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Abstract

We analyze the novel Local SGD in federated Learning, a multi-round estimation procedure that
uses intermittent communication to improve communication efficiency. Under a 246 moment
condition on stochastic gradients, we first establish a functional central limit theorem that shows the
averaged iterates of Local SGD converge weakly to a rescaled Brownian motion. We next provide
two iterative inference methods: the plug-in and the random scaling. Random scaling constructs an
asymptotically pivotal statistic for inference by using the information along the whole Local SGD
path. Both the methods are communication efficient and applicable to online data. Our results show
that Local SGD simultaneously achieves both statistical efficiency and communication efficiency.

Keywords: Federated Learning, Local SGD, Functional Central Limit Theorem, Statistical Inference

1. Introduction

Federated Learning (FL) is a novel distributed computing paradigm for collaboratively training
a global model from data that remote clients hold (McMahan et al., 2017). The clients can only
cooperate with a central server (e.g., service provider) to train the global model without sharing
local datasets. Thus, FL can protect sensitive information that data contain, such as personal identity
information and state of health information, from unauthorized access of service providers. The
challenge arises when limited data access together with memory constraints, communication budget,
and computation restrictions make the traditional statistical estimation and inference methods (Li
et al., 2020b; Fan et al., 2021) no longer applicable in the FL scenario. This paper studies how to
perform statistical estimation and inference in the FL setting.

A typical FL system considers a pool of K clients, in which the k-th client has a local dataset
consisting of i.i.d. samples from some unknown distribution Dy. The central server faces the
following distributed optimization problem:

K K
min {f(w) = prfilx) = ZpkEgkNDkfk(fB;ék)} ; (D
k=1

x
k=1
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where py, is the weight of the k-th client and fi(; &) is the user-specified loss with &, being the
generated sample from Dy. Thanks to the decentralized nature of data generation, a discrepancy
among local data distributions occurs, i.e., {Dk}f:1 are no longer necessarily identical. In addition,
communication is highly restrictive because data with immense volume are scattered across different
remote clients.

Many efficient algorithms are proposed to cope with both statistical heterogeneity and expensive
communication cost. Perhaps one of the simplest and most celebrated algorithms for FL is Local
SGD (Stich, 2018). Local SGD runs stochastic gradient descent (SGD) independently in parallel on
different clients and averages the sequences only once in a while. Put simple, it learns a shared global
model via infrequent communication. It has been shown to have superior performance in training
efficiency and scalability (Lin et al., 2018), and converge fast in terms of communication (Li et al.,
2019b; Bayoumi et al., 2020; Koloskova et al., 2020; Woodworth et al., 2020a,b; Koloskova et al.,
2020). In order to reduce the communication frequency, Local SGD might also be the best choice.

From a statistical viewpoint, it is vital to perform statistical inference in FL because it helps
us infer properties of the underlying data distribution. The asymptotic confidence intervals, which
becomes more accurate when more samples are observed, help us quantify the uncertainty of our
estimator and monitor how our algorithm runs. However, it is still open how to do that and adapt to the
peculiarity of FL. In this paper, we would like to address statistical estimation and inference via Local
SGD due to its elegant performance mentioned earlier and representativeness in FL. In Local SGD,
communication happens at iterations in a prescribed set (denoted Z = {t¢, t1, to, . ..}). Our goal is to
obtain an efficient estimate of #* = argmin,, f(x) only through the SGD iterates {x} Yme[T) ke[K]>
and provide asymptotic confidence intervals for further inference. Here [N] = {1,2,..., N} and
x denotes the parameter hosted by the k-th client at iteration ¢. Note that we do not have direct
access to {x}'} re[k] if t ¢ T due to intermittent communication. It makes the analysis of asymptotic
behaviors of Local SGD totally different from that of so-called parallel SGD (Zinkevich et al., 2010),
which alternates between one independent step of SGD in parallel and one synchronization. Clearly,
the parallel SGD is equivalent to the single-machine SGD, whose asymptotic convergence has been
studied extensively (Blum, 1954; Polyak and Juditsky, 1992; Anastasiou et al., 2019; Mou et al.,
2020).

Ruppert (1988); Polyak and Juditsky (1992) introduced averaged SGD, a simple modification
of SGD where iterates are averaged as the final estimator, and established asymptotic normality via
martingale central limit theorem (CLT). It is known that the averaged SGD estimator obtains the
optimal asymptotic variance under certain regularity conditions (Duchi and Ruan, 2021). We are
motivated to employ the average of Local SGD iterates as the estimator, that is, % Zzzl ¢, where
Ty, = Zle pkwfm. Under common assumptions, we show the proposed estimator T exactly has
the optimal asymptotic variance up to a known scale v(> 1) which is determined by the sequence
{Em}m, where E,, := t;, 11 — ty, is the length of the m-th communication round. And v barely
affects the variance optimality because there exist many diverging sequences { Fy, }., satisfying
E,, =o(m)and v = 1. Itimplies the Local SGD estimator has the optimal asymptotic variance
even though it has enlarging communication intermittency. This result somewhat corresponds to
the optimization study on Local SGD (Bayoumi et al., 2020; Woodworth et al., 2020a,b, 2021);
local updates (i.e., £, > 1) only slow down the Ly non-asymptotic convergence rate of Local SGD
slightly, because the additionally incurred residual error is still dominated by the statistical error.
In this case, the averaged communication frequency (ACF, i.e., T'/t7) converges to zero, implying
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we trade almost all computation for asymptotically zero communication. Therefore, our estimator
simultaneously has statistical efficiency and communication efficiency.

To quantify uncertainty, we investigate two online inference methods for statistical inference.
One is the plug-in method (Chen et al., 2020), which is available when we have an explicit formula
for the covariance matrix of the estimator. The other, a.k.a., random scaling (Lee et al., 2021),
borrows insights from time series regression in econometrics (Kiefer et al., 2000; Sun, 2014). It
does not attempt to estimate the asymptotic variance but to construct an asymptotically pivotal
statistic by normalizing the estimator with its random transformation. To underpins this approach,
we establish a functional central limit theorem (FCLT) for the average of Local SGD iterates under
much milder conditions than Lee et al. (2021).! In particular, we pose a (248) moment condition
on gradient noises (see Assumption 3.2), while Lee et al. (2021) requires a stronger condition:
gradient noises should not only be a-mixing but also have at least forth-order moment (see their
Assumption 2).> Our improvement comes from a specific error decomposition and a careful analysis
on a non-asymptotic term with time-varying coefficients (see Lemma B.7). We believe that the
advanced proof technique we developed beyond the current work would be of independent interest.
We conduct some numerical experiments to illustrate the two inference methods. Due to space limit,
they are deferred in Appendix G.

The remainder of this paper is organized as follows. In Section 2 we formulate our problem and
introduce Local SGD. In Section 3 we explore the asymptotic properties for the averaged sequence of
Local SGD. In Section 4 we introduce two online methods (namely the plug-in method and random
scaling) to provide asymptotic confidence intervals and perform hypothesis tests. We provide a proof
sketch in Section 5 and review related work in Section 6. We conclude our article in Section 7 with a
discussion of our results and future research directions. We illustrate the numerical performance of
our methods in synthetic data in Section G. We defer all the proofs to the appendix.

2. Problem Formulation

In this section, we detail some preliminaries to prepare the readers for our results. We are concerned
with multi-round distributed learning methods. At iteration ¢, we use x} to denote the parameter
held by the k-th client and £ the sample it generates according to Dy. A typical example of
multi-round methods is the parallel stochastic gradient descent (P-SGD) (Zinkevich et al., 2010)
that runs zf, | = Zi(:l pr [z — iV fi(xf; &F)] for k € [K] and t > 0. Other variants have
been successively proposed (Jordan et al., 2019; Fan et al., 2019; Chen et al., 2021). It is easy to
analyze the statistical property of P-SGD due to its equivalence to the single-machine counterpart.
The classical work provides an analysis paradigm for P-SGD, showing it obtains an asymptotically
unbiased and efficient estimate (Polyak and Juditsky, 1992). In particular, with &; = > le pry,
P-SGD achieves the following asymptotic normality with the asymptotic variance satisfying the
Cramér-Rao lower bound (Duchi and Ruan, 2021)

1 T _ N d _ _
ﬁ(T;wt—m>—>N(o, G1sG T),

1. Note that the standard single-device SGD is a special case of Local SGD by setting E,,, = 1 and K = 1. Thus, our
result naturally covers the standard SGD case.
2. The a-mixing assumption forces gradient noises to be asymptotic stationary in a fast rate.
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where G := V2f(z*) = Y5, pr V2 fi(2*) is the Hessian at the optima 2* and S = E(e(z*)e(x*) ")
is the covariance matrix at it. Here e(z*) = St pr (V.fr(®*; 1) — Vf(z*)) is the noise of
corresponding aggregated gradients.

2.1. Local SGD

An obvious drawback of P-SGD is its huge communication because it requires synchronization at
each iteration. By contrast, Local SGD hopes improve the communication efficiency by lowering the
communication frequency (Lin et al., 2018; Stich, 2018; Bayoumi et al., 2020; Woodworth et al.,
2020a,b). We now turn to Local SGD and summarize its details. We provide the formal version in
Algorithm 1 in Appendix A and related work about Local SGD and its variants in Appendix F. Put
simple, it obtains the solution estimate using the following recursive algorithm

koo { xf — eV fr(f; &F) ift+1¢7,
Lip1 =

2
SE p [k — Vi@l )] iftr1ed, )

where 7, is the learning rate, Etk is an independent realization of Dy, and Z denotes the set of
communication iterations. At iteration ¢, each client runs always SGD independently in parallel
azf = xF —nV fu(xF; €F). However, when t+1 € T, the central server aggregates local parameters

Zszl Ty ', 1 and broadcasts it to all clients, which amounts to the following update rule x) =
Sohe Pk [®F = eV fr(afs €F)).

Different choices of Z lead to different communication efficiency for Local SGD. If 7 =
{0,1,2,---}, then Local SGD is reduced to P-SGD. A famous example in practice is constant
communication interval (McMahan et al., 2017), i.e., Z = {0, E, 2E, - - - } for a predefined integer
E(> 1), which reduces communication frequency from 1 to 1/E. Local SGD differs from P-
SGD if 7 has a general form of {to, 1,2, - } with some t,, — t,,—1 > 1 where t,, is the m-th
communication iteration. For example, when ¢,,, < t < ¢,,,+1 for some m, cciC is not likely to equal
to mf/ for k # k' due to data heterogeneity, while we always have ¥ = a:f’ for all k, k" for P-SGD.
This difference makes theoretical analysis difficult and different from previous analysis. For seek of
simplicity, we assume 7 is a constant when ¢,,, < ¢ < ¢,,41 and denote it by 7, with a little abuse
of notation (which has been already adopted in Algorithm 1).

3. Statistical Estimation via Local SGD

This section provides asymptotic properties for Local SGD. We start by stating the assumptions
needed for the main theoretical results. These assumptions are standard and most of them have been
used previously (Polyak and Juditsky, 1992; Su and Zhu, 2018; Chen et al., 2020; Li et al., 2020a).

Assumption 3.1 (Regularity of the objective) Foreach k € [K|, we assume the objective function
fx(+) is differentiable and strongly convex with parameter 11 > 0, i.e., for any x,y,

fil@) = fuy) + (Vi) =) + Slle =y

In addition, each fy(-) is L-average smooth, i.e.,

VES IV fil@; &) — Vfiuly: &) |2 < Ll — y] 3)

4
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for some L > 0. Finally, the Hessian matrix of the global f(-) exists and is Lipschitz continuous in a
neighborhood of the global optimal x*, i.e., there exist some 61 > 0 and L' > 0 such that

HVZf(a:) — V2f(m*)H < L\l —x*|| whenever |z —zx*| <.

Assumption 3.1 imposes regularity conditions on the objective functions. It requires the global
function f(-) to be p-strongly convex and L-average smooth. The L-average smoothness is stronger
than L-smoothness because |V (@) — V fu(y)| < v/Ee, [V fil@: &) — V fir(y: &0)I2 < Ll —
y|| from Jensen’s inequality. The L-average smoothness follows if maxz E¢, ||V fx(x; &) ||> < o0®
which holds for many statistical learning models such as linear and logistic regression.

Define e, (z) = V fi(z; &) —V fi(z) as the gradient noise at V f (), Sy, = E¢, (e (z*)er(z*) "),
ande(x) = Zszl prek (). Then e (x) (as well as e(x)) has zero mean and its distribution typically
depends on x. The following assumption regularizes the behavior of each noise &j.

Assumption 3.2 (Regularized gradient noise) We assume the &, on different devices are indepen-
dent, though they likely have different distributions. There exists some C > 0 such that for each
k € [K],

[Be.cut@er@™) - Sif| < Ol - 27l + 12— 17 @
Moreover, we assume there exists a constant 53 > 0 such that sup,, El||e(z)||*%? < occ.

Assumption 3.2 first requites the & are mutually independent. Note that S = Zszl P2 Sk is
the Hessian at the optimum x* because S = Zle PiEe, (er(x*)ep(z*)T) = Ee(e(z*)e(z*) ")
from the independence assumption. It then forces the difference between covariance matrices
Ee, (e (x)ek(x) ") and Sy, controlled by ||w—a*|. Itimplies ||E¢(e(x)e(x) ") — S|| < C'[||le—a*||+
|z—a*||?]. Finally, the imposed uniformly finite (2 + d2) moment of &(-) overall @ establishes the
Lindeberg-Feller condition for martingales, which is much weaker than that used in Lee et al. (2021).

Assumption 3.3 (Slowly decaying effective step sizes) Define v, = Epnm as the effective step
size, and assume it is non-increasing in m and satisfies (1) > °_; 72, < oo; (ii) Yoo Ym = 00;
and (iii) % = 0(Ym)-

In our analysis, v, = Epynm serves as the effective step size. Indeed, the previous analysis of Li
et al. (2019a) shows that the effect of F,, steps of local updates with step-size 7, is similar to one-step
update with a larger step-size E,,n,,. It implies that it is the multiplication of E,,, and n,,, rather
than either of them alone effecting the convergence. A typical example satisfying the assumption
is vy = ym~* with o € (0.5, 1), which is also frequently used in previous works (Polyak and
Juditsky, 1992; Chen et al., 2020; Su and Zhu, 2018). Because we impose restriction to { £, } latter,
in practice, we can first determine the sequence of { F,, } and then set 7, = Y,/ Ey, to meet the
requirement of {~,,}.

Assumption 3.4 (Slowly increasing communication intervals) The sequence { E,,} satisfies

(i) {En} is either uniformly bounded or non-decreasing;

3. This condition is also made by Su and Zhu (2018) to validate (4). See Lemma C.1 therein.
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(ii) There exists some d3 > 0 such that lim sup %(Zﬁj} E}n*‘%)(Z%_:% E;L(Héi’)) < 005

T—o0
(i) lim 7z (35,20 En) (g Em') = v(v 2 1);
T
Y B o Er 1 _T-1
@iv) Th_I)lgO L. <m0 %n) = 0and Tlgr;o TTW =O0wherety =3 . En.

Assumption 3.4 restricts the growth of {E,,}. Intuitively, if E,, increases too fast, each =¥
might converge to their local minimizer 7, rapidly before the next communication. Therefore, their
average &y is asymptotically biased for * with the bias Zszl prxy, — x*, which is unlikely zero

T-1
in FL. Because Y 7 > 70, we have \/t7/T = Zﬁ;% E.,/T — 0 from (iv). This, combined
m=0

with (iii), implies anzo E;b — oco. It forbids {E,,} from growing too fast. In practice, we can
choose E,,, ~Inm, E,, ~ Inlnm or E,, ~ m? with 8 € (0,1), all of them satisfying (ii) and (iii).
If 7, ~ m~% with a € (0.5, 1), all the choices of E,,, above satisfy (iv).

The following proposition provides another way to check (ii) and (iii) in Assumption 3.4 via
investigating the relative difference of E,,, and E,,,_;.

Proposition 3.1 Assume {E,,} is non-decreasing. If limsupm(1l — %) < 1, then (ii) in
m—00 m
Em—l

m

Assumption 3.4 holds for some 63 > 0. Furthermore, if lim m(1 — ) exists (denoted p), once
m—0o0

1
1—p

p < 1, then (ii3) in Assumption 3.4 holds with v = ——.
According to the aforementioned regularity assumptions, the following asymptotic normality
property of the averaged iterates generated by Local SGD is investigated in Theorem 3.1.

Theorem 3.1 (Asymptotic Normality) Let Assumptions 3.1, 3.2 and 3.3 hold. Then &.,, converges
to =* not only almost surely but also in Ly convergence sense with rate E||Z;, — x*[|*> < Y.
Moreover, if Assumption 3.4 holds additionally, the following asymptotic normality follows

T
Vir <; mzlwtm — m> AN (o, yG*lsG*T> ,

where tp = S0V B, & = ST, prxy G = S eV fi(x*) is the Hessian matrix at the
optima x*, and S is the covariance matrix of aggregated gradient noise.

Theorem 3.1 shows that the averaged sequence generated by Local SGD has an asymptotic
normal distribution with the asymptotic variance depending on how communication happens (i.e.,
the sequence { E,, }) and the problem parameters (i.e., S and G). For one thing, the effect of data
heterogeneity doesn’t show up in the asymptotic normality. The asymptotic variance as well as
L» convergence rate is the same with that of P-SGD. Technically speaking, this is because the
residual error caused by data heterogeneity typically has relatively low order than the statistical error
incurred by stochastic gradients (Woodworth et al., 2020b,a). With the choice of +,,, the residual
error vanishes much faster and then seems to disappear. More intuitively, since we set v, = Epnm
sufficiently small, the effect of £, steps of local updates using step-size 7,, is similar to one-step
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Table 1: Statistical efficiency and communication efficiency under different choices of E,,, 7v,, and
7m. The statistical efficiency is measured by v/, while the communication efficiency is measured by
averaged communication frequency (ACF), i.e., T'/ ZT_}) Ep,.

m=
Case En(>1) Tm Mm, v(>1) ACF
Base 1 ym~—® 1 1
1 E a ym~*/E 1 E-!
2 any E,, < E m M=/ By, 1 [E-1,1]
3 Eln’m (8> 0) (00‘561) ym~/(E1n® m) 1 E-'ln AT
4 | ElnPlnm (8 >0) o ym~/(E1n” Inm) 1 E'InPInT
5| Emf(8e(0,1) s @B E | | 1+ pEIT

update with step-szie ~,,. Hence, Local SGD with step-size 7,,, actually approximates P-SGD with
step-size y,,. The latter case, as equivalent to single-machine SGD, is unaffected by the statistical
heterogeneity and so is Local SGD.

For another thing, it is quite interesting that the whole optimization process affects the asymptotic
variance. At the worst case, the way how communication frequency is determined only enlarges the
asymptotic variance by a known scale v(> 1). If E,,, = 1 for all m (which implies no local update
is called), ¥ = 1 and the result is identical to the typical single-machine central limit theorem (CLT)
for SGD (Polyak and Juditsky, 1992). When E,, varies, it is still possible to get communication
saved and the asymptotic variance unchanged (i.e., v = 1) simultaneously (see Table 1). If F,,, is
uniformly bounded or grows in a rate slower than E In® m(S > 0), we maintain ¥ = 1 and obtain
a smaller average communication frequency (ACF). In the latter case, the ACF is asymptotic zero,
which implies that we trade almost all computation for nearly zero communication without any
sacrifice for statistical efficiency. However, if E,, grows like Em® (3 € (0,1)), though its ACF
decays much more rapidly than that of £/ In® m, the asymptotic variance is increased by a factor of
v = (1 — B?)~L. It depicts a trade-off between communication efficiency and statistical efficiency
when E,, grows too fast. Finally, E,, could not grows like Em/ (8 > 1) or even exponentially fast,

because this will violate the requirement Zﬁ;lo E;.} — oo that is inherent from Assumption 3.4.

4. Statistical Inference via Local SGD

We now conduct statistical inference via Local SGD in the FL setting. As argued in the introduction,
the central server only has access to {x}} rke[r) When t € Z. In terms of the established CLT
(Theorem 3.1), the average of {Z,, }me[r) achieves an asymptotic normality. Thus it is natural to
use {Z;,, }me[T] as the main iterate to construct asymptotically valid confidence intervals. We will
refer to {Zy,, }mer as the path of Local SGD.

In this section, we assume the data are generated locally in a fully online fashion because it not
only can be reduced to the finite-sample setting via bootstrapping, but also covers many realistic FL
settings where data are generated sequentially, typical examples including the records of web search,
online shopping, and bank credits. In particular, we propose two inference methods depending on
whether the second order information of the loss function is available. One is the plug-in method that
uses the Hessian information directly and the other is the random scaling method that uses only the
information among the path of Local SGD. We also conduct numerical experiments to test the two
online inference methods. Due to space limit, we leave them in Appendix G.
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4.1. The Plug-in Method

The plug-in method first estimates G and S by G and § respectively, and obtains the estimator of
the covariance matrix with_ G- 1SG T. The key is to obtain consistent estimators G and S. An
intuitive way to construct G and S is to use the sample estimate as follows

T K 5 1 T K T
Z > eV (@, &), St Z <Zpkvfk (Z1,:&F) ) (Zpkvfk(@tm;éfm)> -
1 k=1 m=1 k=1

as long as each V2 fj, (itm;ffm) is available. Though G and Sy are not unbiased for G and S,
their bias will converge to zero in probability due to &y, — «* almost surely. It is worth noting that
with &;,,, as well as each local Hessian and gradient evaluated at it, communicated to the central
server, we can update Gm 1to G and Sm 1to S . Therefore, they can be computed in an online
manner without the need of storing all the data.

Assumption 4.1 There are some constants L > 0 such that for any k € [K],
E¢, | V2 fi(a; &) — V2 fi(a™: &)l < L@ — 7.

Following Chen et al. (2020), we make Assumption 4.1, which slightly strengthens the Hessian
smoothness assumption in Assumption 3.1. Accordingly, we establish the consistency of the sample
estimate GT and ST in the following theorem.

Theorem 4.1 Under Assumptions 3.1, 3.2, 3.3 and 4.{\, (A}'I a/l:ld §T converge to G and S in
probability as T — oo. As a result of Slutsky’s theorem, G;ISTG}T is consistent to G"'SG~ .

Theorem 4.1 implies that (G~'SG ™" );; can be estimated by 57, ; = (G718rG7T);; for the
construction of confidence intervals. Denoting yr = % Z%Zl Z,, and yr ; its j-th coordinate, we

have the following corollary which shows that y7 ; &+ za4/ %GT’ ;j constructs an asymptotic exact
confidence interval for the j-th coordinate of x*. Here Uy is any sequence converging to v.

Corollary 4.1 Under the assumption of Theorem 4.1,

_ Ur _ Ur
P Y1, — 22| 0T, < w;k < Yyr; +ze4| —or,; | — l—«
2 tT 2 tT

where Vp — v and zs is (1 — a/2)-quantile of the standard normal distribution.

We remark that using an estimate 7 instead of the true value v for inference is for the purpose
of practice. We find in experiments that directly using the true value v often results in an unstable
confidence interval due to slow convergence of (iii) in Assumption 3.4. As a remedy, we use an
estimate Up = %(Z%Zl Em)(ZQ . B, which performs better and more stable.

The plug-in method typically works well in practice due to its simplicity and well-established
theoretical guarantees. However, it has some drawbacks. The most obvious one is the requirement of
the Hessian information, which is not always accessible. Besides, the formulation and sharing of

each V2 f(Z,,; & ) requires at least O(d?) memory and communication cost. Furthermore, it may
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be computationally expensive when d is large because it involves matrix inversion with computation
complexity O(d®). Finally, the inverse operation is unstable empirically. In practice, we need to
set the round 7T sufficiently large to avoid singularity and ensure stable estimation. The estimator
introduced in the next subsection provides a fully online approach, which is cheap in memory,
computation, and communication.

4.2. Random Scaling

Random scaling does not attempt to estimate the asymptotic variance, but studentize ¢y = % Zﬁzl Ty,
with a matrix constructed using iterates along the Local SGD path. In this way, an asymptotically
pivotal statistic, though not asymptotically normal, can be obtained. To clarify the method, we should
first figure out the asymptotic behavior of the whole Local SGD path rather than its simple average
yr. In particular, we have the following functional central limit theorem that shows the standardized
partial-sum process converges in distribution to a rescaled Brownian motion.

Theorem 4.2 (Functional CLT) Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold, and define

n

1 1
TZE—Z Em} for re€(0,1].

=1""  m=1

h(r,T) :max{nGZ,n>O

As T — o0, the following random function weakly converges to a scaled Brownian motion, i.e.,

h(r,T)

1 :*/EZ x*) = VuG 1 SV?B,(r)

where tr = Y0 4 B, &1, = Y1, prxy . and By(-) is the d-dim standard Brownian motion.

Theorem 4.2 has many implications. First, the result is stronger than Theorem 3.1 though
under the same assumptions. By applying the continuous mapping theorem to Theorem 4.2 with
Y C%0,1] — (1), we directly prove Theorem 3.1. Second, the sequence {E,,} makes a
difference via the time scale h(r, T'), which extends previous FCLT results on SGD. For example, if
E,, = E,thenv = 1,tp = ET and h(r,T) = |rT |, the result turning to be

. b T
ﬁ ($tm :> G 151/2B )

When E = 1, it reduces to the single-machine result that is recently obtained by Lee et al. (2021). It
is worth mentioning that our result requires a much weaker moment condition on gradient noises
(i.e., bounded 2 + §(6 > 0) moments in Assumption 3.2) than previous Lee et al. (2021). The
latter requires that the gradient noises should not only be a-mixing but also have at least forth-order
moment (see their Assumption 2). The improvement comes from a specific error decomposition
and a careful analysis on a non-asymptotic term with time-varying coefficients (see Lemma B.7).
See Section 5 for a sketch of proof ideas. Once E > 1, an interesting observation is that local
updates reduce the scale of the Brown motion. As an extreme case, the scale vanishes and the

Brown motion degenerates when £ = oo. It makes sense because when £/ = oo, a:ffm =z

and T;,, = Zszl pkwfm, the process degenerates. Beyond constant £, = F, Theorem 4.2 also



L1 LIANG CHANG ZHANG

embraces mildly increasing { £, } (see Table 1). Finally, there are some other FCLTs proved via
a SDE argument on general stochastic process (Kushner and Yang, 1993) or SGD with constant
learning rates (Wang, 2017). By contrast, we consider the particular Local SGD with decaying
learning rates in the distributed context and the proof technique (see Section 5 for a short outline) is
from a discrete perspective.

Wigh Theorem 4.2, we are ready to describe the inference method. Define r9 = 0 and r,,, =
% for m > 1. The choice of r,, satisfies that ¢ (r,,) = @ Yot (@, —x*). Note that

n=1 E,

or(1) = " Va1 (@, —@") = Vir(gr —@*). Hence, ér(rm) — Fér(1) = £ Y0, (&, -
myr) cancels the dependence on x*. To remove the dependence on the unknown scale G~181/2,
we studentize ¢ (1) via

i <¢T (Tm) — T¢T( )) (¢T(7"m) - %fb:r (1)>T (T — Tm—1).

m=1

N

Corollary 4.2 Under the same assumptions of Theorem 4.2 and assuming g(rp,) < 5 for some
continuous function g on [0, 1], we have that

-1

1
or (1) Tpler (1) % By(1)T [/0 (Ba(r)—g(r)Ba(1)) (Ba(r)—g(r)Ba(1))" dT] Ba(1).

This corollary follows immediately from Theorem 4.2 and the continuous mapping theorem. It implies
or(1)" IT'¢r (1) is asymptotically pivotal and thus can be used to construct valid asymptotic
confidence intervals. Up to a constant factor, studentizing ¢ (1) via I is equivalent to studentizing
yr = % Zﬁzl &, via ‘7T where

m T
~ 1 _ _
Vi = TaT T S E ( § Ty, — m'yT) <nE:1 Ty, — myT) .

mlEmml

Vr can be updated in an online manner. To state its online updating rule, recall that y,, =
% >t | &+, and note that

~ 1 Tm2
Vi=———— > = Un—97) Gn—r)"
TzzmlElmmlEm
T 2 2 T 2 T 2
1 m m m m
— Ty — Y UTUp — Y = UmIT Zy@].
1
TzzmlEmm E m:E m:E 2

Hence, to update Vm_l to Vm when a new observation &;,, is available, we only need to keep the
2

. ‘e m—1 1 m—1 _ 1 m—1 —
following quantities, namely sp,—1 = > " B> Gm—1 = > gnym 1= 727 2 omet Tty

m—1 o

o n
y ; and bml—Z—

En ynv

E \

n=1
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all of which can be updated in online. In this way, V,,, = mg—lsm (Ap = Ymb,,, — b, + YY)
The formal formulation is presented in Algorithm 2 in Appendix A.

Once yr and ‘A/'T are obtained, it is straightforward to carry out inference. For example, we
construct the (1—a) asymptotic confidence interval for the j-th element x; of x* as follows

Corollary 4.3 Under the same conditions of Corollary 4.2, we have that

P <[yT,j — a2\ Vrjj S T; <Y1 + 42 4\ VT,ij - 1-a,

where qa  is (1 — «/2)-quantile of the following random variable

s /([ (Bu(r) - o(r) B (1)dr 1/2 )

with B1(+) a one-dimensional standard Brownian motion.

If we only care about uncertalnty of each coordinate a: , for random scaling, we only need to

store the diagonal entries of Vi from Corollary 4.3. Both the storage and computation cost are merely

O(d). However, for the plug-in method, the storage cost is O(d?) and the computation cost is O(d3)

since we need to compute and store GT and ST and calculate the diagonal entries of G- 1.S'TG
The remaining issue is about the specific form of g and the computation of ¢, 4. g actually

depends on the growth of {E,,}. Direct computation reveals that r,, =< (%)I_B if E,, < mf
and r,, < 5 if B, < In?(m). Hence, we are motivated to consider the following family of g:

gs(r) = T8 indexed by 8 € [0,1). With this gg(-), we denote the random variable given in (5) by
t*(/3) and the corresponding critical value by ¢, g := min{t : P(t*(5) < t) > 1 — «}. The limiting
distribution ¢*(3) is mixed normal and symmetric around zero. We compute the critical values of
t* () via simulation; see Appendix E for more details.

5. Proof Sketch

We provide a short proof sketch for Theorem 4.2 to illustrate our proof technique in this sec-
tion. A detailed proof is provided in Appendix B.1. Recall ; = Zle prxf. According to
the update rule (2), no matter whether communicating or not, we always have ;11 = T —
Nmgs Where g = ZkK:lkafk(wf;ff) for t,, < t < ty41. Define s, = &, — «* and
Ym = NmEm with B, = t,41 — t,,. Iterating over t = ¢, to ty41 — 1 gives spp1 =

m — Nm im;i 1gt = Sm — YmUm Where v, = ﬁ i’;;jl_lgt for short. We decom-
pose v, as v, = Gs, + U, where G = V?f(x*) and U,, = v,, — Gs,,. Using the
notation, we have s;,+1 = BpSym — YymUpy where B, := I — v,,G for short. Recursion

m
gives Sy41 = (H;":O Bj> So — Z H B; | v;U;. Here we define [[ B; = I for any
7=0 \i=7+1 i=m-+1
m > 0. Averaging the last equality over m = 0 to h(r,T") (define in (12)) and using the notation

n l
-z .HHBz) give Y S0 s = YE [£.450T Boso - 005 AU
=Jj \i=J

Roughly speaking, Uy, & &5, 1= 7 Zt’"“ ! [fo:l PV fe(®e,,; EF) — Vf(i:tm)]. Clearly, by

11
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our assumptions, {&,,} is martingale difference with uniformly bounded (2 + ¢) moments. No-

tice Polyak and Juditsky (1992) implies {A?}nz j 1s uniformly bounded and approximates G~ well

in the sense that nh_}n;o 1 >0 llA} — G| = 0. We are motivated to find @ Z r, g) Sm+1

h(r,T) h(r,T) h(r,T)

L hr -
~ ‘/;? 7A{;( DByso— Y Glem— Y (AL - (ART) AT e,

The classic result (Hall and Heyde, 2014) implies Zh(r D a-le,, — VG ~1SY2By(r). To pro-
ceed the proof, we need to show the rest terms converge to zero in probability uniformly in € [0, 1].

It is easy to show j\gAh(T ") Byso = o(1) by direct verification and ‘ﬁ Eh(rT (AT G Ye,, =

op(1) by Doob’s maximal inequality. Our Lemma B.7 aims to show ‘ﬁ ST AT

AT m)€m = op(1) under the (2 + J) moment condition, which is the most techmcal part, because the

coefficient A%T’T)

circumvent the issue, Lemma B.7 uses a covering method to show Y-
as a stochastic process indexed by r, is tight. We divide [0, 1] into n equal w1dth 1ntervals and show
the stochastic process has uniformly small expected Lo norm at each interval with the norm value
decreasing as n increases. Thanks to the (2 + §) moment condition, the sum of norm values on the n
intervals is only O(n~%/2). Then Lemma B.7 follows from arbitrariness of n. For easy reference, we
provide a use-friendly version of Lemma B.7 in Lemma B.8.

— AT varies in 7 and thus Doob’s maximal inequality can 't apply directly. To
m m»s

6. Related Work

In the context of distributed inference, as we know that no works consider the asymptotic properties
of Local SGD or FedAvg, letting alone conduct inference. Most works focus on the optimization
properties of Local SGD (or their proposed variants). Woodworth et al. (2020b,a) gave the state-
of-the-art convergence analysis for Local SGD in convex settings, showing its convergence rate is
dominated by the statistical error incurred by stochastic approximation of gradients. However, it
additionally suffers a relatively minor residual error caused by local updates. As a complementary,
our work shows that when the effective step size is set to v, = Epnm x m™%(a € (0.5,1),m > 1),
Local SGD enjoys the optimal asymptotic variance, even though the communication length increases
at a sub-linear rate (i.e., F,,, = 0( )) It corresponds to the previous non-asymptotic result (Wang

and Joshi, 2018) that shows E,,, can be set as large as O(tﬂ{ ) for convergence. Later, Haddadpour
et al. (2019) provided a tighter analysis showing F,,, can be set as large as O(t?n/g). However, they
used a smaller learning rate ~y,,, oc m ! that cannot guarantee asymptotic normality in our theory.
Indeed, the choice of learning rate plays an important role in chasing the non-asymptotic goal of a
fast finite-time convergence rate and the asymptotic goal of achieving limiting optimal normality,
as noted in Li et al. (2020a) who instead proposed a new SGD variant to achieve both together. In
addition, Karimireddy et al. (2020); Liang et al. (2019); Pathak and Wainwright (2020); Zhang et al.
(2020) removed the effect of statistical heterogeneity via control variates or primal-dual techniques.
From our theory, statistical heterogeneity will not affect the asymptotic variance. Similarly, it has
been found that heterogeneity will not alter the minimax optimal bound for the estimation of the
commonality parameter (Zhao et al., 2016; Wang et al., 2019).

12
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Statistical estimation and inference via SGD attracts great attention. Ruppert (1988); Polyak
and Juditsky (1992) showed averaging iterates along the SGD trajectory has favorable statistical
properties in the asymptotic setting, while Anastasiou et al. (2019); Mou et al. (2020) supplemented it
with a non-asymptotic analysis. Many papers recently developed iterative algorithms for constructing
asymptotically valid confidence intervals (Godichon-Baggioni, 2019). Chen et al. (2020) proposed a
consistent plug-in estimator. However, the computation of the Hessian matrix of loss function is not
always tractable. Then, Chen et al. (2020) adapted the non-overlapping batch-means method (Glynn
and Whitt, 1991) and obtained an offline consistent covariance estimator by using time-increasing
batch sizes. Later on, Zhu et al. (2021) extended it to a fully online setting via a recursive counterpart
using overlapping batches. In one latest work, Lee et al. (2021) proposed random scaling, which uses
nested batches instead. But the analysis in their corrected version requires a stronger condition on
the gradient noises that should not only be a-mixing but also have at least forth-order moment (see
their Assumption 2). The a-mixing assumption forces gradient noises to be asymptotic stationary in
a fast rate. By contrast, we provide a valid analysis for random scaling under only 2 + § moment
assumptions (see Assumption 3.2), which is much weaker and can be of independent interest. We
speculate the (2 4+ §) moment condition might not be relaxed any further. In addition, Fang et al.
(2018); Fang (2019) proposed online bootstrap procedures for the estimation of confidence intervals
via randomly perturbed SGD. Meanwhile, Li et al. (2018); Su and Zhu (2018); Liang and Su (2019)
proposed variants of the SGD algorithm to facilitate inference in a non-asymptotic fashion.

7. Conclusion and Future Work

This paper studies how to perform statistical inference via Local SGD in FL. We have established
a functional central limit theorem for the averaged iterates of Local SGD and presented two fully
online inference methods. We have shown that the Local SGD has statistical efficiency with its
asymptotic variance achieving the Cramér—Rao lower bound and communication efficiency with the
averaged communication efficiency vanishing asymptotically. It is worth noting that although we
considered Local SGD (a distributed variant of SGD), our results also hold for the standard SGD
because the latter as a single-device SGD is a special case of Local SGD.

There are many interesting issues for future work. One is to relax the current assumptions and
consider Local SGD for more challenging optimization problems (e.g., non-smooth or non-convex
problems). Our theory shows that Local SGD enjoys statistical optimality in an asymptotic sense,
and it is definitely not also optimal in finite-time convergence (Woodworth et al., 2021). It is then
interesting to analyze the statistical properties of other state-of-the-art algorithms in FL. For example,
Karimireddy et al. (2020) proposed a new algorithm using control variates to remove the effect of data
heterogeneity, which achieves a better non-asymptotic convergence rate. It is also interesting to devise
more powerful algorithms as well inference methods to handle the challenge in the decentralized big
data era (Fan et al., 2021).

Acknowledgments

Li, Liang and Zhang have been supported by the National Key Research and Development Project
of China (No. 2018 AAA0101004). Chang was supported in part by the National Natural Science
Foundation for Outstanding Young Scholars of China under Grant 72122018 and in part by the
Natural Science Foundation of Shaanxi Province under Grant 2021JC-01.

13



L1 LIANG CHANG ZHANG

References

Karim M Abadir and Paolo Paruolo. Two mixed normal densities from cointegration analysis.
Econometrica: Journal of the Econometric Society, pages 671-680, 1997.

Andreas Anastasiou, Krishnakumar Balasubramanian, and Murat A Erdogdu. Normal approximation
for stochastic gradient descent via non-asymptotic rates of martingale CLT. In Conference on
Learning Theory, pages 115-137. PMLR, 2019.

Ahmed Khaled Ragab Bayoumi, Konstantin Mishchenko, and Peter Richtarik. Tighter theory
for local SGD on identical and heterogeneous data. In International Conference on Artificial
Intelligence and Statistics, pages 4519-4529, 2020.

Julius R Blum. Approximation methods which converge with probability one. The Annals of
Mathematical Statistics, pages 382-386, 1954.

Xi Chen, Jason D Lee, Xin T Tong, Yichen Zhang, et al. Statistical inference for model parameters
in stochastic gradient descent. The Annals of Statistics, 48(1):251-273, 2020.

Xi Chen, Weidong Liu, and Yichen Zhang. First-order newton-type estimator for distributed
estimation and inference. Journal of the American Statistical Association, pages 1-40, 2021.

YS Chow. A martingale inequality and the law of large numbers. Proceedings of the American
Mathematical Society, 11(1):107-111, 1960.

SW Dharmadhikari, V Fabian, K Jogdeo, et al. Bounds on the moments of martingales. The Annals
of Mathematical Statistics, 39(5):1719-1723, 1968.

John C Duchi and Feng Ruan. Asymptotic optimality in stochastic optimization. The Annals of
Statistics, 49(1):21-48, 2021.

Jianqging Fan, Yongyi Guo, and Kaizheng Wang. Communication-efficient accurate statistical
estimation. arXiv preprint arXiv:1906.04870, 2019.

Jianqing Fan, Cong Ma, Kaizheng Wang, and Ziwei Zhu. Modern data modeling: Cross-fertilization
of the two cultures. Observational Studies, 7(1):65-76, 2021.

Yixin Fang. Scalable statistical inference for averaged implicit stochastic gradient descent. Scandi-
navian Journal of Statistics, 46(4):987-1002, 2019.

Yixin Fang, Jinfeng Xu, and Lei Yang. Online bootstrap confidence intervals for the stochastic
gradient descent estimator. The Journal of Machine Learning Research, 19(1):3053-3073, 2018.

Peter W Glynn and Ward Whitt. Estimating the asymptotic variance with batch means. Operations
Research Letters, 10(8):431-435, 1991.

Antoine Godichon-Baggioni. Online estimation of the asymptotic variance for averaged stochastic
gradient algorithms. Journal of Statistical Planning and Inference, 203:1-19, 2019.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local
sgd with periodic averaging: Tighter analysis and adaptive synchronization. Advances in Neural
Information Processing Systems, 32:11082—-11094, 2019.

14



STATISTICAL ESTIMATION AND ONLINE INFERENCE VIA LOCAL SGD

Peter Hall and Christopher C Heyde. Martingale limit theory and its application. Academic press,
2014.

Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed statistical
inference. Journal of the American Statistical Association, 2018.

Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed statistical
inference. Journal of the American Statistical Association, 114(526):668—681, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132-5143. PMLR, 2020.

Nicholas M Kiefer, Timothy J Vogelsang, and Helle Bunzel. Simple robust testing of regression
hypotheses. Econometrica, 68(3):695-714, 2000.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A uni-
fied theory of decentralized SGD with changing topology and local updates. In International
Conference on Machine Learning, pages 5381-5393. PMLR, 2020.

Harold J Kushner and Jichuan Yang. Stochastic approximation with averaging of the iterates: Optimal
asymptotic rate of convergence for general processes. SIAM Journal on Control and Optimization,
31(4):1045-1062, 1993.

Sokbae Lee, Yuan Liao, Myung Hwan Seo, and Youngki Shin. Fast and robust online inference with
stochastic gradient descent via random scaling. arXiv preprint arXiv:2106.03156v3, 2021.

Chris Junchi Li, Wenlong Mou, Martin J Wainwright, and Michael I Jordan. Root-sgd: Sharp
nonasymptotics and asymptotic efficiency in a single algorithm. arXiv preprint arXiv:2008.12690,
2020a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50-60, 2020b.

Tianyang Li, Liu Liu, Anastasios Kyrillidis, and Constantine Caramanis. Statistical inference using
sgd. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
FedAvg on non-iid data. In International Conference on Learning Representations, 2019a.

Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Communication efficient decentralized
training with multiple local updates. arXiv preprint arXiv:1910.09126, 2019b.

Tengyuan Liang and Weijie J Su. Statistical inference for the population landscape via moment-
adjusted stochastic gradients. Journal of the Royal Statistical Society, 2019.

15



L1 LIANG CHANG ZHANG

Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei Cheng. Variance
reduced local sgd with lower communication complexity. arXiv preprint arXiv:1912.12844, 2019.

Tao Lin, Sebastian U Stich, and Martin Jaggi. Don’t use large mini-batches, use local sgd. arXiv
preprint arXiv:1808.07217, 2018.

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and
Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. SIAM
Journal on Optimization, 27(4):2202-2229, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics (AISTATS), 2017.

Wenlong Mou, Chris Junchi Li, Martin J] Wainwright, Peter L Bartlett, and Michael I Jordan. On
linear stochastic approximation: Fine-grained polyak-ruppert and non-asymptotic concentration.
In Conference on Learning Theory, pages 2947-2997. PMLR, 2020.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. arXiv preprint arXiv:1804.08333, 2018.

Reese Pathak and Martin J Wainwright. Fedsplit: an algorithmic framework for fast federated
optimization. In Advances in Neural Information Processing Systems, volume 33, pages 7057—
7066, 2020.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838-855, 1992.

Herbert Robbins and David Siegmund. A convergence theorem for non negative almost super-
martingales and some applications. In Optimizing methods in statistics, pages 233-257. Elsevier,
1971.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith.
Federated optimization for heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley &
Sons, 2015.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In International conference on machine learning, pages
1000-1008. PMLR, 2014.

Sebastian U Stich. Local SGD converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In
Advances in Neural Information Processing Systems (NIPS), pages 4447-4458, 2018.

16



STATISTICAL ESTIMATION AND ONLINE INFERENCE VIA LOCAL SGD

Weijie J Su and Yuancheng Zhu. Uncertainty quantification for online learning and stochastic
approximation via hierarchical incremental gradient descent. arXiv preprint arXiv:1802.04876,
2018.

Yixiao Sun. Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and
autocorrelation robust inference. Journal of Econometrics, 178:659-677, 2014.

Binhuan Wang, Yixin Fang, Heng Lian, and Hua Liang. Additive partially linear models for massive
heterogeneous data. Electronic Journal of Statistics, 13(1):391-431, 2019.

Jialei Wang, Mladen Kolar, Nathan Srebro, and Tong Zhang. Efficient distributed learning with
sparsity. In International Conference on Machine Learning, pages 3636-3645. PMLR, 2017.

Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis of
communication-efficient SGD algorithms. arXiv preprint arXiv:1808.07576, 2018.

Yazhen Wang. Asymptotic analysis via stochastic differential equations of gradient descent algorithms
in statistical and computational paradigms. arXiv preprint arXiv:1711.09514, 2017.

Ward Whitt. Stochastic-process limits: an introduction to stochastic-process limits and their
application to queues. Springer Science & Business Media, 2002.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In International
Conference on Machine Learning, pages 10334-10343. PMLR, 2020a.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local SGD for heterogeneous

distributed learning. In Advances in Neural Information Processing Systems, volume 33, pages
6281-6292, 2020b.

Blake E Woodworth, Brian Bullins, Ohad Shamir, and Nathan Srebro. The min-max complexity of
distributed stochastic convex optimization with intermittent communication. In Conference on
Learning Theory, pages 4386-4437. PMLR, 2021.

Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. Advances in
Neural Information Processing Systems, 33, 2020.

Honglin Yuan, Manzil Zaheer, and Sashank Reddi. Federated composite optimization. In Interna-
tional Conference on Machine Learning, pages 12253-12266. PMLR, 2021.

Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. Fedpd: A federated learning
framework with optimal rates and adaptivity to non-iid data. arXiv preprint arXiv:2005.11418,
2020.

Tiangi Zhao, Guang Cheng, and Han Liu. A partially linear framework for massive heterogeneous
data. Annals of statistics, 44(4):1400, 2016.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

17



L1 LIANG CHANG ZHANG

Qinqging Zheng, Shuxiao Chen, Qi Long, and Weijie Su. Federated f-differential privacy. In
International Conference on Artificial Intelligence and Statistics, pages 2251-2259. PMLR, 2021.

Wanrong Zhu, Xi Chen, and Wei Biao Wu. Online covariance matrix estimation in stochastic gradient
descent. Journal of the American Statistical Association, (just-accepted):1-30, 2021.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradient
descent. In Advances in neural information processing systems, pages 2595-2603, 2010.

18



STATISTICAL ESTIMATION AND ONLINE INFERENCE VIA LOCAL SGD

Supplementary Material to "Statistical Estimation
and Online Inference via Local SGD"

Appendix A. Formal Version of Algorithms

Algorithm 1 Local SGD

Input: functions {fx}X_|, initial point x, step size 79, communication set Z = {to,t1,- - - }.
Initialization: let x§ = = for all k.
for round m =0to7 — 1 do
for iteration t = ¢,, + 1 to t,,41 do
for each device k = 1 to K do
xf = xf | —nnVfe(xf ;€8 ). #perform E,, = t,;, 11 — t, steps of local updates.

end for
end for
= _ K k
The central server aggregates: &1, , = ), PkT; -
. . . k —
Synchronization: &y | <« &, forall k.

end for
a1 T _
Return: = # > | &y,.

Algorithm 2 Online Inference with Local SGD via Random Scaling

Input: functions { fi,}}}_,, initial point @, step size 7;, communication set Z = {to, t1,- - - }.
Initialization: set zc(()k) = x for all k,let Ay) = 0 and by = 0 and sy = gy = 0.
form =1to 7T do

Obtain the synchronized variable from Local SGD: @;,, = Zszl PRy .

Y = " Y1 +

Ay = Ayt + G,

bm = bmfl + %gmv

Sm = Sm-1 1 ﬁz

m2
gm = Gm-1 + B

Obtain V, by
~ 1 B 3 L
Vin=— (Am - ymb;rz - bmy;vr@ + memy;[b) .
m2s,

Return: y,, and XA/m
end for

Appendix B. Proofs for the FCLT

This appendix provides a self-contained proof of Theorem 4.2 as well as the first statement of
Theorem 3.1.

19



L1 LIANG CHANG ZHANG

B.1. Proof Ideas

We follows the perturbed iterate framework that is derived by Mania et al. (2017) and widely used in
recent works (Stich, 2018; Stich et al., 2018; Li et al., 2019a; Bayoumi et al., 2020; Koloskova et al.,
2020; Woodworth et al., 2020a,b). Then we define a virtual sequence &; in the following way:

K
= k
Ty = E PR
k=1

Fix am > 0 and consider ¢,,, <t < t,,+1. Local SGD yields that for any device k € [K],

k k k. ¢k
T = @ — V(@58
K
k k k k
:ctm+1 = Zpk <wtm+1—l - nmvfk(xtm+1—l;§tm+1—l)) ’
k=1

which implies that we always have

K
Tip1 = Ty — NmG:, Where gy = Zpkvfk(mfé &). (©)
k=1

Define s,, = &y,, — «* and recall that F,, = t,,41 — t,, and v, = N Ey,. Iterating (6) from
t =1ty totmy1 — 1 gives

tmy1—1 tm+1—1

_ 1 _
Sm+1 = Sm — Im tzt: gt = Sm — YmUm, Where v, = E7m t_zt: gt. @)

We further decompose v,,, into four terms.
v = Gsm + (Vf(@,) — Gsp) + (i — V[(Z4,,)) + (vm — hm)
=GSy, +Tm +Em+ Om (8)

where G = V2 f(z*) is the Hessian at the optimum * which is non-singular from our assumption,
and

1 tm+1—1 K
- — .k
han = - ;t: ;pkm(mtm,@). )

Note that h,, is almost identical to v,, except that all the stochastic gradients in h,, are evaluated at
x+,, while those in vy, are evaluated at local variables x;’’s.
Making use of (7) and (8), we have

Sm+1 = (I - 'YmG)Sm - 'Ym('rm +éem+ 5m) = Bpsm — YymUnm, (10)
where B,,, := I — v,,,G and U,,, := r,;, + €, + 9y, for short. Recurring (10) gives

m

m m
smer=([[Bj)so—=>_ | II Bi| U (11)
j=0

§=0 \i=j+1
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m
Here we use the convention that [[ B; = I for any m > 0.
1=m-+1
For any r € [0,1] and T > 1, define

T 1 n
7‘2%2

m=1 m=1

h(r,T) = max {n €Zy

1
Em} (12)

From Assumption 3.4, we know that ZTTn:1 ﬁ — oo as T — oo, which implies h(r,T) — oo
meanwhile. Summing (11) from m = 0 to h(r,T") gives

h(r,T) h(T‘,T m m m
tr tr
R (NI EA S o B A
m=0 m=0 7=0 7=0 \1i=j+1
h(r T) m h(r,T) h(r,T) m
_W/itr tr
=7 HBj - Z II B:|wU;.  a3)
m=0 \j=0 7=0 m=j i=j+1

Lemma B.1 (Lemma 1 in Polyak and Juditsky (1992)) Recall that B; .= I — v;G and G is
non-singular. For any n > j, define A’j1 as

n

l
Ar=>"| I[ B | (14)

I=j \i=j+1

Under Assumption 3.3, there exists some universal constant Cy > 0 such that foranyn > j > 0,
. . 1 n -1 —
|A%[| < Co. Furthermore, it follows that nhﬁnolo 72 -0 lAY =G~ =0.

Using the notation of A”, we can further simplify (13) as

(r,T) h(r,T)
t r t r
\/7 Z Bl = ng( ’T)Boso . TT Z A% I,
m=0
Since U,,, = 7y, + € + 1, then
h(r,T) h(r,T h(r,T)
Vir _ VI ) tr h(r,T)
T WLZO Sm+1 + — Tnz ")/0 AO BOSO — T P Am (Tm + (sm)
i h(r,T)
- ) (AL -G en
T m=0
7 h(r,T)
- D (A — Al
m=0
where for simplicity we denote
h(r,T)
To= A DBy, 7= VIS AN 0+ 6,
70 0
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]’L(T‘,T h(’f’,T)
Vir Vir h(r,T) T
T m_o Em, T3 = T mz—o (Am - Am)f:‘m

With the last equation, we are ready to prove the main theorem which illustrates the partial-sum
asymptotic behavior of \/E Z 0 Sm+1 The main idea is that we first figure out the partial-sum

asymptotic behavior of \/E Zh(r g1 €m and then show that their difference is uniformly small,
ie.,

sup \/ﬁ Z m+1+\/ﬁ Z G e, = op(1).

rel0,1]

For the second step, it suffices to show that the four separate terms: sup,.¢(o 1) | 7oll, sup,cfo 1) | 71 I,
sup,¢o,1 | 72|, and sup,.¢(o 1) [| 74|l are op(1), respectively. With this idea, our following proof is
naturally divided into fives parts.

The establishment of almost sure and Lo convergence in Lemma B.2 will ease our proof. The
following lemma proves the first statement of Theorem 3.1. The second statement of Theorem 3.1
follows directly from Theorem 4.2 which we are going to prove via an argument of the continuous
mapping theorem.

Lemma B.2 (Almost sure and L, convergence) Under Assumptions 3.1,3.2,and 3.3, &y, — x*
almost surely when m goes to infinity. In addition, there exists some Cy > 0 such that

E|2t,, —"|* < Coym-

Part 1: Partial-sum asymptotic behavior of f SR T) G le

Lemma B.3 Under Assumptions 3.1, 3.2, 3.3 and 3.4, the functional martingale CLT holds, namely,
foranyr € 0,1],
h(r,T)

\/t? ZG lem = VG 1SY2By(r),

m=0

where h(r,T) is defined in (12) and B4(r) is the d-dimensional standard Brownian motion.

Part 2: Uniform negligibility of 7). Lemma B.1 characterizes the asymptotic behavior of A;‘. It
is uniformly bounded. It implies

NG . Vi
sup [|Toll = XL sup || AR Byso|l < XL Co|| Boso|| — 0,
rel0,1] T0 rejo,) To

as a result of @ — 0whenT — oo.

Part 3: Uniform negligibility of 7;. The uniform boundedness of A7 implies

h(r,T)
Vir
St[lp]HTlH— Sl[lp}i > AN (1, + 8)
0,1 m=0
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h(r,T)

su Co(ll7mll +116m)

6 7

ﬂ\%

<
[e=]

m=l

T
LZ Colllrmll + 181,

where the last inequality uses the fact that h(r, T') increases in r and h(1,7') = T'. The following
two lemmas together imply that sup,.cjo 11 [| 71/ = op(1).

Lemma B.4 Under Assumptions 3.1, 3.2 and 3.3, we have that
T
Vir
LS rmll = op(1).
m=0
Lemma B.S5 Under Assumptions 3.1, 3.2 and 3.3, we have that
T
tr
LS ol = op(1).
m=0

Part 4: Uniform negligibility of 75. By Doob’s maximum inequality, it follows that

2

t _
E sup [Tl? =E sup 5 || > (A}, ~ G Nem
rel0,1] rel0,1] m—0
t T ’
T _
< ﬁE Z(AZ@—G 1)€m
m=0

T
t
- 72 2 El(4n — & en

<7 Z 1A%, = G " E lleml”.

Because €,,, = hy, — Vf(&4,,) = Elm :Zttjl_l (Vf(#®e,,;&) — V (@, )) is the mean of E,, i.i.d.
copies of e(&y,,) := Vf(&4,,;&,,) — V(&) at a fixed &,,,, it implies that

1
E llem|” = fEHdwtm)HQ < F (C1 + CoEl|ze, — 2|*) 3 (15)

1
E,
where the first inequality is from Lemma B.9 with C, C two universal constants defined therein
and the second inequality uses Lemma B.2. Using the last result, we have that

tT T 1 2
T -1
ET: 3 7 2 mHAm—G |-
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By Lemma B.1, it follows that as T" — oo,
T
1 _
LY AL - < (ot ) ZHAT &' 0.
oo

Lemma B.6 implies that E sup,.c[g 1 | 72]1? = o(1).

Lemma B.6 Ler {E,,} be the positive-integer-valued sequence that satisfies Assumptton 3.4. Let
{am, T}me [r],r>1 be a non-negative uniformly bounded sequence satisfying hm L T Zm 04m,T =

0. Then - -
lim (Zm:() Em)(Zm OE lam,T)

=0.
T—oo T2

Part 5: Uniform negligibility of 75. It is subtle to handle 73 because its coefficient depends on 7.

t
|17 = YT (AL — AMrD)e,,

TYmEm

I
3 ~
+
-

&
N—

h(r,T) [ h(r,T)

S (0 ) S (T8

i=h(r,T)+1 m=0 \i=m+1

1
s S il s S
N

N

1 h(r,T) h(r,T)
— B; | ymEml||
Yh(r,T)+1 izl;IH

where the last inequality uses

T

> H Bi | Ynrry+1|| = HA;Z(TT +1Bh(r1) +1H <L
I=h(r,T)+1 \i=h(r,T)+

Lemma B.7 shows that sup,.¢(g 1 | 73]| = op(1).
Lemma B.7 Under Assumptions 3.2 and 3.4, it follows that

h(r,T) [ h(r,T)

vir v Z H B; | Ymem|| = op(1).

ref01] T || V@)1 m=0 \i=m+1

Remark B.1 There is a more user-friendly version of Lemma B.7 for a plug-and-play use. Define
an auxiliary sequence {Y p, }m>0 as following: Yo = 0 and for m > 0,

Ym+1 = BmYm + YmEm = (I - ’YmG)Ym + YmEm- (16)
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It is easy to verify that
t t
Yei-3 ( 10 BZ) e
t=0 \i=m+1
Under this notation, Lemma B.7 is equivalent to

Vir [[Ye|

0<t<T T

0[[»(1).

More formally, we have the following lemma which one can prove from Lemma B.7.

Lemma B.8 If the martingale difference sequence {€pm }m>o satisfies sup,,>q E|l€n[|>T° < oo for
some 0 > 0 and Assumption 3.4 holds with E,, = 1, for the sequence {Y , }m>0 defined in (16)
with G positive definite, we have

LY
O<t<T \/> Yt+1

01@(1).

B.2. Proof of Lemma B.2

Define 7 = o({€F}1<k<x 0<r<¢) by the natural filtration generated by &¥’s, so {x}}; is adapted to
{Fi}+ and {x,, }., is adapted to {F;,, },,. Notice that v, = h,, + 8, where

1 tm+1*1

K
B = > VI (@,16) and VS (@1,56) = > peVF (@06,
k=1

™ t=tm
implying E[h,,|F:,.] = V f(&4,,). The L-smoothness of f(-) gives that

_ _ _ L. _ _
f(a:tm—Q—l) S f(wtm) <vf(mtm) mtm+1 - mtrn> + EHmtnkl—l - mth2

_ _ V2L
= F(@®1,) = V(@) vm) + 5= o[
Conditioning on F;,, in the last inequality gives

E[f<jtm+1 ) ’}—tm]

< f(@,) = Ym(V (@), Elom| Fr,, ) +

2
v, L
2 o 1)

2
= F(@1) ~ VT @)~ Aol F ). B0 Fo ) + LB+ 8PV

< F(@1,) = | VF @0 )P+ BV (@0, + 5 (Bl F, )
+ VA LE o P, ) 4 72 LEL 81l | Fo ]
= f(@,) = BNV F @17 + 2 LE[ bl P Fo, ) + (5 +2,L) Ellon |27, ), ()

where we use the conditional Jensen’s inequality ||E[d,,|F,,]||> < E[||6m % F.,.]-
We then bound the last two terms in the right hand side of (17).
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Part 1: For E[||h,, || F;,,], it follows that

Ell|fm|*| Ft,] = 1E[m| F,,JIIP + Elll R — Elhm| P, 121 P,
= IVF (@0, )P + Elll P = V(&) |7 F,.]

= V@0 )P + 5 ElIV @3 ) — V@01 Fo ),

where the last equality uses the fact that h,, is the mean of E,, i.i.d. copies of V f(Z,,;&,,) =
Zszl PV fi (X, §fm) given F;, , so its conditional variance is E,,, times smaller than the latter,

1

Ellhm =V f(&,,) 1?1 F,] = EE[HVf(@m; &) = V(@) 1?1 Fe). (18)

Lemma B.9 Recall that £(&y,)) = Vf(Z4,;&,,) — V(&) and ep(xf) = Vf(xh;&F) —
V f(x}). Under Assumption 3.2, it follows that

Egtller(@t)|? < C1 + Oollay —2*|° and B, ||e(@4,)]? < O + Caldy,, — 27|
where C1 = dmaxye(k || Skl + dc and Cy = 3dc with C' defined in Assumption 3.2.
With Lemma B.9, we have
E([Vf(&t: étn) = VI (&1,)|%|F2] < C1 + Col|E,,, — 2.

Then, it follows that

_ C .
Bl P17, ] < 195 @02 + - + 22 o, — [

Part2: For E[||8,,]|?|F,,], by Jensen’s inequality, we have

E[[10m]*| Ft,] = Elllvm — honl|*| 7]

tm+1—1 K tmy1—1 K

— DD oVl &) Ei PRI A G ) ‘ftm
Em t=tm k=1 t=tm k=1
1 tm+1—1 K 9
<S5 2 LmE [Hm@f;ﬁf)—m(:fctm;&f)H yftm].
t=tm k=1

Because w,’f, Ty, € Frand Fp,, C Fifort,, <t < tmn41, we have that

B[V fi(a)'s &) = V fu(@t; §) P Fr] = BRIV fr(@f; £F) — V fr(@,,5 €111 Fil | Fr,)
= E[Eg |V fi(af; &) = V fi (@00 €)1 F]
< LPE[|af — &4, 1?1 F,.),

where the first equality follows from the tower rule of conditional expectation and the second
inequality follows from the expected L-smoothness in Assumption 3.1.
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Combining the last two results, we have

m+1_1 K

L2 ! 3 L2
E§nl’ 7] < 2= D0 D meEllaf — 2, 7] =2 > Vi

M t=tm k=1
where V; is the residual error defined by
K
Vi =Y B[} — @, ]°|Fp,.)- (19)
k=1
The residual error is incurred by multiple local gradient descents. Intuitively, if no local update is
used (i.e., F,, = 1), such a residual error would disappear. The following lemma helps us bound
ﬁ Ziz;}l_l V; in terms of y,,, and ||Z;,, — z*||%.
Lemma B.10 Under Assumptions 3.1 and 3.2, there exist some universal constants Cs,Cy > 0
such that for any m with 2, E2=1Cy < 1, it follows that

mE,,

tmt1—1

1 E,—1
il V, < A2 M
Em Z t > 7m Em

t=tm

(C5 + Cul|Zy,,, — *|?) .

Almost sure convergence: Denote A,,, = f(&¢,,) — f(a*) for simplicity, then from the p-strongly
convexity and L-smoothness of f(-), it follows that

1 1 L
§1@0, —@? < A < oIV S @) and SV @I < An < @, 2

Note that v, — 0 when m goes to infinity, which means there exists some m, such that for any
m > mog, we have 42,Cy < 1 and 7, < min{i, 1}. It implies that we can apply Lemma B.10 for
sufficiently large m. Combining the two parts and plugging them into (17) yield for any m > my,

Elmi11] < A = SIS @I + 2 [I95@0)IP + 5+ E e, - o'

+ (5 +94L) ALY (Ca+ Cullar, — ' |?)

< A = YmiBm + i L - [gl + <2L + 5]502) Am:|

m 2C
+ (77 + %%L) YL <03 + M“M)

2 2
< Ay = YD + v L - [Cl + <2L + ?) Am] + L7 (Cg + %Am)

2 2
< Ay = Yt + i L - [Cl + <2L + 52) Am] +ym L <03 + %M)

= (14 c172) Am + 292, — f1ymAm, (20)
where
2(LCy + L2C4)

7
To conclude the proof, we need to apply the Robbins-Siegmund theorem (Robbins and Siegmund,
1971).

c1 = 2L + and ¢ = LCq + LQCg.
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Lemma B.11 (Robbins-Siegmund theorem) Let {D,,, B, atm, (m Foo o be non-negative and adapted
to a filtration {Gp, }o_, satisfying

E[Derl’gm] < (1 + ﬁm)Dm +am — (m

forallm > 0and both ), By, < 0o and . oy, < oo almost surely. Then, with probability one,
D,,, converges to a non-negative random variable Do, € [0,00) and )", (pm < 00.

From Assumption 3.3, we have that c; nyj:mo 72, < oo and ¢y Z;f:mo 72, < co. Hence, based
on (20), Lemma B.11 implies that A,,, = f(&;,,) — f(x*) converges to a finite non-negative random
variable A, almost surely. Moreover, Lemma B.11 also ensures that

1S A < . 1)

m=my

If P(A,, > 0) > 0, then the left-hand side of (21) would be infinite with positive probability due
to the fact 37" = oo. It reveals that P(A,, = 0) = 1 and thus f(®,,,) — f(z*) as well as
x,, — x* with probability one when m goes to infinity.

L- convergence: We will obtain the Ly convergence rate from (20). This part follows the same
argument of Su and Zhu (2018) (see Page 37-38 therein). For completeness, we conclude this section
by presenting the proof of it. Taking expectation on both sides of (20),

EAm+1 < TYm—1 (1 — WYm + 0177%1) EAm
Ym Tm Ym—1

+ C27Ym.-

Because ,, — 0, we have that for sufficiently large m, c172, < 0.5y, and hence,

1 (1=5
EAerl < Ym—1 ( 27m) IEAm + CoYm.
Tm TYm TYm—1

Lemma B.12 (Lemma A.10 in Su and Zhu (2018)) Let c1, co be arbitrary positive constants. As-
sume Y, — 0 and % =1+ o(ym). If By, > 0 satisfies By, < Wﬂn_l + CoYm, then
sup,,, Bm < oo.

With the above lemma, we claim that there exists some Cs > 0 such that

EA,,
sup

0<m<oo Tm—1

< Cs, (22)

which immediately concludes that

. 2 2C 20
I? < JEAm < =B et = =2 (L + 0(3m)) i < Cotm:
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B.3. Proof of Lemma B.9
Proof By Assumption 3.2, we know that e(&;,,) 1= V f(&4,,; &, ) — V. f(&4,,) satisfies

|Ee,,, &(Zs,)e(Z,,) " — S|l < C (&, — 2| + |2, —=*|?) .
Therefore, it follows that

IV £ (0,56, — VF@)2F] = Bl 1P = Be,, ()
— tr(Eg,, =(0,)2(E,))
< dEg,, =(F1, )2 (@0, |
< d|S| + dC|a, — '] + dC|z, o
dC\  3dC, .
< (a1s1+ %5 ) + 2w, - 22
< C1 + G, —2*|?

with C1 = dmaxy, ||Sk| + % and Cy = %. Here we use the fact that S = Zszl p2 Sk and thus
K K
IS < 321 PRI Skll < 3ok Pl Skl < maxyery || Sill-
With a similar argument, it follows that

dC’ 3dC . %
Eeplex(ai)|* < dlISkll + = + = llof — 2™|* < Oy + Collaf — ||,

B.4. Proof of Lemma B.10

For a fixed m > 0, let us consider the case where ¢,,4+1 > t,, + 1, otherwise the result follows
directly due to V;,, = 0. For t,,, <t < t;41 — 1 and k € [K], we have zf = &, and

t
$f+1 = a) — VYV fr(af; &) = wfﬂ = Tt,, — m Z V fr(®; €7).

T=lm

Using the last iteration relation, we obtain that

¢ 2
> V(@i ¢k

T=tm

Elllet,, — 20, |P|1Fi,] = \ﬂm

t
< (t+1—tm) Y E[|Vfa(ah; )P 7]

T=tm

t
< e Bm Y BV fu(ah; )P 7]

T:tm

i Y E [E(I9 fu(ks €)1 F2) | P |

T=tm
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We then turn to bound E[||V fi,(xk; £F)||2| F;] as follows:

E(V fr(2h; €)1 | Fr] = B[V fr(@h; €8) — V fr(@E)1*| Fr] + 1V fr ()]
< Egrllex (@) |* + 2|V fr(ah) — V fi(@)||* + 2|V fi(a*) |
< (C1 + 2|V fi(z)|?) + (Co + 2L?) ||k — z*|?
< O+ Dat |
< C3 + Cyl|wl — &y, |I° + Cullzy,, — o,

where C3 = C1 + 2maxye g |V fr(2*)||* and Cy = 2C3 4 4L>. The second inequality uses the

L-smoothness to bound ||V fi(x¥) — V fi.(z*)|| and Lemma B.9 to bound Eex ler () ||> which
yields

Egsllex (@) < C1 + Cal|af — 2™,
Therefore, by combing the last two results, we have

t
Elllzts = @, 1) < 05 Bm Y |[Cs + Cill@s, — |2+ CaE[lk — 1,215, ]|
T=tm
Hence, for t,, <t < t,,+1 — 1, we have
K t
Vier = Y piB(lafyy — 20,21 F) < 0Bm S (Cat Call@e, — a2+ CiVy). (23)
k=1 T=tm
Because V;,, = 0, it then follows that

tm4+1—1 tmy1—2
g Vi= E Vit
Em t=tp, Em t=tm
tm+1—2 ¢t

<np Y. Y (Cs+Cul@y, —a*|* + CuVr)
t=t;m;m T=tm
tm41—2

=12 Y (tmsr —t — 1) (C3 + Cul|@e,, — x*||* + C1V3)

t=tm

tm+1—1
< (B —1) Y (Cs+ Cyl@r, — a*||* + CuVp)
t=tm
E 04 m+1 1
<t (o a1 £ ).
m Mt

where we use the definition of E,,, = t,,,+1 — t, and v, = 9 By
Hence, rearranging the last inequality and using the condition 72 Em 10 <l 5 gives

1 tmy+1—1

E,,
Z Vi <292 i (03+C4H:Etm—a:*\|2).

t=tm

m

Finally redefining C'5 := 2C3 and C4 := 2C completes the proof and the restriction on ~y,,, becomes
’ym Em 1 C4 < 1 under the new notation of Cj.
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B.5. Proof of Lemma B.3

Recall that
1 tmy1—1
em = hm —Vf(Z,) = . t; (Vf(@e,;&) — V(xe,))

where Vf(@y, ;&) = Zle PV f(®,,;€F) and & = {gf}kem, and recall that e(@;,,) =
Vf(®,,;&,,) — V (&, ). Hence €, is the mean of E,, i.i.d. copies of e(&;,, ) at a fixed &, .

Define 7; = 0({¢¥}1<p<r0<r<t) by the natural filtration generated by £¥’s and G,,,_1 = F3,,.
Then {e,, }3°_, is a martingale difference with respect to {G,,, }>°_ (for convention Gy = {0, 1} if
& is deterministic, otherwise Gy = o (Zy)): E[e)n|Gm-1] = 0.

The following lemma establishes an invariance principle which allows us to extend traditional
martingale CLT. Interesting readers can find its proof in Hall and Heyde (2014) (see Theorems 4.1,
4.2 and 4.4 therein).

Lemma B.13 (Invariance principles in the martingale CLT) Let {S,,, G, }n>1 be a zero-mean,
square-integrable martingale with difference Xy, = Sp—Sn—1(So = 0). Let U2 =" | E[X2,|Gm-1]
and s> = EU? = ES2. Define (,,(t) as the linear interpolation among the points (0,0), (U, 2U2, U, 1S1),
(U2U3,U,718s), ..., (1,U;1S,), namely, fort € [0,1] and 0 < i <n — 1,

) = Uy [Si+ (U2 —UD) I (UR = UD) Xia]  if UP <tUF < U2

7 K3 K3

As n — oo, if (i) the Linderberg conditions holds, namely for any € > 0,
n
522 Y EIX2I(1Xm| > e50)] — 0, (24)
m=1

and (ii) s;,?U% — 1 almost surely and s — oo, then

Cn(t) = B(t) inthe sense of (C,p).
Here B(t) is the standard Brownian motion on |0, 1] and C' = C|0, 1] is the space of real, continuous
functions on [0, 1] with the uniform metric p : C[0, 1] — [0,00), p(w) = max,¢(o 1] |w(t)].

Lemma B.13 is for univariate martingales. We will use the Cramér-Wold device to reduce the
issue of convergence of multivariate martingales to univariate ones. To that end, we fix any uni-norm
vector a and define X,,, = a ' €,,. We then check the two conditions in Lemma B.13 hold for such

{Xm7 gm}le-

The Linderberg condition: For one thing, since &;,, — «* almost surely from Lemma B.2, we
have E|e(2;,, )|/t 2 1 from Assumption 3.2 when m is sufficiently large.

Lemma B.14 (Marcinkiewicz—-Zygmund inequality and Burkholder inequality) IfZ,...,Z,
are independent random vectors such that EZ,, = 0 and E|Z,,,|P < oo for 1 < p < oo, then

p n g
1 ¢ C 1
LY af <Ge(13iar)
m=1 UE m=1
where the C,, are positive constants which depend only on p and not on the underlying distribution

of the random variables involved. If 71, ..., Z, are martingale difference sequence, the above
inequality still holds. It is named as Burkholder’s inequality (Dharmadhikari et al., 1968).

E
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Notice that we can rewrite X,,, as the mean of E,, i.i.d. random variables which have the same
distribution as Z; = a ' e(®,,): X = E%n ZZE:”i Z;. With the Marcinkiewicz—Zygmund inequality
and Jensen inequality, it follows that

2) RIS
E|Xm’2+62 :jE 2 E( Z |Z | ) jEm 3 E’ZI‘Q—HSQ

3 E;f”?)|rau2+52EHa<m>|rW o 25)
Moreover, from Assumption 3.2 and Lemma B.2, we have that
‘aT [Eg(@tm)e(@tmf - s] a‘ < C [E|a, — 2*|| + El|2, — 27||?]
< C(VYm +vm) — 0.

Recall that ZZ;:I E,, ! — oo as T — oo. The Stolz—Cesaro theorem (Lemma B.15) implies that

TE = = T
) &2, e @) TR, e(z,) T
im N = lim T T = lim T =1.
T—00 Z -1 ma,—l—‘Sa/ T—o0 Zm:l ma,—l—‘Sa/ T—00 a Sa
(26)

Hence, for any € > 0, as T" — oo, we have that

T T
s72 S EIX2I(|Xin| > es7)] < 6252070 ST E[|X,, P20 X | > e57)]
oo

m=1

T
5.
< 6*728;(2"‘52) E E‘Xm’2+52

The second condition: We have established the divergence of {s2 }7 in (26). Notice that

T
E[X2|Gm-1] =)

1 m=1

I
N

1

m

aTE&ms(:Etm)e(ictm)Ta.

Il
B

1
1 Em

3
I

Therefore, from (26) and the Stolz—Cesaro theorem (Lemma B.15), it follows almost surely that

T

2
i | 1) < dim $ S L [, - @) + 5, - 27)7]
T—o00 8% T T—oo S% 1 E,, m "

= lim

Jim e [|@e, — 27|+ @0, — 2] = 0.
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Lemma B.15 (Stolz—Cesaro theorem) Let {ay, }n>1 and {b,}n>1 be two sequences of real num-
bers. Assume that {b, } n>1 is a strictly monotone and divergent sequence. We have that

Gpg1 — Oy . a
AR S I, then lim ——~ =1.
n—00 b1 — by n—o0 by,

We have shown that the two conditions in Lemma B.13 hold. Hence, by definition, {7(r) = B(r)
where

Cr(r) == Uzt [Si+ (UR, = UR) ' (rUF — UP)Xiya] if UP <rUz <UZ,

and S; = ZZ _1 Xm. Since sp/Ur — 1 almost surely and (26), it follows that

m=1
VEUTCT(T) = VVaTSaB(r) £ \va  §Y/*By(r),

where B() is the d-dimensional standard Brownian motion. Recall that

Tib} ZE}

=1  m=1

h(r,T) = max {n € Zy

Lemma B.16 Under the same condition of Lemma B.3, it follows that

U2
\/;UTCT ( hTT)) - \/FTUTCT (r)

sup — 0 in probability.

refoa]| T U7 T
Hence,
h(r,T) 2
tr T Vir Vir Unirm) T ol/2
T 2 a em =" Sh(r1) = T Ur¢r 02 = Vva' SV?By(r).

By the arbitrariness of a, it follows that*
h(r,T)
Vir
T Z Em = \/;SI/QBd(T').
m=1

Applying the continuous mapping theorem to the linear function € : € — G~ !¢, we have

h(r,T)
t
\/? > G e = VUGTISYBy(r).
m=1
Finally, since IE\/EHG_lng — 0, it implies that @G_lso = op(1). Then it is clear that
Vir sl G-le,, = JrGISY2By(r).

4. See the proof of Theorem 4.3.5. in Whitt (2002) for more detail about how to argue multivariate weak convergence
from univariate weak convergence along any direction.
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B.6. Proof of Lemma B.16
From the Theorem A.2 of Hall and Heyde (2014), if some random function ¢,, = ¢ in the sense of
(C, p), {¢n} must be tight in the sense that for any £ > 0, P(supjs_y<s |n(s) — dn(t)] > ) = 0

uniformly in n as & — 0. Since YLUr(r(r) = va' SYV2By(r), {YLUr(r}r is tight. We
denote the following notation for simplicity

U2
¢r(r) = \/TFTUTCT(?”) and pr(r) = l;;rz,T)'
T

Since pr(r) satisfies pr(0) = 1 — pr(1) = 0 and pr(r) is non-decreasing and right-continuous
in 7, we can view pr(r) as the cumulative distribution function of some random variable on [0, 1]
and p(r) : 7+ r is the cumulative distribution function of uniform distribution on [0, 1]. It is clearly
that pr(r) — p(r) for every r € [0, 1] almost surely, because

2 2 h(r,T) 1
. . Uh(r,T) . Sh(r,T) . Zm:l Em
lim pT(T) = lim 3 = lim —5 = lim T = = p(?“)
T—o00 T—oo Us T—oo ST T—oo S0 El

Here we use h(r,T) — oo for any r € [0, 1] as T" — oo. Since p(+) is additionally continuous, weak
convergence implies uniform convergence in cumulative distribution functions, i.e.,

lim sup |[pr(r)—r|=0. (27)
T—001¢0,1]

By the tightness of {¢,,}, for any £, > 0, we can find a sufficiently small § such that

lim sup P ( sup [or(s) — ¢r(t)| = 6) <.

T—o0 [s—t|<d
With (27), for this d, P(sup,¢jo 1] [pr(r) — r[ > §) — 0 as T — oco. It implies that

lim sup P ( sup |¢r (pr(r)) — ér(r)| > 5)

T—o0 rel0,1]

< limsupP ( sup |or (pr(r)) — é7(r)| > €, sup [pr(r) —r| < 5)
T—00 ref0,1] r€[0,1]

+Tlim P ( sup |pr(r) —r| > 5)

o0 rel0,1]

< limsupJP’< sup [or(s) — ¢r(t)| = 6) <.

T—00 |s—t|<6
Because 7 is arbitrary, we have shown that

sup |¢r (pr(r)) — ¢r(r)] — 0  in probability.
rel0,1]
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B.7. Proof of Lemma B.4
Recall that G = V2 f(z*), s, = 4, — =* and
rm = V(&) — Gsp.

When ||s,,| < d1,

f(ssm +a*) = V2f(x*)|| < sL'||sm], then
lrmll = [V f(sm +a") = Vf(@*) = V2f (&) sl

/1 V2f(58m + )8 mds — V2f(ac*)smH
0

1
< /0 V2 (s8m + %) — V2 f(x*)| |smllds
L/
< 5llsm||2-

When ||| > 61, [[7mll < V(@) + |Gsmll < Li[smll + Lllsm|| = 2L|[sm||. Applying the
results above yields

1Pl < LNl Lysmi<siy + 2L18m | 1 sn(>613-
Hence,

T T
VT Vir
D = T > [lsmlPLgs,p<ony + 2L smll Lgan 55}
m=0

m=0

By Lemma B.2, s,,, — 0 almost surely, which implies

T
Vir
T Z [8mll1{||s,|>6,3 — O almost surely.

m=0

It then suffices to show that Y2 S°7 18|21 ¢)1s,. <61} = 0#(1), which is implied by
T
Vir
T 2 Ellsm|* = o(1).
m=0

It holds because @ pro Ellsn|? 2 @ Zﬁ:o Ym — 0 from Lemma B.2 and Assumption 3.4.

B.8. Proof of Lemma B.5

In the proof of Lemma B.2 (see the Part 2 therein), we have established for sufficiently large m,

L2 tm+t1—1 .
E[[[6mI*] F,.] <5 Y i<y, 2 & (C3+C4||wt —z*|?),
Em t=tm

where V; is the residual error defined in (19) and C'5, C4y > 0 are universal constants defined in
Lemma B.10. Besides, Lemma B.2 implies that E||Z;,, — =*||* =< 7, = 1. It follows that

E||6m* < L?7, (Cs + CuEl|Ze,, — 2"[%) 3 vin-
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In order to prove the conclusion, it suffices to show that g Zi:o E ||d,,]] — 0, which is satisfied

because . . .
tr tr tr
VS Bl < YIS B8 5 VY 5 0
m=0 0

m=0 m=

from Lemma B.2 and Assumption 3.4.

B.9. Proof of Lemma B.6

If {E,,} is uniformly bounded (i.e., there exists some C' such that 1 < E,, < C for all m), the
conclusion follows because

_ _ - T-1
(Xm0 Bn) o Em'amr) _ CT(E et @mr) _ 1
0< m T;” m < 7%2 :fzam,T—)O when T — oo.

m=0

In the following, we instead assume F,, is non-decreasing in m (i.e., 1 < F,, < Fp,41 for all

m). Let H, = anzo am 7. For any ¢, there exist some N = N(¢), such that for any m > N,
0 < H,, < me. Then

T T T-1
Qm, T . Hm — Hm—l . HT 1 1 HN—l
> =y =ty (- — | Ha -
=N Em =N Em ET =N Em Em+1 EN

Hr—Te [Te X ( 1 1 ) (N—1De| Hy_i—(N-1)
= — —_— - me — —
Er Er =S \Emn  Emnu Ey Ey
1 Hr—-Te¢ H — (N — 1)
—ey L N-1—( )
E,, Er En
n=N
T
1 Ne
<e. 4=
<e >y 5,
n=N
Recall t7 = ZZ;;% E,,. Therefore,
tr (Xm0 B amr) _tr(CmZo Entamr) | tr(C oy En'am)
T2 N T2 + T2
(o Bl amer) | tr(Cpey Bil) | trNe
- T2 T2 T2EyN

Taking superior limit on both sides and noting a,, 7 3 1 uniformly and Tlim ;—TQ = 0, we have
—00

0 < limsup <
T—o0 T2

By the arbitrariness of €, we complete the proof.
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B.10. Proof of Lemma B.7

Without loss of generality, we assume G ! is a positive diagonal matrix. Otherwise, we apply the
spectrum decomposition to G = VDV T and focus on the coordinates of each ¢, with respect
to the orthogonal base V. This simplification reduces our multivariate case to a univariate one.
Hence, it is enough to show that the result holds for one-dimensional €,, and G. In the following
argument, we focus on an eigenvalue \ of G and its eigenvector v, and denote ¢,, = v '&,, and
By, =1 — A € R for simplicity. Clearly, A > 0 and 0 < B,,, < 1 for sufficiently large m.

Given a positive integer n, we separate the time interval [0, 7] uniformly into n portions with
h; = [%] (1 =0,1,...,n) the i-th endpoint. The choice of n is independent of 7', which implies
that limp_, ., h; = oo for any 7. Define an event .4 whose complement is

h;
A€ = < 3h; st B; Emll > €.
{ Z T’yh o Z (izlﬂ_zIJrl l) e }
We claim that lim sup P(.A¢) = 0. Indeed, by the union bound and Markov’s inequality,
T—o00
n
P(A%) < P Bivmemll > €
( ) ; T'}’hz+1 mzo H i YmEm

= Jj=m+1

h;i 2

hi
B | +2
~ Z €2T2,Yh +1 mz:o j_l;[+1 J Tm

n

tr 1
e21? i—0 Yhi+1
tT(n + 1)

S o, —0 as T — oo.

Here the last two inequality uses for any i € [n],

2

hi hi
) 2 <
Thi+1 z—:0 ‘ln_LIﬂ B st

—2 —2
: 2
Jim 0320 (H Rrang
h; h;
= lim {7 B;? / (7h—17h—1HB + Vh, HB (1-Bj)
j 7=0 7=0

= lim
hi—00 o(l)’y}%i_1 + 2)\7}2” — )\Z’yii
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= — <X

2\
as a result of the Stolz—Cesaro theorem (Lemma B.15). Here we observe that the denominator

Vh, (H?i:o Bj) increases in h; and diverges when h; is sufficiently large.
Since the event A€ has diminishing probability, we focus on the event .A. We will prove that on
the event A our target random sequence is uniformly tight. For notation simplicity, we define

h
=[] B:
i=m

It follows that

h
VT
p{ VT Z H B; | Amem| > 21 A
T 0<h<T Tht1 =0 \ssn
h
=P{~— sup |———— X, 1 YmEm| > 2¢; A
{ N s T DT
n—1 h
Vi 1

< ZIP’ T sup - Z X£+17m5m >2; A
i=0 T helhi;hit) 7h+1Xh+1 m=0
n—1 h; h

VT 1 :

< P TT sup ————— ZXZLH’ymsm—F Z X},;'ymam >2; A
i=0 helhi;hit1) 7h+1Xh+1 m=0 m=h;+1
n—1 i

tr 1 :

S P T sup j Z XnTw-i-l'Ymem Z Xm’ymem Z 2¢e 5 A
o helhihivr) | Th+14ht1 | = h+1 m=h;+1
n—1

t 1

< P TT sup - Z X};H'ymsm >e A
i—0 helhishivt) 7h+1Xh+1 m=h;+1
n—1

t 1
<Ny P{YT qup | ——— Z X 1 Ymem| > €
i—0 T helhishivt) th‘HXh-f—l m=h;+1
246
n—1 2+6 244 h
Vir 1

LT <T b \ s X, D Koimem| 2
i=0 he[hi,hi+1) '}’h+1 h+1 m=h;+1
n—1

= Z Piu
=0

where ¢ is any positive real number less than min{ds, 03 }.
2490
LetY; = ’an:hi 41 Xgl 11YmEm . It is clear that Y}, is a sub-martingale adapted to the

natural filtration. Let c;, = Then {cy } is a non-increasing sequence when h is sufficiently

1
(yn X )2
large because

Th
WXj = ’YTﬂ(l — M1 X 1 = (L4 0(1)) (1 = M) 1 Xy < i Xy
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for sufficiently large h. Indeed, since h > h; = [2L] — coas T — oo, (1 + o(y)) (1 — My) < 1
is solid and X ;{ is non-negative when 7' goes to infinity. Hence, each P; is the probability of the
event where the maximum of a sub-martingale multiplied by a non-increasing sequence is larger
than a threshold. To bound each P;, we use Chow’s inequality which is a generalization of Doob’s

inequality (Chow, 1960). It follows that

t1+6/2
P =P sup  cpYp > g2t+o
{ T2 elhihisn)

t1+6 /2 hiy1—2
< m ChiﬂflEYhinl + Z (Cz' - Cz‘—i—l)EYj . (28)
j=hi+1
We then apply Burkholder’s inequality to bound each IEY);. Burkholder’s inequality is a generalization

of the Marcinkiewicz—Zygmund inequality (Lemma B.14) to martingale differences (Dharmadhikari
et al., 1968). That is,

j 246
EY; =E Z X7:CL+1'Ym5m
J
. 246
G- Y EIXamen
m=h;+1
J
i (]_hz)5/2 Z (XTJ,-l’Y )2+6/Erln+6/2
m=h;+1
J
SG—h)? N e BN

where we use E |e,,|*™ 31/ BT for sufficiently large m that is already derived in (25).

Plugging it into (28) yields that P; is bounded by

[+0/2 hiy1—2
T
is7ars | G- 1EYh 1 Y (6= cir)EY)
j=hi+1
14+6/2 hiy1—1 hiy1—2 ;
. t+5/ . . s +1— - B , i C;ll
S isgers | e (hin =)z Y E1+5/2+ PORCECIVEEOENDY T2
m=h;+1 j=hi+1 m=h;+1 —=m
1+5/2 6/2 hiv1—1 _ hiy1—2 j C_l
m
< sl (5) fean X e Y @-aw Y g
m=h;+1 j=hi+1 m=h;+1
1+6/2 T 5/2 hz‘il:_l N hzi:2 C;Ll
- €2+5T2+6 g Chi+1 1 E1+6/2 chz+1 1)E1+5/2
m=h;+1 m=h;+1 m
1 6/2 hit1—1 _
+ / T 5/2 +1 le
- €2+6T2+6 g Z Em E1+5/2
m=h;+1 m
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t;j_é/Q <T>6/2 hit1-1 1

T 2+072+0 1+6/2°

n
Recall t7 = ZZ;;% E,,. Summing the last bound over: = 0,1,...,n — 1 gives

n—1 ) 751T+5/2 7\92T=1 4
ZPZ' ~ 2H6T243

>~ 146/2
=0 n m=0 Em /
_ —1 A146/2 _ §/2
I RG>V o BeD wier § ol Dk § V0 ol
T 224050/2 1 ~T—1 1+6/2 2
< " TZm:(] Em T
1
~ né/Q’

where we use (i¢) in Assumption 3.4 which implies

T—1 146/2 ~T-1 1+4/2 T—1 T—1
Zm:O Em / Zmzo 1/Em / < Zm:ﬂ ET%%+63 Zm:O 1/E'}n+53
sSup 5 < sup 5
T T T T

< o0

as aresult of § < Js.
Summing them all, we have

h h
VT 1
lim sup P ALY sup Z H B | Yymem| = 2¢
T—00 0<h<T | Th+1 "7, i—ml
h h
Vi 1
< limsupP v sup Z H B; | Ymem| > 2¢; A p + limsup P(A°)
T—00 0Sh<T | Th+1 =0 \; i T—00
n—1
< limsup Z Pi
T—o0 i=0
1
~ n6/2 :

Since the probability of the left hand side has nothing to do with 7, letting n — oo concludes the
proof.

Appendix C. Proofs of Proposition 3.1

To prove the proposition, we make two following claims.

T
Claim 1: For any positive sequences {ay,, } and {b,,} with )_ b, — oo, we have
n=1

T
Zn: a T (29)

. . a
lim sup =7+ L™ < limsup —.
T—o00 Zn:l n T—oo 0T
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Without loss of generality, we assume the right hand side is finite, otherwise (29) follows obviously.

We denote that lim sup Z; = ) for simplicity. Based on the definition of limit superior, for any
T—oo

e > 0, there exists N; subject to a,, < (A + €)by, for Vn > N.. As a result,

T N T Ne T
Zanzzan+ Z angzan+(>\+€) Z bn,
n=1 n=1 n=1

n=N:+1 n=N:+1

which implies
Ne T
Zg:l an _ Yome1@n +(A+E) D N1 bn

T = T
Zn:l bn Zn:l bn
T T
Taking limit superior on both sides and noting that »_ b,, — oo, we have %’Fl Z" < A+ 2¢. By the
n=1 n=1""

arbitrariness of ¢, (29) follows.

Claim 2: For any non-decreasing sequence { E,, } satisfying limsup 7'(1 — EE—;I) < 1, we can

T—00
find § > 0O such that

1\ 1+ 1\ 1+
T(— —(T—-1 > 0.
(E%> ( )<Eb>1>
In fact, we can choose any § < 1—limsup 7'(1— Eg;l ). In this way, for sufficiently large 7', we
T—o0

have

1 1446 1 1+6 1 146 ET—l 146
T _— (T -1 = T -T+1
<E%> ( )<EH;1> <Eﬁ>1> ( Er )
1 146 1-4 1+46 1
>T [ 14+ =
- (ﬁw) [( T> T

To lower bound the right hand side, we consider the auxiliary function h(z) = (1 — (1 —68)z)' ™0+«
where € (0,1). We claim that ~(z) > 1 for any z € (0,1). We check it by investigating the
derivative of h(-),

h(z)=—14+68)1—1—=8)z)' 1 -86)+1>—-1+6)1-6)+1=6>0.

Therefore, by mean value theorem, h(x) > h(0) = 1 which proves the claim.
Now we are well prepared to prove the proposition. It follows that

Er_1\'"? 1+ 8) (0B + (1 — 07)Ep_1)° (By — Ep—
limsup T 1—( T 1) ZlimsupT( +0)(0rEr + ( 11;)5 7-1)°(Er T-1)
T—o0 T T—s00 Er
0rEr + (1—07)Br_1\° Er — Er_
§(1+5)limsup< rEr+ r)Er 1) limsup T———"—1
T—o0 Er T—00 Er
0rFEr + (1 —607)Br_1\°
<(1+5)(1—5)limsup< rEr + r)Er 1>
T—o0 ET

§1_527
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where the first equality uses mean value theorem with some 67 € [0, 1].

Therefore,
T T
lim sup m=1 Erln+6)(zm=1(1/Em)l+6)
T—o00 T2
D sy P St (1 Ew) ™0 + (5 B)/(Br)
N T—o0 2T — 1
T 146
1/E 1
< limsup 2m=1(1/Fm) 4+

Too (2T —1)/EFT 2
> (1/Em)'+

< limsu
T—>oop T(I/ET)1+5
® 1/Ep)i+o
< limsup 1+6( /o) 1+o
T—oo L(1/Er)'T0 — (T —1)(1/Er_1)
1
< limsup

146
T— Er_
ool_T[1—(,§T1) }
-1
Er 1+46
1—(21) ” < 67?2 < oo,
T

where (a) uses Claim 1 and (b) uses Claim 1 and Claim 2 together.

Furthermore, if the sequence {E,,} satisfies Tlim T (1 - EE—;) = p < 1, then by the
—00

< {1 — limsupT

T—o0

Stolz—Cesaro theorem (Lemma B.15), we have

(Ciet Bn) (et 1/ Em)

T—o00 T2

Er(ne1 1/En) + (Xat1 En)/Er
T—o0 2T — 1

T T
1/E, -1 En
zl{mzm/ . » }

T—oo T/Ep T—oo 1TEp

1 . 1/Er e Er
= = 11m 11m
2 |[T— T/ET — (T — 1)/ET_1 T—o00 TET — (T — 1)ET_1

= 1{ lim Er-1 X L + lim ! }
2 |T—-~ Er 1—T(1—ET,1/ET) T%ool—f—(T—l)(l—ET,l/ET)

- 1 1 1 B 1

N 2{1—p+1+p}_1—p2’

which completes the proof.
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Appendix D. Proof for the Plug-in Method, Theorem 4.1
For simplicity, we denote V f (x; &) = Zk L PEV fr(x; €F) and V2 f (x; &) = Z,[f:l P V2 fi(x; EF)
where & = {€F} ke[K]- We decompose Gr — G into the following terms:

T
~ 1

Z VA (@&, —

The first term in (30) is asymptotically zero due to the strong law of large number. With Theorem 3.1,

we have known that under the condition, E||Z;,, — *|| < /E||Z:,, — *||*> < /¥m. Then the
second term in (30) can be bounded via Assumption 4.1

1 T

7 2 [V @,36,) - VVF@56,)] . (G0)

m=1

1 T
=N [V (@, 6) - V(556

T
m=1

T
< % Z E(|V?f (@1, 6t) — V(255 61,) |

E

as T" — oo. Hence, (A;’T converges to GG in probability.
For St , note that

VI (@, 6m) = V(& 8,) + [V (@, 6,) — V(X" 6,)] = Chn + Dy

We decompose §T — S into the following terms:
5 1 & 1 & 1 & 1«
Sr— 8= (TZCmC;—S> +TZCmDL+TZDmC;+TZDmD;.
m=1 m=1 m=1 m=1

Because {C,, },, are i.i.d. and EC,,,C,] = S, the first term is asymptotically zero due to the strong
law of large number. Note that E||C,, H2 E|C,.C| < tr(EC,,C,) = tr(S) and

2

E|[ D, = (Vi) - VHael,))

‘ 2

k
<> mE|Vhi@,i€,) - V@)
k=1
< LE| &, — «*|* < Ym-
Then, the second and third terms can be bounded via

T T
1 1
7 2. CnDyl| < = > E[[Conl| D
m=1 m=1
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Table 2: Asymptotic critic values ¢, g of t*(/3) defined by g, g = min{t : P(t*(5) <t) > 1 — a}.

1—
3 @ 1% 2.5% 5% 10%  50% 90%  95% 97.5%  99%
0 -8.634 -6.753 -5.324 -3.877 0.000 3.877 5.324 6.753 8.634
1/3 -8.0945 -6.339 -5.048 -3.712 0.000 3.712 5.048 6.339 8.0945
1/2 -7.386  -5.851 -4.621 -3.446 0.000 3.446 4.621 5.851 7.386
2/3 -6.292  -4993 -4.012 -3.027 0.000 3.027 4.012 4.993 6.292

\/IEJIIC/*mIIQIEJIIDmII2

H \

A
Nl

ﬁM’% ||Mﬂ

\ﬁ

Finally, for the last term, we have that

1 & .
TleDmDm

1 & 1 &
m=1 m=1

Hence, §T converges to .S in probability.

Appendix E. Computation of Critical Values

For easy reference, critical values of t*(3) are computed via simulations and listed in Table 2. In
particular, the Brownian motion By (+) is approximated by normalized sums of i.i.d. A'(0, 1) pseudo
random deviates using 1,000 steps and 50,000 replications. We then smooth the 50,000 realizations
by standard Gaussian-kernels techniques with the bandwidth selected according to Scott’s rule (Scott,
2015). Kernel density estimation is a way to estimate the probability density function of a random
variable in a non-parametric way. Because we smooth the data, our critical values of the case
B = 0 are slightly different from previous computations by Kiefer et al. (2000). In particular, when
1—a=97.5% and 8 = 0, our critical value 6.753 is smaller than previous 6.811, which shrinks the
length of our confidence intervals. Our critical value 6.753 is also close to 6.747 computed in Abadir
and Paruolo (1997).

Appendix F. Related Work on Local SGD

Federated learning enables a large amount of edge computing devices to jointly learn a global model
without data sharing (Kairouz et al., 2019). The seminal paper McMahan et al. (2017) proposed
Federated Average (FedAvg) for FL, which is slightly different from Local SGD that we focus on
in this work. The main difference is that FedAvg randomly samples a small portion of clients at
the beginning of each communication round to alleviate the straggler effect caused by massively
distributed clients. When all clients are forced to participate, FedAvg is reduced to Local SGD.
Their theoretical convergence does not vary too much with an additional statistical error incurred
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when clients participate partially (Li et al., 2019a). There has been a rapidly growing line of work
concerning various aspects of FedAvg and its variants recently (Zhao et al., 2018; Sahu et al., 2018;
Nishio and Yonetani, 2018; Koloskova et al., 2020; Yuan and Ma, 2020; Yuan et al., 2021; Zheng et al.,
2021). Local SGD or Fedavg is an iterative and multi-round distributed algorithm that communicates
only gradient information at each communication round. Other algorithms of this type have been
proposed and analyzed previously (Shamir et al., 2014; Wang et al., 2017; Jordan et al., 2018; Fan
et al., 2019). The biggest difference is that Local SGD lowers the communication frequency, while
others do not. This simple change improves communication efficiency greatly (Lin et al., 2018).

Appendix G. Numerical Simulations

This section investigates the empirical performance of the plug-in and random scaling methods via
Monte Carlo experiments. We consider both the linear and logistic regression models. At iteration ¢,
the k-th client observes the pair (a¥, bf) with a} the d-dimensional covariates generated from the
multivariate normal distribution (0, I;) and b} the response generated according to the model. We
detail the data generation process as follows:

« In linear regression, b} = (a¥)"z} + e where the f are i.i.d. according to N'(0,1,) and

x}, is the true local parameter which we also generate from N (0, I;). In this case, the global
parameter =™ is the average of x}’s.

» In logistic regression, bY € {0, 1} is generated to be 1 with probability o((a¥) "«*) and 0 with

probability 1 — o((af) "2z*). Here o(0) = 1/(1 + exp(—0)) is the sigmoid function. We do
not impose data heterogeneity for logistic regression in order to avoid numerical error in the
calculation of «*. Here x* is equi-spaced on the interval [0, 1] following previous works (Chen
et al., 2020; Lee et al., 2021).

We set v, = v0/m"?% with v = 0.5 for linear regression and vy = 2 for logistic regression.

The initial value &g is set as zero. We fix K = 10 in all our experiments and vary the number
of rounds T'. In all cases, we set E,, = 1 for the first 5% observations as a warm-up and then
increase F,, from scratch, i.e., F,,, = E;n 59T for another sequence {E/,}. We consider six
choices of {E! },,, namely (i) C1: constant E/, = 1, (i) C5: constant E/ = 5, (iii) Log:
logarithmic E!, = [logy(m + 1)], (iv) P (1/3): power E' = [m!/3], (v) P(1/2): power
E' = [m!/?], and (vi) P (2/3): power E! = [m?/3]. The nominal coverage probability is set
at 95%. The performance is measured by three statistics: the coverage rate, the average length of
the 95% confidence interval, and the average communication frequency. For brevity, we focus on
the first coefficient ] hereafter. All the reported results are obtained by taking the average of 1000
independent runs.

We first turn to study the communication efficiency for Local SGD. From Figure 1, we find the
faster E,, grows, the faster the Lo convergence in terms of communication, which is consistent with
previous studies from optimization perspective (McMahan et al., 2017; Lin et al., 2018). Figure 2
shows the empirical coverage rates and confidence interval lengths in linear regression, both obtained
by averaging over 1000 Local SGD paths. The result of logistic regression is depicted in Figure 3. For
plug-in, though wandering above 90%, the faster E,,, family (namely, Log, P (1/3) and P (1/2))
has relatively inferior coverage rate than the slower F,,, family (namely, C1 and C5). The coverage
rate of P (2/3) can’t even cross 90%. For random scaling, it is clear that the coverage rate of all
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Figure 1: Lo convergence ||y —«*|| in terms of communication 7. Left: Results of linear regression.
Right: Results of logistic regression. Black dashed line denotes the nominal coverage rate of 95%.
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Figure 2: Comparison of the plug-in (the top row) and random scaling (the bottom row) in linear
regression. Left: Empirical coverage rate against the number of communication. Black dashed line
denotes the nominal coverage rate of 95%. Right: Length of confidence intervals.

the methods fluctuates around 95%. Though with a much smaller deviation from 95%, the slow E,,
family has the slower shrinkage rate for its confidence interval. By contrast, the faster E,,, family
achieves comparable coverage with faster shrinkage of confidence intervals. It implies that Local
SGD has high efficiency of communication and maintains a good statistic efficiency via random
scaling.

We then turn to the empirical performance of Local SGD with limited computation or finite
samples. Table 3 shows the empirical performance of the six methods under linear models with four
different ¢7’s. i is actually the total iteration each client runs through 7" rounds or equivalently
the number of observations they receive. From the table, almost all the methods achieve good
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Figure 3: Comparison of the plug-in (the top row) and random scaling (the bottom row) estimators
in logistic regression. Left: Empirical coverage rate against the number of communication. Black
dashed line denotes the nominal coverage rate of 95%. Right: Length of confidence intervals.

performance. Except P (2/3), random scaling gives better average coverage rates than the plug-in
method, because its average coverage rates of all different communication intervals are near (or
even exceed) 95%. However, its average length is usually larger than that of plug-in. Furthermore,
its average length usually has a much larger deviation than that of plug-in. For example, when
t7 = 5000, for C5, the standard deviation of average lengths for plug-in is 0.807 x 102, while
it increases to 3.714 x 10~2 for random scaling. Such a wider average length might account for
the unexpected advantage on the average coverage rates. We speculate the reason for the poor
performance of P (2/3) is because less frequent communication enlarges asymptotic variance and
decrease the sample efficiency. It might require more samples to reach a counterpart level of coverage
rates. However, as the communication round increases and more observations are available, the
average length decreases and the coverage rate increases, with both deviations reduced. The poor
performance of P (2/3) implies that when E,,, grows too faster (e.g., E,,, = [m?]), its performance
might deteriorate, accordant to our Theorem 4.2.

In addition, comparing the results of Log, P (1/3),and P (1/2), we can find that the faster
F,, increases, the larger average length as well as its standard deviations. However, they all
have satisfactory performance when observations are sufficient. Indeed, Local SGD trades more
computation for less communication, resulting in a residual error gradually accumulated when
communication is off, slowing down the convergence rate and enlarging asymptotic variance (e.g.,
the existence of ). However, the benefit is also attractive: the averaged communication frequency is
substantially reduced and the convergence in terms of communication largely increases. It implies
that Local SGD obtains both statistical efficiency and communication efficiency as expected. We
further consider the logistic regression, which is a standard non-linear model. The result is given in
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Table 3: Simulation results of linear regression with d = 5. The standard errors of coverage rates p
are computed via y/p(1 — p)/1000 x 100% and reported inside the parentheses.

Methods | Ttems tr = 5000 tr =10000  tp =20000  tr = 40000
c1 95.70(0.641)  94.20(0.739)  94.20(0.739)  93.80(0.763)

o 93.70(0.768)  94.00(0.751)  94.30(0.733)  93.10(0.801)

Cov Rate | Log 91.70(0.872)  93.20(0.796)  93.80(0.763)  93.80(0.763)

(%) P(1/3) | 91.90(0.863)  92.70(0.823)  93.90(0.757)  93.60(0.774)

Plug-in P(1/2) | 91.10(0.900)  92.60(0.828)  93.90(0.757) 93.80(0.763)
P(2/3) | 91.00(0.905)  92.60(0.828)  93.40(0.785)  93.60(0.774)

c1 7.857(0.099)  5.547(0.050)  3.917(0.025) 2.768(0.013)

cs 9.737(0.242)  6.868(0.121)  4.847(0.061)  3.423(0.031)

Avglen | Log 12.168(0.371)  8.953(0.204)  6.602(0.106)  4.864(0.058)

(1072) | p(1/3) | 11.372(0.336)  8.656(0.195)  6.613(0.110)  5.059(0.063)

P(1/2) | 15.431(0.559) 12.100(0.327) 9.433(0.188) 7.300(0.112)

P(2/3) | 19.593(0.791) 15.375(0.491) 11.896(0.274) 9.083(0.156)

c1 95.00(0.689)  93.90(0.757)  93.70(0.768)  94.80(0.702)

o 97.70(0.474)  96.90(0.548)  97.20(0.522)  96.90(0.548)

Cov Rate | Log 98.20(0.420)  98.70(0.358)  98.90(0.330)  98.80(0.344)

(%) P(1/3) | 97.60(0.484)  98.20(0.420)  98.50(0.384)  98.00(0.443)

Random P(1/2) | 96.00(0.620)  97.20(0.522)  96.40(0.589)  96.60(0.573)
Scaling P(2/3) | 88.70(1.001)  89.90(0.953)  90.70(0.918)  90.00(0.949)
c1 10.011(4.343)  7.081(3.106)  5.010(2.092)  3.605(1.511)

c5 14.434(6.950)  10.043(4.923)  7.078(3.389)  4.946(2.448)

Avglen | Log 19.187(9.763)  14.120(7.154)  10.430(5.219) 7.611(3.895)

(1072) | P(1/3) | 16.781(8.397) 12.810(6.460) 9.821(4.906) 7.440(3.777)

P(1/2) | 20.888(10.842) 16.127(8.004) 12.379(6.027) 9.314(4.460)

P(2/3) | 21.495(11.324) 16.463(7.991) 12.509(5.924) 9.276(4.325)

Table 4. A similar pattern is observed: random scaling has higher average coverage rates at the price
of wider average lengths which typically shrink as more observations are generated.
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Table 4: Simulation results of logistic regression with d = 5. The standard errors of coverage rates p
are computed via \/p(1 — p)/1000 x 100% and reported inside the parentheses.

Methods | Items | tp=5000  tp=10000 t7 =20000 tp = 40000
c1 94.70(0.708)  93.50(0.780)  94.60(0.715)  95.40(0.662)
c5 93.00(0.807)  92.30(0.843) 93.50(0.780)  94.10(0.745)

Cov Rate | Log 92.30(0.843)  92.10(0.853) 92.60(0.828) 92.90(0.812)
(%) P(1/3) | 92.70(0.823) 92.00(0.858) 92.50(0.833) 92.90(0.812)

Plug-in P(1/2) | 90.80(0.914) 92.20(0.848) 91.70(0.872) 92.10(0.853)
P(2/3) | 90.90(0.909) 92.80(0.817) 91.30(0.891) 92.20(0.848)
Cl 4.113(0.046)  2.903(0.022) 2.049(0.011) 1.448(0.005)
c5 5.081(0.118)  3.587(0.057) 2.534(0.029) 1.790(0.014)

Avglen | Log 6.347(0.175)  4.681(0.093) 3.453(0.049) 2.544(0.027)
(1072) | P(1/3) | 5.949(0.146) 4.526(0.091) 3.456(0.049) 2.647(0.027)
P(1/2) | 8.062(0.256) 6.320(0.149) 4.927(0.088) 3.821(0.052)
P (2/3) | 10.254(0.380) 8.036(0.218) 6.223(0.127) 4.752(0.070)
c1 95.50(0.656)  92.40(0.838)  94.10(0.745)  94.70(0.708)
c5 96.00(0.620)  95.90(0.627) 96.80(0.557) 95.80(0.634)
Cov Rate | Log 97.60(0.484)  97.40(0.503) 97.80(0.464) 98.20(0.420)
(%) P(1/3) | 96.10(0.612) 96.60(0.573) 97.50(0.494) 97.90(0.453)

Random P(1/2) | 94.40(0.727) 94.30(0.733) 94.50(0.721) 95.10(0.683)

Scaling P(2/3) | 8830(1.016) 88.00(1.028) 86.80(1.070) 88.80(0.997)
c1 5.112(2.302)  3.612(1.502) 2.646(1.162) 1.877(0.816)
c5 7.296(3.714)  5.166(2.535) 3.687(1.836) 2.637(1.316)

Avglen | Log 9.703(5.176)  7.241(3.713) 5.383(2.787) 4.023(2.063)
(1072) | P(1/3) | 8.499(4.465) 6.569(3.345) 5.071(2.621) 3.924(1.999)
P(1/2) | 10.574(5.688) 8.278(4.193) 6.340(3.194) 4.880(2.366)
P(2/3) | 10.915(5.876) 8.497(4.244) 6.373(3.147) 4.850(2.293)
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