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Abstract

Policy regret is a well established notion of measuring the performance of an online learning al-
gorithm against an adaptive adversary. We study restrictions on the adversary that enable efficient
minimization of the complete policy regret, which is the strongest possible version of policy re-
gret. We identify a gap in the current theoretical understanding of what sorts of restrictions permit
tractability in this challenging setting. To resolve this gap, we consider a generalization of the
stochastic multi armed bandit, which we call the tallying bandit. This is an online learning setting
with an m-memory bounded adversary, where the average loss for playing an action is an unknown
function of the number (or tally) of times that the action was played in the last m timesteps. For
tallying bandit problems with K actions and time horizon 7', we provide an algorithm that w.h.p
achieves a complete policy regret guarantee of O(m K +/T), where the O notation hides only loga-
rithmic factors. We additionally prove an ﬁ(\/ mKT) lower bound on the expected complete policy
regret of any tallying bandit algorithm, demonstrating the near optimality of our method.
Keywords: policy regret, bandits, online learning, reinforcement learning

1. Introduction

When decision making algorithms are deployed in the real world, the reward associated with choos-
ing a decision is rarely static. Instead, an algorithm’s decision impacts the state of its environment,
which in turn influences the quality of that same decision in the future. For instance, in recom-
mender systems such as YouTube and Netflix, the choice to recommend a type of content is often
instrumental in shaping the preferences of the user for that content genre. This creates a feedback
loop between an algorithm and its environment, and results in a complex back and forth interaction.

Such dynamic and interactive settings are well modeled as online learning problems, where a
player competes against an adaptive adversary. To measure the performance of the player, most
of the literature on online learning has focused on a performance metric called the traditional re-
gret (Auer et al., 2002b; Flaxman et al., 2005; Abernethy et al., 2008; Hazan and Kale, 2012).
However, a significant line of work has established that when the adversary is adaptive, the tradi-
tional regret is a poor indicator of the performance of an algorithm (Merhav et al., 2002; Arora et al.,
2012; Cesa-Bianchi et al., 2013; Heidari et al., 2016; Lindner et al., 2021). Instead, one typically
opts for a stronger performance metric, known as policy regret. The policy regret accumulated over
a time horizon 7" is defined with respect to a competitor class Cr of deterministic policies (or length
T action sequences). The policy regret with respect to Cr, which we denote Rp(;l, compares the
algorithm’s cumulative loss to that of the best policy in Cr.
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Much of the prior work on policy regret has focused on the restrictive assumption that C7 con-
tains only those action sequences that repeatedly play the same action (Arora et al., 2012; Cesa-
Bianchi et al., 2013; Dekel et al., 2014; Arora et al., 2018). We allude to the policy regret with this
choice of Cr as the constant action policy regret. The strongest possible version of policy regret is
when Cr is the complete policy class (i.e., the set of all deterministic policies), and we abbreviate
this as the complete policy regret. This challenging setting has recently received attention from the
online learning community (Heidari et al., 2016; Seznec et al., 2020; Lindner et al., 2021). On the
other hand, this performance metric is equivalent to the one that is standard in the closely related
field of reinforcement learning, where a vast literature explores how to efficiently maximize cumu-
lative reward (Kearns et al., 1999; Sutton et al., 2000; Kakade et al., 2003; Jin et al., 2018; Wang
et al., 2020; Malik et al., 2021).

Unfortunately, prior work has shown that without restrictions on the adversary, obtaining non-
trivial guarantees on even the constant action policy regret is impossible (Arora et al., 2012). Hence,
to attain meaningful guarantees on the complete policy regret (CPR), it is necessary to restrict the
adversary. Prior literature on policy regret studies different competitor classes Cr, along with vary-
ing types of restrictions on the adversary, to demonstrate non-trivial guarantees on the corresponding
policy regret ’RE‘;] We comprehensively survey these restrictions, and identify a gap in the current
theoretical understanding of when it is possible to attain meaningful guarantees on CPR. To resolve
this gap, we make the following contributions:

e We introduce an online learning setting known as the tallying bandit. Here the average loss for
playing an action is a function of the number (or tally) of times that action was played in the
last m timesteps. The stochastic multi armed bandit (sSMAB) is a special case of the tallying
bandit, via a choice of m = 1. From a more practical angle, we view the tallying bandit as a
step towards handling feedback loops that arise in applications such as recommender systems.

e For tallying bandit problems with K actions and time horizon 7', we provide an algorithm,
that given any § € (0, 1), achieves with probability at least 1 — ¢ a complete policy regret

guarantee of O <mK\/Tlog (T,m, K, 1/5)).

e We complement our algorithmic development with an §~2(\/ mKT) minimax lower bound
on the expected complete policy regret of any method designed for tallying bandits. This
demonstrates the near optimality of our algorithm.

2. Problem Formulation
2.1. Online Learning & Complete Policy Regret

We begin by providing a generic formulation of online learning against adaptive adversaries, follow-
ing rather closely the description of Arora et al. (2012). An online learning problem with time hori-
zon T and action set X’ is an iterative game between a player and an adaptive adversary. Throughout,
we let K denote the cardinality of X'. Before the game begins, the adversary fixes a sequence of
history dependent loss functions { f;}._,, where f; maps X to the interval [0, 1]. At each timestep
t of the game, the player chooses an action a; € X. In the bandit feedback model, the player then
observes the loss value f;(aq.t), where we have used ay.; as shorthand for a1, as . .. a;. By contrast,
in the full information model, the player observes fi(a1.4—1,x) forall z € X.
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The cumulative loss experienced by the player during this game is Zthl ft(a1.¢). Note that this
is arandom variable, since the player’s strategy can be random. In order to evaluate the performance
of the player, we compare this cumulative loss to a baseline. In particular, we let Cz C X7 be a
competitor class of policies (or length 7" action sequences). Given some Cr, one typically measures
the player’s performance via either the policy regret, which we denote Rp(;l, or the traditional regret,
which we denote Rg;d. The policy regret (Arora et al., 2012; Cesa-Bianchi et al., 2013; Arora et al.,
2018) is defined as

RE = th a1:t) min th YLz Y- (1)

(y1,92---y71) ECT

Notably, this definition differs substantially from the traditional regret (Auer et al., 2002b; Flaxman
et al., 2005; Abernethy et al., 2008; Hazan and Kale, 2012), given by

RES th (a1:¢) min th (a1:—1,91)- 2

(y1,y2...yT GCT

In the aforementioned adversarial online learning setup, the traditional regret lacks meaningful in-
terpretation. Instead, one opts for the policy regret to measure the player’s performance. We refer
the interested reader to Arora et al. (2012) for further details on the motivation for this choice.

Let X.onst denote the set of constant action sequences, so that Xeonse = {(z,z...2) stz €
X'}. We refer to Rgzlnst and R‘fé‘jﬂst respectively as the constant action policy regret and constant
action traditional regret. The constant action policy regret (and hence the constant action traditional
regret) yields a weak measure of performance, since we are comparing the player’s performance to
a very restricted baseline policy class. Expanding the competitor class Cr yields stronger notions
of performance. In our paper, we are interested in the challenging setting where Cr is the complete
policy class (the set of all length T" action sequences), or equivalently where C7 = X7. This
choice of Cr in Eq. (1) yields the strongest version of policy regret, and we refer to it as complete
policy regret (CPR), and denote it by Rg,?. An optimal policy is a policy in X7 that minimizes the
cumulative loss. We will often use the terminology “efficiently minimize the CPR”, which means
to obtain a CPR bound that is sublinear in 7" and at most polynomial in all other problem dependent
parameters. Our exclusive focus is on statistical (rather than computational) efficiency.

2.2. Restricting The Adversary

Prior work due to Arora et al. (2012) has shown that without any restrictions on the adversary, and
even when Cr = Xonst, for any player there exists an adversary such that the player’s constant action
policy regret satisfies RP S Q( ). To prove this lower bound, Arora et al. (2012) construct an
adversary that is Wholly unrestricted and hence extremely powerful. Thus, to obtain non-trivial
upper bounds on even the constant action policy regret, it is necessary to weaken the adversary. One
natural type of restriction that has been well studied in prior work, is to restrict the memory of the
adversary (Arora et al., 2012; Cesa-Bianchi et al., 2013; Arora et al., 2018).

Definition 1 We say that an adversary is m-memory bounded if for all t > m, all ay.; € X*, all
a.pm € X'"™ and all f; we have that

ft(al;t) = ft(all, a/2 e a;fm, At—m+1 - - - at).
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Hence, an m-memory bounded adversary is only permitted to define its loss function based on the
player’s most recent m actions. Prior work has shown that when m is sublinear in 7" and Cr is
sufficiently restricted (informally, when Cr equals or is only slightly larger than X;qng), then the
player can achieve policy regret Rg‘;l that is sublinear in 7' (Arora et al., 2012; Cesa-Bianchi et al.,
2013; Dekel et al., 2014; Arora et al., 2018).

When m = 1, then the adversary is oblivious, and we overload notation and write fi(a1.t) =
ft(at). Notably, for a fixed Cr, the policy regret Rg(;l equals the traditional regret thr;d in this sce-
nario. It is well known that against an oblivious adversary, a player can achieve sublinear constant
action policy regret (Arora et al., 2012). Hence, it is natural to question whether a player can achieve
sublinear CPR, when the adversary is oblivious. We show via the following counterexample that
this is impossible. Note that the result of the counterexample holds even in the full information
feedback model (as opposed to just bandit feedback). A similar result is given by Mohri and Yang
(2018).

Counterexample 1 Let X = {x1,x2}. To define its sequence of loss functions, the adversary first
samples a bit string b uniformly at random from {0,1}T. For each t, it then defines

fi(x1) = by and fi(x2) =1 — by.

Attaining sublinear complete policy regret is then equivalent to making a sublinear number of mis-
takes when guessing the value of b;. Since this is impossible, we have that E [Rfﬂ = Q(T), where
the expectation is over the sampling of b and the player’s (possibly randomized) strategy.

Crucially, the above counterexample relies on the fact that even though the adversary is oblivious,
its loss functions f;, fy for t # t’ are time varying and are constructed independent of each other. In
this scenario, the player cannot predict anything about f; via knowledge of fy for ¢’ < t. To evade
such counterexamples, a different type of restriction on the adversary’s power is to ensure that some
knowledge of fy leaks some information about f;. This motivates the following definition.

Definition 2 An m-memory bounded adversary is said to be g-restricted if the following is true.
For each action x € X, there exists a base function g, : U, _; X m' [0, 1], such that

filary) = ft(amax{l,t—m—i-l}:t) = gat(amax{l,t—m—l-l}:t)'

Although we are not aware of prior work on online learning that uses g-restricted adversaries without
additional restriction, in the sequel we will discuss prior work that consider g-restricted adversaries
with significant additional restrictions (Heidari et al., 2016; Levine et al., 2017; Seznec et al., 2019,
2020; Lindner et al., 2021; Awasthi et al., 2022). For now, we note that a g-restricted adversary must
define loss functions whose value for a fixed input cannot vary with time. With such a restriction,
the player can learn information about each g, (and hence about f;) as the game progresses, and
this enables the player to choose better actions over time. This restriction thus precludes the setting
of Counterexample 1.

When the adversary is g-restricted, it is straightforward to achieve CPR bounds that are sublinear
in T and depend exponentially on m. However, throughout our paper we interested in efficiently
minimizing CPR, which means we desire bounds that scale polynomially with m. Unfortunately,
there exist online learning games where the adversary is m-memory bounded and g-restricted, but
it is impossible to efficiently minimize CPR. We demonstrate this in the following counterexample,
which holds even in the full information feedback model (as opposed to just bandit feedback).
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Counterexample 2 Let X = {x1,x2}. Sample a tuple b of length m — 1 uniformly at random from
XL Define gz, : U™ _ X™ — [0,1] as

m—1

Gz, (A1) = Lifm' < mand gz, (ay.m) =1 — H I(a; =b;).
i=1

Also define g,, = 1. Via the base functions g, , g, we define the adversary’s loss functions as

ft(alzt) = ft(atferl:t) = gat(at7m+1:t)~

The policy that cyclically plays actions b1,bs . .. by, _1,x1 suffers a loss of zero at least once every
m timesteps. Meanwhile, suffering zero loss for the player is at least as hard as identifying b, and
a standard “needle in the haystack™ argument (Du et al., 2020) shows that this requires §(2m)
timesteps. Hence we have that E [RF] = Q(min{2™, T} /m), where the expectation is over the
sampling of b and the player’s (possibly randomized) strategy.

This counterexample demonstrates that even if the adversary is m-memory bounded and g-restricted,
any player suffers CPR that scales exponentially with m. So, further restrictions on the adversary
are necessary. A natural restriction is to enforce that each g, has special structure. This is precisely
the approach taken by works on rofting bandits (Heidari et al., 2016; Levine et al., 2017; Seznec
et al., 2019, 2020), improving bandits (Heidari et al., 2016), single peaked bandits (Lindner et al.,
2021) and congested bandits (Awasthi et al., 2022). Concretely, these works use base functions
{9z }zex that have the following special “tallying” structure.

Definition 3 An m-memory bounded and g-restricted adversary is said to be h-tallying, if for each
x € X there exists hy, : {1,2...m} — [0, 1] such that

t

ft(alzt) = ft(amax{l,tferl}:t) = Ya; (amax{l,tferl}:t) = hat Z H(at’ = at)
t/=max{1,t—m+1}

As discussed by the aforementioned works, this tallying structure is often a natural model in prac-
tice. For instance, Heidari et al. (2016) discuss a crowdsourcing setting where an agency utilizes
workers to repeatedly perform the same task (such as classifying images) at each timestep. The
agency picks a worker at each timestep, with the goal of picking a sequence of workers that makes
the fewest number of mistakes when performing the task. Here, it is reasonable that an individual
worker’s performance changes as an (unknown) function of the number of times that the worker has
already performed the task (for example, due to fatigue), thus motivating the tallying structure.

We emphasize that in addition to assuming the adversary is h-tallying, the aforementioned works
of Heidari et al. (2016), Levine et al. (2017), Seznec et al. (2019), Seznec et al. (2020), Lindner et al.
(2021) and Awasthi et al. (2022) make supplemental benign assumptions on the structure of the
functions {h, }cx, as we detail in Section 5. For instance, the rotting bandit setting of Heidari et al.
(2016) assumes that h, is an increasing function for each x € X'. Under this benign assumption,
they provide algorithms that efficiently minimize CPR. Notably, such strong assumptions on h,
enable this line of work to (often) tackle the case where m = T’ (although algorithms designed for
this case generally do not handle m < 7T), and additionally enables these works to (often) handle
the more difficult scenario of when the losses are stochastically observed.
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This exposes a gap in our understanding of when one can efficiently minimize CPR. In particu-
lar, it remains unclear whether we can attain this goal for h-tallying adversaries where we make no
assumptions on the structure of each h,. This motivates the following question.

Assume the adversary is m-memory bounded, g-restricted and h-tallying. Without any assumptions
on the functions {hy }zcx, and in the bandit feedback model with (possibly) stochastically
observed losses, when is it possible to efficiently minimize the complete policy regret?

The remainder of this paper is devoted to resolving this question. To this end, in the sequel we define
the tallying bandit, and provide upper and lower bounds on the achievable CPR in this setting.

3. Tallying Bandits

Let us formally introduce the tallying bandit setting.

Definition 4 An online learning game is an (m, g, h)-tallying bandit if the adversary is m-memory
bounded, g-restricted and h-tallying, and if after playing action a; the player observes a random
variable hq,(y:) € [0, 1] satisfying

E [ﬁat (yt)} = ha, (Yt) = Ya, (amax{l,t—m+1}:t) = fi(a1.),

t
where y; = Zt/:max{l,tferl} H(at' = at)'

We assume the cardinality K of the action set X is finite, and also that m is known (although we
discuss how to relax this in Section 6). With this definition of the setting in hand, we can restate our
goal of efficiently minimizing the CPR. Concretely, we desire an algorithm, which when given an
(m, g, h)-tallying bandit problem, has a CPR bound that is polynomial in /&, m and is sublinear in 7".
The tallying bandit strictly generalizes the well studied stochastic multi armed bandit (sMAB) (Lai
and Robbins, 1985; Auer et al., 2002a), simply via a choice of m = 1. Hence, we generalize the
study of sSMAB to m > 1. We remark that tallying bandit is a special case of the rested bandit, a
general framework for nonstationary MAB where the reward of an arm evolves when it is pulled,
and we defer detailed discussion of this to Section 5.

Recall that in SsMAB, the optimal policy plays the same optimal arm at each timestep. Hence,
in sSMAB obtaining zero constant action traditional regret is equivalent to obtaining zero constant
action policy regret and also zero CPR. Given that the tallying bandit is highly structured and gen-
eralizes sSMAB via m = 1, it is natural to question whether minimizing constant action policy (or
traditional) regret implies minimizing CPR. The following counterexample answers this question in
the negative when m > 1. More generally, this counterexample shows that even when the adversary
is restricted (as in tallying bandits), minimizing the constant action policy (or traditional) regret can
lead to solutions whose cumulative loss is S~2(T) larger than the minimum achievable total loss.

Counterexample 3 Let X = {x1, 22} and m = 2. Define hy, (1) = hy, (1) = 0 and hy,(2) =
hz,(2) = 1. A policy that fixes either of the two actions, and then plays this action at every
timestep, incurs cumulative loss T' — 1 but has zero constant action policy regret and zero constant
action traditional regret. Meanwhile, the complete policy regret of this policy is T — 1, since the
optimal policy that alternates playing actions x1 and xo incurs zero cumulative loss.
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Thus far, our motivation for the tallying bandit setting has been primarily theoretical, to resolve the
gap in our understanding of when we can efficiently minimize CPR. Nevertheless, in similar vein
to Heidari et al. (2016), Lindner et al. (2021) and Awasthi et al. (2022), we believe that the tally-
ing bandit is a simple approximation for various practical settings. For instance, in recommender
systems the reward associated with an action is rarely static, because the stimulus of recommended
content influences user preferences (Cosley et al., 2003; Sinha et al., 2016). Moreover, literature on
psychology and cognition suggests that humans often forget prior stimuli and do not always encode
them in permanent memory (Klatzky, 1980; Chessa and Murre, 2007). Thus, one way to model a
user’s preferences is via an (unknown) function of the number of times a content genre has been
recommended in a recent time interval, motivating both the h-tallying structure as well as bounded
m. Nevertheless, the tallying bandit is just one plausible model, and we suggest possible extensions
in Section 6.

Let us now discuss potential avenues for efficiently minimizing CPR in tallying bandit problems.
One approach is to observe that any tallying bandit problem can be cast as a reinforcement learning
(RL) problem, where each state corresponds to a sequence of actions taken in the last m timesteps.
However, methods for solving such RL problems typically scale with the cardinality of the state
space (Azar et al., 2013, 2017; Jin et al., 2018), and such approaches would suffer (~2(K ™) CPR.

Hence it is necessary to leverage the additional properties of tallying bandit problems. To gain
intuition, let us consider the simplified setting of deterministic bandit feedback, where for each
t,a1; € X? the player observes f;(a1.) with no noise. Since the loss functions f; are fully de-
fined by the functions {h, },cx, it is natural to consider the following algorithm, which we denote
ALGyge. First, the algorithm queries h,(y) at each (z,y) € X x {1,2...m}. This yields full
information about the loss functions f;. Then, the algorithm plans offline an optimal sequence of
actions for the remaining timesteps. ALGyqe is formally specified as Algorithm 2 in Appendix C,
and the following result shows that its CPR is minimax optimal (upto constant factors).

Proposition 1 Consider any (m, g, h)-tallying bandit problem with deterministic bandit feedback.
Then the complete policy regret of Algorithm 2 (ALLG,;) is almost surely upper bounded as R;ﬁ’ <
m (K + 1). Moreover, there exists an (m, g, h)-tallying bandit problem, such that the (expected)
complete policy regret of any (possibly randomized) algorithm on this problem with deterministic
feedback is lower bounded as E [R%’] > mK/128.

The proof of Proposition 1 is included in Appendix C. Due to the optimality of ALGgy given deter-
ministic feedback, it is reasonable to extend it to handle stochastic feedback. One natural way to do
so is via an “explore then exploit” modification, which has been studied even for SMAB (Slivkins,
2019). Consider the following “explore then exploit” algorithm, which we denote ALGgyen. It
queries repeatedly to receive stochastic realizations of h;(y) at each (z,y) € X x {1,2...m}, and
constructs tight confidence intervals for these h,(y). It then uses these estimated values of h,(y)
to plan offline an optimal sequence of actions for the remaining timesteps. ALGgcn is provably
efficient, in the sense that its CPR is sublinear in 7" and polynomial in m, K. However, a standard
argument (Slivkins, 2019) shows that the dependency on 7" for ALGgch Scales as © (T 2/ 3), and it
is unclear whether this dependency is optimal for tallying bandits. In the forthcoming section, we
show that this dependency on 7' can be significantly improved.
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4. Main Results

We now turn to our main results. In Section 4.1, we formulate Algorithm 1, a method designed for
solving tallying bandit problems, and prove an O(mK ﬁ ) upper bound on its CPR, where O hides
only logarithmic factors. In Section 4.2, we prove an Q(v/mKT') lower bound on the CPR of any
method designed to solve tallying bandit problems. This shows that Algorithm 1 is nearly optimal.

4.1. Upper Bound

To formulate our algorithm for tallying bandits, it is natural to exploit the A-tallying structure of
the problem, by building estimates of h;(y) for each (z,y) € X x {1,2...m}. As discussed
in Section 3, “explore then exploit” algorithms such as ALGgocn incur a poor dependency on 7.
Instead, it is critical to balance exploration and exploitation, by estimating h,(y) only by playing
those actions that will not increase the regret too fast. To this end, we introduce a key definition.
Recall that a deterministic policy 7 is length 7' sequence of actions. We say that a deterministic
policy 7 is v/T-cyclic if T/Tat = Tt foreach1 < ¢t < v/T andeach 0 < k < /T — 1. The
basis for our algorithm relies on the key claim that for any tallying bandit problem, there exists a
v/T-cyclic policy that is nearly optimal. This claim is formalized as Lemma 3 in Appendix A.
Assuming this claim to be true, to solve tallying bandits it is tempting to leverage algorithms
designed for multi armed bandits with expert advice (Auer et al., 2002b), where we treat each VT-
cyclic policy as an expert. However, such an approach would only guarantee O (7/%) CPR, since

there are KV7 experts. Instead, our algorithm draws inspiration from the successive elimination
(SE) algorithm, which has been applied to sSMAB (Even-Dar et al., 2002; Slivkins, 2019). Before
we apply SE in our setting, let us recall SE in the context of SMAB. The method proceeds in
epochs. Within each epoch s, it maintains a set A, of feasible arms, where an arm is feasible only if
its estimated optimality gap lies within a confidence interval of size Cs_. The algorithm pulls each
arm in A, repeatedly to obtain a sharper estimate of its optimality gap. Then the method uses these
sharper estimates to prune A, and create a smaller set Asy1, where A1 1 contains only those arms
in A; whose estimated optimality gap is smaller than some C; < C_1.

To apply SE in our tallying bandit setting, we define the initial set A; as the set of all v/7T-cyclic
policies, and treat each such policy to be analogous to an “arm” in sSsMAB. Our aforementioned key
claim ensures that there is some policy in A; that is guaranteed to be nearly optimal. However,
there are two salient technical issues that prevent a naive application of SE to solve tallying bandits.
First, note that the cardinality of Ay is K VT This is too large to apply a traditional SE approach,
since naively estimating the optimality gap of each policy in A by repeatedly playing the policy
and applying a concentration inequality would incur large regret. To resolve this, we exploit the
h-tallying structure of the problem to modify SE, and estimate the optimality gap of each policy in
A, by iteratively estimating h(y) for each (z,y) € X x {1,2...m}. Second, note that unlike in
the SMAB, in the tallying bandit the prior history of actions affects the loss of the current action,
which biases the estimation of the optimality gap of the policies in A,. To handle this, we modify
SE to incorporate an additional overheard step before the estimation, and our proof shows that this
overhead step removes the bias from the estimation without incurring much additional regret.

With this outline in mind, let us present our method, which is formalized in Algorithm 1. To
define Algorithm 1, we say that to execute a v/T-cyclic policy 7 for k < /T periods means
to choose the action sequence 71,y ... T, . We also define for each V/T-cyclic policy 7 and
(z,y) € X x{1,2...m}, the quantity N, () via the following procedure. Execute 7 for n+1 <
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Algorithm 1: Successive Elimination for Tallying Bandits (SE-TB)
Inputs: memory capacity m, time horizon 7', failure probability tolerance 6 € (0, 1), number of

actions K
Define S = log, (ﬂ + 1)

Define ng = 25, Ts = 2nsKm+/T and C, = \/32Km log (QKmS)‘

Construct A; to be the set of all v/T-cyclic policies.
fors € {1,2...S5} do
for x € X do
fory e {1,2...m} do
Select 7y € argmax ¢ o, {Nay(7')}, where Ny, is defined in Eq. (3).
if Ny (7szy) = O then
Execute 7, for 2ng periods and store nothing.
else
Execute 7, for ns periods and store nothing.

1 T sN:m sz T
Execute 7, for n, periods and store {f,(y)s, k}n y(Tszy ‘F'

end

end
end
for m € A; do

Define ﬂs(ﬂ-) = Z(m,y)eXx{l,Q...m} ny( )nény(ﬂ'sml)f Z
end

Select T, € argmin, ¢ 4 fis().
Construct A1 = {7 € Ag s.t. fis(m) < 11s(7s) + 2C5}.

nchy(sty)fh ( )

end

VT periods so that we have played the action sequence 7y . T /T T/ T1 * Tt 1)WT Then
use this action sequence to define
1 (n+1)VT t
Nyy(m) = 7 Y Im=a)I|y= > I(my =z) | . 3)
t=nvT+1 t/=max{1,t—m+1}

Intuitively, Ny, (7) is the fraction of times that the player (stochastically) observes the loss value
hz(y) when they repeatedly play the \/T—cyclic policy 7. In Lemma 2 in Appendix A, we show that
if m < /T, then as long as n > 1, the number ny(ﬂ') is well defined and independent of n, and
also independent of any action sequence that was played before we executed 7 for n + 1 periods. It
suffices to consider tallying bandit problems where m < /T (as we show in our proofs). Hence,
lines 11 and 12 in Algorithm 1 are well defined, because when we execute 7 for 2n, > 2 periods,
then in the latter n; > 1 periods we observe (stochastic instantiations of) the loss value h,(y) for a

total of 75N, (7)v/T times, and we have denoted these observations as {EE( )s, k}nsN””y moay)VT

Note that various steps in Algorithm 1, such as line 7, require knowledge of NV, (), but this can be
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computed offline when m is known. Indeed, the only steps of Algorithm 1 that are online (or incur
regret) are lines 9, 11 and 12. Let us now analyze the performance of Algorithm 1.

Theorem 1 For any (m, g, h)-tallying bandit problem and any input § € (0, 1), with probability
at least 1 — § the complete policy regret of Algorithm 1 (SE-TB) is upper bounded as

RL < 1200KmV/T <\/10g (2Kmlog(T)/8) + log, (\/T/(QKm))) .

The proof of Theorem 1 is deferred to Appendix A. This result guarantees that given any tallying
bandit problem, Algorithm 1 efficiently minimizes CPR, with a favorable dependency on m, K, T
Nevertheless, we acknowledge that our result has the following two limitations.

Knowledge of m. Algorithm 1 requires m as an input, which is unrealistic in practice. It is possi-
ble to modify Algorithm 1 to be adaptive to an unknown m, albeit at the expense of polynomially
worse (and not sharp) dependency on m, K. Our focus is on obtaining a sharp characterization of
the achievable CPR when m is known, and so we relegate discussion of this modification to Sec-
tion 6. Sharply characterizing the minimax CPR when m is unknown remains an important open
question.

Computational Efficiency. Algorithm 1 is computationally inefficient. We emphasize that our ex-
clusive focus is on statistical (rather than computational) efficiency, since our work is only a first
step. We believe this is a worthwhile endeavor, since attaining sublinear CPR is a non-trivial task
riddled with subtleties, even in settings that make much stronger assumptions than we do. For in-
stance, the improving (Heidari et al., 2016) and single peaked (Lindner et al., 2021) bandit settings
enforce m = T, require monotonicity and convexity conditions on {h },cx, and also require the
losses are observed deterministically. Even with these strong requirements, the best known CPR
guarantees are asymptotic bounds that may decay arbitrarily slowly, and their algorithms cannot
handle m < T'. Hence we believe that our effort to provide nearly optimal non-asymptotic bounds
on the CPR, in our realistic and practically motivated setting where m < 7" and losses are observed
stochastically, is worthwhile. Nevertheless, devising computationally efficient algorithms for the
tallying bandit remains an important future direction, and we believe this is a non-trivial task. In-
deed, even for the congested bandit (Awasthi et al., 2022), which is the tallying bandit with the
additional strong assumption that {h, },cx are increasing, existing algorithms are computationally
inefficient.

4.2. Lower Bound

It is reasonable to question whether the dependency of Algorithm 1 on m, K, T is optimal. Since
the tallying bandit is equivalent to SMAB when m = 1, a classical result (Slivkins, 2019) shows that
any tallying bandit algorithm suffers Q (x/ﬁ) expected CPR. However, the correct dependency
on m is unclear when m > 1, due to the highly structured nature of the tallying bandit. For instance,
the proof of Theorem 1 shows that any tallying bandit problem can be equivalently cast as a Markov
decision process (MDP), where it takes at most m timesteps to transition from any state to any other
state in this MDP. One may wonder whether we can utilize such structure to design a smarter algo-
rithm that exchanges the multiplicative dependence on m in the result of Theorem 1 for an additive

10
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dependence on m. Concretely, one may desire a bound that scales as O (poly(m, K)+ K VT )
The following result shows that this is impossible.

Theorem 2 There exists an (m, g, h)-tallying bandit problem and a numerical constant ¢ > 0, such
that the (expected) complete policy regret of any (possibly randomized) algorithm on this problem
is lower bounded as

E[Rfﬁ] zc-max{mK,\/m}.

The proof of Theorem 2 is deferred to Appendix B. This result demonstrates that Algorithm 1 is
nearly minimax optimal, and its suboptimality is bounded by O (\/ mK log (T, m, K )) A com-
ment on the proof technique of Theorem 2 is in order. Our proof reduces the tallying bandit setting
to that of best arm identification in SMAB problems (Audibert and Bubeck, 2010; Slivkins, 2019).
We construct a tallying bandit problem where minimizing CPR is at least as hard as identifying the
best arm in an sSMAB problem with ) (mK) arms. Indeed, when m = 1 then tallying bandit is
equivalent to sSMAB, and Theorem 2 recovers the classical lower bound on the expected regret suf-
fered by any algorithm designed for sMAB with K arms. Notably, a key component of our proof is
to non-trivially upper bound the cumulative loss of the optimal policy in our construction, to ensure
that we get a multiplicative (in lieu of additive) dependence on m in our lower bound.

5. Related Work

Policy Regret. The incompatibility of the traditional regret with an adaptive adversary was first
identified by Merhav et al. (2002), who studied the full information feedback model. The notion of
policy regret was formalized by the foundational work of Arora et al. (2012). They provide an algo-
rithm which efficiently minimizes constant action policy regret Rg?clonsl against generic m-memory
bounded adversaries. It is unclear how to apply this algorithm to our setting, since our focus is on
minimizing the CPR Rg,?. Arora et al. (2012) do also consider minimizing the policy regret Rg‘;l
when Cr 2 AXconst- For instance, when Cr is the set of all piecewise constant sequences with at most
s switches, they provide an algorithm whose policy regret satisfies REOTI < O (m(Ks)Y/3T2/3),
Our Counterexample 3 shows that this algorithm cannot minimize CPR in the tallying bandit setting,
since the optimal policy in Counterexample 3 has @)(T) switches. Cesa-Bianchi et al. (2013), Dekel
et al. (2014) and Arora et al. (2018) study the constant action policy regret, and do not discuss CPR.
The results of Mohri and Yang (2018) can be extended to yield policy regret guarantees relative to
rather large comparator classes, but do not provide CPR guarantees.

Reinforcement Learning (RL). Minimizing CPR is equivalent to the performance metric used in
RL, which is to maximize the total collected reward (Sutton and Barto, 2018). As we show (see
Lemma 1), any tallying bandit problem can be cast as an RL problem. However, RL methods typi-
cally scale with the cardinality of the state space (Azar et al., 2013, 2017; Jin et al., 2018). Hence,
applying off the shelf RL algorithms to solve tallying bandit problems would incur Q (K™) CPR.

Restless & Rested Bandits. In restless bandits, the reward of an arm evolves according to a
stochastic process, independently of the actions chosen by the player (Whittle, 1981; Garivier and
Moulines, 2011; Besbes et al., 2014). This is incompatible with tallying bandits. By contrast, tal-
lying bandits is a special case of rested bandits, which is a general non-stationary MAB framework

11
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where an arm’s reward changes when it is pulled. Tekin and Liu (2012) and Cortes et al. (2020)
both study rested bandits where an arm’s reward evolves according to a stochastic process, but
both consider notions of regret that are significantly weaker than the CPR. A different variant of
rested bandits is studied by Bouneffouf and Féraud (2016), who assume that the dynamics of how
the reward changes is known upto a constant factor, and hence their results are incomparable to ours.

Recharging, Recovering, Blocking, Delay-Dependent & Last Switch Dependent Bandits. This
line of work studies settings where an arm’s reward changes according to the number of timesteps
that have passed since the arm was last pulled (Kleinberg and Immorlica, 2018; Basu et al., 2019;
Pike-Burke and Grunewalder, 2019; Cella and Cesa-Bianchi, 2020; Laforgue et al., 2021). Such
settings typically cannot be cleanly classified as either rested or restless bandits, but are related to
both. The models in these works for how the reward evolves are different than our tallying structure,
where the reward of an arm instead depends on the number of times that arm was played.

Rotting Bandits. The rotting bandits setting (Heidari et al., 2016; Levine et al., 2017; Seznec et al.,
2019, 2020) is a special case of our tallying bandit formulation, and merits close comparison to our
work. This setting enforces m = T, and an arm’s reward is assumed to be a decreasing function
of the number of times that arm has been pulled. In our language, this means the {h, },cx func-
tions are increasing. This strong assumption enables these works to efficiently minimize CPR even
though m = T, although we note that algorithms for this setting cannot handle general m < 7T
By contrast, in our setting we make no assumptions on the structure of the functions {h; },cx, and
assuming m < 7' is necessary. Indeed, in our setting, when m is 2(T") then the result of Theorem 2
shows that any player suffers Q(T ) worst case CPR.

Improving & Single Peaked Bandits. The improving bandit (Heidari et al., 2016) and single
peaked bandit (Lindner et al., 2021) are both special cases of our tallying bandit setting, and deserve
special attention. In improving bandits, the reward of an arm is an increasing, concave function of
the number of times it has been pulled. The single peaked bandit generalizes this, so that the reward
function of an arm is initially increasing and concave, but may become decreasing at some point. In
our language, this means that the {h, },c functions are decreasing and convex, or decreasing and
convex and then possibly increasing after some point. Both settings enforce m = T', and algorithms
for these settings do not handle general m < T'. By contrast, since we make no assumptions on
the structure of the functions {/ }zc.x, our Theorem 2 shows that when m is €(T) then the worst
case CPR scales as Q(T) We remark that the CPR bounds in these works are asymptotic, whereas
we provide non-asymptotic guarantees. We also remark that these works require the losses to be
observed deterministically, and they only provide a heuristic to handle stochastic observations of
the loss.

Congested Bandits. In concurrent work, Awasthi et al. (2022) introduced the congested bandit,
which is a special case of the tallying bandit. Their formulation considers arbitrary m < T, and
the reward of an arm is a decreasing function of the number of times it has been pulled. Hence the
congested bandit is the tallying bandit with the additional assumption that the {h;},cx functions

are increasing. This additional assumption enables them to provide an O (\/ mKT ) CPR bound,
although we note that their algorithm is computationally inefficient.

12
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6. Discussion

In this paper, we studied conditions under which it is possible to efficiently minimize CPR in online
learning. To this end, it is necessary the restrict the adversary, and we considered several natural
restrictions on the adversary that have appeared in prior work. We then exposed a gap in our un-
derstanding of when it is possible to efficiently minimize CPR. To resolve this gap, we introduced
the tallying bandit setting, and formulated an algorithm whose CPR (after discarding logarithmic

factors) is w.h.p at most O (mK \/T) We also provided a lower bound of Q (\/ mK T) on the
expected CPR of any tallying bandit algorithm, demonstrating the near optimality of our method.

Our Algorithm 1 required as input the true value of m. In practice, this knowledge is unrealistic,
and one instead might only have an upper bound 7 on the true value of m. Let us describe a modi-
fied version of Algorithm 1 that can be used in this setting. Recall from the proof of Theorem 1 that
Algorithm 1 proceeds in epochs, and in each epoch s it stores a set A of policies whose (average)
loss is O (275T~1/4) greater than that of the optimal policy. Hence, for the setting with unknown
m, we can run m instantiations of Algorithm 1. After each epoch s, we identify the instantiation
that has the policy with the minimum estimated (average) loss, and denote this instantiation as .
We then discard those instantiations whose policies have (average) loss that is 2 (2_5 7Y 4) greater
than the (average) loss of the best policy stored by ms. With such an approach, we are guaranteed to
never discard the instantiation corresponding to the true m. And via the techniques used in the proof
of Theorem 1, we can show that if we do not discard an instantiation corresponding to m’ # m,
then playing policies stored by this instantiation does not incur large regret. This approach yields a

O (\/T ) upper bound on the CPR, at the expense of polynomial factors of m, K.

A number of open directions remain. A natural open question is resolving the gap between our
upper and lower bounds on the achievable CPR in the tallying bandit. Separately, although Algo-
rithm 1 is nearly statistically optimal, it is computationally inefficient. However, since the tallying
bandit is highly structured, it is possible that the computational efficiency of even our own Algo-
rithm 1 can be improved. For instance, can we design a data structure, which stores policies in a
manner that allows efficient elimination of suboptimal policies after each epoch? Devising compu-
tationally efficient algorithms for tallying bandits is an important direction for future work. Finally,
we view the tallying bandit as only a first step towards modeling interactive settings like recom-
mender systems. For example, consider the following generalization of tallying bandits, where the
loss of an action is a function of a weighted sum of the number of times the action has been played
in the past, where more recent plays are given more weight. This naturally corresponds to a model
of human memory, where more importance is placed on more recent events. Can we design efficient
algorithms for such settings?
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Appendix A. Analysis of Algorithm 1

In this section, we analyze the complete policy regret of Algorithm 1, and prove Theorem 1. Before
we formally prove Theorem 1, we first state below two key lemmas, that will be useful through-
out. The first lemma shows an equivalence between tallying bandit problems and Markov decision
processes (MDPs) (Sutton and Barto, 2018). The second lemma verifies that the N, (7) quantity
defined in Algorithm 1 is well defined. We additionally introduce new quantities p and 7* which
will be useful for our proofs. With this outline in mind, let us begin the analysis.

Lemma 1 Any (m, g, h)-tallying bandit problem can be equivalently expressed as a finite horizon
Markov decision process (MDP).

The proof of this Lemma 1 is given in Appendix A.9. For the sake of brevity, we have not stated
the explicit details of the reduction (for instance, the definition of state space or transition function
of the corresponding MDP) in the statement of this lemma. Nevertheless, these details are readily
found in the proof.

Recall that in Section 4.1, to facilitate the definition of Algorithm 1 we defined the quantity N, ()
via the following procedure. Execute 7 for n+ 1 periods so that we have played the action sequence
T2 e T/ T /Tt - W (g )T Then use this action sequence to define

1 (n+)VT t
ny(ﬂ') = T Z H(Trtzl‘)']l Y= Z H(?Tt/ :x)
t=nvVT+1 t/=max{1,t—m+1}

The next lemma shows that N, (7) is always well defined if 1 <n < VT —1and m < VT.

Lemma 2 Consider any (m, g, h)-tallying bandit problem where m < VT, and fix any /T-cyclic
policy 7, any x € X and anyy € {1,2...m}. When defined via the aforementioned procedure, the
quantity Ny, () is well defined for any 1 < n < VT — 1. Furthermore, Ny () is independent of
any action sequence that was played before w was executed for n + 1 periods.

The proof of this Lemma 2 is deferred to Appendix A.8. Now for each v/T-cyclic policy 7, we
define the quantity p(7) as follows

M(”T) = Z ny(ﬂ)hm<y)'

(z,y)eXx{1,2..m}

Via this definition and the result of Lemma 2, it is immediate that when m < /T, if we play an
arbitrary action sequence and then execute 7 for n + 1 periods, then the (expected) cumulative loss
experienced in the final period (i.e., the (n + 1)th period) is ()v/T. We use this notion of i to
define the policy 7* as
7 € arg min pu(m).
TEA;

Recall for this definition that A; as defined in Algorithm 1 is the set of all v/7-cyclic policies. With
these definitions in hand, we are now in a position to formally prove Theorem 1.
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A.l. Proof of Theorem 1

First, we note that if m > /T, then the statement of the theorem is trivially true since the complete
policy regret is always upper bounded by 7'. Hence, for the remainder of the proof it suffices to
assume that m < /7. For any policy 7, which is a length T deterministic sequence of actions, let
¢(m) denote the expected loss suffered at timestep ¢ while playing 7. Our next lemma shows that
for any tallying bandit problem, the loss suffered by the optimal policy (i.e., the policy in X7 that
experiences the minimum cumulative expected loss) can be well approximated by 7' (7*).

Lemma 3 Given any (m, g, h)-tallying bandit problem, let 7™* denote an optimal policy in X7 .
Then

T
Z ) < (m+ VT

The proof of Lemma 3 is deferred to Appendix A.7. Now let #° denote the loss experienced in epoch
s € {1,2...S} of Algorithm 1. The following lemma bounds the cumulative loss of Algorithm 1
relative to T'u (7).

Lemma 4 Assume that m < \/T. With probability at least 1 — 6, the total loss of Algorithm 1
relative to T'u(7*) can be upper bounded as

Zes Tu(r*) < KmVT <5log2 (Qf +1> +400\/log <W>>

The proof of this Lemma 4 is provided in Appendix A.2. With the results of Lemma 3 and Lemma 4
in hand, we now utilize them to prove Theorem 1 as follows. Note that the complete policy regret
Rg? of Algorithm 1 satisfies

S T
— ng . th(ﬂ_**)
T
_Zzs Tpu(*) + Tyl Z

< KmVT (5 logs <4\I/{Tm + 1) + 400\/10g (Mmg)gm)) +(m+1)VT

< 1200KmVT (\/log (2Kmlog(T)/d) + log, (ﬁ/(QKm))) .

This completes the proof of Theorem 1. |

A.2. Proof of Lemma 4

To facilitate the proof, we require the following critical lemma, which bounds the loss incurred by
Algorithm 1 in each epoch s € {1,2...S}. For the statement of the following lemma, note that
completing any epoch s € {1,2...S5} takes a total of T = 2n, Km+/T timesteps.
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Lemma 5 Assume that m < \/T. With probability at least 1 — 5, we have simultaneously for each
epoch s € {2,3...5} that the total loss relative to Tspu(7*) is bounded as

0 —Tsp(n*) < Km (ﬁ + SnSﬁCs_l) )

The proof of this Lemma 5 is provided in Appendix A.3. Observe that by the result of Lemma 5,
we are guaranteed with probability at least 1 — ¢ that

Mm

Zﬁs Tyl ™))

s:l

< AKmVT + Z (05 — Typ(*))

s=2

4)
S
< AKmVT + ZKm (\/T—i— 8n5\/TCS,1)
s=2

S
< 5SKmVT +8Km Z neVTCs 1.
s=2

Now substituting in the definitions

ne =95 and Co s — 32Km o <2Km5’> 64Km10 <2Km5’>
s s—1 — ns 1\/> g 6 ns\/> g 5

which were provided in Algorithm 1, into the final term on the RHS of Eq. (4) yields that

S S
64Km 2KmS
8sznsﬁos,lzsz<mgns s (2 )

2KmS
_ 1.5, 1.5 \/
=64K""m log < 5 ) E nsVIT

1
ngV 1T
2KmsS
15 1/4
= 64K 1g< 5 )T/E,ﬁ

2KmsS
_ 1.5 1.5 1/4 s/2
= 64K°m log<5>T/ ?22/

< 400K Pm15, [log (M(ﬁ)zﬂ/%s/?
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Finally, we recall the definition of S = log, ( VT | 1) to observe that

8szn8fcs 1 < 400K 5m5 [log (2KmS>T1/425/2
s=2
— 400K “5m log 2Km5 4 Km
1/4
< 400K 5m!5, [log (2Kg”5 > 1/4\Tﬁ ®)

= 400Km [log (QKgnS) VT

< 400Km\/10g <2Kml0g(T>) VT

1)
Combining Eq. (4) with Eq. (5) yields the result. |

A.3. Proof of Lemma 5

To facilitate the proof, we leverage the following critical lemma, which bounds the gap of the
average value p of policies in A versus u(7*).

Lemma 6 Assume that m < \/T. The event

m§:1 Nrea, {u(m) — p(7*) <4Cs1},
occurs with probability at least 1 — 0.

The proof of this Lemma 6 is provided in Appendix A.4. Let us now return to the main proof. For
ease in notation, let £%*¥ denote the total loss experienced in epoch s of Algorithm 1 while executing
the policy 74, for 2ng epochs. Hence we have ¢° = Z(m,y)eXX{l,Z..m} 5%y,

Note that within a single epoch s > 1, for each (z,y) € X x {1,2...m} we execute the policy
Tsxy fOT 2ng periods, where each period takes VT timesteps. Recall the fact that when m < /T,
if we play an arbitrary action sequence and then execute 7, for n + 1 periods for n > 1, then the
(expected) cumulative loss experienced in the final period (i.e., the (n + 1)th period) is (7, ) VT.
In particular, this fact implies that if we execute 7, for 2n periods, then the total loss experienced
£5%Y during these 2ng periods is upper bounded by

05 < i Taay )WT (205 — 1) + VT < 206 (7w )WT + VT.
Hence we can use Lemma 6 to upper bound

5% — 2 (7 )WWT < 2n5pu(msey )WT + VT — 2nu(n*)WT
= VT + 20 VT (1(Tszy) — (7))
< VT +8n,VTCs_1.
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This bound holds uniformly for each (z,y) € X x {1,2...m}, and hence we have that

0 = Tsp(n*) = Z (Eszy — 2n8,u(7r*)ﬁ> < Km (\/T—F Sns\/TC’s,l) .

(z,y)eXx{1,2..m}

This completes the proof. u

A.4. Proof of Lemma 6

To facilitate the proof, we require the following two critical helper results. The first result bounds the

error incurred when estimating z(7) via the stochastic realizations {{Ew (Y)s.k ZS_]Y“’ (My)ﬁ} .
o= (z,y)eXx{1,2...m}

The second result shows that while running Algorithm 1, which is based on successive elimination
of inferior policies over epochs s € {1,2... S}, at any epoch s we never eliminate 7* from our set
Ay of feasible policies.

Lemma 7 Assume that m < /T. Fixany s € {1,2... S}, and let B, denote the event that for all
w € Ag we simultaneously have that

s () — p(m)| < Cs.
Then B occurs with probability at least 1 — 0/ S.

Lemma 8 Assume that m < \/T . The event ﬂle Bg, where the event By is defined in Lemma 7,
implies the event that

™ e NS_ Ay and NM2_; {0 < fis(7*) — [is(7s) < 2Cs}.
The proofs of Lemma 7 and Lemma 8 are provided in Appendix A.5 and Appendix A.6 respectively.

Let us now return to the proof. By the result of Lemma 7 and a union bound, the event N3_; By
occurs with probability at least 1 — §. Furthermore, the result of Lemma 8 shows that the event
N5_, B, implies the event

™ e NS, A, (6)

So on the event ﬂleB s, note that for any s and any 7 € A4 we have

) — () 2 s () — p(x*) + Con
s Facr) — () + 30
D Baa(x) - ) + 30,
& ) — () 40,4

= 405—1;

where step (i) follows from Lemma 7, step (iz) follows from the definition of A and the fact that
m € Asg, step (iii) follows from the definition of 75— and Eq. (6), and step (iv) follows again from
Lemma 7 and Eq. (6). This completes the proof. |
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A.5. Proof of Lemma 7

For the proof of this lemma, it is useful to define the quantity C',, as

o 32 I ( 2KmS>
sty — 0 ’
VN Ny (g VT O\ 8

for each (s,z,y) € {1,2...5} x X x {1,2...m}. Fixany (x,y) € X x {1,2...m}. Note that
by Hoeffding’s bound (Hoeffding, 1963), we are guaranteed that the event

1 nsNzy(ﬂ-szy)\/TA/

hw - hz S S Csm 5 7
() Ny VT 2o (Y)sk y ()

occurs with probability at least 1 — §/(Km.S). A union bound then ensures that the above event
occurs simultaneously for all (z,y) € X x {1,2...m} with probability at least 1 — §/S. We now
claim that this (simultaneous) event is a subset of B, which is sufficient to complete the proof.

To establish the claim, note that on this event, we are guaranteed for any ™ € A, that

() — s (7))
ns Nay (Tsey)VT
— Z Noy(m) e (y) — Z Ny () ! JT Z P () s

(z,y)EXx{1,2..m} (z,)€Xx{1,2...m} s Nay (Tsay ) VT

1 Ns Nzy (ﬂ's:vy \/T

ol PRl N v, D DR

(z,y)eXx{1,2...m}

< Z ny(ﬂ')csacw
(z,y)eXx{1,2...m}

where the final step follows from the triangle inequality and Eq. (7). Continuing the above, we have
that

() — fis(m)] < > Nay(m)Cizy
(z,y)eXx{1,2..m}

=¢ P (M) el
nevT (zy)eX x{1,2...m} Nay(Tsay)

(4) 32 2KmS
< nsﬁ1°g< 5 ) 2 YNalm

(z,y)eXx{1,2...m}

(id)
< \/Kim\/ 32 log <2K6mS>

where step (i) follows from the fact that Ny, (7sz,) > Ny, () by its definition in Algorithm 1, and
step (i) follows from the fact that Ny () € [0,1], that 3°, e v 1.9, m} Nay(m) = 1 as well as
the Cauchy-Schwarz inequality. This establishes the claim and hence completes the proof. |
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A.6. Proof of Lemma 8

Assume that the event ﬂf,:lB s 1s true. On this event, we prove the lemma by induction on s. First
we demonstrate the base case of s = 1, which is that 7* € Ay and 0 < 3 (7*) — 1 (71) < 2C4.
Then for the inductive step we show that if the event 7* € Ag_; and 0 < fis_1(7%) — fis—1 (Ts—1) <
2C,_1 occurs, then we also have that the event

7 € Agand 0 < fis(7%) — f1s(7s) < 2C%,
is also true.

For the base case, note that by definition we are guaranteed 7* € A;. And by the definition of
71, we know that 0 < iy (7*) — 11(71). Furthermore, recalling the definition of the event Bj in
Lemma 7, on the event B we have that

fir(7*) — p(m*) < Crand p(7r) — fir (m1) < Cy.
Putting these equations together and using the fact that u(7*) < p(71) ensures that
fir(m%) = () < 204

This verifies the base case.

For the inductive step, assume that 7 € A;_1 and 0 < fig—1(7*) — fs—1(Ts—1) < 2C5_1 occurs.
Then the definition of A4 and the inductive hypothesis directly imply that 7 € A,. Hence, it is
true by definition of 7 that 0 < is(7*) — 115(7s). Then recalling the definition of the event B in
Lemma 7, on the event B, we have that

is(7%) — u(7*) < Cy and pu(7,) — fis(7y) < C.
Putting these equations together and using the fact that u(7*) < pu(7s) ensures that
fis(7%) — f1s(s) < 2C%.
This verifies the inductive step. As argued earlier, this is sufficient to complete the proof. |

A.7. Proof of Lemma 3

Note that since (7*) € [0, 1], the statement is trivial for m > +/T. Hence, assume for the remain-
der of the proof that m < V/T. There exists some k € {0,1... VT — 1} such that

(k+1)VT 1 I
Y. )< 7T > (™).
t=kvT+1 t=1

Define the v/T-cyclic policy 7 by letting 7; = WZ’\*/TH for all 1 <t < +/T. Note that via the MDP
characterization provided in Lemma 1, we can equivalently think of the tallying bandit problem as
some MDP that we denote M. The proof of Lemma 1 shows that regardless of the state we start at,

: : 3 *k *k *k :
either playing 7y, o . . . mp, or playing Tt TowTas T h/Tem leads to the same state in M.
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3 3 ** *k
From that state, either playing 1, Tm4-2 . . . 7, /7 OF playing 7rk VTami1 ThyTime2 " T VT

leads to the same sequence of states, and hence the same sequence of (expected) losses. Hence we
have shown that after a single first execution of 7, we can bound the loss as

VT (k+1)VT
dlp(m <m+ D (T <m+— Zet
t=1 t=kvT+1

Repeating this argument for /7 executions of 7, we have shown that

T (k+DVT
S l(m) SmVT +VT > fy(n* <mf+Z€t ) (8)
t=1 t=kvT+1

Now, we observe that Tu(m) < Zle (i (7) + /T, where we used the fact that when m < /T,
if we play an arbitrary action sequence and then execute 7 for n + 1 periods for n > 1, then the
(expected) cumulative loss experienced in the final period (i.e., the (n + 1)th period) is p(7)v/T.
Finally, we note that u(7*) < p(7) by definition, and so we have that

T
Tyu(r*) < Tl Z

which combined with Eq. (8) implies that

T
Z ) < (m+VT.

This completes the proof. u

A.8. Proof of Lemma 2

To prove this result, we leverage the MDP characterization of tallying bandits provided by Lemma 1.
Let M denote the MDP corresponding to the given (m, g, h)-tallying bandit problem. Note that by
the proof of Lemma 1, and by the assumption that m < /T, after executing 7 for n > 1 periods we
have arrived at the state (7, VTomal - Tp \/T) And since 7 is v/T-cyclic we are guaranteed that

(ﬂ-n\/T—m-i-l"'ﬂ-nﬁ):(W\/T—m-i-l"'ﬂ-\/f)'

So if we execute 7 for one more period (i.e., the (n + 1)th period) from this starting state, then
regardless of n we will observe an identical sequence of states, since the transition function of the
MDP M is deterministic. Hence, the quantity

(n+1)VT t
Z I[(ﬂ't = x) -1 Yy = Z ]I(7Tt/ = 1,') N
t=nv/T+1 t'=max{1,t—m+1}

used to define N, () is independent of n, ensuring that N, (7) is well defined. It remains to
establish the claim that IV, () is independent of the action sequence that was played before 7 was
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executed for n + 1 periods. Denote this prior action sequence as aq.; for any finite value of k. Note
that regardless of what a1, is, after we execute 7 for n periods we still arrive at the state

(ﬂ-nﬁ—m-‘rl"'ﬂ-nﬁ):(W\/T—m-i-l"'ﬂ-\/f)’

in the MDP M. Then if we execute 7 for one more period (i.e., the (n + 1)th period) from this
starting state, then regardless of ai., we will observe an identical sequence of states, since the
transition function of the MDP M is deterministic. This ensures that N, () is well defined. |

A.9. Proof of Lemma 1

Given an (m, g, h)-tallying bandit problem, for ease in notation let the (finite) action set X’ be
denoted as {1,2... K}. To define the MDP M, let its state space be ({0} U X')™ and let its action
space be X'. Let the initial state be the length m vector (0,0...0). For each state s = (s1,52...5m)
and action ¢, define the deterministic transition function 737 : ({0} U X)™ x X — ({0} U &)™ of
the MDP as

Tar(s,1) = (82,82« - Sm—1,Sm,1)-

Let the (finite) horizon of the MDP be the time horizon T of the tallying bandit problem. Finally,
define for each state s the (expected) reward function Ry : ({0} U X)™ — [0, 1] of the MDP as

Ryr(s) =1—hs,, (Z I(sy = sm)> :
t=1

It is immediate the taking actions in the tallying bandit problem corresponds to taking actions in the
state space of this MDP. |

Appendix B. Proof of Theorem 2

First note that as an immediate consequence of Proposition 1, we must have £ [R?] > mK/128.
So for the remainder of the proof, we focus on showing that E [R;p] > cvmKT for some nu-
merical constant ¢ > 0. Also note that due to the result of Proposition 1, we can assume for this
proof that m < T'/100, because the complete policy regret scales linearly with 7" in the regime that
m > T/100.

At a high level, our proof will proceed via a reduction to best arm identification in stochastic
multi armed bandit problems (Slivkins, 2019). Roughly speaking, we will show the existence of
an (m, g, h)-tallying bandit problem, such that minimizing the complete policy regret in this prob-
lem is at least as hard as identifying the best arm in a stochastic multi armed bandit problem with
O (mK) arms.

To this end, we first recall Lemma 1, which was originally stated at the beginning of Appendix A
and proved in Appendix A.9. We have restated it here for convenience since it shall be useful for

our proof of Proposition 1.

Lemma 1 Any (m, g, h)-tallying bandit problem can be equivalently expressed as a finite horizon
Markov decision process (MDP).
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Now, construct an (m, g, h)-tallying bandit problem using the following procedure, where we as-
sume that m is at least some sufficiently large universal constant. Sample (x*,y*) uniformly
at random from X x {23m/24,23m/24 + 1...m}. Define h,(y) = 1/2 for each (z,y) €
X x{1,2...m} such that (z,y) # (z*,y*). Also define h,+(y*) = 1/2 — e for some € € (0, 1) to
be specified later.

We now define the stochastic bandit feedback model for this tallying bandit problem as follows.
When the player plays action z, and this action = has been played a total of y times in the past m
timesteps (including the current timestep), then the player receives as feedback a Bernoulli random
variable with mean h,(y). It is immediate that this feedback model meets the criteria outlined in
Definition 4.

Let us now upper bound the cumulative loss incurred by the optimal policy in this tallying bandit
problem. To do so, consider the policy 7, which is a length T" sequence of actions, that we define as
follows. Choose some = € X such that x # x*. We define 7 to choose action z* for y* timesteps
and then choose action x for m — y* timesteps, and then repeat this length m sequence over and
over. Recalling the definition of a v/T-cyclic policy that was stated in Section 4.1, we can analo-
gously say that 7 is an m-cyclic policy, such that within each period of length m it plays «* for y*
times and then plays = for m — y* times.

By Lemma 1, there exists an MDP M that is equivalent to the constructed tallying bandit problem.
Recalling the characterization of this MDP M provided in the proof of Lemma 1, let us understand
the sequence of states in M that we arrive at when we follow 7. In the first m timesteps, 7 plays z*
for y* times and then plays = for m — y* times, and so we arrive at the state

(%, 2" .. .25z x.. . x)= () x ™V, )

Then for the next y* timesteps, 7 plays z* repeatedly. This leads to the progression of states given
by

()Y 7t x ™Y x (a%)

(:L,*)y*f2 % xmfy* % (33*)2

(x*>y*—3 > xm—y* % (x*)?)

(10)
(%) x ™Y x (a*)Y !
™Y X (a*)Y
Then for the next m — y* timesteps, it plays x, so that the state after these timesteps is
(%, 2" . ..a% zx.. . x) = () x ™V,

and we have arrived back at the state listed in Eq. (9).

Let us now use this insight to bound the expected loss incurred by following 7. Critically, for
every period of m timesteps after the very first period, Eq. (10) shows that we observe (stochastic
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instantiations of) the loss value hy+(y*) for exactly y* € {23m/24,23m/24 + 1...m} timesteps.
We hence upper bound the expected cumulative loss incurred by 7 as

Tom ot (e 4+ (1/2)m)T_Tm

JJIJ—m T —m
_l’_

(1/2)m + ((1/2 = e)y* + (1/2)(m — y7))

=— 2

ey — 5 +m/

23mT —m (11)
< — T/2
< —eoy + 7T/

23(T —m)
=—e———=+1/2

€ 21 +7T/

=T/2 — €237 /24 + 23me/24.

Let us now consider the performance of any algorithm which attempts to solve this tallying bandit
problem. Instead of the algorithm operating in the usual oracle model, where it might need m ac-
tions to arrive at a state that it deems beneficial, let us strengthen the algorithm by equipping it with
a generative model. Concretely, we strengthen the algorithm so that at any timestep, it can query
any state in M and receive a stochastic instantiation of the h,(y) loss value corresponding to that
state. Given this generative model, it is immediate that an algorithm that is attempting to minimize
its cumulative loss (or equivalently, minimize its complete policy regret), is attempting to maximize
the number of times it queries states whose loss value is hy« (y*).

Hence, we can interpret this algorithm as running best arm identification on a classical stochastic
multi armed bandit problem with mK/24 arms. Note that the number of arms in this stochastic
multi armed bandit problem is m K /24, since (z*, y*) was sampled uniformly at random from a set
of cardinality mK/24. The remainder of the argument closely follows that of Slivkins (Slivkins,
2019). So pick € = /em K /T, for some numerical constant ¢ > 0 whose precise value can be found
in the proofs of Corollary 2.9 and Theorem 2.10 of Slivkins (Slivkins, 2019). These two results show
that for each timestep less than or equal to 7', with probability at least 1/12 the algorithm does not
select a state whose loss value is h,« (y*). In particular, this means that the expected cumulative loss
of this algorithm is at least

(1/12)T/2 + (11/12)T(1/2 — €) = T/24 + 11T /24 — 11eT/12 = T/2 — 11T/12. (12)

Putting together Eq. (11) and Eq. (12), we hence have that the expected complete policy regret of
this algorithm is lower bounded as

E [RE] > T/2 — 11eT/12 — (T/2 — €23T /24 + 23me/24)
= —11€T/12 + €23T' /24 — 23me/24
= €eT/24 — 23me/24
> eVmKT,

where in the final step we used our assumption that m < 7'/100, substituted in the definition of
€ = /cmK /T and redefined the value of the numerical constant c. This completes the proof. W
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Appendix C. Proof of Proposition 1

First, we recall Lemma 1, which was originally stated at the beginning of Appendix A and proved
in Appendix A.9. We have restated it here for convenience since it shall be useful for our proof of
Proposition 1.

Lemma 1 Any (m, g, h)-tallying bandit problem can be equivalently expressed as a finite horizon
Markov decision process (MDP).

We now formally define the algorithm ALGge: below in Algorithm 2. Subsequently, we prove the
upper bound in Proposition 1, and then we prove the lower bound in Proposition 1.

Algorithm 2: ALGge,
Inputs: memory capacity m, time horizon T'
for x € X do
fory € {1,2...m} do
Choose action x.
Observe and store h,(y).
end
end
Plan (offline) an optimal policy 7 = {7, }._ . 41 to play for remaining 7' — m K timesteps.

Choose actions according to 7 for remaining 7" — m K timesteps.

C.1. Proof of Upper Bound in Proposition 1

First note that the offline planning step in Algorithm 2 is statistically (although perhaps not com-
putationally) feasible, since the player has full information about the loss functions once it stores
ha(y) for each (z,y) € X x {1,2...m}.

Let 7** denote the optimal policy for the problem, so that 7** € X7 is a length T sequence of
actions such that following this sequence achieves the minimum loss. Let ¢;(7**) denote the loss
incurred at the tth timestep while playing the action sequence {77*}/_;. Let /() denote the total
loss incurred by the final step of Algorithm 2 which starts playing 7 at timestep mK + 1.

To complete the proof, we will leverage the MDP characterization of tallying bandit problems that
was established in the proof of Lemma 1. Let M denote the equivalent MDP for this tallying bandit
problem. Observe that 7 is the optimal policy for the remaining 7' — m K timesteps assuming that 7
is initialized at the initial state s = (K, K ... K) in this MDP M. Also note that playing the action
sequence {ﬂf*}f:m 41 from the state s leads to a cumulative loss that is upper bounded by

m + Z Ly (),

t=m(K+1)+1

which follows because regardless of the initial state, we arrive at state s = (7%, 1, T o - - - 71;‘7;‘( K Jrl))

m(K+1)

/
t—mi 41+ From state s, the losses we ex-

in M after playing the length m action sequence {m}*}
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perience when playing {ﬂz**}tT:m( K41)41 At each timestep ¢ > m(K + 1) + 1 are exactly £;(7**).
The optimality of 7 hence implies that

T
(@ <m+ > L@ (13)

t=m(K+1)+1

Hence, by naively upper bounding the loss incurred in the first m K timesteps, the complete policy
regret of Algorithm 2 is upper bounded via Eq. (13) as

T
REY <mK +((7) — Z Ly ()

t=mK+1
T T

<mK+m+ Y 4w = > L(m)

t=m(K+1)+1 t=mK+1

m(K+1)
=mK +m — Z Ly ()

t=mK+1
<m(K+1).

This verifies the upper bound in Proposition 1. |

C.2. Proof of Lower Bound in Proposition 1

Construct an (m, g, h)-tallying bandit problem via the following procedure. Sample an action x*
uniformly at random from &', and keep its identity hidden from the user. Define the functions

{hx}xeX as

ha () = {1 Ly <m o h, = 1ifz £ 2%,
Oify=m

It is immediate that the optimal policy always plays the action x*, and its cumulative loss is pre-
cisely m — 1. Meanwhile, to obtain zero loss at any timestep, the player must identify x*. Note that
to identify whether a certain action x equals z*, the player must play x for m consecutive times, in
order to receive the feedback h,(m). Since there are K actions, and identifying whether an action
is the correct one requires m queries, a standard counting argument (Du et al., 2020) reveals that
(in expectation over a possibly randomized strategy) the player makes at least m K /64 queries be-
fore observing h.+(m). Hence, the (expected) complete policy regret of the (possibly randomized)
player is lower bounded as

E [RY] = mK/64 — (m — 1) > mK /128,

where we assume that K is larger than some numerical constant. This verifies the lower bound in
Proposition 1. u
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