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Abstract
In this work we solve the problem of robustly learning a high-dimensional Gaussian mixture model
with k components from ϵ-corrupted samples up to accuracy Õ(ϵ) in total variation distance for any
constant k and with mild assumptions on the mixture. This robustness guarantee is optimal up to
polylogarithmic factors. The main challenge is that most earlier works rely on learning individual
components in the mixture, but this is impossible in our setting, at least for the types of strong
robustness guarantees we are aiming for. Instead we introduce a new framework which we call
strong observability that gives us a route to circumvent this obstacle.
Keywords: GMMs, Mixture of Gaussians, Density Estimation, Robust Statistics

1. Introduction

Gaussian mixture models have a long and storied history. They were first introduced in the pioneer-
ing work of Pearson (1894) and have found wide-ranging applications ever since, as a natural model
for data believed to be coming from two or more heterogeneous sources. Early works focused on the
statistical complexity (Teicher, 1961), namely bounding the number of samples needed to estimate
the Gaussian mixture model to within some desired accuracy. More recently, these problems have
been revisited with an emphasis on giving computationally efficient algorithms that work in high
dimensions and with minimal assumptions (Dasgupta, 1999; Kalai et al., 2010; Moitra and Valiant,
2010; Belkin and Sinha, 2010; Ge et al., 2015).

There are different types of learning goals we could ask for:

(1) In parameter learning, we want to estimate the mixture on a component-by-component ba-
sis. We ask that there is a matching between the components in our hypothesis and those
of the true mixture so that across the matching we are close in total variation distance and
get the mixing weights approximately correct. Alternatively we could ask to be close in an
appropriate parameter distance instead.

(2) In proper density estimation, we relax the goal of estimating the individual components.
Rather, we want to output a hypothesis from the correct family (i.e. a Gaussian mixture
model) and we require that it is statistically close as a distribution to the true mixture.

(3) Finally in improper density estimation the setup is the same as above except that we allow
ourselves to output any hypothesis, even if it is not from the family we are trying to learn.
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The distinctions between these notions of learning will play a key role in this work.
Recently, researchers have begun to revisit many of the key problems in high-dimensional learn-

ing from the perspective of robust statistics (Diakonikolas et al., 2019a, 2017a; Lai et al., 2016;
Charikar et al., 2017; Balakrishnan et al., 2017; Klivans et al., 2018; Diakonikolas et al., 2019b;
Hopkins and Li, 2018; Kothari et al., 2018; Li, 2018; Steinhardt, 2018; Diakonikolas and Kane,
2019; Bakshi and Prasad, 2021; Chen et al., 2020). In particular, we allow an adversary to arbitrar-
ily corrupt an ϵ-fraction of the samples. In this setting, it is no longer possible to learn the original
distribution to any desired accuracy. In fact the algorithmic problems associated with working
in high-dimensions become even more acute in the sense that many algorithms that work in the
non-robust setting turn out to only be able to tolerate a fraction of corruptions that decays inverse
polynomially with the dimension.

For the most part, the emphasis in algorithmic robust statistics has been on getting some dimension-
independent robustness guarantee. And only for simpler problems, like estimating a high-dimensional
Gaussian (Diakonikolas et al., 2019a, 2018) and linear regression (Bakshi and Prasad, 2021) are
nearly optimally robust algorithms known. In this work, we will take aim at the problem of giving
algorithms with nearly optimal robustness guarantees for the challenging task of learning Gaussian
mixture models. Most relevant to us are the recent works of Liu and Moitra (2021) and Bakshi
et al. (2020) who gave the first robust algorithms for learning Gaussian mixture models that achieve
dimension-independent robustness guarantees. Let k be the number of components in the mixture.
These works achieve error rates of ϵΩk(1). However in terms of the quantitative dependence on ϵ,
these works are far from optimal, and here we will ask for much more:

Given ϵ-corrupted samples, is there an efficient algorithm for estimating the true mix-
ture within Õ(ϵ) in total variation distance for any constant k?

Such a bound would be optimal up to polylogarithmic factors. And even in the case of a single
Gaussian it is known that there are fundamental tensions between robustness and computational
efficiency, and there is evidence that it might not be possible to obtain O(ϵ) accuracy (at least in
a subtractive model of noise) (Diakonikolas et al., 2017b). As we will discuss below, in order to
solve this problem we will need new frameworks and strategies that avoid trying to learn individual
components.

1.1. Observability

Our main conceptual contribution is a new framework, which we call observability, for framing
high-dimensional density estimation problems. We use this notion as a building block for how
to design algorithms for robustly learning a mixture of Gaussians even when it is impossible to
learn it on a component-by-component basis. Observability involves having a set of test functions
f1, . . . , fn that are used to measure a distribution in a family F . It has many parallels, but also
important differences, with the commonly used notion of identifiability. We begin with a definition.

Definition 1 (Observability) Given a family of distributions F and a set of test functions f1, . . . , fn,
we say that the family F is observable through the test functions f1, . . . , fn if any two distributions
M,M′ ∈ F that produce identical measurements (i.e. EM[fi] = EM′ [fi]), they must be equivalent
as distributions.
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In other words, F is observable through a family of test functions f1, . . . , fn if these test function
measurements uniquely determine a distribution in F . Of course we need a more algorithmically
useful version of observability with quantitative guarantees. Since our goal is to achieve nearly
optimal robustness guarantees, we will need the test function discrepancy and the TV distance to be
proxies for each other up to logarithmic factors. We call this strong observability.

Definition 2 (Strong Observability) Given a family of distributions F and a set of test functions
f1, . . . , fn, we say that the family F is strongly observable through the test functions f1, . . . , fn if
for any two distributions M,M′ ∈ F , we have

dTV (M,M′) ∼=
∑
i

|EM[fi]− EM′ [fi]|

where the ∼= means that the two sides are equivalent up to logarithmic factors.

Strong observability is a subtle property. There are related facts that are much easier to establish:
For any two mixtures M and M′ that are ϵ-far in total variation distance, there is a test function
f (whose values are bounded between zero and one) where |EM[f ] − EM′ [f ]| ≥ ϵ. However the
quantifiers are in the wrong order. In particular, the particular test function that distinguishes M
and M′ could vary arbitrarily and pathologically as we vary the two mixtures. In contrast, what
makes our notion of observability algorithmically useful is that the family of test functions is fixed
in advance and we will show that a polynomial number of them suffice. Thus, for a density estima-
tion algorithm, our problem is reduced to measuring the test functions on the true mixture and then
computing any distribution in F that matches these measurements. Strong observability implies that
this strategy will obtain nearly optimal robustness guarantees, even in the face of adversarial cor-
ruptions. The notion of observability seems natural and fundamental to high-dimensional learning,
but as far as we are aware it has not appeared in the literature before.

Our main result is in establishing that strong observability is possible for GMMs with a poly-
nomial number of test functions, provided that the components are in regular form (see Definition
24). Roughly, a mixture is in regular form if all components are not too poorly conditioned and not
too separated from each other. Moreover we can reduce the general learning problem to the regular
form case by invoking recent results on robust clustering. Our result can be summarized as:

A mixture of a constant number of Gaussians in regular form is strongly observable
through constant degree Hermite moments 1.

More specifically we prove:

Theorem 3 (Informal, see Theorem 50) For two mixtures M,M′ of a constant number of Gaus-
sians in regular form, the distance between their firstOk(1) Hermite moments and their TV distance
are equivalent up to logarithmic factors.

While our overall algorithm builds on the line of previous works on robustly learning GMMs
(Diakonikolas et al., 2020a; Bakshi and Kothari, 2020; Liu and Moitra, 2021), our key contribution
is the proof of strong observability. It leverages the recent generating function technology in Liu
and Moitra (2021) but in new ways that avoid using the sum-of-squares hierarchy.

1. Hermite moments will be defined more formally in the next section, but for now can be thought of modifications of
standard moments that can be robustly estimated.
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In the appendix (Section A), we provide a further discussion on observability and in particular
a comparison with the more familiar concept of identifiability, which is usually thought of as the
crucial ingredient in parameter learning algorithms. As we discuss, it is information theoretically
impossible to learn the parameters to accuracy better than ϵO(1/k). Thus, approaches based on
comparing parameters or identifiability appear doomed at this barrier and cannot obtain the types of
strong robustness guarantees that we are hoping for.

1.2. Our Results and Techniques

Our main result is an algorithm whose robustness guarantees are optimal up to logarithmic factors
for any constant k. The formal statement can be found in Theorem 72.

Theorem 4 (Informal) Let k be a constant. Let M = w1G1 + · · · + wkGk be a mixture of
Gaussians in Rd whose components have variances lower and upper bounded in all directions
and such that the mixing weights are lower bounded (both of these bounds can be any function
of k). Given poly(d/ϵ) samples from M that are ϵ-corrupted, there is an algorithm that runs in
time poly(n) and with high probability outputs a distribution f that is a mixture of k polynomial
Gaussians (see below for formal definition) such that

dTV(M, f) ≤ Õ(ϵ) .

Remark 5 While weaker than the familiar goal of parameter learning (which as we discussed is
impossible for the quantitative robustness guarantees we are aiming for), improper density estima-
tion still has important applications. For example, our estimate f will have the property that we
can efficiently sample from it, which means we can compute probabilities of arbitrary events and
various statistics without needing new samples from M.

Remark 6 Our result does require slightly stronger assumptions on the mixture than the previous
works Liu and Moitra (2021); Bakshi et al. (2020). The first assumption about the components
having bounded variances in all directions is a technical nuance that arises because if there is some
component with identity covariance and some other component with variance ϵ0.1 in some direction
and identity covariance in all other directions, then we cannot “separate” these components via
clustering as then we will lose a ϵΩ(1) factor in our accuracy guarantee. On the other hand, if
we don’t separate such components, then we will lose ϵΩ(1) factors in our quantitative relationship
between Hermite moments and TV distance (strong observability). This issue does not arise in
previous works because they only aim for ϵΩ(1) accuracy in which case we can simply separate
such components via clustering. The second assumption about mixing weights is inherited from Liu
and Moitra (2021) because we need to first obtain rough estimates for all of the components and
we cannot do this if there are small mixing weights. These two assumptions are not information-
theoretically necessary and we leave it as an open question to see if it is possible to remove them.

As we discussed previously, the main challenge is that in our setting, parameter learning is not
information-theoretically possible, at least not with the kinds of robustness guarantees that we are
aiming for. Our algorithm and its analysis revolve around showing that a Gaussian mixture model
is strongly observable through its Hermite moments. We now sketch the proof.

4



LEARNING GMMS WITH NEARLY OPTIMAL ROBUSTNESS GUARANTEES

First, we give some background. For a distribution D, the characteristic function is defined as
D̂(X) = Ez∼D[e

iz·X ] (where i =
√
−1) and can be expanded as a power series whose terms are

the moments of D

D̂(X) =

∞∑
j=0

Ez∼D[(z ·X)n]

n!
in .

We can also invert the characteristic function to translate from the moments back to the actual
density function. For our purposes we will want to work with the Hermite moments instead, because
they can be robustly estimated using existing techniques (Kane, 2021; Liu and Moitra, 2021). It
turns out that there is an analog of the relationship between moments and characteristic functions,
but for Hermite moments instead. Specifically we define the adjusted characteristic function (for
details see Definition 42) and show that the terms in the power series expansion of the adjusted
characteristic function are exactly the Hermite moments (see Corollary 44). The key is we can give
quantitative estimates for inverting the adjusted characteristic function that allow us to relate the size
of terms in the power series (which are Hermite moments) to the L1 norm of the density function.

This gives us some relation between the Hermite moments and the TV distance but it is still
far from strong observability. In particular, the power series has infinitely many terms, but in order
to prove strong observability, we must restrict to a constant (Ok(1)) number of test functions. The
key is to prove that, for mixtures of Gaussians, the Hermite moments satisfy a recurrence relation
of order Ok(1) and further that this recurrence has bounded coefficients. For context, the moments
of a single Gaussian satisfy a simple recurrence so it is reasonable to expect that the moments of
a mixture satisfy a higher-order recurrence. This framework of working with Hermite moments
through their recurrence relations (instead of through their parameters as in previous works) is
crucial to circumventing the ϵO(1/k) barrier. This is only a sketch and the full proof has additional
complexities.

However strong observability alone does not get us anywhere because, after robustly estimating
the Hermite moments, we would still need to solve a large system of polynomial equations to find
a good (proper) estimate. In fact this system does not appear to have any useful structure that can
be exploited algorithmically, in part because it has many disconnected solutions due to the failure
of robust parameter learning. Instead we circumvent this obstacle by showing how to solve a re-
laxed version of the polynomial system that corresponds to allowing ourselves to output a Gaussian
mixture model whose mixing weights are low degree polynomials – i.e. it has the form

Q1(x)G1 + · · ·+Qk(x)Gk

where Q1, . . . , Qk are low-degree polynomials that are nonnegative everywhere. We call this a
mixture of polynomial Gaussians (MPG). As it turns out, our strong observability result (Theorem
50), that being close in Hermite moments implies closeness in total variation distance, extends to
MPGs as well. We emphasize that this is only a high-level description of the proof, and there are
many subtleties such as the crucial fact that the degrees of the polynomials Q1, . . . , Qk does not
need to grow with m, the number of Hermite moments that we want to match, which is essential in
order to make our strategy work. We give a detailed technical overview in Section 2.

1.3. Other Related Work

There has also been a line of work (Ashtiani et al., 2018, 2020) towards achieving optimal sample
complexity for robustly learning mixtures of Gaussians. However, these works are not algorithmic
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i.e. their algorithms are based on discretization and brute-force search and run in exponential time.
In our work, sample complexity is not our primary concern (as long as it is polynomial) and in order
to develop a computationally efficient learning algorithm we will need entirely new techniques.

2. Technical Overview

We now present our technical overview. Due to space constraints, the formal theorems and proofs
are deferred to the appendix (Section C and after).

2.1. Problem Setup

We use N(µ,Σ) to denote a Gaussian with mean µ and covariance Σ. We use dTV(D,D′) to denote
the total variation distance between two distributions D,D′. When there is no ambiguity, we will
slightly abuse notation and for a distribution D on Rd, we use D(x) to denote the density function
of D at x.

We use the following shorthand notation. X denotes a d-tuple of variables (X1, . . . , Xd). For a
vector µ ∈ Rd and matrix Σ ∈ Rd×d we set µ(X) = µTX and Σ(X) = XTΣX .

We begin by formally defining the problem that we will study. First we define the contamination
model. This is a standard definition from robust learning (see e.g. Diakonikolas et al. (2020a)).

Definition 7 (Strong Contamination Model) We say that a set of vectors Y1, . . . , Yn is an ϵ-
corrupted sample from a distribution D over Rd if it is generated as follows. First X1, . . . , Xn

are sampled i.i.d. from D. Then a (malicious, computationally unbounded) adversary observes
X1, . . . , Xn and replaces up to ϵn of them with any vectors it chooses. The adversary may then
reorder the vectors arbitrarily and output them as Y1, . . . , Yn

We study the following problem. There is an unknown mixture of Gaussians M = w1G1 + · · · +
wkGk where Gi = N(µi,Σi). We receive an ϵ-corrupted sample Y1, . . . , Yn from M where n =
poly(d/ϵ) (we treat k as a constant). The goal is to output a density function of a distribution, say
f , such that dTV(f,M) ≤ Õ(ϵ).

In our main result, Theorem 72, we give an algorithm that computes such a function f of the
form

f(x) = Q1(x)G1(x) + · · ·+Qk(x)Gk(x)

where Q1, . . . , Qk are polynomials of constant (possibly depending on k) degree that are nonneg-
ative everywhere and G1, . . . , Gk are Gaussians. We call such functions mixtures of polynomial
Gaussians (MPG) distributions for short (see Definition 23).

Throughout our paper, we will assume that all of the Gaussians that we consider have variance
at least poly(ϵ/d) and at most poly(d/ϵ) in all directions i.e. they are not too flat. This implies that
their covariance matrices are invertible so we may write expressions such as Σ−1

i .

Remark 8 Our main results for nearly optimal density estimation require a stronger assumption
that the variances are between poly(log 1/ϵ)−1 and poly(log 1/ϵ) in each direction. However,
en route to these results, we first prove a few simple generalizations of the the results in Liu and
Moitra (2021) and these results hold under the same assumptions as in Liu and Moitra (2021) i.e.
components have variance between poly(ϵ/d) and poly(d/ϵ) in all directions.
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We will also assume that the wi are at least A−1 for some constant A. While a lower bound on
the mixing weights is not technically necessary for density estimation, we need such an assumption
in our paper because we need to first run a parameter estimation algorithm (see Liu and Moitra
(2021)) to obtain rough estimates for all of the components.

Throughout this paper, we treat k,A as constants – i.e. A could be any function of k – and when
we say polynomial, the exponent may depend on these parameters. We are primarily interested in
dependence on ϵ and d (the dimension of the space).

2.2. Main Ideas

2.2.1. REGULAR FORM MIXTURES

We will first consider the case when the components of the mixture are in a convenient form, which
we call regular form, meaning that all of the components are not too far from each other and not too
poorly conditioned.

Definition 9 (Informal, see Definition 24)) We say a mixture of Gaussians M = w1G1 + · · · +
wkGk is in regular-form if all of the components can be written in the form Gj = N(µj , I + Σj)
where ∥µj∥ , ∥Σj∥2 ≤ poly(log 1/ϵ) and poly(log 1/ϵ)−1I ≤ I +Σj ≤ poly(log 1/ϵ)I

In the appendix (Section B), we sketch how we reduce from a general mixture to a mixture
in regular form. As mentioned previously, the key ingredient in our algorithm is an observability
statement, that we have a family of test functions such that if two mixtures are close on this family
of test functions, then they must be close in TV distance. Our learning algorithm will then work
by measuring these test functions using the samples and then solving for a distribution that matches
these test function measurements.

For many learning problems, such as learning mixtures of Gaussians in the non-robust setting
(Moitra and Valiant, 2010; Kalai et al., 2010), using low-degree moments as the set of test functions
suffices. However, for robustly learning mixtures of Gaussians, using the standard moments would
lose factors of poly(d) in the error guarantee. Similar to previous papers on robustly learning
mixtures of Gaussians (Kane, 2021; Liu and Moitra, 2021), we use the family of low-degree Hermite
moments as our test functions. Of course, as mentioned previously, there are still many additional
obstacles to proving strong observability and circumventing the ϵ1/k barrier to parameter learning.
First, we make a few definitions. See Section D.1 for more details.

Definition 10 Let Hm(x) denote the univariate Hermite polynomials, e.g. H2(x) = x2−1,H3(x) =
x3−3x. Let Hm(x, y2) be the homogenized Hermite polynomials e.g. H2(x, y

2) = x2−y2,H3(x, y
2) =

x3 − 3xy2.

Definition 11 (Multivariate Hermite Polynomials) LetHm(X, z) be a formal polynomial in vari-
ables X = X1, . . . , Xd whose coefficients are polynomials in d variables z1, . . . , zd that is given
by Hm(X, z) = Hm(z1X1 + · · ·+ zdXd, X

2
1 + · · ·+X2

d).

Definition 12 (Hermite Moment Polynomials) For a distribution D on Rd, we let

hm,D(X) = E(z1,...,zd)∼D[Hm(X, z)] .

We omit the subscript D when it is clear from context. We refer to hm,D(X) as the Hermite moment
polynomials of D.
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Remark 13 We will use the term Hermite moment polynomial (instead of just Hermite moment) to
emphasize the fact that we view hm,D(X) as a polynomial in the formal variables X . This poly-
nomial representation will be useful for the machinery that we introduce later on for manipulating
these Hermite moment polynomials.

Remark 14 If instead of E(z1,...,zd)∼D[Hm(X, z)] we had E(z1,...,zd)∼D[(z1X1 + · · · + zdXd)
m]

then we would get the standard moments.

The Hermite moment polynomials turn out to be a particularly nice object to work with because
we can work with their L2 norm (after reorganizing the coefficients into a vector) without losing
dimension dependent factors 2. The key observability result in our proof (Theorem 50) implies that
for regular-form mixtures, the distance between Hermite moment polynomials (in terms of L2 norm
of coefficients) is equivalent to TV distance up to a poly(log 1/ϵ) factor.

Algorithm Summary: We now summarize our algorithm for learning regular-form mixtures. The
main parts are

1. Strong Observability through Hermite Moment Polynomials: we prove that for two mix-
tures of k Gaussians, and more generally mixtures of k polynomial Gaussians, if their first
Ok(1) Hermite moment polynomials are ϵ-close in coefficient L2 distance, then the two mix-
tures are Õ(ϵ)-close in TV distance (Theorem 50).

2. Estimate the Hermite Moment Polynomials Optimally: we estimate the Hermite moment
polynomials of the mixture to optimal accuracy (Theorem 65)

3. Compute Rough Component Estimates: we compute ϵΩk(1)-accurate estimates for all of
the components (Theorem 73)

4. Estimate Density Function Optimally: we bootstrap the rough component estimates using
the Hermite moment polynomial estimates to compute the density function of the mixture to
optimal accuracy (Theorem 69)

The next figure shows how the parts fit together in our algorithm. We focus on parts 1, 2, 4
because part 3 follows easily from the results in Liu and Moitra (2021).

Strong Observability through Hermite Moment Polynomials: To help build intuition, here we
will sketch a proof of observability via Hermite moment polynomials in the infinite limit, i.e. if two
mixtures match exactly on their firstOk(1) Hermite moment polynomials, then they must be exactly
the same. For simplicity, in this discussion, we will restrict ourselves to mixtures of Gaussians. In
our analysis later on, we will need observability for mixtures of polynomial Gaussians because the
density function that we output is in this more general class.

Here, we sketch a proof of the following (informal) theorem. The full version is in Theorem 50.

Theorem 15 (Informal) If two regular-form mixtures of Gaussians M = w1G1+ · · ·+wkGk and
M′ = w′

1G
′
1+ · · ·+w′

kG
′
k match on their firstOk(1) Hermite moment polynomials then M = M′.

2. For, say, standard moments, we would instead need to work with the tensor injective norm.
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Input: ϵ-corrupted sample
X1, . . . , Xn from mixture

M = w1G1 + · · · + wkGk

Estimate components
G1, . . . , Gk to ϵΩ(1) accuracy

Estimate Hermite mo-
ment polynomials

h1,M, . . . , hm,M to Õ(ϵ) accuracy

Compute mixture of polynomial
Gaussians f = Q1G1 + · · ·+QkGk

that matches Hermite
moment polynomials

h1,M, . . . , hm,M to within Õ(ϵ)

f must be close to the density
function of M in L1 distance

Theorem 65 Theorem 73

Theorem 69

Theorem 50

Figure 1: Overview of our algorithm for regular-form mixtures

A key ingredient will be understanding recurrence relations between Hermite moment polyno-
mials. To obtain these recurrence relations, we write down a generating function for the Hermite
moment polynomials and then manipulate this generating function using differential operators. By
writing down a differential operator that annihilates the generating function, we then obtain the co-
efficients of a recurrence relation that the Hermite moment polynomials must satisfy. First, we have
the following identity.

Claim 1 (See Corollary 40) Let M = w1G1 + . . . wkGk be a mixture of Gaussians where Gj =
N(µj , I +Σj). Then

∞∑
m=0

1

m!
· hm(X)ym = w1e

µ1(X)+ 1
2
Σ1(X)y2 + · · ·+ wke

µk(X)+ 1
2
Σk(X)y2 (1)

where hm(X) are the Hermite moment polynomials of the mixture M.

Let f(y) be the function on the right hand side of (1), viewed as a function of y with formal
variables X . For each j ∈ [k], consider the differential operator Dj = ∂ − (µj(X) + Σj(X)y)

where the partial derivative is taken with respect to y. Then if we let D = D2k−1

k D2k−2

k−1 · · · D1, we
can verify that D(f(y)) = 0 (see Section D.5).

On the other hand, by using the product rule, we can expand the differential operator D in the
form

D = Q2k−1(X, y)∂
2k−1 +Q2k−2(X, y)∂

2k−2 + · · ·+Q0(X, y)
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where Q0, . . . , Q2k−1 are polynomials in y whose coefficients are polynomials in the formal vari-
ablesX . It is immediate to verify thatQj has degree at most 2k−1−j in y so for all 0 ≤ j ≤ 2k−1
we can write

Qj(X, y) = Rj,2k−1−j(X)y2
k−1−j + · · ·+Rj,0(X)

for some polynomials Rj,0(X), . . . , Rj,2k−1−j(X).
Now consider what happens when we apply D to the left hand side of (1). We will get a power

series in y whose coefficients are polynomials in X . The coefficient of ya will be

2k−1∑
j=0

2k−1−j∑
l=0

ha+j−l(X)Rj,l(X)

(a− l)!

and since D(f(y)) = 0 we get the following conclusion.

Claim 2 Let M = w1G1+ . . . wkGk be a mixture of Gaussians where Gj = N(µj , I +Σj). Then
there are polynomials Rj,l(X) such that for all a, the Hermite moment polynomials of M satisfy

2k−1∑
j=0

2k−1−j∑
l=0

ha+j−l(X)Rj,l(X)

(a− l)!
= 0 . (2)

This means that the Hermite moment polynomials satisfy a recurrence of order Ok(1). It is straight-
forward to extend the above argument to the difference of two mixtures say M = w1G1 + · · · +
wkGk and M′ = w′

1G
′
1+ · · ·+w′

kG
′
k and we deduce that the polynomials hm,M(X)−hm,M′(X)

must satisfy a similar recurrence of order Ok(1). Thus, if the first Ok(1) Hermite moment poly-
nomials of two mixtures are the same, then all of their Hermite moment polynomials must be the
same. Note that this statement suffices for the proof of observability in the infinite limit, but in the
full analysis, we need several additional steps to prove quantitative bounds relating the distance be-
tween higher-degree Hermite moment polynomials to the distance between the first Ok(1) Hermite
moment polynomials.

The argument above implies that

∞∑
m=0

1

m!
· hm,M(X)ym =

∞∑
m=0

1

m!
· hm,M′(X)ym . (3)

It remains to show how to transform from these generating functions back to the original distribu-
tions. This can be done through the adjusted characteristic function. We define

Definition 16 (Adjusted Characteristic Function) For a distribution D on Rd, we define its ad-
justed characteristic function D̃ : Rd → C as D̃(X) = Ez∼D

[
eiz·X+ 1

2
∥X∥2

]
where i =

√
−1.

It suffices to note that

Claim 3 (Same as Claim 14) Let D be a distribution on Rd. Then D̃(X) =
∑∞

m=0
im

m!hm,D(X).

Thus, plugging y = i into (3), we get that M̃(X) = M̃′(X). However, note that the adjusted char-
acteristic function is an invertible transformation (since we can multiply by e−

1
2
∥X∥2 and then invert

10
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the characteristic function) so actually M(X) = M′(X), completing the proof of observability in
the infinite limit.

There are several additional technical ingredients that are necessary to go from observability in
the infinite limit to quantitatively strong observability. The main one is that we need to bound the
coefficients of the polynomials Rj,l(X). It is not difficult to obtain sufficiently tight bounds when
∥µj∥ , ∥Σj∥2 are all sufficiently small (smaller than some constant depending on k). To reduce to
this case, we need to do some additional work (see Section E.3). Also, we will need quantitative
bounds on inverting the adjusted characteristic function. Such bounds are obtained in Section D.2.

Estimate the Hermite Moment Polynomials Optimally: Here, our goal is to obtain estimates
h′m(X) for the first Ok(1) Hermite moment polynomials. We sketch a proof of the following (in-
formal) theorem. The full version is in Theorem 65.

Theorem 17 (Informal) Given an ϵ-corrupted sample from a regular-form mixture of Gaussians
M = w1G1 + · · ·+wkGk, we can compute estimates h′m(X) such that ∥v(hm(X)− h′m(X))∥ ≤
Õ(ϵ) where hm(X) are the true Hermite moment polynomials of the mixture and v(·) denotes con-
verting a polynomial to a vector of coefficients (we then measure the L2 norm of this vector).

Note that hm(X) is the mean of the distribution of Hm(X, z) for z ∼ M so estimating hm(X)
is a robust mean estimation task. Previous papers (Liu and Moitra, 2021; Kane, 2021) estimate
hm(X) up to accuracy Õ(

√
ϵ) by upper bounding the spectral norm of the covariance matrix and

using standard results from robust mean estimation. However achieving Õ(ϵ) is significantly more
difficult.

It can be shown, via hypercontractivity, that the distribution of Hm(X, z) exhibits exponential
tail decay (see Lemma 61). However, this alone is not enough to robustly estimate the mean to
within Õ(ϵ) in a computationally efficient manner. Existing results achieving optimal accuracy
e.g. Diakonikolas et al. (2020b) require known covariance or some additional moment structure
(such as in the case of a single Gaussian). Furthermore, there is evidence suggesting that achieving
optimal accuracy for general sub-Gaussian distributions may be computationally hard (Hopkins and
Li, 2019).

To circumvent these barriers, we leverage the structure of the moments of the distribution of
Hm(X, z). Roughly speaking, we write the covariances of the distributions ofH0(X, z), . . . ,Hm(X, z)
in terms of the Hermite moment polynomials h0(X), . . . , hm(X) (which are the means of the re-
spective distributions). Thus, we can estimate the means, compute estimates for the covariances
and then use our covariance estimates to refine our estimates of the means and keep iterating. This
is similar to how algorithms for robustly learning a single Gaussian use the relation between its
covariance and its fourth moment tensor. Of course, the moment structure of the distribution of
Hm(X, z) is significantly more complex so the analysis will be more involved.

Note that if the covariance of Hm(X, z) were known, then we would be able to estimate the
mean of the distribution to Õ(ϵ) accuracy using standard techniques (e.g. Diakonikolas et al.
(2020b)). The first important observation is that the covariance of the distribution of Hm(X, z)
can be written in terms of the first 2m Hermite moment polynomials h0(X), . . . , h2m(X). Next, if
m is sufficiently large in terms of k, then the polynomials hm+1(X), . . . , h2m(X) can be computed
in terms of h0(X), . . . , hm(X) via the recurrence in (2). Since we do not know the actual recur-
rence, we can solve for the coefficients in the recurrence using h0(X), . . . , hm(X) and then use
these coefficients to extend the recurrence and compute hm+1(X), . . . , h2m(X). With this insight,
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we can build an iterative algorithm that repeatedly refines our estimates. Using an upper bound
on the covariance (same as in Liu and Moitra (2021); Kane (2021)), we can ensure that our initial
estimates are Õ(

√
ϵ)-accurate. Then, by repeatedly running the above, we can refine these estimates

to Õ(ϵ)-accuracy. (see Section G.3).

Compute Rough Component Estimates: Here, our goal is to prove the following (informal)
theorem. See Theorem 73 for the full version.

Theorem 18 (Informal) Given an ϵ-corrupted sample from a mixture M = w1G1 + · · ·+ wkGk,
we can compute estimates G1, . . . , Gk for the components such that dTV(Gj , Gj) ≤ ϵΩk(1).

This theorem follows from a simple modification to the techniques in Liu and Moitra (2021). Note
that the only difference is that the main theorem in Liu and Moitra (2021) assumes that the compo-
nents of the mixture are not too close in TV distance. However, this assumption can be removed by
essentially merging components and treating them as one if they are ϵΩ(1)-close.

Estimate Density Function Optimally: So far, we showed that the first Ok(1) Hermite moment
polynomials suffice to determine a mixture of Gaussians (and more generally a mixture of polyno-
mial Gaussians). We then showed how to estimate these Hermite moment polynomials to optimal
accuracy. The last step is to compute a mixture of polynomial Gaussians that matches these Hermite
moment polynomials. To do this, we will take the rough estimates of the components from the pre-
vious step and then multiply them by appropriate polynomials. We sketch a proof of the following
(informal) theorem. The full version is in Theorem 69.

Theorem 19 (Informal) Let M = w1G1+ · · ·+wkGk be a mixture of Gaussians in regular form.
Assume we are given estimates G1, . . . , Gk for the components such that for all j, dTV(Gj , Gj) ≤
ϵΩk(1). Then we can compute a distribution f(x) = Q1(x)G1(x) + · · · + Qk(x)Gk(x) where
Q1, . . . , Qk are polynomials of degreeC = Ok(1) such that the firstm = Ok,C(1) Hermite moment
polynomials of f match those of M up to Õ(ϵ) accuracy.

It is crucial to note that in order to match m Hermite moment polynomials, the degree of the
polynomials Q1, . . . , Qk that we need does not grow with m. In other words, we first fix the degree
C of the polynomials Q1, . . . , Qk. We then argue that for any m, we can match the first m Hermite
moment polynomials using polynomials Q1, . . . , Qk of degree C. The only place that m shows up
is in the accuracy i.e. the Õ(ϵ) hides a factor of the form ϵ(log 1/ϵ)m.

The reason that we need to fix C first and then choose m sufficiently large in terms of C is
that the observability result, Theorem 50, only works when two distributions match on their first m
Hermite moment polynomials for m much larger than C, k.

We now sketch how we actually compute the polynomials Q1, . . . , Qk. For simplicity, we will
first consider a single Gaussian G = N(µ, I + Σ) as this already will reveal the key intuitions.
Assume that we are given an estimate of G, say G = N(µ̃, I + Σ̃) with dTV(G,G) ≤ ϵc for
some constant c. Recall Claim 1 which implies

∑∞
m=0

1
m! · hm,G(X)ym = eµ(X)y+ 1

2
Σ(X)y2 . Now

consider the generating function

eµ(X)y+ 1
2
Σ(X)y2 = e(µ(X)−µ̃(X))y+ 1

2
(Σ(X)−Σ̃(X))y2eµ̃(X)y+ 1

2
Σ̃(X)y2 .

12
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Since dTV(G,G) ≤ ϵc , we can show that ∥µ− µ̃∥ ,
∥∥∥Σ− Σ̃

∥∥∥
2
≤ ϵΩ(c). Now consider the power

series expansion of

e(µ(X)−µ̃(X))y+ 1
2
(Σ(X)−Σ̃(X))y2 =

∞∑
m=0

(
(µ(X)− µ̃(X))y + 1

2(Σ(X)− Σ̃(X))y2
)m

m!
,

We can expand each term on the RHS using the binomial theorem. The key observation is that
since ∥µ− µ̃∥ ,

∥∥∥Σ− Σ̃
∥∥∥
2
≤ ϵΩ(c), whenever we multiply more than O(1/c) terms of the form

(µ(X) − µ̃(X)) or (Σ(X) − Σ̃(X)) together, the result will have coefficient norm smaller than ϵ.
Thus, we can essentially drop all but the first O(1/c) terms in the power series expansion i.e.

e(µ(X)−µ̃(X))y+ 1
2
(Σ(X)−Σ̃(X))y2 ∼ P (X, y)

where P has degree at mostO(1/c) in y andX . Thus, eµ(X)y+ 1
2
Σ(X)y2 ∼ P (X, y)eµ̃(X)y+ 1

2
Σ̃(X)y2 .

It remains to plug in y = i, multiply by e−
1
2
∥X∥2 and invert the characteristic function (recall Claim

3). We can then verify that the resulting function will be of the form Q(x)G(x) where Q has degree
at most O(1/c).

The above intuition roughly says thatG can be approximated byG times a polynomial of degree
O(1/c) as long as dTV(G,G) ≤ ϵc. Thus, the mixture of Gaussians M− w1G1 + · · ·+ wkGk can
be approximated by a function of the form f(x) = Q1(x)G1(x) + · · · + Qk(x)Gk(x) for some
constant-degree polynomials Q1, . . . , Qk. It remains to show how to compute the polynomials
Q1, . . . , Qk. To solve for Q1, . . . , Qk, it suffices to note that the Hermite moment polynomials
of f(x) are linear forms in the coefficients of Q1, . . . , Qk. Thus, since we have estimates for the
Hermite moment polynomials of the true mixture M, it suffices to solve a linear system for the
coefficients of Q1, . . . , Qk.
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Appendix A. Comparison of Observability and Identifiability

It will be helpful to compare observability with the more familiar concept of identifiability, which is
usually thought of as the crucial ingredient in parameter learning algorithms. Recall the definition
of identifiability.

Definition 20 (Identifiability, informal) Given a family of distributions F parameterized by pa-
rameters θ, we say that the family F is identifiable if any two distributions F(θ),F(θ′) ∈ F that
are close in TV they must also be close in terms of their parameters (for some appropriate parameter
distance).

In the case of parameter distance for GMMs, usually we require that there be a matching between
the components in M and those in M′ so that across the matching the components are close in TV
and have similar mixing weights.

However identifiability is just not the right notion to use for density estimation, at least when it
comes to achieving nearly optimal robustness guarantees. The issue is that the relationship between
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component-wise distance and TV distance is quantitatively too weak. There are explicit construc-
tions of GMMs M and M′ that are ϵ-close in TV distance but where all the components in both
mixtures are all separated by at least ϵO(1/k) (see Moitra and Valiant (2010); Hardt and Price (2015))
in TV. The key point is that the mixtures are so close to each other that we cannot distinguish be-
tween them in the setting where an ϵ-fraction of our samples can be arbitrarily corrupted. Hence we
have:

Proposition 21 When an ϵ-fraction of the samples are arbitrarily corrupted, it is not information-
theoretically possible to learn the components of a GMM to accuracy better than ϵO(1/k).

This is a serious issue because it means that many of the standard techniques for learning mixture
models that work by learning individual components are trying to do too much and will get stuck
at the above barrier. In particular, while we are using the same family of test functions as Liu and
Moitra (2021), the techniques in Liu and Moitra (2021) rely on trying to isolate the parameters of
each of the components and thus will run into the ϵO(1/k) barrier.

Appendix B. Overview of Reducing to Regular Form

For general mixtures, our algorithm has one additional step where we need to cluster the mixture
into submixtures and then place each submixture in regular-form.

To do this, we can use Theorem 73 to obtain rough estimates for all of the components. We
then cluster the samples into subsamples by assigning each sample to the estimated component that
assigns it the highest likelihood. While this clustering will not classify all of the samples “correctly”
(e.g. if components overlap), we combine the subsamples into submixtures and argue that for some
recombination the following two conditions hold:

• The clustering into submixtures is accurate to within Õ(ϵ) accuracy (see Lemma 82)

• For each submixture, we can apply a linear transformation to place it in regular form

Thus, once we find this recombination (say by enumerating over all possible recombinations), we
have reduced the problem to learning mixtures of Gaussians in regular form.

Appendix C. Notation and Preliminaries

C.1. Basic Definitions

We now introduce some terminology that we will use throughout the paper.

Definition 22 We say a function f(x) : Rd → R is a degree-m polynomial Gaussian if it can be
written in the form

f(x) = Q(x)G(x)

where G(x) is the probability density function of a Gaussian and Q is a polynomial in d variables
of degree at most m.
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Definition 23 We say a function f(x) : Rd → R is a degree-m mixture of polynomial Gaussians
(MPG) if

f(x) = Q1(x)G1(x) + · · ·+Qk(x)Gk(x)

where G1(x), . . . , Gk(x) are the probability density functions of Gaussians and Q1, . . . , Qk are
polynomials in d variables of degree at most m. If the polynomials Q1, . . . , Qk are all nonnegative
for any x ∈ Rd and

∫
Rd f(x)dx = 1, then we say f is a degree-m MPG distribution.

We will often need to work with mixtures of Gaussians whose components are in a specific
form, which we call regular-form.

Definition 24 We say a set of Gaussians G1 = N(µ1, I + Σ1), . . . , Gk = N(µk, I + Σk) is in
(α, β)-regular form if the following holds:

• For all j, ∥µj∥ ≤ α

• For all j, ∥Σj∥2 ≤ α

• For all j, β−1I ≤ I +Σj ≤ βI

We will sometimes need an additional conditions that there exists some j such that

∥µj∥+ ∥Σj∥2 ≤ γ .

If this additional condition holds, we say that the set of Gaussians is in (α, β, γ)-regular form.

Definition 25 We say that a mixture of Gaussians M = w1G1 + · · · + wkGk is in (α, β) (re-
spectively (α, β, γ)) regular-form if the set of components {G1, . . . , Gk} is in (α, β) (respectively
(α, β, γ)) regular-form.

Remark 26 Generally, we will be interested in the regime where α, β ≤ poly(log 1/ϵ) and γ is a
sufficiently small constant (in terms of k).

Definition 27 Given a family of polynomials S = {P1, P2, . . . } in variables X = (X1, . . . , Xd),
we say a polynomial Q(X) is (A,B)-simple with respect to S for some parameters A,B if Q can
be written as a linear combination of A terms where

• All coefficients in the linear combination have magnitude at most A

• Each term is a product of at most B polynomials from S

We will need the following standard fact (see e.g. Arutyunyan et al. (2018); Kauers et al. (2014))
that allows us to bound the tail decay of the distribution of a polynomial f(x) where x is drawn from
a Gaussian.

Claim 4 (Hypercontractivity) Let f be a polynomial of degree m. Let G = N(µ,Σ) be a Gaus-
sian in Rd. There is a universal constant c such that for any even integer q,

(Ex∼G|f(x)|q) ≤ (cq)mq
(
Ex∼G|f(x)|2

)q/2
.
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C.2. Tensors and Polynomials

We will now introduce notation and tools to deal with tensors and formal polynomials. We will need
to translate between polynomials and their corresponding representations as tensors repeatedly in
this paper.

Definition 28 Let X denote the set of formal variables (X1, . . . , Xd). Then for a positive integer
k, X⊗k denotes the d× · · · × d︸ ︷︷ ︸

k

tensor

(X1, . . . , Xd)⊗ · · · ⊗ (X1, . . . , Xd)︸ ︷︷ ︸
k

Now we will define a canonical transformation between polynomials and tensors.

Definition 29 For a homogeneous polynomial f(X) of degree k in the d variablesX1, . . . , Xd with
real coefficients, define T (f) to be the unique symmetric tensor with dimensions d× · · · × d︸ ︷︷ ︸

k

such

that
⟨T (f), X⊗k⟩ = f(X) .

We call T (f) the coefficient tensor of f .

Definition 30 For a homogeneous polynomial f(X) in the d variables X1, . . . , Xd with real coef-
ficients define v(f) to be the vector obtained by flattening T (f). We call v(f) the coefficient vector
of f .

Definition 31 For a polynomial (not necessarily homogeneous) f(X, y), viewed as a polynomial
in y whose coefficients are homogeneous polynomials in X (of not necessarily the same degree) i.e.

f(X, y) = f0(X) + f1(X)y + · · ·+ fk(X)yk

we define vy(f) to be the vector obtained by concatenating v(fm(X)) for all m.

We will frequently consider expressions of the form ∥v(f)∥ i.e. the L2 norm of the coefficient
vector.

Definition 32 For a polynomial f(X), we call ∥v(f)∥ the coefficient norm of f .

The first claim below gives us an upper bound on the coefficient norm of the product of two
polynomials f and g in terms of the coefficient norms of f and g.

Claim 5 Let f and g be two homogeneous polynomials in the variables X = (X1, . . . , Xd) of
degree m1,m2 respectively. Then

∥T (fg)∥2 ≤ ∥T (f)∥2 ∥T (g)∥2 .

Equivalently,
∥v(fg)∥ ≤ ∥v(f)∥ ∥v(g)∥
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Proof Note that T (fg) can be written as an average, over all partitions of [m1 +m2] into two sets
S1, S2 of sizem1,m2, of T (f)S1 ⊗T (g)S2 where T (f)S1 ⊗T (g)S2 is a d⊗(m1+m2) tensor obtained
by taking T (f) in the dimensions indexed by S1 and T (g) in the dimensions indexed by S2 and
tensoring them together. It is clear that

∥T (f)⊗ T (g)∥2 = ∥T (f)∥2 ∥T (g)∥2

so using the triangle inequality, we get the desired conclusion.

We also have a lower bound on ∥v(fg)∥ that follows immediately from the results in Liu and
Moitra (2021).

Claim 6 (Claim 3.18 in Liu and Moitra (2021)) Let f, g be two homogeneous polynomials in the
variables X = (X1, . . . , Xd) of degree at most m. Then

∥v(fg)∥ ≥ Ωm(1) ∥v(f)∥ ∥v(g)∥ .

The next claim gives us an understanding of how linear transformations of the underlying vari-
ables X = (X1, . . . , Xd) affect the coefficient norm of a polynomial.

Claim 7 Let f be a homogeneous polynomial in the variables X = (X1, . . . , Xd) of degree equal
to m. Let Σ be a d× d matrix. Then

∥v(f(ΣX))∥ ≤
(
∥Σ∥op

)m
∥v(f(X))∥ .

Proof Note that

v(f(ΣX)) =

Σ⊗ · · · ⊗ Σ︸ ︷︷ ︸
m

 v(f(X)) .

where ⊗ in the above denotes the Kronecker product. Also,∥∥∥∥∥∥Σ⊗ · · · ⊗ Σ︸ ︷︷ ︸
m

∥∥∥∥∥∥
op

=
(
∥Σ∥op

)m
and now we immediately get the desired inequality.

C.3. Tensors and Polynomials with Multiple Sets of Variables

We will need a few additional definitions dealing with polynomials and tensors involving multiple
sets of variables, say X(1) = (X

(1)
1 , . . . , X

(1)
d ), . . . , X(k) = (X

(k)
1 , . . . , X

(k)
d ). We first prove the

following property.
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Claim 8 Let k be a positive integer and consider k distinct sets of d formal variables, say X(1) =

(X
(1)
1 , . . . , X

(1)
d ), . . . , X(k) = (X

(k)
1 , . . . , X

(k)
d ). Let A be the tensor of polynomials defined as

follows:

A = flat
((

X(1)
)⊗m1

)
⊗ · · · ⊗ flat

((
X(k)

)⊗mk
)
.

Note thatA is an order-k tensor with dimensions dm1 , . . . , dmk . For any polynomialP
(
X(1), . . . , X(k)

)
that is homogeneous with degree exactly mi in the set of variables X(i) for all i, there is a unique
tensor T such that

• The entries of T are real numbers

• ⟨T,A⟩ = P
(
X(1), . . . , X(k)

)
• The tensorization of any 1-dimensional slice of T along the ith axis into a d× · · · × d︸ ︷︷ ︸

mi

tensor

is symmetric.

Proof Note that each entry of T may be indexed by the corresponding monomial of A. The
symmetry property implies that the entries of T that are indexed by the same monomial must be
the same. Thus, the unique tensor T is constructed by taking each monomial of P and dividing its
coefficient evenly among all of the entries of T that are indexed by that monomial.

In light of Claim 8 we may make the following definition:

Definition 33 Let k be a positive integer and consider k distinct sets of d formal variables, say
X(1) = (X

(1)
1 , . . . , X

(1)
d ), . . . , X(k) = (X

(k)
1 , . . . , X

(k)
d ). For a polynomial P

(
X(1), . . . , X(k)

)
that is homogeneous with degree m1, . . . ,mk in the sets of variables X(1), . . . , X(k) respectively,
let Tsym(P ) be the (unique) tensor constructed in Claim 8. We call Tsym(P ) the symmetric ten-
sorization of P .

We will need a few basic properties relating polynomials and their symmetric tensorizations.
We are mostly interested in the case when there are two sets of variables (i.e. k = 2). In this
case, the symmetric tensorizations will simply be matrices. The first property is immediate from the
definition.

Claim 9 Let k be a positive integer and consider k distinct sets of d formal variables, say X(1) =

(X
(1)
1 , . . . , X

(1)
d ), . . . , X(k) = (X

(k)
1 , . . . , X

(k)
d ). Let P1, . . . , Pk be homogeneous polynomials in d

variables. Then

Tsym

(
P1(X

(1)) · · ·Pk(X
(k))
)
= v(P1(X))⊗ · · · ⊗ v(Pk(X)) .

Proof Let the degrees of P1, . . . , Pk be m1, . . . ,mk respectively. Let

A = flat
((

X(1)
)⊗m1

)
⊗ · · · ⊗ flat

((
X(k)

)⊗mk
)
.

Note that
⟨A, v(P1(X))⊗ · · · ⊗ v(Pk(X))⟩ = P1(X

(1)) · · ·Pk(X
(k)) .
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Also note that each of the one dimensional slices of v(P1(X))⊗· · ·⊗v(Pk(X)) is symmetric when
put into a d× · · · × d tensor. Thus, Claim 8 implies that v(P1(X))⊗ · · · ⊗ v(Pk(X)) is exactly the
symmetric tensorization of P1(X

(1)) · · ·Pk(X
(k)).

Claim 10 Consider two sets of d formal variables, say X(1) = (X
(1)
1 , . . . , X

(1)
d ) and X(2) =

(X
(2)
1 , . . . , X

(2)
d ). Let P (X(1), X(2)), Q(X(1), X(2)) be polynomials that are homogeneous in each

of the sets of variables. Then∥∥Tsym (PQ)
∥∥

op ≤
∥∥Tsym(P )

∥∥
op

∥∥Tsym(Q)
∥∥

op .

Proof Assume that P has degrees m1,m2 and Q has degrees n1, n2 in X(1), X(2) respectively. Let

A = flat
((

X(1)
)⊗m1+n1

)
⊗ flat

((
X(2)

)⊗m2+n2
)
.

Note that
⟨A, Tsym(P )⊗ Tsym(Q)⟩ = P (X(1), X(2))Q(X(1), X(2))

where Tsym(P )⊗ Tsym(Q) is the Kronecker product of the two matrices. Thus, Tsym (PQ) can be
written as an average of tensors that are equivalent to Tsym(P )⊗Tsym(Q) up to permutations of the
rows and columns. Thus, by the triangle inequality∥∥Tsym (PQ)

∥∥
op ≤

∥∥Tsym(P )⊗ Tsym(Q)
∥∥

op =
∥∥Tsym(P )

∥∥
op

∥∥Tsym(Q)
∥∥

op .

Appendix D. Hermite Polynomials, Generating Functions and Differential
Operators

In this section, we introduce the Hermite moment polynomials and their associated generating func-
tions. We then introduce several tools for manipulating generating functions using differential op-
erators that will be crucial later on. While some of these tools were introduced in Liu and Moitra
(2021), we introduce many additional tools in this paper as we will need more precise characteriza-
tions and bounds on various quantities.

D.1. Hermite Polynomials and their Generating Functions

Here we develop some basic machinery for working with Hermite polynomials and their generating
functions. The first set of definitions and results mirrors the work in Liu and Moitra (2021). We
begin with a standard definition.

Definition 34 Let Hm(x) be the univariate Hermite polynomials H0 = 1,H1 = x,H2 = x2−1 · · ·
defined by the recurrence

Hm(x) = xHm−1(x)− (m− 1)Hm−2(x)
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Note that in Hm(x), the degree of each nonzero monomial has the same parity as m. In light of
this, we can write the following:

Definition 35 Let Hm(x, y2) be the homogenized Hermite polynomials e.g. H2(x, y
2) = x2 −

y2,H3(x, y
2) = x3 − 3xy2.

It will be important to note the following fact:

Claim 11 We have

exz−
1
2
y2z2 =

∞∑
m=0

1

m!
Hm(x, y2)zm

where the RHS is viewed as a formal power series in z whose coefficients are polynomials in x, y.

Now we define a multivariate version of the Hermite polynomials.

Definition 36 (Multivariate Hermite Polynomials) LetHm(X, z) be a formal polynomial in vari-
ables X = (X1, . . . , Xd) whose coefficients are polynomials in d variables z1, . . . , zd that is given
by

Hm(X, z) = Hm(z1X1 + · · ·+ zdXd, X
2
1 + · · ·+X2

d)

We call Hm(X, z) the multivariate Hermite polynomials. Note that Hm is homogeneous of degree
m as a polynomial in X1, . . . , Xd

Definition 37 (Hermite Moment Polynomials) For a distribution D on Rd, we let

hm,D(X) = E(z1,...,zd)∼D[Hm(X, z)]

where we take the expectation of Hm over (z1, . . . , zd) drawn from D. Note that hm,D(X) is a
polynomial in d variables (X1, . . . , Xd). We will omit the D in the subscript when it is clear from
context. We refer to hm,D(X) as the Hermite moment polynomials of D.

We can extend the above definition to any function f : Rd → R (that is not necessarily a distribu-
tion).

Definition 38 For any function f : Rd → R, we define

hm,f (X) =

∫
Rd

f(z)Hm(X, z)dz .

Remark 39 Note that there is no ambiguity because this definition agrees with the above when f
is a distribution. The extended definition will mostly be used for working with MPG functions that
may not be normalized and may take on negative values.

The first important observation is that the Hermite moment polynomials for a Gaussian can be
written in a simple closed form via generating functions.

Claim 12 Let D = N(µ, I +Σ). Then

∞∑
m=0

1

m!
· hm,D(X)ym = eµ(X)y+ 1

2
Σ(X)y2

where both sides are viewed as formal power series in y whose coefficients are polynomials in X .
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Proof Using Claim 11, the LHS may be rewritten as

Ez∼D

[ ∞∑
m=0

1

m!
·Hm(X, z)ym

]
= Ez∼D

[
e(z1X1+···+zdXd)y− 1

2
(X2

1+···+X2
d)y

2
]

= C

∫
exp

(
−1

2
(z − µ)T (I +Σ)−1(z − µ) + zTXy − 1

2
XTXy2

)
dz

= C

∫
exp

(
−1

2
(z − µ− (I +Σ)Xy)T (I +Σ)−1(z − µ− (I +Σ)Xy) + µTXy +

1

2
XTΣXy2

)
dz

= exp

(
µ(X)y +

1

2
Σ(X)y2

)
.

where in the above, C is the normalization constant for a normal distribution with covariance I+Σ.
Note that for the last step, we used the fact that∫

exp

(
1

2
(z − µ)T (I +Σ)−1(z − µ)

)
dz

=

∫
exp

(
1

2
(z − µ− (I +Σ)Xy)T (I +Σ)−1(z − µ− (I +Σ)Xy)

)
dz .

By slightly modifying the proof of Claim 12, we can prove a more general result when we have
a function given by a polynomial Gaussian.

Claim 13 Let f(x) : Rd → R be given by f(x) = Q(x)G(x) where G = N(µ, I + Σ) is a
Gaussian and Q is a polynomial of degree c. Then

∞∑
m=0

1

m!
· hm,f (X)ym = P (Xy)eµ(X)y+ 1

2
Σ(X)y2

where P is a polynomial in d variables of degree at most c and Xy denotes the d-tuple of formal
variables (X1y, . . . , Xdy).

Proof Using Claim 11, the LHS may be rewritten as

∫
Rd

f(z)

[ ∞∑
m=0

1

m!
·Hm(X, z)ym

]
dz =

∫
Rd

f(z)
[
e(z1X1+···+zdXd)y− 1

2
(X2

1+···+X2
d)y

2
]
dz

= C

∫
Q(z) exp

(
−1

2
(z − µ)T (I +Σ)−1(z − µ) + zTXy − 1

2
XTXy2

)
dz

= C

∫
Q(z) exp

(
−1

2
(z − µ− (I +Σ)Xy)T (I +Σ)−1(z − µ− (I +Σ)Xy) + µTXy +

1

2
XTΣXy2

)
dz

= Ceµ(X)y+ 1
2
Σ(X)y2

∫
Q(z) exp

(
−1

2
(z − µ− (I +Σ)Xy)T (I +Σ)−1(z − µ− (I +Σ)Xy)

)
dz .
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where in the above, C is a constant. Now we can make the change of variables z = (I +Σ)1/2z′ +
µ+ (I +Σ)Xy and deduce that∫

Q(z) exp

(
−1

2
(z − µ− (I +Σ)Xy)T (I +Σ)−1(z − µ− (I +Σ)Xy)

)
dz

= det(I +Σ)1/2
∫
Q
(
(I +Σ)1/2z + µ+ (I +Σ)Xy

)
exp

(
−1

2
∥z∥2

)
dz

= P (µ+ (I +Σ)Xy)

for some polynomial P of degree at most c. Putting everything together gives us the desired result.

We now have a few simple consequences of the above.

Corollary 40 Let M = w1G1 + . . . wkGk be a mixture of Gaussians where Gj = N(µj , I +Σj).
Then

∞∑
m=0

1

m!
· hm,M(X)ym = w1e

µ1(X)y+ 1
2
Σ1(X)y2 + · · ·+ wke

µk(X)y+ 1
2
Σk(X)y2

Corollary 41 Let f(x) = Q1(x)G1(x) + · · · + Qk(x)Gk(x) be a degree-c MPG function in Rd

where Gj = N(µj , I +Σj). Then there are polynomials P1(X), . . . , Pk(X) of degree at most c in
formal variables X = (X1, . . . , Xd) such that

∞∑
m=0

1

m!
hm,f (X)ym = P1(Xy)e

µ1(X)y+ 1
2
Σ1(X)y2 + · · ·+ Pk(Xy)e

µk(X)y+ 1
2
Σk(X)y2

where Xy denotes the d-tuple of formal variables (X1y, . . . , Xdy).

D.2. The Adjusted Characteristic Function and its Properties

The characteristic function is a well-known concept in probability. Here, we use a modified no-
tion of an adjusted characteristic function. One of the key components in our paper is Theorem
50, which relates the L1 distance between MPG functions (note this is equivalent to TV distance
for mixtures of Gaussians and MPG distributions) to the coefficient-norm distance between their
Hermite moment polynomials. The adjusted characteristic function will play a key role in proving
Theorem 50 because its inverse map gives us a way to map from a generating function for Hermite
moment polynomials back to a distribution.

Definition 42 For a function f on Rd, we define its adjusted characteristic function f̃ : Rd → C
as

f̃(X) =

∫
Rd

f(z)
[
eiz·X+ 1

2
∥X∥2

]
dz

where i =
√
−1.

Note that for distributions, the adjusted characteristic function is the characteristic function
multiplied by 1

2 ∥X∥2. Now we define the inverse map.
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Definition 43 For a function g : Rd → C, we define χg, a function from Rd to C, as follows:

χg(t) =
1

(2π)d

∫
g(X)e−

1
2
∥X∥2−it·XdX

where in the integral above, X ranges over all of Rd.

It is straight-forward to verify that the transformation defined above indeed inverts the adjusted
characteristic function.

Fact 1 For a function f on Rd,
χf̃ = f .

A key property of the adjusted characteristic function is that its output is equivalent to plugging
in y = i into the generating function for its Hermite moment polynomials.

Claim 14 Let f : Rd → R be a function. Then

f̃(X) =

∞∑
m=0

im

m!
hm,f (X) .

Proof Note that by Claim 11,
∞∑

m=0

im

m!
hm,f (X) =

∫
Rd

f(z)eiz·X+ 1
2
∥X∥2dz = f̃(X) ,

as desired.

As a consequence of the above and Corollary 41, we have

Corollary 44 If we have a degree-c MPG function f = Q1(x)G1 + · · ·+Qk(x)Gk then

f̃(X) = P1(iX)eiµ1(X)− 1
2
Σ1(X) + · · ·+ Pk(iX)eiµk(X)− 1

2
Σk(X)

for some polynomials P1, . . . , Pk of degree at most c with real coefficients.

In light of the above, we know that the adjusted characteristic function maps a function to a
generating function for its Hermite moment polynomials. Recall that our goal is to prove that small
distance between Hermite moment polynomials implies small TV distance. This means that we
need to understand the L1 norm of the inverse adjusted characteristic function. In the remainder
of this subsection, we prove some basic quantitative bounds on the inverse adjusted characteristic
function that will be used later on.

D.2.1. COMPUTATIONS IN 1D

The following two identities follow from direct computation.

Claim 15 For a real number t ∈ R,∫ ∞

−∞
xme−

1
2
x2
e−itxdx = (−i)m

√
2πe−t2/2Hm(t)

where recall Hm(x) is the univariate Hermite polynomial.

Fact 2 ∫ ∞

−∞
Hm1(x)Hm2(x)

e−x2/2

√
2π

dx = 1m1=m2(m1)!
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D.2.2. BOUNDS ON THE INVERSE ADJUSTED CHARACTERISTIC FUNCTION

The next result gives us several important properties for certain inverse adjusted characteristic func-
tions corresponding to polynomial Gaussians.

Claim 16 Let p(X) be a polynomial with real coefficients in d variables X1, . . . , Xd that is homo-
geneous of degree m. Consider a Gaussian in Rd, G = N(µ, I +Σ). For X ∈ Rd let

g(X) = imp(X)eiµ(X)− 1
2
Σ(X) .

Then
χg(t) = q(t)G(t)

for some polynomial q of degree at most m with real coefficients. Furthermore,

Et∼G

[
q(t)2

]
≤ m!(

∥∥(I +Σ)−1
∥∥

op)
m ∥v(p)∥2

where recall v(p), defined in Definition 30, is the vectorization of the coefficients of p.

Proof
We have

χg(t) =
1

(2π)d

∫
imp(X)e−

1
2
XT (I+Σ)X−i(t−µ)·XdX

Substituting X → (I +Σ)−1/2Y for Y = (Y1, . . . , Yd) in the above we get

χg(t) =
1

(2π)d det(I +Σ)1/2

∫
imp((I +Σ)−1/2Y )e−

1
2
∥Y ∥2−i(I+Σ)−1/2(t−µ)·Y dY .

To compute the above integral, note that p((I + Σ)−1/2Y ) is a polynomial in Y1, . . . , Yd that is
homogeneous of degree m. Let h(Y ) = p((I + Σ)−1/2Y ). Let s = (I + Σ)−1/2(t − µ) and let
its coordinates be s1, . . . , sd. We now separate h into monomials and consider one monomial at a
time. Consider a monomial say Y a1

1 Y a2
2 · · ·Y ad

d for some integers a1, . . . , ad. Note that the term
inside the exponential can be factored coordinate-wise. Thus, we can apply Claim 15 to compute
the integral as follows:∫

imY a1
1 · · ·Y ad

d e−
1
2
∥Y ∥2−is·Y dY = im

d∏
j=1

∫ ∞

−∞
xaje−

1
2
x2
e−isjxdx

= (2π)d/2e−
1
2
(s21+···+s2d)

d∏
j=1

Haj (sj) .

We denote the coefficients of h by ca1,...,ad . Combining the above over all monomials, we get

χg(t) =
1

(2π)d/2 det(I +Σ)1/2
e−

1
2
∥s∥2

∑
a1,...,ad

ca1,...,ad

d∏
j=1

Haj (sj)

=

 ∑
a1,...,ad

ca1,...,ad

d∏
j=1

Haj (sj)

N(µ, I +Σ)(t) .
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From the above we deduce

q(t) =
∑

a1,...,ad

ca1,...,ad

d∏
j=1

Haj (sj)

and it is clear that q is a polynomial of degree at most m in t (since s is a linear function of t). It
remains to bound Et∼G

[
q(t)2

]
. Note that

Et∼G

[
q(t)2

]
=

∫
Rd

 ∑
a1,...,ad

ca1,...,ad

d∏
j=1

Haj (sj)

2

N(µ, I +Σ)(t)dt

=

∫
Rd

 ∑
a1,...,ad

ca1,...,ad

d∏
j=1

Haj (sj)

2

N(0, I)(s)ds

=
∑

a1,...,ad

∑
a′1,...,a

′
d

∫
Rd

ca1,...,adca′1,...,a′d

d∏
j=1

Haj (sj)Ha′j
(sj)

e−∥s∥2/2

(2π)d/2
ds .

However, since the integral factorizes over the different coordinates of s, by Fact 2, the integral
evaluates to 0 unless a1, . . . , ad = a′1, . . . , a

′
d and overall, we get

∫
Rd

 ∑
a1,...,ad

ca1,...,ad

d∏
j=1

Haj (sj)

2

e−∥s∥2/2

(2π)d/2
ds =

∑
a1,...,ad

c2a1,...,ad

d∏
j=1

∫ ∞

−∞
Haj (x)

2 e
−x2/2

√
2π

dx

=
∑

a1,...,ad

c2a1,...,ad

d∏
j=1

aj ! = m!
∑

a1,...,ad

(
m

a1, . . . , ad

)(
ca1,...,ad(

m
a1,...,ad

))2

= m! ∥v(h)∥2 .

Finally, by Claim 7, ∥v(h)∥2 ≤ (
∥∥(I +Σ)−1

∥∥
op)

m ∥v(p)∥2 so combining with the previous
inequality, we deduce

Et∼G

[
q(t)2

]
≤ m!(

∥∥(I +Σ)−1
∥∥

op)
m ∥v(p)∥2 .

As a consequence of the previous claim, we have

Corollary 45 Let G1 = N(µ1, I + Σ1), . . . , Gk = N(µk, I + Σk) be Gaussians. Let c be a
constant. There is a one-to-one correspondence between polynomials Q1, . . . , Qk of degree at most
c with real coefficients and polynomials P1, . . . , Pk of degree at most c with real coefficients given
by the following map:

The adjusted characteristic function of f(x) = Q1(x)G1 + · · ·+Qk(x)Gk is

f̃(X) = P1(iX)eiµ1(X)− 1
2
Σ1(X) + · · ·+ Pk(iX)eiµk(X)− 1

2
Σk(X) .

Proof This follows immediately from Corollary 44 and Claim 16.

Claim 16 also implies a bound on the L1 norm of the inverse adjusted characteristic function of
a polynomial in terms of the size of its coefficients.
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Claim 17 Let p(X) be a polynomial in d variables X1, . . . , Xd that is homogeneous of degree m
with real coefficients. Then

∥χ(imp(X))∥1 ≤
√
m! ∥v(p)∥2 .

Proof By Claim 16 (with µ = 0,Σ = 0),

χ(imp)(t) = q(t)N(0, I)(t)

where q is a polynomial of degree at most m such that Et∼N(0,I)[q(t)
2] ≤ m! ∥v(p)∥2. Now

∥χ(imp)∥1 =
∫
Rd

|q(t)|N(0, I)(t)dt ≤

√∫
Rd

|q(t)|2N(0, I)(t)dt ≤
√
m! ∥v(p)∥

where we used Cauchy Schwarz in the first inequality.

D.3. Generating Function Terminology

Here we introduce some general terminology for working with generating functions related to mix-
tures of Gaussians and mixtures of polynomial Gaussians. In light of Corollaries 40 and 41, it will
be useful to translate between generating functions consisting of sums of exponentials and their
expansions as formal power series in y whose coefficients are polynomials in X e.g.

f(X, y) =

∞∑
j=0

fj(X)

j!
yj .

For such an expression, we use the following terminology.

Definition 46 Given a formal power series in y, say

f(X, y) =
∞∑
j=0

fj(X)

j!
yj ,

where the coefficients f0(X), f1(X), . . . are polynomials in formal variables X = (X1, . . . , Xd)
and have real coefficients, we call the polynomials f0(X), f1(X), . . . the primary terms of f .

We also introduce terminology for dealing with mixtures of polynomial Gaussians.

Definition 47 Given Gaussians G1 = N(µ1, I + Σ1), . . . , Gk = N(µk, I + Σk) in Rd, and poly-
nomials P1(X), . . . , Pk(X) in formal variables X = (X1, . . . , Xd) with real coefficients, we say
that the generating function of the polynomial combination is

f(X, y) = P1(Xy)e
µ1(X)y+ 1

2
Σ1(X)y2 + · · ·+ Pk(Xy)e

µk(X)y+ 1
2
Σk(X)y2

where we view f as a function of y with indeterminates X . Recall that Xy denotes the d-tuple of
variables (X1y, . . . , Xdy).
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Remark 48 Note that by Corollary 40, if we have a mixture of Gaussians M = w1G1+· · ·+wkGk,
then the generating function of the polynomial combination P1(X) = w1, . . . , Pk(X) = wk is

f(X, y) = w1e
µ1(X)y+ 1

2
Σ1(X)y2 + · · ·+ wke

µk(X)y+ 1
2
Σk(X)y2 =

∞∑
m=0

1

m!
hm,M(X)ym .

In other words, the primary terms in the formal power series expansion of f(y) are exactly the
Hermite moment polynomials of the mixture. More generally, Corollary 41 and Corollary 45 imply
that for an MPG function M = Q1(x)G1 + · · ·+Qk(x)Gk, there are corresponding polynomials
P1, . . . , Pk, such that the generating function of the polynomial combination is

f(X, y) = P1(Xy)e
µ1(X)y+ 1

2
Σ1(X)y2 + · · ·+Pk(Xy)e

µk(X)y+ 1
2
Σk(X)y2 =

∞∑
m=0

1

m!
hm,M(X)ym .

In the exposition, we will use the following (informal) terminology. Note that for a Gaussian
N(µ, I +Σ), we often associate it with a generating function of the form eµ(X)y+ 1

2
Σ(X)y2 .

• When we work with the actual pdfs of Gaussians and write e.g. expressions of the form
f = Q1(x)G1 + · · ·+Qk(x)Gk, we say that we are working in distribution space

• When we work with expressions of the form eµ(X)y+ 1
2
Σ(X)y2 and e.g. expand them as power

series containing Hermite moment polynomials, we say that we are working in generating
function space

D.4. Differential Operators and their Compositions

Before moving on to the main proofs, we need to introduce one more piece of machinery: differen-
tial operators. Later on, differential operators will play a crucial role in allowing us to manipulate
generating functions and derive useful identities. In this section, we present a few basic results that
will be used throughout the paper.

We will frequently work with operators given by

D = ∂ − (a(X) + b(X)y)

where the partial derivative is taken with respect to y, a(X) is a (homogeneous) linear function and
b(X) is a (homogeneous) quadratic function. Note that if applied to a formal power series

f(y) =

∞∑
j=0

Qj(X)

j!
yj ,

the terms of the resulting power series are

D(f(y)) =
∞∑
j=0

Rj(X)

j!
yj

where Rj(X) = Qj+1(X) − a(X)Qj(X) − jb(X)Qj−1(X). In particular, if for all j, Qj is
homogeneous of degree j in X , then the primary terms Rj(X) are homogeneous and of degree
j + 1.
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It will be important to understand compositions of differential operators. We now prove several
basic properties that will be used later on. The first claim allows us to rewrite a composition of
differential operators as a higher order differential operator with polynomials as coefficients.

Claim 18 Consider a composition of differential operators

D = (∂ − (ak(X) + bk(X)y)) · · · (∂ − (a1(X) + b1(X)y))

where each aj is linear and each bj is quadratic. Then D can be rewritten in the form

∂k +Rk−1(X, y)∂
k−1 + · · ·+R0(X, y)

where

• Each Rj is a polynomial of degree at most k − j in y

Rj(X, y) = Rj,k−j(X)yk−j + · · ·+Rj,0(X)

• Each of the polynomials Rj,l is homogeneous in X with degree k − j + l, and is (Ok(1), k)-
simple with respect to {a1(X), b1(X), . . . , ak(X), bk(X)}.

Proof We will use induction on k. The base case is clear. Now, assume that we have written the
operator

Dk−1 = (∂ − (ak−1(X) + bk−1(X)y)) · · · (∂ − (a1(X) + b1(X)y))

in the desired form

Dk−1 = ∂k−1 +Rk−2(X, y)∂
k−2 + · · ·+R0(X, y) .

When we apply the last differential operator, we get

(∂ − (ak(X) + bk(X)y))Dk−1 = ∂(∂k−1 +Rk−2(X, y)∂
k−2 + · · ·+R0(X, y))

− (ak(X) + bk(X)y)(∂k−1 +Rk−2(X, y)∂
k−2 + · · ·+R0(X, y)) .

It is clear that the second term can be written in the desired form. To deal with the first term, we can
simply use the product rule i.e.

∂(Rj(X, y)∂
j) = Rj(X, y)∂

j+1 + ∂(Rj(X, y))∂
j

to write the entire differential operator in the desired form.

The next claim implies that applying a differential operator of the form ∂ − (a(X) + b(X)y)
cannot annihilate (or nearly annihilate) a polynomial unless a(X), b(X) are both close to 0.

Claim 19 Consider a polynomial P (X, y) of degree k in y

P (X, y) = P0(X) + P1(X)y + · · ·+ Pk(X)yk
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where the coefficients Pj(X) are polynomials in X that are homogeneous of degree k′+ j for some
constant k′. Let

R(X, y) = −(a(X) + b(X)y)P (X, y) + ∂(P (X, y))

where a(X), b(X) are a (homogeneous) linear and quadratic respectively and the partial derivative
is taken with respect to y. Assume

δ ≤ ∥v(a(X))∥+ ∥v(b(X))∥ ≤ δ−1 .

Then
∥vy(R(X, y))∥ ≥ (0.1δ)Ok,k′ (1) ∥vy(P (X, y))∥ .

Proof We will induct on k, the degree of P . The case when k = 0 follows from Claim 6. Now
assume that there is a constant ck−1,k′ for which the desired statement holds for all polynomials P
of degree at most k − 1 in y. Note that the coefficients of yk+1, yk in R are

Rk+1(X) = −b(X)Pk(X)

Rk(X) = −b(X)Pk−1(X)− a(X)Pk(X)

Thus by Claim 5 and Claim 6,

∥v(Rk+1(X))∥ ≥ Ωk,k′(1) ∥v(b(X))∥ ∥v(Pk(X))∥
∥v(Rk(X))∥ ≥ Ωk,k′(1) ∥v(a(X))∥ ∥v(Pk(X))∥ −Ok,k′(1) ∥v(b(X))∥ ∥v(Pk−1(X))∥

If for some parameter ϵ,
∥v(Pk(X))∥ ≥ ϵ ∥vy(P (X, y)∥

then for some sufficiently large constant K depending only on k, k′,

∥vy(R(X, y))∥ ≥ 1

2
∥v(Rk+1(X))∥+ ϵ

K
∥v(Rk(X))∥

≥ ∥v(b(X))∥
(
Ωk,k′(1) ∥v(Pk(X))∥ − ϵ

K
Ok,k′(1) ∥v(Pk−1(X))∥

)
+Ωk,k′(1)

ϵ

K
∥v(a(X))∥ ∥v(Pk(X))∥

≥ Ωk,k′(1)
ϵ2

K
(∥v(a(X))∥+ ∥v(b(X))∥) ∥vy(P (X, y))∥

≥ Ωk,k′(1)ϵ
2δ ∥vy(P (X, y))∥ .

On the other hand, if ϵ is sufficiently small and

∥v(Pk(X))∥ ≤ ϵ ∥vy(P (X, y)∥ ,

we may use the induction hypothesis on the polynomial

P ′(X, y) = P0(X) + P1(X)y + · · ·+ Pk−1(X)yk−1 .

Note

R(X, y) = −(a(X)+b(X)y)P ′(X, y)+∂(P ′(X, y))− (a(X)+b(X)y)Pk(X)yk+kPk(X)yk−1
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so by the induction hypothesis

∥vy(R(X, y))∥ ≥ (0.1δ)ck−1,k′
∥∥vy(P ′(X, y))

∥∥−Ok,k′(1)(1 + ∥v(a(X))∥+ ∥v(b(X))∥) ∥v(Pk(X))∥
≥
(
(0.1δ)ck−1,k′ (1− ϵ)−Ok,k′(1)ϵδ

−1
)
∥vy(P (X, y))∥ .

Choosing ϵ = (0.1δ)ck,k′ for ck,k′ sufficiently large in terms of k, k′, ck−1,k′ , in both cases we get

∥vy(R(X, y))∥ ≥ (0.1δ)Ok,k′ (1) ∥vy(P (X, y))∥ ,

completing the proof.

By repeatedly applying the previous claim, we can lower bound the order-0 term when a com-
position of differential operators (∂− (ak(X)+ bk(X)y)) · · · (∂− (a1(X)+ b1(X)y)) is expanded
into an order-k differential operator with polynomial coefficients (recall Claim 18).

Claim 20 Consider a composition of differential operators

D = (∂ − (ak(X) + bk(X)y)) · · · (∂ − (a1(X) + b1(X)y))

where each aj is linear and each bj is quadratic. Assume that D is rewritten in the form

D = ∂k +Rk−1(X, y)∂
k−1 + · · ·+R0(X, y) .

Also assume that for some constant δ,

δ < ∥v(aj(X))∥+ ∥v(bj(X))∥ < δ−1

for all j. There exists a (sufficiently large) constant Ck depending only on k such that

∥vy(R0(X, y))∥ ≥ (0.1δ)Ck .

Proof We will again use induction on k. The base case is clear. Now write

Dk−1 = (∂ − (ak−1(X) + bk−1(X)y)) · · · (∂ − (a1(X) + b1(X)y))

= ∂k−1 + Tk−2(X, y)∂
k−2 + · · ·+ T0(X, y)

for some polynomials T0, T1, . . . , Tk−2 satisfying the conditions in Claim 18. The induction hy-
pothesis gives us

∥vy(T0(X, y))∥ ≥ (0.1δ)Ck−1 .

Now
R0(X, y) = −(ak(X) + bk(X)y))T0(X, y) + ∂(T0(X, y)) ,

and applying Claim 19 completes the induction.
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D.5. Applying Differential Operators to Generating Functions

In this section, we analyze what happens when we apply certain differential operators to specific
types of generating functions. The results in this section are all from Liu and Moitra (2021) and can
be verified through direct computation.

Claim 21 Let ∂ denote differentiation with respect to y. If

f(y) = P (y,X)ea(X)y+ 1
2
b(X)y2

where P is a polynomial in y of degree k (whose coefficients are polynomials in X) then

(∂ − (a(X) + yb(X)))f(y) = Q(y,X)ea(X)y+ 1
2
b(X)y2

where Q is a polynomial in y with degree exactly k − 1 whose leading coefficient is k times the
leading coefficient of P .

Corollary 49 Let ∂ denote the differential operator with respect to y. If

f(y) = P (y,X)ea(X)y+ 1
2
b(X)y2

where P is a polynomial in y of degree k then

(∂ − (a(X) + yb(X)))k+1f(y) = 0.

Appendix E. Strong Observability: Hermite Moments to TV Distance

In this section, we prove our main observability theorem that if two degree-m MPG functions with
k components are ϵ-close on their first Ok,m(1) Hermite moment polynomials, then the functions
must be Õ(ϵ)-close in L1 distance. The theorem is stated formally below.

Theorem 50 Let G1 = N(µ1, I +Σ1), . . . , Gk = N(µk, I +Σk) be a set of Gaussians in (α, β)-
regular form. Let Q1(X), . . . , Qk(X) be d-variate polynomials of degree at most m. Define the
function g : Rd → R as

g(x) = Q1(x)G1(x) + · · ·+Qk(x)Gk(x) .

There exists a constant C depending only on k,m such that the following holds. If for all j with
0 ≤ j ≤ C, we have

∥v(hj,g(X))∥ ≤ ϵ

then we must have
∥g∥1 ≤ (2 + α+ β)Cϵ .

Remark 51 Note that the above gives observability because we can simply set g to be equal to the
difference of two MPG-functions.

In this section, we will use the following conventions.

• We have Gaussians G1 = N(µ1, I +Σ1), . . . , Gk = N(µk, I +Σk)

• Dj denotes the differential operator (∂ − (µj(X) + Σj(X)y)) where the partial derivative is
taken with respect to y.
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E.1. Recurrence for Hermite Moment Polynomials

One of the key ingredients in the proof of Theorem 50 is writing down a recurrence for the Hermite
moment polynomials of an MPG function. This is done in the following lemma.

Lemma 52 LetG1 = N(µ1, I+Σ1), . . . , Gk = N(µk, I+Σk) be Gaussians andQ1(X), . . . , Qk(X)
be d-variate polynomials of degree at most m. Let

g(x) = Q1(x)G1(x) + · · ·+Qk(x)Gk(x) .

Let κ = (m + 1)(2k − 1). Then there are d-variate polynomials Rj,l(X) for 0 ≤ j ≤ κ and
0 ≤ l ≤ κ− j such that

• Rj,l(X) is homogeneous of degree κ− j + l, Rκ,0(X) = 1

• Rj,l(X) is (Ok,m(1), Ok,m(1))-simple with respect to {µ1(X),Σ1(X), . . . , µk(X),Σk(X)}

• For all integers a ≥ κ,

κ∑
j=0

κ−j∑
l=0

ha−κ+j−l,g(X)Rj,l(X)

(a− κ− l)!
= 0 ,

where undefined terms (i.e. negative factorials in the denominator) are treated as 0.

Proof By Corollary 41, we can write

f(y) =

∞∑
j=0

1

j!
hj,g(X)yj = P1(Xy)e

µ1(X)y+ 1
2
Σ1(X)y2 + · · ·+ Pk(Xy)e

µk(X)y+ 1
2
Σk(X)y2 ,

where P1, . . . , Pk are polynomials of degree at most m. Now consider the differential operator

D = D(m+1)2k−1

k D(m+1)2k−2

k−1 . . .Dm+1
1 .

By Claim 21, we know D(f) = 0. However, we can expand out the formula for D using Claim
18 and write it in the following form

D = ∂κ +Rκ−1(X, y)∂
κ−1 + · · ·+R1(X, y)∂ +R0(X, y) .

Note that for each 0 ≤ j ≤ κ, Rj(X, y) is a polynomial of degree at most κ− j in y. Furthermore,
by Claim 18, it can be written in the form

Rj(X, y) =

κ−j∑
l=0

Rj,l(X)yl ,

where each of the polynomialsRj,l is homogeneous of degree κ−j+l inX and is (Ok,m(1), Ok,m(1))-
simple with respect to {µ1(X),Σ1(X) . . . , µk(X),Σk(X)}. Furthermore, it is obvious thatRκ,0 =
1
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Using the fact that D(f) = 0, we get that the polynomials hj,g in the generating function satisfy
a recurrence relation of depth Ok,m(1). For any integer a, by looking at the coefficient of ya−κ in
the power series expansion of D(f), we deduce

κ∑
j=0

κ−j∑
l=0

fa−κ+j−l(X)Rj,l(X)

(a− κ− l)!
= 0 .

This completes the proof.

For the proof of Theorem 50, it will be useful to work only with generating functions and
only translate back to distribution space at the end. We have the following equivalent result to the
previous lemma. It can be proven in the exactly the same way.

Lemma 53 Let N(µ1, I +Σ1), . . . , N(µk, I +Σk) be Gaussians. Let P1(X), P2(X), . . . , Pk(X)
be polynomials in X = (X1, . . . , Xd) of degree at most m. Consider the generating function of the
polynomial combination i.e.

f(X, y) = P1(Xy)e
µ1(X)y+ 1

2
Σ1(X)y2 + · · ·+ Pk(Xy)e

µk(X)y+ 1
2
Σk(X)y2

and let f0(X), f1(X), . . . be the primary terms in the formal power series expansion of f(y) i.e.

f(X, y) =
∞∑
j=0

fj(X)

j!
yj .

Let κ = (m + 1)(2k − 1). Then there are d-variate polynomials Rj,l(X) for 0 ≤ j ≤ κ and
0 ≤ l ≤ κ− j such that

• Rj,l(X) is homogeneous of degree κ− j + l, Rκ,0(X) = 1

• Rj,l(X) is (Ok,m(1), Ok,m(1))-simple with respect to {µ1(X),Σ1(X), . . . , µk(X),Σk(X)}

• For all integers a ≥ κ,
κ∑

j=0

κ−j∑
l=0

fa−κ+j−l(X)Rj,l(X)

(a− κ− l)!
= 0 ,

where undefined terms (i.e. negative factorials in the denominator) are treated as 0.

E.2. Observability When Components are All Very Close

Here, we deal with the special case when all pairs of components are close (within some small
constant) in TV distance. In the next subsection, we will show how to reduce to this case.

We will first prove observability in an even simpler case where all of the components are within
some small constant of isotropic.

Lemma 54 Let N(µ1, I +Σ1), . . . , N(µk, I +Σk) be Gaussians. Let P1(X), P2(X), . . . , Pk(X)
be polynomials of degree at most m. Let ϵ > 0 be some parameter. Let f(X, y) be the generating
function of the polynomial combination and let f0(X), f1(X), . . . be the primary terms in the for-
mal power series expansion of f(X, y). Then there exist constants c, C depending only on k and
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m with the following property. If ∥µj∥ ≤ c, ∥Σj∥2 ≤ c for all j ∈ [k] and ∥v(fj(X))∥ ≤ ϵ for all
0 ≤ j ≤ C, then

∥χ(f(X, i))∥1 ≤ Om,k(ϵ)

where χ denotes the inverse adjusted characteristic function and i =
√
−1.

Proof By Lemma 53, we can write

κ∑
j=0

κ−j∑
l=0

fa−κ+j−l(X)Rj,l(X)

(a− κ− l)!
= 0 .

for all a ≥ 2κ where the polynomials Rj,l satisfy the properties in the statement of the lemma. This
rearranges into

fa(X) = −(a− κ)!
κ−1∑
j=0

κ−j∑
l=0

fa−κ+j−l(X)Rj,l(X)

(a− κ− l)!
.

Using the triangle inequality and Claim 5,

∥v(fa(X)∥ ≤
κ−1∑
j=0

κ−j∑
l=0

(a− κ)!

(a− κ− l)!
∥v(fa−κ+j−l(X))∥ ∥v(Rj,l(X)∥ .

Let the sequence Ga be defined by Ga = ∥v(fa(X)∥ /
√
a!. The above inequality implies

Ga ≤
κ−1∑
j=0

κ−j∑
l=0

(a− κ)!
√
(a− κ+ j − l)!

(a− κ− l)!
√
a!

∥Ga−κ+j−l∥ ∥v(Rj,l(X)∥ .

Note that
(a− κ)!

√
(a− κ+ j − l)!

(a− κ− l)!
√
a!

≤
(a− κ)!

√
(a− 2l)!

(a− κ− l)!
√
a!

= Om,k(1) .

Also, note that by choosing c (the upper bound on ∥µ1∥ , . . . , ∥µk∥ , ∥Σ1∥2 , . . . , ∥Σk∥2) sufficiently
small, we can ensure that ∥v(Rj,l(X)∥ is sufficiently small as a function of k,m for all j < κ. This
is because the polynomials Rj,l are homogeneous with positive degree and (Om,k(1), Om,k(1))-
simple with respect to µ1(X),Σ1(X), . . . , µk(X),Σk(X). Thus, as long as c is sufficiently small,
we can ensure

Ga ≤ 0.1max(Ga−1, . . . , G0)

for all a ≥ 2κ. If we choose the constant C > 2κ, we may assume G0, G1, . . . Gκ are all Om,k(ϵ).
Now we may apply Claim 17 to get

∥χ(f(X, i))∥1 ≤
∞∑
j=0

√
j! ∥v(fj)∥2

j!
=

∞∑
j=0

Gj = Om,k(ϵ)

which completes the proof.

Now, by taking a suitable linear transformation, we can generalize the above result to when the
components are in regular form and all pairs of components are sufficiently close in TV. There is
some additional work to do because it is not immediately clear how taking a linear transformation
affects things in generating function space. We prove the following result.

37



LIU MOITRA

Corollary 55 LetN(µ1, I+Σ1), . . . , N(µk, I+Σk) be a set of Gaussians in (α, β)-regular form.
Let P1(X), P2(X), . . . , Pk(X) be polynomials of degree at most m. Let ϵ > 0 be some parameter.
Let f(X, y) be the generating function of the polynomial combination and let f0(X), f1(X), . . . be
the primary terms in the formal power series expansion of f(X, y).

Then there exists a (sufficiently large) constantK depending only on k andm with the following
property. If we have ∥∥µj − µj′

∥∥ ≤ β−1

K∥∥Σj − Σ′
j

∥∥ ≤ β−1

K

for all j, j′ ∈ [k] and ∥v(fj(X))∥ ≤ ϵ for all 0 ≤ j ≤ K, then

∥χ(f(X, i))∥1 ≤ (2 + α+ β)Kϵ .

Proof We define F = χ (f(X, i)). Let µ = µ1,Σ = Σ1. Let L : Rd → Rd denote the linear
transformation L(X) = (I +Σ)1/2X + µ . Now write

F(t) =
1

(2π)d

∫
Rd

f(X, i)e−
1
2
∥X∥2−it·XdX .

Let t = L(t′) for some t′ ∈ Rd. Then

F(t) =
1

(2π)d

∫
Rd

f(X, i)e−
1
2
∥X∥2−it′·(I+Σ)1/2X−iµ·XdX

=
1

(2π)d

∫
Rd

 k∑
j=1

Pj(iX)eiµj(X)− 1
2
Σj(X)

 e−
1
2
∥X∥2−it′·(I+Σ)1/2X−iµ·XdX

=
1

(2π)d

∫
Rd

 k∑
j=1

Pj(iX)ei(µj−µ)·X− 1
2
XT (Σj−Σ)X

 e−
1
2
XT (I+Σ)X−it′·(I+Σ)1/2XdX

Let

g(X, y) =

 k∑
j=1

Pj(Xy)e
(µj−µ)·Xy+ 1

2
XT (Σj−Σ)Xy2

 .

Then we can substitute X = (I +Σ)−1/2Z and rewrite

F(t) =
1

(2π)d

∫
Rd

g(X, i)e−
1
2
XT (I+Σ)X−it′·(I+Σ)1/2XdX

=
det(I +Σ)−1/2

(2π)d

∫
Rd

g((I +Σ)−1/2Z, i)e−
1
2
∥Z∥2−it′·ZdZ

= det(I +Σ)−1/2χ
(
g((I +Σ)−1/2Z, i)

)
(t′) .

Recall that t = L(t′) = (I +Σ)1/2t′ + µ. Thus, we conclude

∥F∥1 =
∥∥∥χ(g((I +Σ)−1/2Z, i)

)∥∥∥
1
. (4)
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We will now bound the RHS by applying Lemma 54.

Let C be the parameter from Lemma 54 (set in terms of k,m). Choosing K sufficiently large,
we may assume that

∥v(fj(X))∥ ≤ ϵ (5)

for all j ≤ C. Note that
g(X, y) = f(X, y)e−µ(X)y− 1

2
Σ(X)y2 .

Let the primary terms of g be g0(X), g1(X), . . . ,. We can also write the power series expansion of

e−µ(X)y− 1
2
Σ(X)y2 =

∞∑
j=0

(
−µ(X)y − 1

2Σ(X)y2
)j

j!
=

∞∑
j=0

uj(X)yj

j!

for some polynomials uj . Note that by Claim 5 and the fact that ∥µ∥ , ∥Σ∥2 ≤ α, we have

∥v(uj(X))∥ ≤ (2 + α)Om,k(1) (6)

for j ≤ C (since C = Om,k(1)). Now we have

∞∑
j=0

gj(X)yj

j!
=

 ∞∑
j=0

fj(X)yj

j!

 ∞∑
j=0

uj(X)yj

j!

 .

Thus, after expanding and truncating to the first C + 1 terms, we can use Claim 5 and equations (5)
and (6) to deduce that for all j with 0 ≤ j ≤ C,

∥v(gj(X))∥ ≤ (2 + α)Om,k(1)ϵ .

Now note that the primary terms of the function g((I+Σ)−1/2X, y) are exactly gj((I+Σ)−1/2X).
By Claim 7 we get for all j with 0 ≤ j ≤ C,∥∥∥v (gj ((I +Σ)−1/2X

))∥∥∥ ≤ (2 + α+ β)Om,k(1)ϵ .

Now we need to check the remaining conditions of Lemma 54. Let

G′
j = N(µ′j , I +Σ′

j) = N
(
(I +Σ)−1/2(µj − µ), I + (I +Σ)−1/2(Σj − Σ)(I +Σ)−1/2

)
for all j ∈ [k]. Note that we can write

g((I +Σ)−1/2X, y) =
∑
j∈[k]

P ′
j(Xy)e

µ′
j(X)y+ 1

2
Σ′

j(X)y2

for polynomials P ′
1, . . . , P

′
k of degree at most m. By choosing K sufficiently large, we can ensure

that the Gaussians G′
1, . . . , G

′
k satisfy the conditions of Lemma 54 (because ∥µj − µ∥ , ∥Σj − Σ∥2

will be sufficiently small). Thus, applying Lemma 54 and using (4) completes the proof.
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E.3. Reducing to When Components are All Very Close

We will now deal with the case when the components are not necessarily all very close to each other.
We will still assume that the components are in (α, β)-regular form for α, β ≤ poly(log 1/ϵ).

The way we will reduce to the case where the components are all very close is as follows. We
show that we can partition the components G1, . . . , Gk into submixtures say S1, . . . , Sa ⊂ [k] such
that

• Components in the same submixture are sufficiently close to apply Corollary 55

• Components in different submixtures are not too close

We then use differential operators to isolate each of these submixtures (relying on the second con-
dition above) and deduce that if the Hermite moment polynomials of the entire mixture are close
to 0, then the Hermite moment polynomials of each submixture are close to 0. We can then apply
Corollary 55 on each submixture to complete the proof.

We will need a few additional definitions.

Definition 56 Given GaussiansG1 = N(µ1, I+Σ1), . . . , Gk = N(µk, I+Σk), we say a partition
S1, . . . , Sa of [k] is δ-separated if for any pair of components in different parts of the partition, say
i1 ∈ Sj1 , i2 ∈ Sj2 , j1 ̸= j2,

∥µi1 − µi2∥2 + ∥Σi1 − Σi2∥2 ≥ δ .

Definition 57 Given Gaussians G1 = N(µ1, I + Σ1), . . . , Gk = N(µk, I + Σk), we say a parti-
tion S1, . . . , Sa of [k] is (δ1, δ2)-good for some parameters δ1, δ2 if for any pair of components in
different parts of the partition, say i1 ∈ Sj1 , i2 ∈ Sj2 , j1 ̸= j2,

∥µi1 − µi2∥2 + ∥Σi1 − Σi2∥2 ≥ δ1 .

and for any pair of components in the same part of the partition, say i1, i2 ∈ Sj1 ,

∥µi1 − µi2∥2 + ∥Σi1 − Σi2∥2 ≤ δ2 .

Claim 22 Given Gaussians G1 = N(µ1, I + Σ1), . . . , Gk = N(µk, I + Σk) and any parameter
θ > 0, there exists a (θ, kθ)-good partition of [k].

Proof Consider a graph on nodes 1, 2, . . . , k where two nodes i, j are connected if and only if

∥µi − µj∥2 + ∥Σi − Σj∥2 ≤ θ .

Now let S1, . . . , Sa be the connected components in this graph. We claim this forms a (θ, kθ)-good
partition. It is clear that any pair i, j in different parts of the partition satisfies

∥µi − µj∥2 + ∥Σi − Σj∥2 ≥ θ .

On the other hand, for any pair in the same part of the partition, we can find a path between them in
the graph, say i, l1, . . . , lc, j and use the triangle inequality summed along the path to deduce

∥µi − µj∥2 + ∥Σi − Σj∥2 ≤ kθ
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which completes the proof.

Now we begin the main technical part. We first explain the intuition for using differential
operators to isolate parts of the mixture. Let D = ∂ − µ(X) − Σ(X)y for some µ,Σ. Consider a
Gaussian N(µ′, I +Σ′) and consider

D
(
eµ

′(X)y+ 1
2
Σ′(X)y2

)
.

Note that if µ,Σ are close to µ′,Σ′, then the result will be essentially 0. On the other hand, we
can verify that if µ,Σ are not close to µ′,Σ′, then the result will be bounded away from 0. Thus,
we can apply differential operators to essentially remove all components that are far away from
N(µ′, I + Σ′), leaving only a submixture of components that are sufficiently close to each other.
Over the next two claims, we will formalize this intuition by showing that given a submixture of
close components, if we repeatedly apply far-away differential operators, we cannot accidentally
zero-out the submixture.

Claim 23 Consider a set of Gaussians G1 = N(µ1, I + Σ1), . . . , Gk = N(µk, I + Σk). Let
P1(X), . . . , Pk(X) be polynomials of degree at most m. Let f(X, y) be the generating function
of the polynomial combination and let f0, f1, . . . be the primary terms in the formal power series
expansion of f .

Consider two parameters µ,Σ and assume that for all j ∈ [k],

δ ≤ ∥µj − µ∥2 + ∥Σj − Σ∥2 ≤ δ−1 .

Let g(X, y) = (∂ − (µ(X) + Σ(X)y))f(X, y) where the partial derivative is taken with respect to
y and let g0, g1, . . . be the primary terms of g. Let K be a constant that is sufficiently large in terms
of k,m. For any parameter ϵ > 0, if for all j ≤ K

∥v(gj(X))∥2 ≤ ϵ

then for all j ≤ K,

∥v(fj(X))∥2 ≤ (2 + ∥µ∥+ ∥Σ∥2 + δ−1)Ok,m,K(1)ϵ .

Proof Consider
h(X, y) = g(X, y)e−µ(X)y− 1

2
Σ(X)y2 .

Note that
h(X, y) = ∂y

(
f(X, y)e−µ(X)y− 1

2
Σ(X)y2

)
.

Let F (X, y) = f(X, y)e−µ(X)y− 1
2
Σ(X)y2 and let F0, F1, . . . be its primary terms. The primary

terms of h are F1, F2, . . . (i.e. the same but shifted down by one).

First note that since h(X, y) = g(X, y)e−µ(X)y− 1
2
Σ(X)y2 , we have for all 1 ≤ j ≤ K + 1

∥v(Fj(X))∥2 ≤ (2 + ∥µ∥+ ∥Σ∥2)
OK(1)ϵ . (7)
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To see this, it suffices to consider the product of the power series for g(X, y) and e−µ(X)y− 1
2
Σ(X)y2

after truncating both series at yK (dropping all terms with higher powers of y). By Claim 5, the
first K + 1 primary terms in the power series expansion of e−µ(X)y− 1

2
Σ(X)y2 have coefficient

norm at most (2 + ∥µ∥ + ∥Σ∥2)OK(1). Thus, when we expand out the product of g(X, y) and
e−µ(X)y− 1

2
Σ(X)y2 , we use Claim 5 again to deduce that the resulting primary terms will all have

coefficient norm at most (2 + ∥µ∥+ ∥Σ∥2)OK(1)ϵ.

Now we will argue about F0(X) (which is just a constant). Define the following differential opera-
tors for j ∈ [k],

∆j = ∂ − ((µj(X)− µ(X)) + (Σj(X)− Σ(X))y) .

Now consider the differential operator

∆ = ∆
(m+1)2k−1

k ∆
(m+1)2k−2

k−1 . . .∆m+1
1 .

We know by Claim 21 that ∆(F (X, y)) = ∆(f(X, y)e−µ(X)y− 1
2
Σ(X)y2) = 0. On the other hand,

we may use Claim 18 to expand ∆ in the form

∆ = ∂(m+1)(2k−1) +R(m+1)(2k−1)−1(X, y)∂
(m+1)(2k−1)−1 + · · ·+R1(X, y)∂ +R0(X, y) .

for some polynomials R0, R1, . . . . Let κ = (m+ 1)(2k − 1). We have

R0(X, y)F (X, y) = −

 κ∑
j=1

Rj(X, y)∂
κ−j(F (X, y))


which is equivalent to

R0(X, y)
∞∑
l=0

Fl(X)yl

l!
= −

 κ∑
j=1

Rj(X, y)

( ∞∑
l=0

Fl+j(X)yl

l!

) .

The key observation is that F0(X) appears on the LHS but not the RHS i.e. we may write

R0(X, y)F0(X) = −

 κ∑
j=1

Rj(X, y)

( ∞∑
l=0

Fl+j(X)yl

l!

)−R0(X, y)

∞∑
l=1

Fl(X)yl

l!
. (8)

Now by Claim 20, we have

∥vy(R0(X, y))∥ ≥ (0.1δ)Ok,m(1) .

Note that Claim 18 and Claim 5 give an upper bound on the coefficient norm of Rj(X, y) for all
0 ≤ j ≤ κ. In particular, we get

∥vy(Rj(X, y))∥ ≤ (2δ−1)Ok,m(1) .

Now, by combining with (7) we can upper bound the coefficient norm of the first κ terms in the
power series of the RHS of (8). Since R0(X, y) has degree at most κ, as long as K > 10κ, we get

∥v(F0(X))∥ ≤ (2 + ∥µ∥+ ∥Σ∥2 + δ−1)OK,k,m(1)ϵ .
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Now we have an upper bound on the coefficient norm of all of F0(X), . . . , FK(X). Note that

f(X, y) = F (X, y)eµ(X)y+ 1
2
Σ(X)y2

and we can expand out the product of the power series of F (X, y) and eµ(X)y+ 1
2
Σ(X)y2 , using the

same argument as before, to get that for all j with 0 ≤ j ≤ K,

∥v(fj(X))∥ ≤ (2 + ∥µ∥+ ∥Σ∥2 + δ−1)OK,k,m(1)ϵ .

By repeatedly applying the previous claim, we get the following.

Claim 24 Consider a set of Gaussians G1 = N(µ1, I +Σ1), . . . , Gk = N(µk, I +Σk) in (α, β)-
regular form and let P1(X), . . . , Pk(X) be polynomials of degree at most m. Let f(X, y) be the
generating function of the polynomial combination and let f0, f1, . . . be the primary terms in the
formal power series expansion of f .

Let S1, . . . , Sa be a δ-separated partition of [k] for some constant δ < 1. For each l ∈ [a],
let f (l)(X, y) be the generating function of the polynomial combination of only the Gaussians in Sl
and let f (l)0 , f

(l)
1 , . . . be the primary terms in the formal power series expansion of f (l).

For any constant K that is sufficiently large in terms of k,m, There exists a constant Ck,K,m

depending on k,K,m such that the following holds. If for all j ≤ K we have

∥v(fj(X))∥ ≤ ϵ

then for all l ∈ [a], j ≤ K − (m+ 1)2k,∥∥∥v(f (l)j (X))
∥∥∥ ≤ ϵ

(
2 + α+ δ−1

)Ck,K,m .

Proof Without loss of generality S1 = {1, 2, . . . , t} for some t ≤ k. Recall that for each j ∈ [k],
we use Dj to denote the differential operator ∂− (µj(X)+Σj(X)y). Now consider the differential
operator

D(1) = D2k−t−1(m+1)
k · · · D2(m+1)

t+2 Dm+1
t+1 .

Note that by Claim 18 and Claim 5, we can rewrite

D(1) = ∂κ +Rκ−1(X, y)∂
κ−1 + · · ·+R0(X, y)

where κ = (m+ 1)(2k−t − 1) and for all j,

∥vy(Rj(X, y))∥ ≤ (2 + α)Ok,m(1) .

Now consider the power series expansion of D(1)f and let d0(X), d1(X), . . . be its primary terms.
Since the differential operator D(1) has degree at most (m+ 1)2k, the assumption in the statement
of the claim implies that for all j ≤ K − (m+ 1)2k,

∥v(dj(X))∥ ≤ (2 + α)Ok,m,K(1) ϵ .
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On the other hand, note that
D(1)f = D(1)f (1)

since by Claim 21, the operator D(1) zeros out all of the other components. We may now repeatedly
apply Claim 23 (since D(1) factors as a composition of linear differential operators) and use the fact
that the partition S1, . . . , Sa is δ-separated to deduce that as long as K is sufficiently large in terms
of k,m, we have for all j ≤ K − (m+ 1)2k ,∥∥∥v(f (1)j (X))

∥∥∥ ≤
(
2 + α+ δ−1

)Ok,m,K(1)
ϵ .

Since the initial choice of l = 1 was arbitrary, this completes the proof.

We can now prove the main theorem of this section. The statement below is stated in terms of
generating functions. We will translate it into distribution space and prove Theorem 50 immediately
afterwards.

Theorem 58 Consider a set of Gaussians G1 = N(µ1, I + Σ1), . . . , Gk = N(µk, I + Σk) in
(α, β)-regular form and let P1(X), . . . , Pk(X) be polynomials of degree at most m. Let f(X, y)
be the generating function of the polynomial combination and let f0, f1, . . . be the primary terms
in the formal power series expansion of f .

There exists a constant C depending only on k,m such that the following holds. If for all j with
0 ≤ j ≤ C, we have

∥v(fj(X))∥ ≤ ϵ

then we must have
∥χ(f(X, i))∥1 ≤ (2 + α+ β)Cϵ .

Proof Let K be the constant in Corollary 55. Recall that K is set as a function of k,m. Let
θ = β−1

2kK . By Claim 22, there is a (θ, kθ)-good partition of [k], say S1, . . . , Sa. For each l ∈ [a], let

f (l)(y) =
∑
j∈Sl

Pj(Xy)e
µj(X)y+ 1

2
Σj(X)y2 .

and let f (l)0 , f
(l)
1 , . . . be the primary terms in the expansion of f (l) as a power series in y.

By Claim 24, as long as C is sufficiently large in terms of k,m, we have for all 0 ≤ j ≤ K∥∥∥v(f (l)j (X))
∥∥∥ ≤ ϵ(2 + α+ β)Om,k(1) .

Now by Corollary 55, since the partition is such that all pairs of components in the same part
are close, we get that ∥∥∥χ(f (l)(X, i))∥∥∥

1
≤ ϵ(2 + α+ β)Om,k(1) .

Finally, since
f = f (1) + · · ·+ f (a)

we get
∥χ (f(X, i))∥1 ≤ (2 + α+ β)Om,k(1)ϵ
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which completes the proof.

To prove Theorem 50, it suffices to translate the above theorem from generating functions back
to distributions.
Proof [Proof of Theorem 50] By Corollary 41, there are polynomials P1, . . . , Pk of degree at most
m such that

f(X, y) =
∞∑
j=0

1

j!
hj,g(X)yj = P1(Xy)e

µ1(X)y+ 1
2
Σ1(X)y2 + · · ·+ Pk(Xy)e

µk(X)y+ 1
2
Σk(X)y2 .

Now, applying Theorem 58 to the expression on the RHS, we have

∥χ(f(X, i))∥1 ≤ (2 + α+ β)Om,k(1)ϵ .

Finally, Fact 1 and Claim 14 imply that g = χ(f(X, i)) so we are done.

Appendix F. Hermite Moment Polynomials of a Single Gaussian: Tail Bounds and
other Properties

Note that the Hermite moment polynomials of a distribution are given by Ez[Hm(X, z)] for z drawn
from that distribution. The way we estimate these Hermite moment polynomials from samples will
be by robustly estimating the mean of the distribution Hm(X, z). In this section, our goal is to
understand properties of the distribution of Hm(X, z) for z drawn from a single Gaussian of the
form N(µ, I + Σ). Later, in Section G, we will use this to deduce that we can estimate Hm(X, z)
to within nearly optimal error even when z is drawn from a regular-form mixture of Gaussians.

We will need a few definitions.

Definition 59 Given two sets of d variablesX(1) = (X
(1)
1 , . . . , X

(1)
d ) andX(2) = (X

(2)
1 , . . . , X

(2)
d )

and a polynomial P (X(1), X(2)), for integers m1,m2, the degree-(m1,m2)-part of P consists of
the monomials of P that have total degree m1 in X(1) and total degree m2 in X(2).

Definition 60 Consider two sets of formal variables, say

X(1) = (X
(1)
1 , . . . , X

(1)
d ), X(2) = (X

(2)
1 , . . . , X

(2)
d ) .

Let G = N(µ, I +Σ) be a Gaussian. We say the fundamental polynomials (with respect to G) are{
µ
(
X(1)

)
, µ
(
X(2)

)
,Σ
(
X(1)

)
,Σ
(
X(2)

)
,
(
X(1)

)T
(I +Σ)X(2)

}
F.1. Covariance of Multivariate Hermite Polynomials

First, we analyze the covariance of Hm(X, z) for z drawn from a Gaussian N(µ, I +Σ).

Claim 25 Let G = N(µ, I + Σ) be a Gaussian. Let m be a positive integer. Consider two sets of
d variables X(1) = (X

(1)
1 , . . . , X

(1)
d ) and X(2) = (X

(2)
1 , . . . , X

(2)
d ). Then the expression

Ez∼G[Hm(X(1), z)Hm(X(2), z)]

(which is a formal polynomial in 2d variables) can be computed as follows:

45



LIU MOITRA

1. Consider the power series expansion of

exp

(
yµ(X(1) +X(2)) +

1

2
y2Σ(X(1) +X(2)) + y2X(1) ·X(2)

)
=

∞∑
j=0

Qj(X
(1), X(2))yj

j!

2. Take
(
2m
m

)−1
times the degree (m,m) part of Q2m(X(1), X(2))

Proof We will evaluate Ez∼G[Hm(X(1), z)Hm(X(2), z)] using generating functions. Let

F =

( ∞∑
m=0

1

m!
Hm(X(1), z)ym

)( ∞∑
m=0

1

m!
Hm(X(2), z)ym

)
.

Note thatHm(X, z) is homogeneous and of degreem inX . Thus, to computeHm(X(1), z)Hm(X(2), z),
it suffices to extract the degree-(m,m) part of the coefficient of y2m in the power series expansion
of F .

Now by Claim 11 we may write

Ez∼G[F ] = Ez∼G

[
exp

(
yz · (X(1) +X(2))− 1

2
y2(X(1) ·X(1) +X(2) ·X(2))

)]
= C

∫
exp

(
−1

2
(z − µ)T (I +Σ)−1(z − µ) + yz · (X(1) +X(2))− 1

2
y2(X(1) ·X(1) +X(2) ·X(2))

)
= C

∫
exp

(
− 1

2

(
z − µ− y(I +Σ)(X(1) +X(2))

)T
(I +Σ)−1

(
z − µ− y(I +Σ)(X(1) +X(2))

)
+ yµ · (X(1) +X(2)) +

1

2
y2
((

X(1)
)T

ΣX(1) +
(
X(2)

)T
ΣX(2) + 2

(
X(1)

)T
(I +Σ)X(2)

))

= exp

(
yµ(X(1) +X(2)) +

1

2
y2Σ(X(1) +X(2)) + y2X(1) ·X(2)

)
.

In the above, C denotes the normalization constant for a Gaussian with covariance I + Σ. Next,
expanding the above as a power series, we know that the degree (m,m) part of Q2m(X(1), X(2)) is
equal to

E
[
(2m)!

m! ·m!
Hm(X(1), z)Hm(X(2), z)

]
from which we immediately get the desired conclusion.

As a corollary to the above, we get the following upper bound on the covariance of v(Hm(X, z))
for a single Gaussian. To do this, we rely on the symmetric tensorization (recall definition 33) and its
properties to relate the expression Ez∼G[Hm(X(1), z)Hm(X(2), z)] to the covariance of the vector
v(Hm(X, z)).

Claim 26 Let G = N(µ, I + Σ) be a Gaussian. Let m be a positive integer. Let ΣHm be the
covariance of v(Hm(X, z)) for z drawn from G. Then

ΣHm ≤ Ez∼G [v(Hm(X, z))⊗ v(Hm(X, z))] ≤ (m(1 + ∥µ∥2 + ∥Σ∥2))
O(m)I

where I on the RHS denotes the identity matrix of the appropriate size.
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Proof Consider two sets of d variables X(1) = (X
(1)
1 , . . . , X

(1)
d ) and X(2) = (X

(2)
1 , . . . , X

(2)
d ).

Let
P (X(1), X(2)) = Ez∼G[Hm(X(1), z)Hm(X(2), z)] .

Let T = Tsym(P ). Note that by Claim 9,

T = Ez∼G[v(Hm(X(1), z))⊗ v(Hm(X(2), z))] .

On the other hand, by Claim 25, P (X(1), X(2)) can be computed by considering the power series
expansion

exp

(
yµ(X(1) +X(2)) +

1

2
y2Σ(X(1) +X(2)) + y2X(1) ·X(2)

)
=

∞∑
j=0

Qj(X
(1), X(2))yj

j!
.

and taking
(
2m
m

)−1
times the degree (m,m) part of Q2m. We will use Qm,m to denote the degree

(m,m) part of Q2m. Write

Q = yµ(X(1) +X(2)) +
1

2
y2Σ(X(1) +X(2)) + y2X(1) ·X(2)

= yµT (X(1) +X(2)) + y2(X(1))T (I +Σ)X(2) +
1

2
y2
(
(X(1))TΣX(1) + (X(2))TΣX(2)

)
.

Now we may write

exp(Q) = 1 +Q+
Q2

2!
+ . . . .

Let S be the set of fundamental polynomials of G = N(µ, I + Σ) . Note that Q is a sum of O(1)
polynomials from among S . Furthermore, each of these polynomials is homogeneous in each of
the sets of variables X(1), X(2). Thus, we can expand each of the terms Q,Q2, . . . as a sum of
products of elements of S. Now by Claim 25, we can obtain P (X(1), X(2)) by discarding all of the
products that do not have the proper degrees (degree exactly m in each of the subsets of variables
X(1), X(2)). Since Q is a sum of O(1) polynomials from S, each with degree 1 or 2, and we only
keep terms with total degree 2m, we deduce that the number of terms (and all of the coefficients
in front of the terms) that we keep are mO(m). Thus, P (X(1), X(2)) is (mO(m), 2m)-simple with
respect to S.

It now suffices to bound the operator norms of the symmetric tensorizations of each of the
individual products of fundamental polynomials. Consider a product of fundamental polynomials
P1P2 · · ·Pa for some a ≤ 2m. By Claim 10,∥∥Tsym(P1P2 · · ·Pa)

∥∥
op ≤

∥∥Tsym(P1)
∥∥ · · · ∥∥Tsym(Pa)

∥∥
≤
(
(∥µ∥2 + 1)(∥Σ∥2 + 1)(∥I +Σ∥op + 1)

)O(m)
≤ (1 + ∥µ∥2 + ∥Σ∥2)

O(m) .

Combining this inequality with the fact that P (X(1), X(2)) is
(
mO(m), 2m

)
-simple with respect to

S gives that
T ≤ (m(1 + ∥µ∥2 + ∥Σ∥2))

O(m)I .

Also, clearly ΣHm ≤ T so we are done.

We will also need a lower bound on the covariance of the Hermite polynomials. This lower
bound will hold when G = N(µ, I +Σ) is within a sufficiently small constant of isotropic.
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Claim 27 LetG = N(µ, I+Σ) be a Gaussian. Letm be a positive integer. There exists a constant
cm depending only on m such that if ∥µ∥ , ∥Σ∥2 ≤ cm, then ΣHm , the covariance of v(Hm(X, z))
for z drawn from G, satisfies

ΣHm ≥ 1

2
I .

Proof Consider two sets of d variables X(1) = (X
(1)
1 , . . . , X

(1)
d ) and X(2) = (X

(2)
1 , . . . , X

(2)
d ).

Let
P (X(1), X(2)) = Ez∼G[Hm(X(1), z)Hm(X(2), z)] .

Let T = Tsym(P ). Note that

T = Ez∼G[v(Hm(X(1), z))⊗ v(Hm(X(2), z))] .

On the other hand, recall that by Claim 25, P (X(1), X(2)) can be computed by considering the
power series expansion

exp

(
yµ(X(1) +X(2)) +

1

2
y2Σ(X(1) +X(2)) + y2X(1) ·X(2)

)
=

∞∑
j=0

Qj(X
(1), X(2))yj

j!
.

and taking
(
2m
m

)−1
times the degree (m,m) part of Q2m. We will use Qm,m to denote the degree

(m,m) part of Q2m.
The key observation now is that if µ = 0,Σ = 0, then the LHS of the above is just exp(y2X(1) ·

X(2)). In this case, Qm,m would be (2m)!/m! · (X(1) ·X(2))m.
We now show that by choosing cm sufficiently small, we can ensure that Qm,m does not change

by too much. Let us write the power series expansion

exp

(
yµ(X(1) +X(2)) +

1

2
y2Σ(X(1) +X(2))

)
=

∞∑
j=0

Rj(X
(1), X(2))yj

j!
.

For each j, let Rj,j(X
(1), X(2)) denote the degree (j, j) part of R2j . Next note that

Qm,m(X(1), X(2))

(2m)!
=

m∑
j=0

(X(1) ·X(2))m−jRj,j(X
(1), X(2))

(m− j)!(2j)!
.

Consider the expression (X(1) ·X(2))m−jRj,j(X
(1), X(2)) for a fixed j. Note that by choosing cm

sufficiently small, we can ensure, using Claim 10, that∥∥∥Tsym(Rj,j(X
(1), X(2)))

∥∥∥
2

is bounded by a sufficiently small function of m for 1 ≤ j ≤ m. Next, note that

Tsym((X
(1) ·X(2))m−j) = I

where I is the identity matrix of the appropriate size. Thus, by Claim 10. we can ensure that∥∥∥Tsym

(
(X(1) ·X(2))m−jRj,j(X

(1), X(2))
)∥∥∥

op
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is bounded by a sufficiently small function of m for all 1 ≤ j ≤ m. Thus, if we let

A = Tsym

(
Qm,m(X(1), X(2))− (2m)!

m!
(X(1) ·X(2))m

)

= Tsym

(2m)!
m∑
j=1

(X(1) ·X(2))m−jRj,j(X
(1), X(2))

(m− j)!(2j)!


then we can ensure that ∥A∥op is bounded by a sufficiently small function of m.

However, the symmetric tensorization of (X(1) ·X(2))m is exactly the identity matrix I . Thus,
we have

T ≥ 0.9I

where recall

T = Ez∼G[v(Hm(X(1), z))⊗ v(Hm(X(2), z))] = Tsym

((
2m

m

)−1

Qm,m(X(1), X(2))

)
.

To bound the covariance of v(Hm(X, z)), it remains to compute

Ez∼G[v(Hm(X, z))]⊗ Ez∼G[v(Hm(X, z))] .

However, by Claim 12, Ez∼G[Hm(X, z)] = hm,G(X) is exactly the coefficient of ym/m! in the
power series expansion of

eµ(X)y+ 1
2
Σ(X)y2 .

As long as cm is sufficiently small, we can use Claim 5 to get that

∥Ez∼G[v(Hm(X, z))]⊗ Ez∼G[v(Hm(X, z))]∥2 = ∥v(hm,G(X))∥2 ≤ 0.1 .

Putting everything together, we get that

ΣHm = T − Ez∼G[v(Hm(X, z))]⊗ Ez∼G[v(Hm(X, z))] ≥ 0.5I .

F.2. Tail Bounds and Stability Bounds

Now we prove that the distribution of Hm(X, z) for z drawn from a Gaussian G = N(µ, I + Σ)
has exponential tail decay. This will let us obtain tight stability bounds for samples drawn from
this distribution. The stability bounds will then be plugged into existing algorithms for robust mean
estimation (see e.g. Diakonikolas and Kane (2019) for an explanation of stability and its use in
robust mean estimation).

The proofs in this section are mostly standard and many of them are deferred to Appendix J.
First we need a tail bound on the distribution of Hm(X, z).

Lemma 61 Let G = N(µ, I + Σ). Consider the vector v(Hm(X, z)) for z ∼ G. Let u be any
unit vector with the same dimensionality. There are positive constants cm, Cm depending only on
m such that for any real number t > 1

Pr
[
|v(Hm(X, z)) · u| ≥ t(2 + ∥µ∥2 + ∥Σ∥2)

Cm
]
≤ e−tcm
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Proof We will use Claim 26 and Claim 4 to bound

Ez∼G

[
(v(Hm(X, z)) · u)k

]
for some appropriately chosen even integer k and then use Markov’s inequality. First, Claim 26
implies

Ez∼G

[
(v(Hm(X, z)) · u)2

]
≤ (m(1 + ∥µ∥2 + ∥Σ∥2))

O(m) .

Now note that for a fixed u, v(Hm(X, z)) · u is a polynomial in z of degree at most m. Thus, by
Claim 4, we get that for even integers k,

Ez∼G

[
(v(Hm(X, z)) · u)k

]
≤ (mk(1 + ∥µ∥2 + ∥Σ∥2))

O(mk) .

Now by Markov’s inequality,

Pr
[
|v(Hm(X, z)) · u| ≥ t(2 + ∥µ∥2 + ∥Σ∥2)

Cm
]
≤

(mk(1 + ∥µ∥2 + ∥Σ∥2))O(mk)

tk(2 + ∥µ∥2 + ∥Σ∥2)Cmk
.

Choosing Cm to be sufficiently large in terms of m and k = tcm for some sufficiently small positive
constant cm depending only on m gives the desired inequality.

Now that we have shown that the distribution of Hm(X, z) exhibits exponential tail decay in
all directions, we can prove finite sample concentration inequalities. First we prove a concentration
inequality in 1D, stating that for a set of samples from a distribution with exponential tail decay,
with high probability, the empirical mean of any (1 − ϵ) fraction of the samples is within Õ(ϵ) of
the true mean.

Claim 28 Let D be a distribution on R and 0 < c < 1 be a positive constant such that for all real
numbers t > 1,

Pr
x∼D

[|x| ≥ t] ≤ e−tc .

Let ϵ < 1/2 and d be parameters. Given a set S of n ≥ (d/ϵ)10
5/c independent samples from D,

with probability at least 1− e−(8d/ϵ)2 , any subset S′ ⊆ S of size at least (1− ϵ)n satisfies∣∣∣∣∣µD − 1

|S′|
∑
x∈S′

x

∣∣∣∣∣ ≤ ϵ log1/c(1/ϵ)

(
102

c

)10/c

.

Proof See Appendix J

Now, we are ready to introduce the definition of stability of a set of samples in Rd. The definition
below is standard in robust statistics literature (see e.g. Diakonikolas and Kane (2019)).

Definition 62 For ϵ > 0 and δ ≥ ϵ, we say a finite set S ⊂ Rd is (ϵ, δ)-stable with respect to a
distribution D if for every unit vector v ⊂ Rd and every subset S′ ⊆ S of size at least (1− ϵ)|S| we
have ∣∣∣∣∣v ·

(
µD − 1

S′

∑
x∈S′

x

)∣∣∣∣∣ ≤ δ∣∣∣∣∣ 1S′

∑
x∈S′

(v · (x− µD))
2 − 1

∣∣∣∣∣ ≤ δ2

ϵ
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Note that the previous definition makes sense for a distribution D that has covariance I . How-
ever, we will need to work with distributions with unknown covariance. We make the following
analogous definition of stability for distributions with unknown covariance.

Definition 63 For ϵ > 0 and δ ≥ ϵ, we say a finite set S ⊂ Rd is (ϵ, δ)-pseudo-stable with respect
to a distribution D if for every unit vector v ⊂ Rd and every subset S′ ⊆ S of size at least (1−ϵ)|S|
we have ∣∣∣∣∣v ·

(
µD − 1

S′

∑
x∈S′

x

)∣∣∣∣∣ ≤ δ∣∣∣∣∣vT
(
ΣD − 1

S′

∑
x∈S′

(x− µD)(x− µD)
T

)
v

∣∣∣∣∣ ≤ δ2

ϵ

Remark 64 Note that if the covariance matrix of D, ΣD, is well-conditioned, then a set of sam-
ples that is (ϵ, δ)-pseudo-stable can be transformed into a set of samples that is (O(ϵ), O(δ))-
stable by applying a suitable linear transformation. However, if the covariance matrix is not well-
conditioned, then the definitions of stability and pseudo-stability are incomparable.

We now prove the main result of this section. It states that for a set S of samples drawn from
the distribution of Hm(X, z) for z ∼ M where M is a regular-form mixture of Gaussians, S is
(ϵ, Õ(ϵ)) pseudo-stable with high probability. The proof involves combining Lemma 61 and Claim
28 and union bounding over a sufficiently fine discrete net over the set of all possible directions.
The details are deferred to Appendix J.

Claim 29 Consider a set of Gaussians G1 = N(µ1, I +Σ1), . . . , Gk = N(µk, I +Σk) in Rd and
assume they are in (α, β)-regular form.

Consider the mixture M = w1G1 + · · · + wkGk (where w1, . . . , wk are nonnegative weights
summing to 1). Let m be a positive integer and let n > polyk,m(d/ϵ) for some sufficiently large
polynomial. Let D be the distribution of v(Hm(X, z)) for z drawn from M. Consider a set S of n
such samples (drawn independently) x1 = v(Hm(X, z1)), . . . , xn = v(Hm(X, zn)). This set of n
samples is (ϵ, δ)-pseudo-stable with

δ = ϵ (2 + α+ β + log(1/ϵ))Om,k(1)

with probability 1− e−10d/ϵ.

Proof See Appendix J.

Appendix G. Estimating the Hermite Moment Polynomials

In this section, we show how to estimate the Hermite moment polynomials of a regular-form mixture
of Gaussians M = w1G1+ · · ·+wkGk where Gj = N(µj , I+Σj) to optimal accuracy. The main
theorem that we will prove is as follows.

Theorem 65 Consider a mixture of Gaussians M = w1G1 + · · · + wkGk in Rd. Let m be a
positive integer that is sufficiently large in terms of k. Assume that M is in (α, β, γ)-regular form
where
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• α ≤ poly(log 1/ϵ)

• β ≤ poly(log 1/ϵ)

• γ is sufficiently small in terms of k and m.

Further assume that wmin ≥ θ for some constant θ. Let n > polyk,m(d/ϵ) for some sufficiently
large polynomial. Assume that we are given an ϵ-corrupted set of n samples from M, say z1, . . . , zn.
There is an algorithm that runs in time polyk,m(d/ϵ) and with probability 1 − e−d/ϵ (over the
random samples) outputs estimates h′1, . . . , h

′
m for the Hermite moment polynomials of the mixture

such that ∥∥v(hj(X)− h′j(X))
∥∥ ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,m(1)ϵ

for all j ≤ m where h1, . . . , hm are the true Hermite moment polynomials of M.

Recall the outline of the proof of Theorem 65 in Section 2.2.1. Assume that we have some
initial estimates h̃1, . . . , h̃m for the first m Hermite moment polynomials. We will first use the re-
currence relations between Hermite moment polynomials to obtain estimates h̃m+1, . . . , h̃2m for the
first 2m Hermite moment polynomials. This is done in Section G.1. Next, recall that the Hermite
moment polynomials h0, . . . , hm are the means of the distributions Hm(X, z) for z ∼ M. We use
our estimates of h̃0, . . . , h̃2m to compute estimates for the covariances of these distributions, say
Σ̃H1 , . . . , Σ̃Hm . This is done in Section G.2. Using these estimates for the covariances, we can
refine our estimates for the means, obtaining a finer set of estimates, say ĥ1, . . . , ĥm. We prove that
by iterating the above, we can get down to Õ(ϵ) accuracy. This is done in Section G.3.

We begin with a simple consequence of the results in Section F.1, that for a mixture M in
(α, β, γ)-regular form, we have a lower and upper bound on the covariance ofHm(X, z) for z ∼ M.

Claim 30 Let M = w1G1 + · · · + wkGk where Gj = N(µj , I + Σj) be a mixture that is in
(α, β, γ)-regular form. Let m be a positive integer. Assume that wmin ≥ θ. Let ΣHm be the
covariance of v(Hm(X, z)) for z drawn from M. Then

• ΣHm ≤ (2 + α+ β)Om(1)I

• As long as γ is sufficiently small in terms of m then

ΣHm ≥ 1

2
θI .

Proof For the first part, note that

ΣHm ≤ Ez∼M [v(Hm(X, z))⊗ v(Hm(X, z))] =

k∑
j=1

wjEz∼Gj [v(Hm(X, z))⊗ v(Hm(X, z))] .

Applying Claim 26 completes the proof of the first part.
Now we prove the second part. For a GaussianGj , let ΣHm,Gj be the covariance of v(Hm(X, z))

for z drawn from Gj . Note that

ΣHm ≥ wjΣHm,Gj ≥ θΣHm,Gj
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for all j. Now since the original mixture is in (α, β, γ)-regular form, taking j to be the component
such that ∥µj∥+ ∥Σj∥2 ≤ γ and applying Claim 27 completes the proof.

G.1. More Recurrence Relations

The main goal in this subsection is to prove that given ϵ-accurate estimates of h0, . . . , hm where m
is sufficiently large in terms of k, then we can compute Õ(ϵ)-accurate estimates for hm+1, . . . , h2m.

The subroutine will rely heavily on recurrence relations between the Hermite moment polynomi-
als. Recall Lemma 52. Applying Lemma 52 to a mixture of Gaussians M implies that the Hermite
moment polynomials hj,M satisfy a recurrence of order Ok(1) whose coefficients are “simple”. We
will now develop additional tools based on these recurrence relations that will allow us to estimate
hm+1, . . . , h2m using h0, . . . , hm.

In this section, we use the following notation.

• We have a mixture of k Gaussians M = w1G1 + · · ·+ wkGk where Gj = N(µj , I +Σj).

• Recall Corollary 40. It will be particularly important to consider the generating function

fM(X, y) =
∞∑

m=0

1

m!
· hm,M(X)ym = w1e

µ1(X)y+ 1
2
Σ1(X)y2 + · · ·+ wke

µk(X)y+ 1
2
Σk(X)y2 .

• Similar to Section E, we use Dj to denote the differential operator (∂ − (µj(X) + Σj(X)y))
where the partial derivative is taken with respect to y.

The next result builds on Lemma 52 and says that for any recurrrence of order 2κ = 2(2k − 1)
that the first Ok(1) Hermite moment polynomials almost satisfy, we can extend the recurrence to
estimate the next several Hermite moment polynomials.

Claim 31 Let κ = 2k − 1. Let Tj,l(X) for 0 ≤ j ≤ κ− 1 and 0 ≤ l ≤ κ− j be polynomials such
that Tj,l(X) is homogeneous in X of degree κ− j + l.

Let M = w1G1 + · · ·+ wkGk be a mixture of k Gaussians in (α, β)-regular form. Let m be a
positive integer that is sufficiently large in terms of k. For all a ≥ κ, let

Da(X) = ha,M(X) + (a− κ)!
κ−1∑
j=0

κ−j∑
l=0

ha−κ+j−l,M(X)Tj,l(X)

(a− κ− l)!
,

where undefined terms (i.e. negative factorials in the denominator) are treated as 0. Assume that
for all a ≤ m,

∥v(Da(X))∥ ≤ ϵ .

Then for all m ≤ a ≤ 2m,
∥v(Da(X))∥ ≤ (2 + α)Om,k(1)ϵ .

Proof
For each j with 0 ≤ j ≤ κ− 1, let

Tj(X, y) =

κ−j∑
l=0

Tj,l(X)yl .
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Now define the differential operator

T = ∂κ + Tκ−1(X, y)∂
κ−1 + · · ·+ T0(X, y) .

Consider the generating function T (fM(X, y)). Note that its power series expansion is precisely

T (fM(X, y)) =

∞∑
j=0

Dκ+j(X)yj

j!
.

Alternatively, applying the operator T to the sum-of-exponentials form of fM, we see that T (fM(X, y))
can be written in the form

T (fM(X, y)) = P1(X, y)e
µ1(X)y+ 1

2
Σ1(X)y2 + · · ·+ Pk(X, y)e

µk(X)y+ 1
2
Σk(X)y2

where each of the polynomials P1, . . . , Pk has degree at most κ in y. Thus if we let

D = D2k−1(κ+1)
k D2k−2(κ+1)

k−1 . . .D(κ+1)
1

then by repeatedly applying Claim 21, we get

D (T (fM(X, y))) = 0 .

Note that we can use Claim 18 to write the differential operator D in the form

D = ∂κ(κ+1) +Rκ(κ+1)−1(X, y)∂
κ(κ+1)−1 + · · ·+R0(X, y) .

We can then write each Rj in the form

Rj(X, y) = Rj,κ(κ+1)−j(X)yκ(κ+1)−j + · · ·+Rj,0(X)

where each of the polynomials Rj,l is homogeneous in X with degree κ(κ + 1) − j + l and is
(Ok(1), Ok(1))-simple with respect to {µ1(X),Σ1(X), . . . , µk(X),Σk(X)}. Using that

D (T (fM(X, y))) = 0 .

we can now write a recurrence relation that the polynomials Da(X) must satisfy. In particular, if
we let λ = κ(κ+ 1), we must have for all a ≥ λ

Dκ+a(X)

(a− λ)!
+

λ−1∑
j=0

λ−j∑
l=0

Dκ+a−λ+j−l(X)Rj,l(X)

(a− λ− l)!
= 0 .

This rearranges into

Dκ+a(X) = −(a− λ)!
λ−1∑
j=0

λ−j∑
l=0

Dκ+a−λ+j−l,(X)Rj,l(X)

(a− λ− l)!
. (9)

Now we can use the recurrence (9) to computeDm+1(X), . . . , D2m(X) in terms of the earlier terms
in the sequence. Note that we are given

∥v(Da(X))∥ ≤ ϵ

54



LEARNING GMMS WITH NEARLY OPTIMAL ROBUSTNESS GUARANTEES

for all a ≤ m. Also, sinceRj,l is (Ok(1), Ok(1))-simple with respect to {µ1(X),Σ1(X), . . . , µk(X),Σk(X)},
we have by Claim 5 that

∥v(Rj,l(X))∥ ≤ (2 + α)Ok(1) .

Thus, when applying the recurrence to compute Dm+1(X), . . . , D2m(X), we have for all a ≤ 2m,

∥v(Da(X))∥ ≤ (2 + α)Om,k(1)ϵ .

As a consequence of the above, given estimates for the Hermite moment polynomials h0, . . . , hm,
we can estimate the next Hermite moment polynomials hm+1, . . . , h2m by first solving for a recur-
rence relation that the first m Hermite moment polynomials satisfy, and then extending this recur-
rence to compute hm+1, . . . , h2m.

Claim 32 Let M = w1G1 + · · ·+ wkGk be a mixture of k Gaussians in (α, β)-regular form. Let
m be a positive integer that is sufficiently large in terms of k. Assume that we are given estimates
h′0(X), . . . , h′m(X) such that ∥∥v(ha(X)− h′a(X))

∥∥ ≤ ϵ

for all a ≤ m (where ha(X) are the true Hermite moment polynomials of M). Then there is an
algorithm that runs in polym,k(d) time that computes estimates h′m+1(X), . . . h′2m(X) such that
for all a ≤ 2m ∥∥v(ha(X)− h′a(X))

∥∥ ≤ (2 + α)Om,k(1)ϵ .

Proof Let κ = 2k − 1. We first solve for polynomials R′
j,l(X) for all 0 ≤ j ≤ κ and 0 ≤ l ≤ κ− j

such that

• R′
j,l is homogeneous of degree κ− j + l and R′

κ,0 = 1

•
∥∥∥v(R′

j,l(X))
∥∥∥ ≤ (2 + α)Om,k(1)

• For all a ≤ m ∥∥∥∥∥∥v
 κ∑

j=0

κ−j∑
l=0

h′a−κ+j−l(X)R′
j,l(X)

(a− κ− l)!

∥∥∥∥∥∥ ≤ (2 + α)Om,k(1)ϵ

Note that the expressions inside the norms on the LHS are linear in the coefficients of the
R′

j,l. Thus, we can solve for the coefficients via a convex program. To see that a solution exists,
let R′

j,l(X) = Rj,l(X) where the Rj,l are the polynomials given by Lemma 52. It is clear that
the first two conditions are satisfied because the Rj,l are (Ok(1), Ok(1))-simple with respect to
{µj(X)}j∈[k], {Σj(X)}j∈[k]. Next,∥∥∥∥∥∥v
 κ∑

j=0

κ−j∑
l=0

h′a−κ+j−l(X)Rj,l(X)

(a− κ− l)!

∥∥∥∥∥∥ =

∥∥∥∥∥∥v
 κ∑

j=0

κ−j∑
l=0

(h′a−κ+j−l(X)− ha−κ+j−l(X))Rj,l(X)

(a− κ− l)!

∥∥∥∥∥∥
≤ (2 + α)Om,k(1)ϵ

55



LIU MOITRA

for all a ≤ m, where the last step holds because ∥v(ha(X)− h′a(X))∥ ≤ ϵ for all a ≤ m and
∥v(Rj,l(X))∥ ≤ (2 + α)Om,k(1) by Claim 5.

Now we consider what happens when we apply the recurrence given by the R′
j,l, namely

h′a(X) = −(a− κ)!

κ−1∑
j=0

κ−j∑
l=0

h′a−κ+j−l(X)R′
j,l(X)

(a− κ− l)!
(10)

and use the above to compute estimates h′a(X) for m+ 1 ≤ a ≤ 2m. Note that for a ≤ m,∥∥∥∥∥∥v
 κ∑

j=0

κ−j∑
l=0

ha−κ+j−l(X)R′
j,l(X)

(a− κ− l)!

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥v
 κ∑

j=0

κ−j∑
l=0

(ha−κ+j−l(X)− h′a−κ+j−l(X))R′
j,l(X)

(a− κ− l)!

∥∥∥∥∥∥
+

∥∥∥∥∥∥v
 κ∑

j=0

κ−j∑
l=0

h′a−κ+j−l(X)R′
j,l(X)

(a− κ− l)!

∥∥∥∥∥∥
≤ (2 + α)Om,k(1)ϵ .

By Claim 31, we deduce that∥∥∥∥∥∥v
 κ∑

j=0

κ−j∑
l=0

ha−κ+j−l(X)R′
j,l(X)

(a− κ− l)!

∥∥∥∥∥∥ ≤ (2 + α)Om,k(1)ϵ

for all a ≤ 2m. Finally, comparing to the recurrence in (10) and subtracting, we get that for all
m+ 1 ≤ a ≤ 2m,

∥∥v(h′a(X)− ha(X))
∥∥ ≤ (a− κ)!

∥∥∥∥∥∥v
κ−1∑

j=0

κ−j∑
l=0

(h′a−κ+j−l(X)− ha−κ+j−l(X))R′
j,l(X)

(a− κ− l)!

∥∥∥∥∥∥
+ (a− κ)!

∥∥∥∥∥∥v
 κ∑

j=0

κ−j∑
l=0

ha−κ+j−l(X)R′
j,l(X)

(a− κ− l)!

∥∥∥∥∥∥
≤ (2 + α)Om,k(1)(ϵ+max

b<a

∥∥v(h′b(X)− hb(X))
∥∥) .

Since we need to apply the recurrence at most m times to get the terms h′a(X) for a ≤ 2m, the
above implies that for all a ≤ 2m∥∥v(ha(X)− h′a(X))

∥∥ ≤ (2 + α)Om,k(1)ϵ

as desired. It is clear that all of the steps, solving for the R′
j,l and computing subsequent terms using

the recurrence, can be done in polyk,m(d) time.
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G.2. Computing the Covariance of the Hermite Moment Polynomials

In the previous section, we showed how to compute hm+1, . . . , h2m from h0, . . . , hm. Now we
show how to express the covariances of the distributions of H0(X, z), . . . ,Hm(X, z) (for z ∼ M)
in terms of h0, . . . , h2m.

Claim 33 Let M = w1G1 + · · ·+ wkGk be a mixture of k Gaussians in (α, β)-regular form. Let
ΣHm be the covariance of v(Hm(X, z)) for z drawn from M. Assume that we are given estimates,
say h′0(X), . . . , h′2m(X), such that ∥∥v(hj(X)− h′j(X))

∥∥ ≤ ϵ

for all j ≤ 2m where hj(X) are the Hermite moment polynomials of the mixture M. Then in
polyk,m(d) time, we can compute a symmetric matrix M ′ such that∥∥M ′ − ΣHm

∥∥
op ≤ (2 + α)Om(1)ϵ .

Proof Consider two sets of d variables X(1) = (X
(1)
1 , . . . , X

(1)
d ) and X(2) = (X

(2)
1 , . . . , X

(2)
d ).

Let
P (X(1), X(2)) = Ez∼M

[
Hm(X(1), z)Hm(X(2), z)

]
.

We will first show how to estimate the polynomial P . Define

A(y) =
k∑

j=1

wje
yµj(X

(1)+X(2))+ 1
2
y2Σj(X

(1)+X(2)) .

By Corollary 40,

A(y) =
∞∑
j=0

hj(X
(1) +X(2))yj

j!
.

On the other hand, let Q0, Q1, . . . , Qj be the terms of the power series

ey
2(X(1)·X(2))A(y) =

k∑
j=1

wje
yµj(X

(1)+X(2))+ 1
2
y2Σj(X

(1)+X(2))+y2(X(1)·X(2)) =

∞∑
j=0

Qj(X
(1), X(2))yj

j!
.

(11)
Let Qm,m be the degree (m,m) part of Q2m. By Claim 25, we know that

P (X(1), X(2)) =

(
2m

m

)−1

Qm,m(X(1), X(2)) . (12)

In particular, we can use our estimates h′0, . . . h
′
2m to estimate the first 2m + 1 terms of A and

then multiply by

ey
2(X(1)·X(2)) =

∞∑
j=0

(X(1) ·X(2))jy2j

j!
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which is an explicit power series that we can compute. Formally, let hj,j(X(1), X(2)) denote
the degree j, j part of h2j(X(1) + X(2)). Similarly, we use h′j,j to denote the degree j, j part of
h′2j(X

(1) +X(2)). Using (11)

∞∑
j=0

Qj(X
(1), X(2))yj

j!
=

 ∞∑
j=0

(X(1) ·X(2))jy2j

j!

 ∞∑
j=0

hj(X
(1) +X(2))yj

j!

 .

Thus, by (12),

P (X(1), X(2)) = (m!)2
m∑
j=0

hj,j(X
(1) +X(2))(X(1) ·X(2))m−j

(2j)!(m− j)!
.

On the other hand, using our estimates h′, we may compute

P ′(X(1), X(2)) = (m!)2
m∑
j=0

h′j,j(X
(1) +X(2))(X(1) ·X(2))m−j

(2j)!(m− j)!
.

Note that since ∥∥v(hj(X)− h′j(X))
∥∥ ≤ ϵ

for all j ≤ 2m, we have that∥∥∥v(hj(X(1) +X(2))− h′j(X
(1) +X(2)))

∥∥∥ ≤ Om(1)ϵ

for all j ≤ 2m where for the vectorization we view the polynomial as a homogeneous polynomial
in 2d variables. The above implies∥∥∥v(hj,j(X(1) +X(2))− h′j,j(X

(1) +X(2)))
∥∥∥ ≤ Om(1)ϵ

for all j ≤ m so we conclude∥∥∥Tsym(h
′
j,j(X

(1) +X(2))− hj,j(X
(1) +X(2)))

∥∥∥
2
≤ Om(1)ϵ

for all j ≤ m. Now since
Tsym

(
(X(1) ·X(2))m−j

)
= I

we can use Claim 10 to deduce∥∥∥Tsym

(
P (X(1), X(2))− P ′(X(1), X(2))

)∥∥∥
op

≤ Om(1)ϵ . (13)

However, note that by Claim 9

Tsym

(
P (X(1), X(2))

)
= Ez∼M [v(Hm(X, z))⊗ v(Hm(X, z))] . (14)

To compute ΣHm , it remains to estimate

Ez∼M[v(Hm(X, z))]⊗ Ez∼M[v(Hm(X, z))] = v(hm(X))⊗ v(hm(X)) .
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We can simply use our estimates h′m(X) and compute v(h′m(X))⊗ v(h′m(X)). Note∥∥v(hm(X))⊗ v(hm(X))− v(h′m(X))⊗ v(h′m(X))
∥∥

op

≤
∥∥v(h′m(X))⊗ v(h′m(X)− hm(X))

∥∥
op +

∥∥v(h′m(X)− hm(X))⊗ v(hm(X))
∥∥

op

≤
∥∥v(h′m(X)− hm(X))

∥∥
2

(∥∥v(h′m(X)
∥∥
2
+ ∥v(hm(X)∥2

)
.

However using Claim 26, we know that ∥v(hm(X)∥ ≤ (2 + α)Om(1). Thus, the RHS of the above
is at most (2 + α)Om(1)ϵ.

Overall, we can compute

M ′ = Tsym(P
′(X(1), X(2)))− v(h′m(X))⊗ v(h′m(X))

and combining everything we have shown so far (13, 14) gives∥∥M ′ − ΣHm

∥∥
op ≤

∥∥∥Tsym(P
′(X(1), X(2)))− Ez∼M [v(Hm(X, z))⊗ v(Hm(X, z))]

∥∥∥
op

+
∥∥v(h′m(X))⊗ v(h′m(X))− Ez∼M[v(Hm(X, z))]⊗ Ez∼M[v(Hm(X, z))]

∥∥
op

=
∥∥∥Tsym

(
P ′(X(1), X(2))− P (X(1), X(2))

)∥∥∥
op

+
∥∥v(hm(X))⊗ v(hm(X))− v(h′m(X))⊗ v(h′m(X))

∥∥
op

≤ (2 + α)Om(1)ϵ

It is clear that computing M ′ can be done in polyk,m(d) time so we are done.

G.3. Estimating the Hermite Moment Polynomials Optimally

We can now put together all of the parts in the previous two subsections to get an algorithm for
estimating the Hermite moment polynomials to within Õ(ϵ) accuracy, proving Theorem 65.

We will rely on the following generic theorems about robustly estimating the mean of a distri-
bution from Diakonikolas and Kane (2019).

Theorem 66 (Theorem 2.7 in Diakonikolas and Kane (2019)) Let S be a (3ϵ, δ)-stable set with
respect to a distribution X and let T be an ϵ-corrupted version of S. There is a polynomial time
algorithm which given T returns µ̂ such that

∥µ̂− µX∥ = O(δ) .

Corollary 67 (Corollary 2.9 in Diakonikolas and Kane (2019)) Let T be an ϵ-corrupted set of
samples of size at least poly(d/ϵ) for some sufficiently large polynomial from a distribution X on
Rd with unknown bounded covariance ΣX ≤ σ2I . There exists a polynomial time algorithm which
given T returns µ̂ such that with 1− e−d/ϵ probability

∥µ̂− µX∥ = O(σ
√
ϵ) .
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Theorem 65 will follow immediately from the next lemma. The lemma states that given esti-
mates for the firstm Hermite moment polynomials that are accurate to within some parameter η, we
can refine them to be accurate to within roughly

√
ϵη. The proof of the lemma involves combining

the results in Sections G.1 and G.2 with Theorem 66. To see how Theorem 65 follows from the
lemma, we can use Corollary 67 to obtain initial estimates and then iterate Lemma 68.

Lemma 68 Consider a mixture of Gaussians M = w1G1+ · · ·+wkGk in Rd. Letm be a positive
integer that is sufficiently large in terms of k. Assume that M is in (α, β, γ)-regular form where

• α ≤ poly(log 1/ϵ)

• β ≤ poly(log 1/ϵ)

• γ is sufficiently small in terms of k and m.

Further assume that wmin ≥ θ for some constant θ. Let n > polyk,m(d/ϵ) for some sufficiently
large polynomial. Assume that we are given an ϵ-corrupted set of n samples from M, say z1, . . . , zn.
Also assume that we are given estimates h̃1, . . . , h̃m of the Hermite moment polynomials such that∥∥∥v(hj(X)− h̃j(X))

∥∥∥ ≤ η

for all j ≤ m where η is a parameter such that η ≤ 1/polyk,m(α, β, θ−1, log 1/ϵ). Then there is an
algorithm that runs in polyk,m(d/ϵ) time and, with probability at least 1−e−10d/ϵ over the random
samples, outputs estimates ĥ1, . . . , ĥm such that∥∥∥v(hj(X)− ĥj(X))

∥∥∥ ≤ (2 + α+ β + θ−1 + log 1/ϵ)Om,k(1)
√
ϵη .

Proof By Claim 32 and Claim 33, we can compute estimates Σ0
H1
, . . . ,Σ0

Hm
such that for all j ≤ m∥∥∥Σ0

Hj
− ΣHj

∥∥∥
op

≤ (2 + α+ β)Ok,m(1)η (15)

where ΣHj is the covariance of v(Hj(X, z)) for z drawn from M. Now by Claim 30, each of
these estimates must be positive semi-definite and have Σ0

Hj
≥ Ω(θ)I so we can take their positive

semidefinite square roots. We have∥∥∥I − (Σ0
Hj

)−1/2ΣHj (Σ
0
Hj

)−1/2
∥∥∥

op
≤ (2 + α+ β + θ−1)Ok,m(1)η . (16)

Now fix a j ≤ m. Let Dj be the distribution of v(Hj(X, z)) for z ∼ M. The above implies that
the covariance of the distribution obtained after applying (Σ0

Hj
)−1/2 to Dj is close to identity.

By Claim 29, with 1 − e−10d/ϵ probability, a set of n uncorrupted samples is (3ϵ, δ)-pseudo-
stable with respect to Dj with

δ = (2 + α+ β + log 1/ϵ)Om,k(1)ϵ .

If this holds, then combining the pseudo-stability with (16) and the fact that Σ0
Hj

≥ Ω(θ)I implies

that the set of uncorrupted samples obtained after applying the transformation (Σ0
Hj

)−1/2 is stable

with respect to the distribution (Σ0
Hj

)−1/2Dj with parameters(
3ϵ, (2 + α+ β + θ−1 + log 1/ϵ)Om,k(1)

√
ϵη
)
.
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Now by Theorem 66, we can estimate the mean of (Σ0
Hj

)−1/2Dj up to accuracy

(2 + α+ β + θ−1 + log 1/ϵ)Om,k(1)
√
ϵη .

Claim 30 and (15) imply that the operator norm of (Σ0
Hj

)1/2 is bounded by (2 + α + β)Om,k(1) so
now we can simply invert the linear transformation and estimate the mean of Dj to within

(2 + α+ β + θ−1 + log 1/ϵ)Om,k(1)
√
ϵη .

However, the mean of Dj is exactly v(hj(X)) so repeating this for all j completes the proof.

We now prove Theorem 65 by iterating Lemma 68.
Proof [Proof of Theorem 65]

Note that v(hj(X)) is the mean of v(Hm(X, z)) for z drawn from M. Now by Claim 30 and
Corollary 67, we can obtain estimates

h̃1(X), . . . , h̃m(X)

of the Hermite moment polynomials such that for all j ≤ m∥∥∥v(hj(X)− h̃j(X))
∥∥∥ ≤ (2 + α+ β)Ok,m(1)√ϵ .

Now we can iterate Lemma 68 on these estimates until we obtain final estimates h′1, . . . , h
′
m such

that ∥∥v(hj(X)− h′j(X))
∥∥ ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,m(1)ϵ

for all j ≤ m (to see this, note that each time the above inequality is not true, when we apply
Lemma 68 to refine our estimates, we reduce our estimation error by a factor of 1/2).

Appendix H. Learning Regular Form Mixtures

In this section, we combine everything that we have shown so far to give an algorithm for learning
regular-form mixtures of Gaussians. Recall the outline in Section 2.2.1. We have some unknown
mixture M = w1G1 + · · · + wkGk in regular form. In this section, we will assume that we are
given estimates G1, . . . , Gk for the components such that

dTV(Gj , Gj) ≤ ϵc

for some constant c > 0. These estimates can be obtained by directly applying results from Liu and
Moitra (2021) (see Section I.1 for more details).

We will then bootstrap the rough component estimates by multiplying appropriate polynomials
in front of them. In particular, we show how to compute a degree-Ok,c(1) MPG distribution

f = Q1(x)G1(x) + · · ·+Qk(x)Gk(x)

such that
∥M− f∥1 ≤ Õ(ϵ) .

The main theorem that we will prove in this section is stated formally below.
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Theorem 69 Let M = w1G1+ · · ·+wkGk whereGj = N(µj , I+Σj) be a mixture of Gaussians
such that all mixing weights are at least θ where θ−1 ≤ poly(log 1/ϵ). Let c > 0 be a (small)
constant. Assume that the mixture is in (α, β, γ)-regular form where

• α = poly(log 1/ϵ)

• β = poly(log 1/ϵ)

• γ is sufficiently small in terms of k and c.

Let n > polyk,c(d/ϵ) for some sufficiently large polynomial. Assume that we are given an ϵ-
corrupted set of n samples X1, . . . , Xn from M. Assume that an adversary also gives us estimates
G1 = N(µ̃1, I + Σ̃1), . . . , Gk = N(µ̃k, I + Σ̃k) for the components with the promise that

dTV(Gj , Gj) ≤ ϵc .

There is an algorithm that runs in time polyk,c(d/ϵ) and with high probability (over the random
samples) outputs a degree-Ok,c(1) MPG distribution f : Rd → R of the form

f(x) = Q1(x)G1(x) + · · ·+Qk(x)Gk(x)

such that f satisfies

∥M(x)− f(x)∥1 ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,c(1)ϵ .

To prove Theorem 69, we rely on the two main results that we have shown so far, Theorem 65
and Theorem 50, which are (informally) that

• We can estimate low-degree Hermite moment polynomials of M to nearly optimal accuracy

• If two low-degree MPG functions are close on their low-degree Hermite moment polynomials
then they are close in L1 norm

To complete the learning algorithm, it remains to actually compute a low-degree MPG distribution
that matches the Hermite moment polynomial estimates obtained from Theorem 65. Then, Theorem
50 will imply that this MPG distribution is close to the density function of M in L1 norm.

H.1. Preliminary Computations

We will first need a few preliminary definitions and computations.

Definition 70 We say a Gaussian G is χ-balanced if its covariance matrix Σ satisfies

1

χ
I ≤ Σ ≤ χI .

If we have a mixture M = w1G1 + · · ·+ wkGk such that all components are χ-balanced, then we
say that the mixture is χ-balanced.

Note that the parameter β governs the balancedness of a mixture in (α, β, γ)-regular form. We will
need the following few basic facts.
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Claim 34 For two Gaussians N(µ1,Σ1), N(µ2,Σ2)

dTV(N(µ1,Σ1), N(µ2,Σ2)) = O
((

(µ1 − µ2)
TΣ−1

1 (µ1 − µ2)
)1/2

+
∥∥∥Σ−1/2

1 Σ2Σ
−1/2
1 − I

∥∥∥
F

)
Proof See e.g. Fact 2.1 in Kane (2021).

The following two claims relate TV distance and parameter distance for balanced Gaussians.
The first deals with the case when the two Gaussians have very small overlap while the second deals
with the case when the two Gaussians have very large overlap.

Claim 35 Let G1 = N(µ1,Σ1), G2 = N(µ2,Σ2) be χ-balanced Gaussians. Let ϵ < 0.1 be a
parameter and assume that dTV(G1, G2) ≤ 1− ϵ. Then the following two conditions hold:

1. ∥µ1 − µ2∥ ≤ O(
√
χ log 1/ϵ)

2. ∥Σ1 − Σ2∥2 ≤ O(χ log2 1/ϵ)

Proof For the first claim, note that if we project onto the line connecting µ1 and µ2 then both
distributions are Gaussian with standard deviation at most

√
χ. Thus, their means must be separated

by at most O(
√
χ log 1/ϵ). For the second claim, we can use Lemma 3.2 in Kane (2021). Note that

the covariance of the mixture (G1 +G2)/2 is

Σ =
Σ1 +Σ2

2
+

(µ1 − µ2)

2

(µ1 − µ2)
T

2

and the first part implies that
Σ ≤ O(χ log 1/ϵ)I .

Lemma 3.2 from Kane (2021) now immediately gives the desired bound.

Claim 36 Let G1 = N(µ1,Σ1), G2 = N(µ2,Σ2) be χ-balanced Gaussians. Let ϵ < 0.1 be a
parameter and assume that dTV(G1, G2) ≤ ϵ. Then the following two conditions hold:

1. ∥µ1 − µ2∥ ≤ O(
√
χϵ)

2. ∥Σ1 − Σ2∥2 ≤ poly(χ)ϵ

Proof The first part follows from Theorem 1.2 in Devroye et al. (2018). To prove the second part,
let G′

1 = N(µ2,Σ1). Note that by Claim 34 and the first part,

dTV(G
′
1, G2) ≤ dTV(G1, G2) + dTV(G1, G

′
1) = O(χϵ) .

Now, applying Theorem 1.1 from Devroye et al. (2018), we deduce that

∥Σ1 − Σ2∥2 ≤ poly(χ)ϵ ,

completing the proof.
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H.2. Main Proof of Theorem 69

Now we prove the first key lemma of this section. This lemma implies that there exist polynomials
that we can multiply in front of our rough component estimates G1, . . . , Gk in order to match the
Hermite moment polynomials of the true mixture M. Afterwards, we show how to solve for these
polynomials.

Lemma 71 Let M = w1G1 + · · · + wkGk be a mixture of Gaussians. Let c > 0 be a (small)
constant. Assume that the mixture is in (α, β, γ)-regular form where

• α = poly(log 1/ϵ)

• β = poly(log 1/ϵ)

• γ is sufficiently small in terms of k and c.

Let Gj = N(µj , I + Σj) for all j ∈ [k]. Let G1 = N(µ̃1, I + Σ̃1), . . . , Gk = N(µ̃k, I + Σ̃k)
be Gaussians such that

dTV(Gj , Gj) ≤ ϵc .

Let m be a parameter. Then there exist polynomials P1, . . . , Pk in d variables of degree at most
10/c such that the following holds:

1. If we write the power series expansion of the function

k∑
j=1

wje
µj(X)y+ 1

2
Σj(X)y2 −

k∑
j=1

(wj + Pj(Xy))e
µ̃j(X)y+ 1

2
Σ̃j(X)y2 =

∞∑
l=0

fl(X)yl

l!

then
∥v(fl(X))∥ ≤ (2 + α+ β)Ok,m,c(1)ϵ

for all 0 ≤ l ≤ m.

2. For all j, Pj(0) = 0

3. For all j, ∥vy(Pj(Xy))∥ ≤ βOk,m,c(1)ϵc

Proof
For simplicity, assume that 10/c is an integer. The modification to when 10/c is not an integer

is straight-forward. For j ∈ [k], let

g(j)(X, y) = e(µj(X)−µ̃j(X))y+ 1
2
(Σj(X)−Σ̃j(X))y2 =

∞∑
l=0

g
(j)
l (X)yl

l!

where for the last expression, we expand the generating function as a power series in y. Let

h(j)(X, y) =

10/c∑
l=0

g
(j)
l (X)yl

l!
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i.e. h(j) is obtained by truncating the power series expansion of g(j) to the first 10/c terms. Note
that in the RHS above, g(j)l (X) is homogeneous in X of degree l. Thus, we can write h(j)(X, y) as
a polynomial in the d-tuple of formal variables Xy. We claim that setting P1, . . . , Pk such that

Pj(Xy) = wj(h
(j)(X, y)− 1) = wj

10/c∑
l=1

g
(j)
l (X)yl

l!

for all j ∈ [k] suffices.

Note that the setting trivially satisfies condition 2. Next, we check condition 3. First note that
because dTV(Gj , Gj) ≤ ϵc, Claim 36 implies that

∥v(µj(X)− µ̃j(X))∥ ,
∥∥∥v(Σj(X)− Σ̃j(X))

∥∥∥ ≤ βO(1)ϵc .

Thus, since

e(µj(X)−µ̃j(X))y+ 1
2
(Σj(X)−Σ̃j(X))y2 = 1 +

∞∑
l=1

(
(µj(X)− µ̃j(X))y + 1

2(Σj(X)− Σ̃j(X))y2
)l

l!

we have
∞∑
l=1

g
(j)
l (X)yl

l!
=

∞∑
l=1

(
(µj(X)− µ̃j(X))y + 1

2(Σj(X)− Σ̃j(X))y2
)l

l!
(17)

and we can use Claim 5 and the triangle inequality to verify condition 3.

Now we check condition 1. By combining (17) with Claim 5 and the triangle inequality, we get
that for all l with 10/c ≤ l ≤ m,∥∥∥v(g(j)l (X))

∥∥∥ ≤ (2 + β)Om(1)ϵ .

Next write the power series expansion

eµ̃j(X)y+ 1
2
Σ̃j(X)y2 =

∞∑
l=0

t
(j)
l (X)yl

l!
.

Since the true mixture is in (α, β, γ)-regular form and the components Gj are ϵc-close to the re-
spective true components, we get that for all l with 0 ≤ l ≤ m,∥∥∥v(t(j)l (X))

∥∥∥ ≤ (2 + α+ β)Om(1) .

Finally note that
wj + Pj(Xy) = wjh

(j)(X, y) .
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Now we may write

k∑
j=1

wje
µj(X)y+ 1

2
Σj(X)y2 −

k∑
j=1

(wj + Pj(Xy))e
µ̃j(X)y+ 1

2
Σ̃j(X)y2

=
k∑

j=1

wj

 ∞∑
l=10/c+1

g
(j)
l (X)yl

l!

 eµ̃j(X)y+ 1
2
Σ̃j(X)y2 .

However, since we only care about the first m terms of the power series expansion, it suffices to
consider the expression

k∑
j=1

wj

 m∑
l=10/c+1

g
(j)
l (X)yl

l!

( m∑
l=0

t
(j)
l (X)yl

l!

)
.

Finally using our bounds on
∥∥∥v(g(j)l (X))

∥∥∥ and
∥∥∥v(t(j)l (X))

∥∥∥ from above, we immediately get the
desired inequality. Note that in the above we only dealt with the case when 10/c < m. If 10/c ≥ m,
then the above argument implies that we can actually choose P1, . . . , Pk so that f0, . . . , fm are all
identically 0.

Using Lemma 71 we can now prove Theorem 69.
Proof [Proof of Theorem 69] Letm be a constant that will be set later as a sufficiently large function
depending only on k, c. Using Theorem 65, we can obtain estimates h′1, . . . , h

′
m for the Hermite

moment polynomials of the mixture M such that∥∥v(hj(X)− h′j(X)
∥∥ ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,m(1)ϵ (18)

for all j ≤ m where h1, . . . , hm denote the true Hermite moment polynomials of the mixture. We
will solve for constants c1, . . . , ck and polynomialsP1(X), . . . , Pk(X) in variablesX = (X1, . . . , Xd)
of degree at most 10/c such that the following properties hold:

1. If we write the following generating function as a formal power series

(c1 + P1(Xy))e
µ̃1(X)y+ 1

2
Σ̃1(X)y2 + · · ·+ (ck + Pk(Xy))e

µ̃k(X)y+ 1
2
Σ̃k(X)y2 =

∞∑
j=0

fj(X)yj

j!

then ∥∥v(h′j(X)− fj(X))
∥∥ ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,m,c(1)ϵ (19)

for all j ≤ m.

2. cj ≥ θ for all j

3. Pj(0) = 0 and ∥v(Pj(X))∥ ≤ βOk,m,c(1)ϵc for all j ∈ [k]
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Note that the expressions h′j(X)−fj(X) are linear in c1, . . . , ck and the coefficients ofP1, . . . , Pk

so if the system is feasible, then we can find a solution efficiently because all constraints are con-
vex. Note that we view it as a system where the indeterminates that we are solving for are exactly
c1, . . . , ck and the coefficients of P1, . . . , Pk.

To see that the system is feasible, it suffices to combine (18) with Lemma 71 and note that by
Corollary 40

k∑
j=1

wje
µj(X)y+ 1

2
Σj(X)y2 =

∞∑
j=0

hj(X)yj

j!
.

Thus, by solving the system given by (19), we can assume that we found a valid solution c1, . . . , ck
and P1(X), . . . , Pk(X). To complete the proof, we now show that from any solution to (19), we
can construct an MPG distribution f that is close to the density function of the mixture.

By choosing m sufficiently large in terms of k, c, we can now apply Theorem 58 on the follow-
ing generating function

k∑
j=1

(cj + Pj(Xy))e
µ̃j(X)y+ 1

2
Σ̃j(X)y2 −

k∑
j=1

wje
µj(X)y+ 1

2
Σj(X)y2 .

To verify the conditions of the theorem, we can combine (18, 19) and note that the polynomials
P1(X), . . . , Pk(X) have degree at most 10/c. We deduce that if we let

T (X) =
k∑

j=1

(cj + Pj(iX))eiµ̃j(X)− 1
2
Σ̃j(X) −

k∑
j=1

wje
iµj(X)− 1

2
Σj(X)

then
∥χT∥1 ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,c(1)ϵ .

However note that by Claim 14,

χ

 k∑
j=1

wje
iµj(X)− 1

2
Σj(X)


is exactly the density function of M. Thus, setting

f0 = χ

 k∑
j=1

(cj + Pj(iX))eiµ̃j(X)− 1
2
Σ̃j(X)


achieves that

∥M(x)− f0(x)∥1 ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,c(1)ϵ .

Note that by applying Claim 16, we get that f0 is a valid low-degree MPG function. However, it is
not necessarily a distribution. We now show how to make minor modifications to f0 to transform it
into a distribution. Note that by Claim 16 and condition 3 in the system that we solved for the Pj ,
the function f0 defined above can be written in the form

f0(x) = (c1 +R1(x))G̃1(x) + · · ·+ (ck +Rk(x))G̃k(x)
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where for all j ∈ [k], Rj is a polynomial with real coefficients and degree at most 10/c and

Ex∼Gj

[
(Rj(x))

2
]
≤ (2 + β)Ok,c(1)ϵ2c .

Note that the Rj have real coefficients. Let B be an integer such that B > 10/c. Note that for all
x ∈ Rd, by the AM-GM inequality,

1 +
Rj(x)

cj
+

(
Rj(x)

cj

)2B

≥ 0 .

Now let

f1(x) =

k∑
j=1

(
cj +Rj(x) +

Rj(x)
2B

c2B−1
j

)
G̃j(x) .

We verify that f1 is close to M in L1 norm. Note that using hypercontractivity (Claim 4), we have

∥f1 − f0∥1 ≤ θ−(2B−1)
k∑

j=1

Ex∼Gj

[
Rj(x)

2B
]
≤ (θ−1)Ok,c(1)

k∑
j=1

(
Ex∼Gj

[
(Rj(x))

2
])B

≤ (2 + β + θ−1)Ok,c(1)ϵ .

Thus,
∥M(x)− f1(x)∥1 ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,c(1)ϵ .

Finally, note that the above implies that

1− (2+α+β+ θ−1+ log 1/ϵ)Ok,c(1)ϵ ≤
∫
Rd

f1(x)dx ≤ 1+ (2+α+β+ θ−1+ log 1/ϵ)Ok,c(1)ϵ

and furthermore, we can explicitly compute the integral
∫
Rd f1(x)dx in polynomial time so letting

f =
f1(x)∫

Rd f1(x)dx

yields a degree-Ok,c(1) MPG distribution such that

∥M(x)− f(x)∥1 ≤ (2 + α+ β + θ−1 + log 1/ϵ)Ok,c(1)ϵ ,

which completes the proof.

Appendix I. Full Algorithm

Now we are ready to complete our full learning algorithm. A high-level description of our full
algorithm is given below. Our algorithm consists of the following steps. First, we show that we can
estimate the components of the mixture to ϵΩ(1) accuracy by modifying the techniques in Liu and
Moitra (2021). Then using these estimates, we cluster into submixtures such that the clustering is
Õ(ϵ)-accurate. Finally, for each submixture, we argue that we can compute a linear transformation
that places it in regular form and then apply Theorem 69 to estimate its density function. Since
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we will enumerate over many possible candidate clusterings, we will end up with many possible
candidate density functions so the last step involves a hypothesis test to select a candidate that is
indeed close to the true distribution in TV distance.

Algorithm 1 FULL ALGORITHM

Input: ϵ-corrupted sample X1, . . . , Xn from mixture of Gaussians M = w1G1 + · · ·+ wkGk

LEARN PARAMETERS TO ϵΩ(1) ACCURACY for each set of candidate components G1, . . . Gk do
Assign samples to components according to maximum likelihood to form sets of samples
{S1, . . . , Sk} for all partitions of [k] into sets R1, . . . , Rl do

LEARN MIXTURE TO Õ(ϵ) ACCURACY on samples Rj = ∪i∈RjSi with initial estimates
{Gi}i∈Rj

end
Compute density estimate by combining over all of R1, . . . , Rl and guessing weights of each
submixture

end
Hypothesis test over all candidate density estimates to output an estimate f that is Õ(ϵ)-close to
M

The algorithm LEARN MIXTURE TO Õ(ϵ) ACCURACY requires that the components of the
mixture are not too far from each other in TV distance (so that there exists a transformation that
puts the mixture in regular form) and also requires initial estimates G1, . . . , Gk for the component
Gaussians that are ϵΩ(1) close to the true components in TV distance so that we can apply Theorem
69. We will show that the clustering step ensures the first property. The initial estimates are simply
obtained from the output of the first step of LEARN PARAMETERS TO ϵΩ(1) ACCURACY.

Algorithm 2 LEARN MIXTURE TO Õ(ϵ) ACCURACY

Input: ϵ-corrupted sample X1, . . . , Xn from mixture of Gaussians M = w1G1 + · · · + wkGk

such that dTV(Gi, Gj) ≤ 1− ϵO(1) for all i ̸= j
Input: Initial estimates G1, . . . , Gk such that for all i ∈ [k],

dTV(Gi, Gi) ≤ ϵΩ(1) .

Let µ̃1, Σ̃1 be the mean and covariance of G1.
Apply the transformation Xi → Σ̃

−1/2
1 (Xi − µ̃1) to the datapoints

Use Theorem 69 on the transformed data to compute a density estimate f
Output density estimate f(Σ̃−1/2

1 (x− µ̃1)) · det(Σ1)
−1/2

The main theorem of this paper, which we prove in this section, is stated below.

Theorem 72 Let M = w1G1+· · ·+wkGk be a χ-balanced mixture of Gaussians (recall Definition
70). Furthermore, assume that all of the mixing weights are at least A−1 for some constant A.
Assume that ϵ is sufficiently small compared to k,A and χ ≤ poly(log 1/ϵ). Let n = polyk,A(d/ϵ)
for some sufficiently large polynomial and let X1, . . . , Xn be an ϵ-corrupted sample from M. Then
FULL ALGORITHM runs in polyk,A(d/ϵ) time and with 0.9 probability, outputs a degree Ok,A(1)
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MPG distribution f such that

∥f(x)−M(x)∥1 ≤ (2 + log 1/ϵ+ χ)Ok,A(1)ϵ .

I.1. Estimate Components to ϵΩ(1) Accuracy

First, we will estimate the components of the mixture to ϵΩ(1) accuracy. This can be done with a
few simple modifications to the techniques in Liu and Moitra (2021).

Theorem 73 Let k,A > 0 be constants. There is a sufficiently large function G and a sufficiently
small function g depending only on k,A such that given an ϵ-corrupted sample X1, . . . , Xn from
a mixture of Gaussians M = w1G1 + · · · + wkGk ∈ Rd where ϵ < g(k,A), the wi are all at
least A−1, and n ≥ (d/ϵ)G(k,A), there is an algorithm that runs in time poly(n) and with 0.999
probability, outputs a set of (1/ϵ)Ok,A(1) candidate mixtures such that for at least one of these
candidates, {w̃1, G1, . . . , w̃k, Gk}, we have

|wi − w̃i|+ dTV(Gi, Gi) ≤ ϵg(k,A)

for all i ∈ [k].

I.1.1. ACHIEVING CONSTANT ACCURACY

First, we will show that we can estimate the components to constant accuracy. Recall the following
result from Liu and Moitra (2021).

Lemma 74 [Lemma 7.5 in Liu and Moitra (2021)] Let k,A, b > 0 be constants and θ be a desired
accuracy. There is a sufficiently large function G and a sufficiently small function g depending
only on k,A, b, θ such that given an ϵ-corrupted sample X1, . . . , Xn from a mixture of Gaussians
M = w1G1 + · · ·+ wkGk ∈ Rd where

• The wi are all at least A−1 for some constant A

• dTV(Gi, Gj) ≥ b

and

• ϵ < g(k,A, b, θ)

• n ≥ (d/ϵ)G(k,A,b,θ)

then there is an algorithm that runs in time poly(n) and with 0.999 probability outputs a set of
(1/θ)G(k,A,b,θ) candidate mixtures at least one of which satisfies

max
(
dTV(G1, G1), . . . , dTV(Gk, Gk)

)
≤ θ

max (|w̃1 − w1|, . . . , |w̃k − wk|) ≤ θ

Remark 75 Lemma 7.5 in Liu and Moitra (2021) is stated with an assumption that the wi have
bounded fractionality with denominator at most A. The modification given in Section 6.3 in Liu and
Moitra (2021) (namely Theorem 6.12) immediately allows us to remove the bounded fractionality
part of the assumption.
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Fix k,A. Note that we would like to eliminate the assumption that dTV(Gi, Gj) ≥ b in the
above result. In fact, for achieving constant accuracy, this is not difficult to do because we can
simply find some scale for which we can lump together components whose TV distance is too small
and otherwise the components will be sufficiently separated.

Corollary 76 Let k,A be constants. Let θ be some desired accuracy. There is a sufficiently large
functionF and a sufficiently small function f depending only on k,A, θ (withF (k,A, θ), f(k,A, θ) >
0) such that the following holds. Given an ϵ-corrupted sample X1, . . . , Xn from a mixture of Gaus-
sians M = w1G1 + · · ·+ wkGk ∈ Rd where

• The wi are all at least A−1 for some constant A

• ϵ < f(k,A, θ)

• n ≥ (d/ϵ)F (k,A,θ)

then there is an algorithm that runs in time poly(n) and with 0.999 probability outputs a set of
(1/θ)F (k,A,θ) candidate mixtures at least one of which satisfies

max
(
dTV(G1, G1), . . . , dTV(Gk, Gk)

)
≤ θ

max (|w̃1 − w1|, . . . , |w̃k − wk|) ≤ θ

Proof Let g andG be the functions in Lemma 74. Fix k,A, θ. We define h(b) = 0.1θg(k,A, b, 0.5θ)/k.
Consider the sequence

θ → h(θ) → · · · → h(k
2)(θ) .

There must be some j < k2 such that no pair of true components has TV distance between h(j)(θ)
and hj+1(θ). Now consider the graph G on [k] where two indices i1, i2 are connected if and only if

dTV(Gi1 , Gi2) ≤ hj+1(θ) .

Now consider a modified mixture M′ where for each connected component of vertices in G, say
S ⊂ [k], we replace all of the Gaussians Gi with i ∈ S with copies of one fixed representative from
this component. We then combine all of these copies by adding the mixing weights. The resulting
mixture M′ satisfies the following properties

• There are k′ ≤ k components

• All mixing weights are at least A−1

• All pairs of components are separated by at least h(j)(θ) in TV distance

•
dTV(M,M′) ≤ 0.1θg(k,A, h(j)(θ), 0.5θ)

In particular, we can treat our samples as an ϵ′-corrupted sample from M′ with

ϵ′ = ϵ+ 0.1θg(k,A, h(j)(θ), 0.5θ) .

Now as long as f, F are chosen appropriately, we can apply Lemma 74 to learn the components of
the mixture M′ to accuracy 0.5θ. Finally, we can simply guess the mixing weights and duplications
in our list of candidates to ensure that one of our candidate mixtures is component-wise within θ of
the true mixture.
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I.1.2. ACHIEVING ϵΩ(1)-ACCURACY

Similar to Liu and Moitra (2021), once we obtain constant accuracy estimates for the components,
we then try to refine these estimates. To do this, we first cluster the datapoints into submixtures by
assigning each datapoint to the submixture that assigns it the highest probability. We would like the
following two properties

• The clustering is 1− ϵc-accurate

• Components within a submixture have TV distance at most 1− ϵc
′

where c′ is sufficiently small compared to c. Once we have clustered the datapoints into such
submixtures, we can learn the components of each submixture to ϵΩ(1) accuracy, again following
the same outline as the algorithm in Liu and Moitra (2021).

First we show that the clustering can be done accurately. We need the following basic results
from Liu and Moitra (2021).

Lemma 77 (Lemma 7.2 from Liu and Moitra (2021)) LetA,B,C be Gaussian distributions. As-
sume that dTV(A,B) ≤ 0.9. There is a universal constant c > 0 such that if dTV(A,C) ≥ 1 − ϵ
and ϵ < c then

dTV(B,C) ≥ 1− ϵc .

Lemma 78 (Lemma 7.4 from Liu and Moitra (2021)) LetA andB be two Gaussians with dTV(A,B) ≤
0.9. There is a universal constant c > 0 such that if D ∈ {A,B} and ϵ < c then

Px∼D

[
ϵ ≤ A(x)

B(x)
≤ 1

ϵ

]
≥ 1− ϵc .

Similar to Liu and Moitra (2021), we will also need VC-dimension bounds on the hypothesis
class formed by comparing two MPG functions. For the clustering step, we only need to deal with
actual mixtures of Gaussians, but we will need the VC-dimension bound for MPG functions later
on when we do hypothesis testing so we state the full result here. First we need a definition.

Definition 79 Let F be a family of functions on some domain X . Let HF ,a be the set of functions
of the form fM1,M2,...,Ma where M1,M2, . . . ,Ma ∈ F and

fM1,M2,...,Ma(x) =

{
1 if M1(x) ≥ M2(x), . . . ,Ma(x)

0 otherwise

The VC dimension bound below is a direct consequence of the work in Anthony and Bartlett
(2009).

Lemma 80 (Theorem 8.14 in Anthony and Bartlett (2009)) Let Fk,m be the family of functions
in Rd that are a degree m MPG function with at most k components. Then the VC dimension of
HFk,m,a is poly(d, a,m, k).

It is a standard result in learning theory that for a hypothesis class with bounded VC dimension,
taking a polynomial number of samples suffices to get a good approximation for all hypotheses in
the class.
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Lemma 81 (Vapnik and Chervonenkis (2015)) Let H be a hypothesis class of functions from
some domain X to {0, 1} with VC dimension V . Let D be a distribution on X . Let ϵ, δ > 0 be
parameters. Let S be a set of n = poly(V, 1/ϵ, log 1/δ) i.i.d samples from D. Then with 1 − δ
probability, for all f ∈ H

|Ex∼S [f(x)]− Ex∼D[f(x)]| ≤ ϵ .

Now we prove that given constant-accuracy component estimates, we can find an accurate clus-
tering.

Lemma 82 Let M = w1G1 + · · · + wkGk ∈ Rd be a mixture of Gaussians where the wi are all
at least A−1 for some constant A. There exists a sufficiently small function g(k,A) > 0 depending
only on k,A such that the following holds. Let X1, . . . , Xn be an ϵ-corrupted sample from the
mixture M where ϵ < g(k,A) and n = polyk,A(d/ϵ) for some sufficiently large polynomial. Let
S1, . . . , Sk ⊂ {X1, . . . , Xn} denote the sets of samples from each of the components G1, . . . , Gk

respectively. Let R1, . . . , Rl be a partition of [k] such that for i1 ∈ Rj1 , i2 ∈ Rj2 with j1 ̸= j2,

dTV(Gi1 , Gi2) ≥ 1− ϵ′

where ϵ′ ≤ g(k,A). Let G1, . . . , Gk be any Gaussians such that dTV(Gi, Gi) ≤ g(k,A) for all i.
Let S1, . . . , Sk ⊂ {X1, . . . , Xn} be the subsets of samples obtained by assigning each sample to
the component Gi that gives it the maximum likelihood. Then there is a universal constant η > 0
such that with probability at least 0.999,∣∣(∪i∈RjSi

)
∩
(
∪i∈RjSi

)∣∣ ≥ (1−Ok,A(1)ϵ− ϵ′η)max
(∣∣(∪i∈RjSi

)∣∣ , ∣∣(∪i∈RjSi
)∣∣)

for all j ∈ [l].

Proof We will upper bound the expected number of uncorrupted points that are mis-classified for
each j ∈ [l] and then use the VC dimension bound in Lemma 80 and the uniform convergence
guarantee in Lemma 81 to argue that for any initial estimates G1, . . . , Gk, the fraction of points that
we mis-classify is small. The expected number of uncorrupted points can be upper bounded by∑

j1 ̸=j2

∑
i1∈Rj1
i2∈Rj2

∫
1Gi1

(x)>Gi2
(x)dGi2(x) .

Clearly we can ensure dTV(Gi, Gi) ≤ 1/2. Thus, by Lemma 77 and the assumption about
R1, . . . , Rl, dTV(Gi1 , Gi2) ≥ 1− ϵ′Ω(1) for all Gi2 where i2 is not in the same piece of the partition
as i1. Let c be such that

dTV(Gi1 , Gi2) ≥ 1− ϵ′c .

By Lemma 78,

Pr
x∈Gi2

[
ϵ′c/2 ≤ Gi2(x)

Gi2(x)
≤ ϵ′c/2

]
≥ 1− ϵ′Ω(c)

and combining the above two inequalities, we deduce∫
1Gi1

(x)>Gi2
(x)dGi2(x) ≤ ϵ′Ω(1) .
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Since we are only summing over Ok(1) pairs of components, as long as ϵ′ is sufficiently small com-
pared to k,A, the expected fraction of misclassified uncorrupted points is ϵ′Ω(1).

It remains to note that the clustering depends only on the comparisons between the values of the
pdfs of the Gaussians G1, . . . , Gk at each of the samples X1, . . . , Xn. Since n = polyk,A(d/ϵ) for
some sufficiently large polynomial, applying Lemma 80 and Lemma 81 completes the proof (note
that the fraction of corrupted points is at most ϵ overall and the mixing weights are lower bounded
so the fraction of corrupted points in each cluster is at most Ok,A(1)ϵ).

Finally, it remains to note that once we have clustered the points, we can learn the parameters.
For this, we rely on the following definition and result from Liu and Moitra (2021).

Definition 83 (Definition 5.1 in Liu and Moitra (2021)) We say a mixture of Gaussians w1G1 +
· · ·+ wkGk is δ-tight if

1. Let G be the graph on [k] obtained by connecting two nodes i, j if dTV(Gi, Gj) ≤ 1− δ. Then
G is connected

2. dTV(Gi, Gj) ≥ δ for all i ̸= j

3. wmin ≥ δ

Theorem 84 (Theorem 5.2 in Liu and Moitra (2021)) There is a function f(k) > 0 depending
only on k such that given an ϵ-corrupted sample from a δ-tight mixture of Gaussians

M = w1N(µ1,Σ1) + · · ·+ wkN(µk,Σk)

where δ ≥ ϵf(k), there is a polynomial time algorithm that outputs a set of (1/ϵ)Ok(1) candidate
mixtures {w̃1N(µ̃1, Σ̃1)+· · ·+w̃kN(µ̃k, Σ̃k} and with high probability, at least one of them satisfies
that for all i:

|wi − w̃i|+ dTV(N(µi,Σi), N(µ̃i, Σ̃i)) ≤ ϵΩk(1) .

With one additional argument, we can remove the assumption that the components are δ-
separated in TV distance from the above.

Corollary 85 There is a function g(k) > 0 depending only on k such that given an ϵ-corrupted
sample from a mixture of Gaussians

M = w1N(µ1,Σ1) + · · ·+ wkN(µk,Σk)

where M satisfies conditions 1 and 3 of Definition 83 for some δ ≥ ϵg(k), there is a polynomial time
algorithm that outputs a set of (1/ϵ)Ok(1) candidate mixtures {w̃1N(µ̃1, Σ̃1)+ · · ·+ w̃kN(µ̃k, Σ̃k}
and with high probability, at least one of them satisfies that for all i:

|wi − w̃i|+ dTV(N(µi,Σi), N(µ̃i, Σ̃i)) ≤ ϵΩk(1) .
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Proof Let f(k) be the function in Theorem 84. Consider the sequence

ψ0 = ϵ, ψ1 = ϵ(0.1f(k)), . . . , ψk2 = ϵ(0.1f(k))
k2

.

There must be an index j < k2 such that there is no pair of components Gi1 and Gi2 with TV
distance between ψj and ψj+1. Let G be the graph on [k] where two indices i1 and i2 are connected
if and only if

dTV(Gi1 , Gi2) ≤ ψj .

Now consider a modified mixture M′ where for each connected component of vertices in G, say
S ⊂ [k], we replace all of the Gaussians Gi with i ∈ S with copies of one fixed representative from
this component. We then combine the copies by adding the mixing weights. The resulting mixture
M′ satisfies the following properties

• M′ has k′ ≤ k components G′
1, . . . , G

′
k′

• The graph on [k′] obtained by connecting two nodes i, j if dTV(G
′
i, G

′
j) ≤ 1 − δ + kψj is

connected

• All pairs of components are separated by at least ψj+1 in TV distance

• All mixing weights are at least δ

• dTV(M,M′) ≤ kψj

Thus, we can treat our sample as an ϵ′-corrupted sample from M′ with

ϵ′ = ϵ+ kψj .

Note that ψj+1 ≥ ϵ′f(k) and thus by choosing g(k) appropriately, we can ensure that the mixture
M′ is ϵ′f(k)-tight. Thus, we can apply Theorem 84 to learn the components of the mixture M′ to
within ϵ′Ωk(1) = ϵΩk(1). We can then guess the mixing weights and duplications of components to
output a list of candidate mixtures at least one of which is component-wise within ϵΩk(1) of the true
mixture.

To put everything together, we will need the following simple claim which also appears in Liu
and Moitra (2021).

Claim 37 (Claim 7.6 in Liu and Moitra (2021)) Let M = w1G1 + · · · + wkGk be a mixture of
Gaussians. For any constant c > 0 and parameter ϵ, there exists a function f(c, k) such that there
exists a partition (possibly trivial) of [k] into sets R1, . . . , Rl such that

• If we draw edges between all i, j such that dTV(Gi, Gj) ≤ 1 − ϵcκ then each piece of the
partition is connected

• For any i, j in different pieces of the partition dTV(Gi, Gj) ≥ 1− ϵκ

and f(c, k) < κ < 1.
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Now we can prove Theorem 73.
Proof [Proof of Theorem 73] This follows from combining Corollary 76, Claim 37, Lemma 82 and
finally applying Corollary 85. Note we can choose the constant c in Claim 37 sufficiently small
so that when combined with Lemma 82, the resulting accuracy that we get on each submixture is
high enough that we can then apply Corollary 85 (we can treat the subsample corresponding to each
submixture as a O(ϵ′η)-corrupted sample from that submixture). We apply Lemma 82 with ϵ′ = ϵκ

where the κ is obtained from Claim 37.

I.2. Estimate Mixture to Õ(ϵ) accuracy

Note that the results in the previous section do not require the Gaussians to be reasonably well-
conditioned. However for the next step, of going from ϵΩ(1) accuracy to Õ(ϵ) accuracy, we will re-
quire the assumption that the Gaussians are reasonably well-conditioned. We will restrict to the case
where the Gaussians are χ-balanced where χ should be thought of as a constant (or poly(log 1/ϵ)).

The main theorem that we will prove in this section is as follows.

Theorem 86 Let M = w1G1 + · · · + wkGk be a χ-balanced mixture of Gaussians. Further-
more, assume that all of the mixing weights are at least A−1 for some constant A. Assume that
ϵ is sufficiently small compared to k,A and χ ≤ poly(log 1/ϵ). Let n = polyk,A(d/ϵ) for some
sufficiently large polynomial and letX1, . . . , Xn be an ϵ-corrupted sample from M. Then with 0.99
probability, the list of candidate density estimates computed by FULL ALGORITHM is a list of size
(1/ϵ)Ok,A(1) and contains a degree Ok,A(1) MPG distribution f such that

∥f(x)−M(x)∥1 ≤ (2 + log 1/ϵ+ χ)Ok,A(1)ϵ .

Proof Let g(k,A) be the function in Theorem 73. Using Theorem 73, with 0.999 probability,
among the list of candidate components computed in LEARN PARAMETERS TO ϵΩ(1) ACCURACY,
there is some set {G1, . . . , Gk} such that for all i ∈ [k]

dTV(Gi, Gi) ≤ ϵg(k,A) .

Now consider the graph G on [k] where two nodes i and j are connected if and only if dTV(Gi, Gj) ≤
1 − ϵ1/η where η is the universal constant in Lemma 82. Let R1, . . . , Rl ⊂ [k] be the connected
components in this graph. For each j ∈ [l] define the submixture

Mj =

∑
i∈Rj

wiGi∑
i∈Rj

wi
.

Now by Lemma 82, with 0.999 probability, if we partition [k] according to R1, . . . , Rl and then
assign samples by maximum likelihood using the estimates {G1, . . . , Gk}, the resulting the subsets
of samples R1, . . . ,Rl are equivalent to Ok,A(1)ϵ-corrupted samples from each of the submixtures
M1, . . . ,Ml (note that we are setting ϵ′ = ϵ1/η in Lemma 82). It now suffices to estimate the
density function of each submixture to Õ(ϵ) accuracy. We will argue that given this clustering,
LEARN MIXTURE TO Õ(ϵ) ACCURACY indeed learns each of the submixtures to Õ(ϵ) accuracy.

Let µ1,Σ1, . . . µk,Σk be the means and covariances of the true components G1, . . . , Gk and let
µ̃1, Σ̃1, . . . , µ̃k, Σ̃k be the means and covariances of our initial estimates. Without loss of generality
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assume R1 = {1, 2, . . . , t}. Let L denote the linear transformation x → Σ̃
−1/2
1 (x − µ̃1). Since

dTV(Gi, Gi) ≤ ϵg(k,A), the Gaussians Gi must all be 2χ-balanced. Now by Claim 36, we conclude

∥L(µ1)∥+ ∥L(Σ1)− I∥2 ≤ ϵΩk,A(1) .

Also since R1 = {1, 2, . . . , t} is a connected a component in G, we can apply Claim 35 and sum
over all paths in the connected component to deduce that

∥L(µi)∥ , ∥L(Σi)− I∥2 ≤ poly(χ, log 1/ϵ)

for all i ≤ t. Thus, since ϵ is sufficiently small in terms of k,A, we can ensure that the transformed
mixture L(M1) is in (α, β, γ)-regular form for

• α ≤ poly(log 1/ϵ)

• β ≤ poly(log 1/ϵ)

• γ sufficiently small in terms of k,A

Now the above implies that the application of Theorem 69 in algorithm LEARN MIXTURE TO Õ(ϵ)
ACCURACY is valid (with c = Ωk,A(1)) and guarantees that with high probability, after applying
the inverse linear transformation, we obtain a function f1 such that

∥f1(x)−M1(x)∥1 ≤ (2 + log 1/ϵ+ χ)Ok,A(1)ϵ .

Similarly, we compute functions f2, . . . , fl that approximate the density functions of M2, . . . ,Ml.
Finally note that

M =
l∑

j=1

∑
i∈Rj

wi

Mj .

We can simply guess the weights
(∑

i∈Rj
wi

)
for j ∈ [l] of the submixtures using an ϵ-grid. If our

guesses, say W1, . . . ,Wl are all within ϵ of the true values then the function f =
∑l

j=1Wjfj(x)
satisfies the desired conditions because∥∥∥∥∥∥

l∑
j=1

Wjfj(x)−M(x)

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
l∑

j=1

Wjfj(x)−
l∑

j=1

WjMj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
l∑

j=1

Wj −
∑
i∈Rj

wi

Mj

∥∥∥∥∥∥
1

≤ (2 + log 1/ϵ+ χ)Ok,A(1)ϵ .

Overall, the number of candidates that FULL ALGORITHM outputs is (1/ϵ)Ok,A(1) (enumerating
over all initial estimates for the components, possible clusterings, and possible guesses for the
weights) and with 0.99 probability at least one of them satisfies

∥f(x)−M(x)∥1 ≤ (2 + log 1/ϵ+ χ)Ok,A(1)ϵ ,

completing the proof.
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I.3. Hypothesis Testing

Theorem 86 guarantees that we can learn a list of candidate density functions at least one of which
is close to the density function of the true mixture. The last step is to hypothesis test to select an
element of the list which is guaranteed to be close to the true density function. For this we rely on
the following lemma from Liu and Moitra (2021).

Lemma 87 (Restated from Liu and Moitra (2021)) Let F be a family of distributions on some
domain X with explicitly computable density functions that can be efficiently sampled from. Let
V be the VC dimension of HF ,2 (recall Definition 79). Let D be an unknown distribution in F .
Let m be a parameter. Let X1, . . . , Xn be an ϵ-corrupted sample from D with n ≥ poly(m, ϵ, V )
for some sufficiently large polynomial. Let H1, . . . ,Hm be distributions in F given to us by an
adversary with the promise that

min(dTV(D, Hi)) ≤ ϵ .

Then there exists an algorithm that runs in time poly(n, ϵ) and outputs an i with 1 ≤ i ≤ m such
that with 0.999 probability

dTV (D, Hi) ≤ O(ϵ) .

We can now complete the proof of the main theorem.
Proof [Proof of Theorem 72] Combining Theorem 86 with Lemma 87 and Lemma 80, we imme-
diately get the desired result. Note that the density function of a constant degree MPG distribution
is explicitly computable. To see why it can be efficiently sampled from, note that all of the polyno-
mials are always positive and the integral of

∫
Rd P (x)G(x)dx for a polynomial P and Gaussian G

can be computed explicitly using integration by parts.

Appendix J. Omitted Proofs from Section F

Proof [Proof of Claim 28] First, we obtain high probability bounds on the sum of the largest ϵ-
fraction of the samples.

For any α, let Sα be the set of x ∈ S with |x| ≥ α log1/c(1/ϵ). Let C = (10/c)10/c. For
C ≤ α ≤ n0.01, using tail bounds on the binomial distribution, we get

Pr
[
|Sα| >

ϵn

α10

]
≤
(

n

ϵn/α10

)
ϵα

c· nϵ
α10 ≤

(
3α10

ϵ
· ϵαc

) nϵ
α10

≤ e−(10d/ϵ)2

α10
.

Also, using a simple union bound, with probability at least 1 − e−(10d/ϵ)2 , we have |x| ≤ n0.01 for
all x ∈ S.

Consider a set of α forming a geometric series with ratio 2, say {C, 2C, . . . , }. Combining
everything we’ve shown so far using a union bound, with probability at least 1 − e−(9d/ϵ)2 , for all
α = {C, 2C, . . . , }, we have

|Sα| ≤
ϵn

α10
.

This implies that with probability 1− e−(9d/ϵ)2 , for any set T ⊂ S of size at most ϵn,

∑
x∈T

|x| ≤ ϵC log1/c(1/ϵ)n+

∞∑
i=1

2iC

210(i−1)
log1/c(1/ϵ)ϵn ≤ 10ϵ log1/c(1/ϵ)Cn . (20)
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Let D′ be the distribution D restricted to the interval
[
− log1/c(1/ϵ), log1/c(1/ϵ)

]
. The assump-

tion about the tail decay of D implies that

|µD′ − µD| ≤ 10ϵ log1/c(1/ϵ)C . (21)

Let λ be the probability mass that D has in the interval
[
− log1/c(1/ϵ), log1/c(1/ϵ)

]
. Sampling

from D is equivalent to sampling using the following procedure.

• First draw a Bernoulli random variable σ that is 1 with probability λ

• If σ is 1 then draw a sample from D′ and otherwise sample from the distribution D restricted
to outside the interval

[
− log1/c(1/ϵ), log1/c(1/ϵ)

]
Note that λ ≥ 1 − ϵ. Assuming that the original set of samples S is drawn in this manner, with
probability at least 1 − e−(9d/ϵ)2 , there are at least (1 − 2ϵ)n elements of S that are drawn from
D′. By a Chernoff bound, their mean is within 10ϵ log1/c(1/ϵ)C of µD′ with at least 1 − e−(9d/ϵ)2

probability. Finally, using equations (20), (21) and the triangle inequality, we deduce that with
probability at least 1− e−(8d/ϵ)2 , for all subset S′ ⊂ S of size at least (1− ϵ)n,∣∣∣∣∣µD − 1

|S′|
∑
x∈S′

x

∣∣∣∣∣ ≤ ϵ log1/c(1/ϵ)

(
102

c

)10/c

.

Proof [Proof of Claim 29] Let κ be the dimensionality of v(Hm(X, z)). Note κ = dOm(1). Let E
be an ϵ/(10κ)-net of the unit sphere in κ dimensions. We can ensure that

|E| ≤
(
102κ

ϵ

)κ

.

For a fixed vector v ∈ E, we will compute the probability that either∣∣∣∣∣v ·
(
µD − 1

S′

∑
x∈S′

x

)∣∣∣∣∣ ≥ δ

2

or ∣∣∣∣∣vT
(
ΣD − 1

S′

∑
x∈S′

(x− µD)(x− µD)
T

)
v

∣∣∣∣∣ ≥ δ2

2ϵ

for some subset S′ with |S′| ≥ (1− ϵ)|S| and then we will union bound the failure probability over
all vectors v ∈ E.

By Lemma 61, the distribution v · D, scaled by a factor of

1

(2 + α+ β)Om(1)
,
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satisfies the conditions of Claim 28 with c = Ωm(1). Thus, by choosing n sufficiently large, we can
ensure that with 1− e(8κ/ϵ)

2
probability, we have∣∣∣∣∣v ·

(
µD − 1

S′

∑
x∈S′

x

)∣∣∣∣∣ ≤ δ

2

for all subsets S′ with |S′| ≥ (1− ϵ)n. Next,∣∣∣∣∣vT
(
ΣD − 1

S′

∑
x∈S′

(x− µD)(x− µD)
T

)
v

∣∣∣∣∣
=

∣∣∣∣∣vT (ΣD + µDµ
T
D)v −

1

S′

∑
x∈S′

(v · x)2 + 2

S′ v
T

(∑
x∈S′

(x− µD)

)
µTDv

∣∣∣∣∣
≤

∣∣∣∣∣vT (ΣD + µDµ
T
D)v −

1

S′

∑
x∈S′

(v · x)2
∣∣∣∣∣+ 2 ∥µD∥

∣∣∣∣∣v ·
(
µD − 1

S′

∑
x∈S′

x

)∣∣∣∣∣ .
Lemma 61 implies that the variable (v · x)2 for x ∼ D, scaled by a factor of

1

(2 + α+ β)Om(1)
,

also satisfies the conditions of Claim 28 with c = Ωm(1). Also note that

Ex∼D(v · x)2 = vT (ΣD + µDµ
T
D)v .

Thus, we can ensure that with 1− e(8κ/ϵ)
2

probability, we have∣∣∣∣∣vT (ΣD + µDµ
T
D)v −

1

S′

∑
x∈S′

(v · x)2
∣∣∣∣∣ ≤ δ2

10ϵ
,

for all subsets S′ with |S′| ≥ (1− ϵ)n. Lemma 61 also implies that

∥µD∥ ≤ (2 + α+ β)Om(1)

so overall, we conclude that with 1− e(7κ/ϵ)
2

probability, for each fixed vector v, we have both∣∣∣∣∣v ·
(
µD − 1

S′

∑
x∈S′

x

)∣∣∣∣∣ ≤ δ

2∣∣∣∣∣vT
(
ΣD − 1

S′

∑
x∈S′

(x− µD)(x− µD)
T

)
v

∣∣∣∣∣ ≤ δ2

2ϵ

for all subsets S′ with |S′| ≥ (1− ϵ)n. A union bound gives that with 1− e(6κ/ϵ)
2

probability, the
above holds for all vectors v ∈ E. Now let b be the vector

b =

(
µD − 1

S′

∑
x∈S′

x

)
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and let Q be the matrix

Q =

(
ΣD − 1

S′

∑
x∈S′

(x− µD)(x− µD)
T

)
.

We want to bound the L2 norm of b and the operator norm of Q. First, let v be the element of
E that is closest to the unit vector in the direction of b. Since E is a ϵ/(10κ)-net, we must have
v ·b > 0.5 ∥b∥2 which implies ∥b∥2 ≤ δ. Next let u be a unit vector such that uTQu = ∥Q∥op (such
a u exists since Q is symmetric). Let v be the element of E closest to u. Then

vTQv = uTQu+ (v − u)TQu+ vTQ(v − u) ≥ ∥Q∥op − |(v − u)TQu| − |vTQ(v − u)|

≥ ∥Q∥op (1− 2 ∥v − u∥2) >
∥Q∥op

2

and thus we must actually have ∥Q∥op ≤ δ2/ϵ. This completes the proof.
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