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Contextual Search is a fundamental primitive in online learning with binary feedback with ap-
plications to dynamic pricing (Kleinberg and Leighton, 2003) and personalized medicine (Bastani
and Bayati, 2016). In each round, the learner chooses an action based on contextual information and
observes only a single bit of feedback (e.g., “yes” or “no”). In the classic (realizable and noise-free)
version, there exists a hidden vector §* € R? with [|#*|| < 1 that the learner wishes to learn over
time. Each round ¢t € [T begins with the learner receiving a context u; € R? with ||w]| = 1.
The learner then chooses an action y; € R, learns the sign oy = sign((us, 0*) — y:) € {+1,—1}
and incurs loss £(y;, (us, 0*)). Importantly, the learner does not get to observe the loss they incur,
only the feedback. A sequence of recent papers (Amin et al., 2014; Cohen et al., 2016; Lobel et al.,
2017; Leme and Schneider, 2018; Liu et al., 2021) obtained the optimal regret1 bound for various
loss functions, as highlighted on Table 1. The matching (up to log d) upper and lower bounds in

Loss 2y, yr) Lower Bound | Upper Bound

e-ball Hlyr —yel > e} | Q(dlog(1/e)) | O(dlog(1/e)) (Lobel et al., 2017)
absolute | |y; — y¢l Q(d) O(dlogd) (Liu et al., 2021)

pricing | y; —y:l{y: <y} | Q(dloglogT) | O(dloglogT + dlogd) (Liu et al., 2021)

Table 1: Optimal regret guarantees for realizable contextual search.

Table 1 indicate that the noiseless version of the problem is well understood. However, a lot of ques-
tions remain when the feedback is perturbed by some type of noise (as is often the case in practical
settings). In the noisy model, the target value y; = (uy, 8*) is perturbed to y; = (u¢, 6*) + 2. Most
of the literature thus far has focused on stochastic noise models (Javanmard and Nazerzadeh, 2016;
Cohen et al., 2016; Javanmard, 2017; Shah et al., 2019; Liu et al., 2021; Xu and Wang, 2021, 2022).

A recent trend in machine learning is the study of adversarial noise models, often also called
corrupted noise models. In this model, most of the data follows a learnable pattern but an adversary
can corrupt a small fraction of it. The goal is to design learning algorithms whose performance is
a function of how much corruption was added to the data. For the e-ball loss, we give a tight re-
gret bound of O(C +dlog(1/¢)) improving over the O(d? log(1/¢)) log®(T) + C'log(T) log(1/¢))
bound of Krishnamurthy et al. (2021). For the symmetric loss, we give an efficient algorithm with
regret O(C + dlogT). Our techniques are a significant departure from prior approaches. Specifi-
cally, we keep track of carefully maintained density functions over the candidate vectors instead of
a knowledge set consisting of the candidate vectors consistent with the feedback obtained.?

1. We use the terms “regret” and “total loss” interchangeably.
2. Extended abstract. Full version appears as http://arxiv.org/abs/2206.07528.
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