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Abstract

We study repeated two-player games where one of the players, the learner, employs a no-regret
learning strategy, while the other, the optimizer, is a rational utility maximizer. We consider general
Bayesian games, where the payoffs of both the optimizer and the learner could depend on the
type, which is drawn from a publicly known distribution, but revealed privately to the learner. We
address the following questions: (a) what is the bare minimum that the optimizer can guarantee
to obtain regardless of the no-regret learning algorithm employed by the learner? (b) are there
learning algorithms that cap the optimizer payoff at this minimum? (c) can these algorithms be
implemented efficiently? While building this theory of optimizer-learner interactions, we define
a new combinatorial notion of regret called polytope swap regret, that could be of independent
interest in other settings.

Keywords: Stackelberg value; swap regret; Bayesian games

1. Introduction

How should one play a two-player repeated game? A commonly employed strategy when deal-
ing with a repeated setting is to use a no-regret learning algorithm. Such algorithms assign higher
weight to actions that achieved good performance in previous rounds of the game. An important
danger lurks when one uses a learning algorithm to play a repeated game: the opponent (who we
will call the “optimizer”) could be a rational utility-maximizer who might try to explicitly exploit
the fact that the learning algorithm chooses its actions based on past performance. Can one design
learning algorithms that do not get fooled because they learn from past actions? Can we precisely
characterize the class of learning algorithms that are robust from being manipulated in this way?
What are the meaningful outcomes and benchmarks when studying this optimizer-learner interac-
tion?

Recent work by Deng et al. (2019) initiated the study of optimizer-learner interactions in general
2-player bimatrix games. They showed that regardless of, and without knowledge of, the specific
no-regret-learning algorithm used by the learner, the optimizer can always guarantee himself at least
the Stackelberg value' of the game by playing a static fixed strategy each round. More interestingly,
they show that for a large class of no-regret learning algorithms called mean-based algorithms,

1. The Stackelberg variant of a two-player game is a one-shot two-stage game where the optimizer moves first and
publicly commits to a (possibly mixed) strategy, and the learner then best responds to this strategy. The equilibrium
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there are games where the optimizer can badly mislead the learner and profit immensely by playing
a dynamic strategy that varies over time. In particular, the optimizer can architect situations where
the learners’ responses in certain rounds are far from their best response, owing to the force of
memory that is inherent in these learning algorithms. However, Deng et al. (2019) also show that if
the learner were to use a more sophisticated learning algorithm, namely, a no-swap-regret algorithm,
then the optimizer is unable to get anything more than the utility he is able to get in the Stackelberg
equilibrium of the game. I.e., a no-swap-regret algorithm is sufficient to prevent the optimizer from
benefiting from dynamic strategic behavior.

Questions. In this paper, we primarily focus on two questions. First, the results of Deng et al.
(2019) immediately motivate the following question: in general 2-player games (the same set of
games studied in Deng et al. (2019); we call these standard games), is a no-swap-regret algorithm
also necessary for the learner to cap the optimizer’s payoff of Stackelberg value? Or can the learner
run algorithms that, despite having large swap regret, cap the optimizer’s payoff at the Stackelberg
value of the game? In other words, we seek to characterize the precise class of learning algorithms
that ensure that the optimizer cannot benefit from dynamic strategic behavior.

Second, we seek to develop the theory of optimizer-learner interaction in the significantly more
general class of Bayesian games, and develop a complete understanding of the landscape there.
These games arise naturally in various economic settings, for example an optimizer selling an item
to a learner where the learner’s private value for the item is their type (Braverman et al., 2018).
Formally, a Bayesian game begins with one of C' contexts (“types”) ¢ € [C] being drawn from a
publicly known distribution D with probability p. of outputting context c. This context c is told
to the learner but not to the optimizer. Based on the context ¢, the learner chooses an action j ¢
[ V]; simultaneously, the optimizer chooses an action i € [ N]. The optimizer then receives utility
uo(i,J,¢), and the learner receives utility uy (7, j, ¢) — note that we allow both utilities to depend
on the context c. L.e., instead of a single bi-matrix in the standard game, a Bayesian game can be
thought of as specified by C bi-matrices.

As in standard games, it is straightforward to show that by playing a static fixed strategy, an
optimizer can obtain at least the Bayesian Stackelberg value of the game per round, as long as
the learner runs a no-(contextual)-regret learning algorithm (we prove this in Lemma 16). For the
Bayesian setting, we would like to understand (a) are there learning algorithms that are robust to
dynamic strategic behavior (that cap the optimizer payoff at this Stackelberg value)? in particular,
what is the right generalization of swap regret? (b) can these algorithms be implemented efficiently?
if not, what guarantees can we provide for efficient learning algorithms?

1.1. Our Results

For the first question on standard games, we show that no-swap-regret algorithms are the precise
class of algorithms that are robust against dynamic strategic behavior of the optimizer. Specifically,
for any learning algorithm that has a swap-regret of R, we construct games where the optimizer
can earn R[2 more than the Stackelberg value of the game. In particular therefore, if the learner
had, say, a linear swap regret, the optimizer would earn linearly more than the Stackelberg value of

that results in this two-stage game when both players play optimally is called a Stackelberg equilibrium. We note
here that the optimizer’s utility in a Stackelberg equilibrium is at least as high as the utility he can get in any (pure
or mixed-strategy) equilibrium thereby showing that playing against a learner is more beneficial than playing against
another optimizer (i.e., a rational utility maximizer). Formally defined in Section 2.
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the game. The main novelty in the proof of this result lies in the game construction: the payoffs
in the game we design should ensure a delicate balance between the optimizer’s payoff being high,
while the Stackelberg value not being too high. We present the precise details of the construction
in Section 3. Apart from completing the picture for standard games, this result also provides a new
characterization of swap regret as a measure of robustness against strategic behavior.

For Bayesian games, the challenges are multi-fold. Unlike standard games, it is not clear what
the correct generalization of swap regret should be. Many seemingly natural choices of regret
definition turn out to be incorrect. For example, motivated by the fact that running an independent
low external regret algorithm per context results in low external regret, one may consider running an
independent low swap regret algorithm for each context. But this does not work! In particular, there
are simple games where an optimizer can earn linearly more than the Bayesian Stackelberg value by
playing a dynamic strategy against such a learning algorithm (we give one example in Theorem 11).

In this paper we provide a nuanced generalization of swap-regret to the Bayesian setting that
we call polytope swap regret. We prove that this notion of regret has the guarantee that any learner
playing a learning algorithm with o(7") polytope regret is guaranteed to asymptotically cap the
optimizer payoff at the Bayesian Stackelberg value. While we do not yet know that a low polytope-
swap regret is necessary to cap the optimizer payoff at the Bayesian Stackelberg value (i.e., that it is
tight in the same way swap regret is for standard games), we provide another generalization of swap
regret called linear swap regret such that a low linear swap regret is necessary to cap the optimizer
payoff at the Bayesian Stackelberg value.

Polytope swap regret actually extends far beyond just the Bayesian setting, and can be thought
of as a generalization of swap regret to the setting of online linear optimization. The idea behind
polytope swap regret stems from viewing the learner’s actions — mappings from contexts to a distri-
bution over actions — as points in the polytope P = A([N])¢ ¢ RV*C. Our “swap functions” then
allow the vertices of this polytope to be swapped with each other. Every point inside the polytope
(including the learner’s actions) can be written as a convex combination of the vertices of P, to
which this swap function can be applied. Of course, there may be many ways to write a given point
as a convex combination of vertices: we consider the most permissive definition of regret by choos-
ing the decomposition that leads to the least regret in hindsight. IL.e., we say that polytope swap
regret is high only if every vertex decomposition of the learner’s actions will generate high regret by
applying a swap function to the vertices. Precise definitions are given in Section 4 and 4.3. When
we restrict these swap functions to be linear maps, we obtain the linear swap regret. Interestingly,
when P is the simplex A([/V]) both these notions of swap regret (polytope and linear), are equal
(it is possible to implement any swap function on vertices via a linear map), and both reduce to the
ordinary notion of swap regret.

These twin concepts, with polytope swap regret being sufficient and linear swap regret being
necessary, raise the question of which of these could potentially be both necessary and sufficient.
To answer this, we first show that these two concepts are not the same by separating polytope
and linear swap regret (Theorem 8). We then show in Theorem 9 that linear swap regret is not
a sufficient condition. We conjecture that polytope swap regret is the right notion that captures
robustness against strategic behavior in Bayesian games, by being both necessary and sufficient.
We leave the necessity of polytope swap regret as a concrete open question.

Efficient Algorithms for Bayesian Games. A natural question is whether we can given efficient
algorithms for these generalizations of swap regret. We address this issue in Appendix D. In par-
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ticular, we show how to construct a low polytope swap regret algorithm given any low swap regret
algorithm as input, such that this algorithm incurs a regret of at most O(y/TV log V') and runs in
time O(poly(V')), where V is the number of vertices of the polytope under consideration. For
Bayesian games, the number of vertices of the polytope P = A([N ])C is N, and thus, in cases
where the number of contexts C' is small, these bounds are manageable. When C' is large, we
analyze two other algorithms: the “low-swap-regret per context” algorithm mentioned above, and
a generalization of the external to internal regret reduction of Blum and Mansour (2007). While
neither algorithm (provably) has low polytope regret, we show they both provide some robustness
by capping the optimizer’s payoff at some variant of the Bayesian Stackelberg value of the game.
Finally, we conjecture this exponential dependence on C'is necessary to achieve low polytope regret
— we contribute one piece of evidence towards this by showing that the Bayesian Stackelberg value
itself is APX-hard to compute in general Bayesian games (Theorem 15).

1.2. Related Work

While the introduction discusses the work closest to ours, namely Deng et al. (2019), we discuss
further related work in detail in Appendix A.

2. Model and preliminaries

Notation We write [N] to denote the set {1,2,..., N}. For a finite set S, we write A(S) to
denote the set of distributions over S. We defer most proofs to Appendix F for the sake of brevity.

2.1. Games and equilibria

We begin this paper by considering finite bimatrix games (which we refer to as standard games). A
standard game is a game between two players, who we refer to as the optimizer and the learner. The
optimizer must choose one of M actions (labeled 1 through M) and learner must simultaneously
choose one of NV actions (labeled 1 through N). If the optimizer chooses action ¢ € [M] and the
learner chooses action j € [ N ], then the optimizer receives utility uo (7, j) and the learner receives
utility uy (7, 7). We will assume all utilities are bounded in [-1,1] (so |up (4, )| < 1, and |ug (4, )| <
1). To simplify analysis in the sections that follow, we will eliminate the role of randomness (which
is mostly tangential to the main points of this paper) by allowing the optimizer and learner to directly
play mixed strategies in A([M]) and A([/N]), and deterministically receive the corresponding
expected reward. That is, when the optimizer plays o € A([M]) and 5 € A([N]), the optimizer’s
utility is given (deterministically) by uo (o, 3) = Zf\fl Zf\zfl a;Bjuo(i,7) (and the learner’s utility
is computed similarly).

In the second part of this paper, we extend our study to a specific subclass of Bayesian games
where the learner is randomly assigned a type, unknown to the optimizer (we refer to such games
simply as Bayesian games). Such games arise naturally in various economic settings, for example
an optimizer selling an item to a learner where the learner’s private value for the item is their type
(Braverman et al., 2018). More formally, a Bayesian game begins with one of C' contexts (“types”)
¢ € [C] being drawn from a publicly known distribution D with probability p. of outputting context
c. This context c is told to the learner but not to the optimizer. Based on the context ¢, the learner
chooses an action j € [V ]; simultaneously, the optimizer chooses an action i € [ N]. The optimizer
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then receives utility uo (4, j, ¢), and the learner receives utility uy, (¢, 7, ¢) — note that we allow both
utilities to depend on the context c.

As with standard games, we eliminate the role of randomness in Bayesian games by allowing
the optimizer and learner to play mixed strategies and assigning rewards deterministically. As with
standard games, the optimizer plays a mixed strategy o € A([M]). The learner simultaneously
plays a function 5:[C'] - A([N]) mapping contexts to mixed strategies (representing which strat-
egy the learner would play for each context). The optimizer then receives reward

C C M N
uO(av B) = Z pkuO(aa B(Ck)v Ck) = Z Z ZPCOQB(C)]UO(Z,], C)'
k=1 c=1i=114=1

The learner’s reward is computed similarly.

We are interested in settings where the optimizer and learner repeatedly play a game for T'
rounds. We write o' to denote the optimizer’s strategy in round ¢ and 3! to denote the learner’s
strategy in round ¢t. We will also insist that this repeated game is full information, in the sense that
after each round, either player should be able to figure out their counterfactual utility if they had
played a different mixed strategy that round (for example, this is the case when the mixed actions
a' and B! of both players are made publicly known after round ¢ and that both the optimizer and
learner have full knowledge of their utility functions). This will allow the learner to play this game
by running the learning algorithms detailed in the next section.

2.2. Learning algorithms, regret, and swap regret

As their name suggests, the learner will play the game by running an online learning algorithm to
select their actions. We will consider the following (fractional, full-information, and deterministic)
model for online learning:

A learner will face a decision between N actions for each of 1" rounds. An adversary begins
by obliviously? selecting T reward vectors ', 72, ... r! € [0, 1]N , where rf represents the reward
if the learner picks action ¢ in round ¢. Then, for each round 1 < ¢ < T the learner selects a
distributional action 3¢ € A([N]) deterministically as a function of the reward vectors in previous
rounds, i.e., r1,72,...,7:—1. The learner then receives reward ij\il ﬂ;- r} and the full reward vector
r¢ for round ¢ is revealed to the learner.

Note that a learner can use such a learning algorithm to play in standard games. We evaluate a
learning algorithm by providing bounds on some form of “regret”. We consider two such notions:
the external regret of an algorithm, and the swap regret of an algorithm. The external regret (or
simply “regret”) of a learning algorithm on a specific problem instance represents the gap between
the total reward obtained by the learning algorithm and the best reward obtainable by playing the
best single fixed action in hindsight; it is given by:

J*e[N1i3

Reg - ( max ir}) _ (i ig;r;).

A learning algorithm is low-regret if it sustains o(7") external regret on any problem instance
with 7" rounds (and a fixed number of actions). It is well known that there exist efficient low-regret

2. Since the learner here is deterministic, it actually does not make a difference whether we allow the adversary to be
adaptive or not; an oblivious adversary can simply simulate the actions of the learner.
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algorithms in this setting which sustain regret at most O(y/T'log N) (Littlestone and Warmuth,
1994b; Freund and Schapire, 1997b). Interestingly, the property of being low-regret is not sufficient
to guarantee good performance in the optimizer-learner settings described in Section 2.1; there are
games where the optimizer can get much more than their Stackelberg value if the learner plays
certain low-regret algorithms. As we will show, to guarantee that this does not occur, the learner
must play an algorithm with low swap-regret.

The swap regret of a learning algorithm on a specific problem instance represents the gap be-
tween the total reward obtained by the learning algorithm, and the maximum award they could
obtain in hindsight if they had applied a deterministic swap function to their actions (i.e., playing
action 2 instead of action 1 every time they played action 1 with any weight). Formally, we can
define the swap regret as follows:

SwapRegz( max ZZ m))—(igﬁ 55)

tlj—

A learning algorithm is low-swap-regret if it sustains o(T") swap regret on any problem instance
with 7" rounds. As with external regret, it is known there exist low-swap-regret algorithms. For
example, the construction of Blum and Mansour (2007) demonstrates how to devise an algorithm
with swap regret O(v/TNlog N).

Until now, we have described a form of online learning that can be used to play standard games.
To play Bayesian games, we need a form of online contextual learning — we defer discussion of this
to the beginning of Section 4.

2.3. Stackelberg equilibria and strategies

One of the primary benchmarks that we will use to measure the performance of the optimizer is the
optimizer’s value in the Stackelberg equilibrium of the one-shot game.

Let G be a standard game, and for each mixed strategy « € A([M]), define the learner’s best-
response function BR(«) = argmax;yjur (e, j). We then define the Stackelberg value of G to
be the value

Val(G) = moz}xﬁgrél%é)uo(a,ﬁ).

We can similarly define the Stackelberg value Val(G) for a Bayesian game, with the only dif-
ference that now the learner’s best response BR(«) = argmaxge[ yic] U r(a,j) is taken over all
strategies 3(c) : [C'] = [N ] mapping contexts to actions.

Intuitively, the Stackelberg value represents the maximum value the optimizer can obtain by
playing a fixed strategy against a strategic learner. Note that: a) we allow the optimizer to play
a mixed strategy instead of just a pure strategy (so this is what is occasionally referred to as a
Stackelberg mixed strategy, e.g. in Conitzer (2016)) and b) we break ties for the learner in favor of
the optimizer.

The Stackelberg value is a benchmark that arises naturally in our setting for the following rea-
son’: if the optimizer is playing a game G for T rounds against a learner running a low-regret

3. For the case of standard games, this was shown in Deng et al. (2019); we include the straightforward generalization
to Bayesian games (and more generally, polytope games) in Appendix E.
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algorithm, then the optimizer can guarantee (under some mild conditions on () that they receive
reward at least Val(G)T —o(T'). Moreover, the optimizer can accomplish this by playing their fixed
Stackelberg strategy every round. The central goal of this paper is to understand when the optimizer
can significantly outperform this benchmark by playing a dynamic strategy.

3. Standard games

We begin our discussion with standard games. In Deng et al. (2019), the authors show that if an
optimizer is playing a learner with low swap regret, the optimizer can get no more than Val(G)T +
o(T) utility. We complement this result by showing that low swap regret is necessary; if a learner is
playing an algorithm that is not low swap regret, then it is possible to construct a game G where an
optimizer can gain significantly (€2(7")) more than their Stackelberg value by playing some dynamic
strategy against this learner.

The main argument is encapsulated in the following lemma, which shows how to convert a high
swap-regret online learning instance for the learner into a game where the optimizer outperforms
Stackelberg.

Lemma 1 Let A be a learning algorithm which incurs swap-regret R on some online learning
instance with N actions and T rounds. Then there exists a standard game G (with N actions for
the learner and M = 2V actions for the optimizer) such that if an optimizer plays T rounds of G
against a learner running A, the optimizer can receive a total reward of Val(G)T + %R.

Proof Recall that in our model, an online learning instance with N actions and 7" rounds is com-
pletely specified by a sequence of T' reward vectors ' € [-1,1]"V. Fix 7! to be the bad instance
mentioned in the theorem statement for algorithm A, and let ' € A([IN]) denote the action of the
learner in round ¢. Since the regret of 4 on this bad instance is R, this implies that for some swap
function 7 : [N] - [N ], we have that

T N
(5] (555 = 0
t=1j t=1j=1

We will now show how to use the reward 7’ to construct a game where the optimizer can do
better than the Stackelberg equilibrium. For now, we will construct a game G where the learner has
N actions and the optimizer has M =T actions — we will later show how to decrease M to a value
independent of 7'

We begin by specifying the learner’s payoffs. Unsurprisingly, these will be drawn directly from
the learner’s rewards in the online learning problem: specifically, if the optimizer plays an action
1 <4 < T and the learner plays action j € [ V], the learner will receive the reward they would have
received if they played j in the ith round of the online learning instance, namely wuy, (i, 7) = 7’; Note
that this has the property that if the optimizer plays action ¢ in round ¢, the learning algorithm A
will see exactly the learning instance mentioned above and therefore play 3¢ in each round ¢.

The more interesting aspect of constructing this game is selecting payoffs for the optimizer. We
do this as follows. If the optimizer plays action 7 and the learner plays action j, we set up(i,j) =
%(r;(j) - r;) (note that since 7 € [~1,1]", this scaling ensures that |uo(i,7)| < 1). This lets us
rewrite (1) in the form
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T
Suolh, ) = . @)
t=1 2
But note that the LHS of (2) is exactly the total payoff the optimizer receives if they play action
t in round T against a learner running .A. Therefore the optimizer can obtain a total reward of R/2
against such a learner.
We now argue that the Stackelberg value of this game is at most 0. To do this, imagine that in
a single-shot Stackelberg instance of G, the optimizer plays a mixed strategy « € A([M]) and the
learner best-responds by playing j € [ N]. Then note that

M . .
o) = 5 Dxau (1) ~15) = 5 (o) - e ).

But since j is a best response to « for the learner, we must have that uy (v, j) > ur (o, 7(5));
it follows that up(«, j) < 0, and therefore Val(G) < 0. This completes our proof of the existence
of a game (albeit one with many actions for the optimizer) where the optimizer can get at least R/2
more than the Stackelberg value of the game.

We now show how to construct a game G’ with the same property, but where the optimizer only
has M = 2V actions. To do this, observe that if you fix an action i € [ M] for the optimizer, both the
optimizer’s payoff uo(i,-) and learner’s payoff ur,(i,-) are linear functions of 7. This motivates
the following construction. For each 1 < i < M let s’ be the ith element of S = {-1,1}" (for some
arbitrary labelling of the M elements of .S), and let:

’LLL(Z,]) = S;

- Lo i
uo(i,j) = 5(%(]')—8]')'

Since S contains the vertices of [~1,1]", by Caratheodory’s theorem, for each ' € [-1,1]%,
there exists an o € A([M]) such that r’ = -}, als’. In particular, this implies that ur,(a’, j) = 7’
and up(at,j) = (rfr(j) —7%)/2, so by playing the sequence of actions o', the optimizer can still
guarantee total reward R/2. Moreover, the Stackelberg value of G’ is still 0, by the same logic as
before. |

Remark 2 There is a sense in which the exponential dependence of M on N in Lemma 1 is unnec-
essary. In particular, if there exists a bad instance for A where all the rewards lie in [-1/N,1/N¥,
then we can conduct the same construction at the end of Lemma 1, but with the set of 2N vectors
S ={e1,—e1,e9,—€a,...,en,—en} (in general, it is only necessary that it is possible to write each
reward vector vt as a convex combination of elements of S). Furthermore, even the game with 2~
actions is quite structured, and it is possible for the optimizer to efficiently compute the Stackelberg
equilibrium of this game — see Appendix B for details.

We now apply Lemma 1 to show that if the learner is nof running a low-swap-regret algorithm,
there is a game G where an optimizer can get 2(7") more than the Stackelberg value.

Theorem 3 If A is not a low-swap-regret learning algorithm, then there exists a game G where
if an optimizer plays T rounds of G against a learner running A, the optimizer can get reward at
least Val(G)T + Q(T) for infinitely many values of T.
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4. Bayesian games

We now begin our exploration of Bayesian games. The model for online learning introduced in
Section 2.2 covers algorithms a learner can use to play standard games. In order to play a Bayesian
game, the learner needs to use an algorithm for online contextual learning.

Our model for online contextual learning will be similar to the model for online learning pre-
sented in Section 2.2 (in that it will be fractional, full-information, and deterministic), with some
differences analogous to the difference between standard games and Bayesian games. Specifically,
in online contextual learning:

* There is a publicly known distribution D over C' contexts, where context ¢ € [C'] occurs with
probability p..

. Instead of picking a sequence of T reward vectors in [0, 1], the adversary picks T reward vectors
in 7t € [0,1]V*¢, where rf’c represents the reward if the learner picks action 7 € [ V] in context
celC].

» Instead of selecting a single mixed action in round ¢, the learner instead picks a function 5% [C] —
A([N]) mapping contexts to distributions over actions.

* In round ¢, the learner receives reward chzl Zj]\il peSt(c) jric. The learner wishes to maximize
their total reward over all 7" rounds.

It is straightforward to define a notion of external regret for online contextual learning. If we let

T C N
Reg = ( e ; Z;Pcrf (©), c) (Z; 2.2 cﬁt(C)ﬂic) :
c= t= =1 :
then Reg represents the difference in utilities on this problem instance between the learning algo-
rithm and the learner who in each context ¢ plays the best-in-hindsight action f*(¢) for this context.
It is similarly straightforward to construct algorithms for online contextual learning which incur
external regret at most O (/T log N) in the above setting (for example, one can simply run a low-
regret online learning algorithm per context).
Interestingly, it is much less clear what the correct analogue of swap regret for online con-
textual learning is. Many obvious guesses (such as the notion of regret obtained by running a
low-swap-regret algorithm per context) turn out to be “incorrect”, in that they do not allow us to
prove analogues of Theorem 3 for Bayesian games (we explore these in more detail in Section D.2).
Ultimately, in this section we will define two notions of swap-regret with the following guarantees:
* Polytope swap regret: If a contextual learning algorithm .4 has low polytope swap regret, then
an optimizer can get at most Val(G)T + o(T') reward when playing a Bayesian game G for T'
rounds against a learner running .A.

 Linear swap regret: If a contextual learning algorithm A does not have low linear swap regret,
there exists a Bayesian game GG where if an optimizer plays 7" rounds of G against a learner using
A, the optimizer can get at least Val(G)T + Q(T") reward (for infinitely many values of 7).

4.1. Polytope games and polytope learning

Instead of defining these notions of swap regret directly for Bayesian games, we will find it conve-
nient to define a more general class of games and learning algorithms that generalizes both forms
of games (standard and Bayesian) and learning (regular and contextual) that we have considered so
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far. We call this class of games polytope games, and the corresponding variety of learning polytope
learning. Polytope learning will turn out to be essentially equivalent to online linear optimization
(the major difference being that we restrict the action set to be a polytope as opposed to an arbitrary
convex set), but we refer to it this way to emphasize the connection to polytope games.

In a polytope game G, the learner must select a point = belonging to some bounded polytope
P c [-1,1]%. Simultaneously, the optimizer must select a point ¢ = (r,s) belonging to some
polytope Q ¢ [-1,1]¢ x [~1,1]% (i.e, both r and s are d-dimensional vectors). The optimizer then
receives utility (s, z), and the learner receives utility (r, z). As with standard games and Bayesian
games, we can easily define the Stackelberg value Val(G) of this game to be the maximum value
an optimizer can guarantee by playing a fixed* action (r, s) € Q with the learner best responding.

To play a repeated polytope game, a learner can run a polytope learning algorithm. An instance
of polytope learning is specified by a polytope P and a sequence of 7" d-dimensional reward vectors
rhr? T e [-1, 1]d. At the beginning of round ¢, the learner must select a point z! € P; the
learner then receives reward (7', z'). The goal of the learner is to maximize their total reward. As
with our previous learners, we will restrict our attention to deterministic algorithms (i.e., algorithms
A that choose ! deterministically as a function of rtor?, o rth),

Here are some examples of polytope games and polytope learning:

1) Standard games and online learning. Given a standard game G, let P = A([N]) and let
Q = conv({(r,s:)},), where for each i € [ M]

ri = (up(i,1),ur(i,2),...,ur(i,N)) e RY
si = (uo(i,1),u0(i,2),...,uo(i,N)) e R,

Then the polytope game G’ defined by P and Q is “equivalent” to the standard game G in the
following sense: the map f which sends o € A([M]) to the point ¢ = XM, a;(r4, ;) € Q and
the identity map g which sends 5 € A([N]) to 8 € P together have the property that up(«, 8) =
uo(f(a),g(B)) and ur(a, B) = ur(f(a),g(B)); moreover, f and g are both surjective onto P
and O respectively. Intuitively, we can translate any strategy profile in G to an “equivalent” strategy
profile in G’ and vice versa. Note that there may be multiple strategy profiles in G' that map to the
same strategy profile in G’; this corresponds to the fact that it is possible for two different mixed
strategies for the learner to always result in the same payoffs.

Similarly, polytope learning over the simplex P = A([N]) is equivalent to online learning.
Here the reduction is immediate — the online learning problem in Section 2.2 is exactly polytope
learning with P = A([N]).

2) Bayesian games and contextual learning. Given a Bayesian game G, let P = A([N])¢ ¢
RN*C (one can think of P as the convex hull of all C-by-N stochastic matrices), and let Q =
conv ({(r;, si)}f\fl), where s; € RV*C is defined via Sij.e = Peuo(i,j,c) and r; € RN*C is defined
via r; j. = peur(i,7,c¢). Then the polytope game G’ defined by P and Q is equivalent to the
Bayesian game G (in the same sense and for the same reason as above).

Similarly, polytope learning over the polytope P = A([N] )C is the contextual learning problem
we defined at the beginning of this section (with the subtle difference that the reward vectors Tf, .
should be scaled by the probabilities p.).

4. Note that since the reward function is linear and the action spaces of both the optimizer and learner are convex, there
is no need to consider mixed actions — for either player, any mixed action is equivalent to some single action.

10
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In general, we will want to fix a polytope P (e.g. the Bayesian game polytope) and consider the
class of polytope games where the learner’s actions belong to P. We call such games P-games; note
that such games are entirely specified by the optimizer’s action set Q. Similarly, when discussing
polytope learning, we will want to fix a polytope P and consider the class of polytope learning
instances / algorithms where the learner’s actions must belong to P. We call this problem P-
learning for short, and such algorithms P-learning algorithms.

4.2. Linear swap regret

We begin by defining a variant of swap regret for polytope learning that we call linear swap regret.
In this variant of swap regret, a learner compares their utility to the utility they would have received
if they applied a static linear transformation to each of their actions.

Formally, let P be a polytope and consider an instance of the P-learning problem where the
rewards are ', 72, ..., 7T and the actions of the learner are given by z', 22, ..., 2. Then the linear

swap regret of the learner on this instance is given by

{r',"),

M=

T
Li S R - t,M ty _
inSwapReg NI%?P)E;(T x') :

I
—

where M (P) is the set of all linear transformations M : R? — R? that satisfy Ma € P for all x € P
(i.e., the set of linear transformations that are contractions of P).

As with other forms of regret, we say that a polytope learning algorithm .4 has low linear swap
regret if it sustains o(7") linear swap regret on any problem instance with 7" rounds. We now show
that in order for the optimizer to get no more than the Stackelberg value, it is necessary for the
learner to run a low linear swap regret algorithm. As in Section 3, we begin by showing this is true
on a per instance level.

Lemma 4 Fix a polytope P ¢ [-1,1]% Let A be a P-learning algorithm which has linear swap
regret R on some problem instance. Then there exists a P-game such that if an optimizer plays T
rounds of G against a learner running A, the optimizer can receive a total reward of Val(G)T +
R[(A+1), where A = maxyrepcpy |M||1-

When P = A([NV]), linear swap regret reduces to the ordinary notion of swap regret. Indeed, the
set M(A([N])) of linear contractions of A([N]) is exactly the set of N-by-N stochastic matrices,
and the extreme points of M(A([N])) are the N-by-N 0/1-matrices which contain exactly one 1
in each row. These matrices correspond to (and act the same way on 7) as the N swap functions
m:[N]—>[N].

As with standard games, we can apply Lemma 4 to show that if A does not have low linear
swap regret, then it is possible for an optimizer to get strictly more than their Stackelberg value by
playing against a learner running A in a fixed game.

Theorem 5 Fix a polytope P < [-1,1]% If a P-learning algorithm A does not have low linear
swap regret, then there exists a P-game G where if an optimizer plays T rounds of G against a
learner running A, the optimizer can get at least Val(G)T + Q(T') reward (for infinitely many
values of T).

11
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4.3. Polytope swap regret

We now define a second notion of swap regret for P-learning algorithms which we call polytope
swap regret. Whereas having low linear swap regret is a necessary condition to guarantee that the
optimizer receives at most Val(G)T + o(T') utility, we will show that having low polytope swap
regret is a sufficient condition for the same guarantee.

The intuition behind polytope swap regret is that we want to compete against an arbitrary swap
function 7 on the vertices of P (i.e., a function that maps each vertex of P to some other vertex).
This makes sense if the learner only ever plays actions which are vertices of P, but it is less clear
how 7 should act on an interior point x of P. One way to define an action of 7 on x is to write x
as a convex combination of vertices, use 7 to map each of these vertices to (possibly) new vertices,
and take the corresponding convex combination of these new vertices to obtain a new point z’.
This works, but in many cases there will many ways to write x as a convex combination of the
vertices of P. When computing polytope swap regret, we will choose the best (regret-minimizing)
decompositions of all actions z' in our given problem instance that minimizes the worst-case regret
for the worst possible swap function 7.

Formally, given a polytope P, let V(P) be the set of vertices of P, and let V' = [V(P)| be the
number of vertices of P. We say that p € A(V(P)) is a vertex decomposition of a point = € P if
Yvev(p) Puv = 3 likewise, given a vertex decomposition p, we will let p = 3y (p) pyv denote the
point in P for which p is a vertex decomposition.

We call functions 7 : V(P) — V(P) that map vertices of P to vertices of P vertex swap
functions. We extend 7 to act on vertex decompositions by letting 7 (p), = Yo v'en—1(v) P> NOte that
under this definition, 7(p) = ¥,ep(p) po (V).

Finally, consider an instance of the P-learning problem with reward vectors r',72 ... 1 ¢
[-1,1]¢, where a learner running algorithm A plays actions z!, ...,z € PP. We define the polytope
swap regret of .4 on this instance as

T

o T
PolySwapReg = ( min max > <rt,7r(pt)>) =St 2.

pt | pt=at ™V (P)=>V(P) ;3 =1

Here the outer minimum is over all sequences of vertex decompositions p’ of the actions 2,
and the inner maximum is over all vertex swap functions 7. An alternate way of thinking about this
benchmark is in the form of a zero-sum game: the learner, after they have played all their actions x*
(but before they see 7) chooses a vertex decomposition p’ for each of their actions. The adversary
then observes these vertex decompositions and responds with the vertex swap function = which
maximizes the counterfactual utility of the transformed action sequence obtained by applying 7 to
each p'. The learner wishes to choose their original decompositions to minimize this maximum
counterfactual utility.

As always, we say the P-learning algorithm A has low polytope swap regret if it incurs at most
o(T) polytope swap regret for all P-learning instances.

Theorem 6 Let A be a P-learning algorithm with low polytope swap regret. Then if an opti-
mizer plays T rounds of a P-game G against a learner running A, the optimizer can get at most
Val(G)T + o(T) reward.

12
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4.4. Separating linear and polytope swap regret in Bayesian games

We establish separation of linear and polytope swap regrets in Appendix C and pose an open ques-
tion about polytope swap regret (Question 1).
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Appendix A. Related Work

There is a very large amount of literature on the outcome of interaction between strategic agents
in single-shot and repeated games, offering us reasonably complete picture of the landscape here.
Likewise, when learning agents interact repeatedly in a game, we have a good understanding of
what equilibria they lead to, depending on the learning algorithms employed by the learners (more
on this below). However, the nature of this interaction between a strategic agent and a learner is
much less studied, and has gained momentum only in the last few years. The work closest to ours in
this space is that of Deng et al. (2019) who initiate the study of this optimizer-learner interaction and
draw some very interesting conclusions detailed earlier. The recent work of Braverman et al. (2018)
is also quite close to ours. They study the specific 2-player Bayesian game of an auction between a
single seller and single buyer. The seller’s choice of the auction to run represents his action, and the
buyer’s bid represents her action. Our work generalizes both Deng et al. (2019) and Braverman et al.
(2018) by studying general Bayesian games, and also addresses questions beyond what was asked
in those works. Both Deng et al. and Braverman et al. show that regardless of the specific algorithm
used by the learner (buyer), as long as the buyer plays a no-regret learning algorithm, the optimizer
(seller) can always earn at least the Stackelberg value in a single shot game. Our Lemma 16 in
Appendix is a direct generalization of both these results to arbitrary Bayesian games without any
structure. Both Deng et al. and Braverman et al. show that there exist no-regret strategies for the
learner (buyer) that guarantee that the optimizer (seller) cannot get anything better than the single-
shot optimal payoff. Our Theorem 6 on polytope swap regret is a directly generalization of both
these results showing that when learner has a low polytope swap regret, the optimizer cannot earn
much more than the Bayesian Stackelberg value of the game. Neither Deng et al. nor Braverman
et al. provide necessary and sufficient conditions for the learner to cap the optimizer payoff at
Stackelberg value. We provide such necessary and sufficient conditions for standard games in’
Theorem 3. We provide a partial answer for Bayesian games, where we get a sufficient condition
that we conjecture to be necessary as well.

To discuss literature on the outcome of learning agents interacting with each other, we begin
with the different notions of regret. The usual notion of regret, without the swap qualification,
is often referred to as external-regret (see Hannan (1957), Foster and Vohra (1993), Littlestone
and Warmuth (1994a), Freund and Schapire (1997a), Freund and Schapire (1999), Cesa-Bianchi
et al. (1997)). There is a stronger notion of regret called internal regret that was defined earlier
in Foster and Vohra (1998), which allows all occurrences of a given action z to be replaced by
another action y. Many no-internal-regret algorithms have been designed (see for example Hart and
Mas-Colell (2000), Foster and Vohra (1997, 1998, 1999), Cesa-Bianchi and Lugosi (2003)). The
still stronger notion of swap regret was introduced in Blum and Mansour (2005), and it allows one
to simultaneously swap several pairs of actions. Blum and Mansour show how to efficiently convert
a no-regret algorithm to a no-swap-regret algorithm. One of the reasons behind the importance of
internal and swap regret is their close connection to the central notion of correlated equilibrium
introduced by Aumann (1974). In a general n players game, a distribution over action profiles
of all the players is a correlated equilibrium if every player has zero internal regret. When all
players use algorithms with no-internal-regret guarantees, the time averaged strategies of the players
converges to a correlated equilibrium (see Hart and Mas-Colell (2000)). When all players simply use
algorithms with no-external-regret guarantees, the time averaged strategies of the players converges

5. Theorem 3 establishes necessity, as sufficiency is already known from Deng et al. (2019).
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to the weaker notion of coarse correlated equilibrium. When the game is a zero-sum game, the
time-averaged strategies of players employing no-external-regret dynamics converges to the Nash
equilbrium of the game.

On the special 2-player game of selling to a buyer in an auction, Agrawal et al. (2018) study
a setting similar to Braverman et al. but also consider other types of buyer behavior apart from
learning, and show to how to robustly optimize against various buyer strategies in an auction.

Appendix B. Efficiently computing the Stackelberg equilibrium of the lower bound
game

In this section, we show that it is possible for the optimizer to efficiently compute the Stackelberg
equilibrium of the lower-bound game introduced in Lemma 1 in time polynomial in N, despite that
game having 2% actions. This will follow for the same reason as mentioned in Remark 2, namely
that this game has a very strong linear structure and is really just defined by a vector of dimension
N.

Lemma 7 Let G be the game defined in the proof of Lemma 1, with N actions for the learner and
M = 2N actions for the optimizer. It is possible to compute the Stackelberg strategy for the optimizer
in time polynomial in N.

Proof Consider the following alternate succinct description of the game G constructed in Lemma 1.
The optimizer selects a vector r € [~1,1]"V and the learner chooses an action j € [ N']; the optimizer
then receives reward r(;) — ;, and the learner receives reward r;. This corresponds to the original
game in the following way; for each v € S = {~1,1}¥, consider the mixed strategy o € A(S)
for the optimizer where the optimizer plays v with probability a,,. Then, if we let r = ¥, g v,
it follows from the definitions of uy (7,7) and ur(i, ) that the rewards are as described above (in
particular, both the learner and optimizer’s reward functions are linear functions of v, so they can
be written as a linear function of 7).

Now, it is possible to find the Stackelberg equilibrium of this new game in polynomial time by
solving a sequence of small LPs. In particular, for each j, we can solve a straightforward linear
program to find the optimal mixed action 7 (j) which maximizes the optimizer’s reward conditioned
on j being the best response for the learner. Taking the maximum value over all LPs (and the
corresponding strategy) gives a Stackelberg strategy for the original game. |

Appendix C. Separating linear and polytope swap regrets

In Sections 4.2 and 4.3, we presented two different definitions of swap regret — linear swap regret
and polytope swap regret — for the very general setting of polytope learning. Together, they form
necessary and sufficient conditions for which learning algorithms are robust to strategic behavior in
polytope games: algorithms with low polytope swap regret are always robust, whereas algorithms
with high linear swap regret are not robust. Interestingly, when P is the simplex A([N]) both these
notions of swap regret are equal, and they both reduce to the ordinary notion of swap regret in online
learning.

We now return our attention to the setting of Bayesian games and contextual learning, where
the relevant polytope P = A([N])¢ is the product of C' N-simplices. Just as swap regret is the
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“correct” regret definition for characterizing robustness in standard games, we want to understand
what is the correct definition of regret for characterizing robustness in Bayesian games. Is it polytope
swap regret, or linear swap regret, or some as-yet-undefined notion that lies between these two regret
measures?

We do not yet know the answer to this question, but we provide some partial progress towards
resolving it. To begin, we show that unlike for standard games, for the Bayesian game polytope
polytope swap regret and linear swap regret can differ significantly (even when K = C' = 2).

Theorem 8 Let P = A([N])C. There exists a P-learning instance with K = C = 2 where
PolySwapReg = Q(T') and where LinSwapReg = 0.

This separation implies that at least one of polytope swap regret and linear swap regret do not
tightly characterize robustness against strategic behavior in Bayesian games. It turns out (as we
discovered through computational search) that linear swap regret is not tight: it is possible to extend
the example in Theorem 8 to a Bayesian game where the optimizer can get 2(7") more than their
Stackelberg value, despite the learner running a low linear regret learning algorithm.

Theorem 9 Let P = A([N])C. There exists a P-game (i.e., Bayesian game) G with K = C' = 2
and a low linear regret P-learning algorithm (i.e., contextual learner) A where if an optimizer plays
T rounds of G against a learner running A, the optimizer can get reward at least V(G)T + Q(T).

its On the other hand, we are unable to find any example of a contextual learning instance where a
learner incurs high polytope swap regret that can be extended to a game where the optimizer cannot
get more than their Stackelberg value. We conjecture that polytope swap regret is the “correct”
notion of regret, both for Bayesian games and more generally for polytope games. Specifically, we
pose the following open question:

Question 1 Let A be a contextual learning algorithm which does not have low polytope swap
regret. Is it possible for an optimizer to get at least Val(G)T + Q(T') reward when playing T rounds
of a Bayesian game G against an optimizer running A?

Appendix D. Algorithmic considerations

D.1. A low polytope swap regret algorithm

Thus far, we have focused on characterizing relevant definitions of regret for the learner without
actually discussing how to construct learning algorithms that minimize these forms of regret. We
remedy this here by showing how to convert a traditional low-swap-regret algorithm to an algorithm
for polytope learning which obtains o(T") polytope swap regret (and hence o(7") linear swap regret
as well).

Let A be a low-swap-regret algorithm for online swap regret (e.g., the one presented in Blum
and Mansour (2007)). The idea is simple: if A’ is faced with a P-learning instance, A’ begins
by initializing a copy of .4 with one action for each vertex v € V(P). At the beginning of each
round ¢, A’ queries A for a mixed strategy 3° € A(V(P)) and then plays the corresponding convex
combination of the vertices of P, the point z* = 2 veV(P) Btv e P. Then A’ will compute the reward
(r*,v) for each vertex v and pass this collection of rewards to .A.

We show that swap regret guarantees for A directly translate to polytope swap regret guarantees
for A'.
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Theorem 10 Let A be an online learning algorithm which incurs swap regret at most R(N,T') on
instances with N actions and T rounds. Then A’ incurs polytope swap regret at most R(|V(P)|,T)
on P-learning instances over I' rounds.

Proof Let 5" € A(V(P)) be the mixed strategy output by A in round ¢, and let 2* = ¥,y p) Biv
be the point in P played by A’ in round ¢. Note that 5¢ is a vertex partition of z'. If we use these
vertex partitions in the definition of polytope swap regret, we find that

T T
PolySwapReg < ( max rt w(Bt) ) =St 2ty
mV(P)->V(P) ; ( ) tzzl( )
If we rewrite the RHS of the above equation (decomposing by vertices in the same manner as in
the proof of Theorem 6), we have that

T
PolySwapReg < max Bf) rtm(v) —v).
y 8 mV(P)->V(P) UE\;P); ( ( ) )

But the right hand side of the above equation is exactly the value of SwapReg faced by A. This
regret in turn is at most R(|V(P)|,T") by the guarantees of A. [ |

D.2. Efficient learning algorithms for Bayesian games

The reduction in the previous section produces an algorithm incurs at most O(y/T'V log V') poly-
tope swap regret and runs in time O(poly(V')) per round, where V' = [V(P)| is the number of
vertices of the polytope 7P. While for some polytopes (e.g. the simplex A([/N])) these bounds are
reasonable, some common polytopes have an exponentially large number of vertices (even those
with a compact representation as the intersection of a small number of half-spaces). Most relevant
to us, the Bayesian game polytope P = A([N])¢ has V = N vertices, which is exponential in
C. This dependence makes this algorithm unusable in settings with even a moderate number of
contexts.

In this section we present two efficient contextual learning algorithms: one that simply runs a
low-swap-regret algorithm independently for each context, and a more complex algorithm which
incorporates the idea of swapping “between” different contexts. While we do not show these al-
gorithms are low-polytope regret (the first one provably is not), we do show that these algorithms
are somewhat robust to strategic behavior by the optimizer, in that we can still upper bound the
maximum reward of optimizer as a function of the game G.

D.2.1. RUNNING A LOW-SWAP-REGRET ALGORITHM PER CONTEXT

We begin by analyzing the simple algorithm that runs an independent low-swap-regret algorithm
for each context (Algorithm 1).

Since running a low external-regret algorithm per context results in a contextual learning algo-
rithm with low external-regret, one may naturally suspect that running a low internal-regret algo-
rithm per context should result in a contextual learning algorithm with low (polytope) swap-regret.
Interestingly, this is not the case.
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Algorithm 1: Running a low-swap-regret algorithm per context.

Learner initializes C' copies (A1, As, . .. A¢) of a low-swap-regret algorithm over N arms and
T rounds.
fort < 1to T do
for c < 1to C do
| Learner receives mixed strategy 3% € A([N]) from algorithm A...
end
Learner plays 5'(c) : [C'] = A([N]) given by B%(c) = 5L
Optimizer plays mixed strategy of € A([M]).
for c <~ 1to C do
| Learner updates algorithm A, with the rewards uy, (!, j, c) for j € [N].
end

end

Theorem 11 There exist Bayesian games G where if the optimizer plays G for T rounds against
a learner running Algorithm 1 (for some choice of swap-regret algorithm), the optimizer can get at
least Val(G)T + Q(T) reward.

Although Theorem 11 shows that it is possible for an optimizer to gain significantly (over their
Stackelberg value) by strategizing, we can upper bound the extent to which this occurs in terms of
a different Stackelberg value-like benchmark.

Given a Bayesian game G, let G, G, . . ., G¢ be the standard games induced by the C' different
contexts. We define the per-context Stackelberg value PerConVal(G) as the weighted average of
the Stackelberg values of the games G.:

C
PerConVal(G) = ) pcVal(G.).
c=1

Alternatively, one can interpret PerConVal(G) as the maximum amount the optimizer can re-
ceive by playing a fixed strategy, if the optimizer’s strategy too is allowed to depend on contexts.
We show that PerConVal(G) upper bounds the optimizer’s per-round reward when playing against
Algorithm 1.

Theorem 12 Let G be a Bayesian game. If an optimizer plays G for T rounds against a learner
running Algorithm 1, the optimizer will receive reward at most PerConVal(G)T + o(T).

Proof Since each sub-algorithm A, of Algorithm 1 is low-swap regret, we know (via the results

of Deng et al. (2019)) or Theorem 6 applied to standard games) that for each context ¢ we must have
that:

T
S uo(at, B(c),c) < Val(Ge)T + o(T).
t=1

Summing this over ¢ (weighting by p.) we have that
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T
S up(at, B') < PerConVal(G)T + o(T).
t=1

D.2.2. A SWAP-REGRET REDUCTION FOR CONTEXTUAL LEARNING

We now present a second algorithm (Algorithm 2) that avoids some of the pitfalls of Algorithm 1
(notably, it works on the example of Theorem 11 and achieves a stronger analogue of Theorem 12).
Unlike Algorithm 1, which employs a low-swap-regret algorithm as a blackbox, in Algorithm 2 we
do something more akin to the reduction of Blum and Mansour (2007) by running several external
regret algorithms in parallel and computing a “steady state” distribution.

However, in our setting this notion of “steady state” is significantly more involved than in the
classical external to internal regret reduction. Whereas the steady state of the reduction of Blum and
Mansour (2007) can be expressed as the stationary distribution of a Markov chain, our “steady state”
distribution is the fixed point of a system of degree 2 polynomials. This poses several challenges,
both for showing this steady state exists and for computing it (indeed, we do not currently have a
polynomial-time algorithm for finding this steady state, but we do have several heuristic approaches
that appear to work well unlike in the case of the inefficient algorithm of Section D.1).

Algorithm 2: Swapping between contexts.

For each ¢ € [C'] and j € [N ], the learner initializes an instance A, ; of a low external-regret
algorithm over N + C' arms and 7" rounds.

fort < 1to7 do

for c < 1to C do
‘ Learner receives a distribution 'yi ; € A([N + C1]) from algorithm A ;.

end

Learner plays a 3(c) : [C] - A([N]) satisfying

N C
L CTEDWEICH CPRES R ON | @
J'= c'=

Optimizer plays mixed strategy of € A([M]).

for c < 1to C do

Learner updates algorithm A, ; with the reward ré ;e[-1,1]
1<j"<N,

N+C \where for

1= B(e);ur(a, i’ c),

and where for 1 < ¢/ < C,

vt inee = B1(0)j ur(a, BY(c), ).

end

end

20



STRATEGIZING AGAINST LEARNERS IN BAYESIAN GAMES

We attempt to give some motivation behind the workings of Algorithm 2 and where this polyno-
mial system arises from. Intuitively, what we would like to do is run C' copies of a low-swap-regret
algorithm, one for responsible for learning a good distribution over actions for each context. Each
copy runs over N + C arms. N of these arms correspond to pure actions for the learner. Where this
gets tricky is the other C' actions correspond to other contexts — specifically, they correspond to the
distributions over arms output by the original C' low-swap-regret algorithms.

Such an algorithm has the property that we do not only get low-swap-regret between actions
in the same context (as with Algorithm 1), but also low-swap-regret “between” different contexts
(in particular, this will allow us to avoid the bad example in Theorem 11). The problem is that this
algorithm as described is inherently circular; the output of these low regret algorithms are also arms.
We resolve this by constructing an appropriate fixed point problem.

Before we analyze the guarantees of our algorithm, we show that it is well-defined. In partic-
ular, we show that we can always find a solution to the system of equations (3) defining 5(¢) in
Algorithm 2.

Lemma 13 For any choice of 7. ; € A([N + C1)), there always exists a 3 : [C| - A([N]) that
satisfies

N c
B(e); = Zlﬁ(c)j' (%,j',j + %,j',mc'ﬁ(cl)j)-
j'=

=1

Lemma 13 shows that a solution 3¢ always exists to the above system of polynomial equations,
but does not describe how to find it efficiently. Indeed, this is a problem — unlike in the linear case,
solving systems of quadratic equations over multiple variables can be NP-hard.

Nonetheless, specific quadratic programs and systems can be solved efficiently, and we conjec-
ture that it is possible to approximately solve this system in polynomial time. Specifically, taking
inspiration from the power method for computing the stationary distribution for Markov chains, we
suspect that starting from a uniform g and iterating the map

N C
8(e); > 3 Ble)y (%,jr,j . %,jf,N+c,ﬁ<c'>j) @
j'=1 =1

quickly converges to the fixed point shown to exist in Lemma 13 (this is supported by some computer
simulations). We pose this as an open question.

Question 2 Let 37) be the element of A([N])€ obtained by starting with the 59 that maps each
¢ € [C] to the uniform distribution over [ N | and iterating the map (4) T times. Then if [3 is the fixed
point in Lemma 13, is it the case that

18=8"ll <€
for some value of T = poly(N, C,log1/e)?

As with Algorithm 1, we can upper bound the extent to which an optimizer can gain by strate-
gizing against Algorithm 2. To do so, we first need to define a version of correlated equilibria in
Bayesian games.
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A correlated equilibrium of a Bayesian game G is specified by a set of C' distributions F. over
[M] x [N], where the strategy profile (i,7) € [M] x [N] occurs with probability p; ;(c) in Fe.
Now, imagine a variant of the game G (analogous to how correlated equilibria in standard games
are defined) where the learner begins by communicating the context c to a third-party “correlator”.
The correlator then draws a strategy profile (4, j) from F, and tells the optimizer to play i and the
learner to play j. In order for this set of distributions to be a correlated equilibrium, they must
satisfy the following properties®:

* The learner must have no incentive to misreport their type. That is, for all ¢, ¢’ € [C'], we must
have:

E |ur(i,j,c)]> E ur(2,7,¢)].-
(i,j)N}'c[ ( )] (6,5)~Fer L )
* The learner must have no incentive to “swap” their action. That is, for every swap rule 7 :
[N] - [N], we must have:

E  [ur(i,j,0)]>2 E  |up(i,w(g),c)].
JE nig.0)z B funin().o)
We define the correlated Stackelberg value CorrVal(G) of G to be the maximum expected value
for the optimizer over all correlated equilibria of Gj i.e.,

CorrVal(G) = max CQED (i,jI)E~]—'C [uo(i,j,c)],
where the maximum is over all collections {F.} are correlated equilibria of G. It turns out that
for all Bayesian games G, CorrVal(G) < PerConVal(G); in particular, this follows from the known
fact that the Stackelberg value of a standard game is equal to the maximum utility of the Stackelberg
player in a correlated equilibrium of the game (see Conitzer (2016) or Von Stengel and Zamir (2010)
for a proof). In particular, if we remove the constraint that the learner has no incentive to misreport
their type from the above criteria, we recover an alternate definition for PerConVal(G).
We now show that CorrVal(G) upper bounds the optimizer’s per-round reward when playing
against Algorithm 2 (thus providing a stronger bound than Theorem 12).

Theorem 14 Let G be a Bayesian game. If an optimizer plays G for T rounds against a learner
running Algorithm 2, the optimizer will receive reward at most CorrVal(G)T + o(T).

Unlike Algorithm 1, we have no example of a Bayesian game G where the optimizer can do
better than Val(G)T when playing against Algorithm 2. It is an interesting open question whether
Algorithm 2 is low polytope swap regret (or otherwise prevents the optimizer from beating their
Stackelberg value).

Question 3 Is there a game G where the optimizer can get Val(G)T + Q(T') reward when playing
against a learner running Algorithm 2? Is Algorithm 2 a low polytope regret contextual learning
algorithm?

6. Note that we only include constraints for the learner, since we later choose the equilibrium which is most favorable
to the optimizer. This one-sidedness causes this definition to be slightly different than the traditional definition for
correlated equilibria.
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We suspect the answer to the above answer is no: in particular, we suspect that the exponential
regret and complexity of the generic algorithm in Section D.1 is necessary, and that there is no con-
textual learning algorithm that achieves polytope swap regret O(poly(C, K )\/T') and no efficient
(running in poly(C, K) time per iteration) contextual learning algorithm that achieves polytope
swap regret o(T).

D.3. Computing Bayesian Stackelberg equilibria is hard

One reason to suspect that minimizing polytope swap regret is hard for a contextual learner is that,
surprisingly, the optimizer faces a provably hard optimization problem when playing against a low
polytope swap regret learner in a Bayesian game G. Specifically, we show (via closely following
a proof of a similar result for typed principal-agent problems in Guruganesh et al. (2021)) that it is
APX-hard to compute the Stackelberg value Val(G) for a Bayesian game (and thus hard to compute
the corresponding Stackelberg strategy).

Theorem 15 [t is APX-hard to compute the Stackelberg value for the optimizer in a Bayesian game.
That is, there exists a constant € > 0 such that given a Bayesian game G and a value Val' > 0 it is
NP-hard to distinguish between the cases Val(G) < (1 - ¢)Val’ and Val(G) > Val'.

Appendix E. Achieving the Stackelberg value in Bayesian games and polytope games

We show (as mentioned in Section 2.3) that an optimizer can always achieve the Stackelberg value
in Bayesian game G, under mild conditions on G (essentially, every pure strategy for the learner is
a strict best response for some strategy for the optimizer). In fact, we will show this for an arbitrary
polytope game G, from which the conclusion for Bayesian games will immediately follow. Our
proof largely follows the analogous proof in Deng et al. (2019) for standard games.

Let P be a polytope and let G be a P-game. We say the game G is non-degenerate if, for each
vertex v, there exists a strategy for the optimizer o, where the learner’s strict best response is v (i.e.,

BR(a) = {v}).

Lemma 16 Let G be a non-degenerate game. Then if the optimizer plays 'I' rounds of G against
a learner running a low (external) regret algorithm A, the optimizer can guarantee a reward of at
least Val(G)T — o(T).

Proof Let o = (7, s) € Q be the optimizer’s strategy and let v € V(P) be the learner’s best-response
in the Stackelberg equilibrium of G. Because G is non-degenerate, there exists a strategy o, =
(v, 8y) € Q for the optimizer where v is the strict best response. Let us define ¢ = min,s ., (ry, v) -
(ry,v'); intuitively, 0 represents the margin by which v is a strict best-response.

Assume the algorithm A has the guarantee that it incurs at most R(7") = o(T') external regret
on any P-learning instance for 7" rounds. Set € = \/R(T")/T, and consider what happens when the
optimizer plays o’ = (1 — )« + ea, every round for 7' rounds against A.

Let ' € P (for 1 <t < T) be the response of the learner in round ¢. Let p' € A(V(P)) be an
arbitrary vertex decomposition of ‘. Note that the total utility of the learner can be written as

T
> ).

VeV (P) t=1
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Since the learner has low external regret, we must have that
Ay
! !
Yo > pu{r’ v —v) < R(T).
v'eV(P) t=1
Now, note that if v # v, our guarantee on v, implies that (r', v — v) > €0. It therefore follows that

ZZP'—Z(l p)_R(T) VE(MT

4]

v'#vt=1

On the other hand, the total utility of the optimizer can be written as

T

S S s) WA

v'eV(P) t=1 t

Since o and v form a Stackelberg equilibrium for G, (s’,v) > (1 —¢)(s,v) = (1 —¢)Val(G). It
follows that the optimizer’s utility is at least

S

S (s, 0) > (Z p:;) (1-£)Val(@) > T(l - %) (1= £)Val(@) 2 Val(G)T = o(T).
t=1

Appendix F. Omitted proofs
F.1. Proof of Theorem 3

Proof [Proof of Theorem 3] Since A is not a low-swap-regret algorithm, there exists some y > 0 and
positive integer /N such that for infinitely many values of 7', there exists an online learning instance
with IV actions and 7" rounds where A incurs at least v7" swap regret.

If we let the game GG depend on 7', then this theorem directly follows from Lemma 1. But also
note that for a fixed value of IV, the ultimate game G constructed in Lemma 1 depends solely on
the optimal swap function 7. Since there are infinitely many values of 7' for which there exists a
bad online-learning instance but only finitely many (N'V) different swap functions, infinitely many
of these values of 1" will have the same swap function 7 and hence the same game G. This game
satisfies the theorem statement. |

F.2. Proof of Lemma 4

Proof [Proof of Lemma 4] Let r* ¢ [-1,1]¢ be the rewards of the bad instance of the P-learning
problem, and let z! € P be the corresponding actions played by .A. Since the linear swap regret on
this instance equals R, we know that there exists an M € M(P) such that

T T
(r',Ma'y - > (r',2") = R. (3)

t= t=

[y
[y
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‘We rewrite this as

T
;(rt,(M—I)xt) = R. (6)

To define the P-game GG we simply need to specify the polytope Q. We will define Q to be the
polytope

Q= {(y ﬁ(M—I)Ty)‘y € [—171]d}-

Note that scaling by 1/(\ + 1) guarantees that Q ¢ [-1,1]??. In particular, since ||M]||; < A,
IM oo < X, 50 ||(M = T)7||oo < A+ 1, and therefore (M —I)Ty e [-(A+1), (A +1)]%

Now, consider an optimizer who in round ¢ plays the action ¢' = (rf, (M — I)7r?). The learner,
running A, will see exactly the sequence of rewards ! and therefore on each round ¢ play action
x! € P. The total reward of the optimizer is then given by

M=

T
(M -I)Trt 2t = ;U‘t, (M -I)2') = R.

t=1

On the other hand, we claim the Stackelberg value Val(G) of the game is at most zero. To see
this, note that if the optimizer plays g = (r, (M —I)"r) € Q and the learner best responds by playing
x € P, then the optimizer’s payoff is ((M — I)"r,z) = (r, (M - I)z) = (r, Mz) — (r,x). But since
Mx € P and x is the learner’s best response to g, we must have that (r, M z) < (r, x). It follows that
Val(G) < 0. m

F.3. Proof of Theorem 5

Proof [Proof of Theorem 5] If A does not have low linear swap regret, then there exists a y > 0 such
that for infinitely many values of 7', there exists a P-learning instance where A incurs at least 7’
linear swap regret.

As with standard games, if the game G could depend on 7, then we would be done by Lemma
4. We argue that for a fixed polytope P, the procedure in Lemma 4 can generate only finitely many
different games. In particular, note that for a fixed problem instance, the game G is defined entirely
by a matrix M in M(P). Now, while there may be infinitely many matrices in M (P), we will
show that M (P) is actually a convex polytope in RdQ, and we can always choose M to be a vertex
of M('P) (of which there are finitely many).

To see that M (P) is a polytope, note that in order to guarantee the constraint that = € P implies
Mx € P it is necessary and sufficient that M map each vertex of P to a point within P. Therefore
for each vertex v (of the finitely many vertices) of P and each halfspace Ax < b (of the finitely
many halfspaces) defining P, we obtain the linear constraint AMv < b on the matrix M. These
linear constraints define M(P).

Now, note that for any fixed rewards ! and actions 2, the sum Y., (r*, Mx!) is linear in the
matrix M. This means that over all matrices M € M(P), it is maximized at one of the vertices of
M(P). In particular, in Lemma 4, we can always ensure that the M we choose to define G is one
of these finitely many vertices (and therefore there are only finitely many possible P-games we can
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generate). One of these games G must occur for infinitely many values of 7', and that game satisfies
the theorem statement. |

F.4. Proof of Theorem 6

Proof [Proof of Theorem 6] Consider the transcript of this game when played for 7" rounds. Let
q' = (1%, s') € Q be the optimizer’s action in round ¢, and let 2* € P be the learner’s action in round
t. Since A is low swap regret, we know there exist vertex decompositions p’ of 2! such that for any
swap function 7 : V(P) - V(P),

T T
> {70 - Yot at) = o(T). )

t=1 t=1
Using the fact that 2! = ﬁ, we can rewrite (7) as

T

> (', 7 (o) = o) = o(T). @®)

t=1

Decomposing (8) over vertices in V(P), this becomes

T
I (rt,w(v) - v) =o(T). 9)

veV(P) t=1

Now, let o, = YL, pb. let 7, = (XL, pirt) /oy, and let 5, = (2L, ptst)/o,. Note that (7, 5,)
is a convex combination of the optimizer’s actions (7, s') and therefore belongs to Q.
We can once again rewrite (9) as

> ou(Fu, m(v) —v) = o(T). (10)
veV(P)

Now, note that we can write the optimizer’s utility in the form Y, (p) 0 (3, v). Assume that
the statement of the theorem is not true, namely that for infinitely many 7", we have that

S ouffu) 2 (Val(G) + )T (an
veV(P)

for some v > 0. Let BR(S,) € V(P) be the learner’s best response to the optimizer’s action (7, )
in GG. By the definition of the Stackelberg value of G, we have that

> ou(5y, BR(Sy)) < Val(G)T (12)
veV(P)

Subtracting (12) from (11), we obtain

> 0u(5y,v-BR(5,)) 24T (13)
veV(P)
But this contradicts (10) for the swap function 7(v) = BR(S, ). The theorem follows. [ |
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F.5. Proof of Theorem 8

Proof [Proof of Theorem 8] Note that when K = C' = 2, there are four vertices in V(P): v11 =
(1,0;1,0), v12 = (1,0;0,1), w21 = (0,1;1,0) and vay = (0,1;0,1). The learner will play vq; for
the first 7'/4 rounds, v for the second 7'/4 rounds, vo; for the third 7'/4 rounds, and v9o for the
last 7'/4 rounds. Simultaneously, the rewards will be r1; = v11 for the first 7'/4 rounds, r12 = v12
for the next 7'/4 rounds, r91 = vo; for the next T'/4 rounds, and finally, r9s = v11 for the last T'/4
rounds. Note that for the last 7'/4 rounds, 752 # v22, but instead rog = v11.

Let us begin by considering the polytope swap regret of this instance. Note that each action of
the learner is already a vertex belonging to V' (P). This means that we have no freedom in choosing
the vertex partition; each vertex partition must put all of its weight on the action itself. Then, the
swap function which maps (v11,v12,v921,v22) = (v11,v12,v21,v11) increases the learner’s utility
by 2 points per round for the last 7'/4 rounds, and therefore PolySwapReg > T'/2.

On the other hand, there is no linear function which maps vertices v11,v12,v21 to themselves
but which maps the vertex wvog to the vertex v11. To upper bound the linear swap regret, we can find
the best linear swap function by checking each of the extremal points of M (P). It turns out there
are 64 such extremal swap functions, and a straightforward computation shows that none perform
better than the identity function. It follows that LinSwapReg = 0. |

F.6. Proof of Theorem 9

Proof [Proof of Theorem 9] We extend the example separating linear swap regret and polytope
swap regret in Theorem 8. We generalize this to a game G where the optimizer has four actions,
each corresponding to one of the four quarters of the game (so the optimizer plays action 1 for
the first 7'/4 rounds, action 2 for the next 7'/4 rounds, etc.). For each action 4, the optimizer
has a reward vector s; € R*, denoting that if the learner plays a mixed action a € P, then the
optimizer gets reward (c, s;). (In the language of polytope games, the action set for the optimizer
is @ = conv({(vi, 5;)},). If we set:

s1 = (0.00,0.26;0.60,0.21)
so = (0.05,0.17;0.45,0.68)
s3 = (0.16,0.25;0.33,0.20)
si = (0.16,0.68;0.22,0.44),

then we can check that while Val(G) = 0.74, the optimizer gets 0.75757 reward from playing the
mentioned trajectory of actions (action 1, then 2, then 3, then 4). |

F.7. Proof of Theorem 11

Proof [Proof of Theorem 11] We adapt an example of Braverman et al. (2018). We describe a
Bayesian game G with M = N = C' = 2. We will interpret this game as a game where the optimizer
is trying to sell an item to a learner whose value is specified by the context c. The optimizer can set
one of two prices for the item (0 or 1), the learner’s value for the item is either 1/4 or 1/2 (depending
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on the value of (), and the learner must choose whether to buy or not buy the item (without seeing
the price). Formally, we have

Il
—_—
=10

|

~.
~——
.

UL(Z.,].,C)

|
.
.

uO(ia 17 C)

where i € {0,1},7 € {0,1},c € [2], and let D be the uniform distribution over the two contexts.
It is straightforward to verify that Val(G) = 1/4, and this is achievable if the optimizer plays « =
(3/4,1/4) (i.e., the optimizer sets a price of 1/4 for the item).

We now show that an optimizer can get 7'/4 + Q(7T') when playing against a learner running
Algorithm 1 for T steps. As in the description of the algorithm, let 5° : [C] — A([N]) be the
strategy the learner plays in round ¢.

Note that since N = 2, low-swap-regret over N actions is equivalent to low-regret over N
actions, so we can just assume that both of the sub-algorithms A are a low-regret algorithm such
as Hedge. The only property of the learning algorithm that we will need is the following: assume
R!(c)p is the total reward of action 0 up until round ¢ in context c and that R’(c); is the total reward
of action 1 up until round ¢ in context c. Then there is a sublinear function r(7") = o(T") such that if
R'(c)1 - R'(c)o > r(t), then 5(c)g < o(T).

Now consider the following strategy for the optimizer: the optimizer will play O for the first 7'/2
rounds and 1 for the last 7'/2 rounds. Let us consider the values of R'(c)g and R'(c);. When j =0,
the learner does not buy the item and uy, = up = 0, so R(c)o = 0. On the other hand R'(c); = ct/4
fort e [1,7/2] and R*(c)1 = ct/4 - (t - T/2) for t € [1,T/4]. Note that when ¢ = 2, R(c) > 0 for
all t (and in fact R*(c) > o(T") for almost all t), so 5*(c)1 > 1 —o(T) for almost all ¢. It follows that
the optimizer receives utility (1/2) - (T//2) -1 -0(T) = T/4 - o(T') from the context ¢ = 2.

On the other hand, when ¢ = 1, R'(¢) > 0 for all 1 <t < 3T'/4. A similar argument shows that
in this case, the optimizer receives utility (1/2) - (7'/4) = T/8 — o(T") from this context. Overall,
the optimizer receives utility 37'/8 — o(T") = T'/4 + Q(T'). [ |

F.8. Proof of Lemma 13

Proof [Proof of Lemma 13] Fix a 8 : [C] - A([IN]), and consider the function 5’ : [C] - R"
defined via:

N c
B'(e)j = Zlﬁ(c)j' (%,j',j + 21 %,j,N+c'5(C')j)-
§'= o=

We will show that 5’(c) is also an element of [C'] - A([N]). Note that since both 3(c) and
7e,; are distributions, from the above equation we can observe that 3'(c); € [0,1] for all j. It thus
suffices to check that }; B'(¢); =1 for each ¢ € [C']. We perform this computation:
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Now, since this mapping from 3 to 3 is a continuous mapping from A([N]) to A([N])¢,
by Brouwer’s fixed point theorem, there must exist an element 3 € A([N])® which is fixed by this

mapping (and therefore satisfies the equation in the theorem statement). |

F.9. Proof of Theorem 14

Proof [Proof of Theorem 14] We will show that the average strategy profile of the optimizer and
learner (over all 7" rounds) is approximately a correlated equilibrium of (G, from which the conclu-
sion will follow.

We begin by showing that in this average strategy profile, the learner cannot benefit much by
“misreporting” their type, i.e.

T T
;uL(at,ﬁt(c),c) ZguL(at,ﬁt(c'),c)—o(T). (14)

To show this, note that the external regret guarantees of algorithm 4. ; ensure that for any
ke[N+C],

T

T
Z ,J"Yc,y >3 TZ,j,k -o(T). (15)

Let us pick k = N + ¢’. Then the above inequality becomes

N

Mﬂ

TegsVeg) 2 2 B1(e)j-ur(al, B1(c"),¢) = o(T). (16)

t:1 t=1

On the other hand, note that
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N C
(Tz,ja’)/é,j) = Bt(c)j ( Z ’Yc,j,j’uL(aaj,7c) + Z 'Yc,j,N-%—c’uL(a: 6t(cl)7 C)) = Bt(c)juL(aa ﬁt(c)7 C)>
j'=1 =1

(17)
where the last equality follows as a consequence of (3). Substituting this into (16), we have that:

T T
;/Bt(c)j ~ur(a, (), ¢) ;Bt(C)j ~ug(a’, B(¢'),¢) = o(T) (18)

Summing (18) over all j € [N] (and using the fact that 3, Bt(c); = 1), we obtain our desired
inequality (14).

We now show that in the average strategy profile, the learner cannot benefit much by applying
a swap function to their action. Specifically, let 7w : [IV] — [N] be an arbitrary swap function. We
will show that

T T
;uL(at,Bt(c),C) > ;UL(O[t,TI'(Bt(C)),C) —-o(T). (19)

Here for 8 € A([N]), we write 7(/3) to denote the element of A([N]) which satisfies 7(/5); =
Y jren-1(j) B (i.e., we can sample from 7(3) by first sampling j’ from /3 and then playing 7(;j')).

As before, we will start from the external regret guarantee (15) of the individual algorithm A, ;.
If we fix k& = 7(j) this time, and apply the same logic as before, we obtain the inequality

T T
;Bt(c)j -uL(at,,Bt(c),c) > ;Bt(c)j -uL(at,W(j),c) —-o(T). (20)
But now, note that
N
Z “(0); ur(a,m(j),¢) =ur(a’,m(8(c)), c). 21

It follows that by summing (20) over all j € [ N ] that we obtain our desired inequality.
Now, consider the set of C' distributions F, over [M ] x [ N] given by

(i,4) = ZZofﬁt (©);-
‘7:0 1 15=1

In words, the collection of distributions F. record the average strategy profile played by the
optimizer and learner over the 7" rounds. Now, (14) and (19) imply that for each T, there exists a
function £(T") = o(1) such that F/ form an e-approximate correlated equilibrium of G (where an
e-approximate equilibrium satisfies the inequalities in the definition of a correlated equilibrium up
to a slack of ). Note that if we let CorrVal(G, ) be the maximum value for the optimizer over
all e-correlated equilibria, then the optimizer will receive a reward of at most CorrVal(G,=(T"))T
against this optimizer.

But now, note that CorrVal(G, ) converges to CorrVal(G) as € — 0. In particular, this means
that CorrVal(G,e(T')) — CorrVal(G) = o(1), and therefore the optimizer will receive a reward of at
most CorrVal(G)T + o(T). [ |
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F.10. Proof of Theorem 15

Proof [Proof of Theorem 15] We adapt a proof of Guruganesh et al. (2021) which shows hardness
of computing optimal contracts in principal agent problems with types (“adverse selection”). We
will reduce to bounded-degree dominating-set, which is known to be an APX-hard problem Chlebik
and Chlebikova (2008). Let I be a graph with V' vertices, each with maximum degree at most 3.
We will construct from H a Bayesian game G with M = V + 1 actions for the optimizer, N = 5
actions for the learner, and C = 2N contexts.

For each vertex 1 < v < V, let nbr(v,0) = v, and let nbr(v, 1), nbr(v,2), and nbr(v,3) be
the three neighbors of v in H, arbitrarily ordered (if a vertex v has fewer than 3 neighbors, let
nbr(v,j) = -1if j > deg(v)). We will label the M =V + 1 actions for the optimizer 1,2,3,...,V
and @. We will label the N = 5 actions for the learner 0, 1, 2, 3, and 0. Finally, we will label the
C=2Vtypes1,2,...,V,and 1,2,...,V.

We now describe the payoffs of G. We first restrict our attention to contexts ¢ = v for some
v € [V']. Intuitively, for these contexts the game works as follows. If the learner plays 0, then both
the learner and optimizer receives nothing. Otherwise, if the learner plays action j € {0,1,2,3} and
the optimizer plays action 4, the learner loses 1/(2V") but receives a payment of 1 from the optimizer
if ¢ = nbr(v, j). On the other hand, the optimizer gains 1/V" if nbr(v, j) exists, but loses 1 to the
learner if ¢ = nbr(c, j). Formally, we have (for v € V)

ur(iog,v) = 1 =nbr(v, ) - o
uo(i,j,v) = %H(nbr(v,j) #-1)-1(i =nbr(v,j))
ur(i,0,v) = wup(i,0,v) =0

Now let us consider a context ¢ = ¥ for some v € [V']. In this case, if the learner plays any action
j € {0,1,2,3}, the learner receives —1/(2V") and the optimizer receives 0. On the other hand, if
the learner plays 0 then they receive a payment of 1 from the optimizer if i = v, and the optimizer
receives a payoff of 1/V but must pay the learner 1 if ¢ = v. Formally:

uL(iaﬁa E) = ]I(’L = ’U)
—_ 1
UO(ia 055) = V - ]I(Z = U)
L 1
ur(i,5,0) = o
uO(ivjaE) =0

Finally, we assume the distribution D is uniform over contexts, i.e. p. = 1/2V for all contexts c.
Let us analyze G as a Bayesian Stackelberg game. First note that regardless of what mixed
strategy « the optimizer plays, when the context is v the learner’s best response is to play 0: this
guarantees them a non-negative utility, whereas any other action they play gives them a utility of
—-1/2V. These ¥ types cost the optimizer whenever the optimizer allocates weight to an action
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i € [V] instead of to @. In particular, the optimizer loses a total of (1 — ay) utility from these types
combined.

On the other hand, assume the type ¢ = v for some v € [V']. Then if there exists an action j
such that the optimizer places weight at least 1/(2V") on nbr(v, j) (i.e., anpr(v,5) > 1/(2V)), some
such action will be the learner’s best response: this action guarantees the learner a positive payoff,
whereas the payoff for all other actions is at most zero. In this case the optimizer can get a payoff
ofupto 1/V —1/(2V)) = 1/(2V'). On the other hand, if no such action exists, the learner should
just play O this gives the learner zero utility, whereas all other actions will earn the learn negative
utility. This case leads to the optimizer earning O utility.

From these observations, the first thing we can notice is that for each ¢ € [V'], the optimizer
should allocate either weight 0 or 1/(2V") to action 4. In particular, the optimizer never loses utility
by decreasing the weight of an action from above 1/(2V") down to 1/(2V'), or from less than 1/(2V")
all the way down to 0. From now on, let’s assume that «; € {0,1/(2V")} forall i € [V].

Let S be the subset of [V'] containing the vertices ¢ where c; = 1/(2V"). Let nbr(S) equal the
set of vertices i’ € [V'] such that nbr(i’,j) € S for some j; in other words, nbr(S) is the set of
vertices dominated by .S. Then we claim that the value of the optimizer when playing this mixed
strategy is equal to:

[nbr(S)] - |5
vz

This is since: i) the optimizer gains utility 1/(2V") from each type i € nbr(.S), ii) the optimizer
loses utility 1/(2V) from each type i with i € S, and iii) each type has an equal probability of
1/(2V) of occurring.

Now, we claim that maxgc[y)|nbr(S)| - |S| = V — D, where D is the size of the minimal
dominating set. To see this, note that while nbr(S) # [V'], one can weakly monotonically increase
the value of |nbr(S)| — |S| by adding an element of [V'] \ nbr(S) to S (this increases |S| by 1
and |nbr(S)| by at least 1. On the other hand, if nbr(S) = [V], then S is a dominating set so
min S| = D by definition. It follows that

V-D
Val(G) = TR

By the results of Chlebik and Chlebikové (2008) (Theorem 6), there exist graphs with degree
at most 3 where it is NP-hard to distinguish decide between the cases D > 0.2879V and D <
0.2872V. For the games generated from these graphs, it is likewise hard to distinguish whether
Val(G) < 0.1781/V or whether Val(G) > 0.1782/V. It is therefore NP-hard to compute Val(G)
(or the associated Stackelberg strategy) to within a factor of (1 —¢) fore = 1/1782.

|
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