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Abstract
We analyze the novel Local SGD in federated Learning, a multi-round estimation procedure that
uses intermittent communication to improve communication efficiency. Under a 2+δ moment
condition on stochastic gradients, we first establish a functional central limit theorem that shows the
averaged iterates of Local SGD converge weakly to a rescaled Brownian motion. We next provide
two iterative inference methods: the plug-in and the random scaling. Random scaling constructs an
asymptotically pivotal statistic for inference by using the information along the whole Local SGD
path. Both the methods are communication efficient and applicable to online data. Our results show
that Local SGD simultaneously achieves both statistical efficiency and communication efficiency.
Keywords: Federated Learning, Local SGD, Functional Central Limit Theorem, Statistical Inference

1. Introduction

Federated Learning (FL) is a novel distributed computing paradigm for collaboratively training
a global model from data that remote clients hold (McMahan et al., 2017). The clients can only
cooperate with a central server (e.g., service provider) to train the global model without sharing
local datasets. Thus, FL can protect sensitive information that data contain, such as personal identity
information and state of health information, from unauthorized access of service providers. The
challenge arises when limited data access together with memory constraints, communication budget,
and computation restrictions make the traditional statistical estimation and inference methods (Li
et al., 2020b; Fan et al., 2021) no longer applicable in the FL scenario. This paper studies how to
perform statistical estimation and inference in the FL setting.

A typical FL system considers a pool of K clients, in which the k-th client has a local dataset
consisting of i.i.d. samples from some unknown distribution Dk. The central server faces the
following distributed optimization problem:

min
x

{
f(x) =

K∑
k=1

pkfk(x) :=
K∑
k=1

pkEξk∼Dk
fk(x; ξk)

}
, (1)
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where pk is the weight of the k-th client and fk(·; ξk) is the user-specified loss with ξk being the
generated sample from Dk. Thanks to the decentralized nature of data generation, a discrepancy
among local data distributions occurs, i.e., {Dk}Kk=1 are no longer necessarily identical. In addition,
communication is highly restrictive because data with immense volume are scattered across different
remote clients.

Many efficient algorithms are proposed to cope with both statistical heterogeneity and expensive
communication cost. Perhaps one of the simplest and most celebrated algorithms for FL is Local
SGD (Stich, 2018). Local SGD runs stochastic gradient descent (SGD) independently in parallel on
different clients and averages the sequences only once in a while. Put simple, it learns a shared global
model via infrequent communication. It has been shown to have superior performance in training
efficiency and scalability (Lin et al., 2018), and converge fast in terms of communication (Li et al.,
2019b; Bayoumi et al., 2020; Koloskova et al., 2020; Woodworth et al., 2020a,b; Koloskova et al.,
2020). In order to reduce the communication frequency, Local SGD might also be the best choice.

From a statistical viewpoint, it is vital to perform statistical inference in FL because it helps
us infer properties of the underlying data distribution. The asymptotic confidence intervals, which
becomes more accurate when more samples are observed, help us quantify the uncertainty of our
estimator and monitor how our algorithm runs. However, it is still open how to do that and adapt to the
peculiarity of FL. In this paper, we would like to address statistical estimation and inference via Local
SGD due to its elegant performance mentioned earlier and representativeness in FL. In Local SGD,
communication happens at iterations in a prescribed set (denoted I = {t0, t1, t2, . . .}). Our goal is to
obtain an efficient estimate of x∗ = argminx f(x) only through the SGD iterates {xk

tm}m∈[T ],k∈[K],
and provide asymptotic confidence intervals for further inference. Here [N ] = {1, 2, . . . , N} and
xk
t denotes the parameter hosted by the k-th client at iteration t. Note that we do not have direct

access to {xk
t }k∈[K] if t /∈ I due to intermittent communication. It makes the analysis of asymptotic

behaviors of Local SGD totally different from that of so-called parallel SGD (Zinkevich et al., 2010),
which alternates between one independent step of SGD in parallel and one synchronization. Clearly,
the parallel SGD is equivalent to the single-machine SGD, whose asymptotic convergence has been
studied extensively (Blum, 1954; Polyak and Juditsky, 1992; Anastasiou et al., 2019; Mou et al.,
2020).

Ruppert (1988); Polyak and Juditsky (1992) introduced averaged SGD, a simple modification
of SGD where iterates are averaged as the final estimator, and established asymptotic normality via
martingale central limit theorem (CLT). It is known that the averaged SGD estimator obtains the
optimal asymptotic variance under certain regularity conditions (Duchi and Ruan, 2021). We are
motivated to employ the average of Local SGD iterates as the estimator, that is, 1

T

∑T
m=1 x̄tm where

x̄tm =
∑K

k=1 pkx
k
tm . Under common assumptions, we show the proposed estimator x̂ exactly has

the optimal asymptotic variance up to a known scale ν(≥ 1) which is determined by the sequence
{Em}m, where Em := tm+1 − tm is the length of the m-th communication round. And ν barely
affects the variance optimality because there exist many diverging sequences {Em}m satisfying
Em = o(m) and ν = 1. It implies the Local SGD estimator has the optimal asymptotic variance
even though it has enlarging communication intermittency. This result somewhat corresponds to
the optimization study on Local SGD (Bayoumi et al., 2020; Woodworth et al., 2020a,b, 2021);
local updates (i.e., Em > 1) only slow down the L2 non-asymptotic convergence rate of Local SGD
slightly, because the additionally incurred residual error is still dominated by the statistical error.
In this case, the averaged communication frequency (ACF, i.e., T/tT ) converges to zero, implying
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we trade almost all computation for asymptotically zero communication. Therefore, our estimator
simultaneously has statistical efficiency and communication efficiency.

To quantify uncertainty, we investigate two online inference methods for statistical inference.
One is the plug-in method (Chen et al., 2020), which is available when we have an explicit formula
for the covariance matrix of the estimator. The other, a.k.a., random scaling (Lee et al., 2021),
borrows insights from time series regression in econometrics (Kiefer et al., 2000; Sun, 2014). It
does not attempt to estimate the asymptotic variance but to construct an asymptotically pivotal
statistic by normalizing the estimator with its random transformation. To underpins this approach,
we establish a functional central limit theorem (FCLT) for the average of Local SGD iterates under
much milder conditions than Lee et al. (2021).1 In particular, we pose a (2+δ) moment condition
on gradient noises (see Assumption 3.2), while Lee et al. (2021) requires a stronger condition:
gradient noises should not only be α-mixing but also have at least forth-order moment (see their
Assumption 2).2 Our improvement comes from a specific error decomposition and a careful analysis
on a non-asymptotic term with time-varying coefficients (see Lemma B.7). We believe that the
advanced proof technique we developed beyond the current work would be of independent interest.
We conduct some numerical experiments to illustrate the two inference methods. Due to space limit,
they are deferred in Appendix G.

The remainder of this paper is organized as follows. In Section 2 we formulate our problem and
introduce Local SGD. In Section 3 we explore the asymptotic properties for the averaged sequence of
Local SGD. In Section 4 we introduce two online methods (namely the plug-in method and random
scaling) to provide asymptotic confidence intervals and perform hypothesis tests. We provide a proof
sketch in Section 5 and review related work in Section 6. We conclude our article in Section 7 with a
discussion of our results and future research directions. We illustrate the numerical performance of
our methods in synthetic data in Section G. We defer all the proofs to the appendix.

2. Problem Formulation

In this section, we detail some preliminaries to prepare the readers for our results. We are concerned
with multi-round distributed learning methods. At iteration t, we use xk

t to denote the parameter
held by the k-th client and ξkt the sample it generates according to Dk. A typical example of
multi-round methods is the parallel stochastic gradient descent (P-SGD) (Zinkevich et al., 2010)
that runs xk

t+1 =
∑K

k=1 pk
[
xk
t − ηt∇fk(xk

t ; ξ
k
t )
]

for k ∈ [K] and t ≥ 0. Other variants have
been successively proposed (Jordan et al., 2019; Fan et al., 2019; Chen et al., 2021). It is easy to
analyze the statistical property of P-SGD due to its equivalence to the single-machine counterpart.
The classical work provides an analysis paradigm for P-SGD, showing it obtains an asymptotically
unbiased and efficient estimate (Polyak and Juditsky, 1992). In particular, with x̄t =

∑K
k=1 pkx

k
t ,

P-SGD achieves the following asymptotic normality with the asymptotic variance satisfying the
Cramér-Rao lower bound (Duchi and Ruan, 2021)

√
T

(
1

T

T∑
t=1

x̄t − x∗

)
d−→ N

(
0, G−1SG−⊤

)
,

1. Note that the standard single-device SGD is a special case of Local SGD by setting Em ≡ 1 and K = 1. Thus, our
result naturally covers the standard SGD case.

2. The α-mixing assumption forces gradient noises to be asymptotic stationary in a fast rate.
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where G := ∇2f(x∗) =
∑K

k=1 pk∇2fk(x
∗) is the Hessian at the optima x∗ and S = E(ε(x∗)ε(x∗)⊤)

is the covariance matrix at it. Here ε(x∗) =
∑K

k=1 pk (∇fk(x∗; ξk)−∇fk(x∗)) is the noise of
corresponding aggregated gradients.

2.1. Local SGD

An obvious drawback of P-SGD is its huge communication because it requires synchronization at
each iteration. By contrast, Local SGD hopes improve the communication efficiency by lowering the
communication frequency (Lin et al., 2018; Stich, 2018; Bayoumi et al., 2020; Woodworth et al.,
2020a,b). We now turn to Local SGD and summarize its details. We provide the formal version in
Algorithm 1 in Appendix A and related work about Local SGD and its variants in Appendix F. Put
simple, it obtains the solution estimate using the following recursive algorithm

xk
t+1 =

{
xk
t − ηt∇fk(xk

t ; ξ
k
t ) if t+ 1 /∈ I,∑K

k=1 pk
[
xk
t − ηt∇fk(xk

t ; ξ
k
t )
]

if t+ 1 ∈ I, (2)

where ηt is the learning rate, ξkt is an independent realization of Dk, and I denotes the set of
communication iterations. At iteration t, each client runs always SGD independently in parallel
xk
t+1 = xk

t −ηt∇fk(xk
t ; ξ

k
t ). However, when t+1 ∈ I , the central server aggregates local parameters∑K

k=1 pkx
k
t+1 and broadcasts it to all clients, which amounts to the following update rule xk

t+1 =∑K
k=1 pk

[
xk
t − ηt∇fk(xk

t ; ξ
k
t )
]
.

Different choices of I lead to different communication efficiency for Local SGD. If I =
{0, 1, 2, · · · }, then Local SGD is reduced to P-SGD. A famous example in practice is constant
communication interval (McMahan et al., 2017), i.e., I = {0, E, 2E, · · · } for a predefined integer
E(≥ 1), which reduces communication frequency from 1 to 1/E. Local SGD differs from P-
SGD if I has a general form of {t0, t1, t2, · · · } with some tm − tm−1 > 1 where tm is the m-th
communication iteration. For example, when tm < t < tm+1 for some m, xk

t is not likely to equal
to xk′

t for k ̸= k′ due to data heterogeneity, while we always have xk
t = xk′

t for all k, k′ for P-SGD.
This difference makes theoretical analysis difficult and different from previous analysis. For seek of
simplicity, we assume ηt is a constant when tm < t ≤ tm+1 and denote it by ηm with a little abuse
of notation (which has been already adopted in Algorithm 1).

3. Statistical Estimation via Local SGD

This section provides asymptotic properties for Local SGD. We start by stating the assumptions
needed for the main theoretical results. These assumptions are standard and most of them have been
used previously (Polyak and Juditsky, 1992; Su and Zhu, 2018; Chen et al., 2020; Li et al., 2020a).

Assumption 3.1 (Regularity of the objective) For each k ∈ [K], we assume the objective function
fk(·) is differentiable and strongly convex with parameter µ > 0, i.e., for any x,y,

fk(x) ≥ fk(y) + ⟨∇fk(y),x− y⟩+ µ

2
∥x− y∥2.

In addition, each fk(·) is L-average smooth, i.e.,√
Eξk∥∇fk(x; ξk)−∇fk(y; ξk)∥2 ≤ L∥x− y∥ (3)
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for some L > 0. Finally, the Hessian matrix of the global f(·) exists and is Lipschitz continuous in a
neighborhood of the global optimal x∗, i.e., there exist some δ1 > 0 and L′ > 0 such that

∥∇2f(x)−∇2f(x∗)∥ ≤ L′∥x− x∗∥ whenever ∥x− x∗∥ ≤ δ1.

Assumption 3.1 imposes regularity conditions on the objective functions. It requires the global
function f(·) to be µ-strongly convex and L-average smooth. The L-average smoothness is stronger
than L-smoothness because ∥∇fk(x)−∇fk(y)∥ ≤

√
Eξk∥∇fk(x; ξk)−∇fk(y; ξk)∥2 ≤ L∥x−

y∥ from Jensen’s inequality. The L-average smoothness follows if maxx Eξk∥∇2fk(x; ξk)∥2 <∞3

which holds for many statistical learning models such as linear and logistic regression.
Define εk(x) = ∇fk(x; ξk)−∇fk(x) as the gradient noise at∇fk(x), Sk = Eξk(εk(x

∗)εk(x
∗)⊤),

and ε(x) =
∑K

k=1 pkεk(x). Then εk(x) (as well as ε(x)) has zero mean and its distribution typically
depends on x. The following assumption regularizes the behavior of each noise ξk.

Assumption 3.2 (Regularized gradient noise) We assume the ξk on different devices are indepen-
dent, though they likely have different distributions. There exists some C > 0 such that for each
k ∈ [K], ∥∥∥Eξk(εk(x)εk(x)

⊤)− Sk

∥∥∥ ≤ C [∥x− x∗∥+ ∥x− x∗∥2
]
. (4)

Moreover, we assume there exists a constant δ2 > 0 such that supx E∥ε(x)∥2+δ2 <∞.

Assumption 3.2 first requites the ξk are mutually independent. Note that S =
∑K

k=1 p
2
kSk is

the Hessian at the optimum x∗ because S =
∑K

k=1 p
2
kEξk(εk(x

∗)εk(x
∗)⊤) = Eξ(ε(x

∗)ε(x∗)⊤)
from the independence assumption. It then forces the difference between covariance matrices
Eξk(εk(x)εk(x)

⊤) and Sk controlled by ∥x−x∗∥. It implies
∥∥Eξ(ε(x)ε(x)

⊤)− S
∥∥ ≤ C ′[∥x−x∗∥+

∥x−x∗∥2
]
. Finally, the imposed uniformly finite (2 + δ2) moment of ε(·) overall x establishes the

Lindeberg-Feller condition for martingales, which is much weaker than that used in Lee et al. (2021).

Assumption 3.3 (Slowly decaying effective step sizes) Define γm = Emηm as the effective step
size, and assume it is non-increasing in m and satisfies (i)

∑∞
m=1 γ

2
m < ∞; (ii)

∑∞
m=1 γm = ∞;

and (iii) γm−γm+1

γm
= o(γm).

In our analysis, γm = Emηm serves as the effective step size. Indeed, the previous analysis of Li
et al. (2019a) shows that the effect ofEm steps of local updates with step-size ηt is similar to one-step
update with a larger step-size Emηm. It implies that it is the multiplication of Em and ηm, rather
than either of them alone effecting the convergence. A typical example satisfying the assumption
is γm = γm−α with α ∈ (0.5, 1), which is also frequently used in previous works (Polyak and
Juditsky, 1992; Chen et al., 2020; Su and Zhu, 2018). Because we impose restriction to {Em} latter,
in practice, we can first determine the sequence of {Em} and then set ηm = γm/Em to meet the
requirement of {γm}.

Assumption 3.4 (Slowly increasing communication intervals) The sequence {Em} satisfies

(i) {Em} is either uniformly bounded or non-decreasing;

3. This condition is also made by Su and Zhu (2018) to validate (4). See Lemma C.1 therein.
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(ii) There exists some δ3 > 0 such that lim sup
T→∞

1
T 2 (
∑T−1

m=0E
1+δ3
m )(

∑T−1
m=0E

−(1+δ3)
m ) <∞;

(iii) lim
T→∞

1
T 2 (
∑T−1

m=0Em)(
∑T−1

m=0E
−1
m ) = ν(ν ≥ 1);

(iv) lim
T→∞

√
tT
T ·

(
T∑

m=0
γm

)
= 0 and lim

T→∞

√
tT
T

1√
γT

= 0 where tT =
∑T−1

m=0Em.

Assumption 3.4 restricts the growth of {Em}. Intuitively, if Em increases too fast, each xk
t

might converge to their local minimizer x∗
k rapidly before the next communication. Therefore, their

average x̄t is asymptotically biased for x∗ with the bias
∑K

k=1 pkx
∗
k − x∗, which is unlikely zero

in FL. Because
T−1∑
m=0

γm ≥ γ0, we have
√
tT /T =

√∑T−1
m=0Em/T → 0 from (iv). This, combined

with (iii), implies
∑T

m=0E
−1
m → ∞. It forbids {Em} from growing too fast. In practice, we can

choose Em ∼ lnm, Em ∼ ln lnm or Em ∼ mβ with β ∈ (0, 1), all of them satisfying (ii) and (iii).
If γm ∼ m−α with α ∈ (0.5, 1), all the choices of Em above satisfy (iv).

The following proposition provides another way to check (ii) and (iii) in Assumption 3.4 via
investigating the relative difference of Em and Em−1.

Proposition 3.1 Assume {Em} is non-decreasing. If lim sup
m→∞

m(1 − Em−1

Em
) < 1, then (ii) in

Assumption 3.4 holds for some δ3 > 0. Furthermore, if lim
m→∞

m(1− Em−1

Em
) exists (denoted ρ), once

ρ < 1, then (iii) in Assumption 3.4 holds with ν = 1
1−ρ2

.

According to the aforementioned regularity assumptions, the following asymptotic normality
property of the averaged iterates generated by Local SGD is investigated in Theorem 3.1.

Theorem 3.1 (Asymptotic Normality) Let Assumptions 3.1, 3.2 and 3.3 hold. Then x̄tm converges
to x∗ not only almost surely but also in L2 convergence sense with rate E∥x̄tm − x∗∥2 ≲ γm.
Moreover, if Assumption 3.4 holds additionally, the following asymptotic normality follows

√
tT

(
1

T

T∑
m=1

x̄tm − x∗

)
d−→ N

(
0, νG−1SG−⊤

)
,

where tT =
∑T−1

m=0Em, x̄tm =
∑K

k=1 pkx
k
tm , G =

∑K
k=1 pk∇2fk(x

∗) is the Hessian matrix at the
optima x∗, and S is the covariance matrix of aggregated gradient noise.

Theorem 3.1 shows that the averaged sequence generated by Local SGD has an asymptotic
normal distribution with the asymptotic variance depending on how communication happens (i.e.,
the sequence {Em}) and the problem parameters (i.e., S and G). For one thing, the effect of data
heterogeneity doesn’t show up in the asymptotic normality. The asymptotic variance as well as
L2 convergence rate is the same with that of P-SGD. Technically speaking, this is because the
residual error caused by data heterogeneity typically has relatively low order than the statistical error
incurred by stochastic gradients (Woodworth et al., 2020b,a). With the choice of γm, the residual
error vanishes much faster and then seems to disappear. More intuitively, since we set γm = Emηm
sufficiently small, the effect of Em steps of local updates using step-size ηm is similar to one-step
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Table 1: Statistical efficiency and communication efficiency under different choices of Em, γm and
ηm. The statistical efficiency is measured by ν, while the communication efficiency is measured by
averaged communication frequency (ACF), i.e., T/

∑T−1
m=0Em.

Case Em(≥ 1) γm ηm ν(≥ 1) ACF
Base 1

γm−α

α ∈
(0.5, 1)

γm−α 1 1
1 E γm−α/E 1 E−1

2 any Em ≤ E γm−α/Em 1 [E−1, 1]

3 E lnβm (β > 0) γm−α/(E lnβm) 1 E−1 ln−β T

4 E lnβ lnm (β > 0) γm−α/(E lnβ lnm) 1 E−1 ln−β lnT

5 Emβ (β ∈ (0, 1)) γm−(α+β)/E 1
1−β2 (1 + β)E−1T−β

update with step-szie γm. Hence, Local SGD with step-size ηm actually approximates P-SGD with
step-size γm. The latter case, as equivalent to single-machine SGD, is unaffected by the statistical
heterogeneity and so is Local SGD.

For another thing, it is quite interesting that the whole optimization process affects the asymptotic
variance. At the worst case, the way how communication frequency is determined only enlarges the
asymptotic variance by a known scale ν(≥ 1). If Em ≡ 1 for all m (which implies no local update
is called), ν = 1 and the result is identical to the typical single-machine central limit theorem (CLT)
for SGD (Polyak and Juditsky, 1992). When Em varies, it is still possible to get communication
saved and the asymptotic variance unchanged (i.e., ν = 1) simultaneously (see Table 1). If Em is
uniformly bounded or grows in a rate slower than E lnβm(β > 0), we maintain ν = 1 and obtain
a smaller average communication frequency (ACF). In the latter case, the ACF is asymptotic zero,
which implies that we trade almost all computation for nearly zero communication without any
sacrifice for statistical efficiency. However, if Em grows like Emβ (β ∈ (0, 1)), though its ACF
decays much more rapidly than that of E lnβm, the asymptotic variance is increased by a factor of
ν = (1− β2)−1. It depicts a trade-off between communication efficiency and statistical efficiency
when Em grows too fast. Finally, Em could not grows like Emβ (β > 1) or even exponentially fast,
because this will violate the requirement

∑T−1
m=0E

−1
m →∞ that is inherent from Assumption 3.4.

4. Statistical Inference via Local SGD

We now conduct statistical inference via Local SGD in the FL setting. As argued in the introduction,
the central server only has access to {xk

t }k∈[K] when t ∈ I. In terms of the established CLT
(Theorem 3.1), the average of {x̄tm}m∈[T ] achieves an asymptotic normality. Thus it is natural to
use {x̄tm}m∈[T ] as the main iterate to construct asymptotically valid confidence intervals. We will
refer to {x̄tm}m∈[T ] as the path of Local SGD.

In this section, we assume the data are generated locally in a fully online fashion because it not
only can be reduced to the finite-sample setting via bootstrapping, but also covers many realistic FL
settings where data are generated sequentially, typical examples including the records of web search,
online shopping, and bank credits. In particular, we propose two inference methods depending on
whether the second order information of the loss function is available. One is the plug-in method that
uses the Hessian information directly and the other is the random scaling method that uses only the
information among the path of Local SGD. We also conduct numerical experiments to test the two
online inference methods. Due to space limit, we leave them in Appendix G.
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4.1. The Plug-in Method

The plug-in method first estimates G and S by Ĝ and Ŝ, respectively, and obtains the estimator of
the covariance matrix with Ĝ−1ŜĜ−⊤. The key is to obtain consistent estimators Ĝ and Ŝ. An
intuitive way to construct Ĝ and Ŝ is to use the sample estimate as follows

ĜT =
1

T

T∑
m=1

K∑
k=1

pk∇2fk(x̄tm ; ξ
k
tm), ŜT =

1

T

T∑
m=1

(
K∑
k=1

pk∇fk(x̄tm ; ξ
k
tm)

)(
K∑
k=1

pk∇fk(x̄tm ; ξ
k
tm)

)⊤

.

as long as each ∇2fk(x̄tm ; ξ
k
tm) is available. Though ĜT and ŜT are not unbiased for G and S,

their bias will converge to zero in probability due to x̄tm → x∗ almost surely. It is worth noting that
with x̄tm , as well as each local Hessian and gradient evaluated at it, communicated to the central
server, we can update Ĝm−1 to Ĝm and Ŝm−1 to Ŝm. Therefore, they can be computed in an online
manner without the need of storing all the data.

Assumption 4.1 There are some constants L′′ > 0 such that for any k ∈ [K],

Eξk∥∇
2fk(x; ξk)−∇2fk(x

∗; ξk)∥ ≤ L′′∥x− x∗∥.

Following Chen et al. (2020), we make Assumption 4.1, which slightly strengthens the Hessian
smoothness assumption in Assumption 3.1. Accordingly, we establish the consistency of the sample
estimate ĜT and ŜT in the following theorem.

Theorem 4.1 Under Assumptions 3.1, 3.2, 3.3 and 4.1, ĜT and ŜT converge to G and S in
probability as T →∞. As a result of Slutsky’s theorem, Ĝ−1

T ŜT Ĝ
−⊤
T is consistent to G−1SG−⊤.

Theorem 4.1 implies that (G−1SG−⊤)jj can be estimated by σ̂2T,j = (Ĝ−1
T ŜT Ĝ

−⊤
T )jj for the

construction of confidence intervals. Denoting ȳT = 1
T

∑T
m=1 x̄tm and ȳT,j its j-th coordinate, we

have the following corollary which shows that ȳT,j ± zα
2

√
ν̂T
tT
σ̂T,j constructs an asymptotic exact

confidence interval for the j-th coordinate of x∗. Here ν̂T is any sequence converging to ν.

Corollary 4.1 Under the assumption of Theorem 4.1,

P

(
ȳT,j − zα

2

√
ν̂T
tT
σ̂T,j ≤ x∗

j ≤ ȳT,j + zα
2

√
ν̂T
tT
σ̂T,j

)
→ 1− α,

where ν̂T → ν and zα
2

is (1− α/2)-quantile of the standard normal distribution.

We remark that using an estimate ν̂T instead of the true value ν for inference is for the purpose
of practice. We find in experiments that directly using the true value ν often results in an unstable
confidence interval due to slow convergence of (iii) in Assumption 3.4. As a remedy, we use an
estimate ν̂T = 1

T 2 (
∑T

m=1Em)(
∑T

m=1E
−1
m ) which performs better and more stable.

The plug-in method typically works well in practice due to its simplicity and well-established
theoretical guarantees. However, it has some drawbacks. The most obvious one is the requirement of
the Hessian information, which is not always accessible. Besides, the formulation and sharing of
each∇2fk(x̄tm ; ξ

k
tm) requires at least O(d2) memory and communication cost. Furthermore, it may
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be computationally expensive when d is large because it involves matrix inversion with computation
complexity O(d3). Finally, the inverse operation is unstable empirically. In practice, we need to
set the round T sufficiently large to avoid singularity and ensure stable estimation. The estimator
introduced in the next subsection provides a fully online approach, which is cheap in memory,
computation, and communication.

4.2. Random Scaling

Random scaling does not attempt to estimate the asymptotic variance, but studentize ȳT = 1
T

∑T
m=1 x̄tm

with a matrix constructed using iterates along the Local SGD path. In this way, an asymptotically
pivotal statistic, though not asymptotically normal, can be obtained. To clarify the method, we should
first figure out the asymptotic behavior of the whole Local SGD path rather than its simple average
ȳT . In particular, we have the following functional central limit theorem that shows the standardized
partial-sum process converges in distribution to a rescaled Brownian motion.

Theorem 4.2 (Functional CLT) Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold, and define

h(r, T ) = max

{
n ∈ Z, n > 0

∣∣∣∣r T∑
m=1

1

Em
≥

n∑
m=1

1

Em

}
for r ∈ (0, 1].

As T →∞, the following random function weakly converges to a scaled Brownian motion, i.e.,

ϕT (r) :=

√
tT
T

h(r,T )∑
m=1

(x̄tm − x∗)⇒
√
νG−1S1/2Bd(r)

where tT =
∑T−1

m=0Em, x̄tm =
∑K

k=1 pkx
k
tm , and Bd(·) is the d-dim standard Brownian motion.

Theorem 4.2 has many implications. First, the result is stronger than Theorem 3.1 though
under the same assumptions. By applying the continuous mapping theorem to Theorem 4.2 with
ψ : Cd[0, 1] 7→ ψ(1), we directly prove Theorem 3.1. Second, the sequence {Em} makes a
difference via the time scale h(r, T ), which extends previous FCLT results on SGD. For example, if
Em ≡ E, then ν = 1, tT = ET and h(r, T ) = ⌊rT ⌋, the result turning to be

1√
T

⌊rT ⌋∑
m=1

(x̄tm − x∗)⇒
√

1

E
G−1S1/2Bd(r).

When E = 1, it reduces to the single-machine result that is recently obtained by Lee et al. (2021). It
is worth mentioning that our result requires a much weaker moment condition on gradient noises
(i.e., bounded 2 + δ(δ > 0) moments in Assumption 3.2) than previous Lee et al. (2021). The
latter requires that the gradient noises should not only be α-mixing but also have at least forth-order
moment (see their Assumption 2). The improvement comes from a specific error decomposition
and a careful analysis on a non-asymptotic term with time-varying coefficients (see Lemma B.7).
See Section 5 for a sketch of proof ideas. Once E > 1, an interesting observation is that local
updates reduce the scale of the Brown motion. As an extreme case, the scale vanishes and the
Brown motion degenerates when E = ∞. It makes sense because when E = ∞, xk

tm ≡ x∗
k

and x̄tm ≡
∑K

k=1 pkx
k
tm , the process degenerates. Beyond constant Em ≡ E, Theorem 4.2 also
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embraces mildly increasing {Em} (see Table 1). Finally, there are some other FCLTs proved via
a SDE argument on general stochastic process (Kushner and Yang, 1993) or SGD with constant
learning rates (Wang, 2017). By contrast, we consider the particular Local SGD with decaying
learning rates in the distributed context and the proof technique (see Section 5 for a short outline) is
from a discrete perspective.

With Theorem 4.2, we are ready to describe the inference method. Define r0 = 0 and rm =∑m
n=1

1
En∑T

n=1
1

En

for m ≥ 1. The choice of rm satisfies that ϕT (rm) =
√
tT
T

∑m
n=1(x̄tn − x∗). Note that

ϕT (1) =
√
tT
T

∑T
n=1(x̄tn −x∗) =

√
tT (ȳT −x∗). Hence, ϕT (rm)− m

T ϕT (1) =
√
tT
T

∑m
n=1(x̄tn −

mȳT ) cancels the dependence on x∗. To remove the dependence on the unknown scale G−1S1/2,
we studentize ϕT (1) via

ΠT =
T∑

m=1

(
ϕT (rm)− m

T
ϕT (1)

)(
ϕT (rm)− m

T
ϕT (1)

)⊤
(rm − rm−1).

Corollary 4.2 Under the same assumptions of Theorem 4.2 and assuming g(rm) ≍ m
T for some

continuous function g on [0, 1] , we have that

ϕT (1)⊤Π−1
T ϕT (1)

d→ Bd(1)
⊤
[∫ 1

0
(Bd(r)−g(r)Bd(1)) (Bd(r)−g(r)Bd(1))

⊤ dr

]−1

Bd(1).

This corollary follows immediately from Theorem 4.2 and the continuous mapping theorem. It implies
ϕT (1)⊤Π−1

T ϕT (1) is asymptotically pivotal and thus can be used to construct valid asymptotic
confidence intervals. Up to a constant factor, studentizing ϕT (1) via ΠT is equivalent to studentizing
ȳT = 1

T

∑T
m=1 x̄tm via V̂T where

V̂T =
1

T 2
∑T

m=1
1

Em

T∑
m=1

1

Em

(
m∑

n=1

x̄tn −mȳT

)(
m∑

n=1

x̄tn −mȳT

)⊤

.

V̂T can be updated in an online manner. To state its online updating rule, recall that ȳm =
1
m

∑m
n=1 x̄tn and note that

V̂T =
1

T 2
∑T

m=1
1

Em

T∑
m=1

m2

Em
(ȳm − ȳT ) (ȳm − ȳT )

⊤

=
1

T 2
∑T

m=1
1

Em

[
T∑

m=1

m2

Em
ȳmȳ⊤

m −
T∑

m=1

m2

Em
ȳT ȳ

⊤
m −

T∑
m=1

m2

Em
ȳmȳ⊤

T +
T∑

m=1

m2

Em
ȳT ȳ

⊤
T

]
.

Hence, to update V̂m−1 to V̂m when a new observation x̄tm is available, we only need to keep the
following quantities, namely sm−1 =

∑m−1
n=1

1
En

, qm−1 =
∑m−1

n=1
n2

En
, ȳm−1 =

1
m−1

∑m−1
n=1 x̄tn ,

Am−1 =

m−1∑
n=1

n2

En
ȳnȳ

⊤
n and bm−1 =

m−1∑
n=1

n2

En
ȳn,
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all of which can be updated in online. In this way, V̂m = 1
m2sm

(
Am − ȳmb⊤m − bmȳ⊤

m + qmȳmȳ⊤
m

)
.

The formal formulation is presented in Algorithm 2 in Appendix A.
Once ȳT and V̂T are obtained, it is straightforward to carry out inference. For example, we

construct the (1−α) asymptotic confidence interval for the j-th element x∗
j of x∗ as follows

Corollary 4.3 Under the same conditions of Corollary 4.2, we have that

P
([

ȳT,j − qα
2
,g

√
V̂T,jj ≤ x∗

j ≤ ȳT,j + qα
2
,g

√
V̂T,jj

])
→ 1− α,

where qα
2
,g is (1− α/2)-quantile of the following random variable

B1(1)

/(∫ 1

0
(B1(r)− g(r)B1(1))

2dr

)1/2

(5)

with B1(·) a one-dimensional standard Brownian motion.

If we only care about uncertainty of each coordinate x∗
j , for random scaling, we only need to

store the diagonal entries of V̂T from Corollary 4.3. Both the storage and computation cost are merely
O(d). However, for the plug-in method, the storage cost is O(d2) and the computation cost is O(d3),
since we need to compute and store ĜT and ŜT and calculate the diagonal entries of Ĝ−1

T ŜT Ĝ
−⊤
T .

The remaining issue is about the specific form of g and the computation of qα,g. g actually
depends on the growth of {Em}. Direct computation reveals that rm ≍

(
m
T

)1−β if Em ≍ mβ

and rm ≍ m
T if Em ≍ lnβ(m). Hence, we are motivated to consider the following family of g:

gβ(r) = r
1

1−β indexed by β ∈ [0, 1). With this gβ(·), we denote the random variable given in (5) by
t∗(β) and the corresponding critical value by qα,β := min{t : P(t∗(β) ≤ t) ≥ 1− α}. The limiting
distribution t∗(β) is mixed normal and symmetric around zero. We compute the critical values of
t∗(β) via simulation; see Appendix E for more details.

5. Proof Sketch

We provide a short proof sketch for Theorem 4.2 to illustrate our proof technique in this sec-
tion. A detailed proof is provided in Appendix B.1. Recall x̄t =

∑K
k=1 pkx

k
t . According to

the update rule (2), no matter whether communicating or not, we always have x̄t+1 = x̄t −
ηmḡt where ḡt =

∑K
k=1 pk∇fk(xk

t ; ξ
k
t ) for tm ≤ t < tm+1. Define sm = x̄tm − x∗ and

γm = ηmEm with Em = tm+1 − tm. Iterating over t = tm to tm+1 − 1 gives sm+1 =
sm − ηm

∑tm+1−1
t=tm ḡt = sm − γmvm where vm := 1

Em

∑tm+1−1
t=tm ḡt for short. We decom-

pose vm as vm = Gsm + Um where G = ∇2f(x∗) and Um = vm − Gsm. Using the
notation, we have sm+1 = Bmsm − γmUm where Bm := I − γmG for short. Recursion

gives sm+1 =
(∏m

j=0Bj

)
s0 −

m∑
j=0

(
m∏

i=j+1
Bi

)
γjUj . Here we define

m∏
i=m+1

Bi = I for any

m ≥ 0. Averaging the last equality over m = 0 to h(r, T ) (define in (12)) and using the notation

An
j =

n∑
l=j

(
l∏

i=j+1
Bi

)
give

√
tT
T

∑h(r,T )
m=0 sm+1 =

√
tT
T

[
1
γ0
A

h(r,T )
0 B0s0 −

∑h(r,T )
m=0 A

h(r,T )
m Um

]
.

Roughly speaking, Um ≈ εm := 1
Em

∑tm+1−1
t=tm

[∑K
k=1 pk∇fk(x̄tm ; ξ

k
t )−∇f(x̄tm)

]
. Clearly, by
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our assumptions, {εm} is martingale difference with uniformly bounded (2 + δ) moments. No-
tice Polyak and Juditsky (1992) implies {An

j }n≥j is uniformly bounded and approximates G−1 well

in the sense that lim
n→∞

1
n

∑n
j=0 ∥An

j −G−1∥ = 0. We are motivated to find
√
tT
T

∑h(r,T )
m=0 sm+1

≈
√
tT
T

 1

γ0
A

h(r,T )
0 B0s0 −

h(r,T )∑
m=0

G−1εm −
h(r,T )∑
m=0

(AT
m −G−1)εm −

h(r,T )∑
m=0

(Ah(r,T )
m −AT

m)εm

 .
The classic result (Hall and Heyde, 2014) implies

∑h(r,T )
m=0 G−1εm =⇒

√
νG−1S1/2Bd(r). To pro-

ceed the proof, we need to show the rest terms converge to zero in probability uniformly in r ∈ [0, 1].
It is easy to show

√
tT

Tγ0
A

h(r,T )
0 B0s0 = o(1) by direct verification and

√
tT
T

∑h(r,T )
m=0 (AT

m−G−1)εm =

oP(1) by Doob’s maximal inequality. Our Lemma B.7 aims to show
√
tT
T

∑h(r,T )
m=0 (A

h(r,T )
m −

AT
m)εm = oP(1) under the (2 + δ) moment condition, which is the most technical part, because the

coefficient Ah(r,T )
m −AT

m varies in r and thus Doob’s maximal inequality can’t apply directly. To
circumvent the issue, Lemma B.7 uses a covering method to show

√
tT
T

∑h(r,T )
m=0 (A

h(r,T )
m −AT

m)εm,
as a stochastic process indexed by r, is tight. We divide [0, 1] into n equal-width intervals and show
the stochastic process has uniformly small expected L2 norm at each interval with the norm value
decreasing as n increases. Thanks to the (2 + δ) moment condition, the sum of norm values on the n
intervals is only O(n−δ/2). Then Lemma B.7 follows from arbitrariness of n. For easy reference, we
provide a use-friendly version of Lemma B.7 in Lemma B.8.

6. Related Work

In the context of distributed inference, as we know that no works consider the asymptotic properties
of Local SGD or FedAvg, letting alone conduct inference. Most works focus on the optimization
properties of Local SGD (or their proposed variants). Woodworth et al. (2020b,a) gave the state-
of-the-art convergence analysis for Local SGD in convex settings, showing its convergence rate is
dominated by the statistical error incurred by stochastic approximation of gradients. However, it
additionally suffers a relatively minor residual error caused by local updates. As a complementary,
our work shows that when the effective step size is set to γm = Emηm ∝ m−α(α ∈ (0.5, 1),m ≥ 1),
Local SGD enjoys the optimal asymptotic variance, even though the communication length increases
at a sub-linear rate (i.e., Em = o(t

1/2
m )). It corresponds to the previous non-asymptotic result (Wang

and Joshi, 2018) that shows Em can be set as large as O(t
1/2
m ) for convergence. Later, Haddadpour

et al. (2019) provided a tighter analysis showing Em can be set as large as O(t
2/3
m ). However, they

used a smaller learning rate γm ∝ m−1 that cannot guarantee asymptotic normality in our theory.
Indeed, the choice of learning rate plays an important role in chasing the non-asymptotic goal of a
fast finite-time convergence rate and the asymptotic goal of achieving limiting optimal normality,
as noted in Li et al. (2020a) who instead proposed a new SGD variant to achieve both together. In
addition, Karimireddy et al. (2020); Liang et al. (2019); Pathak and Wainwright (2020); Zhang et al.
(2020) removed the effect of statistical heterogeneity via control variates or primal-dual techniques.
From our theory, statistical heterogeneity will not affect the asymptotic variance. Similarly, it has
been found that heterogeneity will not alter the minimax optimal bound for the estimation of the
commonality parameter (Zhao et al., 2016; Wang et al., 2019).
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Statistical estimation and inference via SGD attracts great attention. Ruppert (1988); Polyak
and Juditsky (1992) showed averaging iterates along the SGD trajectory has favorable statistical
properties in the asymptotic setting, while Anastasiou et al. (2019); Mou et al. (2020) supplemented it
with a non-asymptotic analysis. Many papers recently developed iterative algorithms for constructing
asymptotically valid confidence intervals (Godichon-Baggioni, 2019). Chen et al. (2020) proposed a
consistent plug-in estimator. However, the computation of the Hessian matrix of loss function is not
always tractable. Then, Chen et al. (2020) adapted the non-overlapping batch-means method (Glynn
and Whitt, 1991) and obtained an offline consistent covariance estimator by using time-increasing
batch sizes. Later on, Zhu et al. (2021) extended it to a fully online setting via a recursive counterpart
using overlapping batches. In one latest work, Lee et al. (2021) proposed random scaling, which uses
nested batches instead. But the analysis in their corrected version requires a stronger condition on
the gradient noises that should not only be α-mixing but also have at least forth-order moment (see
their Assumption 2). The α-mixing assumption forces gradient noises to be asymptotic stationary in
a fast rate. By contrast, we provide a valid analysis for random scaling under only 2 + δ moment
assumptions (see Assumption 3.2), which is much weaker and can be of independent interest. We
speculate the (2 + δ) moment condition might not be relaxed any further. In addition, Fang et al.
(2018); Fang (2019) proposed online bootstrap procedures for the estimation of confidence intervals
via randomly perturbed SGD. Meanwhile, Li et al. (2018); Su and Zhu (2018); Liang and Su (2019)
proposed variants of the SGD algorithm to facilitate inference in a non-asymptotic fashion.

7. Conclusion and Future Work

This paper studies how to perform statistical inference via Local SGD in FL. We have established
a functional central limit theorem for the averaged iterates of Local SGD and presented two fully
online inference methods. We have shown that the Local SGD has statistical efficiency with its
asymptotic variance achieving the Cramér–Rao lower bound and communication efficiency with the
averaged communication efficiency vanishing asymptotically. It is worth noting that although we
considered Local SGD (a distributed variant of SGD), our results also hold for the standard SGD
because the latter as a single-device SGD is a special case of Local SGD.

There are many interesting issues for future work. One is to relax the current assumptions and
consider Local SGD for more challenging optimization problems (e.g., non-smooth or non-convex
problems). Our theory shows that Local SGD enjoys statistical optimality in an asymptotic sense,
and it is definitely not also optimal in finite-time convergence (Woodworth et al., 2021). It is then
interesting to analyze the statistical properties of other state-of-the-art algorithms in FL. For example,
Karimireddy et al. (2020) proposed a new algorithm using control variates to remove the effect of data
heterogeneity, which achieves a better non-asymptotic convergence rate. It is also interesting to devise
more powerful algorithms as well inference methods to handle the challenge in the decentralized big
data era (Fan et al., 2021).
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Supplementary Material to "Statistical Estimation
and Online Inference via Local SGD"

Appendix A. Formal Version of Algorithms

Algorithm 1 Local SGD

Input: functions {fk}Kk=1, initial point x0, step size η0, communication set I = {t0, t1, · · · }.
Initialization: let xk

0 = x0 for all k.
for round m = 0 to T − 1 do

for iteration t = tm + 1 to tm+1 do
for each device k = 1 to K do
xk
t = xk

t−1 − ηm∇fk(xk
t−1; ξ

k
t−1). # perform Em = tm+1 − tm steps of local updates.

end for
end for
The central server aggregates: x̄tm+1 =

∑K
k=1 pkx

k
tm+1

.

Synchronization: xk
tm+1

← x̄tm+1 for all k.
end for
Return: x̂ = 1

T

∑T
m=1 x̄tm .

Algorithm 2 Online Inference with Local SGD via Random Scaling

Input: functions {fk}nk=1, initial point x0, step size ηt, communication set I = {t0, t1, · · · }.
Initialization: set x(k)

0 = x0 for all k, let A0 = 0 and b0 = 0 and s0 = q0 = 0.
for m = 1 to T do

Obtain the synchronized variable from Local SGD: x̄tm =
∑K

k=1 pkx
k
tm .

ȳm = m−1
m ȳm−1 +

1
m x̄tm ,

Am = Am−1 +
m2

Em
ȳmȳ⊤

m,

bm = bm−1 +
m2

Em
ȳm,

sm = sm−1 +
1

Em
,

qm = qm−1 +
m2

Em
.

Obtain V̂m by

V̂m =
1

m2sm

(
Am − ȳmb⊤m − bmȳ⊤

m + qmȳmȳ⊤
m

)
.

Return: ȳm and V̂m.
end for

Appendix B. Proofs for the FCLT

This appendix provides a self-contained proof of Theorem 4.2 as well as the first statement of
Theorem 3.1.
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B.1. Proof Ideas

We follows the perturbed iterate framework that is derived by Mania et al. (2017) and widely used in
recent works (Stich, 2018; Stich et al., 2018; Li et al., 2019a; Bayoumi et al., 2020; Koloskova et al.,
2020; Woodworth et al., 2020a,b). Then we define a virtual sequence x̄t in the following way:

x̄t =

K∑
k=1

pkx
k
t .

Fix a m ≥ 0 and consider tm ≤ t < tm+1. Local SGD yields that for any device k ∈ [K],

xk
t+1 = xk

t − ηm∇fk(xk
t ; ξ

k
t ),

xk
tm+1

=

K∑
k=1

pk

(
xk
tm+1−1 − ηm∇fk(xk

tm+1−1; ξ
k
tm+1−1)

)
,

which implies that we always have

x̄t+1 = x̄t − ηmḡt, where ḡt =
K∑
k=1

pk∇fk(xk
t ; ξ

k
t ). (6)

Define sm = x̄tm − x∗ and recall that Em = tm+1 − tm and γm = ηmEm. Iterating (6) from
t = tm to tm+1 − 1 gives

sm+1 = sm − ηm
tm+1−1∑
t=tm

ḡt = sm − γmvm, where vm =
1

Em

tm+1−1∑
t=tm

ḡt. (7)

We further decompose vm into four terms.

vm = Gsm + (∇f(x̄tm)−Gsm) + (hm −∇f(x̄tm)) + (vm − hm)

:= Gsm + rm + εm + δm (8)

where G = ∇2f(x∗) is the Hessian at the optimum x∗ which is non-singular from our assumption,
and

hm =
1

Em

tm+1−1∑
t=tm

K∑
k=1

pk∇fk(x̄tm ; ξ
k
t ). (9)

Note that hm is almost identical to vm except that all the stochastic gradients in hm are evaluated at
x̄tm while those in vm are evaluated at local variables xk

t ’s.
Making use of (7) and (8), we have

sm+1 = (I − γmG)sm − γm(rm + εm + δm) := Bmsm − γmUm, (10)

where Bm := I − γmG and Um := rm + εm + δm for short. Recurring (10) gives

sm+1 =

 m∏
j=0

Bj

 s0 −
m∑
j=0

 m∏
i=j+1

Bi

 γjUj . (11)
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Here we use the convention that
m∏

i=m+1
Bi = I for any m ≥ 0.

For any r ∈ [0, 1] and T ≥ 1, define

h(r, T ) = max

{
n ∈ Z+

∣∣∣∣r T∑
m=1

1

Em
≥

n∑
m=1

1

Em

}
. (12)

From Assumption 3.4, we know that
∑T

m=1
1

Em
→ ∞ as T → ∞, which implies h(r, T ) → ∞

meanwhile. Summing (11) from m = 0 to h(r, T ) gives

√
tT
T

h(r,T )∑
m=0

sm+1 =

√
tT
T

h(r,T )∑
m=0

 m∏
j=0

Bj

 s0 −
m∑
j=0

 m∏
i=j+1

Bi

 γjUj


=

√
tT
T

h(r,T )∑
m=0

 m∏
j=0

Bj

 s0 −
√
tT
T

h(r,T )∑
j=0

h(r,T )∑
m=j

 m∏
i=j+1

Bi

 γjUj . (13)

Lemma B.1 (Lemma 1 in Polyak and Juditsky (1992)) Recall that Bi := I − γiG and G is
non-singular. For any n ≥ j, define An

j as

An
j =

n∑
l=j

 l∏
i=j+1

Bi

 γj . (14)

Under Assumption 3.3, there exists some universal constant C0 > 0 such that for any n ≥ j ≥ 0,
∥An

j ∥ ≤ C0. Furthermore, it follows that lim
n→∞

1
n

∑n
j=0 ∥An

j −G−1∥ = 0.

Using the notation of An
j , we can further simplify (13) as

√
tT
T

h(r,T )∑
m=0

sm+1 =

√
tT

Tγ0
A

h(r,T )
0 B0s0 −

√
tT
T

h(r,T )∑
m=0

Ah(r,T )
m Um.

Since Um = rm + εm + δm, then

√
tT
T

h(r,T )∑
m=0

sm+1 +

√
tT
T

h(r,T )∑
m=0

G−1εm =

√
tT

Tγ0
A

h(r,T )
0 B0s0 −

√
tT
T

h(r,T )∑
m=0

Ah(r,T )
m (rm + δm)

−
√
tT
T

h(r,T )∑
m=0

(AT
m −G−1)εm

−
√
tT
T

h(r,T )∑
m=0

(Ah(r,T )
m −AT

m)εm

:= T0 − T1 − T2 − T3,

where for simplicity we denote

T0 =
√
tT

Tγ0
A

h(r,T )
0 B0s0, T1 =

√
tT
T

h(r,T )∑
m=0

Ah(r,T )
m (rm + δm),
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T2 =
√
tT
T

h(r,T )∑
m=0

(AT
m −G−1)εm, T3 =

√
tT
T

h(r,T )∑
m=0

(Ah(r,T )
m −AT

m)εm.

With the last equation, we are ready to prove the main theorem which illustrates the partial-sum
asymptotic behavior of

√
tT
T

∑h(r,T )
m=0 sm+1. The main idea is that we first figure out the partial-sum

asymptotic behavior of
√
tT
T

∑h(r,T )
m=0 G−1εm and then show that their difference is uniformly small,

i.e.,

sup
r∈[0,1]

∥∥∥∥∥∥
√
tT
T

h(r,T )∑
m=0

sm+1 +

√
tT
T

h(r,T )∑
m=0

G−1εm

∥∥∥∥∥∥ = oP(1).

For the second step, it suffices to show that the four separate terms: supr∈[0,1] ∥T0∥, supr∈[0,1] ∥T1∥,
supr∈[0,1] ∥T2∥, and supr∈[0,1] ∥T4∥ are oP(1), respectively. With this idea, our following proof is
naturally divided into fives parts.

The establishment of almost sure and L2 convergence in Lemma B.2 will ease our proof. The
following lemma proves the first statement of Theorem 3.1. The second statement of Theorem 3.1
follows directly from Theorem 4.2 which we are going to prove via an argument of the continuous
mapping theorem.

Lemma B.2 (Almost sure and L2 convergence) Under Assumptions 3.1, 3.2, and 3.3, x̄tm → x∗

almost surely when m goes to infinity. In addition, there exists some C̃0 > 0 such that

E∥x̄tm − x∗∥2 ≤ C̃0γm.

Part 1: Partial-sum asymptotic behavior of
√
tT
T

∑h(r,T )
m=0 G−1εm.

Lemma B.3 Under Assumptions 3.1, 3.2, 3.3 and 3.4, the functional martingale CLT holds, namely,
for any r ∈ [0, 1],

√
tT
T

h(r,T )∑
m=0

G−1εm ⇒
√
νG−1S1/2Bd(r),

where h(r, T ) is defined in (12) and Bd(r) is the d-dimensional standard Brownian motion.

Part 2: Uniform negligibility of T0. Lemma B.1 characterizes the asymptotic behavior of An
j . It

is uniformly bounded. It implies

sup
r∈[0,1]

∥T0∥ =
√
tT

Tγ0
sup

r∈[0,1]
∥Ah(r,T )

0 B0s0∥ ≤
√
tT

Tγ0
C0∥B0s0∥ → 0,

as a result of
√
tT
T → 0 when T →∞.

Part 3: Uniform negligibility of T1. The uniform boundedness of An
j implies

sup
r∈[0,1]

∥T1∥ = sup
r∈[0,1]

√
tT
T

∥∥∥∥∥∥
h(r,T )∑
m=0

Ah(r,T )
m (rm + δm)

∥∥∥∥∥∥
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≤ sup
r∈[0,1]

√
tT
T

h(r,T )∑
m=0

C0(∥rm∥+ ∥δm∥)

=

√
tT
T

T∑
m=0

C0(∥rm∥+ ∥δm∥),

where the last inequality uses the fact that h(r, T ) increases in r and h(1, T ) = T . The following
two lemmas together imply that supr∈[0,1] ∥T1∥ = oP(1).

Lemma B.4 Under Assumptions 3.1, 3.2 and 3.3, we have that

√
tT
T

T∑
m=0

∥rm∥ = oP(1).

Lemma B.5 Under Assumptions 3.1, 3.2 and 3.3, we have that

√
tT
T

T∑
m=0

∥δm∥ = oP(1).

Part 4: Uniform negligibility of T2. By Doob’s maximum inequality, it follows that

E sup
r∈[0,1]

∥T2∥2 = E sup
r∈[0,1]

tT
T 2

∥∥∥∥∥∥
h(r,T )∑
m=0

(AT
m −G−1)εm

∥∥∥∥∥∥
2

≤ tT
T 2

E

∥∥∥∥∥
T∑

m=0

(AT
m −G−1)εm

∥∥∥∥∥
2

=
tT
T 2

T∑
m=0

E
∥∥(AT

m −G−1)εm
∥∥2

≤ tT
T 2

T∑
m=0

∥∥AT
m −G−1

∥∥2 E ∥εm∥2 .
Because εm = hm−∇f(x̄tm) =

1
Em

∑tm+1−1
t=tm (∇f(x̄tm ; ξt)−∇f(x̄tm)) is the mean of Em i.i.d.

copies of ε(x̄tm) := ∇f(x̄tm ; ξtm)−∇f(x̄tm) at a fixed x̄tm , it implies that

E ∥εm∥2 =
1

Em
E∥ε(x̄tm)∥2 ≤

1

Em

(
C1 + C2E∥x̄tm − x∗∥2

)
≾

1

Em
, (15)

where the first inequality is from Lemma B.9 with C1, C2 two universal constants defined therein
and the second inequality uses Lemma B.2. Using the last result, we have that

ET2 ≾
tT
T 2

T∑
m=0

1

Em

∥∥AT
m −G−1

∥∥2 .
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By Lemma B.1, it follows that as T →∞,

1

T

T∑
m=0

∥∥AT
m −G−1

∥∥2 ≤ (C0 + ∥G−1∥) · 1
T

T∑
m=0

∥∥AT
m −G−1

∥∥→ 0.

Lemma B.6 implies that E supr∈[0,1] ∥T2∥2 = o(1).

Lemma B.6 Let {Em} be the positive-integer-valued sequence that satisfies Assumption 3.4. Let
{am,T }m∈[T ],T≥1 be a non-negative uniformly bounded sequence satisfying lim

T→∞
1
T

∑T−1
m=0 am,T =

0. Then

lim
T→∞

(
∑T−1

m=0Em)(
∑T−1

m=0E
−1
m am,T )

T 2
= 0.

Part 5: Uniform negligibility of T3. It is subtle to handle T3 because its coefficient depends on r.

∥T3∥ =
√
tT
T

∥∥∥∥∥∥
h(r,T )∑
m=0

(AT
m −Ah(r,T )

m )εm

∥∥∥∥∥∥
=

√
tT
T

∥∥∥∥∥∥
h(r,T )∑
m=0

T∑
l=h(r,T )+1

(
l∏

i=m+1

Bi

)
γmεm

∥∥∥∥∥∥
=

√
tT
T

∥∥∥∥∥∥
T∑

l=h(r,T )+1

h(r,T )∑
m=0

(
l∏

i=m+1

Bi

)
γmεm

∥∥∥∥∥∥
=

√
tT
T

∥∥∥∥∥∥
T∑

l=h(r,T )+1

 l∏
i=h(r,T )+1

Bi

 h(r,T )∑
m=0

 h(r,T )∏
i=m+1

Bi

 γmεm

∥∥∥∥∥∥
≾

√
tT
T

∥∥∥∥∥∥ 1

γh(r,T )+1

h(r,T )∑
m=0

 h(r,T )∏
i=m+1

Bi

 γmεm

∥∥∥∥∥∥ ,
where the last inequality uses∥∥∥∥∥∥

T∑
l=h(r,T )+1

 l∏
i=h(r,T )+1

Bi

 γh(r,T )+1

∥∥∥∥∥∥ =
∥∥∥AT

h(r,T )+1Bh(r,T )+1

∥∥∥ ≾ 1.

Lemma B.7 shows that supr∈[0,1] ∥T3∥ = oP(1).

Lemma B.7 Under Assumptions 3.2 and 3.4, it follows that

sup
r∈[0,1]

√
tT
T

∥∥∥∥∥∥ 1

γh(r,T )+1

h(r,T )∑
m=0

 h(r,T )∏
i=m+1

Bi

 γmεm

∥∥∥∥∥∥ = oP(1).

Remark B.1 There is a more user-friendly version of Lemma B.7 for a plug-and-play use. Define
an auxiliary sequence {Ym}m≥0 as following: Y0 = 0 and for m ≥ 0,

Ym+1 = BmYm + γmεm = (I − γmG)Ym + γmεm. (16)
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It is easy to verify that

Yt+1 =

t∑
t=0

(
t∏

i=m+1

Bi

)
γmεm.

Under this notation, Lemma B.7 is equivalent to

sup
0≤t≤T

√
tT
T

∥Yt+1∥
γt+1

= oP(1).

More formally, we have the following lemma which one can prove from Lemma B.7.

Lemma B.8 If the martingale difference sequence {εm}m≥0 satisfies supm≥0 E∥εm∥2+δ <∞ for
some δ > 0 and Assumption 3.4 holds with Em ≡ 1, for the sequence {Ym}m≥0 defined in (16)
with G positive definite, we have

sup
0≤t≤T

1√
T

∥Yt+1∥
γt+1

= oP(1).

B.2. Proof of Lemma B.2

Define Ft = σ({ξkτ }1≤k≤K,0≤τ<t) by the natural filtration generated by ξkτ ’s, so {xk
t }t is adapted to

{Ft}t and {x̄tm}m is adapted to {Ftm}m. Notice that vm = hm + δm where

hm =
1

Em

tm+1−1∑
t=tm

∇f(x̄tm ; ξt) and ∇f(x̄tm ; ξt) =

K∑
k=1

pk∇f(x̄tm ; ξ
k
t ),

implying E[hm|Ftm ] = ∇f(x̄tm). The L-smoothness of f(·) gives that

f(x̄tm+1) ≤ f(x̄tm) + ⟨∇f(x̄tm), x̄tm+1 − x̄tm⟩+
L

2
∥x̄tm+1 − x̄tm∥2

= f(x̄tm)− γm⟨∇f(x̄tm),vm⟩+
γ2mL

2
∥vm∥2.

Conditioning on Ftm in the last inequality gives

E[f(x̄tm+1)|Ftm ]

≤ f(x̄tm)− γm⟨∇f(x̄tm),E[vm|Ftm ]⟩+
γ2mL

2
E[∥vm∥2|Ftm ]

= f(x̄tm)− γm∥∇f(x̄tm)∥2 − γm⟨∇f(x̄tm),E[δm|Ftm ]⟩+
γ2mL

2
E[∥hm + δm∥2|Ftm ]

≤ f(x̄tm)− γm∥∇f(x̄tm)∥2 +
γm
2
∥∇f(x̄tm)∥2 +

γm
2
∥E[δm|Ftm ]∥2

+ γ2mLE[∥hm∥2|Ftm ] + γ2mLE[∥δm∥2|Ftm ]

= f(x̄tm)−
γm
2
∥∇f(x̄tm)∥2 + γ2mLE[∥hm∥2|Ftm ] +

(γm
2

+ γ2mL
)
E[∥δm∥2|Ftm ], (17)

where we use the conditional Jensen’s inequality ∥E[δm|Ftm ]∥2 ≤ E[∥δm∥2|Ftm ].
We then bound the last two terms in the right hand side of (17).
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Part 1: For E[∥hm∥2|Ftm ], it follows that

E[∥hm∥2|Ftm ] = ∥E[hm|Ftm ]∥2 + E[∥hm − E[hm|Ftm ]∥2|Ftm ]

= ∥∇f(x̄tm)∥2 + E[∥hm −∇f(x̄tm)∥2|Ftm ]

= ∥∇f(x̄tm)∥2 +
1

Em
E[∥∇f(x̄tm ; ξtm)−∇f(x̄tm)∥2|Ftm ],

where the last equality uses the fact that hm is the mean of Em i.i.d. copies of ∇f(x̄tm ; ξtm) :=∑K
k=1 pk∇fk(x̄tm ; ξ

k
tm) given Ftm , so its conditional variance is Em times smaller than the latter,

E[∥hm −∇f(x̄tm)∥2|Ftm ] =
1

Em
E[∥∇f(x̄tm ; ξtm)−∇f(x̄tm)∥2|Ftm ]. (18)

Lemma B.9 Recall that ε(x̄tm) := ∇f(x̄tm ; ξtm) − ∇f(x̄tm) and εk(x
k
t ) := ∇f(xk

t ; ξ
k
t ) −

∇f(xk
t ). Under Assumption 3.2, it follows that

Eξkt
∥εk(xk

t )∥2 ≤ C1 + C2∥xk
t − x∗∥2 and Eξtm∥ε(x̄tm)∥2 ≤ C1 + C2∥x̄tm − x∗∥2

where C1 = dmaxk∈[K] ∥Sk∥+ dC
2 and C2 =

3dC
2 with C defined in Assumption 3.2.

With Lemma B.9, we have

E[∥∇f(x̄tm ; ξtm)−∇f(x̄tm)∥2|Ftm ] ≤ C1 + C2∥x̄tm − x∗∥2.

Then, it follows that

E[∥hm∥2|Ftm ] ≤ ∥∇f(x̄tm)∥2 +
C1

Em
+
C2

Em
∥x̄tm − x∗∥2.

Part 2: For E[∥δm∥2|Ftm ], by Jensen’s inequality, we have

E[∥δm∥2|Ftm ] = E[∥vm − hm∥2|Ftm ]

= E

∥∥∥∥∥ 1

Em

tm+1−1∑
t=tm

K∑
k=1

pk∇fk(xk
t ; ξ

k
t )−

1

Em

tm+1−1∑
t=tm

K∑
k=1

pk∇fk(x̄tm ; ξ
k
t )

∥∥∥∥∥
2 ∣∣∣∣Ftm


≤ 1

Em

tm+1−1∑
t=tm

K∑
k=1

pkE
[∥∥∥∇fk(xk

t ; ξ
k
t )−∇fk(x̄tm ; ξ

k
t )
∥∥∥2 ∣∣Ftm

]
.

Because xk
t , x̄tm ∈ Ft and Ftm ⊆ Ft for tm ≤ t < tm+1, we have that

E[∥∇fk(xk
t ; ξ

k
t )−∇fk(x̄tm ; ξ

k
t )∥2|Ftm ] = E[E[∥∇fk(xk

t ; ξ
k
t )−∇fk(x̄tm ; ξ

k
t )∥2|Ft]|Ftm ]

= E[Eξkt
∥∇fk(xk

t ; ξ
k
t )−∇fk(x̄tm ; ξ

k
t )∥2|Ftm ]

≤ L2E[∥xk
t − x̄tm∥2|Ftm ],

where the first equality follows from the tower rule of conditional expectation and the second
inequality follows from the expected L-smoothness in Assumption 3.1.
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Combining the last two results, we have

E[∥δm∥2|Ftm ] ≤
L2

Em

tm+1−1∑
t=tm

K∑
k=1

pkE[∥xk
t − x̄tm∥2|Ftm ] :=

L2

Em

tm+1−1∑
t=tm

Vt,

where Vt is the residual error defined by

Vt =

K∑
k=1

pkE[∥xk
t − x̄tm∥2|Ftm ]. (19)

The residual error is incurred by multiple local gradient descents. Intuitively, if no local update is
used (i.e., Em = 1), such a residual error would disappear. The following lemma helps us bound
1

Em

∑tm+1−1
t=tm Vt in terms of γm and ∥x̄tm − x∗∥2.

Lemma B.10 Under Assumptions 3.1 and 3.2, there exist some universal constants C3, C4 > 0
such that for any m with γ2m

Em−1
Em

C4 ≤ 1, it follows that

1

Em

tm+1−1∑
t=tm

Vt ≤ γ2m
Em − 1

Em

(
C3 + C4∥x̄tm − x∗∥2

)
.

Almost sure convergence: Denote ∆m = f(x̄tm)−f(x∗) for simplicity, then from the µ-strongly
convexity and L-smoothness of f(·), it follows that

µ

2
∥x̄tm − x∗∥2 ≤ ∆m ≤

1

2µ
∥∇f(x̄tm)∥2 and

1

2L
∥∇f(x̄tm)∥2 ≤ ∆m ≤

L

2
∥x̄tm − x∗∥2.

Note that γm → 0 when m goes to infinity, which means there exists some m0, such that for any
m ≥ m0, we have γ2mC4 ≤ 1 and γm ≤ min{ 1

2L , 1}. It implies that we can apply Lemma B.10 for
sufficiently large m. Combining the two parts and plugging them into (17) yield for any m ≥ m0,

E[∆m+1|Ftm ] ≤ ∆m −
γm
2
∥∇f(x̄tm)∥2 + γ2mL ·

[
∥∇f(x̄tm)∥2 +

C1

Em
+
C2

Em
∥x̄tm − x∗∥2

]
+
(γm

2
+ γ2mL

)
γ2mL

2
(
C3 + C4∥x̄tm − x∗∥2

)
≤ ∆m − γmµ∆m + γ2mL ·

[
C1

Em
+

(
2L+

2C2

µEm

)
∆m

]
+
(γm

2
+ γ2mL

)
γ2mL

2

(
C3 +

2C4

µ
∆m

)
≤ ∆m − γmµ∆m + γ2mL ·

[
C1 +

(
2L+

2C2

µ

)
∆m

]
+ γ3mL

2

(
C3 +

2C4

µ
∆m

)
≤ ∆m − γmµ∆m + γ2mL ·

[
C1 +

(
2L+

2C2

µ

)
∆m

]
+ γ2mL

2

(
C3 +

2C4

µ
∆m

)
=
(
1 + c1γ

2
m

)
∆m + c2γ

2
m − µγm∆m, (20)

where

c1 = 2L2 +
2(LC2 + L2C4)

µ
and c2 = LC1 + L2C3.

To conclude the proof, we need to apply the Robbins-Siegmund theorem (Robbins and Siegmund,
1971).
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Lemma B.11 (Robbins-Siegmund theorem) Let {Dm, βm, αm, ζm}∞m=0 be non-negative and adapted
to a filtration {Gm}∞m=0, satisfying

E[Dm+1|Gm] ≤ (1 + βm)Dm + αm − ζm

for all m ≥ 0 and both
∑

m βm <∞ and
∑

m αm <∞ almost surely. Then, with probability one,
Dm converges to a non-negative random variable D∞ ∈ [0,∞) and

∑
m ζm <∞.

From Assumption 3.3, we have that c1
∑∞

m=m0
γ2m < ∞ and c2

∑∞
m=m0

γ2m < ∞. Hence, based
on (20), Lemma B.11 implies that ∆m = f(x̄tm)− f(x∗) converges to a finite non-negative random
variable ∆∞ almost surely. Moreover, Lemma B.11 also ensures that

µ

∞∑
m=m0

γm∆m <∞. (21)

If P(∆m > 0) > 0, then the left-hand side of (21) would be infinite with positive probability due
to the fact

∑∞
m=m0

γm =∞. It reveals that P(∆m = 0) = 1 and thus f(x̄tm)→ f(x∗) as well as
x̄tm → x∗ with probability one when m goes to infinity.

L2 convergence: We will obtain the L2 convergence rate from (20). This part follows the same
argument of Su and Zhu (2018) (see Page 37-38 therein). For completeness, we conclude this section
by presenting the proof of it. Taking expectation on both sides of (20),

E∆m+1

γm
≤
γm−1

(
1− µγm + c1γ

2
m

)
γm

E∆m

γm−1
+ c2γm.

Because γm → 0, we have that for sufficiently large m, c1γ2m ≤ 0.5µγm, and hence,

E∆m+1

γm
≤
γm−1

(
1− µ

2γm
)

γm

E∆m

γm−1
+ c2γm.

Lemma B.12 (Lemma A.10 in Su and Zhu (2018)) Let c1, c2 be arbitrary positive constants. As-
sume γm → 0 and γm−1

γm
= 1+ o(γm). If Bm > 0 satisfies Bm ≤ γm−1(1−c1γm)

γm
Bm−1 + c2γm, then

supmBm <∞.

With the above lemma, we claim that there exists some C5 > 0 such that

sup
0<m<∞

E∆m

γm−1
< C5, (22)

which immediately concludes that

E∥x̄tm − x∗∥2 ≤ 2

µ
E∆m ≤

2C5

µ
γm−1 =

2C5

µ
(1 + o(γm))γm ≤ C0γm.
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B.3. Proof of Lemma B.9

Proof By Assumption 3.2, we know that ε(x̄tm) := ∇f(x̄tm ; ξtm)−∇f(x̄tm) satisfies

∥Eξtmε(x̄tm)ε(x̄tm)
⊤ − S∥ ≤ C

(
∥x̄tm − x∗∥+ ∥x̄tm − x∗∥2

)
.

Therefore, it follows that

E[∥∇f(x̄tm ; ξtm)−∇f(x̄tm)∥2|Ftm ] = E[∥ε(x̄tm)∥2|Ftm ] = Eξtm∥ε(x̄tm)∥2

= tr(Eξtmε(x̄tm)ε(x̄tm)
⊤)

≤ d∥Eξtmε(x̄tm)ε(x̄tm)
⊤∥

≤ d∥S∥+ dC∥x̄tm − x∗∥+ dC∥x̄tm − x∗∥2

≤
(
d∥S∥+ dC

2

)
+

3dC

2
∥x̄tm − x∗∥2

≤ C1 + C2∥x̄tm − x∗∥2

with C1 = dmaxk ∥Sk∥+ dC
2 and C2 =

3dC
2 . Here we use the fact that S =

∑K
k=1 p

2
kSk and thus

∥S∥ ≤
∑K

k=1 p
2
k∥Sk∥ ≤

∑K
k=1 pk∥Sk∥ ≤ maxk∈[K] ∥Sk∥.

With a similar argument, it follows that

Eξkt
∥εk(xk

t )∥2 ≤ d∥Sk∥+
dC

2
+

3dC

2
∥xk

t − x∗∥2 ≤ C1 + C2∥xk
t − x∗∥2.

B.4. Proof of Lemma B.10

For a fixed m ≥ 0, let us consider the case where tm+1 > tm + 1, otherwise the result follows
directly due to Vtm = 0. For tm ≤ t < tm+1 − 1 and k ∈ [K], we have xk

tm = x̄tm and

xk
t+1 = xk

t − ηm∇fk(xk
t ; ξ

k
t ) ⇒ xk

t+1 = x̄tm − ηm
t∑

τ=tm

∇fk(xk
τ ; ξ

k
τ ).

Using the last iteration relation, we obtain that

E[∥xk
t+1 − x̄tm∥2|Ftm ] = η2mE

∥∥∥∥∥
t∑

τ=tm

∇fk(xk
τ ; ξ

k
τ )

∥∥∥∥∥
2 ∣∣∣∣Ftm


≤ η2m(t+ 1− tm)

t∑
τ=tm

E[∥∇fk(xk
τ ; ξ

k
τ )∥2

∣∣Ftm ]

≤ η2mEm

t∑
τ=tm

E[∥∇fk(xk
τ ; ξ

k
τ )∥2

∣∣Ftm ]

= η2mEm

t∑
τ=tm

E
[
E(∥∇fk(xk

τ ; ξ
k
τ )∥2

∣∣Fτ )
∣∣Ftm

]
.
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We then turn to bound E[∥∇fk(xk
τ ; ξ

k
τ )∥2

∣∣Fτ ] as follows:

E[∥∇fk(xk
τ ; ξ

k
τ )∥2

∣∣Fτ ] = E[∥∇fk(xk
τ ; ξ

k
τ )−∇fk(xk

τ )∥2
∣∣Fτ ] + ∥∇fk(xk

τ )∥2

≤ Eξkτ
∥εk(xk

τ )∥2 + 2∥∇fk(xk
τ )−∇fk(x∗)∥2 + 2∥∇fk(x∗)∥2

≤
(
C1 + 2∥∇fk(x∗)∥2

)
+
(
C2 + 2L2

)
∥xk

τ − x∗∥2

≤ C3 +
C4

2
∥xk

τ − x∗∥2

≤ C3 + C4∥xk
τ − x̄tm∥2 + C4∥x̄tm − x∗∥2,

where C3 = C1 + 2maxk∈[K] ∥∇fk(x∗)∥2 and C4 = 2C2 + 4L2. The second inequality uses the
L-smoothness to bound ∥∇fk(xk

τ ) − ∇fk(x∗)∥ and Lemma B.9 to bound Eξkτ
∥εk(xk

τ )∥2 which
yields

Eξkτ
∥εk(xk

τ )∥2 ≤ C1 + C2∥xk
τ − x∗∥2.

Therefore, by combing the last two results, we have

E[∥xk
t+1 − x̄tm∥2|Ftm ] ≤ η2mEm

t∑
τ=tm

[
C3 + C4∥x̄tm − x∗∥2 + C4E[∥xk

τ − x̄tm∥2|Ftm ]
]
.

Hence, for tm ≤ t < tm+1 − 1, we have

Vt+1 =

K∑
k=1

pkE(∥xk
t+1 − x̄tm∥2|Ftm) ≤ η2mEm

t∑
τ=tm

(
C3 + C4∥x̄tm − x∗∥2 + C4Vτ

)
. (23)

Because Vtm = 0, it then follows that

1

Em

tm+1−1∑
t=tm

Vt =
1

Em

tm+1−2∑
t=tm

Vt+1

≤ η2m
tm+1−2∑
t=tm

t∑
τ=tm

(
C3 + C4∥x̄tm − x∗∥2 + C4Vτ

)
= η2m

tm+1−2∑
t=tm

(tm+1 − t− 1)
(
C3 + C4∥x̄tm − x∗∥2 + C4Vt

)
≤ η2m(Em − 1)

tm+1−1∑
t=tm

(
C3 + C4∥x̄tm − x∗∥2 + C4Vt

)
≤ γ2m

Em − 1

Em

(
C3 + C4∥x̄tm − x∗∥2 + C4

Em

tm+1−1∑
t=tm

Vt

)
,

where we use the definition of Em = tm+1 − tm and γm = ηmEm.
Hence, rearranging the last inequality and using the condition γ2m

Em−1
Em

C4 ≤ 1
2 gives

1

Em

tm+1−1∑
t=tm

Vt ≤ 2γ2m
Em − 1

Em

(
C3 + C4∥x̄tm − x∗∥2

)
.

Finally redefining C3 := 2C3 and C4 := 2C4 completes the proof and the restriction on γm becomes
γ2m

Em−1
Em

C4 ≤ 1 under the new notation of C4.
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B.5. Proof of Lemma B.3

Recall that

εm = hm −∇f(x̄tm) =
1

Em

tm+1−1∑
t=tm

(∇f(x̄tm ; ξt)−∇f(x̄tm))

where ∇f(x̄tm ; ξt) =
∑K

k=1 pk∇f(x̄tm ; ξ
k
t ) and ξt = {ξkt }k∈[K], and recall that ε(x̄tm) =

∇f(x̄tm ; ξtm)−∇f(x̄tm). Hence εm is the mean of Em i.i.d. copies of ε(x̄tm) at a fixed x̄tm .
Define Ft = σ({ξkτ }1≤k≤K,0≤τ<t) by the natural filtration generated by ξkτ ’s and Gm−1 = Ftm .

Then {εm}∞m=1 is a martingale difference with respect to {Gm}∞m=0 (for convention G0 = {∅,Ω} if
x̄0 is deterministic, otherwise G0 = σ(x̄0)): E[εm|Gm−1] = 0.

The following lemma establishes an invariance principle which allows us to extend traditional
martingale CLT. Interesting readers can find its proof in Hall and Heyde (2014) (see Theorems 4.1,
4.2 and 4.4 therein).

Lemma B.13 (Invariance principles in the martingale CLT) Let {Sn,Gn}n≥1 be a zero-mean,
square-integrable martingale with differenceXn = Sn−Sn−1(S0 = 0). LetU2

n =
∑n

m=1 E[X2
m|Gm−1]

and s2n = EU2
n = ES2

n. Define ζn(t) as the linear interpolation among the points (0, 0), (U−2
n U2

1 , U
−1
n S1),

(U−2
n U2

2 , U
−1
n S2), . . . , (1, U−1

n Sn), namely, for t ∈ [0, 1] and 0 ≤ i ≤ n− 1,

ζn(t) := U−1
n

[
Si + (U2

i+1 − U2
i )

−1(tU2
n − U2

i )Xi+1

]
if U2

i ≤ tU2
n < U2

i+1.

As n→∞, if (i) the Linderberg conditions holds, namely for any ε > 0,

s−2
n

n∑
m=1

E[X2
mI(|Xm| ≥ εsn)]→ 0, (24)

and (ii) s−2
n U2

n → 1 almost surely and s2n →∞, then

ζn(t)⇒ B(t) in the sense of (C, ρ).

Here B(t) is the standard Brownian motion on [0, 1] and C = C[0, 1] is the space of real, continuous
functions on [0, 1] with the uniform metric ρ : C[0, 1]→ [0,∞), ρ(ω) = maxt∈[0,1] |ω(t)|.

Lemma B.13 is for univariate martingales. We will use the Cramér-Wold device to reduce the
issue of convergence of multivariate martingales to univariate ones. To that end, we fix any uni-norm
vector a and define Xm = a⊤εm. We then check the two conditions in Lemma B.13 hold for such
{Xm,Gm}m≥1.

The Linderberg condition: For one thing, since x̄tm → x∗ almost surely from Lemma B.2, we
have E∥ε(x̄tm)∥2+δ2 ≾ 1 from Assumption 3.2 when m is sufficiently large.

Lemma B.14 (Marcinkiewicz–Zygmund inequality and Burkholder inequality) If Z1, . . . , Zn

are independent random vectors such that EZm = 0 and E|Zm|p <∞ for 1 ≤ p <∞, then

E

∣∣∣∣∣ 1n
n∑

m=1

Zm

∣∣∣∣∣
p

≤ Cp

n
p
2

E

(
1

n

n∑
m=1

|Zm|2
) p

2

,

where the Cp are positive constants which depend only on p and not on the underlying distribution
of the random variables involved. If Z1, . . . , Zn are martingale difference sequence, the above
inequality still holds. It is named as Burkholder’s inequality (Dharmadhikari et al., 1968).
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Notice that we can rewrite Xm as the mean of Em i.i.d. random variables which have the same
distribution as Z1 = a⊤ε(x̄tm): Xm = 1

Em

∑Em
i=1 Zi. With the Marcinkiewicz–Zygmund inequality

and Jensen inequality, it follows that

E|Xm|2+δ2 ≾ E
−(1+

δ2
2
)

m E

(
1

n

n∑
m=1

|Zm|2
)1+

δ2
2

≾ E
−(1+

δ2
2
)

m E |Z1|2+δ2

≾ E
−(1+

δ2
2
)

m ∥a∥2+δ2E∥ε(x̄tm)∥2+δ2 ≾ E−1
m . (25)

Moreover, from Assumption 3.2 and Lemma B.2, we have that∣∣∣a⊤
[
Eε(x̄tm)ε(x̄tm)

⊤ − S
]
a
∣∣∣ ≤ C [E∥x̄tm − x∗∥+ E∥x̄tm − x∗∥2

]
≤ C(√γm + γm)→ 0.

Recall that
∑T

m=1Em
−1 →∞ as T →∞. The Stolz–Cesàro theorem (Lemma B.15) implies that

lim
T→∞

s2T∑T
m=1

1
Em

a⊤Sa
= lim

T→∞

∑T
m=1

a⊤Eε(x̄tm )ε(x̄tm )⊤a
Em∑T

m=1
1

Em
a⊤Sa

= lim
T→∞

a⊤Eε(x̄tT )ε(x̄tT )
⊤a

a⊤Sa
= 1.

(26)
Hence, for any ε > 0, as T →∞, we have that

s−2
T

T∑
m=1

E[X2
mI(|Xm| ≥ εsT )] ≤ ε−δ2s

−(2+δ2)
T

T∑
m=1

E[|Xm|2+δ2I(|Xm| ≥ εsT )]

≤ ε−
δ2
2 s

−(2+δ2)
T

T∑
m=1

E|Xm|2+δ2

≾ ε−δ2s
−(2+δ2)
T

T∑
m=1

1

Em

≍ ε−δ2s−δ2
T → 0.

The second condition: We have established the divergence of {s2T }T in (26). Notice that

U2
T =

T∑
m=1

E[X2
m|Gm−1] =

T∑
m=1

1

Em
a⊤E[ε(x̄tm)ε(x̄tm)

⊤|Gm−1]a

=
T∑

m=1

1

Em
a⊤Eξtmε(x̄tm)ε(x̄tm)

⊤a.

Therefore, from (26) and the Stolz–Cesàro theorem (Lemma B.15), it follows almost surely that

lim
T→∞

∣∣∣∣U2
T

s2T
− 1

∣∣∣∣ ≤ lim
T→∞

C

s2T

T∑
m=1

1

Em

[
∥x̄tm − x∗∥+ ∥x̄tm − x∗∥2

]
= lim

T→∞

C

a⊤Sa

[
∥x̄tT − x∗∥+ ∥x̄tT − x∗∥2

]
→ 0.
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Lemma B.15 (Stolz–Cesàro theorem) Let {an}n≥1 and {bn}n≥1 be two sequences of real num-
bers. Assume that {bn}n≥1 is a strictly monotone and divergent sequence. We have that

if lim
n→∞

an+1 − an
bn+1 − bn

= l, then lim
n→∞

an
bn

= l.

We have shown that the two conditions in Lemma B.13 hold. Hence, by definition, ζT (r)⇒ B(r)
where

ζT (r) := U−1
T

[
Si + (U2

i+1 − U2
i )

−1(rU2
T − U2

i )Xi+1

]
if U2

i ≤ rU2
T < U2

i+1

and Si =
∑i

m=1Xm. Since sT /UT → 1 almost surely and (26), it follows that
√
tT
T

UT ζT (r)⇒
√
ν
√
a⊤SaB(r)

d.
=
√
νa⊤S1/2Bd(r),

where Bd(r) is the d-dimensional standard Brownian motion. Recall that

h(r, T ) = max

{
n ∈ Z+

∣∣∣∣r T∑
m=1

1

Em
≥

n∑
m=1

1

Em

}
.

Lemma B.16 Under the same condition of Lemma B.3, it follows that

sup
r∈[0,1]

∣∣∣∣∣
√
tT
T

UT ζT

(
U2
h(r,T )

U2
T

)
−
√
tT
T

UT ζT (r)

∣∣∣∣∣→ 0 in probability.

Hence,

√
tT
T

h(r,T )∑
m=1

a⊤εm =

√
tT
T

Sh(r,T ) =

√
tT
T

UT ζT

(
U2
h(r,T )

U2
T

)
⇒
√
νa⊤S1/2Bd(r).

By the arbitrariness of a, it follows that4

√
tT
T

h(r,T )∑
m=1

εm ⇒
√
νS1/2Bd(r).

Applying the continuous mapping theorem to the linear function ε : ε 7→ G−1ε, we have

√
tT
T

h(r,T )∑
m=1

G−1εm ⇒
√
νG−1S1/2Bd(r).

Finally, since E
√
tT
T ∥G

−1ε0∥ → 0, it implies that
√
tT
T G−1ε0 = oP(1). Then it is clear that

√
tT
T

∑h(r,T )
m=0 G−1εm ⇒

√
νG−1S1/2Bd(r).

4. See the proof of Theorem 4.3.5. in Whitt (2002) for more detail about how to argue multivariate weak convergence
from univariate weak convergence along any direction.
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B.6. Proof of Lemma B.16

From the Theorem A.2 of Hall and Heyde (2014), if some random function ϕn ⇒ ϕ in the sense of
(C, ρ), {ϕn} must be tight in the sense that for any ε > 0, P(sup|s−t|≤δ |ϕn(s)− ϕn(t)| ≥ ε)→ 0

uniformly in n as δ → 0. Since
√
tT
T UT ζT (r) ⇒

√
νa⊤S1/2Bd(r), {

√
tT
T UT ζT }T is tight. We

denote the following notation for simplicity

ϕT (r) =

√
tT
T

UT ζT (r) and pT (r) =
U2
h(r,T )

U2
T

.

Since pT (r) satisfies pT (0) = 1− pT (1) = 0 and pT (r) is non-decreasing and right-continuous
in r, we can view pT (r) as the cumulative distribution function of some random variable on [0, 1]
and p(r) : r 7→ r is the cumulative distribution function of uniform distribution on [0, 1]. It is clearly
that pT (r)→ p(r) for every r ∈ [0, 1] almost surely, because

lim
T→∞

pT (r) = lim
T→∞

U2
h(r,T )

U2
T

= lim
T→∞

s2h(r,T )

s2T
= lim

T→∞

∑h(r,T )
m=1

1
Em∑T

m=1
1

Em

= r = p(r).

Here we use h(r, T )→∞ for any r ∈ [0, 1] as T →∞. Since p(·) is additionally continuous, weak
convergence implies uniform convergence in cumulative distribution functions, i.e.,

lim
T→∞

sup
r∈[0,1]

|pT (r)− r| = 0. (27)

By the tightness of {ϕn}, for any ε, η > 0, we can find a sufficiently small δ such that

lim sup
T→∞

P

(
sup

|s−t|≤δ
|ϕT (s)− ϕT (t)| ≥ ε

)
≤ η.

With (27), for this δ, P(supr∈[0,1] |pT (r)− r| > δ)→ 0 as T →∞. It implies that

lim sup
T→∞

P

(
sup

r∈[0,1]
|ϕT (pT (r))− ϕT (r)| ≥ ε

)

≤ lim sup
T→∞

P

(
sup

r∈[0,1]
|ϕT (pT (r))− ϕT (r)| ≥ ε, sup

r∈[0,1]
|pT (r)− r| ≤ δ

)

+ lim
T→∞

P

(
sup

r∈[0,1]
|pT (r)− r| > δ

)

≤ lim sup
T→∞

P

(
sup

|s−t|≤δ
|ϕT (s)− ϕT (t)| ≥ ε

)
≤ η.

Because η is arbitrary, we have shown that

sup
r∈[0,1]

|ϕT (pT (r))− ϕT (r)| → 0 in probability.
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B.7. Proof of Lemma B.4

Recall that G = ∇2f(x∗), sm = x̄tm − x∗ and

rm = ∇f(x̄tm)−Gsm.

When ∥sm∥ ≤ δ1, by Assumption 3.1, ∥∇2f(ssm + x∗)−∇2f(x∗)∥ ≤ sL′∥sm∥, then

∥rm∥ = ∥∇f(sm + x∗)−∇f(x∗)−∇2f(x∗)sm∥

=

∥∥∥∥∫ 1

0
∇2f(ssm + x∗)smds−∇2f(x∗)sm

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(ssm + x∗)−∇2f(x∗)
∥∥ ∥sm∥ds

≤ L′

2
∥sm∥2.

When ∥sm∥ > δ1, ∥rm∥ ≤ ∥∇f(x̄tm)∥+ ∥Gsm∥ ≤ L∥sm∥+ L∥sm∥ = 2L∥sm∥. Applying the
results above yields

∥rm∥ ≤ L′∥sm∥21{∥sm∥≤δ1} + 2L∥sm∥1{∥sm∥>δ1}.

Hence,
√
tT
T

T∑
m=0

∥rm∥ ≤
√
tT
T

T∑
m=0

[
L′∥sm∥21{∥sm∥≤δ1} + 2L∥sm∥1{∥sm∥>δ1}

]
.

By Lemma B.2, sm → 0 almost surely, which implies

√
tT
T

T∑
m=0

∥sm∥1{∥sm∥>δ1} → 0 almost surely.

It then suffices to show that
√
tT
T

∑T
m=0 ∥sm∥21{∥sm∥≤δ1} = oP(1), which is implied by

√
tT
T

T∑
m=0

E∥sm∥2 = o(1).

It holds because
√
tT
T

∑T
m=0 E∥sm∥2 ≾

√
tT
T

∑T
m=0 γm → 0 from Lemma B.2 and Assumption 3.4.

B.8. Proof of Lemma B.5

In the proof of Lemma B.2 (see the Part 2 therein), we have established for sufficiently large m,

E[∥δm∥2|Ftm ] ≤
L2

Em

tm+1−1∑
t=tm

Vt ≤ L2γ2m
Em − 1

Em

(
C3 + C4∥x̄tm − x∗∥2

)
,

where Vt is the residual error defined in (19) and C3, C4 > 0 are universal constants defined in
Lemma B.10. Besides, Lemma B.2 implies that E∥x̄tm − x∗∥2 ≾ γm ≾ 1. It follows that

E∥δm∥2 ≤ L2γ2m
(
C3 + C4E∥x̄tm − x∗∥2

)
≾ γ2m.
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In order to prove the conclusion, it suffices to show that
√
tT
T

∑T
m=0 E ∥δm∥ → 0, which is satisfied

because √
tT
T

T∑
m=0

E ∥δm∥ ≤
√
tT
T

T∑
m=0

√
E ∥δm∥2 ≾

√
tT
T

T∑
m=0

γm → 0

from Lemma B.2 and Assumption 3.4.

B.9. Proof of Lemma B.6

If {Em} is uniformly bounded (i.e., there exists some C such that 1 ≤ Em ≤ C for all m), the
conclusion follows because

0 ≤
(
∑T−1

m=0Em)(
∑T−1

m=0E
−1
m am,T )

T 2
≤
CT (

∑T−1
m=0 am,T )

T 2
=

1

T

T−1∑
m=0

am,T → 0 when T →∞.

In the following, we instead assume Em is non-decreasing in m (i.e., 1 ≤ Em ≤ Em+1 for all
m). Let Hk =

∑k
m=0 am,T . For any ε, there exist some N = N(ε), such that for any m ≥ N ,

0 ≤ Hm ≤ mε. Then

T∑
n=N

am,T

Em
=

T∑
n=N

Hm −Hm−1

Em
=
HT

ET
+

T−1∑
n=N

(
1

Em
− 1

Em+1

)
Hm −

HN−1

EN

≤ HT

ET
+

T−1∑
n=N

(
1

Em
− 1

Em+1

)
mε− HN−1

EN

=
HT − Tε
ET

+

[
Tε

ET
+

T−1∑
n=N

(
1

Em
− 1

Em+1

)
mε− (N − 1)ε

EN

]
− HN−1 − (N − 1)ε

EN

= ε ·
T∑

n=N

1

Em
+
HT − Tε
ET

− HN−1 − (N − 1)ε

EN

≤ ε ·
T∑

n=N

1

Em
+
Nε

EN

Recall tT =
∑T−1

m=0Em. Therefore,

tT (
∑T−1

m=0E
−1
m am,T )

T 2
=
tT (
∑N−1

m=0E
−1
m am,T )

T 2
+
tT (
∑T−1

m=N E−1
m am,T )

T 2

≤
tT (
∑N−1

m=0E
−1
m am,T )

T 2
+ ε

tT (
∑T

m=N E−1
m )

T 2
+
tTNε

T 2EN
.

Taking superior limit on both sides and noting am,T ≾ 1 uniformly and lim
T→∞

tT
T 2 = 0, we have

0 ≤ lim sup
T→∞

tT (
∑T−1

m=0E
−1
m am,T )

T 2
≤ εν.

By the arbitrariness of ε, we complete the proof.
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B.10. Proof of Lemma B.7

Without loss of generality, we assume G−1 is a positive diagonal matrix. Otherwise, we apply the
spectrum decomposition to G = V DV ⊤ and focus on the coordinates of each εm with respect
to the orthogonal base V . This simplification reduces our multivariate case to a univariate one.
Hence, it is enough to show that the result holds for one-dimensional εm and G. In the following
argument, we focus on an eigenvalue λ of G and its eigenvector v, and denote εm = v⊤εm and
Bm = 1− γmλ ∈ R for simplicity. Clearly, λ ≥ 0 and 0 < Bm ≤ 1 for sufficiently large m.

Given a positive integer n, we separate the time interval [0, T ] uniformly into n portions with
hi =

[
iT
n

]
(i = 0, 1, . . . , n) the i-th endpoint. The choice of n is independent of T , which implies

that limT→∞ hi =∞ for any i. Define an event A whose complement is

Ac =

{
∃hi s.t.

∥∥∥∥∥
√
tT

Tγhi+1

hi∑
m=0

(
hi∏

i=m+1

Bi

)
γmεm

∥∥∥∥∥ ≥ ε
}
.

We claim that lim sup
T→∞

P(Ac) = 0. Indeed, by the union bound and Markov’s inequality,

P(Ac) ≤
n∑

i=0

P


∥∥∥∥∥∥
√
tT

Tγhi+1

hi∑
m=0

hi∏
j=m+1

Bjγmεm

∥∥∥∥∥∥ ≥ ε


≾
n∑

i=0

tT
ε2T 2γ2hi+1

hi∑
m=0

 hi∏
j=m+1

Bj

2

γ2m

≾
tT
ε2T 2

n∑
i=0

1

γhi+1

≤ tT (n+ 1)

ε2T 2γT+1
→ 0 as T →∞.

Here the last two inequality uses for any i ∈ [n],

1

γhi+1

hi∑
m=0

 hi∏
j=m+1

Bj

2

γ2m ≾ 1,

which is implied by

lim
hi→∞


hi∑

m=0

γ2m

 m∏
j=0

Bj

−2
/γhi

 hi∏
j=0

Bj

−2
= lim

hi→∞

γ2hi

 hi∏
j=0

B−2
j


/o(γhi−1)γhi−1

hi∏
j=0

B−2
j + γhi

hi∏
j=0

B−2
j (1−B2

hi
)


= lim

hi→∞

γ2hi

o(1)γ2hi−1 + 2λγ2hi
− λ2γ3hi
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=
1

2λ
<∞

as a result of the Stolz–Cesàro theorem (Lemma B.15). Here we observe that the denominator

γhi

(∏hi
j=0Bj

)−2
increases in hi and diverges when hi is sufficiently large.

Since the event Ac has diminishing probability, we focus on the event A. We will prove that on
the event A our target random sequence is uniformly tight. For notation simplicity, we define

Xh
m =

h∏
i=m

Bi.

It follows that

P

{√
tT
T

sup
0≤h≤T

∣∣∣∣∣ 1

γh+1

h∑
m=0

(
h∏

i=m+1

Bi

)
γmεm

∣∣∣∣∣ ≥ 2ε ; A

}

= P

{√
tT
T

sup
0≤h≤T

∣∣∣∣∣ 1

γh+1X
T
h+1

h∑
m=0

XT
m+1γmεm

∣∣∣∣∣ ≥ 2ε ; A

}

≤
n−1∑
i=0

P

{√
tT
T

sup
h∈[hi,hi+1)

∣∣∣∣∣ 1

γh+1X
T
h+1

(
h∑

m=0

XT
m+1γmεm

)∣∣∣∣∣ ≥ 2ε ; A

}

≤
n−1∑
i=0

P


√
tT
T

sup
h∈[hi,hi+1)

1

γh+1X
T
h+1

∣∣∣∣∣∣
hi∑

m=0

XT
m+1γmεm +

h∑
m=hi+1

XT
mγmεm

∣∣∣∣∣∣ ≥ 2ε ; A


≤

n−1∑
i=0

P


√
tT
T

sup
h∈[hi,hi+1)

 1

γh+1X
T
h+1

∣∣∣∣∣
hi∑

m=0

XT
m+1γmεm

∣∣∣∣∣+
∣∣∣∣∣∣ 1

γhX
T
h+1

h∑
m=hi+1

XT
mγmεm

∣∣∣∣∣∣
 ≥ 2ε ; A


≤

n−1∑
i=0

P


√
tT
T

sup
h∈[hi,hi+1)

∣∣∣∣∣∣ 1

γh+1X
T
h+1

h∑
m=hi+1

XT
m+1γmεm

∣∣∣∣∣∣ ≥ ε ; A


≤

n−1∑
i=0

P


√
tT
T

sup
h∈[hi,hi+1)

∣∣∣∣∣∣ 1

γh+1X
T
h+1

h∑
m=hi+1

XT
m+1γmεm

∣∣∣∣∣∣ ≥ ε


=

n−1∑
i=0

P


(√

tT
T

)2+δ

sup
h∈[hi,hi+1)

(
1

γh+1X
T
h+1

)2+δ
∣∣∣∣∣∣

h∑
m=hi+1

XT
m+1γmεm

∣∣∣∣∣∣
2+δ

≥ ε2+δ


:=

n−1∑
i=0

Pi,

where δ is any positive real number less than min{δ2, δ3}.

Let Yh =
∣∣∣∑h

m=hi+1X
T
m+1γmεm

∣∣∣2+δ
. It is clear that Yh is a sub-martingale adapted to the

natural filtration. Let ch = 1
(γhX

T
h )2+δ . Then {ch} is a non-increasing sequence when h is sufficiently

large because

γhX
T
h =

γh
γh+1

(1− λγh)γh+1X
T
h+1 = (1 + o(γh))(1− λγh)γh+1X

T
h+1 ≤ γh+1X

T
h+1
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for sufficiently large h. Indeed, since h ≥ hi =
[
iT
n

]
→∞ as T →∞, (1 + o(γh))(1− λγh) ≤ 1

is solid and XT
h is non-negative when T goes to infinity. Hence, each Pi is the probability of the

event where the maximum of a sub-martingale multiplied by a non-increasing sequence is larger
than a threshold. To bound each Pi, we use Chow’s inequality which is a generalization of Doob’s
inequality (Chow, 1960). It follows that

Pi = P

{
t
1+δ/2
T

T 2+δ
sup

h∈[hi,hi+1)
chYh ≥ ε2+δ

}

≤
t
1+δ/2
T

ε2+δT 2+δ

chi+1−1EYhi+1−1 +

hi+1−2∑
j=hi+1

(ci − ci+1)EYj

 . (28)

We then apply Burkholder’s inequality to bound each EYj . Burkholder’s inequality is a generalization
of the Marcinkiewicz–Zygmund inequality (Lemma B.14) to martingale differences (Dharmadhikari
et al., 1968). That is,

EYj = E

∣∣∣∣∣∣
j∑

m=hi+1

XT
m+1γmεm

∣∣∣∣∣∣
2+δ

≾ (j − hi)δ/2
j∑

m=hi+1

E
∣∣XT

m+1γmεm
∣∣2+δ

≾ (j − hi)δ/2
j∑

m=hi+1

(XT
m+1γm)2+δ/E1+δ/2

m

≾ (j − hi)δ/2
j∑

m=hi+1

c−1
m /E1+δ/2

m ,

where we use E |εm|2+δ ≾ 1/E
1+δ/2
m for sufficiently large m that is already derived in (25).

Plugging it into (28) yields that Pi is bounded by

t
1+δ/2
T

ε2+δT 2+δ

chi+1−1EYhi+1−1 +

hi+1−2∑
j=hi+1

(ci − ci+1)EYj


≾

t
1+δ/2
T

ε2+δT 2+δ

chi+1−1(hi+1−hi)
δ
2

hi+1−1∑
m=hi+1

c−1
m

E
1+δ/2
m

+

hi+1−2∑
j=hi+1

(cj−cj+1)(j−hi)
δ
2

j∑
m=hi+1

c−1
m

E
1+δ/2
m


≤

t
1+δ/2
T

ε2+δT 2+δ

(
T

n

)δ/2
chi+1−1

hi+1−1∑
m=hi+1

c−1
m

E
1+δ/2
m

+

hi+1−2∑
j=hi+1

(cj − cj+1)

j∑
m=hi+1

c−1
m

E
1+δ/2
m


=

t
1+δ/2
T

ε2+δT 2+δ

(
T

n

)δ/2
chi+1−1

hi+1−1∑
m=hi+1

c−1
m

E
1+δ/2
m

+

hi+1−2∑
m=hi+1

(cm − chi+1−1)
c−1
m

E
1+δ/2
m


=

t
1+δ/2
T

ε2+δT 2+δ

(
T

n

)δ/2


hi+1−1∑
m=hi+1

cm
c−1
m

E
1+δ/2
m


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=
t
1+δ/2
T

ε2+δT 2+δ

(
T

n

)δ/2 hi+1−1∑
m=hi+1

1

E
1+δ/2
m

.

Recall tT =
∑T−1

m=0Em. Summing the last bound over i = 0, 1, . . . , n− 1 gives

n−1∑
i=0

Pi ≾
t
1+δ/2
T

ε2+δT 2+δ

(
T

n

)δ/2 T−1∑
m=0

1

E
1+δ/2
m

=
1

ε2+δnδ/2
( 1
T

∑T−1
m=0Em)1+δ/2

1
T

∑T−1
m=0E

1+δ/2
m

∑T−1
m=0E

1+δ/2
m

∑T−1
m=0 1/E

1+δ/2
m

T 2

≾
1

nδ/2
,

where we use (ii) in Assumption 3.4 which implies

sup
T

∑T−1
m=0E

1+δ/2
m

∑T−1
m=0 1/E

1+δ/2
m

T 2
≤ sup

T

∑T−1
m=0E

1+δ3
m

∑T−1
m=0 1/E

1+δ3
m

T 2
<∞

as a result of δ < δ3.
Summing them all, we have

lim sup
T→∞

P

{√
tT
T

sup
0≤h≤T

∣∣∣∣∣ 1

γh+1

h∑
m=0

(
h∏

i=m+1

Bi

)
γmεm

∣∣∣∣∣ ≥ 2ε

}

≤ lim sup
T→∞

P

{√
tT
T

sup
0≤h≤T

∣∣∣∣∣ 1

γh+1

h∑
m=0

(
h∏

i=m+1

Bi

)
γmεm

∣∣∣∣∣ ≥ 2ε ; A

}
+ lim sup

T→∞
P(Ac)

≤ lim sup
T→∞

n−1∑
i=0

Pi

≾
1

nδ/2
.

Since the probability of the left hand side has nothing to do with n, letting n→∞ concludes the
proof.

Appendix C. Proofs of Proposition 3.1

To prove the proposition, we make two following claims.

Claim 1: For any positive sequences {an} and {bn} with
T∑

n=1
bn →∞, we have

lim sup
T→∞

∑T
n=1 an∑T
n=1 bn

≤ lim sup
T→∞

aT
bT
. (29)
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Without loss of generality, we assume the right hand side is finite, otherwise (29) follows obviously.
We denote that lim sup

T→∞

aT
bT

= λ for simplicity. Based on the definition of limit superior, for any

ε > 0, there exists Nε subject to an < (λ+ ε)bn for ∀n ≥ Nε. As a result,

T∑
n=1

an =

Nε∑
n=1

an +
T∑

n=Nε+1

an ≤
Nε∑
n=1

an + (λ+ ε)
T∑

n=Nε+1

bn,

which implies ∑T
n=1 an∑T
n=1 bn

≤
∑Nε

n=1 an + (λ+ ε)
∑T

n=Nε+1 bn∑T
n=1 bn

.

Taking limit superior on both sides and noting that
T∑

n=1
bn →∞, we have

∑T
n=1 an∑T
n=1 bn

≤ λ+ 2ε. By the

arbitrariness of ε, (29) follows.

Claim 2: For any non-decreasing sequence {Em} satisfying lim sup
T→∞

T (1 − ET−1

ET
) < 1, we can

find δ > 0 such that

T

(
1

ET

)1+δ

− (T − 1)

(
1

ET−1

)1+δ

> 0.

In fact, we can choose any δ < 1− lim sup
T→∞

T (1−ET−1

ET
). In this way, for sufficiently large T , we

have

T

(
1

ET

)1+δ

− (T − 1)

(
1

ET−1

)1+δ

=

(
1

ET−1

)1+δ
(
T

(
ET−1

ET

)1+δ

− T + 1

)

≥ T
(

1

ET−1

)1+δ
[(

1− 1− δ
T

)1+δ

− 1 +
1

T

]
.

To lower bound the right hand side, we consider the auxiliary function h(x) = (1− (1− δ)x)1+δ+x
where x ∈ (0, 1). We claim that h(x) > 1 for any x ∈ (0, 1). We check it by investigating the
derivative of h(·),

ḣ(x) = −(1 + δ)(1− (1− δ)x)1+δ(1− δ) + 1 > −(1 + δ)(1− δ) + 1 = δ2 > 0.

Therefore, by mean value theorem, h(x) > h(0) = 1 which proves the claim.
Now we are well prepared to prove the proposition. It follows that

lim sup
T→∞

T

[
1−

(
ET−1

ET

)1+δ
]
= lim sup

T→∞
T
(1 + δ)(θTET + (1− θT )ET−1)

δ(ET − ET−1)

E1+δ
T

≤ (1 + δ) lim sup
T→∞

(
θTET + (1− θT )ET−1

ET

)δ

lim sup
T→∞

T
ET − ET−1

ET

≤ (1 + δ)(1− δ) lim sup
T→∞

(
θTET + (1− θT )ET−1

ET

)δ

≤ 1− δ2,
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where the first equality uses mean value theorem with some θT ∈ [0, 1].

Therefore,

lim sup
T→∞

(
∑T

m=1E
1+δ
m )(

∑T
m=1(1/Em)1+δ)

T 2

(a)

≤ lim sup
T→∞

E1+δ
T

∑T
m=1(1/Em)1+δ + (

∑T
m=1E

1+δ
m )/(ET )

1+δ

2T − 1

≤ lim sup
T→∞

∑T
m=1(1/Em)1+δ

(2T − 1)/E1+δ
T

+
1

2

< lim sup
T→∞

∑T
m=1(1/Em)1+δ

T (1/ET )1+δ

(b)

≤ lim sup
T→∞

(1/ET )
1+δ

T (1/ET )1+δ − (T − 1)(1/ET−1)1+δ

≤ lim sup
T→∞

1

1− T
[
1−

(
ET−1

ET

)1+δ
]

≤

{
1− lim sup

T→∞
T

[
1−

(
ET−1

ET

)1+δ
]}−1

≤ δ−2 <∞,

where (a) uses Claim 1 and (b) uses Claim 1 and Claim 2 together.

Furthermore, if the sequence {Em} satisfies lim
T→∞

T
(
1− ET−1

ET

)
= ρ < 1, then by the

Stolz–Cesàro theorem (Lemma B.15), we have

lim
T→∞

(
∑T

m=1Em)(
∑T

m=1 1/Em)

T 2

= lim
T→∞

ET (
∑T

n=1 1/En) + (
∑T−1

n=1 En)/ET

2T − 1

=
1

2

{
lim
T→∞

∑T
n=1 1/En

T/ET
+ lim

T→∞

∑T
n=1En

TET

}

=
1

2

{
lim
T→∞

1/ET

T/ET − (T − 1)/ET−1
+ lim

T→∞

ET

TET − (T − 1)ET−1

}
=

1

2

{
lim
T→∞

ET−1

ET
× 1

1− T (1− ET−1/ET )
+ lim

T→∞

1

1 + (T − 1)(1− ET−1/ET )

}
=

1

2

{
1

1− ρ
+

1

1 + ρ

}
=

1

1− ρ2
,

which completes the proof.
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Appendix D. Proof for the Plug-in Method, Theorem 4.1

For simplicity, we denote∇f(x; ξt) =
∑K

k=1 pk∇fk(x; ξkt ) and∇2f(x; ξt) =
∑K

k=1 pk∇2fk(x; ξ
k
t )

where ξt = {ξkt }k∈[K]. We decompose ĜT −G into the following terms:

ĜT −G =
1

T

T∑
m=1

∇2f(x̄tm ; ξtm)−G

=

[
1

T

T∑
m=1

∇2f(x∗; ξtm)−G

]
+

1

T

T∑
m=1

[
∇2f(x̄tm ; ξtm)−∇2f(x∗; ξtm)

]
. (30)

The first term in (30) is asymptotically zero due to the strong law of large number. With Theorem 3.1,
we have known that under the condition, E∥x̄tm − x∗∥ ≤

√
E∥x̄tm − x∗∥2 ≲

√
γm. Then the

second term in (30) can be bounded via Assumption 4.1

E

∥∥∥∥∥ 1T
T∑

m=1

[
∇2f(x̄tm ; ξtm)−∇2f(x∗; ξtm)

]∥∥∥∥∥ ≤ 1

T

T∑
m=1

E
∥∥∇2f(x̄tm ; ξtm)−∇2f(x∗; ξtm)

∥∥
≤ L′′

T

T∑
m=1

E ∥x̄tm − x∗∥

≲
1

T

T∑
m=1

√
γm → 0

as T →∞. Hence, ĜT converges to G in probability.
For ŜT , note that

∇f(x̄tm ; ξtm) = ∇f(x∗; ξtm) + [∇f(x̄tm ; ξtm)−∇f(x∗; ξtm)] := Cm +Dm.

We decompose ŜT − S into the following terms:

ŜT − S =

(
1

T

T∑
m=1

CmC⊤
m − S

)
+

1

T

T∑
m=1

CmD⊤
m +

1

T

T∑
m=1

DmC⊤
m +

1

T

T∑
m=1

DmD⊤
m.

Because {Cm}m are i.i.d. and ECmC⊤
m = S, the first term is asymptotically zero due to the strong

law of large number. Note that E∥Cm∥2 = E∥CmC⊤
m∥ ≤ tr(ECmC⊤

m) = tr(S) and

E∥Dm∥2 = E

∥∥∥∥∥
K∑
k=1

pk

(
∇fk(x̄tm ; ξ

k
tm)−∇f(x

∗; ξktm)
)∥∥∥∥∥

2

≤
k∑

k=1

pkE
∥∥∥∇fk(x̄tm ; ξ

k
tm)−∇f(x

∗; ξktm)
∥∥∥2

≤ L2E∥x̄tm − x∗∥2 ≲ γm.

Then, the second and third terms can be bounded via

E

∥∥∥∥∥ 1T
T∑

m=1

CmD⊤
m

∥∥∥∥∥ ≤ 1

T

T∑
m=1

E∥Cm∥∥Dm∥
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Table 2: Asymptotic critic values qα,β of t∗(β) defined by qα,β = min{t : P(t∗(β) ≤ t) ≥ 1− α}.

β
1− α

1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

0 -8.634 -6.753 -5.324 -3.877 0.000 3.877 5.324 6.753 8.634
1/3 -8.0945 -6.339 -5.048 -3.712 0.000 3.712 5.048 6.339 8.0945
1/2 -7.386 -5.851 -4.621 -3.446 0.000 3.446 4.621 5.851 7.386
2/3 -6.292 -4.993 -4.012 -3.027 0.000 3.027 4.012 4.993 6.292

≤ 1

T

T∑
m=1

√
E∥Cm∥2E∥Dm∥2

≲
1

T

T∑
m=1

√
γm → 0.

Finally, for the last term, we have that

E

∥∥∥∥∥ 1T
T∑

m=1

DmD⊤
m

∥∥∥∥∥ ≤ 1

T

T∑
m=1

E ∥Dm∥2 ≲
1

T

T∑
m=1

γm → 0.

Hence, ŜT converges to S in probability.

Appendix E. Computation of Critical Values

For easy reference, critical values of t∗(β) are computed via simulations and listed in Table 2. In
particular, the Brownian motion B1(·) is approximated by normalized sums of i.i.d. N (0, 1) pseudo
random deviates using 1,000 steps and 50,000 replications. We then smooth the 50,000 realizations
by standard Gaussian-kernels techniques with the bandwidth selected according to Scott’s rule (Scott,
2015). Kernel density estimation is a way to estimate the probability density function of a random
variable in a non-parametric way. Because we smooth the data, our critical values of the case
β = 0 are slightly different from previous computations by Kiefer et al. (2000). In particular, when
1−α = 97.5% and β = 0, our critical value 6.753 is smaller than previous 6.811, which shrinks the
length of our confidence intervals. Our critical value 6.753 is also close to 6.747 computed in Abadir
and Paruolo (1997).

Appendix F. Related Work on Local SGD

Federated learning enables a large amount of edge computing devices to jointly learn a global model
without data sharing (Kairouz et al., 2019). The seminal paper McMahan et al. (2017) proposed
Federated Average (FedAvg) for FL, which is slightly different from Local SGD that we focus on
in this work. The main difference is that FedAvg randomly samples a small portion of clients at
the beginning of each communication round to alleviate the straggler effect caused by massively
distributed clients. When all clients are forced to participate, FedAvg is reduced to Local SGD.
Their theoretical convergence does not vary too much with an additional statistical error incurred
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when clients participate partially (Li et al., 2019a). There has been a rapidly growing line of work
concerning various aspects of FedAvg and its variants recently (Zhao et al., 2018; Sahu et al., 2018;
Nishio and Yonetani, 2018; Koloskova et al., 2020; Yuan and Ma, 2020; Yuan et al., 2021; Zheng et al.,
2021). Local SGD or Fedavg is an iterative and multi-round distributed algorithm that communicates
only gradient information at each communication round. Other algorithms of this type have been
proposed and analyzed previously (Shamir et al., 2014; Wang et al., 2017; Jordan et al., 2018; Fan
et al., 2019). The biggest difference is that Local SGD lowers the communication frequency, while
others do not. This simple change improves communication efficiency greatly (Lin et al., 2018).

Appendix G. Numerical Simulations

This section investigates the empirical performance of the plug-in and random scaling methods via
Monte Carlo experiments. We consider both the linear and logistic regression models. At iteration t,
the k-th client observes the pair (ak

t , b
k
t ) with ak

t the d-dimensional covariates generated from the
multivariate normal distribution N (0, Id) and bkt the response generated according to the model. We
detail the data generation process as follows:

• In linear regression, bkt = (ak
t )

⊤x∗
k + εkt where the εkt are i.i.d. according to N (0, Id) and

x∗
k is the true local parameter which we also generate from N (0, Id). In this case, the global

parameter x∗ is the average of x∗
k’s.

• In logistic regression, bkt ∈ {0, 1} is generated to be 1 with probability σ((ak
t )

⊤x∗) and 0 with
probability 1− σ((ak

t )
⊤x∗). Here σ(θ) = 1/(1 + exp(−θ)) is the sigmoid function. We do

not impose data heterogeneity for logistic regression in order to avoid numerical error in the
calculation of x∗. Here x∗ is equi-spaced on the interval [0, 1] following previous works (Chen
et al., 2020; Lee et al., 2021).

We set γm = γ0/m
0.505 with γ0 = 0.5 for linear regression and γ0 = 2 for logistic regression.

The initial value x̄0 is set as zero. We fix K = 10 in all our experiments and vary the number
of rounds T . In all cases, we set Em = 1 for the first 5% observations as a warm-up and then
increase Em from scratch, i.e., Em = E′

m−5%∗T for another sequence {E′
m}. We consider six

choices of {E′
m}m, namely (i) C1: constant E′

m ≡ 1, (ii) C5: constant E′
m ≡ 5, (iii) Log:

logarithmic E′
m = ⌈log2(m + 1)⌉, (iv) P(1/3): power E′

m = ⌈m1/3⌉, (v) P(1/2): power
E′

m = ⌈m1/2⌉, and (vi) P(2/3): power E′
m = ⌈m2/3⌉. The nominal coverage probability is set

at 95%. The performance is measured by three statistics: the coverage rate, the average length of
the 95% confidence interval, and the average communication frequency. For brevity, we focus on
the first coefficient x∗

1 hereafter. All the reported results are obtained by taking the average of 1000
independent runs.

We first turn to study the communication efficiency for Local SGD. From Figure 1, we find the
faster Em grows, the faster the L2 convergence in terms of communication, which is consistent with
previous studies from optimization perspective (McMahan et al., 2017; Lin et al., 2018). Figure 2
shows the empirical coverage rates and confidence interval lengths in linear regression, both obtained
by averaging over 1000 Local SGD paths. The result of logistic regression is depicted in Figure 3. For
plug-in, though wandering above 90%, the faster Em family (namely, Log, P(1/3) and P(1/2))
has relatively inferior coverage rate than the slower Em family (namely, C1 and C5). The coverage
rate of P(2/3) can’t even cross 90%. For random scaling, it is clear that the coverage rate of all
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Figure 1: L2 convergence ∥ȳT −x∗∥ in terms of communication T . Left: Results of linear regression.
Right: Results of logistic regression. Black dashed line denotes the nominal coverage rate of 95%.
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Figure 2: Comparison of the plug-in (the top row) and random scaling (the bottom row) in linear
regression. Left: Empirical coverage rate against the number of communication. Black dashed line
denotes the nominal coverage rate of 95%. Right: Length of confidence intervals.

the methods fluctuates around 95%. Though with a much smaller deviation from 95%, the slow Em

family has the slower shrinkage rate for its confidence interval. By contrast, the faster Em family
achieves comparable coverage with faster shrinkage of confidence intervals. It implies that Local
SGD has high efficiency of communication and maintains a good statistic efficiency via random
scaling.

We then turn to the empirical performance of Local SGD with limited computation or finite
samples. Table 3 shows the empirical performance of the six methods under linear models with four
different tT ’s. tT is actually the total iteration each client runs through T rounds or equivalently
the number of observations they receive. From the table, almost all the methods achieve good
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Figure 3: Comparison of the plug-in (the top row) and random scaling (the bottom row) estimators
in logistic regression. Left: Empirical coverage rate against the number of communication. Black
dashed line denotes the nominal coverage rate of 95%. Right: Length of confidence intervals.

performance. Except P(2/3), random scaling gives better average coverage rates than the plug-in
method, because its average coverage rates of all different communication intervals are near (or
even exceed) 95%. However, its average length is usually larger than that of plug-in. Furthermore,
its average length usually has a much larger deviation than that of plug-in. For example, when
tT = 5000, for C5, the standard deviation of average lengths for plug-in is 0.807 × 10−2, while
it increases to 3.714 × 10−2 for random scaling. Such a wider average length might account for
the unexpected advantage on the average coverage rates. We speculate the reason for the poor
performance of P(2/3) is because less frequent communication enlarges asymptotic variance and
decrease the sample efficiency. It might require more samples to reach a counterpart level of coverage
rates. However, as the communication round increases and more observations are available, the
average length decreases and the coverage rate increases, with both deviations reduced. The poor
performance of P(2/3) implies that when Em grows too faster (e.g., Em = ⌈m2⌉), its performance
might deteriorate, accordant to our Theorem 4.2.

In addition, comparing the results of Log, P(1/3), and P(1/2), we can find that the faster
Em increases, the larger average length as well as its standard deviations. However, they all
have satisfactory performance when observations are sufficient. Indeed, Local SGD trades more
computation for less communication, resulting in a residual error gradually accumulated when
communication is off, slowing down the convergence rate and enlarging asymptotic variance (e.g.,
the existence of ν). However, the benefit is also attractive: the averaged communication frequency is
substantially reduced and the convergence in terms of communication largely increases. It implies
that Local SGD obtains both statistical efficiency and communication efficiency as expected. We
further consider the logistic regression, which is a standard non-linear model. The result is given in
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Table 3: Simulation results of linear regression with d = 5. The standard errors of coverage rates p̂
are computed via

√
p̂(1− p̂)/1000× 100% and reported inside the parentheses.

Methods Items tT = 5000 tT = 10000 tT = 20000 tT = 40000

Plug-in

Cov Rate
(%)

C1 95.70(0.641) 94.20(0.739) 94.20(0.739) 93.80(0.763)
C5 93.70(0.768) 94.00(0.751) 94.30(0.733) 93.10(0.801)
Log 91.70(0.872) 93.20(0.796) 93.80(0.763) 93.80(0.763)
P(1/3) 91.90(0.863) 92.70(0.823) 93.90(0.757) 93.60(0.774)
P(1/2) 91.10(0.900) 92.60(0.828) 93.90(0.757) 93.80(0.763)
P(2/3) 91.00(0.905) 92.60(0.828) 93.40(0.785) 93.60(0.774)

Avg Len
(10−2)

C1 7.857(0.099) 5.547(0.050) 3.917(0.025) 2.768(0.013)
C5 9.737(0.242) 6.868(0.121) 4.847(0.061) 3.423(0.031)
Log 12.168(0.371) 8.953(0.204) 6.602(0.106) 4.864(0.058)
P(1/3) 11.372(0.336) 8.656(0.195) 6.613(0.110) 5.059(0.063)
P(1/2) 15.431(0.559) 12.100(0.327) 9.433(0.188) 7.300(0.112)
P(2/3) 19.593(0.791) 15.375(0.491) 11.896(0.274) 9.083(0.156)

Random
Scaling

Cov Rate
(%)

C1 95.00(0.689) 93.90(0.757) 93.70(0.768) 94.80(0.702)
C5 97.70(0.474) 96.90(0.548) 97.20(0.522) 96.90(0.548)
Log 98.20(0.420) 98.70(0.358) 98.90(0.330) 98.80(0.344)
P(1/3) 97.60(0.484) 98.20(0.420) 98.50(0.384) 98.00(0.443)
P(1/2) 96.00(0.620) 97.20(0.522) 96.40(0.589) 96.60(0.573)
P(2/3) 88.70(1.001) 89.90(0.953) 90.70(0.918) 90.00(0.949)

Avg Len
(10−2)

C1 10.011(4.343) 7.081(3.106) 5.010(2.092) 3.605(1.511)
C5 14.434(6.950) 10.043(4.923) 7.078(3.389) 4.946(2.448)
Log 19.187(9.763) 14.120(7.154) 10.430(5.219) 7.611(3.895)
P(1/3) 16.781(8.397) 12.810(6.460) 9.821(4.906) 7.440(3.777)
P(1/2) 20.888(10.842) 16.127(8.004) 12.379(6.027) 9.314(4.460)
P(2/3) 21.495(11.324) 16.463(7.991) 12.509(5.924) 9.276(4.325)

Table 4. A similar pattern is observed: random scaling has higher average coverage rates at the price
of wider average lengths which typically shrink as more observations are generated.
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Table 4: Simulation results of logistic regression with d = 5. The standard errors of coverage rates p̂
are computed via

√
p̂(1− p̂)/1000× 100% and reported inside the parentheses.

Methods Items tT = 5000 tT = 10000 tT = 20000 tT = 40000

Plug-in

Cov Rate
(%)

C1 94.70(0.708) 93.50(0.780) 94.60(0.715) 95.40(0.662)
C5 93.00(0.807) 92.30(0.843) 93.50(0.780) 94.10(0.745)
Log 92.30(0.843) 92.10(0.853) 92.60(0.828) 92.90(0.812)
P(1/3) 92.70(0.823) 92.00(0.858) 92.50(0.833) 92.90(0.812)
P(1/2) 90.80(0.914) 92.20(0.848) 91.70(0.872) 92.10(0.853)
P(2/3) 90.90(0.909) 92.80(0.817) 91.30(0.891) 92.20(0.848)

Avg Len
(10−2)

C1 4.113(0.046) 2.903(0.022) 2.049(0.011) 1.448(0.005)
C5 5.081(0.118) 3.587(0.057) 2.534(0.029) 1.790(0.014)
Log 6.347(0.175) 4.681(0.093) 3.453(0.049) 2.544(0.027)
P(1/3) 5.949(0.146) 4.526(0.091) 3.456(0.049) 2.647(0.027)
P(1/2) 8.062(0.256) 6.320(0.149) 4.927(0.088) 3.821(0.052)
P(2/3) 10.254(0.380) 8.036(0.218) 6.223(0.127) 4.752(0.070)

Random
Scaling

Cov Rate
(%)

C1 95.50(0.656) 92.40(0.838) 94.10(0.745) 94.70(0.708)
C5 96.00(0.620) 95.90(0.627) 96.80(0.557) 95.80(0.634)
Log 97.60(0.484) 97.40(0.503) 97.80(0.464) 98.20(0.420)
P(1/3) 96.10(0.612) 96.60(0.573) 97.50(0.494) 97.90(0.453)
P(1/2) 94.40(0.727) 94.30(0.733) 94.50(0.721) 95.10(0.683)
P(2/3) 88.30(1.016) 88.00(1.028) 86.80(1.070) 88.80(0.997)

Avg Len
(10−2)

C1 5.112(2.302) 3.612(1.502) 2.646(1.162) 1.877(0.816)
C5 7.296(3.714) 5.166(2.535) 3.687(1.836) 2.637(1.316)
Log 9.703(5.176) 7.241(3.713) 5.383(2.787) 4.023(2.063)
P(1/3) 8.499(4.465) 6.569(3.345) 5.071(2.621) 3.924(1.999)
P(1/2) 10.574(5.688) 8.278(4.193) 6.340(3.194) 4.880(2.366)
P(2/3) 10.915(5.876) 8.497(4.244) 6.373(3.147) 4.850(2.293)
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