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Abstract

We examine one-hidden-layer neural networks with random weights. It is well-known that in
the limit of infinitely many neurons they simplify to Gaussian processes. For networks with a
polynomial activation, we demonstrate that the rate of this convergence in 2-Wasserstein metric is
O(n_% ), where n is the number of hidden neurons. We suspect this rate is asymptotically sharp.
We improve the known convergence rate for other activations, to power-law in n for ReLU and
inverse-square-root up to logarithmic factors for erf. We explore the interplay between spherical
harmonics, Stein kernels and optimal transport in the non-isotropic setting.
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1. Introduction

We are concerned with a 1-hidden-layer neural network P,, of width n. This is a random function
from the sphere VdS¢™! = {x € R?: ||z||?> = d} to R, defined by

Pu) = 5 30 (%)

where ¢ is a fixed function R — R called activation. The randomness of P, comes from the
weights s;, w;, which are random variables taking values in R and R? respectively. We assume they
are independent and identically distributed across ¢.

Under relatively mild regularity conditions, P,, converges to a Gaussian process (GP) as n —
oo. This fact was first noticed in Neal (1996), and discussed in greater generality in Hanin (2021). A
number of works aimed to go beyond the limit and understand the phenomena in its neighbourhood.
The distribution of preactivations' was studied perturbatively in Yaida (2020). The behaviour of
observables — scalars summarizing the distribution, analogous to the moments of a random variable
—was analysed in Dyer and Gur-Ari (2020) and Aitken and Gur-Ari (2020). Here we investigate the
rate of convergence from the angle of functional metrics. This line of work was initiated in Eldan
et al. (2021), where it was shown that P,, is within O(n_%) from a GP in the oco-Wasserstein

distance when ¢ is a polynomial. We extend their method and obtain a rate of O(nfé) in the
2-Wasserstein metric, which is asymptotically sharp.

This work is closely tied to Stein’s method and optimal transport. Given a vector-valued ran-
dom variable X, a Stein kernel for X is any matrix-valued function 7 satisfying E[X.f(X)] =
E(r(X), V f) s for any test function f, where (e, ®) ;75 is the Hilbert-Schmidt inner product. They

1. Intermediate vectors, or neuron outputs, in deep networks comprising multiple stacked affine maps and coordinate-
wise activations
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were introduced in Stein (1986); for an overview see for example Mijoule et al. (2018) or Az-
moodeh et al. (2021). They are strongly related to quantitative and multi-dimensional forms of
CLT Courtade et al. (2019). It was shown in Ledoux et al. (2015) using the Orstein-Uhlenbeck
diffusion semigroup that the Wasserstein distance to a Gaussian can be controlled by the discrep-
ancy between the kernel and a constant matrix. Here we show how to exploit the rich symmetries
of spherical harmonics to construct Stein kernels. Also, we explore generalizations of diffusive
methods Ledoux et al. (2015),0tto and Villani (2000) to relate Wasserstein distance and Stein dis-
crepancy in a non-isotropic? setting.

Organization: In the rest of this section we define the notation and then describe the main
results. Section 2 relates random functions to vector-valued random variables. We prove our main
result about polynomial networks in section 3, and analyse general activations in section 4. Spherical
harmonics are explained in appendix A, and Stein kernels and optimal transport are described in
appendix B.

1.1. Notation

We denote the inner product and induced norm of vectors as
— 2 _
wv =Y Uy |lul|* = u.u
i

Both will often be accompanied by normalizing factors. We will mostly be working on the sphere
VdS41 = {x € R? : ||z||> = d}, and we denote the uniform distribution on it by v/dU S4~1.
We denote the Hilbert-Schmidt product of matrices as

<A, B>HS =Tr leT = Z Ai,jBi,j
b3

The metric suitable for comparing random objects is the 2-Wasserstein distance, defined for
random vectors X, Y and random functions f, g as

Wa(X,¥)? = E [|lx = v|] Watof =€ [ 11 o) e

When the two vectors do not share a common probability space, we define Wa(X,Y) = &1}% Wh(X,Y),

where the infimum is taken over all couplings (joint distributions having X, Y as marginals); the
definition for random functions is analogous.

Random function G is a Gaussian process (GP) if the vector (g (:n))m ex has multivariate normal
distribution for any finite set of arguments X.

We will make heavy use of spherical harmonics — a set of functions Y}, : VdS*!' - R
indexed by [ € Ng,1 < m < &;. They are discussed in detail in appendix A. Their key property is
orthonormality, meaning

/\/Esdl }/l,m (x)yi’,m’ (x)d:z = 51[’6mm’

also, they span the Hilbert space of square-integrable functions £? (\/35 d_l). They give rise to the
orthogonal family of Gegenbauer polynomials P;.

2. In this paper by isotropic variables we mean those with covariance matrix equal to identity
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1.2. Overview of results and main ideas

Our main result (with some technicalities omitted) is

Theorem 1 (simplified). Assume that s; satisfies E[s?] = 1, w; are uniformly distributed on the
sphere w; ~ \/dUS%, and the activation ¢ is a polynomial. Then there exists a Gaussian process
G such that

WQ(Pna g) < %

where C2 = O ((d + deg ¢)? - E[s*] - E|¢/ (N(0,1))*]).

The precise statement is theorem 1 in section 3. By approximating the activation with polyno-
mials (section 4) we obtain

Theorem 2 (simplified). Assume P(s; = 1) = P(s; = —1)
rectified linear unit® activation ¢ = ReLU we have

%, w; ~ VAU S, For the

W2 ('pm g) < n~ 2(2371)

while for the error function* ¢ = erf we have

da—2

Ws (Pn,G) < Clogn) 2 -n~

N

The first main idea is to find a Hilbert space V together with an embedding E : /dS? ' — V
satisfying ¢ (w—\/g) = F(w).E(x), and use it to express the neural network as an inner product in
V as

Pn(z) = <jﬁ ZsiE(wz-)) B(x) )
i=1

~~
w

This description separates “random” from “function” — the first bracket 1w does not depend on the
argument x, while the second is a deterministic function of x.

The next step is approximating the first factor w by a multivariate normal, using a variant of
quantitative CLT. This can then be translated this into an approximation of the network P,, by a
Gaussian process.

In Eldan et al. (2021) an embedding into V = (R?) Ny (Rd)®deg¢ was obtained by
expanding all monomials (w.z)* of ¢(w.x). Here we use an expansion in the basis of spherical
harmonics. This approach gives a simple covariance structure of the random vector w — its matrix
is diagonal with explicit eigenvalues. In fact, this expansion enables us to isometrically translate
the problem into a question about countably-dimensional random vectors. Then we employ the
machinery of Stein kernels, and construct one by leveraging the geometry of spherical harmonics.

2. Harmonic decomposition

Here we exhibit a Gaussianity-preserving linear Wasserstein-isometry between random functions
and random vectors. Any random function f on the sphere can be expanded in the basis of spherical

3. ReLU(z) = max{0,z}
4. erf(z) = == [ eV dy

™
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harmonics, giving a R70+?1+_yalued random variable
Xiw= [ Vim(@)f(a)da
Vdsd—1

Conversely, every R70t%1+_yalued random variable X, 1,m naturally defines a random function via

o0 d-l

= Z Z Xl,m}/l,m(x)

=0 m=1

Spherical harmonics form a complete orthonormal basis, so these transformations are mutually
inverse. When restricted to sufficiently nice spaces, they define correspondences

random functions on vVdS%! — R70+41+_yalued random variables 2)
/ fi(@) = fo(@)[Pde +—  E|XD - x@)? 3)
Sd 1
Gaussian processeses — multivariate normal variables @
n n N
NNsP, = =3 sio (22) e B3 sva(w) 5)
i=1 i=1

Line 3 states that we are dealing with an isometry with respect to appropriate 2-Wasserstein
metrics. This is a consequence of the orthonormality of harmonics

/md (1(@) = fola)|de = E/ S (%0 X2) Vi) | de =

Lm
=E Z ( 12) (Xz(/)'—XZIQ) /Ylm Yo (w)dx =

L,m,l’,m’

- EZ (X(l x® ) —E[x® - x®?

Preservation of Gaussianity 4 holds because the maps are linear.

In equation 5, the coefficients g%l come from the expansion ¢ = > %, <;3[Pl of the activation
function ¢ into Gegenbauer polynomials F;. Equation 17 from appendix A.2 states that their value
at a dot product is expressible in terms of spherical harmonics as

P () = ZYlm )Yim ()

this allows us to interpret the network as an Euclidean inner product in an enlarged space

oo d; n
Pale) =303 3= - si¥ian(w)Yion(o) =
l:Om:iz=1 (6)
:<\/15;¢él S'}/l,m(wi)>l '<%’m($))l,m
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3. Polynomial networks

Theorem 1 Assume that the weights s; obey E[s?] = 1, the weights w; are distributed uniformly on
the sphere w; ~ \/dU S9Y, and the activation ¢ is a polynomial of degree k satisfying E [d)(a:l) }:E ~
\/&USd_l] = 0. Then, for each n, there exists a Gaussian process G such that

.
WQ(PTH g) S \/ﬁ

where
o2 = % : E[&]E[gf)’ (NV(0, 1))2] + Var[s2] E[¢($1)2‘x ~ \/gUSd_l]

Idea of proof: Note it is enough to bound the distance between the random bracket from
equation 6 and a Gaussian. We achieve this by exhibiting a Stein kernel for the random variable

\}%Ylvm(w) ‘ w ~ /dUS 1,
Our construction for [ = 1 is illustrated on the right. Let f
be a test function, and recall that Y; ;(w) = w;. For each 4,
we pair up the points w™, w™ that differ only by the sign of

the ¢-th coordinate
Efuwif (w)] = $E [wil (F(w*) = f(w)]

We join them with the shortest curve ~y, and apply the fun-
damental theorem of calculus to the difference

f) = fw) = [ Vrdr= E [iw).5w)]

v

Averaging over the sphere gives an equation of the form
Efw; f(w)] = E[(some vector field).V f]

Which is precisely the form of a Stein kernel.
It is not immediately clear how to generalize this construction beyond [ = 1. However, it turns out

that the vector field we obtain is precisely the gradient of Y7 ; tangent to the sphere VdS4 1. This
interpretation makes sense for any [, m. Thus, what we actually do is the calculation of average
derivative of test functions in the direction of VY] ,,. It turns out that every spherical harmonic
except Y} ., is annihilated.

Once we construct the kernel, we compute its Stein discrepancy .S using identities from ap-
pendix A.1. We finish by invoking lemmas from appendix B to extract a bound on the Wasserstein
distance from the discrepancy.

3.1. Proof of theorem 1
3.1.1. NOTATION AND QUOTED RESULTS

For 1 <[ < k denote A

5
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This is an embedding Y : VdS% 1y RIE o+ whose left inverse is the projection onto the first
d1 = d coordinates. We will be concerned with the random variable § = )!w ~ A dU S,
We will need the rotation matrices 2, that act on the basis vectors e; as
Rgeq =cosa e, —sina ey,
Riep =sina e, + cos o ay,

R$ye. =e. when ¢ ¢ {a,b}

and the operators

def def 9 def 2
O = w.V = Zwl i Loy = w0 — w0y L :ZLab

a<b

Finally we recall the following identities from appendix A

(Labf) () = — Ouf(R, “bx)‘afo (equation 14)
V2 =L% 4 0,(0, + d — 2) (equation 15)
0=(d—t*)P/'(t) — (d — 1)tP/(t) +1(1 +d — 2)Pi(t) (equation 19)

Where V2 = Zz 1 02 is the Laplacian.

3.1.2. CONSTRUCTION OF THE KERNEL

We want to build a Stein kernel for §. Consider a test function f : R1++4x _ R, We would like
to understand

E [Gtm S (7)) = - [Yiom () F(V ()]

The second expectation is simply the coefficient standing next to Y} ,,, in the harmonic expansion of
f o Y. We will temporarily move from R?1**+Zk with the test function f to R? D v/dS*~! with
the test function f o Y. As promised, consider the tangent gradient

VY — éYl’mw and the corresponding operator (VYl’m — éYl,mw) vV @)

Viewed in R?, Y} is a homogeneous polynomial of degree I, so w.VY},, = [Y;,,. Hence the
operator annihilates 7> = ||w/||?, so this vector field is tangent to the sphere v/dS?!.

Let us look at how does this vector field affect harmonic expansions. Remembering equation 15
and E[L%g] = 0, we can rewrite the action of 7 on spherical harmonics as

Vavs!] =
_ E[Qidr2v2 (YE,mYl’,m’) _ éYE,m&”Yl’am’] =

E[ (V¥ = §Yimw) -VYipm

= B[ (12 + 000 + d = 2)) (YY) = 5 Yim Y| =

H) I+ +d—2 w
- (LD e (1,500 -

12 l/2+(l+l )(d—2) 5ll’5mm’
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In expectation, this vector field annihilates every spherical harmonic other than Y} ,,, itself, which
is sent to W. Therefore we can filter the coefficients of f o Y using the identity

E (Vi (w)(7 0 V) ()] = gy [(V¥im — LYiw) V(0 ¥)]

Now we need to return from the sphere v/dUUS* "' and go back to R¥1*+@x We do it using
chain rule

(VY — LY ) V(foY) = (VY — LY, w) VY Oy g f

\ﬁ
U'm’
Therefore
E [Gtm f ()] =E | Y Ttmstr .o O o £ ()
Im

where TLmal! ! (?(w)) :% l(l+ill—2) (VYl,m - d lmw) NY)
This means that 7 is a Stein kernel for .
3.1.3. HILBERT-SCHMIDT NORM OF BLOCKS
Let us rewrite the kernel as

Tlmillm! = \%%ZIUJrld—Z) {TZVZ (YimYrr ) — 2”/Yl,mYl’,m’}

expanding the Laplacian according to equation 15 we get
22 (Yo Yo ) = WYy Y =
=—(l+d=2)+V{l"+d—-2)YimYrm +U+)1+U +d—2)Y 0 Y g+
+ > LabYim - Lap Yo — 20 Yin Y =
a,b
= Z Lab}/l,m : Lab}/l’,m’
which means

_ _hidy
Tim;l';m! = i, A0+d=2) l+d 2) Z LabYim -

abY’,m’

We will calculate the Hilbert-Schmidt norm of (l, l’ )-block of 7. We have
2

Z Z LabYl,m : LabYl/,m/ =
a,b

m,m/’

= Z Lab}/l,mLavalﬁm/Lcd}/l,mLchvlﬂm/ =

a,b,c,d,m,m’

= Z <Z LabYl,mLchi,m> <Z LabY’,m’Lch’,m’>
m

a,b,c,d m’
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We will calculate the sums for fixed . Denote (Sqp)ij = (8,1Rgb‘a:0)ij = 04i0bj — 0a;jObi-
Recalling equation 14, we can compute the action of L-operators

ZLabYE mLedY ,m Z Y] m abx ‘ 85Y2 m (RCdx) ‘5:0 -

a=£=0

/10, aBPl( La R Roe)| a=f=0

aﬁajTRCdz‘ VSR aTouR | OsRE

=0 (%an Roy) Yim (Rey)

—LP/(Vd) - daa Rya| 0" T
= _ @ H(\/&) TSabZC X Scdx — \/>Pl xTSabScdw =
— /%p;(\/g) <5adajbxc — 0pdTaTe — Oaeply + 5bc$a$d>

This gives

¢ ¢ N adidy 2
Z le,m;l’, / l L dl l f)l/(\/g)f)l/’(\/g) Z (6ad‘rbxc — 0pdTaTe — OacTpTq + 5bc33axd) =
m,m/

dld‘l/ 412 (1+d—2)2
a,b,c,d

il - P{(Va)PL(Vd) - 4(d — 1)r"

\/dldz/ 4dl? (l+d 2)

We substitute 2 = v/d into the differential equation 19 for Gegenbauer polynomials to deduce

(Vi) = {5 AR = AV

Finally

2% 11 +-d—2
Zszy "= l_iw (®)

3.1.4. FINAL BOUND

22
Let X mr = 5ll'5mm'%- Equation 8 gives

) T k ko
S@’Z) = HZ_%THES - % ' ¢dl—¢1 llEE:szm = (Z +d 2 ) <Z¢%l(l+d_ 2)>
1=1

LU
)

Substituting &; = (d:lri_ll) — (d;ﬁ_lg), for d > 4 we can bound the first term by

d?+42dl—-3d—31+2 . (d+1-3)...(1+1) (d+k)4=3 _ 2d(d+k)4—2
leer 2) Z i @ <k 2d- e < Taoy

We can check by hand that this also holds for d = 2, 3. The second term of 9 can be simplified by
recalling the orthonormality of P; with respect to the density of single coordinate (equation 18 from
appendix A.2)

Vd . N
/ Py(t) Py (t)E(t)dt = oy where £(t) = 1“(5—(12)2/ﬁ (1 _ %)

—Vd
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which gives

> il +d—2) / (Z@B)(Z&zlmd2>Pz>£(t>dt (10)
=0

=0

Recalling the ODE 19 for Gegenbauer polynomials, we note

S b+ d -2 = ~(d— )+ (d— )t =~ (1-5) 7 (( —i)%?’)/

1=0
substituting this relation and the explicit form of ¢ yields

§¢ ra-2 = 2T [ o ( 0% o)

1

%1 \[/ ot ) = dt <
<\/dzj\/§/_¢g & (1) 20T dt < 2+/d(d — 1)E[¢,(MO’ 1))2]

Finally, equation 9 becomes

~ d(d+k)d—2 2
S(7,5)? < M e[y (W (0,1))°]
Now we only need to translate the discrepancy into Wasserstein distance. Lemma 5 implies
S(s§,%)? <E[s]S(5,%)* + var[s*] - [|7]?

The norm of 7 is Zle quQ <32 g%% =E {d)(ml)z‘x ~ \/gUSd_l} . By corollary 6,

Wo (\/15 Z Sigi,N(O, E)) < ﬁs (8@, E)
=1

And according to the theory from section 2, this translates isometrically to a distance between P,
and some Gaussian process.
|

4. Non-polynomial activations

Here we obtain approximations of networks with ReLU and erf activations. We do this by truncating

the expansion of the activation function into (normalized) Hermite polynomials /;. This is a family
. . . . _i .

of polynomials orthonormal with respect to the Gaussian weight \/%e 2. They can be viewed as

the “limit” of Gegenbauer polynomials as d — co. We will make use of the generating function for
the normalized Hermite polynomials

o0 !
T =3 fu()t (11)

N
Il

o
=
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Theorem 2 Assume d > 3, s; ~ U{—1,1}, w; ~ VAU S, With ¢ = ReLU, for sufficiently
large n there exists a Gaussian process G satisfying

W2 ('pm g) < n~ 2(2371)

while with ¢ = erf

d—2

e 4 (logn) =
W2 (Pnag) S log% \/ﬁ

4.1. Proof
4.1.1. GENERAL ACTIVATIONS

Let ¢ = > 2, a;h; be the expansion of ¢ in the basis of normalized Hermite polynomials. Denote
the truncations as ¢ = S r_, a;hy and Py, (z) = ﬁ i1 sid (“”—\/g) Then a simple calculation
shows

Vd
Wi (P ) = / (6(t) — B(1)) (1)t

Since £(t) < -7 (Wthh follows from the explicit formula 16 in appendix A.1), this is at most

a\w

5[ (00 -50) T =5 > @

> I=k+1

By theorem 1, the truncated network 7,, can be approximated by some Gaussian process G as

Wy (P, 0) < M489 (a2l ~ N (0,1

Using the triangle inequality, and simplifying d(‘(i;_k{?; : < dd( dlkld) 2 < ed1gd=2 , we obtain

5% al2+\/%.5[¢/(x)2‘x~,/\f(0, 1)] (12)

I=k+1

WQ (Pn; g) S

4.1.2. RELU
Using the equation 11, the coefficients of ReLU satisfy

oo 2

2 t
att _ @7 o e~ T ,% 1 t 1 (—1)i—1¢2
N _/0 ve ’ \/ﬂ V2r + + 7 \/27r o + 2 + Vor i 21 (21-1)
=0 =1
‘Which means
RS e V1
v2m V- (L1)-22(1-1)
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By Stirling’s formula al2 ~ ﬁl_%. Therefore for large enough [ we have al2 < %l_g, and as a

5 5 3 .
consequence Y 0,y af < L3° 172 <1 [X172dl = £ k2. Inequality 12 becomes

Wa (P, G) < k™1 4 /22622

2 2
Picking %n 21 < k < e~ 'n?-T makes the two terms be of comparable order, and gives

3 3
Ws (Pp,G) < 3n” 2Gd-1) + \/Qede_d”n*% < Tn 2@-D)

4.1.3. ERF

Again, using the generating function 11 we find

Gl > to—t 22 g = i1
T— 5 -5 dr __ E
ot erf(z) - €77 72 Vor vir
— 0 l:O

On the other hand

N oo " _(@=t)? i 00 " o @@=t i
ot erf(z) -e” 2 Worie _Ooer(m)- —Se 2 =

—00
(2—1)? o @0 4
o — — 2
= —erf(x)e” 2 / erf (z) - e Vorde
—0o0
—00

oo 2 2
_V2 — -, 2 U
= e dr = =€

2(—1) 2 /=)

m\/gl(l,Tl') '12)(1'

From Stirling’s formula aJl2 ~ (%)% (%)l, so eventually al2 < (%)l and Z?ik—&—l al2 <2 (%)k

Then equation 12 together with |erf’| < 1 give

Wi (o, G) < VIO (2)% + /382

Setting k ~ % completes the proof.
2

Comparing the coefficients we obtain a; =

5. Discussion

We have demonstrated that one-hidden-layer neural networks with polynomial activation approach
GPs at the rate O(nfé) in 2-Wasserstein distance. A natural question to ask is how far can our
result be generalized. Can the condition of a polynomial activation be dropped? Can we retain a
polynomial dependence on the input dimension from the bounds in Eldan et al. (2021)? How about
p-Wasserstein metrics for p > 2? One source of difficulty with these questions seems to originate
from 7! in the definition of S in lemma 7. This factor does not appear in the isotropic case,

11
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and for general covariances one may define S in a few different ways and still obtain bounds on
W. However, dimensional analysis suggests that X! is more than just an artifact of a particular
wording of Cauchy-Schwarz inequality: if we scale every variable by ), then W(X, N)? scales
like A? but plain |7 — X||% 4 scales like A%. In our proof, construction of the kernel and relating
the distance to discrepancy are largely independent, so we hope that deeper understanding of the
relationship between Wasserstein distance and Stein discrepancy will allow to improve our result
for little extra effort.

In classical CLT the convergence of a normalized sum to a Gaussian is not faster than O(n_% )s
provided that the variables being averaged have non-zero fourth cumulant. Therefore the bound
from theorem 1 is asymptotically sharp in n. As a concrete example, using notation from thm 1,
one can take P(s = —1) = P(s = 1) =  and ¢ = id. Then the 2-Wasserstein distance of the
resulting neural network P, to any GP is not smaller that the minimal distance of its coefficient X7 1

to a normal random variable. It is not too difficult to see that X; ; = \/% >, (w;)1, where (w;);

is the first coordinate of w;. The cumulant of (w;); is equal E[(w;){] — 3E[(w;)}]?> = — %5, so the

cumulant of X 1 is — Since cumulant of any Gaussian is zero, it is possible to lower-bound

__6

nd(d+2)°
. . . 1

the distance to a normal in terms of the cumulant, which then shows that the rate O(n ™2 ) cannot be

improved.
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Appendix A. Spherical harmonics

There are at least three equivalent ways to think about spherical harmonics
* Algebraic: harmonic (i.e. V2Y = 0) homogeneous polynomials in d variables
* Representation-theoretic: irreducible representations of SO(d)
* Analytic: basis of the Hilbert space £2(v/dS?!) of functions on the sphere

In the discussion below, we will typically start with the algebraic picture, viewing polynomials
as elements of the ring R[X7,. .., X,] and operators L, as R-linear derivations® over this ring.
Then we proceed to the analytic picture — remind ourselves that polynomials can be treated as func-
tions on the sphere v/dS?~!, and think of L, as infinitesimal generators of rotations; we translate
the algebraic results and explore the consequences of acquiring an inner product. Representation-
theoretic picture will be present in the background and manifest itself whenever we talk about the
symmetries of spherical harmonics.

A.1. Rotations and operators

Special orthogonal group SO(d) acts on points from v/dS* ' by R : 2 — Rz, preserving geometry
x1.x2. This induces an action on functions £2(v/dS% ') by R : f — f o R™!, which preserves the
inner product

/ fi(@) fo(z)dz = E[f1 (l‘)fg(l‘)‘x ~ \/EUSd_l] with normalization /ldx =1
Vdsi-1 13)

5. Operator L is a derivation if it satisfies the Leibniz rule L(fg) = Lf - g+ f - Lg

13
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The group is generated by rotations of the form R, = exp(aSg) for anti-symmetric matrices
(Sab)ij = 0aidn; — dajopi. They act on the basis vectors as

Rieq =cosa e, —sina ey,

Roep =sina e, + cos o ay

R$ye. =e. when ¢ ¢ {a,b}

The infinitesimal generators of such rotations are

8aRg‘bf 0 = Laf where Loy = X0y — X0, (14)
a=

In particular, E[Ly, f(2)]2 ~ VdU S| = 0,E[R, f] om0 =0
Define the Laplace-Beltrami operator as

2 def Z 2 _ 1 Z 2
L= = Lab ) Lab
a<b a,b

it is straightforward to verify
V% = L%+ 0,.(0, +d —2) (15)

where J
8r d:ef z.V = ZXl&
i=1

Let us note the algebraic properties of these operators. The simplest is 9, — it multiplies a polynomial

by its degree. Operators L, are derivations annihilating 72 & X2 + - . + X2, so Laplace-Beltrami
operator satisfies L?(r?f) = r?L2f, and by identity 15 is multiplies harmonic homogeneous poly-
nomials of degree [ by —I(I + d — 2). Both 9, and L? are invariant under rotations (equivalently,
commute with each L,p).

Now we describe their basic analytic properties. The operators L, are tangent® to the sphere, so
they and L? have well-defined restrictions’ to £2(1/dS%~!). Inner product of functions is invariant
under rotations and L., obey Leibniz rule, so they are anti-self-adjoint

[ T e == [ Lfads

As a consequence, L? is self-adjoint (with respect to 13). Also, Ly, annihilate the constant function,
so again E[Lg f(2)|z ~ VdU S 1] = 0.

Finally let us note a geometric fact about the sphere. It will be usefult later to know the distri-
bution of a single coordinate z; when we draw z uniformly from the sphere v/dS?~!. Its density is
supported on the interval [—+/d, v/d] and equals

r(4) 2\ T

_ 2 _ =

{(r) = (&) Vrd <1 d) (16)
6. In the sense Lqpr2 = 0, or La, = v.V where the vector field v is tangent to v/dS? ™!

7. Any derivation J on R[X1,..., X4] annihilating 2 gives rise to an operator on £*(v/dS%~!) as follows. For a

function f that is the restriction of a polynomial F to v/dS?~! we send f — J (F)| Vagd—1- This is well defined,
because if F|\/Esd—1 = F/’\/Esd—l then F — F' = (r? — d)G for some G, so J(F — F’) is the zero function on

Vdsit, Conversely, a differential operator ijl P;0; acting on EQ(\/ESd_l) with P; € R[X1, ..., X4] can be
naturally reinterpreted as a derivation on R[ X1, ..., Xq].

14
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z

2 2
One way to see this is by noting that %1 for z ~ /dUS? ! has the same distribution as ﬁ for

E
2~ N(0,1,), thatis B (3, 451).

A.2. Spherical harmonics

Lemma 3 Every homogeneous polynomial f € R[X1, ..., X4] can be uniquely written as

f:f0+7’2f1+7’4f2+...

where f; are homogeneous harmonic polynomials.

Proof We proceed by induction on ! = deg f. For [ = 0,1 the statement is trivial. For [ > 1, by
inductive assumption we may write

-2

VZJCZQO‘FT%%‘|""—|-7‘2L 2 JngfzJ

2

for harmonic g; of degree | — 2 — 2i. Now, construct

=2 .
|5 i

IT i@ -2 4+d)

then, either by writing V2(r?e) = L? 4+ 92 + (d + 2)9, + 2d and recalling the eigenvalues of L>
and 0., or by direct calculation, we can see that

152)
VZ(T2g) _ TQZgi — v2f
=0

Therefore, the Laplacian of f — r2¢ is zero, and f can be decomposed as

2] "
2 2i+2 7
w+ 2" v )@ -2i—4+d)
fo B

f=

To see uniqueness, note that each factor is an eigen-element of L? with a different eigenvalue.
|

Let us denote the space of degree [ homogeneous harmonic polynomials as H;. By the lemma
3 above, we have

{deg -l homog polys} = H; @ r?{deg-(I — 2) homog polys} = H; & r’H;_s ®r*H;_, & ...

this allows to deduce their dimensions

def . d+1—-1 d+1-3
dl—dlmHl—< de1 )—< de1 >

Harmonicity and homogeneity of given degree are preserved by rotations, so each H; is closed
under SO(d), and each r2¥ Hj is a subrepresentation of SO(d) inside R[X7, ..., X,4]. Note that by

15
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equation 15 we have H; = ker L2 + (I + d — 2) (in algebraic sense, with X; considered as abstract
symbols).

Now let us think about restrictions of polynomials R[X7,..., X,] to Vdsa—t, By Stone-
Weierstrass theorem, they are dense in C'(v/dS9~!',R) with supremum norm. Thus with ¢3-norm

we must have
L2(VdS*T) @Hl

with each H; closed under SO(d). Also, H; = ker L2 + (I + d — 2) (in analytic sense, with H;
considered as functions on the sphere and L? as a second-order differential operator); the operator
L? is self-adjoint, so different H; are orthogonal.

We take spherical harmonics Y] 1, ... ,Y] 4, to be any orthonormal basis of H;. Then

E[H7m(w))ﬁ/7m/ (w)’w ~ \/gUSd_l] = 5ll’6mm’

Each H; comes with a representation p of SO(d)

a

RYj = Yim(R7'2) = > p(R)mm Vi ()
m/=1

Such matrices p(R) are also orthogonal, which follows from the invariance of the inner product:

(p(R)p m m! Z p m m ,0 m!'m/ = Z p(R)m,m/p(R)m”,m’”<1/l,m’7 Yz,m’“> =

m/,m!"’

:<RY2,m> RYVl,m”> = <le,ma Yz,m”> = (5m,m”

Now we look at the relation between spherical harmonics at different points, which will eventu-
ally lead to Gegenbauer polynomials. Consider

P (Re!) = Vi, () Vi (Ra)
=Y (@) Tp(R™Y) Tp(RY(2') =
= Yia(2) V() =
=Py (2")

Therefore ]5” (2') depends only on the angle between x, 2’ and not on their absolute position on the
sphere, i.e. P ,(z') = P (L\/’g) for some function Fj; it must be a polynomial of degree at most /.
This gives us the key identity

a
P(25) = ZZln,m<x)n,m<x’> (17)
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The P, are called Gegenbauer polynomials®. They are the unique (up to scaling) functions for
which the map = — Pj(z1) belongs to H;. Orthogonality of the spaces H; for different [ means
that Gegenbauer polynomials are orthogonal with respect to the single-coordinate density £ from
equation 16

ay

Pi(Vd) == > E[Yim(#)Yim ()] =

m=1

Vd
/ Pi(t)Pu(t) - €(t)dt =E [Py(X,;) Py (X)) =
Vi

\/r

m,m

= > Vi (Vdes)Yir e (Vde)E [Vign (@)Y ()] = (18)

Zﬁ&ypl(\/g) = Oy

therefore P, can be computed by Gram-Schmidt orthonormalization of {t°,¢!,#2, ...} with respect
to the the density of a single coordinate €.

Finally we exhibit an ODE for F;. Observe that 7' P, (XIT\/(E> is a homogeneous degree-/ har-
monic polynomial. After tidying up the harmonicity condition we obtain

rl

0= V2 (7B (X2)) = (= )P (t) — (d— DR + U +d—2)P(E)  (19)

Example 1 For d = 2 this construction is precisely the Fourier analysis. We work over v/2S5! =
{(z1,x2) : x% + x% = 2}, parameterized as v, = V2 cos 0,1y = V/2sin 0. Harmonic subspaces
are

Hy = span{Yo,l = 1} with dp=1

H; = span{YlJ = \f2cosl9,Yl’2 = \/isinle} with a;=2

spherical harmonics are restrictions of polynomials

Yig =27 R(X1 +iXs) = e coslf

l
e .
——1 Sl 10

V2

1-1

Vig =272 3(X; +iXq) =
There is only one rotation generator

Lis =09 = X102 — X201
L? =07 = X102 + X307 — 2X1 X010, — X101 — X0,

and the Laplace-Beltrami operator L? acts on H; as a multiplication by —I?.
Gegenbauer polynomials are characterized by

Py(V2cos(0 — 0')) = V2coslfcoslf + v2sinlfsinlf = v2cosl(6 — ¢')

i.e. are rescaled Chebyshev polynomials. They are orthonormal with respect to &(t) = -

8. Different scaling/normalization conventions are used the literature

17
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Appendix B. Stein kernels

We say that 7 is a Stein kernel for random variable X if for each f € C2° we have

E[X.f(X)] = E(r(X),Jacf (X))

where (Jacf)qp = 66;((2 is the Jacobian of f, and (A, B)yys = Tr AB' is the Hilbert-Schmidt
product.

One can show that a constant matrix ¥ is a Stein kernel for X if and only if X ~ N(0, X) (this
statement is known as Stein’s lemma). It turns out that the difference between 7 and X can be used to
bound the Wasserstein distance between X and AV(0, X2) (see lemma 7). The measure of deviation is
called Stein discrepancy, and in the isotropic case it is defined as S(X,1d) = inf, E||7(X) —1d||%.
We will be working with non-isotropic random variables, and following the formulation of lemma
7 we generalize the Stein discrepancy as

S(X, %) ©int VEIE () - )|

However, note that other generalizations to non-isotropic case are also possible, and modifying the
last part of the proof” of 7 can give bounds of a different form.

Substituting f(X) = X;e; we see that Er = EXX " = cov[X]. Therefore, Stein discrepancy
can also be viewed as a measure of variance of 7. Intuitively, as we average independent copies of
X, we can expect the variance to decrease and 7 to approach its expectation, leading to central limit
theorem. This intuition is formalized in corollary 6; a stronger result — that n.S (ﬁ Sy XZ-) is
non-increasing in n — was proved in Courtade et al. (2019).

B.1. Addition and scaling
Lemmad4 Suppose T1,...,T, are Stein kernels for independent X1, ..., X,, and write X =

Sy Xi. Then

7(z) “E [Z (X)X =2

%

is a Stein kernel for X. If X; have the same covariance ¥, then S(X, n2)2 < % Py S(Xi, 2)2.

Proof

=> E(ri(X:),Jacf (X)) g =
—E <E [ZTz‘(Xi)

i

X] ,Jacf(X)>

HS

9. For example by rearranging the equation 25 before applying Cauchy-Schwarz inequality

18



RATE OF CONVERGENCE OF POLYNOMIAL NETWORKS TO GAUSSIAN PROCESSES

If all covariances are equal then we have

S(X,nE)Zz)E( (nE)_% (E[ZTZ(XZ) X —nE) =
i E E[ZE—%(T,(XZ)—E)X 2 <
<LE|IDY H(n(x) -3)| =

e -

HS

Lemma 5 [f 7 is a Stein kernel for X and Y = sX, then 7'(y) = E[32T(X)‘Y = y| is a Stein
kernel for Y. Its discrepancy is at most

S(sX,E[s’Jcov[X])” < E55 - S(X, cov[X])? + ] E || x |2

Proof
E[sX.f(sX)]

I
<M <M <m

[(X-E[sf(s20)] = E (r(X),JacE [sf(s)]) =
<T(X)7|SE [SQ(JaCf)(sX)]> = ES <327(X), (Jacf)(SX)> =
<E[S2T(X)\Y],Jacf(y)>HS - E<T'(Y),Jacf(Y)>

HS X, HS

HS
Now we will bound its discrepancy. Denote Es? = 02, cov[X] = X. Then
§(sX, E[s?]eov[x])* <E[[E[o ' 7H (s*r(X) = o*T)|Y] H; <
—1y—1/.2 _ 2
<E|o7'z i (sr(x) -3 =
:af2E[s4}EH27%T(X)H2 - 072“2%‘}2 =
Hs HS
=By 5(X.%)" + B2
and we simplify HZ%HES =TrY = E| X
|

Corollary 6 Suppose X; are iid with Stein kernel T and covariance ¥, and let X = ﬁ Yo X

be the normalized sum. Then we get a quantitative central limit theorem by combining lemmas 7, 5
1
(for constant s = 7n ), and 4

Wa(X,N(0,3)) < $(X,3) < L5( T, Xi,n%) < L5(X,, %)

n
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B.2. Wasserstein bound in non-isotropic case

Lemma 7 Suppose that T is a Stein kernel for random variable X, and . is a symmetric positive-
definite matrix. Then

Wo(X,N(0,5)) < S(X,%)  where  S(X,%)> =E||S72 (r(X) — %) |%s

This proof is a compilation of Proposition 3.1 from Ledoux et al. (2015) and Lemma 2 from Otto
and Villani (2000), additionally keeping track of the covariance matrix. It is based on interpolation
of the heat flow along the Ornstein-Uhlenbeck semigroup.

B.3. Proof

Let j10, ftoo be measures/densities of X, N'(0, X) respectively, living in D-dimensional space. We
will tackle the case when X has a Radon-Nikodym derivative h = C‘;’j” with respect to the target
normal measure. The general case follows by an approximation argument — see Otto and Villani

(2000).

B.3.1. HEAT FLOW SEMIGROUP

X;=e "X +V1—-e2N(0,%)

Let p; be the measure of X; and h; = j‘“ Define a vector field

Introduce

dX
v(x) =E [ dtt X; = :c] or equivalently v = —E(V log ht) (20)
Then the density p; satisfies the diffusion equation
Opu
- _V. 21
ot V. (utvt) (21)

A brute-force way to verify the equivalence of definitions in 20 and the diffusion equation 21 is
to plug in the explicit formulas

—t
o) =(1— o1y~ D T — e txg
po,t (o, 1) =(1 — e )72 o (x0) phoo <1 —

b ot
p(z) =(1—e 2)"2 /uo(y)uoo <mt1_€ex22> dy (22)

_ _ot\—D zy — etz —e %ty 4 ety
ve(x) =pe () 1(1 —e Qt) 2 /NO(y)Noo <\;m> < 1 — o2 ) dy

As a consequence of the diffusion equation 21, the density i is transported along the trajectories
tangent to v;. Intuitively, if the norm of v; is small, then the density needs to “travel a short distance”
to move from pig to fioo. Formally, lemma 2 from Otto and Villani (2000) states

d+
CTWQ pies pirs) </ Eflve(Xy)[|? = \//Hvt 2 dp ()
Wa(pto, fioo) < / VE (X Pt 23)
0

20
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In the next part of the proof we bound the flow norm as

6_2t

Bl Xl < ——=

S(X,Y) (24)
Substituting this to the inequality 23 and integrating completes the proof of the lemma.

This was all we need to construct the flow. In the next part of the proof we will need a few more
properties. We start with changes in expectations under the semigroup. Define

Pif(x) L Ef(etz+ V1 - e 2N(0,%)) = /f(eta:+ 1 — e~2y) dpioo (y)

This is called Mehler’s formula. It is straightforward to check PsP, = P,y and Ef(X;) =
EP,f(X). Gaussian integration by parts gives a PDE 2 5iPif = LPf, where L = Z 240,05 —
x.V. Combining these yields

/futdx:;;EPsf(Xt) = E(LF)(X,) :/f 384500 + 2.V + D | pyda

s=0 27]

Thus we must have a‘“ = (Zl ;0i0; + .V + D) ft¢, which turns out to be a restatement of 21.
An explicit calculatron of P,hg turns out to be equivalent to :; from formula 22, so hy = P;hy.

It also satisfies
X by ety
()=o)

and VP, f = e P,V f. The diffusion operator satisfies [ fLgduc = — [(Vf)TS(Vg)dioo-

/ [ Pigdps = E [f(x)g(y) = / Pif - gdpioo

B.3.2. BOUND ON THE FLOW NORM

This part of the proof is concerned with proving the inequality 24. We start from the transformations
[P = [ (1051052 (Tho)d =
= / (Vloghy) "2 (PVho)dpies =
= / (VP log hy) " $2(Vho) oo () dz =
- / V. (oo - £V P log hy) hodx =
= / (2.8V P, log hy — V.52V P, log hy) hopiocdr =
= / (2;%4;0; P log hy — X,21;0;0; Py log hy) dpg =

—/ (T1k<1') — sz) Ekjaiath log htd,uo(x)
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where in the last two lines we used the Einstein summation convention. We substitute the
identity

0;0; P log hy = m / 8 log ht) (e_t:n +41— e*Qty) ditoo ()
to get
EHUt(Xt)”Q // $) -2 X (XV log ht X
J——W )) x ( ) .

X (6_ r + 1*€*2ty) dpio(z)dpoo (y)

By Cauchy-Schwarz inequality the integral is at most

\///HyTE‘l(T(x) — 2) || dpo () dproo () % (26)
x \/ / / H(ZVIoght) <e—t:c+ —%y)H dpio(2)dpios (y) 7)

Expression under the root in 26 equals

//yzyJE S5 (r(x) = 2),,, (1(@) = 2),,, duo (@) dpis (y) =
= [ 2 (@) = 2, (r(0) = ) 00) =

2

/Hz )H dpio(z) = S(X,3)?

HS

while the expression under the root in 27 is

/ Py ([[or]2) dpio = / lorll? - Prhodpins = / el Pdps

These two simplifications allow to bound the equation 25 as

—2t
Efloe(X0)|* < e - S(X, ) - VE[ur(X,)[]?
Which is equivalent to the inequality 24. Now, combining inequalities 23 with 24 completes the
proof of the lemma.
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