
Proceedings of Machine Learning Research vol 178:1–25, 2022 35th Annual Conference on Learning Theory

Orthogonal Statistical Learning with Self-Concordant Loss

Lang Liu LIU16@UW.EDU
Department of Statistics, University of Washington

Carlos Cinelli CINELLI@UW.EDU
Department of Statistics, University of Washington

Zaid Harchaoui ZAID@UW.EDU

Department of Statistics, University of Washington

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
Orthogonal statistical learning and double machine learning have emerged as general frameworks
for two-stage statistical prediction in the presence of a nuisance component. We establish non-
asymptotic bounds on the excess risk of orthogonal statistical learning methods with a loss function
satisfying a self-concordance property. Our bounds improve upon existing bounds by a dimension
factor while lifting the assumption of strong convexity. We illustrate the results with examples from
multiple treatment effect estimation and generalized partially linear modeling.
Keywords: Orthogonal statistical learning, self-concordance, effective dimension, sandwich co-
variance, excess risk

1. Introduction

As statistical machine learning impacts several domain applications of major importance to the
planet and society, ranging from healthcare to the environment, sophisticated approaches to estima-
tion, proceeding in multiple stages, are being developed to overcome confounding factors and to
address high-dimensional nuisance parameters (Peters et al., 2017). Orthogonal statistical learning
(OSL), and its statistical estimation predecessor double machine learning (DML), have emerged as
general frameworks for two-stage statistical machine learning in the presence of a nuisance compo-
nent (Mackey et al., 2018; Liu et al., 2021; Nekipelov et al., 2022).

The power of this framework can be illustrated on the task of assessing the causal effect of a
treatment on an outcome of interest. Let Z := (Y,D,X) be a vector of observed variables, where
Y ∈ R is the outcome, D ∈ {0, 1} is the treatment, and X ∈ Rp is a vector of features. Denote
by Y (d) the potential outcome of Y when the treatment variable D is set (by intervention) to be
d ∈ {0, 1}. Our goal is to estimate the average treatment effect (ATE) of D on Y , defined as
θ0 := E[Y (1)− Y (0)].

If the treatment assignment D is conditionally ignorable (unconfounded) given X; or, equiva-
lently, if the set of features X satisfy the “backdoor” (adjustment) criterion for estimating the causal
effect of D on Y (see Figure 1 for an illustrative causal diagram), a well known identification re-
sult in the causal inference literature is that the ATE θ0 can be identified as a functional of the
conditional expectation function (CEF) of the outcome (Rosenbaum and Rubin, 1983; Pearl, 2009;
Shpitser et al., 2010; Imbens and Rubin, 2015; Hernán and Robins, 2020). To be more concrete, we
obtain that θ0 = E

[
E[Y | D = 1, X] − E[Y | D = 0, X]

]
. Note that, in order to estimate θ0,

which is a scalar, we may need to learn the potentially infinite dimensional nuisance g := (g0, g1)
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Figure 1: Causal diagram in which X satisfies the backdoor criterion for the causal effect of
D on Y . Here, unconfoundedness holds conditional on X , that is, Y (d) ⊥⊥ D | X .

where gd := E[Y | D = d, X]. This type of challenge, where in order to learn about the target of
inference, one needs to estimate many quantities that are not of primary interest, is the one OSL and
DML both seek to address.

We work in the framework of OSL and state our results in terms of excess risk in the spirit
of statistical learning theory. Formally, let D := {Z1, . . . , Z2n} be an i.i.d. sample of size 2n
from an unknown distribution P on Z . We are interested in learning parameters from the model
Mθ,g equipped with some loss function ℓ(θ, g; z), where θ ∈ Θ ⊂ Rd is the target parameter and
g ∈ (G, ∥·∥G) is the nuisance parameter which may be infinite dimensional. Define the population
risk at (θ, g) as L(θ, g) := EZ∼P[ℓ(θ, g;Z)]. We will assume throughout that ℓ is three times
differentiable w.r.t. θ and twice differentiable w.r.t. g.

Following Foster and Syrgkanis (2020), we assume that there exists a true nuisance parameter
g0 ∈ G. Without access to g0, we aim to learn an estimator θ̂ that minimizes the excess risk,

E(θ, g0) := L(θ, g0)− inf
θ∈Θ

L(θ, g0). (1)

We assume that the infimum in the excess risk is attainable at a minimizer θ⋆ and the Hessian of
L(·, g0) at θ⋆ is invertible. Consequently, we can rewrite (1) as

E(θ, g0) = L(θ, g0)− L(θ⋆, g0).

We focus on the two-stage learning procedure with sample splitting from Foster and Syrgkanis
(2020); see also Chernozhukov et al. (2018). Denote by D1 := {Zi}ni=1 the first sample split, and
by D2 := {Zi}2ni=n+1 the second sample split. The estimator we study in this paper is constructed
from the following algorithm.

OSL Meta-Algorithm

• Nuisance parameter. The first stage learning algorithm takes D2 as input and outputs an
estimator ĝ.

• Target parameter. The second stage learning algorithm solves the minimization problem

min
θ∈Θ

Ln(θ, ĝ) :=
1

n

n∑
i=1

ℓ(θ, ĝ;Zi) (2)

and outputs an estimator θ̂.

The main contribution of this paper is establishing non-asymptotic guarantees on the excess
risk E(θ̂, g0) for the OSL estimator θ̂ under a uniform self-concordance assumption, allowing the
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dimension of the target parameter to grow at the rate d = O(n1/2). In particular, Theorems 4 and 5
derive novel non-asymptotic bounds for the excess risk and characterize its convergence as n → ∞,
both in a “fast” and “slow” regime. Compared to previous work, such as (Foster and Syrgkanis,
2020), these new bounds depend on the “effective dimension” as defined by the trace of the sandwich
covariance matrix, and recover guarantees that were only available to supervised learning without a
nuisance parameter. Effectively, this improves prior bounds on the excess risk at least by a factor of
d in a wide range of eigendecay regimes.

In what follows, Section 2 provides the main definitions, assumptions, and establishes the main
results of this paper. Section 3 provides further discussions on the converge rate and how our
work relates to existing literature. Section 4 examines concrete examples such as treatment effect
estimation in a partially linear model and semi-parametric logistic regression. Finally, Section 5
offers some concluding remarks. The full proofs are collected in the Appendix sections.

2. Main Results

We first introduce the notation and some key definitions. We then present all the assumptions
required by our analysis. Finally, we summarize our main results and their proof sketches.

2.1. Preliminaries

Notation. Let S(θ, g; z) := ∇θℓ(θ, g; z) be the gradient at z and H(θ, g; z) := ∇2
θℓ(θ, g, z) be

the Hessian at z. We also call S(θ, g; z) the score at z which is named after the likelihood score
in maximum likelihood estimation. Their population counterparts are S(θ, g) := EZ∼P[S(θ, g;Z)]
and H(θ, g) := EZ∼P[H(θ, g;Z)]. We assume standard regularity assumptions so that S(θ, g) =
∇θL(θ, g) and H(θ, g) = ∇2

θL(θ, g). Moreover, we let G(θ, g) := CovZ∼P(S(θ, g;Z)) be the co-
variance matrix of the score S(θ, g;Z). For simplicity of the notation, we let S⋆ := S(θ⋆, g0),
G⋆ := G(θ⋆, g0), and H⋆ := H(θ⋆, g0). We define their empirical quantities as Sn(θ, g) :=
1
n

∑n
i=1 S(θ, g;Zi), Hn(θ, g) :=

1
n

∑n
i=1H(θ, g;Zi), and

Gn(θ, g) :=
1

n

n∑
i=1

[S(θ, g;Zi)− S(θ, g)][S(θ, g;Zi)− S(θ, g)]⊤.

Our analysis is local to a Dikin ellipsoid at θ⋆ of radius r̄1 := r1
√

λmin(H∗) and a ball at g0 of
radius r2, i.e.,

Θr̄1(θ⋆) := {θ ∈ Θ : ∥θ − θ⋆∥H⋆
< r̄1} and Gr2(g0) := {g ∈ G : ∥g − g0∥G < r2},

where, given a positive semi-definite matrix J , we let ∥x∥J :=
∥∥J1/2x

∥∥
2
=

√
x⊤Jx.

Effective dimension. The quantity that plays a central role in our analysis is the profile effective
dimension defined as follows. The term profile is used in the same sense as in the profile likelihood
literature; see, e.g., Murphy and Van der Vaart (2000).

Definition 1 We define the profile effective dimension to be

d̄⋆ := sup
g∈Gr2 (g0)

Tr(H
−1/2
⋆ G(θ⋆, g)H

−1/2
⋆ ). (3)
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Figure 2: Illustration of the orthogonal score by projection.

When the model is well-specified, we have H⋆ = G⋆ and thus d̄∗ ≈ d. When the model is mis-
specified, it corresponds to the mismatch between the covariance matrix G∗ and the Hessian matrix
H∗. It can be either as small as a constant or as large as exponential in d depending on the eigende-
cays of G∗ and H∗; see Section 3 for more details.

Self-concordance. We shall use the notion of self-concordance from convex optimization. Self-
concordance was introduced to analyze the interior-point and Newton-type convex optimization
algorithms (Nesterov and Nemirovskii, 1994). Bach (2010) introduced a modified version, which
we call the pseudo self-concordance, to derive non-asymptotic bounds for the logistic regression.
We focus here on the pseudo self-concordance. For a functional F mapping from a vector space F
to R, we define the derivative operator D as DF (f)[h] := d

dtF (f + th)|t=0 for f, h ∈ F .

Definition 2 Let X ⊂ Rd be open and f : X → R be a closed convex function. We say f is pseudo
self-concordant with parameter R on X if∣∣D3f(x)[u, u, u]

∣∣ ≤ R ∥u∥2D
2f(x)[u, u], for all x ∈ X , u ∈ Rd.

Neyman orthogonality. We use Neyman orthogonality (Neyman, 1959, 1979) to obtain a fast rate
for the excess risk. The intuition behind it is that we want the risk to be insensitive to perturbations
in the nuisance g so that a good estimate θ̂ can be obtained even if ĝ is of poor quality.

Definition 3 We say the population risk L is Neyman orthogonal at (θ⋆, g0) over Θ′ × G′ if

DgDθL(θ⋆, g0)[θ − θ⋆, g − g0] = 0, for all θ ∈ Θ′, g ∈ G′. (4)

Since (4) also implies that DgS(θ⋆, g0)[g − g0] = 0 for all g ∈ G′, we will also say the score S is
Neyman orthogonal at (θ⋆, g0).

When g is parametrized by a finite-dimensional vector β, we can obtain a Neyman orthogonal score
by projection. Let L(θ, β) be some population risk which may not be Neyman orthogonal. We
project Sθ := ∇θL(θ, β) onto the space spanned by Sβ := ∇βL(θ, β) and obtain S := Sθ −
γSβ where γ := [∇θ∇βL(θ, β)][∇2

βL(θ, β)
−1]. It can be shown that S is Neyman orthogonal

at (θ⋆, β0). This procedure is illustrated in Figure 2. Now, to get a population risk that satisfies
Neyman orthogonality, it suffices to take the integral of S w.r.t. θ.
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2.2. Assumptions

Since our analysis is local to neighborhoods of θ⋆ and g0, our first assumption localizes the estimator
θ̂ and ĝ to such neighborhoods.

Assumption 1 (Localization) Let r1, r2 > 0 be constants and r̄1 := r1
√

λmin(H⋆) > 0. There
exists a function Nr̄1,r2 : [0, 1] → N+ and such that for any δ ∈ (0, 1) we have, with probability at
least 1− δ, θ̂ ∈ Θr̄1(θ⋆) and ĝ ∈ Gr2(g0) for all n ≥ Nr̄1,r2(δ).

The localization assumption is necessary to avoid a global strong convexity assumption which
is assumed by Foster and Syrgkanis (2020). In order to control the empirical score, we assume that
the normalized score at θ⋆ is sub-Gaussian uniformly over Gr2(g0).

Assumption 2 (Score sub-Gaussianity) There exists a constant K1 > 0 such that, for every
g ∈ Gr2(g0), we have

∥∥G(θ⋆, g)
−1/2[S(θ⋆, g;Z)− S(θ⋆, g)]

∥∥
ψ2

≤ K1, where ∥·∥ψ2
is the sub-

Gaussian norm defined in Appendix C.

Another quantity that we need to control is S(θ⋆, ĝ)⊤(θ̂ − θ⋆) = DθL(θ⋆, ĝ)[θ̂ − θ⋆]. Note that
S(θ⋆, g0) = 0 by the first order optimality condition. Hence, we may control it with a smoothness
assumption on the population risk.

Assumption 3a For all θ ∈ Θr̄1(θ⋆) and g, ḡ ∈ Gr2(g0), it holds that

|DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]| ≤ β1 ∥θ − θ⋆∥H⋆
∥g − g0∥G

for some constant β1 > 0.

As we will show in Section 2, this assumption will lead to a slow rate which scales as O(n−1 +
∥ĝ − g0∥2G). If S(θ⋆, g) is insensitive to g around g0, we can obtain a faster rate O(n−1+∥ĝ − g0∥4G).
This insensitivity can be characterized by the Neyman orthogonality and higher order smoothness.

Assumption 3b The population risk L is Neyman orthogonal at (θ⋆, g0) over Θr̄1(θ⋆) × Gr2(g0).
Moreover, it holds for some constant β2 > 0 that∣∣D2

gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]
∣∣ ≤ β2 ∥θ − θ⋆∥H⋆

∥g − g0∥2G

for all θ ∈ Θr̄1(θ⋆) and g, ḡ ∈ Gr2(g0).

To facilitate the control of the empirical Hessian, we use the pseudo self-concordance as in
Definition 2, which allows us to relate Hn(θ, g) and H(θ, g) to Hn(θ⋆, g) and H(θ⋆, g), respectively.

Assumption 4 (Uniform pseudo self-concordance) For any z ∈ Z and g ∈ Gr2(g0), ℓ(·, g; z) is
pseudo self-concordant with parameter R on Θr̄1(θ⋆). Consequently, for any g ∈ Gr2(g0), L(·, g)
is pseudo self-concordant with parameter R on Θr̄1(θ⋆).

Since θ̂ is random, we assume that the Hessian satisfies the Bernstein condition so that we
can use a covering number argument to relate Hn(θ̂, g) to H(θ⋆, g). Due to the variability in ĝ,
the Bernstein condition is satisfied uniformly over a neighborhood of g0 and we also assume the
stability of H(θ⋆, g) around g0.
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Assumption 5 For any θ ∈ Θr̄1(θ⋆) and g ∈ Gr2(g0), the centered sandwich Hessian

H(θ, g)−1/2H(θ, g;Z)H(θ, g)−1/2 − Id

satisfies a Bernstein condition with parameter K2 and

σ2
H := sup

θ∈Θr̄1 (θ⋆),g∈Gr2 (g0)

∣∣∣Var(H(θ, g)−1/2H(θ, g;Z)H(θ, g)−1/2
)∣∣∣

2
< ∞,

where, for a matrix J ∈ Rd×d, we define |J |2 := max{λmax(J), |λmin(J)|} and Var(J) :=
E[JJ⊤]− E[J ]E[J ]⊤. Moreover, there exist constants κ and K depending on r2 such that

κH⋆ ⪯ H(θ⋆, g) ⪯ KH⋆, for all g ∈ Gr2(g0). (5)

2.3. Main Results

We now present our main results. We will discuss our results in more detail in Section 3. The first
result is a fast rate of convergence for the excess risk assuming Neyman orthogonality.

Theorem 4 (Fast rate) Under Assumptions 1, 2, 3b, 4, and 5, the OSL estimator θ̂ has excess risk,
with probability at least 1− δ,

E(θ̂, g0) ≲
e3Rr1

κ2

[
K2

1 log (1/δ)d̄⋆
n

+ β2
2 ∥ĝ − g0∥4G

]
(6)

whenever n ≥ max{Nr̄1,r2(δ/5), 16(K
2
2 + 2σ2

H)[log (20d/δ) + d log (3Rr1/ log 2)]
2}, where ≲

hides an absolute constant.

When Neyman orthogonality fails to hold, we have a similar bound with ∥ĝ − g0∥4G being re-
placed by ∥ĝ − g0∥2G .

Theorem 5 (Slow rate) Under Assumptions 1, 2, 3a, 4, and 5, the OSL estimator θ̂ has excess risk,
with probability at least 1− δ,

E(θ̂, g0) ≲
e3Rr1

κ2

[
K2

1 log (1/δ)d̄⋆
n

+ β2
1 ∥ĝ − g0∥2G

]
(7)

whenever n ≥ max{Nr̄1,r2(δ/5), 16(K
2
2 + 2σ2

H)[log (20d/δ) + d log (3Rr1/ log 2)]
2}, where ≲

hides an absolute constant.

The detailed proofs of Theorems 4 and 5 are deferred to Appendix B. On a high level, the proofs
proceed as follows. To begin with, due to Assumption 1, we can dedicate our analysis to the case
when θ̂ ∈ Θr̄1(θ⋆). By Taylor’s theorem,

E(θ̂, g0) := L(θ̂, g0)− L(θ⋆, g0) = S(θ⋆, g0)
⊤(θ̂ − θ⋆) +

1

2

∥∥∥θ̂ − θ⋆

∥∥∥2
H(θ̄,g0)

for some θ̄ ∈ Conv{θ̂, θ⋆}. By the first order orthogonality condition, it holds that S(θ⋆, g0) = 0.
For the second term, it follows from the property of the pseudo self-concordance (Assumption 4)
that ∥∥∥θ̂ − θ⋆

∥∥∥2
H(θ̄,g0)

≤ eR∥θ̄−θ⋆∥2

∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

≤ eRr1
∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

.

6



SHORT TITLE

It now remains to control
∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

.

By Taylor’s theorem again, it holds that

Ln(θ̂, ĝ)− Ln(θ⋆, ĝ) = Sn(θ⋆, ĝ)
⊤(θ̂ − θ⋆) +

1

2

∥∥∥θ̂ − θ⋆

∥∥∥2
Hn(θ̄′,ĝ)

, (8)

where θ̄′ ∈ Conv{θ̂, θ⋆}. By the optimality of θ̂, we have Ln(θ̂, ĝ) − Ln(θ⋆, ĝ) ≤ 0. We then
lower bound the right hand side of (8). According to Assumption 1, we have ĝ ∈ Gr2(g0) with high
probability when n is sufficiently large. The following Lemma 6, which is a direct consequence of
the independence between {Zi}ni=1 and ĝ, allows us to work with fixed g ∈ Gr2(g0) instead of the
random estimator ĝ.

Lemma 6 Let A(ĝ, {Zi}ni=1) be some event regarding ĝ and {Zi}ni=1. Let G′ ⊂ G. If there exists
δ ∈ (0, 1) such that P(A(g, {Zi}ni=1)) ≥ 1 − δ for all fixed g ∈ G′, then P(A(ĝ, {Zi}ni=1)) ≥
(1− δ)P(ĝ ∈ G′).

Now we focus on the score term Sn(θ⋆, g)
⊤(θ̂−θ⋆) in (8) with ĝ replaced by a fixed g ∈ Gr2(g0).

We split it into two terms

[Sn(θ⋆, g)− S(θ⋆, g)]
⊤(θ̂ − θ⋆) + S(θ⋆, g)

⊤(θ̂ − θ⋆). (9)

The first term in (9) can be controlled using the sub-Gaussianity of the score. Recall that

d̄⋆ := sup
g∈Gr2 (g0)

Tr(H
−1/2
⋆ G(θ⋆, g)H

−1/2
⋆ ).

Proposition 7 Under Assumption 2, it holds for any fixed g ∈ Gr2(g0) that, with probability at
least 1− δ,

∥Sn(θ⋆, g)− S(θ⋆, g)∥2H−1
⋆

≲
K2

1 log (1/δ)d̄⋆
n

.

We handle the second term in (9) by Neyman orthogonality and smoothness assumptions.

Lemma 8 Under Assumption 3b, it holds that

S(θ⋆, g)
⊤(θ − θ⋆) ≥ −β2

2
∥θ − θ⋆∥H⋆

∥g − g0∥2G , for all θ ∈ Θr̄1(θ0) and g ∈ Gr2(g0).

By Proposition 7 and Lemma 8, we have

Sn(θ⋆, g)
⊤(θ̂ − θ⋆) ≥ −∥Sn(θ⋆, g)− S(θ⋆, g)∥H−1

⋆

∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

+ S(θ⋆, g)
⊤(θ̂ − θ⋆)

≳ −
√

K2
1 log (1/δ)d̄⋆

n

∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

− β2

∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

∥ĝ − g0∥2G . (10)

For the Hessian term, with ĝ replaced by g, ∥θ̂ − θ⋆∥Hn(θ̄,g) in (8), we control it using pseudo
self-concordance and a covering number argument.
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Table 1: In its simplest version (e.g., ignoring the effect of ĝ), our bound scales as O(d⋆/n) where
d∗ := Tr(H

−1/2
∗ G∗H

−1/2
∗ ) is the effective dimension, while the bound of Foster and

Syrgkanis (2020) scales as O(d′/n) where d′ := d2/λmin(H⋆). We compare the two in
different regimes of eigendecays of G∗ and H∗ assuming they share the same eigenvectors.

Eigendecay Dimension Dependency Ratio
G⋆ H⋆ d⋆ d′ d′/d⋆

Poly-Poly i−α i−β d(β−α+1)∨0 dβ+2 d(α+1)∧(β+2)

Poly-Exp i−α e−νi d−(α−1)∨1eνd d2eνd d1∧(3−α)

Exp-Poly e−µi i−β 1 dβ+2 dβ+2

Exp-Exp e−µi e−νi
d if µ = ν

1 if µ > ν

e(ν−µ)d if µ < ν

d2eνd
deνd if µ = ν

d2eνd if µ > ν

d2eµd if µ < ν

Proposition 9 Under Assumptions 4 and 5, it holds, with probability at least 1− δ, that

κ

4eRr1
H⋆ ⪯ Hn(θ, g) ⪯ 3KeRr1H⋆, for all θ ∈ Θr̄1(θ⋆), g ∈ Gr2(g0),

whenever n ≥ 16(K2
2 + 2σ2

H)[log (4d/δ) + d log (3Rr1/ log 2)]
2.

As a consequence of Proposition 9, we have

1

2

∥∥∥θ̂ − θ⋆

∥∥∥2
Hn(θ̄,g)

≳
κ

eRr1

∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

. (11)

Putting together (8), (10) and (11) leads to an upper bound on ∥θ̂ − θ⋆∥H⋆ and thus an upper bound
on the excess risk E(θ̂, g0).

When Neyman orthogonality fails to hold, we can replace Lemma 8 by the following lemma
and repeat the above steps to obtain the slow rate.

Lemma 10 Under Assumption 3a, it holds that

S(θ⋆, g)
⊤(θ − θ⋆) ≥ −β1 ∥θ − θ⋆∥H⋆

∥g − g0∥G , for all θ ∈ Θr̄1(θ0) and g ∈ Gr2(g0).

3. Discussion

Convergence rate and effective dimension. There are two terms in the bounds (6) and (7). In
the case of no nuisance parameter, the second term involving ∥ĝ − g∥G vanishes. As for the first

term, the profile effective dimension d̄⋆ simplifies to d⋆ := Tr(H
−1/2
⋆ G⋆H

−1/2
⋆ ) as shown in Ap-

pendix A. This coincides with the result from Ostrovskii and Bach (2021) on generalized linear
models, i.e., the loss is given by ℓ(θ;Z) := ℓ(Y,X⊤θ). Under a well-specified model, the effective
dimension d⋆ becomes d, recovering the same rate O(d/n) as in classical parametric least-squares

8



SHORT TITLE

regression (see, e.g. Bach, 2021, Proposition 3.5). When the model is misspecified, the effective
dimension measures the mismatch between the covariance matrix G⋆ and the Hessian matrix H⋆.
This quantity is related to the sandwich covariance in statistics (Wakefield, 2013, Sec. 6.7).

To facilitate its understanding, we summarize the effective dimension d⋆ in Table 1 under dif-
ferent regimes of eigendecay, assuming that G⋆ and H⋆ share the same eigenvectors. Table 1 shows
that the dimension dependence can be better than O(d) when the spectrum of G⋆ decays faster than
the one of H⋆. In particular, it is most favorable when the spectrum of G⋆ decays as e−µi and the
one of H⋆ decays as i−β .

In the case when the nuisance parameter needs to be estimated, we pay the price of not knowing
the true nuisance in both of the two terms. In this first term, we have d̄⋆ rather than d⋆ which is the
maximum effective dimension in a neighborhood of g0. As for the second term, the estimator ĝ will
typically have a rate of convergence ∥ĝ − g0∥G = O(n−φ) with φ < 1/2 in high dimensions (Cher-
nozhukov et al., 2018, Section 1). As a result, the term ∥ĝ − g0∥2G has a dominating effect in the
bound (7) which is slower than O(n−1). If Neyman orthogonality holds as assumed in Theorem 4,
we do not pay this price in the fast rate (6) as long as φ ≥ 1/4. Note that Neyman orthogonality is
only used in Lemma 8 to control S(θ⋆, g)⊤(θ − θ⋆). If |DgDθL(θ⋆, g0)[θ̂ − θ⋆, ĝ − g0]| does not
vanish but decays as O(rn), then the second term in (6) will read O(r2n + ∥ĝ − g0∥4G).

Orthogonal statistical learning and double machine learning. Our work lies in the framework
of orthogonal statistical learning. Under a strong convexity assumption and a Neyman orthogonality
assumption on the population risk, Foster and Syrgkanis (2020) obtain the rate

E(θ̂, g0) ≲ O

(
d2

nλ2
+

d

λ2
∥ĝ − g0∥4G

)
, for all n ≥ 1, (12)

where λ is the infimum of λmin(H(θ, g0)) over a neighborhood of θ⋆ (see Foster and Syrgkanis,
2020, Theorems 1 and 3). Our results improve on theirs in several ways. When d̄⋆ is at most
proportional to the dimension d, our results improve the excess risk bound by at least a factor of d.
Our bounds also remove the explicit dependence on the minimum eigenvalue λ, owing to our tail
assumptions 2 and 5 on the normalized score and the Hessian. However, our bounds may depend
on λ implicitly through, e.g., the sub-Gaussian parameter K1. This dependency contributes at most
a factor of λ−1 for applications considered in Section 4. Hence, to be more concrete, we compare
d⋆ with d2/λmin(H⋆) in different eigendecay regimes in Table 1. For instance, when the spectrum
of G⋆ decays as e−µi and the one of H⋆ decays as i−β , our bound gives a rate O(n−1) while theirs
gives a rate O(dβ+2/n).

Chernozhukov et al. (2018) recently proposed a set of methods based on Neyman orthogonal
scores and cross-fitting, denoted by double or debiased machine learning (DML), to the classical
problem of semi-parametric inference. There is an abundant literature on semi-parametric estima-
tion in mathematical statistics (Xia and Härdle, 2006; Wellner and Zhang, 2007) and machine learn-
ing (Smola et al., 1998; Rakotomamonjy et al., 2005; Mackey et al., 2018; Bertail et al., 2021) and
we refer to classical books for a bibliography (Bickel et al., 1998; Ruppert et al., 2003; Tsiatis, 2006;
Kosorok, 2008; Van der Laan and Rose, 2011). In Chernozhukov et al. (2018), the authors estab-
lish the asymptotic normality of their estimators when the dimension of the target parameter is kept
fixed. In this work, we provide non-asymptotic guarantees in terms of excess risk for DML under
self-concordance, allowing the dimension of the target parameter to grow at the rate d = O(n1/2).
In a recent work (Nekipelov et al., 2022), regularized estimators with sparsity-inducing regulariza-
tion are analyzed in terms of parameter recovery under restricted convexity assumptions.
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4. Applications and Examples

4.1. Treatment Effect Estimation

Let us revisit the problem of treatment effect estimation under the assumption of unconfounded-
ness, as presented in the introduction. Before we had a binary treatment case, and our target of
inference was a one dimensional parameter. Here, to better fit our framework, we consider a vector
of predictors D := (Dk)dk=1 ∈ Rd, under partially linear CEF of the following form:

E[Y | D,X] = θ⊤0 D + γ0(X).

Note that, by targeting multiple coefficients θ ∈ Θ ⊂ Rd, we can model not only multiple
treatments, but also heterogeneous treatment effects across different binary groups, as well as other
non-linear effects, by performing nonlinear transformations of our original treatment variable. To
illustrate, suppose T is the original treatment and there is a finite dimensional feature map D :=
ϕ(T ) = [ϕ1(T ), . . . , ϕd(T )] such that E[Y | T,X] = θ⊤0 ϕ(T ) + γ0(X). Under the the assumption
of uncounfoundedness conditional on X , the ATE of setting T to t1 versus t0 is then given by:

E[Y (T = t1)− Y (T = t0)] = θ⊤0 (ϕ(t1)− ϕ(t0)).

Heterogeneous effects could be estimated in a similar manner. Letting G = [G1, . . . , Gd] denote
indicators for d subgroups, and letting T ∈ {0, 1} denote the binary treatment indicator, we can
define the covariates D := TG. With this flexibility in mind, we now examine the partially linear
model in the context of our framework.

Multiple target coefficients in a partially linear model. Let the “target” predictors be D :=
(Dk)dk=1 ∈ Rd. Consider the model

D = α0(X) + U

Y = θ⊤0 D + γ0(X) + V = ζ0(X) + θ⊤0 U + V,

where α0 : Rp → Rd, E[U | X]
a.s.
= 0 and E[V | D,X]

a.s.
= 0 are the residuals. Moreover, U

has a non-singular covariance Σu and V is independent of D and X with variance σ2
v > 0. We

reparametrize the model by g = (ζ, α) and work with the loss

ℓ(θ, g;Z) := [Y − ζ(X)− θ⊤(D − α(X))]2.

Since E[UV ] = E[(D − α0(X))V ] = 0, we have

L(θ, g) := E[[Y − ζ(X)− θ⊤(D − α(X))]2]

= E
[(

ζ0(X)− ζ(X)− θ⊤(α0(X)− α(X))
)2]

+ ∥θ − θ0∥2Σu
+ σ2

v .

This implies that the population risk L at g0 has a unique minimizer θ⋆ = θ0.
Now suppose that U is bounded (i.e., ∥U∥2 ≤ M ), V is sub-Gaussian with parameter ∥V ∥ψ2

,

and ∥·∥G is chosen as the sup-norm, i.e., ∥g∥G = supx

√
∥α(x)∥2 + ζ2(x). Let us verify the

assumptions in Section 2.2 for this model. For Assumption 2, we have

S(θ⋆, g;Z) = 2(α0(X)− α(X) + U)
[
(α0(X)− α(X))⊤θ⋆ − (ζ0(X)− ζ(X) + V )

]
,

S(θ⋆, g) = 2E
[
(α0(X)− α(X))(α0(X)− α(X))⊤θ⋆ − (α0(X)− α(X))(ζ0(X)− ζ(X))

]
,

10
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and G(θ⋆, g) ⪰ 4σ2
vΣu. Note that ∥α0(X)− α(X)∥ ≤ ∥g − g0∥G ≤ r2, ∥ζ0(X)− ζ(X)∥ ≤

∥g − g0∥G ≤ r2, ∥U∥2 ≤ M , and V is sub-Gaussian. Hence, it follows from Lemmas 19,20 and 21
that the normalized score is sub-Gaussian with sub-Gaussian norm

K1 ≲
(r2 +M)[r2(∥θ⋆∥2 + 1) + ∥V ∥ψ2

]

σv
√

λmin(Σu)
.

For Assumption 3b, it holds that, for any θ̄ ∈ Θ,

DgDθL(θ̄, g0)[θ − θ⋆, g − g0] ≡ 0,

which verifies the Neyman orthogonality. Moreover, we have H⋆ = ∇2
θL(θ⋆, g0) = 2Σu and∣∣D2

gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]
∣∣

=
∣∣∣4(θ − θ⋆)

⊤ E
{
(α0(X)− α(X))

[
(α0(X)− α(X))⊤θ⋆ − (ζ0(X)− ζ(X))

]}∣∣∣
≲

∥θ⋆∥2 + 1√
λmin(Σu)

∥θ − θ⋆∥H⋆
∥g − g0∥2G .

In other words, Assumption 3b holds true with β2 ≲ (∥θ⋆∥2 + 1)/
√

λmin(Σu).
For Assumption 4, both the loss ℓ and the population risk L are pseudo self-concordant with

arbitrary parameter R ≥ 0 since their third derivatives w.r.t. θ are zero. For Assumption 5, we have

H(θ, g;Z) = 2(α0(X)− α(X) + U)(α0(X)− α(X) + U)⊤,

H(θ, g) = 2E[(α0(X)− α(X) + U)(α0(X)− α(X) + U)⊤] ⪰ 2Σu.

Note that H(θ, g)−1/2H(θ, g;Z)H(θ, g)−1/2 − Id has mean-zero and satisfies∣∣∣H(θ, g)−1/2H(θ, g;Z)H(θ, g)−1/2 − Id

∣∣∣
2
≲
∥∥H(θ, g)−1

∥∥
2
[∥g − g0∥2G + ∥U∥22] ≲

r22 +M2

λmin(Σu)
.

Hence, it follows from Wainwright (2019, Equation 6.30) that

H(θ, g)−1/2H(θ, g;Z)H(θ, g)−1/2 − Id

satisfies the Bernstein condition with parameter K2 ≲ (r22 + M2)/λmin(Σu). Moreover, σ2
H ≲

(r22 +M2)2/λ2
min(Σu). For the stability (5), we have H⋆ = 2Σu and

2Σu ⪯ H(θ⋆, g) = 2E[(α0(X)− α(X) + U)(α0(X)− α(X) + U)⊤] ⪯ 2[r22Id +Σu].

Thus, the stability holds with κ = 1 and K = 1+r22/λmin(Σu). To summarize, invoking Theorem 4
gives the following risk bound up to a constant factor:

(r2 +M)2[r2(∥θ⋆∥2 + 1) + ∥V ∥ψ2
]2

σ2
vλmin(Σu)

d̄⋆
n

log (1/δ) +
(∥θ⋆∥2 + 1)2

λmin(Σu)
∥ĝ − g0∥4G . (13)

Remark 11 As a comparison, assuming ∥U∥2 ≤ M , ∥V ∥2 ≤ M ′, and R := supθ∈Θ ∥θ∥2 ∨ 1 <
∞, Theorems 1 and 3 of Foster and Syrgkanis (2020) yield the bound

K̄2

λmin(Σu)2
d2

n
log (1/δ) +

RK̄d

λmin(Σu)2
∥ĝ − g0∥4G ,

where K̄ := (r2 + M)[r2(R + 1) + M ′ + RM ]. Our result not only requires less stringent
assumptions but also improves their result by a factor of d/λmin(Σu) when d̄⋆ ≲ d.

11
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4.2. Semi-Parametric Logistic Regression

We consider a semi-parametric logistic regression model to illustrate the usefulness of the pseudo
self-concordance assumption.

Let Z := (X,W, Y ) where X ∈ Rd, W ∈ W , and Y ∈ {−1, 1}. Consider the model

P(Y = 1 | X,W ) = σ
(
θ⊤0 X + g0(W )

)
,

where σ(u) := (1 + e−u)−1. It is clear that

E[Y | X,W ] = P(Y = 1 | X,W )− P(Y = −1 | X,W ) = 2σ(θ⊤0 X + g0(W ))− 1.

The logistic loss is defined as

ℓ(θ, g;Z) := log
(
1 + exp

(
−Y (θ⊤X + g(W ))

))
.

It can be shown that

S(θ, g;Z) =

[
σ(θ⊤X + g(W ))− 1

2
− Y

2

]
X

and

S(θ, g) = E[E[S(θ, g;Z) | X,W ]] = E
{
X
[
σ(θ⊤X + g(W ))− σ(θ⊤0 X + g0(W ))

]}
H(θ, g) = E

[
σ(θ⊤X + g(W ))[1− σ(θ⊤X + g(W ))]XX⊤

]
G(θ, g) = E

{
[σ(θ⊤X + g(W ))− σ(θ⊤0 X + g0(W ))]2XX⊤

}
− S(θ, g)S(θ, g)⊤ +H(θ0, g0).

Assume that H⋆ := H(θ0, g0) is non-singular. The population risk L(θ, g0) is minimized at θ⋆ = θ0.
Suppose that X is bounded (i.e., ∥X∥2 ≤ M ), r1 ≤ λmin(H⋆)/M

3, and r2 ≤ λmin(H⋆)/M
2.

By the non-singularity of H⋆, the covariance G(θ, g) is non-singular for all θ ∈ Θ and g ∈ G.
Let us verify the assumptions in Section 2.2 for this model. For Assumption 2, it follows directly
from Lemmas 19 and 21 that the normalized score is sub-Gaussian with sub-Gaussian norm K1 ≲
M/
√
λmin(H⋆). Assumption 3a holds true with β1 := M/(4

√
λmin(H⋆)) since

|DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]|

=
∣∣∣E [σ(θ⊤⋆ X + ḡ(W ))[1− σ(θ⊤⋆ X + ḡ(W ))]X⊤(θ − θ⋆)(g(W )− g0(W ))

]∣∣∣
≤ M

4
√
λmin(H⋆)

∥θ − θ⋆∥H⋆
∥g − g0∥G .

For Assumption 4, we have, with a := θ⊤x+ g(w),∣∣D3
θℓ(θ, g; z)[u, u, u]

∣∣ = ∣∣∣σ(a)[1− σ(a)][1− 2σ(a)](u⊤x)3
∣∣∣

≤
∣∣∣σ(a)[1− σ(a)] ∥u∥2 ∥x∥2 (u

⊤x)2
∣∣∣

≤ M ∥u∥2D
2
θℓ(θ, g; z)[u, u],

12
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which implies that ℓ(·, g; z) is pseudo self-concordance with parameter R = M . The pseudo self-
concordance of L(θ, g) can be verified similarly.

For Assumption 5, we first show that H(θ, g) is non-singular on Θr̄1(θ⋆) × Gr2(g0). In fact,
with A := θ⊤X + g(W ) and A0 := θ⊤0 X + g0(W ), we have

|H(θ, g)−H⋆|2 ≤ E
[
|σ(A)− σ(A0)|

∣∣∣XX⊤
∣∣∣
2

]
≤ 1

4
E
[
[|θ⊤X − θ⊤0 X|+ |g(W )− g0(W )|]

∣∣∣XX⊤
∣∣∣
2

]
≤ 1

4

(
r1M

3 + r2M
2
)
, for all (θ, g) ∈ Θr̄1(θ⋆)× Gr2(g0).

This yields that∣∣∣H−1/2
⋆ H(θ, g)H

−1/2
⋆ − Id

∣∣∣
2
≤ 1

4λmin(H⋆)

(
r1M

3 + r2M
2
)
≤ 1

2
,

and thus H(θ, g) ⪰ Id/2 for all (θ, g) ∈ Θr̄1(θ⋆)× Gr2(g0). Analogously, we can show that∣∣∣H−1/2
⋆ H(θ⋆, g)H

−1/2
⋆ − Id

∣∣∣
2
≤ r2M

2

4λmin(H⋆)
≤ 1

4
,

and thus the stability (5) holds true with κ = 3/4 and K = 5/4. As for the Bernstein condition, we
note that

|H(θ, g;Z)|2 =
∣∣∣σ(θ⊤X + g(W ))[1− σ(θ⊤X + g(W ))]XX⊤

∣∣∣
2
≤ M2

4
.

It follows that∣∣∣H(θ, g)−1/2H(θ, g;Z)H(θ, g)−1/2 − Id

∣∣∣
2
≤ M2

2λmin(H(θ, g))
≤ M2.

Due to (Wainwright, 2019, Equation 6.30), H(θ, g)−1/2H(θ, g;Z)H(θ, g)−1/2 − Id satisfies the
Bernstein condition with parameter K2 ≲ M2. Moreover, σ2

H ≲ M4. To summarize, invoking
Theorem 5 gives the following risk bound up to a constant factor:

M2

λmin(H⋆)

[
d̄⋆
n

log (1/δ) + ∥ĝ − g0∥2G
]
.

Remark 12 Since the semi-parametric logistic loss does not satisfy the Neyman orthogonality, the
results of Foster and Syrgkanis (2020) do not directly apply here.

5. Conclusion

We established non-asymptotic guarantees in terms of the excess risk for the orthogonal statistical
learning under pseudo self-concordance, allowing the dimension of the target parameter to grow at
the rate d = O(n1/2). The dimension dependency in our bound is characterized by the effective
dimension—the trace of the sandwich covariance matrix—which recovers existing results in super-
vised learning without the nuisance parameter. Compared with previous work (Foster and Syrgka-
nis, 2020), our results improve on the excess risk bound at least by a factor of d in a wide range of
eigendecay regimes. The extension of our theoretical analysis to handle sparse regularization is an
interesting venue for future work.
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The Appendix is organized as follows. For simplicity, we first prove in Appendix A the main
results assuming that the true nuisance parameter g0 is known. We then prove in Appendix B
the main results presented in Section 2. The technical tools used in the proofs are reviewed and
developed in Appendix C.

Appendix A. Risk Bound with Known Nuisance Parameter

In this section, we assume that the true nuisance parameter g0 is known and control the excess
risk. The proofs in this section are inspired by and extend those from Ostrovskii and Bach (2021).
We denote by θ̂0 the minimizer of the empirical risk Ln(θ, g0). Our analysis is local to θ⋆, in other
words, we make the following assumption on θ̂0. Recall that Θr(θ⋆) := {θ ∈ Θ : ∥θ − θ⋆∥H⋆

< r}.

Assumption 6 Let r0 > 0 be a constant and r̃0 := min{r0, r0
√
λmin(H⋆)} > 0. There exists a

function Nr̃0 : [0, 1] → N+ such that for any δ ∈ (0, 1) we have, with probability at least 1 − δ,
θ̂0 ∈ Θr̃0(θ⋆) for all n ≥ Nr̃0(δ).

Control of the score. In order to control the score, we assume that the normalized score at θ⋆ is
sub-Gaussian.

Assumption 7 The normalized score at θ0 is sub-Gaussian, i.e., there exists a constant K1,0 > 0
such that ∥∥∥G−1/2

⋆ [S(θ⋆, g0;Z)− S(θ⋆, g0)]
∥∥∥
ψ2

≤ K1,0.

Recall that d⋆ := Tr(Ω⋆) and Ω⋆ := H
−1/2
⋆ G⋆H

−1/2
⋆ .

Proposition 13 Under Assumption 7, it holds that, with probability at least 1− δ,

∥Sn(θ⋆, g0)∥2H−1
⋆

≲
1

n
[d⋆ +K2

1,0 log (e/δ) ∥Ω⋆∥2],

where ≲ hides an absolute constant.

Proof By the first order optimality condition, we have S(θ⋆, g0) = 0. As a result,

X :=
√
nG

−1/2
⋆ Sn(θ⋆, g0;Z)

is an isotropic random vector. Moreover, it follows from Lemma 22 that ∥X∥ψ2
≲ K1,0. Define

J := G
1/2
⋆ H−1

⋆ G
1/2
⋆ /n. Then we have

∥Sn(θ⋆, g0)∥2H−1
⋆

= ∥X∥2J .

Invoking Theorem 23 yields the claim.
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Control of the Hessian. In order to control the Hessian, we use the pseudo self-concordance as
in Definition 2.

Assumption 8 For any z ∈ Z , ℓ(θ, g0; z) is pseudo self-concordant on Θr̃0(θ⋆), i.e.,∣∣D3
θℓ(θ, g0; z)[u, u, u]

∣∣ ≤ R0 ∥u∥2D
2
θℓ(θ, g0; z)[u, u], for all θ ∈ Θr̃0(θ⋆), u ∈ Rd.

Moreover, L(θ, g0) is pseudo self-concordant on Θr̃0(θ⋆).

We also assume that the Hessian H(θ, g0;Z) satisfies the Bernstein condition uniformly over
Θr̃0(θ⋆).

Assumption 9 For any θ ∈ Θr̃0(θ⋆), the centered sandwich Hessian

H(θ, g0)
−1/2H(θ, g0;Z)H(θ, g0)

−1/2 − Id

satisfies a Bernstein condition with parameter K2,0. Moreover,

σ2
H,0 := sup

θ∈Θr̃0
(θ⋆)

∣∣∣Var(H(θ, g0)
−1/2H(θ, g0;Z)H(θ, g0)

−1/2)
∣∣∣
2
< ∞.

Proposition 14 Under Assumption 8, for any θ ∈ Θr̃0(θ⋆), we have

e−R0r0H⋆ ⪯ H(θ, g0) ⪯ eR0r0H⋆. (14)

Moreover, if Assumption 9 holds true, then, with probability at least 1− δ, we have

1

4eR0r0
H⋆ ⪯ Hn(θ, g0) ⪯ 3eR0r0H⋆, for all θ ∈ Θr̃0(θ⋆), (15)

whenever n ≥ 16(K2
2,0 + 2σ2

H,0) [log (4d/δ) + d log (3r0R0/ log 2)]
2.

Proof According to Assumption 8 and Proposition 25, we have

e−R0∥θ−θ⋆∥2H⋆ ⪯ H(θ, g0) ⪯ eR0∥θ−θ⋆∥2H⋆.

Hence, the claim (14) follows from ∥θ − θ⋆∥2 ≤ r̃0/
√

λmin(H⋆) ≤ r0. As for (15), we prove it in
the following steps.

Step 1. Let ϵ =
√

λmin(H⋆) log 2/R0. Take an ϵ-covering Nϵ of Θr̃0(θ⋆) w.r.t. ∥·∥H⋆
, and let

π(θ) be the projection of θ onto Nϵ. By the self-concordance of ℓ(·, g0; z) (Assumption 8), we have,
for all θ ∈ Θr̃0(θ⋆),

e−R0rH(π(θ), g0;Z) ⪯ H(θ, g0;Z) ⪯ eR0rH(π(θ), g0;Z),

where r := ∥θ − π(θ)∥2 ≤ ϵ/
√
λmin(H⋆) = log 2/R0. It then follows that

1

2
H(π(θ), g0;Zi) ⪯ H(θ, g0;Zi) ⪯ 2H(π(θ), g0;Zi), for all θ ∈ Θr̃0(θ⋆) and i ∈ [n],
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which yields

1

2
Hn(π(θ), g0) ⪯ Hn(θ, g0) ⪯ 2Hn(π(θ), g0), for all θ ∈ Θr̃0(θ⋆). (16)

Step 2. By Theorem 24, for each θ ∈ Θr̃0(θ⋆), it holds that, with probability at least 1− δ,∣∣∣H(θ, g0)
−1/2Hn(θ, g0)H(θ, g0)

−1/2 − Id

∣∣∣
2
≤ 1

2
,

or equivalently,

1

2
H(θ, g0) ⪯ Hn(θ, g0) ⪯

3

2
H(θ, g0)

whenever n ≥ 16(K2
2,0 + 2σ2

H,0) log
2 (2d/δ). Since |Nϵ| ≤ (3r̃0/ϵ)

d (Ostrovskii and Bach, 2021),
by a union bound, we get, with probability at least 1− δ/2,

1

2
H(π(θ), g0) ⪯ Hn(π(θ), g0) ⪯

3

2
H(π(θ), g0), for all θ ∈ Θr̃0(θ⋆), (17)

whenever n ≥ 16(K2
2,0 + 2σ2

H,0) [log (4d/δ) + d log (3r0R0/ log 2)]
2. Hence, the statement (15)

follows from (14), (16), and (17).

Control of the excess risk. The next theorem shows that the excess risk is upper bounded by d⋆/n
up to a constant factor.

Theorem 15 Under Assumptions 6-9, with probability at least 1− δ, the excess risk of θ̂0 satisfies

E(θ̂0, g0) ≲ K2
1,0e

3R0r0 log (1/δ)
d⋆
n

(18)

whenever n ≥ max{Nr̃0(δ/3), 16(K
2
2,0 + 2σ2

H,0) [log (12d/δ) + d log (3r0R0/ log 2)]
2}.

Proof We start by defining three events. Let

A :=
{
θ̂0 ∈ Θr̃0(θ⋆)

}
B :=

{
1

4eR0r0
H⋆ ⪯ Hn(θ, g0) ⪯ 3eR0r0H⋆, for all θ ∈ Θr̃0(θ⋆)

}

C :=

∥Sn(θ⋆, g0)∥H−1
⋆

≲

√
d⋆ +K2

1,0 log (3e/δ) ∥Ω⋆∥2
n

 .

In the following, we let

n ≥ max{Nr̃0(δ/3), 16(K
2
2,0 + 2σ2

H,0) [log (12d/δ) + d log (3r0R0/ log 2)]
2}.

According to Assumption 6, we have P(A) ≥ 1 − δ/3. By Proposition 14, it holds that P(B) ≥
1− δ/3. Finally, it follows from Proposition 13 that P(C) ≥ 1− δ/3.

18
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Now, we prove the upper bound (18) on the event ABC. By Taylor’s theorem,

E(θ̂0, g0) := L(θ̂0, g0)− L(θ⋆, g0) = S(θ⋆, g0)
⊤(θ̂0 − θ⋆) +

1

2

∥∥∥θ̂0 − θ⋆

∥∥∥2
H(θ̄,g0)

for some θ̄ ∈ Conv{θ̂0, θ⋆} ⊂ Θr̃0(θ⋆). According to (14), it holds that∥∥∥θ̂0 − θ⋆

∥∥∥2
H(θ̄,g0)

≤ eR0r0
∥∥∥θ̂0 − θ⋆

∥∥∥2
H⋆

.

By the first order optimality condition, we have S(θ⋆, g0) = 0. As a result,

E(θ̂0, g0) ≤
1

2
eR0r0

∥∥∥θ̂0 − θ⋆

∥∥∥2
H⋆

.

It then suffices to upper bound
∥∥∥θ̂0 − θ⋆

∥∥∥
H⋆

.

Note that, by Taylor’s theorem,

Ln(θ̂0, g0)− Ln(θ⋆, g0) = Sn(θ⋆, g0)
⊤(θ̂0 − θ⋆) +

1

2

∥∥∥θ̂0 − θ⋆

∥∥∥2
Hn(θ̄,g0)

for some θ̄ ∈ Conv{θ̂0, θ⋆} ⊂ Θr̃0(θ⋆). On the event B, it holds that∥∥∥θ̂0 − θ⋆

∥∥∥2
Hn(θ̄,g0)

≥ 1

4eR0r0

∥∥∥θ̂0 − θ⋆

∥∥∥2
H⋆

.

Moreover, by the Cauchy-Schwarz inequality,

Sn(θ⋆, g0)
⊤(θ̂0 − θ⋆) ≥ −∥Sn(θ⋆, g0)∥H−1

⋆

∥∥∥θ̂0 − θ⋆

∥∥∥
H⋆

.

On the event C, we get

∥Sn(θ⋆, g0)∥H−1
⋆

≲

√
d⋆ +K2

1,0 log (3e/δ) ∥Ω⋆∥2
√
n

.

Due to the optimality of θ̂0, we also have Ln(θ̂0, g0)− Ln(θ⋆, g0) ≤ 0. Consequently,

1

4eR0r0

∥∥∥θ̂0 − θ⋆

∥∥∥2
H⋆

≲

√
d⋆ +K2

1,0 log (3e/δ) ∥Ω⋆∥2
√
n

∥∥∥θ̂0 − θ⋆

∥∥∥
H⋆

.

It then follows that

E(θ̂0, g0) ≤
eR0r0

2

∥∥∥θ̂0 − θ⋆

∥∥∥2
H⋆

≲
d⋆ +K2

1,0 log (3e/δ) ∥Ω⋆∥2
e−3R0r0n

≲ K2
1,0e

3R0r0 log (1/δ)
d⋆
n
.

Therefore, the claim (18) holds with probability at least

P(ABC) = 1− P(Ac ∪ Bc ∪ Cc) ≥ 1− P(Ac)− P(Bc)− P(Cc) ≥ 1− δ.

Remark 16 Our results generalize the results (Ostrovskii and Bach, 2021, Theorem 4.1) which
were developed for parametric linear models, i.e., when the loss is given by ℓ(θ;Z) := ℓ(Y,X⊤θ).
The paper of Ostrovskii and Bach (2021) relies heavily on the special structure of the Hessian. Our
results apply to a broader class of models owing to the matrix Bernstein inequality.
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Appendix B. Proof of Theorem 4

We then consider the case when the true nuisance parameter g0 is unknown and estimated from
a separate sample as in the OSL meta-algorithm. Again, our analysis is local to both θ⋆ and g0.
The independence between ĝ and the sample {Zi}ni=1 greatly simplifies our analysis according to
Lemma 6 in Section 2.
Proof [Proof of Lemma 6] By the independence between ĝ and {Zi}ni=1, we have

E[1{A(ĝ, {Zi}ni=1)} | ĝ](g) = E[1{A(g, {Zi}ni=1)}] ≥ 1− δ, for any g ∈ G′.

By the tower property of the conditional expectation,

P(A(ĝ, {Zi}ni=1)) = E
[
E[1{A(ĝ, {Zi}ni=1)} | ĝ]

]
≥ E

[
E[1{A(ĝ, {Zi}ni=1)} | ĝ]1{ĝ ∈ G′}

]
≥ (1− δ)P(ĝ ∈ G′).

Control of the score. Recall that d̄⋆ := supg∈Gr2 (g0)
Tr(H

−1/2
⋆ G(θ⋆, g)H

−1/2
⋆ ).

Proof [Proof of Proposition 7] Define W :=
√
nG(θ⋆, g)

−1/2S̄n(θ⋆, g) where

S̄n(θ⋆, g) := Sn(θ⋆, g)− S(θ⋆, g).

It is straightforward to check that W is isotropic. Moreover, it follows from Lemma 22 that
∥W∥ψ2

≤ K1. Let J := G(θ⋆, g)
1/2H−1

⋆ G(θ⋆, g)
1/2. By Theorem 23, we have, with probability

at least 1− δ,

∥W∥2J ≲ K2
1 log (e/δ)Tr(J) ≤ K2

1 log (e/δ)d̄⋆.

The statement then follows from the fact that

∥W∥2J = W⊤JW = nS̄n(θ⋆, g)
⊤H−1

⋆ S̄n(θ⋆, g) = n ∥Sn(θ⋆, g)− S(θ⋆, g)∥2H−1
⋆

.

Proof [Proof of Lemma 8] By Taylor’s theorem,

S(θ⋆, g)
⊤(θ̂ − θ⋆) = DθL(θ⋆, g)[θ̂ − θ⋆]

= DθL(θ⋆, g0)[θ̂ − θ0] + DgDθL(θ⋆, g0)[θ̂ − θ⋆, g − g0] +

1

2
D2
gDθL(θ⋆, ḡ)[θ̂ − θ⋆, g − g0, g − g0]

≥ −β2
2

∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

∥g − g0∥2G ,

where the last inequality follows from the first order optimality condition and Assumption 3b.

Proof [Proof of Lemma 10] By Taylor’s theorem,

S(θ⋆, g)
⊤(θ̂ − θ⋆) = DθL(θ⋆, g)[θ̂ − θ⋆]

= DθL(θ⋆, g0)[θ̂ − θ0] + DgDθL(θ⋆, ḡ)[θ̂ − θ⋆, g − g0]

≥ −β1

∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

∥g − g0∥G ,

where the last inequality follows from the first order optimality condition and Assumption 3a.
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Control of the Hessian. We then prove Proposition 9.
Proof [Proof Proposition 9] Fix an arbitrary g ∈ Gr2(g0). Step 1. Invoking Proposition 25 leads to

e−RrH(θ⋆, g) ⪯ H(θ, g) ⪯ eRrH(θ⋆, g), for all θ ∈ Θr̄1(θ⋆),

where r := ∥θ − θ⋆∥2 ≤ r̄1/
√

λmin(H⋆) ≤ r1. Consequently, by (5), we have, for all θ ∈ Θr̃1(θ⋆),

κe−Rr1H⋆ ⪯ e−Rr1H(θ⋆, g) ⪯ H(θ, g) ⪯ eRr1H(θ⋆, g) ⪯ KeRr1H⋆. (19)

Step 2. Let ϵ :=
√
λmin(H⋆) log 2/R. Take an ϵ-covering Nϵ of Θr̄1(θ⋆) w.r.t. ∥·∥H⋆

, and let
π(θ) be the projection of θ onto Nϵ. By Assumption 4, we have, for all θ ∈ Θr̄1(θ⋆),

e−Rr
′
H(π(θ), g;Z) ⪯ H(θ, g;Z) ⪯ eRr

′
H(π(θ), g;Z),

where r′ := ∥θ − π(θ)∥2 ≤ ϵ/
√
λmin(H⋆) = log 2/R. This implies that

1

2
H(π(θ), g;Zi) ⪯ Hn(θ, g;Zi) ⪯ 2Hn(π(θ), g;Zi), for all θ ∈ Θr̄1(θ⋆) and i ∈ [n].

Hence,

1

2
Hn(π(θ), g) ⪯ Hn(θ, g) ⪯ 2Hn(π(θ), g), for all θ ∈ Θr̄1(θ⋆). (20)

Step 3. By Theorem 24, for each θ ∈ Θr̄1(θ⋆), it holds that, with probability at least 1− δ,

1

2
H(θ, g) ⪯ Hn(θ, g) ⪯

3

2
H(θ, g)

whenever n ≥ 16(K2
2 + 2σ2

H) log
2 (2d/δ). Since |Nϵ| ≤ (3r̄1/ϵ)

d (Ostrovskii and Bach, 2021), by
a union bound, we get, with probability at least 1− δ/2,

1

2
H(π(θ), g) ⪯ Hn(π(θ), g) ⪯

3

2
H(π(θ), g), for all θ ∈ Θr̄1(θ⋆), (21)

whenever n ≥ 16(K2
2 + 2σ2

H)[log (4d/δ) + d log (3Rr1/ log 2)]
2. Hence, the claim follows from

(19), (20), and (21).

Control of the excess risk. Now we are ready to prove Theorem 4.
Proof [Proof of Theorem 4] Fix an arbitrary g ∈ Gr2(g0). We start by defining three events. Let

A :=
{
θ̂ ∈ Θr̄1(θ⋆), ĝ ∈ Gr2(g0)

}
B(g) :=

{ κ

4eRr1
H⋆ ⪯ Hn(θ, g) ⪯ 3KeRr1H⋆, for all θ ∈ Θr̄1(θ⋆)

}
C(g) :=

{
∥Sn(θ⋆, g)− S(θ⋆, g)∥H−1

⋆
≲

√
K2

1 log (5e/δ)d̄⋆
n

}
.

In the following, we let

n ≥ max{Nr̄1,r2(δ/5), 16(K
2
2 + 2σ2

H)[log (20d/δ) + d log (3Rr1/ log 2)]
2}.
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According to Assumption 1, we have P(A) ≥ 1 − δ/5. By Propositions 7 and 9, it holds that
P(C(g)) ≥ 1− δ/5 and P(B(g)) ≥ 1− δ/5, respectively. Since g ∈ Gr2(g0) is arbitrary, it follows
from Lemma 6 that

P(B(ĝ)) ≥ (1− δ/5)P(ĝ ∈ Gr2(g0)) ≥ 1− 2δ/5.

Similarly, P(C(ĝ)) ≥ 1− 2δ/5.
Now, we prove the upper bound (18) on the event AB(ĝ)C(ĝ). By Taylor’s theorem,

E(θ̂, g0) := L(θ̂, g0)− L(θ⋆, g0) = S(θ⋆, g0)
⊤(θ̂ − θ⋆) +

1

2

∥∥∥θ̂ − θ⋆

∥∥∥2
H(θ̄,g0)

for some θ̄ ∈ Conv{θ̂, θ⋆} ⊂ Θr1(θ⋆). According to (14), it holds that∥∥∥θ̂ − θ⋆

∥∥∥2
H(θ̄,g0)

≤ eRr1
∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

.

By the first order optimality condition, we have S(θ⋆, g0) = 0. As a result,

E(θ̂, g0) ≤
eRr1

2

∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

.

It then suffices to upper bound
∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

.

Note that, by Taylor’s theorem,

Ln(θ̂, ĝ)− Ln(θ⋆, ĝ) = Sn(θ⋆, ĝ)
⊤(θ̂ − θ⋆) +

1

2

∥∥∥θ̂ − θ⋆

∥∥∥2
Hn(θ̄,ĝ)

for some θ̄ ∈ Conv{θ̂, θ⋆} ⊂ Θr̄1(θ⋆). On the event B(ĝ), it holds that∥∥∥θ̂ − θ⋆

∥∥∥2
Hn(θ̄,ĝ)

≥ κ

4eRr1

∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

.

Moreover,

Sn(θ⋆, ĝ)
⊤(θ̂ − θ⋆)

= S̄n(θ⋆, ĝ)
⊤(θ̂ − θ⋆) + S(θ⋆, ĝ)

⊤(θ̂ − θ⋆)

≥ S̄n(θ⋆, ĝ)
⊤(θ̂ − θ⋆)−

β2
2

∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

∥ĝ − g0∥2G , by Lemma 8

≥ −
∥∥S̄n(θ⋆, ĝ)∥∥H−1

⋆

∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

− β2
2

∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

∥ĝ − g0∥2G , by the Cauchy-Schwarz

≳ −
∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

[√
K2

1 log (5e/δ)d̄⋆
n

+
β2
2

∥ĝ − g0∥2G

]
, by the event C(ĝ).

Due to the optimality of θ̂, we also have Ln(θ̂, ĝ)− Ln(θ⋆, ĝ) ≤ 0. Consequently,

κ

4eRr1

∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

≲

[√
K2

1 log (5e/δ)d̄⋆
n

+
β2
2

∥ĝ − g0∥2G

]∥∥∥θ̂ − θ⋆

∥∥∥
H⋆

.
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It then follows that

E(θ̂, g0) ≤
eRr1

2

∥∥∥θ̂ − θ⋆

∥∥∥2
H⋆

≲
e3Rr1

κ2

[
K2

1 log (1/δ)d̄⋆
n

+ β2
2 ∥ĝ − g0∥4G

]
.

Therefore, the claim holds with probability at least

P(AB(ĝ)C(ĝ)) = 1− P(Ac ∪ B(ĝ)c ∪ C(ĝ)c) ≥ 1− P(Ac)− P(B(ĝ)c)− P(C(ĝ)c) ≥ 1− δ.

Proof [Proof of Theorem 5] The proof is largely similar to the one of Theorem 4. The only differ-
ence is that Lemma 8 is replaced by Lemma 10 at places where it is invoked.

Appendix C. Technical Tools

In this section, we give the precise definitions of sub-Gaussian random vectors (Vershynin, 2018,
Chapter 3.4) and the matrix Bernstein condition (Wainwright, 2019, Chapter 6.4). We then review
and prove some key results that are used in our analysis. Finally, we recall a proposition for the
pseudo self-concordance.

Definition 17 (Sub-Gaussian vector) Let S ∈ Rd be a mean-zero random vector. We say S is
sub-Gaussian if ⟨S, s⟩ is sub-Gaussian for every s ∈ Rd. Moreover, we define the sub-Gaussian
norm of S as

∥S∥ψ2
:= sup

∥s∥2=1
∥⟨S, s⟩∥ψ2

.

Note that ∥·∥ψ2
is a norm and satisfies, e.g., the triangle inequality.

Definition 18 (Matrix Bernstein condition) Let H ∈ Rd×d be a zero-mean symmetric random
matrix. We say H satisfies a Bernstein condition with parameter b > 0 if, for all j ≥ 3,

E[Hj ] ⪯ 1

2
j!bj−2Var(H).

Lemma 19 If X ∈ Rd is a bounded random vector with ∥X∥2 ≤a.s. M < ∞, then X is a
sub-Gaussian random vector with

∥X∥ψ2
≲ M and ∥X − E[X]∥ψ2

≲ M.

Proof For any x ∈ Rd, we have ⟨X,x⟩ ≤ ∥X∥2 ∥x∥ ≤ M . Hence, by definition, X is a sub-
Gaussian random vector with

∥X∥ψ2
= sup

∥x∥=1
∥⟨X,x⟩∥ψ2

≲ M.
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Moreover, since ∥·∥ψ2
is a norm, we have

∥X − E[X]∥ψ2
≤ ∥X∥ψ2

+ ∥E[X]∥ψ2
.

Note that ∥a∥ψ2
≲ ∥a∥2 for a constant vector a. Hence, we have ∥X − E[X]∥ψ2

≲ M .

Lemma 20 Let X ∈ Rd be a random vector with ∥X∥2 ≤a.s. M < ∞ and Y ∈ R be a sub-
Gaussian random variable. Then XY is a sub-Gaussian random vector with

∥XY ∥ψ2
≤ M ∥Y ∥ψ2

.

Proof By the definition of sub-Gaussian random variables, we have

E[exp(Y 2/ ∥Y ∥2ψ2
)] ≤ 2. (22)

It then follows that, for any ∥x∥ = 1,

E[exp((x⊤X)2Y 2/M2 ∥Y ∥2ψ2
)] ≤ E[exp(∥X∥22 Y

2/M2 ∥Y ∥2ψ2
)] ≤ 2,

and thus ∥XY ∥ψ2
≤ M ∥Y ∥ψ2

.

Lemma 21 Let X ∈ Rd be a sub-Gaussian random vector and A ∈ Rd×d be a fixed matrix. Then
AX is a sub-Gaussian random vector with

∥AX∥ψ2
≤ ∥A∥2 ∥X∥ψ2

.

Proof Take an arbitrary ∥x∥2 = 1. It holds that

E[exp(λx⊤AX)] = E

[
exp

(
λ
∥∥∥A⊤x

∥∥∥
2

(
A⊤x

∥A⊤x∥2

)⊤

X

)]

≤ exp

(∥∥∥A⊤x
∥∥∥2
2
∥X∥2ψ2

λ2

)
, by the sub-Gaussianity of X

≤ exp
(
∥A∥22 ∥X∥2ψ2

λ2
)
.

Hence, we obtain ∥AX∥ψ2
≤ ∥A∥2 ∥X∥ψ2

.

The sum of i.i.d. sub-Gaussian vectors is also sub-Gaussian according to the following lemma.

Lemma 22 (Vershynin (2018), Lemma 5.9) Let X1, . . . , Xn be i.i.d. random vectors, then we
have ∥

∑n
i=1Xi∥2ψ2

≲
∑n

i=1 ∥Xi∥2ψ2
.

We call a random vector X ∈ Rd isotropic if E[X] = 0 and E[XX⊤] = Id. The following
theorem is a tail bound for quadratic forms of isotropic sub-Gaussian random vectors.
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Theorem 23 (Ostrovskii and Bach (2021), Theorem A.1) Let X ∈ Rd be an isotropic random
vector with ∥X∥ψ2

≤ K, and let J ∈ Rd×d be positive semi-definite. Then, with probability at least
1− δ, it holds that

∥X∥2J − Tr(J) ≲ K2
(
∥J∥2

√
log (e/δ) + ∥J∥∞ log (1/δ)

)
. (23)

A zero-mean symmetric random matrix Q is said to be sub-Gaussian with parameter V if
E[eλQ] ⪯ eλ

2V/2 for all λ ∈ R. The next theorem is the Bernstein bound for random matrices.

Theorem 24 (Wainwright (2019), Theorem 6.17) Let {Qi}ni=1 be a sequence of zero-mean inde-
pendent symmetric random matrices that satisfies the Bernstein condition with parameter b > 0.
Then, for all δ > 0, it holds that

P

(∣∣∣∣∣ 1n
n∑
i=1

Qi

∣∣∣∣∣
2

≥ δ

)
≤ 2Rank

(
n∑
i=1

Var(Qi)

)
exp

{
− nδ2

2(σ2 + bδ)

}
, (24)

where σ2 := 1
n |
∑n

i=1Var(Qi)|2.

One advantage of pseudo self-concordance is that we can relate the Hessian at y to the Hessian
at x in terms of the norm ∥y − x∥2.

Proposition 25 (Bach (2010), Proposition 1) Assume that f is pseudo self-concordant with pa-
rameter R on X . For any y ∈ X , we have

e−R∥y−x∥2∇2f(x) ⪯ ∇2f(y) ⪯ eR∥y−x∥2∇2f(x).
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