
Proceedings of Machine Learning Research vol 178:1–22, 2022 35th Annual Conference on Learning Theory

Better Private Algorithms for Correlation Clustering

Daogao Liu DGLIU@UW.ED

University of Washington

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
In machine learning, correlation clustering is an important problem whose goal is to partition the
individuals into groups that correlate with their pairwise similarities as much as possible. In this
work, we revisit the correlation clustering under the differential privacy constraints. Particularly,
we improve previous results and achieve an Õ(n1.5) additive error compared to the optimal cost in
expectation on general graphs. As for unweighted complete graphs, we improve the results further
and propose a more involved algorithm which achieves Õ(n

√
∆∗) additive error, where ∆∗ is the

maximum degrees of positive edges among all nodes.
Keywords: Differential Privacy, Correlation Clustering

1. Introduction

Correlation clustering, introduced in the seminal work of Bansal et al. (2004), is a widely used
algorithm in machine learning. In this problem, we are given a graph where each edge is labeled
either positive or negative, and has a non-negative weight. These weights along with their signs
measure the magnitude of similarity or dissimilarity between two nodes. The correlation clustering
problem asks to find a partition C1, · · · , Ck of the node set V , such that all positive-labeled edges
connect nodes in the same cluster and all negative-labeled edges connect nodes in different clusters.
However, as the problem is NP-hard, one can not always find such a perfect clustering, and need to
settle for an approximate solution. There are two widely studied notions of approximate solutions.
In Maximum Agreement (MaxArg) problem, we want to maximize the weight of positive edges in-
side the clusters plus the weight of negative edges between the clusters. In Minimum Disagreement
(MinDis) problem, we aim to get a clustering which minimizes the total weight of violated edges,
which is defined as the weight of negative edges inside the clusters plus the weight of positive edges
between the clusters. As getting a constant approximation to MaxArg problem is much easier and
less interesting, we focus on MinDis problem in this work, like most of the previous papers.

In many applications, the underlying graph can contain sensitive information about individuals;
think of social networks for example. In recent years, privacy has become an important consid-
eration for learning algorithms. In particular, differential privacy (DP), introduced in the seminal
work of Dwork et al. (2006), has become de facto standard notion of privacy for machine learning
problems. These considerations motivated Bun et al. (2021) to initiate the study of correlation clus-
tering problem under DP constraints. As they observed, the exponential mechanism (McSherry and
Talwar (2007)), one of the classic mechanisms in DP, can achieve an additive error of O(nϵ log n).
However, it takes exponential time and thus is inefficient. Further, they also showed a lowerbound
of Ω(n/ϵ) on the additive error. On the other hand, for general graph, they proposed an efficient
polynomial time (ϵ, δ)-DP algorithm that achieves an additive error of O(n1.75/ϵ). The main focus
of this work is to design algorithms with better additive errors.

© 2022 D. Liu.

LIU

1.1. Our Contributions

In this paper, we improve the results of Bun et al. (2021). For general weighted graphs we obtain
the following result:

Theorem 1 (Informal) For 0 < ϵ < 1/2 and 0 < δ < 1/2, given a graph G with weighted edges,
there is an efficient (ϵ, δ)-DP algorithm with

MinDis ≤ O(log n) ·OPT+ Õ(n1.5/
√
ϵ).

For unweighted complete graphs (each edge has unit weight), we show an improved bound:

Theorem 2 (Informal) Given an unweighted graph G, there is an efficient (ϵ, δ)-DP algorithm
with

MinDis ≤ O(1) ·OPT+ Õ(n
√
∆∗/ϵ),

where ∆∗ is the maximum positive degree of nodes in graph.

Both these results improve the additive error of Bun et al. (2021) by a factor of at least O(n1/4)
in the worst case. On the other hand, the multiplicative errors match the best non-private algorithms
up to O(1) terms. Moreover, when the maximum positive degree is o(n), using Theorem 2, we get
significantly improved additive errors.

1.2. Our Techniques

For the general (weighted) version, our algorithm follows a similar outline as in Bun et al. (2021),
and our improvement comes from a more delicate analysis. At a high level, Bun et al. (2021) use DP
algorithm to release a synthetic graph H which approximates the original graph G in terms of cut
distance within a factor of O(

√
mn), where m is the total weights of all edges in the graph. Then

they do a post-processing on H to find a clustering consisting of at most k = O(n1/4) partitions.
They argue that the total number of disagreements (and agreements) of a fixed clustering consisting
of k clusters on G and H differ by at most k times the respective cut distance bound, thus leading
to an additive error of O(n1/4) ·O(

√
mn) which is at most O(n1.75) if m = O(n2). Using a simple

probabilistic argument we show that the factor k is not necessary, and a constant times the respective
cut distance bound is good enough to bound the total number of disagreements (and agreements).
This leads to an improved bound of O(

√
mn) on the additive error, and specifically O(n1.5) when

m = O(n2).
On the other hand, our algorithm for the unweighted disagreement minimization on complete

graphs follows a completely different approach. We present a private algorithm that achieves an
Õ(n
√
∆∗) additive error, where ∆∗ is the maximum positive degree among all nodes in the graph.

Note that achieving an additive error of O(n∆∗) is trivial by simply outputting all nodes as single-
tons, but getting

√
∆∗ is non-trivial and generalizes the previous result for weighted graphs.

Our algorithm works as follows. Say a node in the graph is good with respect to a set, if the
neighborhood of the node overlaps with the set well, and a set is clean, if all nodes in it are good
with respect to the set. We process nodes one-by-one and in each iteration, we choose one arbitrary
node v as a pivot. If the positive degree of v is small, we can output v as a singleton directly.
Otherwise, we find the set B of nodes which are λ-good w.r.t. the neighborhood N+(v) of v. If

2

BETTER DP CORRELATION CLUSTERING

|B| is a constant fraction smaller than the size of |N+(v)|, say |B| < 0.9|N+(v)|, we output v
as a singleton; Else, we keep min{|B|, 2|N+(v)|} nodes in B and delete the remaining, and we
find the set D from the remaining nodes V \ B which are 4λ-good w.r.t. B. Similarly, we keep
min{|D|, 2|B|} nodes in D and delete others, and output D ∪ B as a cluster. Our algorithm is
loosely inspired by the constant approximation algorithm for the correlation clustering problem due
to Bansal et al. (2004), in particular, the notions of good nodes and clean clusters.

Privately judging if a node is good w.r.t. a set can be implemented easily by the Truncated
Laplace mechanism (a generalization of classic Laplace mechanism) with bounded noise. Then
a natural strategy to prove the privacy is to apply advanced composition across all the iterations
of the algorithm. However, this only gives an O(n2) additive error, and the main technical con-
tribution of the paper is a more sophisticated privacy accounting. Our key structural lemma says
that any single node can be good w.r.t. neighborhoods of at most Õ(∆∗) different pivots. Then,
a careful argument shows that we only need to account for privacy loss for such iterations, which
gives the desired bound. As for the utility proof, Bansal et al. (2004) observed that there exits a
constant-approximation clustering OPT(0) where each non-singleton cluster is clean. We make a
further observation that dissolving small clusters of size Õ(

√
∆∗) can lead to an additive error of

Õ(n
√
∆∗). Denote the new clustering OPT(1) : C(1)1 , · · · , C(1)t1

, S(1), where each C(1)i is clean and

has a large size, and there are only small disagreements between C(1)i and S(1), where S(1) is the
set of singletons. The high-level intuition to prove the utility is that our algorithm can recover C(1)i

well.

1.3. More Related Work

As mentioned earlier, Correlation clustering was first proposed by Bansal et al. (2004), in which
they also gave the first constant approximation for the minimization version and a PTAS for the
maximization version, both for unweighted graphs. The approximation of MinDis has been im-
proved by subsequent works (Ailon et al. (2008)), and the current best ratio is 2.06 by Chawla et al.
(2015). The problem has also been studied in various other settings, such as with fixed number
of clusters Giotis and Guruswami (2005), noisy or/and partial inputs Mathieu and Schudy (2010);
Makarychev et al. (2015), and parallel computation Pan et al. (2015); Cohen-Addad et al. (2021).

Finally, the Rank Aggregation problem is closely related to correlation clustering. Alabi et al.
(2021) consider Rank Aggregation problem under DP constraints, but their setting and techniques
seem very different from ours.

1.4. Outline

In Section 2, we give some basic definitions and backgrounds which are used throughout the work.
We present our main result for general graphs in Section 3. We present our algorithm for the
complete graphs, and privacy and utility analysis of it in Section 4.

2. Preliminaries

Definition 3 (Correlation-Clustering) Let G = (V,E) be a weighted graph where E = E+∪E−

is split into two disjoint subsets denoting the positive and negative labels of edges. And for each
edge e ∈ E, there is an associated non-negative weight wG(e) ≥ 0. Given a clustering C =

3

LIU

{C1, · · · , Ck}, we say an edge e ∈ E+ agrees with C if both endpoints of e belong to the same
cluster, and an edge e ∈ E− agrees with C if its both endpoints belong to different clusters.

For a (possibly random) clustering C, we define the disagreement dis(C, G) as the expected
total weight of edges which do not agree with C, with expectation over the randomness of C.

Definition 4 (Neighboring graphs) Consider two weighted graphs G,G′ with the same node set
and sign labels σ, σ′ ∈ {−1,+1}(

V
2). We say that G and G′ are neighboring, if∑

e∈(V2)

∣∣σewG(e)− σ′
ewG′(e)

∣∣ ≤ 2.

Definition 5 (Differential Privacy) A (randomized) algorithm ALG is (ϵ, δ)-differentially private,
if for any event O ∈ Range(ALG) and for any neighboring graphs G,G′ one has

Pr[ALG(G) ∈ O] ≤ exp(ϵ) Pr[ALG(G′) ∈ O] + δ.

Definition 6 (Truncated Laplace Distribution) The probability density function of the truncated
Laplacian distribution TLap(ϵ, δ,∆) is defined as

fTLap(x) :=

{
Be−

|x|
λ
, for x ∈ [−A,A]

0, otherwise

where privacy parameters 0 < δ < 1/2, ϵ > 0, query sensitivity ∆ > 0, parameter settings
λ = ∆

ϵ , A = ∆
ϵ log(1 + eϵ−1

2δ) and B = 1
2∆
ϵ
(1− 1

1+ eϵ−1
2δ

)
.

Theorem 7 (Truncated Laplace Mechanism, Geng et al. (2020)) Given any function g : Ξ →
R where for any neighboring datasets D,D′ ∈ Ξ, |g(D) − g(D′)| ≤ ∆, outputting g(D) +
TLap(ϵ, δ,∆) is (ϵ, δ)-differentially private.

Moreover, for the symmetric probability density function fTLap(x), one has

• The decay rate in [0, A−∆] is exactly exp(ϵ), i.e. fTLap(x)
fTLap(x+∆) = eϵ.

• The probability mass in the interval [A−∆, A] is δ, i.e.
∫ A
A−∆ fTLap(x)dx = δ.

We refer to the Appendix for more preliminaries, such as the basic composition, some facts
about Laplace distributions and classic Laplace mechanism.

3. General Graph

In this section, we present our result for the general graphs. Our improvement comes from strength-
ening the analysis of Bun et al. (2021). In nutshell, the DP mechanism of Bun et al. (2021) releases
a synthetic graph H which approximates the input graph G in the cut distance. They argue that the
number of disagreements (and agreements) of a fixed clustering consisting of k clusters on G and
H differ by at most k times the respective cut distance bound. Finally, they optimize k to obtain the
desired result. We show that this factor k is not necessary.

4

BETTER DP CORRELATION CLUSTERING

We define some notations before we state our results. Given a graph G, for any subset F ⊆
(
V
2

)
of edges, we define wG(F) :=

∑
e∈F wG(e). And for two sets S, T ⊆ V of nodes, we define

wG(S, T) :=
∑

u∈S,v∈T wG((u, v)). For two (different) graphs G and H with the same node set V ,
we define the cut distance by

dcut(G,H) = max
S,T⊆V

|wG(S, T)− wH(S, T)|.

We split G into two disjoint sub-graphs G+ and G− with the same node set, containing all
positive and negative edges respectively. For example, if e = (u, v) is labeled positive with weight
wG(e) ≥ 0, then we have wG+(e) = wG(e) and wG−(e) = 0. And we have the following result.

Lemma 8 Let G and H be two graphs with signed edges such that dcut(G+, H+) ≤ β and
dcut(G

−, H−) ≤ β, where the graphs G+, H+ and G−, H− denote the induced graphs on positive
and negative edges respectively. Then, for any clustering C, we have

|dis(C, H)− dis(C, G)| ≤ 6β.

Proof Let C := {C1, . . . , Ck} denote the clustering of the node set. We have

dis(C, H)− dis(C, G) =
k∑

i=1

(wH−(Ci, Ci)− wG−(Ci, Ci)) +
∑

(i,j):i ̸=j

(wH+(Ci, Cj)− wG+(Ci, Cj)).

(1)

We show that absolute values of both sums can be bounded by a multiple of β. We begin with the
term

∑
(i,j):i ̸=j(wH+(Ci, Cj)− wG+(Ci, Cj)). Let I ∪ J = [k] be a random partition, where each

i ∈ [k] is assigned either to I or J independently with equal probability. Then, we have

E
[∑
i∈I,j∈J

(wH+(Ci, Cj)− wG+(Ci, Cj))

]
=
∑
i ̸=j

1

2
(w+

H(Ci, Cj)− w+
G(Ci, Cj)),

because each pair i, j belong to different parts with probability 1/2. There must exist a partition
I∗, J∗ such that

1

2

∣∣∣∣∑
i ̸=j

(wH+(Ci, Cj)− wG+(Ci, Cj))

∣∣∣∣
≤
∣∣∣∣ ∑
i∈I∗,j∈J∗

(wH+(Ci, Cj)− wG+(Ci, Cj))

∣∣∣∣ = |wH+(S, T)− wG+(S, T)|

where S =
⋃

i∈I∗ Ci and T =
⋃

j∈J∗ Cj . Together with dcut(H
+, G+) ≤ β, this implies that∑

i ̸=j

(wH+(Ci, Cj)− wG+(Ci, Cj)) ≤ 2β. (2)

Now, consider the term
∑k

i=1(wH−(Ci, Ci) − wG−(Ci, Ci)) in equation 1. For each i =
1, . . . , k, we consider a random partition Ci = Ai ∪Bi constructed by assigning each node v ∈ Ci

independently either to Ai or Bi with equal probability. Then, we have

E
[k∑

i=1

(wH−(Ai, Bi)− wG−(Ai, Bi))

]
=

1

2

k∑
i=1

(wH−(Ci, Ci)− wG−(Ci, Ci)).

5

LIU

We choose sets A∗
1, . . . , A

∗
k, B

∗
1 , . . . , B

∗
k which make the absolute value of this expression at least as

high as its expectation and define two partitions of the node set V : P1 = {A∗
1 ∪B∗

1 , . . . , A
∗
k ∪B∗

k}
and P2 = {A∗

1, . . . , A
∗
k, B

∗
1 , . . . , B

∗
k}. Let Pi(G) be the sum weights of violated edges crossing

the partition Pi in graph G. One can verify easily that P2(G+)− P1(G+) =
∑k

i=1wG+(A∗
i , B

∗
i).

Therefore, we have

k∑
i=1

(wH−(A∗
i , B

∗
i) − wG−(A∗

i , B
∗
i)) = (P2(H−) − P2(G−)) − (P1(H−) − P1(G−))

Now, one of the following equations must hold:

|P2(H−)− P2(G−)| ≥ 1

2

∣∣∣∣ k∑
i=1

(wH−(A∗
i , B

∗
i)− wG−(A∗

i , B
∗
i))

∣∣∣∣ (3)

|P1(H−)− P1(G−)| ≥ 1

2

∣∣∣∣ k∑
i=1

(wH−(A∗
i , B

∗
i)− wG−(A∗

i , B
∗
i))

∣∣∣∣ (4)

Case 1: Equation (3) holds. For each set A∗
1, . . . , A

∗
k and B∗

1 , . . . , B
∗
k , we flip a fair coin and

add all the nodes from that set either to S or to T . Then, we have

E[wH−(S, T)− wG−(S, T)] =
1

2
(P2(H−)− P2(G−))

Case 2: Equation (4) holds. For each i = 1, . . . , k, we flip a fair coin and add all the nodes from
Ai ∪Bi either to S or to T . Then, we have

E[wH−(S, T)− wG−(S, T)] =
1

2
(P1(H−)− P1(G−))

In both cases, our choice of sets A∗
1, · · · , Equation (3), Equation (4), and assumption that

dcut(H
−, G−) ≤ β imply ∣∣∣∣ k∑

i=1

(wH−(Ci, Ci)− wG−(Ci, Ci))

∣∣∣∣ ≤ 4β. (5)

Now, the statement follows from Equation (1), Equation (5) and Equation (2). We complete the
proof.

Lemma 8, together with the following statement from Bun et al. (2021), implies there is a
(ϵ, δ)-DP mechanism for release of weighted graphs which preserves number of disagreements and
agreements of any clustering up to an additive term O(

√
mn
ϵ log2(nδ)), where m denotes the total

weight of the edges in the input graph.

Proposition 9 (Bun et al. (2021) Section 4.2) Let G be a general graph with weighted edges,
which can be either positive or negative. Further we assume that the total value of weights is
at most m. Then there is an (ϵ, δ)-DP mechanism which releases synthetic graph H satisfying:

E[dcut(H+, G+)] ≤ O(
√

mn
ϵ log2 n

δ) and

E[dcut(H−, G−)] ≤ O(
√

mn
ϵ log2 n

δ).

6

BETTER DP CORRELATION CLUSTERING

Lemma 10 Let G be a general graph with weighted edges, which can be either positive or negative.
Further we assume that the total value of weights is at most m. Then there is an (ϵ, δ)-DP algorithm
to release a synthetic graph H that satisfies for any clustering C,

|dis(C, H)− dis(C, G)| ≤ O(

√
mn

ϵ
log2

n

δ
).

Proof The proof follows from combining Lemma 8 and Proposition 9.

Now we are ready to prove our main result for general weighted graphs.

Theorem 11 There is an (ϵ, δ)-DP algorithm for minimizing disagreements on general weighted
graphs and get a clustering C with the following guarantee:

dis(C, G) ≤ O(log n)dis(OPT, G) +O(
√

mn
ϵ log2(nδ)).

Proof We use the previous lemma to construct a synthetic graph H . On H , we can use any α-
approximation algorithm to find a clustering C. Now consider,

dis(C, H) ≤ α · dis(CH , H) ≤ α · dis(OPT, H)

≤ α · dis(OPT, G) +O(

√
mn

ϵ
log2

n

δ
),

where CH is the optimal clustering with respect to H and OPT is the optimal clustering with respect
to G. Further, note that dis(C, G) ≤ dis(C, H) +O(

√
mn
ϵ log2 n

δ). We get a clustering C such that
dis(C, G) ≤ αdis(OPT, G) +O(

√
mn
ϵ log2 n

δ).
Finally, we can use the O(log n)-approximation algorithm from Demaine et al. (2006) for the

correlation clustering problem on weighted graphs, hence α = O(log n), which completes the
proof.

4. Unweighted Graph

In the MinDis problem on unweighted complete graphs, we assume all edges, either with positive
or negative signs, have unit weights. That is wG(e) = 1 for any e ∈ E.

Before describing our algorithm, we make some definitions used in this section. As the sen-
sitivity is always one in this work, we use TLap(ϵ, δ) to represent the Truncated Laplace Noise
TLap(ϵ, δ, 1) (See Definition 6). For any graph G, let ∆∗

G be the true maximum positive degree
of all nodes on graph G. Let dG(u) denote the positive degree of u in graph G. If there is no
confusion, we may use ∆∗ and d(u). For a set C ⊆ V of nodes, we denote E+(C) (resp. E−(C))
to be the set of positive (resp. negative) edges with at least one endpoint in C, and N+(C) (resp.
N−(C)) to be the set of positive (resp. negative) neighboring nodes. We use OPT to demonstrate
the optimal clustering. We may use ALG to represent either Algorithm 1 or the clustering output
by Algorithm 1 for simplicity.

The main result of this section is the following:

7

LIU

Theorem 12 Given any unweighted complete graph G = (V,E+, E−) and privacy parameters
ϵ, δ ∈ (0, 1/2), Algorithm 1 is (ϵ, δ)-DP and outputs a clustering ALG such that

dis(ALG, G) ≤ O(1) · dis(OPT, G) +O

(
n log4(n/δ)

ϵ
·
√
∆∗ +

log(n/δ)

ϵ

)
.

Algorithm 1 Algorithm ALG for complete graph
1: Input: G = (V,E+, E−)
2: ∆0 :← NoisyMax(G, ϵ) {Discussed in Lemma 13}
3: ∆← ∆0 + 35 log(n/δ)/ϵ {Prevent underestimation}
4: cl ← ⌈∆⌉, k ← 0, λ← 1/10, bgood ←

√
cl log

2(n/δ)
5: while V is not empty do
6: Pick an arbitrary node v ∈ V as pivot, k ← k + 1
7: let V ← V \ {v}, E+ ← E+ \ E+(v), E− ← E− \ E−(v)
8: d̃(v)← ⌈dG(v) + TLap(ϵ/10, δ/n3)⌉
9: if d̃(v) ≤ 100

√
cl log

4(n/δ)/ϵ then
10: Output Ak ← {v} as a singleton
11: Continue
12: end if
13: Let B ← {}, t← 2⌈d̃(v)⌉
14: for each node uj ∈ V do
15: if PJudgeGood(N+(v), uj , bgood, λ) is TRUE and t ≥ 0 then
16: B ← B ∪ {uj}, t← t− 1
17: end if
18: end for
19: Let ˜|B| ← ⌈|B|+TLap(ϵ/10, δ/n3)⌉
20: if ˜|B| ≤ 9d̃(v)/10 then
21: Output Ak ← {v} as a singleton
22: Continue
23: else
24: Let t← 2 ˜|B|, D ← {}
25: for each node uj ∈ V \B do
26: if PJudgeGood(B, uj , bgood, 4λ) is TRUE and t ≥ 0 then
27: D ← D ∪ {uj}, t← t− 1
28: end if
29: end for
30: Let Ak ← B ∪D, output Ak as a cluster,
31: V ← V \Ak, E

+ ← E+ \ E+(Ak), E
− ← E− \ E−(Ak)

32: end if
33: end while
34: Output: Clustering ALG (clusters and singletons)

The high-level idea of Algorithm 1 was discussed before (See Subsection 1.2). We prove the
privacy and utility guarantees of Algorithm 1 separately. The proof of privacy guarantee is presented
in the following subsection, and we prove the utility guarantee afterwards.

8

BETTER DP CORRELATION CLUSTERING

4.1. Privacy Guarantee

Now we consider the outputs of Algorithm 1 on two neighboring graphs G and G′, which only
differ by one fixed edge. Let (x, y) be this edge.

The high-level idea to prove the privacy guarantee is to analyze the basic components used in
the Algorithm 1 and then apply the composition theorems (Theorem 29 and Theorem 30). Roughly
speaking, a call to PJudgeGood can lead to privacy loss. We show that there are only Õ(cl) “dan-
gerous” calls to the procedure that can lead large privacy loss, each of which is (Õ(ϵ/

√
cl), δ/n

4)-
DP. The remaining steps are (0, δ/poly(n))-DP and there can be at most polynomially many such
steps. Thus, the whole process is (ϵ, δ)-DP by composition. Now we consider some basic compo-
nents.

Lemma 13 (Dwork and Roth (2014)) The NoisyMax (Algorithm 2) is (ϵ/10, 0)-differentially pri-
vate, and with probability at least 1 − δ/n3, for ∆ in the line 3 of Algorithm 1, we have ∆∗ +
65 log(n/δ)/ϵ ≥ ∆ ≥ ∆∗ + 5 log(n/δ)/ϵ.

In the following proof, we are conditioned on that ∆∗ +65 log(n/δ)/ϵ ≥ ∆ ≥ ∆∗ +5 log(n/δ)/ϵ.
The following Lemma follows directly from the Truncated Laplace Mechanism (Theorem 7).

Lemma 14 When ϵ, δ ∈ (0, 1/2), the Line 8 and Line 19 in Algorithm 1 are (ϵ/10, δ/n3)-DP, and
the estimation errors are at most O(log(n/δ)/ϵ).

Algorithm 2 NoisyMax: Privately estimate maximum positive degree maxu∈V dG(u)

Input: Graph G = (V,E+, E−), privacy parameters ϵ > 0
Add independently generated Laplace noise Lap(1/20ϵ) to each degree dG(u), and return the
node u∗ of the largest noisy count
Return: dG(u∗) + Lap(1/20ϵ)

Algorithm 3 PJudgeGood: Privately judge if a node u is good with respect to a set C
Input: Graph G = (V,E+, E−), node u, set C ⊆ V , parameters bgood, λ
if |N+(u) ∩ C| + TLap(ϵ/2bgood, δ/n

4) ≥ (1 − λ)|C| and |N+(u) ∩ (V \ C)| ≤ λ|C| +
TLap(ϵ/2bgood, δ/n

4) then
Return: TRUE

else
Return: FALSE

end if

Recall that we are considering two neighboring graphs G,G′ which differ on the sign of edge
(x, y). It remains to bound the privacy loss due to PJudgeGood at Line 15 (part-one) and at Line 26
(part-two). For that, we define a concept which plays a crucial role in the following analysis.

Definition 15 (hesitant) Given any λ > 0. For any node u ∈ V and any set S ⊂ V , we say u
is λ-hesitant with respect to S when the algorithm calls PJudgeGood(S, u, bgood, λ), if u and S
satisfy the following condition:

9

LIU

• |N+(u) ∩ S| > (1− λ)|S| − 10bgood log(n/δ)/ϵ

• and |N+(u) ∩ S| − λ|S| < 10bgood log(n/δ)/ϵ

In this work, we fix λ = 1/10. We consider the part-one of PJudgeGood (Line 15) first.
Obviously, we only need to take care of the part-one under two cases: (i) either x or y is the
pivot, and we run PJudgeGood with N+(x) or N+(y) as input parameters; (ii) when x or y
become the second parameters in the input of PJudgeGood. A trivial analysis would suggest
that the total number of calls to PJudgeGood under these two cases is O(n) and each call is
(ϵ/(
√
cl log

2(n/δ)), 0)-DP, which is not good enough to get the desired DP guarantee. This is
where we invoke the concept of being hesitant.

Lemma 16 A call to PJudgeGood(N+(x), u, bgood, λ) with a node u ∈ V and a set N+(x) when
u is not λ-hesitant w.r.t. N+(x) is (0, δ/n4)-DP.

Proof As u is not λ-hesitant with respect to N+(x), by the definition of being hesitant, we know
either |N+(u) ∩N+(x)| ≤ (1 − λ)|N+(x)| − 10bgood log(n/δ)/ϵ or |N+(u) ∩ (V \N+(x))| −
λ|N+(x)| ≥ 10bgood log(n/δ)/ϵ. Without loss of generality, we consider the first case.

Let P, P ′ denote the probability distributions with respect to neighboring inputs G,G′ respec-
tively. In order to prove (0, δ/n4)-DP, we want to prove that

P [PJudgeGood(N+(x), u, bgood, λ) = TRUE] (6)

≤ P ′[PJudgeGood(N+(x), u, bgood, λ) = TRUE] + δ/n4

and

P [PJudgeGood(N+(x), u, bgood, λ) = FALSE] (7)

≤ P ′[PJudgeGood(N+(x), u, bgood, λ) = FALSE] + δ/n4.

By the properties of Truncated Laplace distribution (Theorem 7), we know

P [PJudgeGood(N+(x), u, bgood, λ) = TRUE] = 0,

P ′[PJudgeGood(N+(x), u, bgood, λ) = TRUE] ≤ δ/n4.

Hence Equation (6) and Equation (7) hold.
The conclusion for the other case when |N+(u)∩ (V \N+(x))| − λ|N+(x)| ≥ 10bgood log(n/δ)

ϵ
follows by the same argument. Thus we complete the proof.

Using similar arguments, we can also prove the following lemma:

Lemma 17 A call to PJudgeGood(S, x, bgood, λ) with node x and any set S ⊂ V as input when
x is not λ-hesitant, is (0, δ/n4)-DP.

We continue the analysis of privacy. Recall that we only need to take care of the calls to
PJudgeGood under two cases: (i) either x or y is the pivot, and we run PJudgeGood with N+(x)
or N+(y) as input parameters; (ii) when x or y become the second parameters in the input of
PJudgeGood. We bound the total number of times a node u becomes hesitant under these two
cases during the whole procedure of ALG.

10

BETTER DP CORRELATION CLUSTERING

Lemma 18 Suppose x is chosen as the pivot for some iteration. The total number of nodes that are
λ-hesitant with N+(x) is at most 2cl, and each such call to PJudgeGood is (ϵ√

cl log
2(n/δ)

, O(δ/n4))-
DP.

Proof The DP guarantee of a single call to PJudgeGood follows directly from the Truncated
Laplace mechanism. Now we bound the total number of times a node u becomes λ-hesitant.

Consider the size of N+(x). If its size |N+(x)| is smaller than 100
√
cl log

4(n/δ)/ϵ−40 log(n/δ)/ϵ,
then almost surely d̃(x) ≤ 100

√
cl log

4(n/δ)/ϵ, and we output {x} as a singleton. So we only need
to focus on the case when |N+(x)| ≥ 100

√
cl log

4(n/δ)/ϵ− 40 log(n/δ)/ϵ ≥ 90
√
cl log

4(n/δ)/ϵ.
Let S ⊂ V be the set of nodes which are λ-hesitant w.r.t. N+(x). For each node u ∈ S, we

have |N+(u)∩N+(x)| > (1−λ)|N+(x)|−10bgood log(n/δ)/ϵ > (1−2λ)|N+(x)|. As we know
|E+(N+(x))| ≤ cl|N+(x)|, thus |S| ≤ cl|N+(x)|

(1−2λ)|N+(x)| ≤ 2cl.

Lemma 19 Consider the node x. Let Gj denote the sub-graph induced on the remaining nodes
when ALG selects the j-th pivot vj . The total number of times x becomes λ-hesitant w.r.t. some
set N+

Gj
(vj) corresponding to pivot vj during the whole procedure is at most O(cl log(n)).

The high-level idea is that each time when x is λ-hesitant w.r.t. N+
Gj

(vj), one knows that
|N+

Gj
(vj)∩N+

Gj
(x)| is large. As vj must be deleted from Gj+1, one can show |E+

Gj+1
(N+

Gj+1
(x))| ≤

(1 − Ω(1
cl
))|E+

Gj
(NG+

j
(x))|. As there are at most O(n2) edges in E+

G1
, the bound O(cl log n)

follows. The proof of Lemma 19 can be found in the Appendix B.
Combining Lemma 17, Lemma 18 and Lemma 19 together, we can prove the DP guarantee of

part-one PJudgeGood. As for the part-two of PJudgeGood, we only need to consider the case
when x or y is input as the single node of PJudgeGood. We prove the following.

Lemma 20 For node x (resp. y), the total number of times x (resp. y) is 4λ-hesitant w.r.t. some
set B during the whole procedure is at most O(cl log n).

The proof is essentially same as the one for Lemma 19. Each time x is 4λ-hesitant w.r.t. B
means |B ∩ N+

Gi
(x)| is large and B must be deleted, which means |E+

Gi+1
(N+

Gi+1
(x))| ≤ (1 −

Ω(1
cl
))|E+

Gi
(N+

Gi
(x))|. Now we can complete the proof of the DP-guarantee.

Theorem 21 Given 0 < ϵ < 1/2, 0 < δ < 1/2, Algorithm 1 is (ϵ, δ)-differentially private.

Combining the results above (Lemma 13 to Lemma 20) we know Algorithm 1 only needs two
(ϵ/10, 0)-DP steps, O(cl log(n)) many (ϵ/(

√
cl log

2(n/δ)), O(δ/n4))-DP steps and O(n) steps of
(0, O(δ/n4))-DP sub-procedures. The proof then follows from some elementary calculations.

4.2. Utility Analysis

Having proved the DP guarantee, now it suffices to prove the utility guarantee of Algorithm 1.
Revisit some crucial concepts from Bansal et al. (2004):

Definition 22 (Bansal et al. (2004)) We say a node v is λ-good with respect to a set C ⊆ V , if it
satisfies the following:

11

LIU

• |N+(v) ∩ C| ≥ (1− λ)|C|

• |N+(v) ∩ (V \ C)| ≤ λ|C|

A set C is η-clean if all v ∈ C are η-good w.r.t. C.

As mentioned before, Bansal et al. (2004) made a key observation that there is a clustering with
clean clusters and a constant approximation.

Lemma 23 (Lemma 6 in Bansal et al. (2004)) For 0 < η < 1, there exists a clustering OPT(0)

for graph G in which each non-singleton cluster is η-clean and

dis(OPT(0), G) ≤ (
9

η2
+ 1)dis(OPT, G).

Given a graph G, for a (possibly random) set A of nodes and any (possibly random) clustering
C, we define cost(A, C, G) to be the (expected) cost related to nodes in A under the clustering C.
To be more clear, we cluster all nodes in G according to the clustering C and count for violated
edges which have at least one endpoint in A, that is the total number of negative edges in E−(A)
inside clusters plus the total number of positive edges in E+(A) between clusters, under clustering
C. Moreover, for a set A ⊆ V of nodes, we let G \ A be the sub-graph deduced by V \ A, that is
we delete the nodes in A and the edges (whatever positive or negative) connected with at least one
node in A.

Fix η = λ/10 = 1/100 in the following proof. Suppose the clustering in the Lemma 23 is
OPT(0) : C(0)1 , C(0)2 , · · · , C(0)t0

, {u}u∈S(0) where S(0) is the set of singletons.
We define a Procedure named CleanUp(G, C, T), that is given a graph G and a clustering C, do

not change those clusters of large size, but dissolve those clusters Ci ∈ C whose size smaller than T
and output them as singletons. With the CleanUp, we define

OPT(1) ← CleanUp(G,OPT(0), 110
√
cl log

4(n/δ)/ϵ) (8)

to be the clustering outputted. We re-index the new clustering OPT(1) : C(1)1 , C(1)2 , · · · , C(1)t1
, {u}u∈S(1) .

The algorithm CleanUp and clusterings OPT(i) (i ∈ {0, 1}) are only defined for our utility proof,
and we do not need to know the specific OPT(i) and never need to run the algorithm CleanUp.

The high-level idea is to show OPT(1) is still a good clustering (Equation (12)) with some
good properties, and Algorithm 1 can recover each non-singleton cluster in OPT(1) (the clusters in
OPT(0) of large size) well. We analyze the Algorithm CleanUp first and try to build Equation (12).

We define D1 as follows

D1 :=dis(OPT(1), G)− dis(OPT(0), G) (9)

to capture the loss occurred by Algorithm CleanUp. We can prove the following claim:

Claim 24 Running CleanUp(G,OPT(0), 110
√
cl log

4(n/δ)/ϵ), we have

D1 ≤O
(
n ·
√
cl log

4(n/δ)/ϵ
)
. (10)

12

BETTER DP CORRELATION CLUSTERING

Proof Recall that we denote the clustering w.r.t. OPT(0) by C(0)1 , · · · , C(0)
t0

, {u}u∈S(0) . Denote the
set of nodes M which are not singletons in OPT(0) but become singletons in OPT(1). We denote
Nj := M ∩ C(0)j for each j ∈ [t0] and rewrite D1 as follows:

D1 =

t0∑
j=1

(
ωG+(Nj , C(0)j)− ωG−(Nj , C(0)j)

)
. (11)

If CleanUp dissolves C(0)j , then |C(0)j | ≤ 110
√
cl log

4(n/δ)/ϵ) and Nj = C(0)j , we know that

ωG+(Nj , C(0)j) − ωG−(Nj , C(0)j) ≤ |Nj |2/2 ≤ O(1)|Nj | ·
√
cl log

4(n/δ)/ϵ. By Equation (11) we
know

D1 ≤
t0∑
j=1

O(1)|Nj | ·
√
cl log

4(n/δ)/ϵ ≤ O(n ·
√
cl log

4(n/δ)/ϵ).

Hence we prove Equation (10).

By the definition of D1 in Equation (9) and Claim 24, we have

dis(OPT(1), G) ≤ dis(OPT(0), G) +O(n
√
cl log

4(n/δ)/ϵ). (12)

We also need the following lemma, which follows immediately from the definitions:

Lemma 25 For any graph G and any clustering C = C1, · · · , Ct, {u}u∈S . If non-singleton cluster
Ci is η-clean, then

cost(Ci, C, G) ≤ η|Ci|2.

Consider the clustering OPT(1) : C(1)1 , C(1)2 , · · · , C(1)t1
, {u}u∈S(1) . We know for each non-

singleton cluster C(1)i is η-clean and thus cost(C(1)i ,OPT(1), G) ≤ η|C(1)i |2 by Lemma 25, and
has size at least 110

√
cl log

4(n/δ)/ϵ. Having demonstrated the properties of OPT(1), as mentioned
before, it suffices to show Algorithm 1 can recover each non-singleton cluster in OPT(1) well. Let
Ai be the (random) set of nodes outputted by Algorithm 1 as either a cluster or a singleton in i-th
iteration (ith pivot), where for the initialization we set A0 = ∅. Note that there are n nodes in the
graph. If for some j < n, Algorithm 1 finishes the clustering and ∪ji=1Ai = V , we define Ai = ∅
for j + 1 ≤ i ≤ n. We have the following two lemmas:

Lemma 26 Either A1 ⊂ S(1), or ∃i such that C(1)i ⊂ A1 ⊂ C(1)i ∪ S(1).

Lemma 27 For any graph G = (V,E+, E−) and any clustering C = C1, C2, · · · , Ct, {u}u∈S for
V , if |V | ≤ n, any non-singleton cluster Ci in C is η-clean and thus cost(Ci, C, G) ≤ η|Ci|2, then
we have

cost(A1,ALG, G) ≤ O(1)cost(A1, C, G) +O(E[|A1|]
√
cl log

4(n/δ)/ϵ), (13)

where A1 is the (random) output (either a cluster or a singleton) of ALG for the first pivot, and the
expectation is taken over randomness coins of ALG.

13

LIU

Utility guarantee of ALG can be bounded recursively by the lemmas above. We assume Lemma 26
and Lemma 27 hold first and finish our main result on utility, and refer to the Appendix B for the
omitted proofs.

Theorem 28 The utility of the Algorithm 1 satisfies

dis(ALG, G) ≤ O(1) · dis(OPT, G) +O

(
n log4(n/δ)

ϵ
·
√
∆∗ +

log(n/δ)

ϵ

)
.

Proof Note that for any i ≥ 1, by Lemma 26, we know that any (non-singleton) cluster C(1)j on
sub-graph G \ ∪i−1

t=1At has a size no smaller than 110
√
cl log

4(n/δ)/ϵ, is η-clean and satisfies that
cost(C(1)j ,OPT(1), G \ ∪i−1

t=1At) ≤ η|C(i)j |2. Thus the preconditions in Lemma 27 hold and for any
i ≥ 1, we have

cost(Ai,ALG, G \ ∪i−1
t=1At) ≤ O(1)cost(Ai,OPT(1), G \ ∪i−1

t=1At) +O
(
E[|Ai|]

√
cl log

4(n/δ)/ϵ
)
.

(14)

Hence we know that

dis(ALG, G) =
n∑

i=1

cost(Ai,ALG, G \ ∪i−1
t=1At)

≤
n∑

i=1

O(1)cost(Ai,OPT(1), G \ ∪i−1
t=1At) +

n∑
i=1

O(E[|Ai|]
√
cl log(n/δ)/ϵ)

≤
n∑

i=1

O(1)cost(Ai,OPT(1), G \ ∪i−1
t=1At) +O(n

√
cl log(n/δ)/ϵ)

≤O(1)dis(OPT(1), G) +O(n
√
cl log(n/δ)/ϵ)

≤O(1)dis(OPT(0), G) +O(n
√
cl log

4(n/δ)/ϵ)

≤O(1)dis(OPT, G) +O(n
√
cl log

4(n/δ)/ϵ),

where the first line follows from the definition, the second line follows from Equation (14), the third
line follows from that Ai and Aj are disjoint and there are at most n nodes in the graph, the forth line
follows from the recursive relationships and definitions, the fifth line follows from Equation (12)
and the last line follows from Lemma 23.

We know E[cl −∆∗] ≤ O(log(n/δ)/ϵ), and complete the proof.

Combining Theorem 21 and Theorem 28, we complete the proof of our main result Theorem 12.

Acknowledgments

The author is supported by NSF awards CCF-1749609, DMS-1839116, DMS-2023166, CCF-2105772,
a Microsoft Research Faculty Fellowship, a Sloan Research Fellowship, and a Packard Fellowship,
and would like to thank Marek Eliáš, Janardhan Kulkarni and anonymous reviewers for many help-
ful discussions on the project and comments on improving the presentation.

14

BETTER DP CORRELATION CLUSTERING

References

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: ranking
and clustering. Journal of the ACM (JACM), 55(5):1–27, 2008.

Daniel Alabi, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Private rank aggregation in central
and local models. arXiv preprint arXiv:2112.14652, 2021.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56(1):
89–113, 2004.

Mark Bun, Marek Elias, and Janardhan Kulkarni. Differentially private correlation clustering. In
International Conference on Machine Learning, pages 1136–1146. PMLR, 2021.

Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near optimal
lp rounding algorithm for correlationclustering on complete and complete k-partite graphs. In
Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 219–
228, 2015.

Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrović, Ashkan Norouzi-Fard, Nikos Parotsidis,
and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In International
Conference on Machine Learning, pages 2069–2078. PMLR, 2021.

Erik D Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pages 265–284. Springer, 2006.

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility tradeoff
in approximate differential privacy. In International Conference on Artificial Intelligence and
Statistics, pages 89–99. PMLR, 2020.

Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of clusters.
arXiv preprint cs/0504023, 2005.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. In International conference on machine learning, pages 1376–1385. PMLR, 2015.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Correlation clustering
with noisy partial information. In Conference on Learning Theory, pages 1321–1342. PMLR,
2015.

Claire Mathieu and Warren Schudy. Correlation clustering with noisy input. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 712–728. SIAM, 2010.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–103. IEEE, 2007.

15

LIU

Xinghao Pan, Dimitris Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchandran, and
Michael I Jordan. Parallel correlation clustering on big graphs. Advances in Neural Information
Processing Systems, 28, 2015.

16

BETTER DP CORRELATION CLUSTERING

Appendix A. More Preliminaries

Theorem 29 (Basic Composition, Dwork et al. (2006)) Given k mechanisms and suppose mech-
anism ALGi is (ϵi, δi)-differentially private, then this class of mechanism satisfy (

∑k
i=1 ϵi,

∑k
i=1 δi)-

differentially private under k-fold composition.

Theorem 30 (Theorem 3.5 in Kairouz et al. (2015)) For any ϵℓ > 0, δℓ ∈ [0, 1] for ℓ ∈ {1, · · · , k}
and δ̃ ∈ [0, 1], the class of (ϵℓ, δℓ)-differentially private mechanism satisfy (ϵ̃δ̃, 1− (1− δ̃)Πk

ℓ=1(1−
δℓ))-differential privacy under k-fold adaptive composition, where

ϵ̃δ̃ =min
{ k∑

ℓ=1

εℓ,
k∑

ℓ=1

(eεℓ − 1) εℓ
eεℓ + 1

+

√√√√ k∑
ℓ=1

2ε2ℓ log

(
1

δ̃

)
,

k∑
ℓ=1

(eεℓ − 1) εℓ
eεℓ + 1

+

√√√√√ k∑
ℓ=1

2ε2ℓ log

e+

√∑k
ℓ=1 ε

2
ℓ

δ̃

}

Definition 31 (The Laplace Distribution) The probability density function of Laplace distribution
Lap(µ, b) is

f(x | µ, b) = 1

2b
exp

(
−|x− µ|

b

)
=

1

2b

{
exp

(
−µ−x

b

)
if x < µ

exp
(
−x−µ

b

)
if x ≥ µ

In this work, we write Lap(b) to denote the Laplace distribution with zero mean and scale b, and
denote a random variable X ∼ Lap(b).

Fact 32 If X ∼ Lap(b), then E[|X|2] = 2b2 and

Pr[|X| ≥ tb] = e−t.

Lemma 33 (Laplace Mechanism) Given any function f : Ξ → Rk where for any neighboring
datasets D,D′ ∈ Ξ, ∥f(D) − f(D′)∥1 ≤ ∆f . The Laplace mechanism is outputting f(D) +
(Y1, · · · , Yk) where Yi are i.i.d. random variables drawn from Lap(∆f/ϵ). The Laplace mechanism
is (ϵ, 0)-DP.

Appendix B. Omitted Proof

As graph G is fixed, we may omit G in the notations “cost()” in the following proof.

B.1. Proof of Lemma 19

Lemma 19 Consider the node x. Let Gj denote the sub-graph induced on the remaining nodes
when ALG selects the j-th pivot vj . The total number of times x becomes λ-hesitant w.r.t. some
set N+

Gj
(vj) corresponding to pivot vj during the whole procedure is at most O(cl log(n)).

17

LIU

Proof Recall we have G1 = G under this notation. First, we consider the case when dGj (x) ≤
50
√
cl log

4(n/δ)/ϵ. Suppose x is λ-hesitant w.r.t. N+
Gj

(vj), which means that |N+
Gj

(vj)∩N+
Gj

(x)| >
(1−λ)|N+

Gj
(vj)|−10bgood log(n/δ)/ϵ and |N+

Gj
(x)∩(V \N+

Gj
(vj))|−λ|N+

Gj
(vj)| < 10bgood log(n/δ)/ϵ.

Hence dGj (vj) = |N+(vj)| <
dGj

(x)+10bgood log(n/δ)/ϵ

1−λ ≤ 90
√
cl log

4(n/δ)/ϵ, which implies that
vj will be output as a singleton and ALG does not run PJudgeGood on x and N+

Gj
(vj). Thus we

should only consider the case when positive degree of x is large.
Let the sequence of pivots selected by ALG be π = {v1, · · · , vt} before x is deleted from

the graph or is selected as the pivot. If x is the first pivot then we simply set π = ∅ and this
lemma follows directly. Let Evtj be the event that vj is the first pivot in π such that dGj (x) ≤
50
√
cl log

4(n/δ)/ϵ.
Conditioned on Evtj , we consider the total number of nodes vi for which x is λ-hesitant w.r.t.

N+
Gi
(vi) where i < j. By the definition, if x is λ-hesitant w.r.t. N+

Gi
(vi), then we know that

|N+
Gi
(x) ∩ N+

Gi
(vi)| > (1 − λ)|N+

Gi
(vi)| − 10bgood log(n/δ)/ϵ and |N+

Gi
(x) ∩ (V \ N+

Gi
(vi))| <

λ|N+
Gi
(vi)|+ 10bgood log(n/δ)/ϵ.

For simplicity, we define Ri := |E+
Gi
(N+

Gi
(x))|, where N+

Gi
(x) is the positive neighborhood of

x in Gi and E+
Gi
(N+

Gi
(x)) is the set of positive edges with at least one endpoint in N+

Gi
(x). Note

that Ri+1 ≤ Ri.
Now we prove the following statement: if x is λ-hesitant w.r.t. N+

Gi
(vi), then Ri+1 ≤ (1 −

1
2cl

)Ri. By the assumption, we know that dGi(x) > 50
√
cl log

4(n/δ)/ϵ. Then if x is λ-hesitant
w.r.t. N+

Gi
(vi), we know |N+

Gi
(x) ∩ N+

Gi
(vi)| > (1 − λ)|N+

Gi
(vi)| − 10bgood log(n/δ)/ϵ and

|N+
Gi
(x)∩(V \N+

Gi
(vi))| < λ|N+

Gi
(vi)|+10bgood log(n/δ)/ϵ, which implies that (1−2λ)|N+

Gi
(vi)| <

(1 − λ)|N+
Gi
(vi)| − 10bgood log(n/δ)/ϵ) < dGi(x) ≤ (1 + λ)|N+

Gi
(vi)| + 10bgood log(n/δ)/ϵ <

(1 + 2λ)|N+
Gi
(vi)|.

For any node z ∈ N+
Gi
(x) ∩ N+

Gi
(vi), we know that (vi, z), (z, x) ∈ E+

Gi
, which implies that

(vi, z) ∈ E+
Gi
(N+

Gi
(x)). Note that vi must be deleted in Gi+1, which leads to at least 1−2λ

2(1+2λ)dGi(x)

deletions of edges in E+
Gi
(N+

Gi
(x)). Then we know Ri+1 ≤ Ri − 1−2λ

2(1+2λ)dGi(x) ≤ (1− 1
4cl

)Ri as
Ri ≤ cldGi(x).

As we are conditioning on Evtj , we have Rj−1 ≥ |N+
Gi−1

(x)| ≥ 50
√
cl log

4(n/δ)/ϵ. As
R1 ≤ c2l , we conclude that the total number of times x becomes λ-hesitant is at most O(cl log(n)).

B.2. Proof of Lemma 26

Lemma 26 Either A1 ⊂ S(1), or ∃i such that C(1)i ⊂ A1 ⊂ C(1)i ∪ S(1).

Proof We need the following statement, which follows immediately from the definitions:

Lemma 34 Let C be an η-clean set of size at least 100
√
cl log

4(n/δ)/ϵ. For any set A such that
C ∩A = ∅, we know for any node u ∈ C, u is not 4λ-hesitant w.r.t. A.

By the definition of hesitant, we have the following claim directly:

18

BETTER DP CORRELATION CLUSTERING

Claim 35 If for some node u ∈ V and some set C where ALG runs PJudgeGood(C, u, bgood, λ)
during the process and u is not λ-hesitant with respect to C, then running sub-procedure

PJudgeGood(C, u, bgood, λ)

returns FALSE.

Basically, we consider the different possible cases over the universe of all possible outputs of
A1. In general we write A1 = B ∪ D, where B and D represent the set appended into A1 in the
part-one and part-two respectively. If A1 = B is a singleton, then we have D = ∅. For simplicity,
in the following argument, we use Ci and S to denote C(1)i for i ∈ [t1] and S(1) respectively.
We do category analysis and demonstrate that all those cases violating Lemma 26 are impossible
conditional on EvtRL.

Case (1): Some node v in the non-singleton cluster is selected as the pivot. Without loss of
generality, we assume the pivot v ∈ C1. We divide Case(1) further based on whether A1 is a cluster
or a singleton.

Sub-Case(1.1): A1 is a cluster. In this Sub-Case, we know that |C1| ≥ 110
√
cl log

4(n/δ)/ϵ and
d(v) ≥ (1− η)110

√
cl log

4(n/δ)/ϵ, (2 + η)d(v) ≥ |B| ≥ 4d(v)
5 and |D| ≤ (2 + η)|B|.

We prove the following statement first: A1 ∩ Ci = ∅ for ∀i ̸= 1.
As C1 is η-clean, then we know |N+(v)∩C1| ≥ (1−η)|C1| and |N+(v)∩(V \C1)| ≤ η|C1|. For

any node z ∈ Ci where i ̸= 1, we know |z ∩N+(v)| ≤ η|C1| ≤ η
1−η |N

+(v)| ≤ (1− λ)|N+(v)| −
10bgood log(n/δ)/ϵ, which means that z is not appended into the set B.

For any z ∈ Ci where i ̸= 1, we also know Ci is η-clean and thus |N+(z) ∩ (V \ Ci)| ≤ η|Ci|,
and thus we know |N+(z) ∩ B| ≤ η|Ci| and |N+(z) ∩ (V \ B)| ≥ (1 − η)|Ci|. Either |B| ≥ |Ci|
or |B| < |Ci|, we know z is not appended into the set D. Thus we prove the statement.

Consider the situation when C1 ̸⊂ A1. Then we know some node u ∈ C1 is not appended in
either B or D and thus u /∈ A1.

Basically, we know for any node u ∈ C1, we have |N+(v) ∩ N+(u)| ≥ (1 − 2η)|C1| ≥
1−2η
1+η |N

+(v)| and |N+(u) \ N+(v)| ≤ 2η|C1| ≤ 2η
1−η |N

+(v)|, which means running the sub-
procedure PJudgeGood(N+(v), u, bgood, λ) returns TRUE.

The only possibility is the size of the set of nodes which are good w.r.t. N+(v) is too large.
In this case we know |B \ C1| ≥ (2 − η)dv − |C1| ≥ 1−2η

1+η |C1|. By the analysis in the situation
above, we know for any node u ∈ B \ C1, one has |N+(u) ∩ C1| ≥ (1 − 3λ)|C1|, which means
cost(C1,OPT(1), G) ≥ (1− 3λ)|C1| × |B \ C1| ≥ (1−3λ)(1−2η)

1+η |C1|2 and thus violates the precon-
dition. So this situation is impossible. We proved C1 ⊂ A1 in this Sub-Case.

Sub-Case (1.2): A1 is a singleton. For any node u ∈ C1, by the analysis above, we know running
sub-procedure PJudgeGood(N+(v), u, bgood, λ) returns TRUE, which means all nodes in C1 can
be appended into set B if the size of B does not violate the constraint. And |C1| ≥ d(v)/(1 + η),
which means ALG does not dissolve B due to its small size and the ALG must output a cluster.
Thus this Sub-Case is impossible.

Case (2): Some node v ∈ S is selected as the pivot, A1 is a cluster, and A1 ∩ (∪tj=1Cj) ̸= ∅.
Recall we know |N+(v)| ≥ (1− η)110

√
cl log

4(n/δ)/ϵ.
One can argue that situation when B ∩ (∪tj=1Cj) = ∅ is impossible by Lemma 34. If B ∩

(∪tj=1Cj) = ∅, then we have D∩(∪tj=1Cj) = ∅ and thus A1∩(∪tj=1Cj) = ∅, which is contradiction.
Without loss of generality, assume u ∈ C1 is the first node in ∪tj=1Cj to be appended into B. We

prove A1 ∩ (∪tj=1Cj) ⊂ C1 under this assumption.

19

LIU

If u is appended into B, then u must be λ-hesitant w.r.t. N+(v), which means that |N+(v) ∩
N+(u)| > (1− λ)|N+(v)| − 10bgood log(n/δ)/ϵ ≥ (1− λ− η)|N+(v)| and |N+(u) \N+(v)| <
λ|N+(v)| + 10bgood log(n/δ)/ϵ < (λ + η)|N+(v)|. Consider any node z ∈ C2, we now argue
z /∈ A1. Recall that both C1 and C2 are η-clean. Thus |N+(u) ∩ C1| ≥ (1− η)|C1|, |N+(u) \ C1| ≤
η|C1|, |N+(z) ∩ C2| ≥ (1 − η)|C2| and |N+(z) \ C2| ≤ η|C2|. Note that (1 − λ − η)|N+(v)| ≤
|N+(u)| ≤ (1 + λ + η)|N+(v)|. Also we know |N+(v) ∩ C1| ≥ (1 − λ − η)|N+(v)| − η|C1| ≥
(1− λ− η− (1+λ+η)η

1−η)|N+(v)| and |N+(v) \ C1| ≤ (λ+ η)|N+(v)|+ η|C1| ≤ (λ+3η)|N+(v)|.
Hence we know that for node z ∈ C2, if we want z to be λ-hesitant w.r.t. N+(v), we need

1−λ
1+η |N

+(v)| ≤ |C2| ≤ 1+λ
1−η |N

+(v)|. We have |N+(z) ∩ N+(v)| = |N+(z) ∩ N+(v) ∩ C1| +
|N+(z) ∩N+(v) ∩ (V \ C1)| ≤ η|C2|+ (λ+ 3η)|N+(v)| ≤ (λ+ 5η)|N+(v)| Then whatever the
size of |C2| is, we know z is not λ-hesitant w.r.t. N+(v) and is not appended into B. If u ∈ C2,
then u /∈ B. As B ∩ C2 = ∅ and thus A1 ∩ C2 = ∅ by Lemma 34. The same argument holds for
other clusters, so we prove A1 ∩ (∪tj=1Cj) ⊂ C1.

Now we consider the following two situations:
Situation (i): |B ∩ C1| ≥ 9|B \ C1|. At first, we prove that if |B ∩ C1| ≥ 9|B \ C1|, then for node
u ∈ C1 \B, PJudgeGood(B, u, bgood, 4λ) outputs TRUE.

First, we know that (1 + η)|N+(v)| ≥ |B|, 1−λ
1+η |N

+(v)| ≤ |C1| ≤ 1+λ
1−η |N

+(v)|. And we know

that (1 + η)|C1| ≥ |B| ≥ 9
10 |N

+(v)|, thus we know that (1+η)2

1−λ |C1| ≥ |B| ≥
9(1−η)
10(1+λ) |C1|, which

means that |B ∩ C1| ≥ 81(1−η)
100(1+λ) |C1| and |B \ C1| ≤ (1+η)2

10(1−λ) |C1|.

For any node u ∈ C1 \B, we know |N+(u)∩B| ≥ (1−η+ 81(1−η)
100(1+λ)−1)|C1| ≥ (1−3λ)|C1| ≥

((1−3λ)(1−λ)
(1+η)2

)|B| and |N+(u) \B| = |(N+(u)∩C1) \B|+ |(N+(u) \ C1) \B| ≤ (1− 81(1−η)
100(1+λ) +

η)|C1| ≤ 3λ|B|. Hence we know u is judged 4λ-good w.r.t. B.
If C1 ̸⊂ A1, we know there are too many nodes which are judged 4λ-good w.r.t. B and ALG

does not append all nodes in C1 into D. In particular, for any z ∈ D \ C1, we know |N+(z)∩ C1| ≥
|N+(z)∩C1∩B| ≥ (1−λ−η)|B|−3λ|C1| ≥ |C1|/2. And we know |D \C1| ≥ |C1|, which means
under these conditions and assumptions, cost(C1,OPT(1)) ≥ |D \ C1| · |C1|/2 ≥ |C1|2/2, violating
the precondition that cost(C1,OPT(1)) ≤ η|C1|2/2 and is impossible. Then we know C1 ⊂ A1 in
this situation.

Situation (ii): |B ∩ C1| < 9|B \ C1|.
For any node z ∈ B \ C1, we know |N+(z) ∩N+(v)| ≥ |N+(z) ∩N+(v) ∩ C1| ≥ (1 − λ −

η)|N+(v)| − (λ + 3η)|N+(v)| = (1 − 2λ − 4η)|N+(v)| ≥ (1−2λ−4η)(1−η)
1+λ |C1|. We know |B| ≥

4
5 |N

+(v)| ≥ 4(1−η)
5(1+λ) |C1|. Hence we know for this particular C1, we know cost(C1,OPT(1), G) ≥

|B \ C1| · (1− 4λ)|C1| ≥ (1− 4λ)2|C1|2, violating the precondition. Thus we know this situation is
impossible.

Combining the arguments of all cases and situations together, we know either A1 ⊂ S or C1 ⊂
A1 ⊂ C1 ∪ S.

B.3. Proof of Lemma 27

Lemma 27 For any graph G = (V,E+, E−) and any clustering C = C1, C2, · · · , Ct, {u}u∈S for
V , if |V | ≤ n, any non-singleton cluster Ci in C is η-clean and thus cost(Ci, C, G) ≤ η|Ci|2, then

20

BETTER DP CORRELATION CLUSTERING

we have

cost(A1,ALG, G) ≤ O(1)cost(A1, C, G) +O(E[|A1|]
√
cl log

4(n/δ)/ϵ), (15)

where A1 is the (random) output (either a cluster or a singleton) of ALG for the first pivot, and the
expectation is taken over randomness coins of ALG.

Proof Basically, we consider the different possible cases over the universe Ω of all possible outputs
of A1, do case analysis and show Equation (15) holds conditional on all of different cases. In
general we write A1 = B ∪ D, where B and D represent the cluster of the part-one and part-two
respectively. If A1 = B is a singleton, then we know D = ∅. Recall that the benchmark clustering
C : C1, C2, · · · , Ct, {u}u∈S in the statement of Lemma 27.

Case (1), denoted by Ω1: Some node v in the non-singleton cluster is selected as the pivot.
Without loss of generality, we assume the pivot v ∈ C1. By the proof of Lemma 26, we know

A1 is a cluster and C1 ⊂ A1 ⊂ C1 ∪ S.
In this case, for any node u ∈ B \ C1, one has |N+(u) ∩ C1| ≥ |N+(u) ∩ C1 ∩ N+(v)| ≥

(1− η)|C1| − 2λ|N+(v)| ≥ (1− η− 2λ(1+ η))|C1| ≥ (1− 3λ)|C1|. And for any node u ∈ D \ C1,
we know d(u) ≥ |B|/2 ≥ 2d(v)/5 ≥ |C1|/5. Hence we have cost(A1, C | Ω1) ≥ (1 − 3λ)|C1| ·
|B \ C1| + |C1|×|D\C1|

5 ≥ |C1| · |A1 \ C1|/5. Note that cost(A1,ALG | Ω1) ≤ cost(A1, C |
Ω1) + |C1| · |A1 \ C1|+ |A1 \ C1|2 = O(1)cost(A1, C | Ω1) as |C1| ≥ Ω(|A1 \ C1|).

Combining these together, we know

cost(A1,ALG | Ω1) =O(1)cost(A1, C | Ω1). (16)

Case (2), denoted by Ω2: Some node v ∈ S is selected as the pivot.
We need to divide this case further.
Sub-Case (2.1), denoted by Ω2.1: A1 is a singleton. This Sub-Case is fine as one has

cost(A1,ALG | Ω2.1) = cost(A1, C | Ω2.1) (17)

immediately as A1 is singleton in both ALG and C.
Sub-Case (2.2), denoted by Ω2.2: A1 is a cluster, and A1 ∩ (∪tj=1Cj) = ∅.
In this Sub-Case we know d(v) ≥ 99

√
cl log

4(n/δ)/ϵ, or v is outputted as a singleton.
Under this Sub-Case, we know A1 ⊂ S and thus

cost(A1,ALG |,Ω2.2) ≤ cost(A1, C | Ω2.2) + E
[
|A1|2 | Ω2.2

]
/2.

Consider two situations separately:
Situation (i): |A1| ≤ 100

√
cl log

4(n/δ)/ϵ, denoted by Ω2.21. Hence

cost(A1,ALG | Ω2.21) ≤cost(A1, C | Ω2.21) +O(E[|A1| ·
√
cl log

4(n/δ)/ϵ | Ω2.21]) (18)

holds immediately.
Situation (ii): |A1| > 100

√
cl log

4(n/δ)/ϵ, denoted by Ω2.22. We know 4|N+(v)|/5 ≤ |A1| ≤
(4 + η)|N+(v)|, and for any node u ∈ A1 one has d(u) ≥ (1 − 5λ)|N+(v)|. Thus we know
cost(A1,ALG | Ω2.22) ≤ E[|A1|2/2 | Ω2.22], and cost(A1, C | Ω2.22) ≥ E[|A1| ·(1−5λ)|N+(v)| |
Ω2.22] ≥ E[2|A1|2/5 | Ω2.22]. Hence we have the following Equation

cost(A1,ALG | Ω2.22) ≤ O(1)cost(A1, C | Ω2.22). (19)

21

LIU

Sub-Case(2.3), denoted by Ω2.3: A1 is a cluster, and A1 ∩ (∪tj=1Cj) ̸= ∅.
Without loss of generality, assume that u ∈ C1 is the first node in ∪tj=1Cj to be appended into

B. Then we know C1 ⊂ A1 and |B ∩ C1| > 9|B \ C1| by the proof of Lemma 26.
Note that |A1| = Θ(|C1|), cost(A1,ALG | Ω2.3)− cost(A1, C | Ω2.3) ≤ O

(
E
[
|C1| · |A1 \C1|+

|A1 \ C1|2 | Ω2.3

])
, while cost(A1, C | Ω2.3) ≥ Ω

(
E
[
|C1| · |A1 \ C1| | Ω2.3

])
. Hence

cost(A1,ALG | Ω2.3) ≤ O(1)cost(A1, C | Ω2.3). (20)

Combining Equations (16) to (20) together, we prove Equation (15) and complete the proof.

22

	Introduction
	Our Contributions
	Our Techniques
	More Related Work
	Outline

	Preliminaries
	General Graph
	Unweighted Graph
	Privacy Guarantee
	Utility Analysis

	More Preliminaries
	Omitted Proof
	Proof of Lemma 19
	Proof of Lemma 26
	Proof of Lemma 27

