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Abstract

We study the stochastic multi-player multi-armed bandit problem. In this problem, there are m
players and K > m arms and the players cooperate to maximize their total reward. However the
players cannot communicate and are penalized (e.g. receive no reward) if they pull the same arm at
the same time. We ask whether it is possible to obtain optimal instance-dependent regret O(1/A)
where A is the gap between the m-th and m + 1-st best arms. Such guarantees were recently
achieved by Pacchiano et al. (2021); Huang et al. (2022) in a model in which the players are able
to implicitly communicate through intentional collisions.

Surprisingly, we show that with no communication at all, such guarantees are not achievable.
In fact, obtaining the optimal O(1/A) regret for some values of A necessarily implies strictly sub-
optimal regret for other values. Our main result is a complete characterization of the Pareto optimal
instance-dependent trade-offs that are possible with no communication. Our algorithm generalizes
that of Bubeck et al. (2021). As there, our algorithm succeeds even when feedback upon collision
can be corrupted by an adaptive adversary, thanks to a strong no-collision property. Our lower
bound is based on topological obstructions at multiple scales and is completely new.!
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