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Abstract
Consider the following optimization problem: Given nˆnmatricesA and Λ, maximize xA,UΛU˚y

where U varies over the unitary group Upnq. This problem seeks to approximate A by a matrix
whose spectrum is the same as Λ and, by setting Λ to be appropriate diagonal matrices, one can
recover matrix approximation problems such as PCA and rank-k approximation. We study the
problem of designing differentially private algorithms for this optimization problem in settings
where the matrix A is constructed using users’ private data. We give efficient and private algo-
rithms that come with upper and lower bounds on the approximation error. Our results unify and
improve upon several prior works on private matrix approximation problems. They rely on exten-
sions of packing/covering number bounds for Grassmannians to unitary orbits which should be of
independent interest.
Keywords: Unitary orbits, differential privacy, packing number, PCA, rank-k approximation

1. Introduction

In machine learning and statistical data analysis, a widely used technique is to represent data as a
matrix and perform computations on the covariance matrix to extract statistical information from
data. For instance, consider the setting with n users and where one represents the features of each
user by a vector xi P Rd, giving rise to the d ˆ d covariance matrix M “

řn
i“1 xix

J
i . In many ap-

plications, approximations to such matrices are sought to reduce the space/time required to perform
computations or, to replace them by matrices with a specified spectrum (Sarwar et al., 2000; Paterek,
2007; Koren et al., 2009; Beutel et al., 2015). An example of the first kind is the rank-k approxima-
tion problem where one is given a positive integer k and the goal is to find a rank-k matrix H which
is “close” to M . An example of the latter class of problems is the rank-k PCA problem where one
is given a positive integer k and the goal is to output the matrix H corresponding to the projection
onto the subspace spanned by the top k eigenvectors of M . Closeness is usually measured using the
spectral or Frobenius norm ofM ´H . All of these problems are extensively studied and algorithms
for these problems have been well studied and deployed; see Blum et al. (2020).

Since such matrix approximation problems are often applied to matrices arising from user data
(i.e. each user contributes one vector xi to the sum above), an important concern is to protect the
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privacy of the users. Even without fixing a specific notion of privacy, traditional algorithms for these
problems can leak information of users. For instance, suppose we know that a user vector x is part
of exactly one of the two covariance matrices M and M 1, but we cannot access the data matrices
directly and can only obtain the information of the data matrices using PCA. If we apply a traditional
algorithm for rank-k PCA ontoM andM 1, we obtain two projection matricesH andH 1 spanned by
the top k eigenvectors of M and M 1, respectively. Then, if x is in the subspace of H but not in the
subspace of H 1, we know for sure that x is part of M but not of M 1 – leading to a breach of privacy
of the data vector x. Important examples of real-world privacy breaches in settings of this nature
include the Netflix prize problem and (Bennett and Lanning, 2007) and recommendation systems of
Amazon and Hunch (Calandrino et al., 2011). It is thus important to design private algorithms for
fundamental matrix-approximation problems.

The notion of differential privacy has arisen as an important formalization of what it means to
protect privacy of individuals in a dataset (Dwork, 2006). We say that two Hermitian PSD matrices
M and M 1 are neighbors if each matrix is obtained from the other by replacing one user’s vector by
another user’s vector. In other words, M and M 1 are neighbors if and only if there exists x, y P Cd

such that }x}2, }y}2 ď 1 and M 1 “ M ´ xx˚ ` yy˚. We can now define differentially private
computations on matrices.

Definition 1.1 (Differential Privacy) For a given ε ě 0 and δ ě 0, a randomized mechanism M
is said to be pε, δq-differentially private if for any two neighboring matrices M and M 1 and any
measurable set of possible output S, it holds that

PrMpMq P Ss ď exppεq ¨ PrMpM 1q P Ss ` δ.

When δ “ 0, the mechanism is said to be ε-differentially private.

There have been multiple works that give differentially private algorithms for matrix approximation
problems, including rank-k approximation (Kapralov and Talwar, 2013; Upadhyay, 2018; Amin
et al., 2019) and rank-k PCA (Chaudhuri et al., 2013; Dwork et al., 2014; Leake et al., 2021).
Roughly, these algorithms can be divided into two categories: Those satisfying pure differential
privacy (ε-differential privacy) (Chaudhuri et al., 2013; Kapralov and Talwar, 2013; Amin et al.,
2019) and those satisfying pε, δq-differential privacy with a δ ą 0 (Chaudhuri et al., 2013; Dwork
et al., 2014; Upadhyay, 2018). Pure differential privacy provides better privacy protection and we
focus on pure differential privacy in this paper.

All the algorithms mentioned above that come with pure differential privacy guarantees utilize
the exponential mechanism (McSherry and Talwar, 2007) (see Theorem B.3). This mechanism
involves sampling from an exponential distribution which, in turn, depends on the utility function
chosen. Among these algorithms, one of the algorithms by Chaudhuri et al. (2013) (PPCA) provides
a near-optimal algorithm for PCA under pure differential privacy. However, the error upper and
lower bounds are only proved for the first principal component (the top eigenvector). In addition,
their algorithm satisfying pure differential privacy (PPCA) is implemented with a Gibbs sampler
which is not shown to run in polynomial time.

Kapralov and Talwar (2013) provide two different algorithms under pure differential privacy for
rank-1 approximation and rank-k approximation. They also provides error upper and lower bounds
for both problems. Their rank-1 approximation relies on an efficient way to sample from a unit
vector using the exponential mechanism. The algorithm outputs the sampled vector as the estimation
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of the first eigenvector of the input matrix. The rank-k approximation samples top k eigenvectors
iteratively. The error bound is worse compared to the rank-1 case and there is a significant gap from
the lower bound proved in the paper.

Amin et al. (2019) provide a differentially private algorithm for the version of rank-k approx-
imation problem when k “ d (covariance matrix estimation problem). This problem is trivial
without a privacy requirement: one can set the output H as the input covariance matrix M . In the
differentially private case, Amin et al. (2019) give an algorithm that samples eigenvectors iteratively
using an exponential mechanism. It uses a different error measure compared to Kapralov and Talwar
(2013) and, hence, the error bounds cannot be compared directly. However, the algorithm of Amin
et al. (2019) only applies to the covariance matrix estimation problem which is a special case of the
rank-k approximation problem.

2. Our Work

2.1. Unitary Orbit Optimization

We first present a generalized problem that captures the matrix approximation problems mentioned
above. The problem is a linear optimization problem over an orbit of the unitary group. Recall that
a matrix U P Cdˆd is said to be unitary if UU˚ “ I . The set of unitary matrices forms a group
under matrix multiplication and is denoted by Updq. Updq is also a non-convex manifold. For a
given d ˆ d Hermitian matrix H , Updq acts on it by conjugation as follows: H ÞÑ UHU˚ for a
unitary matrix U . Note that H has the same eigenvalues as UHU˚ for any unitary matrix U . Thus,
the set of matrices obtainable from H under this action have the same set of eigenvalues. Given a
diagonal matrix Λ :“ diag pλ1, . . . , λdq, we denote its unitary orbit: OΛ :“ tUΛU˚ : U P Updqu.

Problem 2.1 (Unitary orbit optimization) Given a Hermitian matrixM P Cdˆd with eigenvalues
γ1 ě ¨ ¨ ¨ ě γd and a list of eigenvalues λ1 ě ¨ ¨ ¨ ě λd, the goal is to find a Hermitian matrix
H P OΛ with Λ :“ diag pλ1, . . . , λdq P Cdˆd that maximizes xM,Hy :“ TrpM˚Hq.

Since UΛU˚ has the same eigenvalues as Λ, this problem asks to find the “closest” matrix to a
given matrix M , with eigenvalues identical to those of Λ. This is a well-studied problem and the
Schur-Horn Theorem implies that the optimal solution to this problem is the matrix H “ UΛU˚

where U is a unitary matrix whose columns are the eigenvectors of M , attaining the optimal value
řd

i“1 λiγi (Schur, 1923; Horn, 1954).
Rank-k PCA, rank-k approximation, and covariance matrix estimation of a given covariance

matrix M can be reduced to Problem 2.1 by a careful choice of λi’s. The rank-k PCA problem is
obtained by setting λ1 “ ¨ ¨ ¨ “ λk “ 1 and λk`1 “ ¨ ¨ ¨ “ λd “ 0. The rank-k approximation
problem is obtained by setting λi equal to the i-th largest eigenvalue of M for 1 ď i ď k, and to
0 for i ą k. Finally, the covariance matrix estimation problem is obtained by setting λi equal to
the i-th largest eigenvalue of M for all i “ 1, 2, . . . , d. In the rank-k approximation and covariance
estimation problems, we consider both the setting where the eigenvalues λ1, . . . , λk are given as
prior “non-private” information, as well as the more challenging setting when λ1, . . . , λk are private.

2.2. Upper Bound Results

Our first result is an ε-differentially private mechanism for Problem 2.1 when the matrix Λ is non-
private (as in the case of rank-k PCA). Our algorithm (Algorithm 1) utilizes the exponential mech-
anism (McSherry and Talwar, 2007) and samples H from OΛ from a density that is close in infinity
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distance to expp ε
λ1

xM,Hyq. However, to do this, we need a unitarily invariant measure µΛ on OΛ.
Such a measure can be derived from the Haar measure on Updq; see Leake and Vishnoi (2021).
Note that while Problem 2.1 makes sense for general Hermitian M , in our results we consider the
case when M is Hermitian and positive semidefinite (PSD) as in the case of a covariance matrix.

Theorem 2.2 (Differentially private unitary orbit optimization) For any ε P p0, 1q, there is a
randomized ε-differentially private algorithm (Algorithm 1) such that given a dˆ d PSD Hermitian
matrix M P Cdˆd with eigenvalues γ1 ě γ2 ě ¨ ¨ ¨ ě γd ě 0, the maximum rank of the output
matrix k P rds, and a list of top k nonnegative eigenvalues of the output matrix λ1 ě λ2 ě ¨ ¨ ¨ ě

λk ě 0, outputs a dˆd PSD Herimitian matrixH P Cdˆd with eigenvalues λ1, λ2, . . . , λk, 0, . . . , 0,
where there are d ´ k 0’s. Moreover, for any β P p0, 1q, with probability at least 1 ´ β, we have
xM,Hy ě

řk
i“1 γiλi ´ Õ

´

dkλ1
ε

¯

, where Õ hides logarithmic factors of 1
β and TrpMq. The

number of arithmetic operations required by this algorithm is polynomial in log 1
ε , λ1, γ1 ´ γd, and

the number of bits representing λ “ pλ1, λ2, . . . , λkq and γ “ pγ1, γ2, . . . , γdq.

This theorem is a generalization of the result in Leake et al. (2021) which proved such a theorem
for the special case of rank-k PCA (when the orbit eigenvalues are λ1 “ ¨ ¨ ¨ “ λk “ 1 and
λk`1 “ ¨ ¨ ¨ “ λd “ 0). Our algorithm leverages efficient algorithms to sample approximately
from such exponential densities on unitary orbits by Leake et al. (2021); Mangoubi and Vishnoi
(2021) that provide guarantees on the closeness of the target distribution and the actual distribution
in infinity distance.1 Note that the error bound in Leake et al. (2021) improves on Kapralov and
Talwar (2013) but is weaker than in Theorem 2.2 since Theorem 2.2 holds with high probability
while Leake et al. (2021) only holds in expectation. The proof of Theorem 2.2 appears in Appendix
C and uses a covering number bound for the orbit OΛ (Lemma C.3) that generalizes the upper
covering bounds for the Grassmannian (Szarek, 1982).

Our next result considers the setting of Problem 2.1 when Λ is the spectrum of M : λi “ γi for
1 ď i ď k and λi “ 0 for i ą k (as in the rank-k covariance matrix approximation problem). In
this case, Λ is also private and Algorithm 1 does not apply as such. However, we show that adding
Laplace noise to λis, sorting them, and then using Algorithm 1 suffices; see Algorithm 2.

Theorem 2.3 (Differentially private rank-k approximation) Given a PSD Hermitian input ma-
trix M P Hd

`, a k P rds, and an ε ą 0. Let the eigenvalues of M be λ1 ě ¨ ¨ ¨ ě λd ě 0. There
exists a randomized ε-differentially private algorithm (Algorithm 2), which outputs a rank-k matrix
H P Hd

` and a list of estimated eigenvalues λ̃1, . . . , λ̃k. For any β P p0, 1q, with probability at least

1 ´ β, for all i P rks, we have |λ̃i ´ λi| ď O
´

1
ε log

1
β

¯

, and

}M ´H}2F ď

d
ÿ

ℓ“k`1

λ2ℓ ` Õ

ˆ

k

ε2
`
dk

ε

ˆ

λ1 `
1

ε

˙˙

,

where Õ hides logarithmic factors of 1
β and

řk
ℓ“1 λℓ. The number of arithmetic operations re-

quired by this algorithm is polynomial in log 1
ε , λ1, and the number of bits representing λ “

pλ1, λ2, . . . , λdq.

1. For two densities ν and π, the infinity distance is d8pν, πq :“ supθ | log νpθq

πpθq
|.
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The proof of Theorem 2.3 is an extension of the proof of Theorem 2.2 and appears in Appendix D.
Since the (full-rank) covariance matrix estimation problem is a special case of the rank-k approxi-
mation problem (when we set k “ d), the above result immediately applies in this case. Theorem
2.3 improves upon the bound in (Amin et al., 2019): Roughly, when the covariance matrix has its
largest eigenvalue within a constant factor of its middle eigenvalue λ1 “ Opλ k

2
q, our bound of

Õpdkε pλ1 ` 1
ε qq is Opdq better than the bound Ω̃pkd

2

ε q of (Amin et al., 2019). This includes the set-
ting when the input matrix M is a random sample covariance matrix from the Wishart distribution
Wishart (1928) (that is M “ 1

mX
JX , where X is a dˆm matrix with i.i.d. standard Gaussian en-

tries), as such a matrix has, with high probability, λ1 “ Opλ k
2

q for anym, d, where k “ minpm, dq.
We discuss these examples in detail in Appendix A.

Note that in Theorem 2.3 we do not lose utility due to privatization of the eigenvalues whenever
λ1 ě Ωp1ε q, which is often the case in practice. In this case the utility bound Õpdkλ1

ε q in Theorem
2.2 (where we assume the eigenvalues are “public”, and do not have an eigenvalue privatization step)
is the same as the utility bound Õpdkε pλ1 ` 1

ε qq in Theorem 2.3 (where we do privatize eigenvalues).

2.3. Lower Bound Results

We give a lower bound for an ε-differentially private algorithm in the case where the eigenvalues
γ1, . . . , γd of the input matrix are equal to the eigenvalues λ1, . . . , λd of the output matrix. Note
that this lower bound holds even when the eigenvalues of the input matrix are given to the algorithm
as prior non-private information.

Theorem 2.4 (Error lower bound) Suppose that λ1 ě ¨ ¨ ¨ ě λd ě 0 and ε ą 0. Then for any
ε-differentially private algorithm A which takes as input a Hermitian matrix and outputs a rank-k
Hermitian matrix with eigenvalues λ1, . . . , λk, there exists a d ˆ d PSD Hermitian matrix M with
eigenvalues γi “ λi, i P rds, such that, with probability at least 1

2 , the output H :“ ApMq of the
algorithm satisfies

}M ´H}2F ě Ω

˜

d
ÿ

ℓ“k`1

λ2ℓ `
d

maxpλ1
?
ε,

?
dq2

max
1ďiď d

2

iˆ pλi ´ λd´i`1q2

¸

. (1)

Note that the r.h.s. of our lower bound is never larger than Ωp
řd

ℓ“1 λ
2
ℓ q; this is true for any error

lower bound since the diameter D}¨}F
pOΛq of the unitary orbit is D}¨}F

pOΛq :“ supM,HPOΛ
}M ´

H}F “ Op

b

řd
ℓ“1 λ

2
ℓ q. The proof of Theorem 2.4 is given in Appendix F. The proof of Theorem

2.4 relies on a novel packing number lower bound for the unitary orbit OΛ (Theorem 2.7). As a first
attempt we show a packing number bound for the entire unitary orbit (Inequality 3). Unfortunately
the resulting utility error lower bound (Inequality 11 in the proof overview) is (roughly) proportional
to e´ 1

d
D}¨}F

pOΛq2 , which is exponentially small in the eigenvalues λ1, . . . , λd. To achieve an error
bound polynomial in the λ’s, we instead show a packing bound on a ball of radius ω inside the orbit,
where ω is carefully chosen to ensure that the error bound is polynomial in λ1, . . . , λd.

Next, we give a corollary of Theorem 2.4, which provides a lower bound for the rank-k approx-
imation problem (which includes the covariance matrix estimation problem as a special case).

Corollary 2.5 (Lower bound for covariance estimation) Suppose that λ1 ě ¨ ¨ ¨ ě λd ě 0 and
ε ą 0. Then for any ε-differentially private algorithm A which takes as input a Hermitian matrix
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M and outputs a rank-k Hermitian matrix H “ ApMq, there exists a dˆ d PSD Hermitian matrix
M with eigenvalues λi, i P rds, such that, with probability at least 1

2 , the output H :“ ApMq of the
algorithm satisfies

}M ´H}2F ě Ω

˜

d
ÿ

ℓ“k`1

λ2ℓ `
d

maxpλ1
?
ε,

?
dq2

max
1ďiď d

2

iˆ pλi ´ λd´i`1q2

¸

.

The proof of Corollary 2.5 is given in Appendix F. Note that, unlike in Theorem 2.4, the output
matrix in Corollary 2.5 is allowed to be any matrix, and need not have the same eigenvalues as the
input matrix. To verify that the lower bounds in Theorem 2.4 and Corollary 2.5 are indeed lower
than the upper bounds in Theorems 2.2 and 2.3, we observe that when the input matrix is of any
rank 1 ď k ď d, max1ďiďd i ˆ pλi ´ λd´i`1q2 ď k ˆ λ21. Thus, the r.h.s. of the lower bound in
Theorem 2.4 and Corollary 2.5 is at most dk

ε , up to a constant factor. On the other hand the upper
bounds in Theorems 2.2 and 2.3 are each at least as large as dk

ε pλ1 ` 1
ε q, which is greater than dk

ε .
When the input matrix is rank-k, and λ k

4
´ λ 3k

4
“ Ωpλ1q, Corollary 2.5 implies that, with

probability at least 1
2 , }M ´ ApMq}2F ě dk

ε if λ1 ě Ωp
?
d
ε q and }M ´ ApMq}2F ě kλ21 if λ1 ď

Ωp
?
d
ε q. Thus, our lower bound matches our upper bound from Theorem 2.3 up to a factor of λ1

ε if

λ1 ě Ωp
?
d
ε q and a factor of d

λ1ε
otherwise. This includes the setting when the input matrix M is

a random sample covariance matrix from the Wishart distribution Wishart (1928), as such a matrix
has, with high probability, λ1 “ Opλ k

2
q and λ k

4
´λ 3k

4
“ Ωpλ1q for anym, d, where k “ minpm, dq.

The only previous lower bound we are aware of for the problem of (pure) differentially private
rank-k covariance matrix estimation is from Kapralov and Talwar (2013). Roughly, their result says
that if, for any ω ą 0 and λ1 ą 0, we have λ1 ą 1

εkpd ´ kq logp 1
ω q, then, for any ε-differentially

private algorithm A, there exists a matrix M with top eigenvalue λ1, such that the error (measured
in the spectral norm) has a lower bound of }M ´ ApMq}2 ě λk`1 ` δλ1 with positive probability,
where λk`1 is the k ` 1’st eigenvalue of the matrix M guaranteed by their result. Since only a
condition on the top eigenvalue λ1 is specified in their result, to show their result it is sufficient to
produce an input matrix M satisfying their lower bound with λk`1 “ 0, that is, an input matrix of
rank k, and this is what they show in their proof. Solving for the value of ω which maximizes their

lower bound, one gets that their lower bound implies }M ´ ApMq}2 ´ λk`1 ě Ωpe
´

λ1ε
kpd´kqλ1q.

While our lower bound is stated in terms of Frobenius norm, to see what our results give for
the spectral norm error, we can use the fact that the Frobenius norm distance between two rank-
k projection matrices is at most Op

?
kq times the spectral norm distance to obtain a spectral norm

bound. In the case where the input matrix is rank-k, our result implies a error bound of }M´H}2 ě

Ωpdε q if, e.g., λ1ε ą Ωp
?
dq. Thus, our lower bound is larger by a factor of roughly d

ελ1
e

λ1ε
kpd´kq .

For the general unitary orbit approximation problem, Theorem 2.4 implies the following utility
lower bound on the Frobenius norm utility:

Corollary 2.6 (Lower bound for general γ and λ) Suppose that γ1 ě ¨ ¨ ¨ ě γd ě 0, and λ1 ě

¨ ¨ ¨ ě λd ě 0, and ε ą 0. Then for any ε-differentially private algorithm A which takes as input a
Hermitian matrix and outputs a rank-k Hermitian matrix with eigenvalues λ1, . . . , λk, there exists
a d ˆ d PSD Hermitian matrix M with eigenvalues γi, i P rds, such that, with probability at least
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1
2 , the output H :“ ApMq of the algorithm satisfies

}M ´H}2F ě Ω

˜

d
ÿ

ℓ“k`1

γ2ℓ `
d

maxpγ1
?
ε,

?
dq2

max
1ďiď d

2

iˆ pγi ´ γd´i`1q2

¸

.

The proof of Corollary 2.6 is given in Appendix F. Corollary 2.6 says that, given any γ1 ě ¨ ¨ ¨ ě

γd ě 0 and any λ1 ě ¨ ¨ ¨ ě λd ě 0, the same lower utility bound given in Theorem 2.4 holds
(with γi taking the place of λi on the r.h.s. of the inequality) even if the eigenvalues λi of the output
matrix are not equal to γi.

2.4. Packing Number Bounds for Unitary Orbits

As our main technical tool for proving the lower bounds on the error in Theorem 2.4 and Corollary
2.5, we will show packing number bounds for the unitary orbit. For any set S in a normed vector
space with norm ~ ¨ ~ and any ζ ą 0, we define a ζ-packing of the set S with respect to ~ ¨ ~ to be
any collection of points tz1, . . . , zJu Ď S, where J P N, such that ~zs ´ zt~ ě ζ for any s, t P rJs.
We define the packing number P pS,~ ¨ ~, ζq to be the supremum of the number of points in any
ζ-packing of S. We also denote by BpX, rq :“ tZ P Cdˆd : ~Z ´X~ ď ru a ball of radius r with
centerX with respect to the norm ~¨~. We show the following lower bound on the packing number
of any unitary orbit OΛ with respect to the Frobenius norm } ¨ }F , and also provide a bound on the
packing number of any ball B X OΛ which is a subset of the unitary orbit. Since the ζ-packing
and ζ-covering numbers of any set are equal up to a factor of 2 in ζ (see equation 4), our packing
number lower bound also implies a lower bound on the covering number of the unitary orbit.

Theorem 2.7 (Packing number lower bound for unitary orbits) There exist universal constants
C ą c ą 0 such that, for any Λ “ diagpλ1, . . . , λdq, and any ω, ζ ą 0, and any X P OΛ,

logP pBpX,ωq X OΛ, } ¨ }F , ζq

ě max
1ďiăjďd

2iˆ pd´ j ` 1q ˆ log

ˆ

minpω, λ1
?
i, λ1

?
d´ j ` 1q ˆ pλi ´ λjq

2Cλ1ζ

˙

. (2)

Moreover, we get the following bound for the packing number of the entire unitary orbit OΛ:

logP pOΛ,} ¨ }F , ζq

ě max
1ďiăjďd

2iˆ pd´ j ` 1q ˆ log

ˆ

cminp
?
i,

?
d´ j ` 1q ˆ pλi ´ λjq

ζ

˙

. (3)

The proof of Theorem 2.7 is given in Appendix E. The bound in Theorem 2.7 depends on the gaps
λi ´ λj between the eigenvalues of Λ, and is largest when there is a large gap between eigenvalues
λi ´ λj such that both i and d´ j are large. A special case of the unitary orbits is the Grasmannian
manifold Gd,k for any k ď d, which is the set of k-dimensional subspaces in a d-dimensional vector
space. Identifying each subspace V P Gd,k with its projection matrix, the Grassmanian Gd,k has a
one-to-one correspondence with the unitary orbit λ1 “ ¨ ¨ ¨ “ λk “ 1 and λk`1 “ ¨ ¨ ¨ “ λd “ 0,
and any norm on the unitary orbit induces a norm on the Grassmannian. Theorem 2.7 generalizes
the covering/packing number lower bounds for the (complex) Grassmannian of Szarek (1982, 1998)
(restated as Lemma E.1 in the Appendix; see also e.g. Pajor (1998) and Kapralov and Talwar (2013)
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for different proofs of the same result), to a lower bound on the covering/packing number of any
unitary orbit OΛ. Namely, in the special case where λ1 “ ¨ ¨ ¨ “ λk “ 1 and λk`1 “ ¨ ¨ ¨ “

λd “ 0, the r.h.s. of Theorem 2.7 is just 2d ˆ pd ´ kq logp
cD}¨}F

pGd, kq

ζ q, since the diameter of the
Grassmannian is D}¨}F

pGd, kq “ c1 minp
?
k,

?
d´ k ` 1q, for universal constant c1.

3. Proof Techniques

3.1. Upper Bounds: Theorem 2.2 (and Theorem 2.3)

Given M “
řn

i“1 xix
˚
i for a dataset tx1, . . . , xnu Ď Cn, where }xi} ď 1 for each i, and a diagonal

matrix Λ, the goal of our algorithm is to output a matrix H P OΛ which maximizes the utility
xM,Hy under the constraint that the output is ε-differentially private. Moreover, we would like our
algorithm to run in time polynomial in the number of bits needed to represent M and Λ.

Privacy guarantee. Given data sets txiu
n
i“1 and tx1

iu
n
i“1, we say that two matricesM “

řn
i“1 xix

˚
i

and M 1 “
řn

i“1 x
1
ix

1˚
i are neighbors if xi “ x1

i for all but one pair of points i. And we say that
the output of any algorithm A is ε-differentially private if for any M , M 1 which are neighbors, and
any set S in the output space of the algorithm, we have PpApMq P Sq ď eε PpApM 1q P Sq. Our
algorithm ensures that its output is ε-differentially private by applying the exponential mechanism
of McSherry and Talwar (2007) to sample a matrix H “ UΛU˚, where U is a unitary matrix, from
the unitary orbit OΛ. For any choice of query function qpM,Hq and ∆ ą 0, a sample from the
exponential mechanism with probability distribution proportional to exp

´

εqpD,rq

2∆

¯

, is guaranteed
to be ε-differentially private as long as ∆ is no greater than the sensitivity

sup
M,M 1

M,M 1 are neighbors

|qpM,Hq ´ qpM 1, Hq|

of the query function for all H . To ensure that matrices H with a larger utility xM,Hy are sampled
with a higher probability, we apply the exponential mechanism with the query function qpM,Hq “

xM,Hy, and sample H from the distribution expp ε
λ1

xM,HyqdµΛ, where dµΛ is a unitarily in-
variant measure on OΛ obtained from the Haar measure on the unitary group. Since we show that
whenever M and M 1 differ by only one point xi |xM,Hy ´ xM 1, Hy| “ |xiHx

˚
i ´ x1

iHx
1˚
i | ď λ1

(Lemma C.1), the sensitivity is ∆ ď λ1. Thus, Algorithm 1 is ε-differentially private.

Running time. To generate the sample from the distribution νpHq9 expp ε
λ1

xM,HyqdµΛ, we
use the Markov chain sampling algorithm from (Leake et al., 2021) (improved in Mangoubi and
Vishnoi (2021)), which generates a sample from the log-linear distributions on unitary orbits. The
distribution π of the output of this algorithm is guaranteed have sampling error at most Opεq in
the infinity-distance metric, supH | log νpHq

πpHq
| ă ε. Thus, the output of the Markov chain sampling

algorithm is Opεq-differentially private as well. Its running time bound is polynomial in λ1, γ1 ´γd
and the number of bits needed to represent λ “ pλ1, λ2, . . . , λkq and γ “ pγ1, γ2, . . . , γdq.

Upper bound on error. Our upper bound on error is based on a covering number argument. For
any set S and any ζ ą 0, we define a ζ-covering of the set S with respect to a norm ~ ¨ ~ on this
set to be any collection of balls tB1, . . . , BJu of radius ζ with centers in S, where J P N such that
S Ď

ŤJ
i“1Bi. We define the covering number NpS,~ ¨ ~, ζq to be the smallest number J of Balls

8
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in any ζ-covering of S. The packing and covering numbers are equal up to a factor of 2 in the radius
ζ (see e.g. chapter 3.5 of Mohri et al. (2018)):

P pS,~ ¨ ~, 2ζq ď NpS,~ ¨ ~, ζq ď P pS,~ ¨ ~, ζq @ζ ą 0. (4)

From a standard result about the exponential mechanism (McSherry and Talwar (2007)), we have
that the utility of the exponential mechanism satisfies

PpM R Stq ď
expp´ ε

2∆ tq

µΛpS t
2
q
, (5)

where St is the set of all matrices M with utility xM,Hy ą OPT ´ t and OPT “
řd

i“1 λiγi
is the optimal value that xM,Hy can take. The key ingredient we need to bound the utility is an
upper bound on the volume µΛpS t

2
q in the denominator of equation 5. We bound this quantity via a

covering number argument. First, we show that S t
2

is contained in a spectral norm ball B of radius
t
2Γ , where Γ :“ trpMq, with center at the optimal point H0, since, whenever }H ´H0} ď τ

2
ř

i γi
,

xM,Hy “ xM,H0y ´ xM,H0y ě

d
ÿ

i“1

λiγi ´ }H0 ´H}2trpMq ě

d
ÿ

i“1

λiγi ´
t

2
.

To obtain a bound on the volume of µΛpBq, we use the fact that the spectral norm } ¨ }2 and the
measure µΛpBq are both unitarily invariant. We say a norm ~¨~ is unitarily invariant if ~UXV ~ “

~X~ for any X P Cdˆd and any unitary matrices U, V P Updq; in particular } ¨ }2 and } ¨ }F are
unitarily invariant norms. And we say a measure µ is unitarily invariant if µpUSV q “ µpSq for each
subset S and each U, V P Updq. Since µΛ and } ¨ }2 are both unitarily invariant, every } ¨ }2-norm
ball of radius t

2Γ in OΛ has the same volume with respect to the measure µΛ. Thus, if we can find a
covering of OΛ of some size N consisting only of balls of radius t

2Γ , we would have µΛpBq ě 1
N .

Thus, in terms of the covering number, we can rewrite the utility bound equation 5 as

P

˜

ÿ

i

γiλi ´ xM,Hy ď t

¸

ě N

ˆ

OΛ, } ¨ }2,
t

2Γ

˙

exp
´

´
ε

2∆
t
¯

. (6)

To bound the utility with equation 6, we will show that the covering number of OΛ satisfies
N pOΛ, } ¨ }2, tq ď p1 ` 4λ1

ζ q2dk (Lemma C.3). Plugging our covering number bound, and the
sensitivity bound ∆ ď λ1 into equation 6 we get that

P

˜

ÿ

i

γiλi ´ xM,Hy ď t

¸

ě
`

1 ` 8λ1Γt
´1

˘2dk
exp

ˆ

´
ε

2λ1
t

˙

, @t ą 0.

Plugging t “ Θ
´

λ1
ε dk logpΓβ q

¯

, we get that
ř

i γiλi ´ xM,Hy ď Õpλ1
ε dkq w.p. at least 1 ´ β.

In the rank-k covariance matrix estimation problem, the algorithm is not handed the eigenvalues
λ1, . . . , λd as private information. The Algorithm 2 in Theorem 2.3 perturbs the eigenvalues by
adding random Laplace noise. The proof of Theorem 2.3, in addition to the proof of Theorem 2.2,
requires us to carefully bound the distance between the eigenvalues λi of the covariance matrix and
the perturbed eigenvalues λ̃i; see Section D.

9
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Bounding the covering number of OΛ. To bound the covering number of OΛ, we will first show
a covering bound for the set Sk of d ˆ k matrices with orthonormal columns, and then construct a
map from Sk to the unitary orbit OΛ. Towards this end, we observe that the matrices in OΛ are of
the form H “ UΛU˚ where U is a unitary matrix, and, since Λ has only k nonzero eigenvalues,
H only depends on the first k eigenvectors of U , which we denote by U1. To bound the ζ-covering
number of the space Sk of d ˆ k rectangular matrices U1 with orthonormal columns, observe that
each U1 P Sk has spectral norm }U1}2 at most 1. Thus, the set Sk of d ˆ k complex matrices is
the unit sphere in a 2dk-dimensional (real) normed space. To bound the covering number of Sk, we
apply a well-known result (see e.g., Lemma 6.27 in Mohri et al. (2018)) which says that a minimal
ζ 1-covering B1, . . . Bt of the unit ball in any 2dk-dimensional normed space has cardinality at most
p1 ` 2

ζ1 q
2dk. To obtain a covering with balls with centers on the unit sphere, we take any point x in

Bi X Sk (if such a point exists), and note that the ball centered at x of radius 2ζ contains Bi.
To obtain a covering of OΛ, we consider the map ϕ which maps each U1 P Sk to a matrix

ϕpU1q “ U˚
1ΛU1. Since Λ has rank-k, ϕ : Sk Ñ OΛ is surjective, and thus ϕpB̂1q, . . . , ϕpB̂tq is a

covering of the unitary orbit; however we still need to bound the radius of the balls ϕpB̂1q to show
that it is a ζ-covering. Towards this end, we note that for any U1, U

1
1 P Sk we have that

}ϕpU1q ´ ϕpU 1
1q}2 “ }U˚

1ΛU1 ´ U 1˚
1 ΛU 1

1}2 ď 2}U˚
1ΛpU1 ´ U 1

1q}2 ď
2

λ1
}U1 ´ U 1

1}2.

Thus, if we set ζ 1 “
ζ

2λ1
, we obtain a ζ-covering of OΛ, and this covering has cardinality p1 `

2
ζ1 q

2dk “ p1` 4λ1
ζ q2dk, which gives an upper bound on the covering number NpOΛ, } ¨ }2, ζq of OΛ.

3.2. Lower Bounds: Theorem 2.4

To prove a lower bound on the error in the covariance matrix approximation problem, it is sufficient
to consider the setting where the eigenvalues of the output matrix are given as (non-private) prior
information to the algorithm. This is because, any algorithm which works without this prior infor-
mation can also be applied to this setting by simply ignoring the information about the eigenvalues
of the input matrix. Thus, any lower bound for the setting where the eigenvalues are given as a prior
will also imply a lower bound for the covariance matrix estimation problem.

Towards this end, we first show a bound for a special case of the unitary orbit minimization
problem (Theorem 2.4), where the output matrix is in the orbit OΛ with eigenvalues pλ1, . . . , λdq “

diagpΛq that are equal to the (non-private) eigenvalues of the input matrix (for simplicity, in this
proof overview we assume that λ1 ě Ωp

?
dq). We then show that, roughly speaking, since the

matrix H which minimizes the Frobenius norm distance }M ´ H}F is the matrix H “ M and is
therefore in the orbit OΛ of the input matrix M , our lower bound for the unitary orbit minimization
problem also implies the same lower bound for the covariance matrix estimation problem (Corollary
2.5; see the end of this section for an overview of the proof of this corollary).

Our lower bound relies on a “packing number” lower bound for the orbit OΛ. As a first attempt,
we consider a maximal ζ-packing of the orbit OΛ, tUiΛU

˚
i u

p
i“1, where p “ P pOΛ, } ¨ }F , ζq is the

packing number of OΛ. We show, using a contradiction argument, that }M ´ ApMq}2F ě ζ2 (with
probability at least 1

2 ) for any input matrix M and any ζ small enough such that

4εD2 ď logP pOΛ, } ¨ }F , ζq, (7)

10
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where D is the diameter of OΛ. Suppose, on the contrary, that for every i P rps, we have that

}Mi ´ ApMiq}2F ă ζ2 (8)

with probability at least 1
2 . Next, observe that one can always find m ď }Mi ´ Mj}

2
F ` d vectors

x1, . . . , xm with norm }xi} ď 1 such that Mi ´Mj “
řm

s“1 xsx
˚
s `d. Thus, if Mi and Mj are data

matrices with unit-norm data points, one can transformMi intoMj by modifying at most 2m points
in the dataset. From equation 8, we have that for each i, the output ApMiq is in the ball BpMi, ζq

with probability at least 1
2 . Thus, since A is ε-differentially private, for every i, j we have

e´2εD2
ď e´εp}Mi´Mj}2F `dq ď

PpApMiq P BpMj , ζqq

PpApMiq P BpMi, ζqq
ď 2PpApMiq P BpMj , ζqq (9)

since Mi,Mj P OΛ, and D is the diameter of OΛ. Thus, since equation 9 holds for every j P p,

1 ě

p
ÿ

j“1

PpApMiq P BpMj , ζqq ě 2p ˆ e´2εD2
. (10)

Rearranging equation 10, we get that εD2 ď log p “ logP pOΛ, } ¨ }F , ζq, which contradicts
our assumption in equation 7. Thus, by contradiction, we have that }M ´ ApMq}2F ě ζ2 with
probability Ωp1q for any ζ ą 0 satisfying equation 7.

Plugging in our packing number bound for OΛ (equation 3 in Theorem 2.7), and solving for the
largest value of ζ satisfying equation 7, gives the lower bound of

}M ´ ApMq}2F ě cD̂2 ˆ pλi ´ λjq
2 exp

ˆ

´2εD2

iˆ pd´ j ` 1q

˙

(11)

for every 1 ď i, j ď d, where D̂ :“ D}¨}F
pGd´j`i`1, iq is the diameter of the Grassmanian.

Unfortunately, since the diameter of OΛ is D ě λ1 ´λd this lower bound is exponential in λ1 ´λd.
The D term in the exponent comes from the fact that, since we have used a packing for the entire
unitary orbit OΛ, the distance between any two balls in our packing is upper bounded by D. To
achieve a bound that is polynomial in λ1 ´ λd, we would instead like to use a packing for a smaller

subset of the orbit OΛ, of some radius (roughly) ω ď

b

iˆpd´j`1q

´2ε . However, restricting our packing
to a ball of radius ω– rather than the entire orbit– requires us to prove a packing number for a subset
of the orbit, (equation 2). This leads to additional challenges in the proof of our packing bound
which we describe in the next subsection.

Replacing the D term in equation 3 with ω “ Θp λ1
λi´λj

ζq and plugging in our bound for the ζ-
packing number of a ball of radius ω inside the orbit, and solving for the largest value of ζ satisfying
equation 7, gives the improved lower bound of

}M ´ ApMq}2F ě Ω

ˆ

iˆ pd´ j ` 1q

λ21ε
ˆ pλi ´ λjq

2

˙

(12)

for every 1 ď i ă j ď d. Unlike the bound in equation 11 which is exponential in the λ1s, this
bound is polynomial in the λ’s and in d, 1ε . If we plug in j “ d in equation 12 and take the maximum
over all i P rds, and then plug in i “ 1 and take the maximum over all j P rds, and finally take the
larger of these two maximum values, we recover the error lower bound of Theorem 2.4.

11
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3.3. Packing Number Lower Bounds: Theorem 2.7

In this section we first explain how we bound the packing number of the entire unitary orbit OΛ

(equation 3), and we then explain how we extend the proof to obtain a bound on the packing number
of any ball inside OΛ (equation 2).

The general strategy for proving our packing bounds for the unitary orbit (Theorem 2.7), is to
first construct a map ϕ : Ω Ñ OΛ from some space Ω with previously known packing number
bounds to the unitary orbit. And, once we have a map ϕ and a packing X1, . . . , Xt P Ω, we show
that the map preserves (a lower bound for) distances between points in the packing: }ϕpXiq ´

ϕpXjq}F ě β}Xi ´Xj}F for some β ą 0, implying ϕpX1q, . . . , ϕpXtq is a ζβ-packing of O∆.
As a first attempt, we consider the space of unitary matrices Updq for our choice of Ω, and the

map ϕ : U Ñ UΛU˚. Unfortunately, there may be U,U 1 P Updq such that }ϕpUq ´ ϕpU 1q}F “ 0
even though }U ´ U 1}F ą 0 (For instance, if diagpΛq “ p1, 1, 0q and U “ I and U 1 is the matrix
re2, e1, e3sJ where ei is the vector with a 1 in the i’th entry and zero everywhere else, we have
ϕpUq ´ ϕpU 1q “ 0 and yet }U ´ U 1}F “ 2.).

To get around this problem we instead consider a map ϕ from the (complex) Grassmannian
manifold Gd,i, the collection of subspaces of dimension i in d-dimensional space, to OΛ. Identifying
each subspace with its associated rank-i projection matrix, we construct a maximal ζ-packing for
P1, . . . , Pp P Gd,i, where p is the packing number of Gd,i. To bound the size of this packing, we use
the covering/packing number bound from Szarek (1982) for the Grassmannian Gd,i, which says that

p “: P pGd,i, } ¨ }F , ζq ě
`

ζ´1cD}¨}F
pGd,iqq

˘2di
,

where D}¨}F
pGd,iqq is the diameter of Gd,i and c is a universal constant.

To define our map ϕpP q for any rank-i projection matrix P P Gd,i, we find a d ˆ i matrix
U1 whose columns form an orthonormal basis for the space spanned by the columns of P ; thus,
U1U

˚
1 “ P (for now, we choose the matrix U1 in an arbitrary manner, although we will choose U1

more carefully for our proof of equation 2). We also find a d ˆ pd ´ iq matrix U2 whose columns
are orthogonal to the columns of U1. Thus, rU1, U2s is a unitary matrix. This allows us to define the
map ϕ by ϕpP q “ UΛU˚, where U “ rU1, U2s.

To show that ϕ preserves a lower bound on the Frobenius norm distance, use the sin-Θ theorem
of Davis and Kahan (1970) (Lemma E.2) which gives a bound on how much the eigenvectors of a
Hermitian matrix can “rotate” when the matrix is perturbed. More specifically, the sin-Θ theorem
says that if A,A1 are Hermitian matrices, with eigenvalues λ1, . . . , λd and λ1

1, . . . , λ
1
d, and V1 and

V 1
1 are the matrix whose columns are the first i eigenvectors of A andA1 respectively, then }V1V

˚
1 ´

V 1
1V

1˚
1 }F ď

}A´A1}F
λi´λ1

i`1
. Applying the sin-Θ Theorem, for any P, P 1 P Gd,i we have

}ϕpP q ´ ϕpP 1q}F “ }UΛU˚ ´ U 1ΛU 1˚}F ě pλi ´ λi`1q ˆ }P ´ P 1}F , (13)

for some unitary matrices U “ rU1, U2s and U 1 “ rU 1
1, U

1
2s such that P “ U1U

˚
1 and P 1 “ U 1

1U
1˚
1 .

Inequality 13 implies that since P1, . . . Pp is a ζ-packing of Gd,i, ϕpP1q, . . . ϕpPpq must be a
ζ ˆ pλi ´ λi`1q-packing of OΛ. Thus equation 13, together with the bound on the packing number
of Gd,i, gives the following bound on the packing number of OΛ

P pOΛ, } ¨ }F , ζq ě
`

ζ´1cD}¨}F
pGd,iq ˆ pλi ´ λi`1q

˘2di
@i P rds. (14)

12
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Improving the packing lower bound. While equation 14 gives a bound for the ζ-packing number
of OΛ, the eigenvalue gap term λi´λi`1 may be much smaller than the eigenvalue gap term λi´λj
which appears in the packing number bounds we ultimately show in Theorem 2.4.

To get around this problem, we replace the map ϕ : Gd,i Ñ OΛ and instead consider a more
general map ϕ : Gd´j`i`1,i Ñ OΛ for any i, j P rds. Namely, for any pd´j`i`1qˆpd´j`i`1q

rank-i projection matrix P P Gd´j`i`1,i, we choose a matrix U1 with orthonormal columns such
that U1U

‹
1 “ P , and choose U2 such that rU1, U2s is a pd ´ j ` i ` 1q ˆ pd ´ j ` i ` 1q unitary

matrix. And, denoting by A[i:j] the rows i, . . . , j of a given matrix A, we set

U “

¨

˝

U1r1 : is 0 U2r1 : is
0 I 0

U1ri` 1 : d´ j ` 1s 0 U2ri` 1 : d´ j ` 1s

˛

‚P Updq,

and set ϕpP q “ UΛU˚. Then, denoting Λ̃ “ diagpλ1, . . . , λi, λj , . . . , λdq,we have by the sin-Θ
theorem, for any P, P 1 P Gd´j`i`1,i, that

}ϕpP q ´ ϕpP 1q}F “ }Û Λ̃Û˚ ´ Û 1Λ̃Û 1˚}F ě pλi ´ λjq}P ´ P 1}F , (15)

for unitary matrices Û “ rU1, U2s and Û 1 “ rU 1
1, U

1
2s such that P “ Û Û˚ and P 1 “ Û 1Û 1˚. Com-

bining equation 15 with the lower bound for the packing number of the Grassmannian Gd´j`i`1,i,
we obtain our bound on the packing number for the unitary orbit OΛ (Inequality 3 in Theorem 2.4).

Packing number lower bounds for B X OΛ. To obtain a packing number bound for a subset
of the unitary orbit BpX,ωq X OΛ where BpX,ωq is some ball of radius ω with center X P OΛ,
we need to ensure that our packing lies inside a ball of radius ω. Towards this end, we first extend
the packing number lower bound of Szarek (1982) for the Grassmannian Gd,i, to a packing number
lower bound for a ball inside the Grassmannian via a simple covering argument (Lemma E.4). Since
} ¨ }F is unitarily invariant, the packing number is the same regardless of the center of the ball; thus,
for simplicity we set the center of the ball in Gd,i to be the rank-i projection matrix Ii consisting of
the first i columns of the identity matrix. While we have already shown that the map ϕ preserves a
lower bound on the Frobenius distance }ϕpP q ´ϕpP 1q}F between points in the packing (Inequality
13) to obtain a packing inside OΛ, in order to ensure that the packing lies inside a ball of radius ω
we will also need to show that the map ϕ preserves an upper bound on this distance.

Unfortunately, if we construct the map ϕpP q by choosing the columns of U1 to be an arbitrary
orthonormal basis for the column space of P and then set ϕpP q “ UΛU˚ where U is an arbitrary
unitary matrix whose first i columns are U1, we may have that }ϕpP q´ϕpP 1q}F ą 1 even when the
distance }P´P 1}F is arbitrarily small (e.g., if diagpΛq “ p2, 1, 0q, U “ I , and U 1 “ re2, e1, e3sRθ,
where Rη is a rotation matrix for a small angle η ą 0, and we choose U1 to be the first 2 columns of
U and U 1 respectively, we have ϕpU1U

˚
1 q ´ ϕpU 1

1U
1˚
1 q ą 1 and yet }U1U

˚
1 ´ U 1

1U
1˚
1 }F “ η.). This

is because there are many ways to choose the basis U1 for the column space of P .
To show a lower bound on }ϕpP q ´ ϕpP 1q}F , when constructing the map ϕpP q we will choose

the eigenvectors U1 of P such that, roughly speaking, they correspond to the “principal vectors”
between the subspaces spanned by the columns of P and the columns of the projection matrix
P0 “ Ii which ϕ maps to the center X “ Λ of the ball B. We define the principle vectors and
principle angles θ1, . . . , θi between any two i-dimensional subspaces U and V recursively starting
with ℓ “ 1 as follows (see e.g. Björck and Golub (1973)):

θℓ “ min

"

arccos |xu, vy|

}u}}v}
: u P U , v P V, u K us, v K vs@s P 1, . . . , ℓ´ 1

*

. (16)
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Letting U be the subspace spanned by the columns of any rank-i projection matrix P , and V the
subspace spanned by the columns of P0 “ Ii, we set V1 “ rv1, . . . , vis and U1 “ ru1, . . . , uis to
be the principle vectors between the two subspaces. Thus, roughly speaking, equation 16 implies
that we have chosen matrices U1 and V1 with the smallest possible angles between the columns of
U1 and the corresponding columns of V1 under the constraint that U1U

˚
1 “ Ii and V1V ˚

1 “ P . We
then define the map to be ϕpP q “ W ˚ΛW ˚ where W is a unitary matrix whose first i columns are
V1U

˚
1 , and the last d ´ i columns are obtained using a similar “principle angle” construction as the

first i columns. In particular, we have ϕpP0q “ Λ.
We then show }U1 ´ V1}2F “ 2k ´ 2

ři
ℓ“1 cospθℓq ď }V1V

˚
1 ´ Ii}

2
F , and hence (Lemma E.3),

}V1U
˚
1 Îi ´ Îi}F ď }V1V

˚
1 ´ Ii}F “ }P ´ Ii}F

where Îi is the first i columns of the identity matrix. This in turn implies the bound

}ϕpP q ´ Λ}F ď 2λ1}W ´ I}F ď 4λ1}P ´ Ii}F .

We now have an upper bound on the distance }ϕpP q´Λ}F between any matrix ϕpP q in our packing
and the center Λ of the ball BpΛ, ωq we would like to pack. Combining this bound with our lower
bound on }ϕpP q ´ϕpP 1q}F of the previous subsection allows us to show our packing number lower
bound for the ball BpΛ, ωq X OΛ (Inequality 2 of Theorem 2.7).
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Appendix A. Comparison of Our Bounds in Different Examples

In this section we compare our upper bound and lower bound theorems to key prior works. In our
notation, the main result of (Amin et al., 2019) can be written as follows.

Theorem A.1 (Amin et al. (2019)) Given a PSD symmetric covariance matrix M P Rdˆd, a pri-
vacy budget ε ą 0, and privacy parameters ε0, ε1, . . . , εd, where

řd
i“0 εi “ ε. Let the eigenvalues

of M be λ1 ě ¨ ¨ ¨ ě λd. There is a polynomial time algorithm that outputs a matrix H P Sd
` such

that for any β P p0, 1q, with probability at least 1 ´ β, }M ´ H}2F ď Õ
´

d
ε20

`
řd

i“1
d
εi
λi

¯

, where

Õ hides the logarithmic factors of 1
β , d, and λi’s.

In the following we provide comparisons to our results for problems where the output matrix has
(nearly) the same eigenvalues as the input matrix. For simplicity, we denote by λ1, . . . , λd the
eigenvalues of the input matrix, and by λ̃i the (privatized) eigenvalues of the output matrix.

Projection matrices. We first consider the case when the input matrix M is a scalar multiple of
a projection matrix of some rank k ą 0. In this case, the first k eigenvalues of the input matrix all
have the same value as the top eigenvalue λ1, and the remaining d´ k eigenvalues are all 0.
Upper bound (Theorem 2.3): When the input matrix is a rank-k projection matrix, Theorem 2.3
gives a bound of }M ´ H}2F ď Õ

`

dk
ε2

˘

with probability at least 1 ´ β, where Õ hides logarithmic
factors of 1

β and k. When the input matrix is a scalar multiple of a rank-k projection matrix with
top eigenvalue λ1, Theorem 2.3 gives a bound of }M ´ H}2F ď Õ

`

dk
ε pλ1 ` 1

ε q
˘

with probability
at least 1 ´ β.
Upper bound in Amin et al. (2019) (Theorem A.1): When the input matrix is a rank-k projection
matrix, the error bound in Theorem A.1 is just }M ´ H}2F ď E1, where E1 “ Õ

´

d
ε20

`
řk

i“1
d
εi

¯

.
This bound is minimized (up to a constant factor) by setting the privacy budget to be ε0 “ ε

2 and
εi “ ε

2k for each i ě 1. Hence, E1 ě Ω̃pkd
2

ε q.
More generally, when the input matrix is a scalar multiple of a rank-k projection matrix with

top eigenvalue λ1, the upper bound E1 in Theorem A.1 has E1 ě Ω̃pkd
2λ1
ε q. Thus, our bound in

Theorem 2.3 is smaller than the bound E1 of Theorem A.1 by a factor of Õpdq.
Lower bounds (Theorem 2.4 and Corollary 2.5): When the input matrix is a scalar multiple of a
rank-k projection matrix, our error lower bound is }M ´ H}2F ě Ωpminp

kpd´kq

ε , λ21kqq. Note that
the r.h.s. of the lower bound cannot be greater than kλ21, since supM,HPOΛ

}M ´ H}2F “ Opkλ21q

if Λ is rank-k. In this case our lower bound matches our upper bound up to a factor of λ1
ε if

λ1 ě Ωp
?
dq and a factor of d

λ1ε
if λ1 ď Op

?
dq. While Corollary 2.5 is stated in terms of

the Frobenius norm, we can also get a bound for error defined in the spectral norm by using the
fact that }M ´ ApMq}F ď

a

2minpk, d´ kq}M ´ ApMq}2 since M and ApMq are rank-k
matrices. Thus our Corollary 2.5 also implies a lower bound of }M ´ ApMq}2 ě Ωpdε q with
probability at least 1

2 when the input matrix is a scalar multiple of a rank-k projection matrix. In
comparison, the lower bound from Kapralov and Talwar (2013), which also considers the setting
where the input and output of the algorithm are (scalar multiples of) rank-k projection matrices, is

}M ´ ApMq}2 ě Ωpe
´

λ1ε
kpd´kqλ1q. Thus, our lower bound is larger by a factor of d

ελ1
e

λ1ε
kpd´kq .

Matrices with condition number Op1q and large eigenvalue gaps. We consider the case where
the eigenvalues λ1, . . . , λd of the input matrix M are such that the input matrix has rank k with

17



MANGOUBI WU KALE THAKURTA VISHNOI

condition number λ1
λk

“ Op1q (and more generally when we may only have λ1
λ k

2

“ Op1q) and also

has a gap in the eigenvalues of λ k
4

´ λ 3k
4

“ Ωpλ1q.

Upper bound (Theorem 2.3): Theorem 2.3 gives a bound of }M ´ H}2F ď Õ
`

dk
ε

`

λ1 ` 1
ε

˘˘

with
probability at least 1 ´ β, where Õ hides logarithmic factors of 1

β , λ1, and k.

Upper bound in Amin et al. (2019) (Theorem A.1): By letting ε0 “ Opεq in Theorem A.1, the term
in the error due to eigenvalue approximation is the same as Õ

´

d
ε20

¯

for both algorithms and can

thus be ignored. The remaining term in the bound in Theorem 2.3 is E :“ Õ
´

dkλ1
ε

¯

and that in

Theorem A.1 is E1 :“ Õ
´

řd
i“1

d
εi
λi

¯

which, in turn, depends on how the total privacy budget ε is

distributed among the εis. With probability 1´β, λ̃1 « Opλ1` 1
ε log

1
β q. Thus, when λ1 ě 1

ε log
1
β ,

λ̃1 “ Θpλ1q. In this case, E “ Õpdkλ1
ε q. When λ1

λk
“ Op1q (or even if we just have the weaker

condition that λ1
λ k

2

“ Op1q), E1 ě Ω̃pd
ř

d
2
i“1

1
εi
λiq ě Ω̃pdλ1

ř

d
2
i“1

1
εi

q. Since
řd

i“1 εi “ ε, the

quantity
ř

k
2
i“1

1
εi
E1 is minimized when εi :“ Op ε

k q for each i ď k
2 and εi “ 0 for i ą k

2 . Hence,

E1 ě Ω̃pd
2kλ1
ε q. Thus, in this case, the bound E from our Theorem 2.3 is Õpdq smaller than the

bound E1 from Theorem A.1.

Lower bounds (Theorem 2.4 and Corollary 2.5): If the input matrix is rank-k (λi “ 0 for i ą k), and
λ k

4
´λ 3k

4
“ Ωpλ1q, then the bound in Corollary 2.5 implies that }M´ApMq}2F ě Ωpminpdkε , kλ

2
1qq

with probability at least 1
2 . Thus, our lower bound matches our upper bound from Theorem 2.3 up

to a factor of λ1
ε if λ1 ě Ωp

?
dq and a factor of d

λ1ε
if λ1 ď Op

?
dq.

Wishart random matrices. We consider the setting where the input matrixM is a random sample
covariance matrix from the Wishart distribution Wishart (1928) (that is M “ 1

dX
JX , where X is

an m ˆ d matrix with i.i.d. standard Gaussian entries). As in the previous examples, we denote by
λ1, . . . , λd the eigenvalues of the input matrix.

Upper bound (Theorem 2.3): Theorem 2.3 gives a bound of }M ´ H}2F ď Õ
`

dk
ε

`

λ1 ` 1
ε

˘˘

with
probability at least 1

2 where Õ hides logarithmic factors of 1
β , λ1, and k.

Upper bound in Amin et al. (2019) (Theorem A.1): From concentration results for random matrices,
we have, with high probability, that λ1 “ Opλ k

2
q for any m, d, where k “ minpm, dq is the rank

of M . From the discussion in the previous section we have that, whenever λ1 “ Opλ k
2

q, the bound

E1 of Theorem A.1 on the error }M ´ H}2F satisfies E1 ě Ω̃pd
3λ1
ε q. Thus, if the input matrix is a

Wishart random matrix, with high probability, the bound given in our Theorem 2.3 is Õpdq smaller
than the bound E1.

Lower bound (Theorem 2.4 and Corollary 2.5): From concentration results for random matrices,
we also have that, with high probability, there is a large eigenvalue gap λ k

4
´ λ 3k

4
“ Ωpλ1q for any

m, d, where k “ minpm, dq is the rank of M . Thus, from the discussion in the previous section,
the bound in Corollary 2.5 implies that }M ´ ApMq}2F ě Ωpminpdkε , kλ

2
1qq with probability at

least 1
2 . Thus, our lower bound matches the upper bound from Theorem 2.3 up to a factor of λ1

ε if
λ1 ě Ωp

?
dq and a factor of d

λ1ε
if λ1 ď Op

?
dq.
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Appendix B. Preliminaries

B.1. Notation

For any vector v P Cd, we denote by }v} its Euclidean (ℓ2-norm) and by }v}p its ℓp-norm. For any
matrixM P Cmˆn, we denote by }M} its spectral norm (ℓ2-operator norm), by }M}p its ℓp-operator
norm, and by }M}F its Frobenius norm. We use the standard definition in the Euclidean space for
inner products. For two vectors u, v P Cd, we denote the inner product of them as xu, vy :“ u˚v. For
two matrices M,N P Cmˆn, we denote their Frobenius inner product by xM,Ny :“ Tr pM˚Nq.
For any d P Z`, we denote by Sd

` Ă Rd the set of dˆ d positive semi-definite (PSD) real matrices.
For any d P Z`, we denote by Hd

` Ă Cd the set of dˆ d PSD Hermitian matrices.

B.2. Preliminaries on Differential Privacy

The Laplace distribution with mean 0 and parameter b is defined over R as Lappxq :“ 1
2be

´|x|.

Definition B.1 (Sensitivity) Given collection of datasets D with a notion of neighboring datasets,
the sensitivity of a query function q : D Ñ Rd is denoted by ∆q and defined as

∆q :“ sup
D,D1PD

D,D1 are neighbors

}qpDq ´ qpD1q}1.

Theorem B.2 (Laplace mechanism and its differential privacy (Dwork, 2006)) For a given col-
lection of datasets D and a privacy budget ε ą 0, given any function f : D Ñ Rd, define the
Laplace mechanism M : D Ñ Rd as MpDq :“ fpDq ` pY1, . . . , Ydq, where Yi’s are i.i.d. random
variables drawn from Lapp∆f{εq. Then, M is ε-differentially private.

Theorem B.3 (Exponential mechanism (McSherry and Talwar, 2007)) For a given collection
of datasets D with a notion of neighboring datasets, a measurable set of all possible results R,
and a privacy budget ε ą 0, given any query function q : D ˆ R Ñ R, define the exponential
mechanism M : D Ñ R as follows: For any dataset D P D, MpDq outputs an r P R sampled
from a distribution with probability density proportional to

exp

ˆ

εqpD, rq

2∆q

˙

.

Then, M is ε-differentially private.

Theorem B.4 (Utility guarantee for exponential mechanism (McSherry and Talwar, 2007)) As
in the setting in Theorem B.3, given a dataset D, a query function q and privacy budget ε, let St :“

tr : qpD, rq ą OPT ´ tu, where OPT :“ maxr qpD, rq. Then, we have Prr R Sts ď
exp

´

´ ε
2∆q

t
¯

µpSt{2q
,

where µ is the base measure of the R, the set of all possible results.

Neighboring datasets. In our setting, U is the universe of users. For each u P U , we have a
vector vu P Cd such that }vu}2 ď 1. Given a dataset D Ď U , define A :“

ř

uPD vuv
˚
u. Two d ˆ d

Hermitian PSD matrices A and A1 are said to be neighbors if and only if there exists u, v P Cd such
that }u}, }v} ď 1 and A1 “ A´ uu˚ ` vv˚.
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Appendix C. Differentially Private Optimization on Orbits: Proof of Theorem 2.2

The proof of Theorem 2.2 consists of four parts: the algorithm, its privacy guarantee, its utility
guarantee, and its running time.

C.1. Algorithm

We first present the algorithm in Theorem 2.2.

Algorithm 1: Differentially private unitary orbit approximation

Input : A matrix M P Hd
` Ă Cdˆd with eigenvalues γ1 ě ¨ ¨ ¨ ě γd ě 0, the output matrix’s

maximum rank k P rds, a list of top k eigenvalues of the output matrix
λ1 ě ¨ ¨ ¨ ě λk ě 0, a privacy budget ε ą 0

Output: A matrix H P Hd
` Ă Cdˆd

Algorithm:

1. Define Λ Ð diagpλ1, . . . , λk, 0, . . . , 0q P Cdˆd

2. Sample H P OΛ from a distribution that is ε
4 -close in infinity divergence distance to the

distribution dνpHq9 exp
´

ε
4λ1

xM,Hy

¯

dµΛpHq

3. Output H

C.2. Privacy guarantee

To prove the privacy guarantee we first need to bound the sensitivity of the utility function xM,Hy.

Lemma C.1 (Sensitivity bound) Given d and a list of eigenvalues λ1 ě ¨ ¨ ¨ ě λk ě 0 for some
k P rds, let Λ :“ diagpλ1, . . . , λk, 0, . . . , 0q P Cdˆd. For any two neighboring dˆd PSD Hermitian
A,A1 P Hd

` such that A1 “ A ´ uu˚ ` vv˚ for some u, v such that }u}2, }v}2 ď 1, and for any
PSD Hermitian matrix H P OΛ, we have

| xA,Hy ´
@

A1, H
D

| ď λ1.

Proof Since minp0, λkq ď v˚Hv ď maxp0, λ1q for any v with }v}2 ď 1,

| xA,Hy ´
@

A1, H
D

| “ |u˚Hu´ v˚Hv| ď λ1.

With Lemma C.1, we can prove the privacy guarantee for Algorithm 1.

Lemma C.2 (Privacy guarantee for Algorithm 1) The randomized algorithm M as described in
Algorithm 1 is ε-differentially private, for the given privacy budget ε ą 0.
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Proof Given neighboring dˆd PSD Hermitian matricesA,A1 P Hd
` such thatA1 “ A´uu˚ `vv˚

for some u, v with }u}2, }v}2 ď 1, and any matrixH P OΛ, we want to bound the ratio of probability
density of M at H for A and A1. Let ν̃ApHq be the output density of H for MpAq and νApHq be
the target density of H , which is given by expp ε

4λ1
xA,Hyq. We have D8pν̃A}νAq ď ε

4 .

νApHq

νA1pHq
“

e
ε
4 xA,Hy

ş

QPOΛ
e
ε
4 xA,QydµΛpQq

e
ε
4 xA1,Hy

ş

QPOΛ
e
ε
4 xA1,QydµΛpQq

“ e
ε
4

xA´A1,Hy ¨

ş

QPOΛ
e

ε
4

xA1,QydµΛpQq
ş

QPOΛ
e

ε
4

xA,QydµΛpQq

ď e
ε
4 ¨

ş

QPOΛ
e

ε
4

xA,Qy` ε
2

xA1´A,QydµΛpQq
ş

QPOΛ
e

ε
4

xA,QydµΛpQq

ď e
ε
4 ¨ max

QPOΛ

e
ε
4

|xA1´A,Qy|

ď e
ε
2 .

Using the infinity divergence bounds between ν̃A and νA, we then further have that

ν̃ApHq

ν̃A1pHq
“

ν̃ApHq{µApHq

ν̃A1pHq{νA1pHq
¨
µApHq

µA1pHq
ď

e
ε
4

e´ ε
4

¨ e
ε
2 “ eε.

ν̃ApHq

ν̃A1pHq
ď exp pεq .

C.3. Utility guarantee

In this section we prove a guarantee on the utility of Algorithm 1. Towards this end, we first prove
a covering number lemma for the unitary orbit.

Lemma C.3 (Covering number for OΛ) For any ζ ą 0, the covering number of OΛ is at most
NpOΛ, } ¨ }2, ζq ď p1 ` 8λ1

ζ q2dk, with Λ defined in Algorithm 1.

Proof
First consider Sk, the set of kˆd complex matrices with orthonormal rows. Fix anyM P Sk and

let U be a unitary matrix such that the first k rows of U are the rows of M . Letting } ¨ }2 denote the
2 Ñ 2 operator norm, we have that }M}2 “ }M˚}2 “ 1 since M˚M is a PSD projection. Hence,
the set Sk can be considered a subset of the unit sphere in a dk-dimensional complex normed vector
space. By a standard result (see e.g., Lemma 6.27 in Mohri et al. (2018)), we can cover the complex
unit ball in such a space with respect to any norm by at most p1 ` 2

ζ q2dk balls of radius ζ for any
ζ ą 0. By replacing each such ball B with a ball of radius 2ζ centered about any M P B X Sk (if
such a point exists), we have that we can cover Sk by at most p1 ` 4

ζ q2dk balls centered in Sk of
radius ζ for any ζ ą 0.
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Consider the map ϕ : M Ñ M˚ diagpλqM , which maps Sk to OΛ. Given any M,M 1 with
}M ´M 1}2 ă

ζ
2λ1

, we have

}ϕpMq ´ ϕpM 1q}2 “ }M˚ diagpλqM ´M 1˚ diagpλqM 1}2

ď }M˚ diagpλqpM ´M 1q}2 ` }pM ´M 1q˚ diagpλqM 1}2

ď λ1
ζ

2λ1
` λ1

ζ

2λ1
“ ζ.

Thus, for any ball B with radius ζ
2λ1

centered at some M P Sk, we have ϕpB XSkq contained in an
ζ-ball centered at ϕpMq P OΛ. Since ϕ is surjective, OΛ can be covered with at most p1 ` 8λ1

ζ q2dk

balls centered in OΛ of radius ζ for any ζ ą 0.

To prove our utility bound, we need the utility bound on the exponential mechanism (Theorem B.4).
We use the notation Γ :“

řd
i“1 γi. The following lemma assumes that we can sample exactly from

the distribution proportional to expp ε
4λ1

xM,Hyq.

Lemma C.4 (Probability bound assuming exact sampling for the sampling step in Algorithm 1)
Let the input and output be as listed in Algorithm 1. Assume H P OΛ is sampled exactly from the

distribution expp ε
4λ1

xM,Hyq, then we have

P

«

xM,Hy ď

k
ÿ

i“1

λiγi ´ τ

ff

ď N

˜

OΛ, } ¨ }2,
τ

2
řd

i“1 γi

¸

ˆ exp

ˆ

´
ετ

4λ1

˙

. (17)

Proof Using Theorem B.4 in this case, we have

St “

#

H : xM,Hy ą

k
ÿ

i“1

λiγi ´ t

+

.

Let H0 “ UΛU˚, where U is the unitary matrix obtained by diagonalizing A “ U diagpγqU˚.
H0 is the optimal output and we have xA,H0y “

řk
i“1 λiγi. We fix any H P OΛ such that

}H0 ´H}2 ď τ
2Γ . We can then apply the Hölder’s inequality to get

xM,Hy “ xM,H0y ´ xM,H0 ´Hy

ě

k
ÿ

i“1

λiγi ´ }H0 ´H}2TrpMq (Using Hölder’s inequality)

“

k
ÿ

i“1

λiγi ´ }H0 ´H}2Γ (Substitute definitions)

ě

k
ÿ

i“1

λiγi ´
τ

2Γ
Γ (Substitute }H0 ´H}2)

ě

k
ÿ

i“1

λiγi ´
τ

2
.
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Thus, if }H0 ´ H}2 ď τ
2Γ , then H P S τ

2
. Thus, every H contained in the ball of radius τ

2Γ
centered at M is also in S τ

2
. Let µ be the unitarily invariant probability measure on OΛ. By the

definition of covering number, the number of balls centered in OΛ of radius τ
2Γ required to cover

the set OΛ is at most NpOΛ, } ¨ }2,
τ
2Γq.Thus, there exists some ball B τ

2Γ
pH 1q centered at H 1 with

µpB τ
2Γ

pH 1qq ě NpOΛ, } ¨ }2,
τ
2Γq´1. Thus, since µ is unitarily invariant,

µ
´

S τ
2

¯

ě µpB τ
2Γ

pMqq

“ µpB τ
2Γ

pH 1qq

ě NpOΛ, } ¨ }2,
τ

2Γ
q´1.

Using Theorem B.4, with query function qpM,Hq “ xM,Hy, we have

P

«

xM,Hy ď

k
ÿ

i“1

λiγi ´ τ

ff

“ P rH R Sτ s

ď

exp
´

´ ε
4λ1

τ
¯

µ
´

S τ
2

¯

ď NpOΛ, } ¨ }2,
τ

2Γ
q ˆ exp

ˆ

´
ετ

4λ1

˙

This gives the following alternative form of the utility bound.

Lemma C.5 (Utility bound for Algorithm 1) Let the input and output be as listed in Algorithm
1. For any β P p0, 1q, with probability at least 1 ´ β, the randomized algorithm M in Algorithm 1
outputs a matrix H P OΛ satisfying

k
ÿ

i“1

γiλi ´ xM,Hy ď O

˜

λ1
ε

˜

dk log
d

ÿ

i“1

γi ` log
1

β

¸¸

.

Proof We can choose a suitable τ to give a utility bound on xM,Hy. By letting

τ “
2λ1
ε

log

ˆ

e`
p2 ` 8Γq4dk

β

˙

` λ1,

since ε P p0, 1q, we have

τ ą
2λ1
ε

ą λ1.

Thus,
8λ1Γ

τ
ď 8Γ. (18)
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Since H is sampled from a distribution which is ε
4 -close to the distribution expp ε

4λ1
xM,Hyq in

infinity divergence, by plugging in this choice of τ together with the covering number bound of
Lemma C.3 into equation 17, we have

P

«

xM,Hy ď

k
ÿ

i“1

λiγi ´ τ

ff

ď exp
´ε

4

¯

ˆ exp

ˆ

´
ετ

4λ1

˙

ˆN

˜

OΛ, } ¨ }2,
τ

2
řd

i“1 γi

¸

(From equation 17)

ď exp

ˆ

´
εpτ ´ λ1q

4λ1

˙ ˆ

1 `
16λ1Γ

τ

˙2dk

(From Lemma C.3)

We then substitute τ ,

P

«

xM,Hy ď

k
ÿ

i“1

λiγi ´O

ˆ

λ1
ε

ˆ

dk log Γ ` log
1

β

˙˙

ff

(Substitute τ )

ď P

«

xM,Hy ď

k
ÿ

i“1

λiγi ´ τ

ff

ď exp

ˆ

´
εpτ ´ λ1q

4λ1

˙ ˆ

1 `
16λ1Γ

τ

˙2dk

ď exp

ˆ

´
εpτ ´ λ1q

4λ1

˙

p1 ` 16Γq
2dk (From equation 18)

“ exp

ˆ

´ log

ˆ

e`
p1 ` 16Γq4dk

β

˙˙

p1 ` 16Γq
2dk (Substitute τ )

“

ˆ

e`
p1 ` 16Γq4dk

β

˙´1

p1 ` 16Γq
2dk

ď
β

p1 ` 16Γq4dk
p1 ` 16Γq

2dk

“ β.

Thus, with probability at least 1 ´ β, we have

xM,Hy ě

k
ÿ

i“1

λiγi ´O

ˆ

λ1
ε

ˆ

dk log Γ ` log
1

β

˙˙

.

C.4. Running time

Lemma C.6 (Running time for Algorithm 1) The number of arithmetic operations required by
the algorithm Algorithm 1 is polynomial in log 1

ε , λ1, γ1 ´ γd, and the number of bits representing
λ “ pλ1, λ2, . . . , λkq and γ “ pγ1, γ2, . . . , γdq.

Proof This follows directly by using the algorithm from Corollary 2.7 of (Mangoubi and Vishnoi,
2021) in Algorithm 1.
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C.5. Completing the proof of Theorem 2.2

Proof (of Theorem 2.2) The privacy Guarantee for Algorithm 1 is provided in Lemma C.2. The
utility guarantee is Lemma C.5. The running time bound for Algorithm 1 is from Lemma C.6.

Appendix D. Differentially Private Rank-k Approximation: Proof of Theorem 2.3

Our algorithm in the proof of Theorem 2.3 has two parts. The first part approximates the eigenvalues
of M and the second part is just Algorithm 1.

D.1. Algorithm

Algorithm 2: Differentially private rank-k approximation

Input : A data matrix M P Hd
` Ă Cdˆd, the rank of output matrix k P rds, a privacy budget

ε ą 0
Output: A matrix H P Hd

` Ă Cdˆd

Algorithm:

1. Compute the eigenvalues of M and let them be λ1 ě ¨ ¨ ¨ ě λd.

2. Compute λ̃i Ð λi ` Lap
`

4
ε

˘

, for all i P rks

3. Sort λ̃is so that λ̃1 ě ¨ ¨ ¨ ě λ̃k

4. Define Λ Ð diagpλ̃1, . . . , λ̃k, 0, . . . , 0q P Cdˆd

5. Sample H P OΛ from a distribution that is ε
8 -close in infinity divergence distance to the

distribution dνpHq9 exp
´

ε
8λ1

xM,Hy

¯

dµpHq

6. Output H and the list of estimated eigenvalues λ̃1, . . . , λ̃k

This algorithm has two parts. The first part (Step 1 to 2) approximates eigenvalues and is shown
to be ε

2 -differentially private in Theorem D.1. The second part (Step 3 to 6) is Algorithm 1 with
privacy budget ε

2 .

D.2. First part: Differentially private eigenvalue approximation

Theorem D.1 (Differentially private approximation of eigenvalues) Given a positive semidefi-
nite (PSD) Hermitian input matrix M P Hd

` and a privacy budget ε ą 0. Let the eigenvalues of M
be λ1, . . . , λd P R. Outputting λ̃1, . . . , λ̃d, where λ̃i “ λi ` Lap

`

2
ε

˘

is an ε-differentially private
algorithm for approximating the eigenvalues of M . In addition, for any i P rds, Erλ̃is “ λi. With
probability at least 1 ´ β, |λ̃i ´ λi| “ O

´

1
ε log

1
β

¯

for all i.
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Since we need to deal with the eigenvalues, we use the following notation: For any matrix M P

Cdˆd, we denote λpMq :“ pλ1pMq, . . . , λdpMqq as its eigenvalues with λ1pMq ě ¨ ¨ ¨ ě λdpMq.
To prove Theorem D.1, we need the following lemma.

Lemma D.2 (Inequality for eigenvalues) Given a positive semi-definite Hermitian matrix M P

Hd
` Ă Cdˆd and a vector v P Cd. Let A :“ M ´ vv˚. For any i P rds, λipAq ď λipMq. In

addition, }λpMq ´ λpAq}1 “ }v}22.

Proof Let Sd´1 be the sphere of unit vectors in Cd. For any u P Sd´1, we have

u˚Au “ u˚Mu´ u˚vv˚u “ u˚Mu´ pv˚uq2 ď u˚Mu.

Thus, pick any i P rds and any subspace U Ď Cd with dimension i, we have

min
uPUXSd´1

u˚Au ď min
uPUXSd´1

u˚Mu. (19)

Thus, using the min-max theorem (Courant–Fischer–Weyl min-max principle), we have

λipAq “ max
UĎCdˆd : dimpUq“i

min
uPUXSd´1

u˚Au

ď max
UĎCdˆd : dimpUq“i

min
uPUXSd´1

u˚Mu (equation 19 holds for any U P Cdˆd)

“ λipMq.

This leads to λipAq ď λipMq for any i P rds. In addition,

}λpMq ´ λpAq}1 “

d
ÿ

i“1

|λipMq ´ λipAq|

“

d
ÿ

i“1

pλipMq ´ λipAqq (λipAq ď λipMq)

“ TrpMq ´ TrpAq

“ Trpvv˚q

“ }v}22.

Using this lemma, we can then prove Theorem D.1.
Proof (of Theorem D.1) Given two neighboring PSD Hermitian matrix M,M 1 P Hd

` Ă Cdˆd, so
that there exist u, v P Cd with }u}2, }v}2 ď 1 such that M 1 “ M ´uu˚ ` vv˚. Let A :“ M ´uu˚.
Using Lemma D.2, we have

}λpMq ´ λpAq}1 “ }u}22 ď 1.

Similarly, we have
}λpM 1q ´ λpAq}1 “ }v}22 ď 1.

Thus,
}λpMq ´ λpM 1q}1 ď }λpMq ´ λpAq}1 ` }λpM 1q ´ λpAq}1 ď 2. (20)
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Thus, for any neighboring PSD Hermitian matrixM,M 1 P Hd
`, the ℓ1 distance between their eigen-

value vector is at most 2. According to Defintion B.1, the sensitivity of the eigenvalue computation
is 2. Thus, outputting λ̃i “ λi ` Lap

`

2
ε

˘

follows exactly the Laplace mechanism in Theorem B.2.
Thus, the eigenvalue approximation satisfies ε-differential privacy.

In addition, for any β P p0, 1q, with probability 1 ´ β,

ˇ

ˇ

ˇ

ˇ

Lap

ˆ

2

ε

˙ˇ

ˇ

ˇ

ˇ

ď
2

ε
ln

1

β
“ O

ˆ

1

ε
log

1

β

˙

.

Thus, with probability at least 1 ´ β,

ˇ

ˇ

ˇ
λ̃i ´ λi

ˇ

ˇ

ˇ
“ O

ˆ

1

ε
log

1

β

˙

,

for all i P rds.

D.3. Second part: Completing the proof

Combining Theorem D.1 and Theorem 2.2, we can prove Theorem 2.3.
Proof (of Theorem 2.3)

Running time: From Theorem D.1, the number of arithmetic operations required by the first part
of Theorem 2 (eigenvalue approximations) is Õpdq. From Theorem 2.2, the number of arithmetic
operations required by the second part of the algorithm is polynomial in log 1

ε , λ1, and the number
of bits representing λ “ pλ1, λ2, . . . , λdq.

Privacy guarantee: The first part (eigenvalue approximation) in Algorithm 2 is done by letting
each λ̃i :“ λi ` Lap

`

4
ε

˘

. Theorem D.1 implies that this approximation is ε
2 -differentially private.

The second part of Algorithm 2 is just Algorithm 1 where we set the privacy budget to be ε
2 . Thus,

from Lemma C.2, the second part is ε
2 -differentially private. From the composition theorem of

differential privacy (Dwork and Roth, 2014), it follows that Algorithm 2 is ε-differentially private.

Utility bound: From Theorem D.1, it follows that for any β P p0, 1q, with probability at least 1´β,
for all i P rks, we have |λ̃i ´ λi| ď O

´

1
ε log

1
β

¯

. Note that the values λ̃ “ pλ̃1, . . . , λ̃kq may not

be sorted. Let λ̂ be the vector generated by sorting the entries of λ̃ in non-increasing order. For the
second part, we note that Theorem 2.2 (applied with λ̂is for γjs) implies that, for any β P p0, 1q,
with probability at least 1 ´ β,

xM,Hy ě

k
ÿ

i“1

λiλ̂i ´O

˜

λ̂1
ε

˜

dk log
d

ÿ

i“1

λi ` log
1

β

¸¸

(21)
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Thus, with probability at least 1 ´ β,

}M ´H}2F “ }M}2F ` }H}2F ´ 2 xM,Hy

ď

d
ÿ

i“1

λ2i `

k
ÿ

i“1

λ̂2i ´ 2
k

ÿ

i“1

λiλ̂i ` 2O

˜

λ̂1
ε

˜

dk log
d

ÿ

i“1

λi ` log
1

β

¸¸

“

d
ÿ

i“k`1

λ2i `

k
ÿ

i“1

˜

λ2i ` λ̂2i ´ 2
k

ÿ

i“1

λiλ̂i

¸

`O

˜

λ̂1
ε

˜

dk log
d

ÿ

i“1

λi ` log
1

β

¸¸

“

d
ÿ

i“k`1

λ2i `

k
ÿ

i“1

´

λi ´ λ̂i

¯2
`O

˜

λ̂1
ε

˜

dk log
d

ÿ

i“1

λi ` log
1

β

¸¸

. (22)

We would like to replace λ̂1 in the last term by λ1 and use Theorem D.1 to prove an upper bound
on the second term. For the former, observe that: Since with probability at least 1 ´ β,

ˇ

ˇ

ˇ
λ̃i ´ λi

ˇ

ˇ

ˇ
“

O
´

1
ε log

1
β

¯

for all i, and λ̂1 “ maxi λ̃i, it follows that with probability at least 1 ´ β, λ̂1 “

λ1 ` O
´

1
ε log

1
β

¯

. For the latter, notice that for any vector v P Rk,
řk

i“1 pλi ´ viq
2 is minimized

when the entries in v are sorted in non-increasing order. Using these, along with equation 22, we
get that

}M ´H}2F ď

d
ÿ

i“k`1

λ2i `

k
ÿ

i“1

´

λi ´ λ̃i

¯2
`O

˜

λ1 ` 1
ε log

1
β

ε

˜

dk log
d

ÿ

i“1

λi ` log
1

β

¸¸

ď

d
ÿ

i“k`1

λ2i ` kO

ˆ

1

ε2
log2

1

β

˙

`O

˜

λ1 ` 1
ε log

1
β

ε

˜

dk log
d

ÿ

i“1

λi ` log
1

β

¸¸

“

d
ÿ

i“k`1

λ2i `O

˜

k

ε2
log2

1

β
`
λ1 ` 1

ε log
1
β

ε

˜

dk log
d

ÿ

i“1

λi ` log
1

β

¸¸

“

d
ÿ

i“k`1

λ2i ` Õ

ˆ

k

ε2
`
dk

ε

ˆ

λ1 `
1

ε

˙˙

,

where Õ hides logarithmic factors of
řd

i“1 λi and 1
β . The above equation uses the fact that with

probability at least 1´β,
ˇ

ˇ

ˇ
λ̃i ´ λi

ˇ

ˇ

ˇ
“ O

´

1
ε log

1
β

¯

for all i. Thus, we have proved the utility bounds
for Algorithm 2.

Combining the running time, the privacy guarantee, and the utility bound, we have proved The-
orem 2.3.

Appendix E. Packing Number Lower Bound: Proof of Theorem 2.7

We will use the following result from (Szarek, 1982) which bounds the covering numberNpGd,k, ζq

for the (complex) Grassmannian Gd,k with respect to the metric induced by the operator norm on
the projection matrices PV for the subspaces V P Gd,k (see Proposition 8 of (Szarek, 1998), and the
note about about extension to complex spaces).
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Lemma E.1 (Covering number of (complex) Grassmannian Gd,k (Szarek, 1982, 1998)) There
exist universal constants C ą c ą 0 such that for every unitarily invariant norm ~ ¨ ~ and every
0 ă ζ ă D~¨~, the covering number NpGd,k,~ ¨ ~, ζq of the (complex) Grassmannian Gd,k satisfies

ˆ

cD~¨~pGd,kq

ζ

˙2kpd´kq

ď NpGd,k,~ ¨ ~, ζq ď

ˆ

CD~¨~pGd,kq

ζ

˙2kpd´kq

,

where D~¨~pGd,kq :“ supU ,VPGd,k
~PU ´ PV~ is the diameter of Gd,k with respect to ~ ¨ ~.

In the case of the Frobenius norm, we haveD}¨}F
“ supU ,VPGd,k

}PU ´PV}F ě minp
?
k,

?
d´ kq,

and in the case of the operator norm we have D}¨}2 “ supU ,VPGd,k
}PU ´ PV}2 ě 1

We will also make use of the following Sin-Θ theorem of (Davis and Kahan, 1970):
Let A and Â be two Hermitian matrices with eigenvalue decompositions

A “ UΛU˚ “ pU1, U2q

ˆ

Λ1

Λ2

˙ ˆ

U˚
1

U˚
2

˙

(23)

Â “ Û Λ̂Û˚ “ pÛ1, Û2q

ˆ

Λ̂1

Λ̂2

˙ ˆ

Û˚
1

Û˚
2

˙

, (24)

(although when we apply the Sin-Theta theorem we will only need the special case where Λ̂ “ Λ).

Lemma E.2 (sin-Θ Theorem (Davis and Kahan, 1970)) LetA, Â be two Hermitian matrices with
eigenvalue decompositions given in equation 23 and equation 24. Suppose that there are α ą β ą 0
and ∆ ą 0 such that the spectrum of Λ1 is contained in the interval rα, βs and the spectrum of Λ̂2

lies entirely outside of the interval pα ´ ∆, β ` ∆q. Then

~U1U
˚
1 ´ Û1Û

˚
1 ~ ď

~Â´A~

∆
,

where ~¨~ denotes the operator norm or Frobenius norm (or, more generally, any unitarily invariant
norm).

Lemma E.3 Suppose that Ik is the dˆd diagonal matrix with the first k diagonal entries 1 and the
remaining d´ k diagonal entries 0, and let Îk be the first k columns of Ik. Let P be any Hermitian
rank-k projection matrix. Then there exists a d ˆ k matrix Ŵ with orthonormal columns such that
ŴŴ ˚ “ P and }Ŵ ´ Îk}F ď }P ´ Ik}F .

Proof Denote by Ik the column space of Ik and P the column space of P . Let θ1 ď ¨ ¨ ¨ ď θk be
the k principal angles between Ik and P . Let u1, . . . , uk and v1, . . . , vk, form an orthonormal basis
for Ik and P respectively, and where the angles between corresponding vectors ui and vi in the
two bases are equal to the i’th principle angle θi for every i P rks. The existence of such a basis is
guaranteed by the the variational definition of principle angles between subspaces (see e.g. Björck
and Golub (1973)).

Let IK
k and PK be the orthogonal complements of Ik and P , respectively. Let uk`1, . . . , ud be a

basis for IK
k , and let vk`1, . . . , vd be a basis for PK. Let U1 “ ru1, . . . , uks and V1 “ rv1, . . . , vks.

And let U2 “ ruk`1, . . . , uds and V2 “ rvk`1, . . . , vds Let U “ rU1, U2s and V “ rV1, V2s.
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Therefore, we have that

}U1 ´ V1}2F “ trppU1 ´ V1q˚pU1 ´ V1qq

“ trppU˚
1 U1 ´ U˚

1 V1 ´ V ˚
1 U1 ` V ˚

1 V1q

trpU˚
1 U1q ´ 2trpU˚

1 V1q ` trpV ˚
1 V1q

“ 2k ´ 2trpU˚
1 V1q

“ 2k ´ 2
k

ÿ

i“1

u˚
i vi

“ 2k ´ 2
k

ÿ

i“1

cospθiq. (25)

But, by the variational definition of principal angles, we also have that the largest singular values of
IkP

˚ are also cospθ1q ě cospθ2q ě ¨ ¨ ¨ ě cospθkq, with the remaining singular values equal to 0.
Therefore, we have that

}V1V
˚
1 ´ Ik}2F “ }V1V

˚
1 ´ U1U

˚
1 }2F

“ trppV1V
˚
1 ´ U1U

˚
1 q˚pV1V

˚
1 ´ U1U

˚
1 qq

“ trpV1V
˚
1 q2q ´ trppU1U

˚
1 qpV1V

˚
1 qq ´ trppV1V

˚
1 qpU1U

˚
1 qq ` trppU1U

˚
1 q2q

“ 2k ´ 2trppU1U
˚
1 qpV1V

˚
1 qq

“ 2k ´ 2trpIkP
˚q

ě 2k ´ 2
k

ÿ

i“1

cospθiq, (26)

where the inequality holds since trppU1U
˚
1 qpV1V

˚
1 qq is the sum of the eigenvalues of pU1U

˚
1 qpV1V

˚
1 q,

and the sum of the singular values of any matrix is at least as large as the sum of its eigenvalues.
Therefore, combining equation 25 a equation 26 we have that

}U1 ´ V1}F ď }V1V
˚
1 ´ Ik}F . (27)

But, since V1 “ V1U
˚
1 U1 we also have that

}V1 ´ U1}2F “ }V1U
˚
1 U1 ´ U1U

˚
1 U1}F

“ }pV1U
˚
1 ´ IkqU1}2F

“ trpppV1U
˚
1 ´ IkqU1q˚pV1U

˚
1 ´ IkqU1q

“ trpU˚
1 pV1U

˚
1 ´ Ikq˚pV1U

˚
1 ´ IkqU1q

“ trppV1U
˚
1 ´ Ikq˚pV1U

˚
1 ´ IkqU1U

˚
1 q

“ trppV1U
˚
1 ´ Ikq˚pV1U

˚
1 ´ Ikqq

“ }V1U
˚
1 ´ Ik}2F

“ }V1U
˚
1 U1U

˚
1 ´ Ik}2F

“ }V1U
˚
1 Ik ´ Ik}2F

“ }V1U
˚
1 Îk ´ Îk}2F . (28)
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Therefore, combining equation 27 and equation 28 we have that

}V1U
˚
1 Îk ´ Îk}F ď }V1V

˚
1 ´ Ik}F (29)

Now, since U is a unitary matrix, V U˚ is also unitary. But, since U1U
˚
1 “ Ik, U1 must have

all zeros below the k1th row, and U2 must have all zeros above the k ` 1’st row. Therefore, the
first k columns of V U˚ are the same as the first k columns of V1U˚

1 . Thus, the first k columns of
V1U

˚
1 must be orthonormal to each other. Since the columns of V1U˚

1 Îk are the same as the first k
columns of V1U˚

1 , the columns of V1U˚
1 Îk must be orthonormal to each other as well. Therefore,

setting Ŵ “ V1U
˚
1 Îk, and since V1V ˚

1 “ P , from equation 29 we have that

}Ŵ ´ Îk}F ď }P ´ Ik}F

where Ŵ “ V1U
˚
1 Îk, is a matrix with orthonormal columns.

The remaining d ´ k orthonormal columns of the unitary matrix W (with the first k columns
being the columns of Ŵ ) can be found by diagonalizing the projection matrix for the subspace PK.

Lemma E.4 (Packing number of ball inside OΛ) For any M P OΛ, any unitarily invariant norm
~ ¨ ~, and any δ ą r ą 0, and denoting by Bpx,~ ¨ ~, δq a ball of radius δ centered at M with
respect to the norm m ~ ¨ ~, we have

P pBpM,~ ¨ ~, δq X Oλ,~ ¨ ~, rq ě
P pOΛ,~ ¨ ~, rq

NpOΛ,~ ¨ ~, δq
.

Proof Let M,M 1 P OΛ. Then there exists U P Updq such that M 1 “ UMU˚. Since ~ ¨ ~ is
unitarily invariant, ~W1 ´W2~ “ ~UpW1 ´W2qU˚~ “ ~UW1U

˚ ´UW2U
˚~ for any W1,W2 P

OΛ. Thus, for any n P N, we have that a collection of matrices M1, . . . ,Mn is an r-packing of
BpM,~ ¨ ~, δq if and only if UM1U

˚, . . . , UMnU
˚ is an r-packing of BpUMU˚,~ ¨ ~, δq. Thus,

for every M,M 1 P OΛ we have that

P pBpM,~ ¨ ~, δq,~ ¨ ~, rq “ P pBpM 1,~ ¨ ~, δq,~ ¨ ~, rq. (30)

Let M1, . . . ,Mα, where α ě P pOΛ,~ ¨ ~, rq, be an r-packing of OΛ. And let C1, . . . , Cβ where
C1, . . . , Cβ are balls of radius δ centered in OΛ and β ď NpOΛ,~ ¨ ~, δq, be a δ-covering of OΛ.
Then by the pigeonhole principle there exists i P rβs such that a subset of M1, . . . ,Mα of size ě α

β
is an r-packing of Ci. Hence, P pCi, rq ě α

β and by equation 30 we have that

P pBpM,~ ¨ ~, δq,~ ¨ ~, rq “ P pCi, rq

ě
α

β

ě
P pOΛ,~ ¨ ~, rq

NpOΛ,~ ¨ ~, δq
. (31)
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For any ζ ą 0 and norm ~ ¨ ~, we define the packing number P pS,~ ¨ ~, ζq of a subset S Ă E of a
normed space E with metric ρ induced by the norm ~ ¨ ~ to be the largest subset tx1, . . . , xnu, for
any n P N, such that ρpxi, xjq ą ζ.

We will now use the covering number for the Grassmannian and the Sin-Θ theorem to prove
Theorem 2.7.

Proof (of Theorem 2.7)
Bounding the packing number of a ball in the Grassmannian: Denote by Ik P Pd,k, the matrix
with its first k diagonal entries 1 and each all other entries 0. Plugging in the upper and lower
bounds for the covering number in E.1 into Lemma E.4, for any k ą 0, we get that the packing
number of any ball of radius ζ inside any Grassmannian manifold Gd,k (which we represent by the
set of rank-k projection matrices Pd,k), with center Ik P Pd,k

2, satisfies

P pBpIk, } ¨ }F , ωq X Pd,k, } ¨ }F , ζq
Lemma E.4

ě
P pPd,k, } ¨ }F , ζq

NpPd,k, } ¨ }F , ωq

“
P pPd,k, } ¨ }F , ζq

NpPd,k, } ¨ }F , ωq

ě
NpGd,k, } ¨ }F , 2ζq

NpGd,k, } ¨ }F , ωq

Lemma E.1
ě

ˆ

minpω,D}¨}F
pGd,kqc

2ζC

˙2kpd´kq

ě

˜

minpω,
?
k,

?
d´ kqc

2ζC

¸2kpd´kq

. (32)

Constructing the map from the Grassmannian to the orbit: For any projection matrix M P

Pd´j`i`1, i define a map ψ : Pd´j`i`1, i Ñ Upd ´ j ` i ` 1q, from Pd´j`i`1, i to the group of
pd´ j ` i` 1q ˆ pd´ j ` i` 1q unitary matrices Upd´ j ` i` 1q, as follows:

• ψpIiq “ I , where Ii is the pd ´ j ` i ` 1q ˆ pd ´ j ` i ` 1q diagonal matrix with the first i
diagonal entries 1 and all other entries 0, and I is the pd´ j` i`1q ˆ pd´ j` i`1q identity
matrix.

• ψpMq “ U , where U P Upd ´ j ` i ` 1q is a unitary matrix such that its first i columns U1

satisfy U1U
˚
1 “ M , and }U ´ I}F ď 2}M ´ Ii}F .

We still need to show that a matrix ψpMq “ U satisfying the above conditions exists. We can
construct the matrix ψpMq “ U by applying Lemma E.3 twice. First, we apply Lemma E.3 which
guarantees the existence of matrix U1 with orthonormal columns such that U1U

˚
1 “ M and }U1 ´

Îi}F ď }M´Ii}F . Next, we apply Lemma E.3 a second time to obtain a matrixU2 with orthonormal
columns such that U2U

˚
2 “ I´M is a projection matrix for the orthogonal complement of the space

spanned by the columns of M , and }U2 ´ pÎ ´ Îiq}F ď }pI ´ Mq ´ pI ´ Iiq}F “ }M ´ Ii}F .

2. Note that the choice of center here is arbitrary, and we would get the same bound regardless of choice of center since
} ¨ }F is unitarily invariant.
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Define the matrix U :“ rU1, U2s. Then we have that

}U ´ I}F ď }U1 ´ Îi}F ` }U2 ´ pÎ ´ Îiq}F

ď 2}M ´ Ii}F .

Moreover, since U1U
˚
1 “ M and U2U

˚
2 “ I ´ M , we have that the columns of U1 and U2 are

orthogonal to each other and hence that the matrix U is a pd´ j ` i` 1q ˆ pd´ j ` i` 1q unitary
matrix.

Showing that the map preserves Frobenius norm distance (lower bound): For convenience, we
denote the submatrix of any matrix H consisting of the entries in rows k, . . . , ℓ by Hrk : ℓs. For
convenience, in the remainder of the proof, we denote the restriction of ψ to the first i columns of its
output by ψ1pMq “ U1. And we denote the last d ´ j ` 1 columns of U by U2, and the restriction
of ψ to these columns by ψ2pMq “ U2.

Next, consider the map Ψ : Pi,d´j`i`1 Ñ Updq defined as follows:

ΨpMq :“

¨

˝

ψ1pMqr1 : is 0 ψ2pMqr1 : is
0 Ipj´i´1qˆpj´i´1q 0

ψ1pMqri` 1 : d´ j ` 1s 0 ψ2pMqri` 1 : d´ j ` 1s

˛

‚,

where Ipj´i´1qˆpj´i´1q denotes the pj ´ i ´ 1q ˆ pj ´ i ´ 1q identity matrix. And define the map
ϕ : Pi,d´j`i`1 Ñ OΛ as follows:

ϕpMq “ ΨpMqΛΨpMq˚ (33)

Define Λ̃ :“ diagpλ1, . . . , λi, λj , . . . , λdq. For any projection matrices M,M 1 P Pi,d´j`i`1, we
have

~ϕpMq ´ ϕpM 1q}F “ ~ΨpMqΛΨpMq˚ ´ ΨpM 1qΛΨpM 1q˚}F

“ }ψpMqΛ̃ψpMq˚ ´ ψpM 1qΛ̃ψpM 1q˚}F

ě pλi ´ λjq ˆ }ψ1pMqψ1pMq˚ ´ ψ1pM 1qψ1pM 1q˚}F

“ pλi ´ λjq ˆ }M ´M 1}F , (34)

where the inequality holds by the Sin-Θ Theorem of (Davis and Kahan, 1970) (restated above as
Lemma E.2), since } ¨ }F is a unitarily invariant norm.
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Showing that the map preserves Frobenius norm distance (upper bound): Moreover, we also
have that

}ϕpMq ´ Λ}F “ }ϕpMq ´ ϕpIiq}F

“ }ΨpMqΛΨpMq˚ ´ ΨpIiqΛΨpIiq
˚}F

“ }ψpMqΛ̃ψpMq˚ ´ ψpIiqΛ̃ψpIiq
˚}F

“ }ψpMqΛ̃ψpMq˚ ´ IΛ̃I˚}F

“ }pψpMq ´ IqΛ̃ψpMq˚ ´ IΛ̃pI˚ ´ ψpMqq}F

ď }pψpMq ´ IqΛ̃ψpMq˚}F ` }IΛ̃pI˚ ´ ψpMqq}F

“ 2}pψpMq ´ IqΛ̃ψpMq˚}F

ď 2}pψpMq ´ IqΛ̃}F ˆ }ψpMq˚}2

ď 2}pψpMq ´ IqΛ̃}F

ď 2}ψpMq ´ I}F ˆ }Λ̃}2

ď 2λ1}ψpMq ´ I}F , (35)

where the second and fourth inequalities hold because the Freobenius norm is sub-multiplicative
with respect to the operator norm, and the third inequality holds because }ψpMq˚}2 “ 1 since
ψpMq˚ is a unitary matrix.

Bounding the packing number (subset of orbit): From equation 32, we have that

P

ˆ

B

ˆ

Ik, } ¨ }F ,
ω

2λ1

˙

X Pi,d´j`i`1, } ¨ }F ,
ζ

λi ´ λj

˙

ě J,

where

J “

ˆ

minpω, λ1
?
i, λ1

?
d´ j ` 1qcˆ pλi ´ λjq

2λ1ζC

˙2iˆpd´j`1q

.

Therefore, we have that there exists a tM1, . . .MJu Ď Pi,d´j`i`1 of size J such that,

}Ms ´Mt}F ą
ζ

λi ´ λj
@s, t P rJs (36)

and
}Ms ´ Ik}F ă

ω

2λ1
@s P rJs. (37)

Therefore, plugging by equation 34 into that equation 36 we have that,

}ϕpMsq ´ ϕpMtq}F ą ζ @s, t P rJs (38)

and, moreover, plugging equation 35 into equation 36 we have that

}ϕpMsq ´ Λ}F ă ω @s P rJs. (39)
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Since by equation 33, ϕpM1q, . . . ϕpMJq are all in the unitary orbit OΩ, equation 38 and equation 39
imply that ϕpM1q, . . . ϕpMJq is a ζ packing for BpΛ, ωq X OΛ. Therefore, the packing number of
BpΛ, ωq X OΛ is

P pBpΛ, ωq X OΛ,~ ¨ ~, ζq ě J. (40)

But since } ¨ }F is unitarily invariant, we have that

P pBpΛ, ωq X OΛ, } ¨ }F , ζq “ P pBpX,ωq X OΛ, } ¨ }, ζq @X P OΛ. (41)

Therefore, equation 40 and equation 41 together imply that

P pBpX,ωq X OΛ, } ¨ }F , ζq ď

ˆ

minpω, λ1
?
i, λ1

?
d´ j ` 1qcˆ pλi ´ λjq

2λ1ζC

˙2iˆpd´j`1q

(42)

for every 1 ď i ă j ď d. Therefore, we have that

logP pBpX,ωq X OΛ, } ¨ }F , ζq

ě max
1ďiăjďd

2iˆ pd´ j ` 1q ˆ log

ˆ

minpω, λ1
?
i, λ1

?
d´ j ` 1qcˆ pλi ´ λjq

2λ1ζC

˙

.

This completes the proof of equation 2.

Bounding the packing number (entire orbit, with slightly stronger bound): We can get a slightly
better bound when bounding the entire unitary orbit, using the following argument. Since

P pPi,d´j`i`1, } ¨ }F ,
ζ

λi ´ λj
q ě

ˆ

cD}¨}F
pGd´j`i`1, iq ˆ pλi ´ λjq

ζ

˙2iˆpd´j`1q

,

there exits a subset tM1, . . .Mnu Ď Pi,d´j`i`1 of size n “

´

cD~¨~pGd´j`i`1, iqˆpλi´λjq

ζ

¯2iˆpd´j`1q

such that }Mr ´Ms}F ą
ζ

λi´λj
for all r, s P rns. Thus, by equation 34 we have that

}ϕpMrq ´ ϕpMsq}F ą ζ, @r, s P rns. (43)

Since we have a subset tϕpM1q, . . . ϕpMnqu Ď OΛ such that ~ϕpMrq ´ ϕpMsq~ ą ζ for all
r, s P rns, the packing number of OΛ satisfies

P pOΛ, } ¨ }F , ζq ě n “

ˆ

cD}¨}F
pGd´j`i`1, iq ˆ pλi ´ λjq

ζ

˙2iˆpd´j`1q

. (44)

Finally, since equation 44 holds for every choice of 1 ď i ă j ď d, and D}¨}F
pGd´j`i`1, iq ě

Ωpminp
?
i,

?
d´ j ` 1qq, we have that

P pOΛ, } ¨ }F , ζq ě max
1ďiăjďd

ˆ

cminp
?
i,

?
d´ j ` 1q ˆ pλi ´ λjq

ζ

˙2iˆpd´j`1q

.

This completes the proof of equation 3.
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Appendix F. Lower Bound on Utility: Proof of Theorem 2.4

To prove the lower bound on the utility, we will also use the following lemma:

Lemma F.1 For any U, V P Updq we have

}UΛU˚ ´ V ΛV ˚}2F “ 2xUΛU˚, UΛU˚ ´ V ΛV ˚y

Proof

}UΛU˚ ´ V ΛV ˚}2F “ xUΛU˚ ´ V ΛV ˚, UΛU˚ ´ V ΛV ˚y

“ trppUΛU˚ ´ V ΛV ˚q˚pUΛU˚ ´ V ΛV ˚qqq

“ trppUΛU˚ ´ V ΛV ˚q2q

“ trpUΛ2U˚ ´ UΛU˚V ΛV ˚ ´ V ΛV ˚UΛU˚ ` V Λ2V ˚q

“ 2trpΛ2q ´ 2trpUΛU˚V ΛV ˚q

“ 2trpUΛ2U˚ ´ UΛU˚V ΛV ˚q

“ 2trpUΛU˚pUΛU˚ ´ V ΛV ˚qq.

Lemma F.2 (Lower utility bound for unitary orbit, as a function of packing number) Suppose,
for some α ą η ą 0, that λ1 ě ¨ ¨ ¨ ě λd ě 0 and ε ą 0 are such that

d
ÿ

ℓ“1

λ2ℓ ă
1

16εδα2
logpP pBpW, 2αrq X OΛ, } ¨ }F , 2ηrqqq ´

d

16δα2

for some δ ą 0, where we define r :“
b

δ
řd

ℓ“1 λ
2
ℓ and W P OΛ is any matrix in the unitary orbit.3

Then for any ε-differentially private algorithm A which takes as input a Hermitian matrix and
outputs a matrix in the orbit OΛ, there exists a Hermitian matrixM with eigenvalues λ1 ě ¨ ¨ ¨ ě λd
such that the output ApMq of the algorithm satisfies

d
ÿ

ℓ“1

λ2ℓ ´ xM,ApMqy ě η2δ
d

ÿ

ℓ“1

λ2ℓ (45)

with probability at least 1
2 .

Proof Let W P OΛ be such that xM,W y “
řd

ℓ“1 λ
2
ℓ . Define r :“ 2

b

δ
řd

i“1 λ
2
i . By the

definition of packing number, there exists a 2ηr-packing E “ tUiΛU
a
i stu

n
i“1 of BpW, 2αrq for

n “ P pBpW, 2αrq, } ¨ }F , 2ηrqq such that for every i, j P rns, i ‰ j, we have

BpUiΛU
˚
i , ηrq XBpUjΛU

˚
j , ηrq “ H.

3. The choice of W does not matter since unitary invariance means that the packing bound depend only on the radius
of the ball we are packing, not its center.
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Consider the matrices Mi “ UiΛU
˚
i for each i P rns. We would like to show that equation 45

holds for one of these matrix Mi. Suppose, on the contrary, that for every i P rns, the output of the
algorithm, ApMiq “ ViΛV

˚
i (where we denote by Vi P Updq a unitary matrix which diagonalizes

Mi), satisfies

xMi,ApMiqy ą p1 ´ η2δq

d
ÿ

ℓ“1

λ2ℓ , (46)

with probability at least 1
2 . Let Ei be the event that equation 46 is satisfied. The PpEq ě 1

2 .
Suppose that the event Ei occurs. Then, since xMi,Miy “

řd
ℓ“1 λ

2
ℓ , we have that

xMi,ApMiq ´Miy “ xMi,ApMiqy ´ xMi,Miy ą ´η2δ
d

ÿ

ℓ“1

λ2ℓ ,

Therefore by Lemma F.1 we have that

δ
d

ÿ

ℓ“1

λ2ℓ ą xMi, Mi ´ ApMiqy

“ xUiΛU
˚
i , UiΛU

˚
i ´ ViΛV

˚
i y

“
1

2
}UiΛU

˚
i ´ ViΛV

˚
i }2F

“
1

2
}Mi ´ ApMiq}2F . (47)

That is,

}Mi ´ ApMiq}2F ă 2η2δ
d

ÿ

ℓ“1

λ2ℓ .

whenever the event Ei occurs. Thus, since PpEiq ě 1
2 , for every i P rns, we have that

P

˜

}Mi ´ ApMiq}2F ă 2η2δ
d

ÿ

ℓ“1

λ2ℓ

¸

ě
1

2
.

Hence, for every i P rns,

P

¨

˝}Mi ´ ApMiq}F ă 2η

g

f

f

eδ
d

ÿ

ℓ“1

λ2ℓ

˛

‚ě
1

2
. (48)

Inequality 48 implies that the output ApMiq of Algorithm A falls inside the Frobenius-norm ball
B pMi, rq with probability at least 1

2 .
For any i, j P rns, we have that Mi ´ Mj “

řm
s“1 xsx

˚
s for some m ď }Mi ´ Mj}

2
F ` d and

data vectors x1, . . . , xm P Cd for which }xs}2 ď 1. Thus, one can modify the data matrix Mi into
any other data matrix Mj by replacing at most }Mi ´Mj}

2
F ` d points in the dataset.

Since by assumption, Algorithm A is ε-differentially private, we have that for any i, j P rns,

PpApMiq P BpMj , ηrqq

PpApMiq P BpMi, ηrqq
ě e´εp}Mi´Mj}2F `dq

ě e´εpd`16α2r2q, (49)
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since Mi,Mj P BpW, 2αrq. But by equation 48 we have that PpApMiq P BpMi, ηrqq ą 1
2 .

Therefore, equation 49 implies that

PpApMiq P BpMj , ηrqq ě
1

2
e´εpd`16α2r2q @i P rns. (50)

Since M1, . . . ,Mn is a 2ηr-packing of BpW, 2αrq, the balls BpMj , ηrq, j P rns, are pairwise
disjoint. Thus,

1 ě

n
ÿ

j“1

PpApMiq P BpMj , ηrqq ě nˆ e´εpd`16α2r2q (51)

Rearranging equation 51, we have that

logpnq ď εpd` 16α2r2q

and hence that

1

16εα2
logpnq ´

d

16α2
ď r2 “ δ

d
ÿ

ℓ“1

λ2ℓ .

In other words,

d
ÿ

ℓ“1

λ2ℓ ě
1

16εδα2
logpP pBpW, 2αrq, } ¨ }F , 2ηrqqq ´

d

16δα2
(52)

Inequality 52 contradicts the theorem statement. Thus, our assumption that

P

˜

xMi,ApMiqy ě p1 ´ η2δq

d
ÿ

ℓ“1

λ2ℓ

¸

ě
1

2

for every i P rns is false, and we therefore have that for some i P rns the utility for the matrix Mi

satisfies

xMi,ApMiqy ă p1 ´ η2δq

d
ÿ

ℓ“1

λ2ℓ

with probability at least 1
2 .

Proof (of Theorem 2.4) Consider any 1 ď i ă j ď d. Set ω, ζ, α, η, r, δ as follows

ζ “ minpω, λ1
?
i, λ1

a

d´ j ` 1q ˆ
pλi ´ λjq

4Cλ1
, (53)

and α “ ω
2r , η “

ζ
2r , and r “

b

δ
řd

ℓ“1 λ
2
ℓ . Then we have δ “ r2

řd
ℓ“1 λ

2
ℓ

“
ζ2

4η2
řd

ℓ“1 λ
2
ℓ

Thus, by

Lemma 2.7, we have that for any W P OΛ,
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1

16εδα2
logpP pBpW, 2αrq X OΛ, } ¨ }F , 2ηrqqq ´

d

16δα2

ě

řd
ℓ“1 λ

2
ℓ

4εω2
logpP pBpW,ωq X OΛ, } ¨ }F , ζqqq ´

d

ω2

d
ÿ

ℓ“1

λ2ℓ

ě

řd
ℓ“1 λ

2
ℓ

4εω2
iˆ pd´ j ` 1q logp2q ´

d

ω2

d
ÿ

ℓ“1

λ2ℓ (54)

Consider the following equation for any δ ą 0:

d
ÿ

ℓ“1

λ2ℓ ă
1

16εδα2
logpP pBpW, 2αrq X OΛ, } ¨ }F , 2ηrqqq ´

d

16δα2
. (55)

By plugging equation 54 into equation 55, we get that equation 55 holds for any ω ą 0 such that

d
ÿ

ℓ“1

λ2ℓ ă

řd
ℓ“1 λ

2
ℓ

4εω2
iˆ pd´ j ` 1q logp2q ´

d

ω2

d
ÿ

ℓ“1

λ2ℓ (56)

Rearranging equation 56 we get

ω2 ă
1

4ε
iˆ pd´ j ` 1q logp2q ´ d.

Thus, by Lemma F.2 we have that for any ε-differentially private algorithm A which takes as input
a Hermitian matrix and outputs a matrix in the orbit OΛ, there exists a Hermitian matrix M with
eigenvalues λ1 ě ¨ ¨ ¨ ě λd such that, with probability at least 1

2 , the output ApMq of the algorithm
satisfies

d
ÿ

ℓ“1

λ2ℓ ´ xM,ApMqy ě η2δ
d

ÿ

ℓ“1

λ2ℓ

“
ζ2

4

Eq. 53
“ minpω2, λ21i, λ

2
1pd´ j ` 1qq ˆ

pλi ´ λjq
2

64C2λ21

“ min

ˆ

1

4ελ21
iˆ pd´ j ` 1q logp2q ´

d

λ21
, i, d´ j ` 1

˙

ˆ
pλi ´ λjq

2

64C2
.

(57)

Since equation 57 holds for any 1 ď i ă j ď d, we must have that any ε-differentially private
algorithm A which takes as input a Hermitian matrix and outputs a matrix in the orbit OΛ, there
exists a Hermitian matrix M with eigenvalues λ1 ě ¨ ¨ ¨ ě λd such that, with probability at least 1

2 ,
the output ApMq of the algorithm satisfies
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d
ÿ

ℓ“1

λ2ℓ´xMApMq ě max
1ďiăjďd

pλi ´ λjq
2

64C2
ˆmin

ˆ

1

4ελ21
iˆ pd´ j ` 1q logp2q ´

d

λ21
, i, d´ j ` 1

˙

.

(58)
Plugging Lemma F.1 into equation 58, we get

}M ´ ApMq}2F ě max
1ďiăjďd

pλi ´ λjq
2

64C2
ˆ min

ˆ

1

4ελ21
iˆ pd´ j ` 1q ´

d

λ21
, i, d´ j ` 1

˙

(59)

Taking the maximum over only pairs pi, jq where 1 ď i ă j ď d and either j “ d
2 , or i “ d

2 , and
adjusting the universal constant C, we get

}M ´ ApMq}2F ě max
1ďiď d

2

pλi ´ λd´1q2

C2
ˆ min

ˆ

1

ελ21
iˆ d´

d

λ21
, i,

d

2

˙

and hence that

}M ´ ApMq}2F ě Ω

˜

max
1ďiď d

2

pλi ´ λd´1q2 ˆ min

ˆ

1

ελ21
iˆ d, i

˙

¸

. (60)

Inequality 60 implies that

}M ´H}2F ě Ω

˜

d

maxpλ1
?
ε,

?
dq2

max
1ďiď d

2

iˆ pλi ´ λd´i`1q2

¸

(61)

with probability at least 1
2 .

Inequality 61 proves Theorem 2.4 when the output is in the unitary orbit OΛ. The bound for the
setting when the output is a rank-k matrix is a special case of Corollary 2.5, and we defer the proof
of this fact to the proof of Corollary 2.5.

Proof (of Corollary 2.5) Define ∆ :“
b

cd
maxpλ1

?
ε,

?
dq2

max1ďiď d
2
iˆ pλi ´ λd´i`1q2. Let A be

any ε-differentially private algorithm which takes as input a Hermitian matrix M and outputs a
matrix H “ ApMq.

Consider the algorithm Â defined by

ÂpMq “ argminZPOΛ
}Z ´ ApMq}F .

Since Â is just a post-processing of the output of the ε-differentially private algorithm A, Â must
also be ε-differentially private. Thus, by Theorem 2.4 there is a matrixM P OΛ such that the output
Ĥ :“ ÂpMq of the projection of H onto OΛ satisfies

}M ´ Ĥ}2F ě ∆2, (62)

with probability at least 1
2 . Let E be the event that equation 62 holds. Then PpEq ě 1

2 .
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In the remainder of the proof, we suppose that the event E occurs. Then equation 62 holds and
we have

}M ´ Ĥ}F ě ∆. (63)

We consider the following two cases: }Ĥ´H}F ě ∆
2 , and }Ĥ´H}F ă ∆

2 . In the first case where
}Ĥ ´H}F ě ∆, we must have that, since M P OΛ and Ĥ “ argminZPOΛ

}Z ´H}F ,

}M ´H}F ě }Ĥ ´H}F

ě
∆

2
. (64)

Next, we consider the second case where }Ĥ ´ H}F ă ∆
2 : By equation 63 we have that }M ´

Ĥ}F ě ∆. Thus, by the triangle inequality we have

}M ´H}F ě }M ´ Ĥ}F ´ }Ĥ ´H}F

ě ∆ ´
∆

2

ě
∆

2
. (65)

Therefore, from equation 64 and equation 65, we have that

}M ´H}F ě
∆

2

and hence that

}M ´H}2F ě
∆2

4

“
cd

4maxpλ1
?
ε,

?
dq2

max
1ďiď d

2

iˆ pλi ´ λd´i`1q2

whenever the eventE occurs. Thus, since c is a universal constant, we can choose a slightly different
universal constant c such that

}M ´H}2F ě
cd

maxpλ1
?
ε,

?
dq2

max
1ďiď d

2

iˆ pλi ´ λd´i`1q2, (66)

with probability at least 1
2 since PpEq ě 1

2 .
Note that, since the output of this algorithm A is allowed to be any matrix (either full rank or

restricted to rank-k), the lower bound in equation 66 applies to both the setting when the output is
rank-k for any k P rds and when the output is full rank. Moreover, in the setting where the output
has rank k ă d, we have also have that }M ´ H}2F ě

řd
ℓ“k`1 λ

2
ℓ with probability 1. This fact,

together with equation 66 imply that

}M ´H}2F ě Ω

˜

d
ÿ

ℓ“k`1

λ2ℓ `
d

4maxpλ1
?
ε,

?
dq2

max
1ďiď d

2

iˆ pλi ´ λd´i`1q2

¸

.

41



MANGOUBI WU KALE THAKURTA VISHNOI

Proof (of Corollary 2.6) Theorem 2.4 guarantees that for any ε-differentially private algorithm A1,
with output eigenvalues γ1 ě ¨ ¨ ¨ ě γd ě 0, there exists an input matrix M with eigenvalues
γ1 ě ¨ ¨ ¨ ě γd ě 0 such that the output A1pMq of this algorithm (with the same eigenvalues
γ1 ě ¨ ¨ ¨ ě γd ě 0) satisfies

}M ´ A1pMq}2F ě c2,

where c2 :“ Ω
´

řd
ℓ“k`1 γ

2
ℓ ` d

maxpγ1
?
ε,

?
dq2

max1ďiď d
2
iˆ pγi ´ γd´i`1q2

¯

.

Let Γ “ diagpγ1, . . . , γdq and Λ “ diagpλ1, . . . , λdq. Let M “ UΓU˚ be the spectral de-
composition of M . And let M̃ “ UΛU˚ be the matrix with eigenvalues λi, i P rds, and the same
eigenvectors as M .

Recall from the statement of Corollary 2.6 that H “ ApMq where A is an ε-differentially
private algorithm A which takes as input a Hermitian matrix and outputs a rank-k Hermitian matrix
with eigenvalues λ1, . . . , λk. Consider the following two cases:

piq }M ´ M̃}F ą }M̃ ´H}F and piiq }M ´ M̃}F ď }M̃ ´H}F .

On the one hand, if piq holds, then we have

}M ´H}F ě }M ´ M̃}F ą }M̃ ´H}F ě c, (67)

where the first inequality holds since M̃ “ argminZPOΛ
}M ´ Z}F .

On the other hand, if piiq holds, we still have that

}M ´ M̃}F ď }M ´H}F

since M̃ “ argminZPOΛ
}M ´ Z}F . Thus

}M̃ ´H}F ď }M ´H}F ` }M ´ M̃}F ď 2}M ´H}F ,

which implies that

}M ´H}F ě
1

2
}M̃ ´H}F ě

1

2
c. (68)

Thus, equation 67 and equation 68 together imply that

}M ´H}2F ě Ω
´

řd
ℓ“k`1 γ

2
ℓ ` d

maxpγ1
?
ε,

?
dq2

max1ďiď d
2
iˆ pγi ´ γd´i`1q2

¯

.
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