′(t) · ξ(t)dt =E [Pl(Xi)Pl′(Xi)] =

= 1√
d–ld–l′

∑
m,m′

Yl,m(
√
dei)Yl′,m′(

√
dei)E

[
Yl,m(x)Yl′,m′(x)

]
=

= 1√
d–l
δll′Pl(

√
d) = δll′

(18)

therefore Pl can be computed by Gram-Schmidt orthonormalization of {t0, t1, t2, . . . } with respect
to the the density of a single coordinate ξ.

Finally we exhibit an ODE for Pl. Observe that rlPl

(
X1

√
d

r

)
is a homogeneous degree-l har-

monic polynomial. After tidying up the harmonicity condition we obtain

0 = 1
rl−2∇2

(
rlPl

(
X1

√
d

r

))
= (d− t2)P ′′

l (t)− (d− 1)tP ′
l (t) + l(l + d− 2)Pl(t) (19)

Example 1 For d = 2 this construction is precisely the Fourier analysis. We work over
√
2S1 =

{(x1, x2) : x21 + x22 = 2}, parameterized as x1 =
√
2 cos θ, x2 =

√
2 sin θ. Harmonic subspaces

are

H0 = span
{
Y0,1 = 1

}
with d–0 = 1

Hl = span
{
Yl,1 =

√
2 cos lθ, Yl,2 =

√
2 sin lθ

}
with d–l = 2

spherical harmonics are restrictions of polynomials

Yl,1 =2
1−l
2 ℜ(X1 + iX2)

l = rl√
2
l−1 cos lθ

Yl,2 =2
1−l
2 ℑ(X1 + iX2)

l = rl√
2
l−1 sin lθ

There is only one rotation generator

L12 =∂θ = X1∂2 −X2∂1

L2 =∂2
θ = X2

1∂
2
2 +X2

2∂
2
1 − 2X1X2∂1∂2 −X1∂1 −X2∂2

and the Laplace-Beltrami operator L2 acts on Hl as a multiplication by −l2.
Gegenbauer polynomials are characterized by

Pl

(√
2 cos(θ − θ′)

)
=
√
2 cos lθ cos lθ′ +

√
2 sin lθ sin lθ′ =

√
2 cos l(θ − θ′)

i.e. are rescaled Chebyshev polynomials. They are orthonormal with respect to ξ(t)= dt
π
√
2−t2

= dθ
π .

8. Different scaling/normalization conventions are used the literature
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Appendix B. Stein kernels

We say that τ is a Stein kernel for random variable X if for each f ∈ C∞
c we have

E
[
X.f(X)

]
= E

〈
τ(X), Jacf(X)

〉
HS

where (Jacf)ab = ∂fa
∂Xb

is the Jacobian of f , and ⟨A,B⟩HS = Tr AB⊤ is the Hilbert-Schmidt
product.

One can show that a constant matrix Σ is a Stein kernel for X if and only if X ∼ N (0,Σ) (this
statement is known as Stein’s lemma). It turns out that the difference between τ and Σ can be used to
bound the Wasserstein distance between X andN (0,Σ) (see lemma 7). The measure of deviation is
called Stein discrepancy, and in the isotropic case it is defined as S(X, Id) = infτ E∥τ(X)− Id∥2HS .
We will be working with non-isotropic random variables, and following the formulation of lemma
7 we generalize the Stein discrepancy as

S(X,Σ)
def
= inf

τ

√
E
∥∥Σ− 1

2 (τ(X)− Σ)
∥∥2
HS

However, note that other generalizations to non-isotropic case are also possible, and modifying the
last part of the proof9 of 7 can give bounds of a different form.

Substituting f(X) = Xiej we see that Eτ = EXX⊤ = cov[X]. Therefore, Stein discrepancy
can also be viewed as a measure of variance of τ . Intuitively, as we average independent copies of
X , we can expect the variance to decrease and τ to approach its expectation, leading to central limit
theorem. This intuition is formalized in corollary 6; a stronger result – that nS

(
1√
n

∑n
i=1Xi

)
is

non-increasing in n – was proved in Courtade et al. (2019).

B.1. Addition and scaling

Lemma 4 Suppose τ1, . . . , τn are Stein kernels for independent X1, . . . , Xn, and write X̄ =∑n
i=1Xi. Then

τ(x)
def
= E

[∑
i

τi(Xi)

∣∣∣∣∣X̄ = x

]

is a Stein kernel for X̄ . If Xi have the same covariance Σ, then S
(
X̄, nΣ

)2 ≤ 1
n

∑n
i=1 S

(
Xi,Σ

)2.

Proof

E
[
X̄.f

(
X̄
)]

=
∑
i

E
[
Xi.f

(
X̄
)]

=

=
∑
i

E
〈
τi
(
Xi

)
, Jacf

(
X̄
)〉

HS
=

= E
X̄

〈
E

[∑
i

τi(Xi)

∣∣∣∣∣X̄
]
, Jacf

(
X̄
)〉

HS

9. For example by rearranging the equation 25 before applying Cauchy-Schwarz inequality
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If all covariances are equal then we have

S
(
X̄, nΣ

)2
= E

X̄

∥∥∥∥∥(nΣ)− 1
2

(
E

[∑
i

τi
(
Xi

)∣∣∣∣∣X̄
]
− nΣ

)∥∥∥∥∥
2

HS

=

= 1
n E

X̄

∥∥∥∥∥E

[∑
i

Σ− 1
2

(
τi
(
Xi

)
− Σ

)∣∣∣∣∣X̄
]∥∥∥∥∥

2

HS

≤

≤ 1
nE

∥∥∥∥∥∑
i

Σ− 1
2

(
τi
(
Xi

)
− Σ

)∥∥∥∥∥
2

HS

=

= 1
n

∑
i

E
∥∥∥Σ− 1

2

(
τi
(
Xi

)
− Σ

)∥∥∥2
HS

Lemma 5 If τ is a Stein kernel for X and Y = sX , then τ ′(y) = E
[
s2τ(X)

∣∣Y = y
]

is a Stein
kernel for Y . Its discrepancy is at most

S
(
sX,E[s2]cov[X]

)2 ≤ Es4

Es2 · S(X, cov[X])2 + var[s2]
Es2 · E∥X∥

2

Proof

E
[
sX.f(sX)

]
= E

X

[
X.E

s

[
sf(sX)

]]
= E

X

〈
τ(X), Jac E

s

[
sf(sX)

]〉
HS

=

= E
X

〈
τ(X),E

s

[
s2
(
Jacf

)
(sX)

]〉
HS

= E
X,s

〈
s2τ(X),

(
Jacf

)
(sX)

〉
HS

=

=E
Y

〈
E
[
s2τ(X)

∣∣Y ], Jacf(Y )
〉
HS

= E
〈
τ ′(Y ), Jacf(Y )

〉
HS

Now we will bound its discrepancy. Denote Es2 = σ2, cov[X] = Σ. Then

S
(
sX,E

[
s2
]
cov[X]

)2 ≤E
Y

∥∥∥E
[
σ−1Σ− 1

2
(
s2τ(X)− σ2Σ

)∣∣∣Y ]∥∥∥2
HS
≤

≤E
∥∥∥σ−1Σ− 1

2
(
s2τ(X)− Σ

)∥∥∥2
HS

=

=σ−2E
[
s4
]
E
∥∥∥Σ− 1

2 τ(X)
∥∥∥2
HS
− σ−2

∥∥Σ 1
2

∥∥2
HS

=

=Es4

σ2 S
(
X,Σ

)2
+ Es4−σ4

σ2

∥∥Σ 1
2

∥∥2
HS

and we simplify
∥∥Σ 1

2

∥∥2
HS

= Tr Σ = E∥X∥2.

Corollary 6 Suppose Xi are iid with Stein kernel τ and covariance Σ, and let X̄ = 1√
n

∑n
i=1Xi

be the normalized sum. Then we get a quantitative central limit theorem by combining lemmas 7, 5
(for constant s = 1√

n
), and 4

W2

(
X̄,N (0,Σ)

)
≤ S

(
X̄,Σ

)
≤ 1√

n
S
(∑n

i=1Xi, nΣ
)
≤ 1√

n
S
(
Xi,Σ

)
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B.2. Wasserstein bound in non-isotropic case

Lemma 7 Suppose that τ is a Stein kernel for random variable X , and Σ is a symmetric positive-
definite matrix. Then

W2(X,N (0,Σ)) ≤ S(X,Σ) where S(X,Σ)2 = E∥Σ− 1
2
(
τ(X)− Σ

)
∥2HS

This proof is a compilation of Proposition 3.1 from Ledoux et al. (2015) and Lemma 2 from Otto
and Villani (2000), additionally keeping track of the covariance matrix. It is based on interpolation
of the heat flow along the Ornstein-Uhlenbeck semigroup.

B.3. Proof

Let µ0, µ∞ be measures/densities of X,N (0,Σ) respectively, living in D-dimensional space. We
will tackle the case when X has a Radon-Nikodym derivative h = dµ0

dµ∞
with respect to the target

normal measure. The general case follows by an approximation argument – see Otto and Villani
(2000).

B.3.1. HEAT FLOW SEMIGROUP

Introduce
Xt = e−tX +

√
1− e−2tN (0,Σ)

Let µt be the measure of Xt and ht =
dµt

dµ∞
. Define a vector field

vt(x) = E

[
dXt

dt

∣∣∣∣∣Xt = x

]
or equivalently vt = −Σ

(
∇ log ht

)
(20)

Then the density µt satisfies the diffusion equation

∂µt

∂t
= −∇.(µtvt) (21)

A brute-force way to verify the equivalence of definitions in 20 and the diffusion equation 21 is
to plug in the explicit formulas

µ0,t(x0, xt) =(1− e−2t)−
D
2 µ0(x0)µ∞

(
xt − e−tx0√
1− e−2t

)
µt(x) =(1− e−2t)−

D
2

∫
µ0(y)µ∞

(
xt − e−tx0√
1− e−2t

)
dy (22)

vt(x) =µt(x)
−1(1− e−2t)−

D
2

∫
µ0(y)µ∞

(
xt − e−tx0√
1− e−2t

)(
−e−2tx+ e−ty

1− e−2t

)
dy

As a consequence of the diffusion equation 21, the density µt is transported along the trajectories
tangent to vt. Intuitively, if the norm of vt is small, then the density needs to “travel a short distance”
to move from µ0 to µ∞. Formally, lemma 2 from Otto and Villani (2000) states

d+

ds
W2(µt, µt+s) ≤

√
E∥vt(Xt)∥2 =

√∫
∥vt(x)∥2dµt(x)

W2(µ0, µ∞) ≤
∫ ∞

0

√
E∥vt(Xt)∥2dt (23)
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In the next part of the proof we bound the flow norm as

√
E∥vt(Xt)∥2 ≤

e−2t

√
1− e−2t

S(X,Σ) (24)

Substituting this to the inequality 23 and integrating completes the proof of the lemma.
This was all we need to construct the flow. In the next part of the proof we will need a few more

properties. We start with changes in expectations under the semigroup. Define

Ptf(x)
def
= Ef

(
e−tx+

√
1− e−2tN (0,Σ)

)
=

∫
f
(
e−tx+

√
1− e−2ty

)
dµ∞(y)

This is called Mehler’s formula. It is straightforward to check PsPt = Ps+t and Ef(Xt) =
EPtf(X0). Gaussian integration by parts gives a PDE ∂

∂tPtf = LPtf , where L =
∑

i,j Σij∂i∂j −
x.∇. Combining these yields

∫
fµ̇tdx =

d

ds
EPsf(Xt)

∣∣∣∣∣
s=0

= E(Lf)(Xt) =

∫
f

∑
i,j

Σij∂i∂j + x.∇+D

µtdx

Thus we must have ∂µt

∂t =
(∑

i,j ∂i∂j + x.∇+D
)
µt, which turns out to be a restatement of 21.

An explicit calculation of Pth0 turns out to be equivalent to µt

µ∞
from formula 22, so ht = Pth0.

It also satisfies∫
f · Ptgdµ∞ = E

[
f(x)g(y)

∣∣∣∣∣
(
X
Y

)
∼ N

(
0,

(
Σ e−tΣ

e−tΣ Σ

))]
=

∫
Ptf · gdµ∞

and ∇Ptf = e−tPt∇f . The diffusion operator satisfies
∫
fLgdµ∞ = −

∫
(∇f)⊤Σ(∇g)dµ∞.

B.3.2. BOUND ON THE FLOW NORM

This part of the proof is concerned with proving the inequality 24. We start from the transformations∫
∥vt∥2dµt =

∫
(∇ log ht)

⊤Σ2(∇ht)dµ∞ =

=e−t

∫
(∇ log ht)

⊤Σ2(Pt∇h0)dµ∞ =

=

∫
(∇Pt log ht)

⊤Σ2(∇h0)µ∞(x)dx =

=−
∫
∇.
(
µ∞ · Σ2∇Pt log ht

)
h0dx =

=

∫ (
x.Σ∇Pt log ht −∇.Σ2∇Pt log ht

)
h0µ∞dx =

=

∫
(xiΣij∂jPt log ht − ΣikΣkj∂i∂jPt log ht) dµ0 =

=

∫ (
τik(x)− Σik

)
Σkj∂i∂jPt log htdµ0(x)
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where in the last two lines we used the Einstein summation convention. We substitute the
identity

∂i∂jPt log ht =
e−2t

√
1− e−2t

∫ (
Σ−1y

)
i

(
∂j log ht

) (
e−tx+

√
1− e−2ty

)
dµ∞(y)

to get

E∥vt(Xt)∥2 =
e−2t

√
1− e−2t

∫∫ (
y⊤Σ−1

(
τ(x)− Σ

))
×
(
Σ∇ log ht

)
×

×
(
e−tx+

√
1−e−2ty

)
dµ0(x)dµ∞(y)

(25)

By Cauchy-Schwarz inequality the integral is at most√∫∫ ∥∥y⊤Σ−1
(
τ(x)− Σ

)∥∥2 dµ0(x)dµ∞(y)× (26)

×

√∫∫ ∥∥∥(Σ∇ log ht
) (

e−tx+
√
1− e−2ty

)∥∥∥2 dµ0(x)dµ∞(y) (27)

Expression under the root in 26 equals∫∫
yiyjΣ

−1
ik Σ−1

jl

(
τ(x)− Σ

)
km

(
τ(x)− Σ

)
lm
dµ0(x)dµ∞(y) =

=

∫
Σ−1
kl

(
τ(x)− Σ

)
km

(
τ(x)− Σ

)
lm
dµ0(x) =

=

∫ ∥∥∥Σ− 1
2
(
τ(x)− Σ

)∥∥∥2
HS

dµ0(x) = S(X,Σ)2

while the expression under the root in 27 is∫
Pt

(
∥vt∥2

)
dµ0 =

∫
∥vt∥2 · Pth0dµ∞ =

∫
∥vt∥2dµt

These two simplifications allow to bound the equation 25 as

E∥vt(Xt)∥2 ≤ e−2t
√
1−e−2t

· S
(
X,Σ

)
·
√

E∥vt(Xt)∥2

Which is equivalent to the inequality 24. Now, combining inequalities 23 with 24 completes the
proof of the lemma.

■
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