
Proceedings of Machine Learning Research vol 178:1–77, 2022 35th Annual Conference on Learning Theory

Efficient Projection-Free Online Convex Optimization with
Membership Oracle

Zakaria Mhammedi MHAMMEDI@MIT.EDU

Massachusetts Institute of Technology

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
In constrained convex optimization, existing interior point methods do not scale well with the
dimension of the ambient space. Alternative approaches such as Projected Gradient Descent only
provide a computational benefit for simple convex sets where Euclidean projections can be performed
efficiently, such as Euclidean balls. For other more complex sets, the cost of the projections can
be too high. To circumvent these issues, alternative methods based on the famous Frank-Wolfe
algorithm have been studied and widely used. Such methods use a Linear Optimization Oracle at
each iteration instead of Euclidean projections; the former can often be performed efficiently. Such
methods have also been extended to the online and stochastic optimization settings. However, the
Frank-Wolfe algorithm and its variants do not achieve the optimal performance, in terms of regret
or rate, for general convex sets. What is more, the Linear Optimization Oracle they use can still
be computationally expensive in some cases. In this paper, we move away from Frank-Wolfe style
algorithms and present a new reduction that turns any algorithm A over a Euclidean ball (where
projections are cheap) to an algorithm over a general convex constraint set C contained within
the ball, without sacrificing the performance of the original algorithm A by much. Our reduction
requires O(T lnT ) calls to a Membership Oracle on C after T rounds, and no linear optimization on
C is needed. Using this reduction, we recover optimal regret bounds [resp. rates], in terms of the
number of iterations, in online [resp. stochastic] convex optimization. Our guarantees are also useful
in the offline convex optimization setting when the dimension of the ambient space is large.

1. Introduction

In this paper, we are interested in designing efficient algorithms for constrained convex optimization
in the online, offline, and stochastic settings. Popular algorithms for optimizing a convex objective f
defined on a bounded convex set C ⊂ Rd include, for example, the ellipsoid or cutting plane methods
(Grötschel et al., 1993, 2012; Bubeck, 2015). Though such algorithms enjoy linear convergence rates,
where the optimality gap decreases exponentially fast with the number of iterations, their per-iteration
computational complexity depends super-linearly in the dimension d. In particular, if Cost(MC) is
the computational cost of testing if some point x ∈ Rd belongs to C, then state-of-the-art cutting
plane-based methods have a computational complexity of order O(d3 + d2Cost(MC)) log(1/ε) to
find an ε-suboptimal point (Lee et al., 2015, 2018). Thus, when the dimension d is large, such
methods can become impractical.

For some convex sets like the Euclidean ball, alternative methods, such as the projected Gradient
Descent (GD) algorithm, dispense of the “expensive” dimension dependence in their computational
complexity at the cost of a worse dependence in 1/ε (e.g. 1/ε2 instead of log(1/ε)) in their conver-
gence rate. Despite this cost, such methods are still favorable in practice when the dimension d is
large. We refer the interested reader to Bubeck (2015) for a comprehensive comparison between the

© 2022 Z. Mhammedi.



MHAMMEDI

convergence rates of different optimization algorithms. In some settings, evaluating the objective
function f is itself expensive. For example, this is the case in many machine learning applications
where the objective involves a sum over a large number of data points. In this case, a popular approach
is to use (projected) Stochastic Gradient Descent (SGD), where it suffices to evaluate a stochastic
version of the objective f at each iteration, which can often be done efficiently. SGD enjoys similar
computational benefits as GD. However, when the domain C of interest is not a Euclidean ball, the
main bottleneck of such methods is often the projections that need be performed each time the iterates
of the algorithm step outside of C. This has fueled a long line of research around the design of,
so-called, projection-free algorithms that swap expensive projections for cheaper linear optimizations
over the domain C. The reader is referred to the vast literature on projection-free optimization that
include, for instance, (Frank et al., 1956; Hazan, 2008; Jaggi, 2013; Garber, 2016; Kerdreux, 2020;
Bomze et al., 2021).

The first projection-free algorithm (a.k.a. the Frank-Wolfe algorithm) was introduced by Frank
et al. (1956) who applied it to smooth optimization on polyhedral sets. The Frank-Wolfe algorithm
swaps expensive projections on the convex set C for linear optimization on C, which for many sets
of interest can be performed efficiently (see Table 2). A similar algorithm was later introduced
for the Online Convex Optimization (OCO) setting with linear losses (Kalai and Vempala, 2005).
This is a setting where instead of optimizing a fixed function, the goal is to minimize a quantity
called regret. Formally, at each round t in OCO, a learner (algorithm) outputs an iterate xt in some
convex set C, then observes a convex loss function `t : C → R that may be chosen by an adversary
based on xt and the history up to round t. The goal is to minimize the regret RegretT (x) :=∑T

t=1 `t(xt) −
∑T

t=1 `t(x), which represents the difference between the cumulative loss of the
learner and that of any comparator x ∈ C.

Offline [resp. Stochastic] optimization are special cases of OCO, where `t is fixed [resp. stochastic
with a fixed mean] for all t. Algorithms designed for OCO (e.g. Online Gradient Descent (Zinkevich,
2003)) often lead to optimal convergence rates when used in the offline and stochastic settings
via online-to-batch conversion techniques (Cesa-Bianchi et al., 2004; Shalev-Shwartz et al., 2011;
Cutkosky, 2019). For examples of problems that can be modeled via OCO we refer the reader to
the OCO introduction by Hazan (2016). Unlike in the offline setting where there are algorithms
such as those based on the cutting plane method that converge exponentially fast with the number of
iterations, there are no equivalent options for OCO since the losses are different at each round and
the goal is to minimize the regret. This means that designing efficient projection-free algorithms for
OCO is even more crucial than in the offline and stochastic settings.

In this paper, we continue the long line of research in the design of efficient projection-free
algorithms for online and stochastic optimization (see e.g. (Kalai and Vempala, 2005; Hazan and
Kale, 2012; Hazan and Luo, 2016; Hazan and Minasyan, 2020)). We depart from the Frank-
Wolfe-style approach by presenting a new algorithm that requires a Membership OracleMC for
C instead of a Linear Optimization Oracle (LOO). When given x ∈ Rd, the Membership Oracle
returns I{x ∈ C}. We present an algorithm that requires a total of O(T lnT ) calls to a (possibly
approximate) Membership Oracle and guarantees aO(

√
T ) regret bound for general convex functions

and convex sets. This regret bound is optimal in the number of rounds T for general OCO. This result
improves upon previous results designed for more specific use cases, and closes the longstanding
regret gap between projection-free (e.g. Frank-Wolfe-style algorithm) and projection-based methods
by achieving optimal regret. We now discuss our contributions in more detail.

2



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Contributions. For OCO with general convex losses, we provide an algorithm in the form of
a (projection-free) reduction that achieves a O(κ

√
T ) regret after T rounds using a total of Õ(T )

[resp. Õ(dT )] calls to an approximate Separation [resp. Membership] Oracle, for some κ > 0 that
depends on C. The constant κ, which may be assumed less than d without loss of generality (see
Rem. 1), takes the role of a

√
d factor that is present in the regret bounds of previous projection-free

algorithms. In Table 2, we display bounds on κ as function of d for many sets of interest.
We also present a more efficient version of our first algorithm that makes only Õ(1) calls per

round to a Membership Oracle (instead of Õ(d) calls) at the cost of a multiplicative
√
d factor in

the regret bound. Thus, our approach allows a trade-off between computation (i.e. Oracle calls) and
regret. Our reduction also allows us to build an adaptive projection-free algorithm for OCO with
strongly convex losses that achieves a logarithm regret without requiring the parameter of strong
convexity as input, while ensuring a Õ(

√
T ) regret in the worst case.

Our guarantees for general OCO readily transfer to the stochastic setting via well-known online-
to-batch conversion techniques (Cesa-Bianchi et al., 2004; Shalev-Shwartz et al., 2011), leading
to a convergence rate of order O(κ/

√
T ) which is optimal in T . We also present an algorithm

for β-smooth stochastic optimization that achieves the rate O(βκ2/T 2 + σκ/
√
T ), where σ2 is

the variance of the noise of the observed subgradients. Crucially, our algorithm does not require
knowledge of either β or σ, and is thus fully adaptive. When instantiated in the offline setting
(i.e. when σ = 0), theses rates imply that our algorithms represent viable alternatives to state-of-the-
art cutting plane methods (Lee et al., 2018) whenever d ≥ Ω(κ2/ε2) for general convex functions or
when d ≥ Ω(κ/

√
ε) for smooth functions. We summarize our contributions in Table 1, where we

compare our average regret/rates to the best known methods that apply to general convex sets.
We achieve these results by reducing an OCO problem on a general convex set C to an OCO

problem on a ball, where projections can be performed efficiently. More specifically, we present an
algorithm wrapper that takes in any base algorithm A defined on a Euclidean ball (where projections
can be performed cheaply) containing C and turns it into an algorithm on C that does not incur any
expensive projections and whose regret bound is at most a factor O(κ) worse than that of A.

Related Works. This paper continues a long a line of work in projection-free online learning.
Table 1 summarizes the guarantees of state-of-the-art Frank-Wolfe-style algorithms that are applicable
to general convex sets. For OCO with general convex sets/functions, the best known regret is of order
O(T 3/4) and was achieved by Hazan and Kale (2012). The corresponding Frank-Wolfe algorithm
requires a single call to a Linear Optimization Oracle per round. Later, Garber and Hazan (2016)
introduced an algorithm that achieves the optimal O(

√
T ) [resp. O(log T )] regret in OCO with

general [resp. strongly convex] losses with one call to an LOO per round. However, their results only
apply when the convex set is a polytope, and they use an Oracle that requires at least O(min(dT, d2))
arithmetic operations per round (translating into O(min(n4, Tn2)) operations when C is a subset of
n× n matrices). Closer to our approach is that of Mahdavi et al. (2012) and Levy and Krause (2019)
who essentially also considered Membership and Separation Oracles for their algorithms instead of
a Linear Optimization Oracle on C. In their setting, the set C is of the form {x ∈ Rd | h(x) ≤ 0},
where h : Rd → R is a smooth convex function, which translates into the set C being smooth. The
approach of Mahdavi et al. (2012) requires at least one orthogonal projection onto C. Levy and
Krause (2019) avoid this by providing a fast approximate projection and achieve optimal regret
bounds for both convex and strongly convex losses while only requiring a single call to a Separating
and Membership Oracle for C per round. However, their guarantees only applies for smooth sets.

3



MHAMMEDI

Setting Loss Function Average Regret/Rate
Previous Best This paper

Online Non-Smooth T−1/4 (Hazan and Kale, 2012) T−1/2 (Thms. 8,15, 16)
Online Smooth T−1/3 (Hazan and Minasyan, 2020) T−1/2 (Thm. 15)
Online Strongly Convex T−1/3 (Kretzu and Garber, 2021) T−1 · lnT (Thm. 17)
Stochastic Non-Smooth T−1/3 (Hazan and Kale, 2012) T−1/2 (Thms. 8,15,16)
Stochastic β-Smooth (σ2-var) T−1/2 (Lan et al., 2017) βT−2 + σ/T−1/2 (Thm. 18)
Stochastic Strongly Convex T−1/3 (Hazan and Kale, 2012) T−1 · lnT (Thm. 17)
Offline Non-Smooth T−1/3 (Hazan and Kale, 2012) T−1/2 (Thms. 8,15,16)
Offline β-Smooth βT−2 (Lan and Zhou, 2016) βT−2 (Thm. 18)

Table 1: Only results that hold for general bounded convex sets are included. The algorithms that
achieve the reported results for our paper require either Õ(d) or Õ(1) calls per round to a
Membership Oracle for C. In the latter case, the regret bound is a

√
d factor worse.

In a way, their algorithm complements that of Garber and Hazan (2016) that works for polytopes
(which are non-smooth sets). Our approach can be viewed as a generalization of that of Mahdavi et al.
(2012); Levy and Krause (2019) to general sets. Finally, we mention the work of Abernethy et al.
(2012) who used a self-concordant barrier for the set of interest to avoid projections. The efficient
version of their algorithm, which is based on the damped Newton step, has a O(d3) per-round
computational complexity (due to matrix inversion).

𝑤

𝒞

Origin

Euclidean
Projection
of	𝑤 onto	𝒞

Gauge
Projection
of	𝑤 onto	𝒞

Figure 1: Gauge vs Euclidean
projections.

For OCO with smooth [resp. strongly] convex losses (Hazan
and Minasyan, 2020) [resp. (Kretzu and Garber, 2021)] provide
algorithms that achieve aO(T 2/3) regret (up to multiplicative factors
in the dimension), requiring a single call to an LOO per round. For
smooth projection-free stochastic optimization, the best rate we are
aware of is of order O(β/T 2 + σ/

√
T ), where β is the smoothness

parameter and σ is the stochastic noise. The first algorithm to achieve
this makes O(T ) LOO calls after T rounds and is due to Lan et al.
(2017). This improves on the previous best T−1/4 rate due to Hazan
and Kale (2012) that uses the same number of Oracle calls. We
achieve a similar rate as that of Lan et al. (2017), albeit we use
a Membership Oracle instead of an LOO. The story is similar for
offline smooth convex optimization where we achieve the optimal
accelerated rate of O(β/T 2) for β-smooth function as the algorithm
of Lan and Zhou (2016), albeit without requiring knowledge of β.

Finally, the core idea behind our algorithm is inspired by recent techniques (Cutkosky and
Orabona, 2018; Cutkosky, 2020) that leverage certain surrogate losses to reduce a constrained OCO
problem to an unconstrained one. The key novelty in our work is a choice of surrogate losses that
depend on the Gauge function (also known as the Minkowski function) of the set C. In particular,
we choose this dependence in a way that allows us to replace potentially expensive (Euclidean)
projections by inexpensive Gauge projections (see Definition 5 and Figure 1), provided one has
access to a Membership Oracle. We are able to perform efficient Gauge projections using recent
techniques for estimating subgradients of convex functions that are not necessarily differentiable

4



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

(Lee et al., 2018). Our algorithm for strongly-convex OCO [resp. smooth stochastic optimization]
builds on reductions due to Cutkosky and Orabona (2018) [resp. Cutkosky (2020)].

Outline. In §2, we describe our setting and provide some standard definitions from convex analysis.
In §3, we describe tools we use to approximate the Gauge function of a set and its subgradients;
these will be key to deriving our projection-free algorithms. In §4, we present our main method
that reduces constrained OCO on an arbitrary compact convex set C to OCO on a Euclidean ball
containing C. There, we also discuss the implications of this result in the stochastic and offline
optimization settings. We conclude with a discussion in §5. A table of contents is provided in the
appendix.

Notation. For a real function f : A → R, we denote by arg maxa∈A f(a) [resp. arg mina∈A f(a)]
the subset K of A such that f(b) = supa∈A f(a) [resp. f(b) = infa∈A f(a)], for all b ∈ K. We
denote by B(r) the Euclidean ball of radius r centered at the origin, and let ‖·‖ be the Euclidean norm.
Finally, for any mathematical statement E , we let IE = 1 if E is true, and 0 otherwise. Additional
notation needed in our proofs is included in Appendix A.

2. Setting and Definitions

We consider the standard OCO setting where at each round t ≥ 1, a learner (the algorithm) outputs
an iterate xt in some convex set C ⊂ Rd, then the environment reveals a convex loss `t : C → R,
and the learner suffers loss `t(xt). The goal of the learner is to minimize the regret RegretT (x) :=∑T

t=1 `t(xt)−
∑T

t=1 `t(x) after T ≥ 1 rounds against any fixed comparator x ∈ C.
We say that (`t) is an adversarial loss sequence when `t, t ≥ 1, may depend on the learner’s

iterate xt as well as the history (xs, `s)s∈[t−1]. This is the type of losses we will consider in our
general OCO setting. We note that our bounds are often on the linearized regret

∑T
t=1〈gt,xt − x〉,

where, for all t ≥ 1, gt is in the subdifferential ∂`t(xt) of `t at xt (see e.g. (Hiriart-Urruty and
Lemaréchal, 2004) for a definition), and 〈·, ·〉 denotes the standard inner product. Such bounds
automatically transfer to bounds on the regret RegretT (x) by convexity of the losses (`t); for any
x ∈ C and t ≥ 1, we have `t(xt) − `t(x) ≤ 〈gt,xt − x〉, for all gt ∈ ∂`t(xt). Bounding the
linearized regret is standard in OCO (see e.g. (Hazan, 2019)).

In this work, we will not assume knowledge of the horizon T , and so our regret bounds hold for
all T ’s simultaneously; these are so-called anytime regret bound. We will allow the outputs (xt) of
the learner to be random. In this case, for any t ≥ 1, we let Gt denote the σ-algebra generated by
(xs)s∈[t], and we denote Et[·] := E[· | Gt]. When, for any round t, the output xt of an algorithm A is
a deterministic function of the history (xs, `s)s∈[t−1], we say that A is deterministic. Throughout, we
assume that C is “sandwiched” between two Euclidean balls:

Assumption 1 We assume that C ⊆ Rd is a closed convex set s.t. for some 0 < r ≤ R, we have

B(r) ⊆ C ⊆ B(R). (1)

Remark 1 Assumption 1 comes with no loss of generality as one can easily re-parametrize any
OCO setting to satisfy (1) without any significant computational overhead. In Appendix F, we
discuss the details of how this can be done in the general OCO setting as well as in various popular
optimization settings. In Appendix F, we also derive corresponding upper bounds on the asphericity
κ := R/r (Goffin, 1988), which appears as a multiplicative factor in our regret bounds. As can be

5



MHAMMEDI

seen in Table 2, κ is less than
√
d for many sets of interest. We also note that, in the worst case, κ can

always be bounded by d [resp.
√
d] for general [resp. centrally symmetric] convex sets by applying

an affine re-parametrization (Flaxman et al., 2005).

Our goal in this paper is to design algorithms with low regret in OCO without incurring expensive
(Euclidean) projections onto the set C. For this, we will use a Membership Oracle for the set C to
perform what we call Gauge Projections, which can be done efficiently using a small number of
calls to the Oracle. A Membership Oracle is a mapMC : Rd → {0, 1}, where for any x ∈ Rd,
MC(x) = 1 if and only if x ∈ C. Such Oracles are often the building blocks of many offline
optimization algorithms (Grötschel et al., 1993; Bubeck, 2015; Lee et al., 2018). In many practical
settings, one can only efficiently test membership approximately, and so for the sake of generality we
will state our results when only such approximate Oracles are available. To formally define the notion
of approximate Membership Oracle, we let B(C, δ) := {x ∈ Rd : ∃y ∈ C such that ‖x− y‖ ≤ δ}.
We also define B(C,−δ) := {x ∈ Rd : ∀y ∈ B(δ), x+ y ∈ C}.

Definition 2 (Approximate Membership Oracle) Let δ > 0 and C be a convex set s.t. B(δ) ⊆
C ⊂ Rd. Then, the map MEMC(·; δ) : Rd → {0, 1} is a δ-approximate Membership Oracle if

∀x ∈ Rd, I{x∈B(C,−δ)} ∧ I{x∈B(C,δ)} ≤ MEMC(x; δ) ≤ I{x∈B(C,−δ)} ∨ I{x∈B(C,δ)}. (2)

Some definitions of (approximate) Membership Oracles only require (2) to hold with high probability
(see e.g. Lee et al. (2018)). Our analysis can easily be extended to this case, but we make the
deterministic assumption in (2) to simplify the presentation. We will use an approximate Mem-
bership Oracle to build a δ-approximate Linear Optimization Oracle OC◦(·; δ) for the polar set C◦,
where for any w in a ball containing C, the random output (γ, s) of OC◦(w; δ) essentially satisfies
supu∈C〈w,u〉 ≤ γ ≤ supu∈C〈w,u〉+ δ and 〈s,w〉 ≥ supu∈C〈w,u〉 − δ with high probability1.

We now present some standard definitions from convex analysis:

Definition 3 (Polar Set) Let C ⊆ Rd be a convex set. The polar set C◦ of C is defined as C◦ := {s ∈
Rd : 〈s,u〉 ≤ 1,∀u ∈ C}.

The notation of a polar set is key to our approach. We will essentially build an efficient Linear
Optimization Oracle on C◦, which will then allow us to perform, what we call, Gauge projections
instead of Euclidean ones. Gauge projections (Def. 5 below) are defined with respect to a quasi-metric
based on the Gauge function (also known as the Minkowski function) of the set C:

Definition 4 (Gauge and Support Functions) Let C ⊆ Rd be a convex set. The Gauge function
γC of C is defined as γC(w) := inf{λ > 0 : w ∈ λC}, for w ∈ Rd. The support function σC of C is
defined as σC(w) := supu∈C〈u,w〉, for w ∈ Rd.

The Gauge function satisfies all properties of a norm except for symmetry, which requires the set C
to be centrally symmetric. Fortunately, we do not need this property to perform efficient projections
with respect to the quasi-metric dC(u,w) := γC(u −w). The concept of support function in the
previous definition will also be key in our analysis (it is the Gauge function of the polar set C◦). We
now introduce the concept of Gauge projection/distance to a set:

1. The guarantee provided by γ (i.e. 〈w,u〉 ≤ γ ≤ supu∈C〈w,u〉+ δ) will be crucial in our analysis, which is why we
make our LO Oracle OC◦ return a scalar-vector pair instead of a single vector as is more common for such Oracles.

6



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Definition 5 Let C be as in Assump. 1, the Gauge projection on C is the set-valued map ΠG
C : Rd ⇒

C defined by ΠG
C (w) := arg minu∈C γC(w−u). We also define the Gauge distance to C as the map:

SC(w) = inf
u∈C

γC(w − u) ≥ 0, for all w ∈ Rd. (3)

Gauge projections, which can be done efficiently using a Membership Oracle (see §3), will be all we
need to ensure the iterates of our algorithms are in C.

3. Preliminaries: Gauge Function Approximation

In this section, we briefly describe some of the technical tools we require for our method (additional
details are provided in Appendix B). At the heart of our approach is the design of surrogate losses for
online and stochastic optimization that depend on the Gauge distance function SC in (3) in a way
that leads to algorithms that perform Gauge projections instead of (potentially expensive) Euclidean
projections. Naturally, this will require the ability to efficiently evaluate SC and its subgradients. The
next lemma (whose proof is in App. B) shows that SC and ∂SC can be expressed as concise functions
of γC (the Gauge function):

Lemma 6 For any set C satisfying Assump. 1, and any u 6∈ C andw ∈ Rd, we have u
γC(u)

∈ ΠG
C (u),

SC(w) = 0 ∨ (γC(w)− 1), and ∂SC(w) =

{
∂γC(w) = arg maxs∈C◦〈s,w〉, if w /∈ C;
{0}, otherwise.

Note that for any u 6∈ C, Lemma 6 also provides the expression of a Gauge projection point in ΠG
C (u)

(i.e. u/γC(u)), which will be leveraged by our algorithm. Next, we describe how we build efficient
algorithms for approximating γC and its subgradients using our approximate Membership Oracle
MEMC . As Lemma 6 shows, this is all we need to approximate SC , its subgradients, and Gauge
projections onto C.

Approximating γC . By definition of the Gauge function, we have,

∀w ∈ Rd, γC(w) = inf{λ ∈ R≥0 | w ∈ λC} = 1/ sup{ν ∈ R≥0 | νw ∈ C}. (4)

Using the Membership Oracle MEMC , we can approximate the largest ν ≥ 0 such that νw ∈ C
via bisection, which will lead to an approximation of γC(w) by (4). This is exactly what we do in
Algorithm 2 in Appendix B. Algorithm 2 (GAUC) requires at most dlog2((4κ)2/δ)e+ 1 calls to the
Membership Oracle MEMC(·; rδ/(4κ)2) to return a δ-approximate value of γC , where κ := R/r and
r,R > 0 are as in (1). In Lemma 10 of Appendix B, we state the full guarantee of Algorithm 2.

Approximating the subgradients of γC . In addition to approximating γC , we will also need to
approximate its subgradients. By Lemma 6, the subdifferential of SC coincides with that of γC at any
pointw outside C. The lemma also shows that finding a subgradient of γC is equivalent to performing
linear optimization on the polar set C◦. In Appendix B, we present two algorithms, OPTC◦ (Alg. 3)
and OPT1d,C◦ (Alg. 4), based on (Lee et al., 2018, Algorithm 2), which use GAUC (Alg. 2) and a
random partial difference along different coordinates to approximate the subgradients of γC . The
first algorithm OPTC◦ requires at most O(d ln(dκ/δ)) calls to the approximate Membership Oracle
MEMC to find a “δ-approximate” subgradient; the precise guarantee is stated in Proposition 11.

7



MHAMMEDI

The algorithm OPT1d,C◦ is a stochastic version of OPTC◦ that picks a single random coordinate I
along which to estimate the subgradient of the Gauge function γC . As a result, OPT1d,C◦ requires
at most O(ln(dκ/δ)) calls to the approximate Membership Oracle MEMC , which will provide a
computational benefit over OPTC◦ at the cost of a multiplicative

√
d in the regret bound. Further, the

output of OPT1d,C◦ is equal to that of OPTC◦ in expectation for the same input (see Lemma 13).
We now move to the main section of the paper where we present our projection-free reduction

that uses the tools we described in this section.

4. Efficient Projection-Free Online and Stochastic Convex Optimization

In this section, we will use our approximate Linear Optimization Oracles on C◦ described in the
previous section to build efficient algorithms for OCO with optimal regret bounds. Our final
algorithms make at most Õ(T ) calls to the Membership Oracle MEMC after T ≥ 1 rounds, and are
also time-uniform in the sense that they do not require a horizon T as input.

Algorithm 1 Projection-Free Algorithm-Wrapper for OCO on C.
Require: I) An OCO algorithm A on B(R) ⊇ C; II) A tolerance sequence (δt) ⊂ (0, 1/3);

and III) LO Oracle OC◦ on C◦ such that OC◦(w; δ) ∈ R≥0 × Rd, ∀w ∈ B(R), δ ∈ (0, 1).
// In the ideal case, (γ, s) = OC◦(w; δ) =⇒ γ = 〈s,w〉 and s ∈ arg maxu∈C◦〈u,w〉

1: Initialize A and set w1 ∈ B(R) to A’s first output.
2: for t = 1, 2, . . . do
3: Set (γt, st) = OC◦(wt; δt)
4: Set νt = I{γt≥1}st. // Subgradient of SC at wt

5: Play xt = I{γt≥1}wt/γt + I{γt<1}wt. // Gauge projection of wt onto C
6: Observe subgradient gt ∈ ∂`t(xt).
7: Set g̃t = gt− I〈gt,wt〉<0〈gt,xt〉νt // g̃t ∈ ∂ ˜̀

t(wt); ˜̀
t(w) := 〈gt,w〉 − I〈gt,wt〉<0〈gt,xt〉SC(w)

8: Set A’s tth loss function to ft : w 7→ 〈g̃t,w〉.
9: Set wt+1 ∈ B(R) to A’s (t+ 1)th output given the history ((wi,xi, fi)i≤t).

10: end for

To avoid expensive projections, our algorithms make use of convex surrogate losses of the form
˜̀(w) := 〈g,w〉 + bSC(w), for w ∈ Rd and b ≥ 0, where SC is the Gauge distance function in
(3) and g is a subgradient of the loss of interest ` : C → R. Note that ˜̀ is not constrained to the
set C, unlike the actual loss of interest `. The choice of such a surrogate loss function is inspired
by existing constrained-to-unconstrained reductions in OCO due to Cutkosky and Orabona (2018);
Cutkosky (2020). Similar to the latter, our projection-free reduction allows us to bound the regret
of our Algorithm 1 by the regret of any OCO subroutine A that is fed subgradients of the surrogate
losses. Here, the iterates of A need not be constrained to the set C since the domain of the surrogate
losses is technically unconstrained. Thus, to build efficient projection-free OCO algorithms on C
with optimal regret, it suffices to pick a sub-algorithm A that I) has an optimal regret bound on a set
W containing C, and II) does not incur any expensive projections. We will pickW = B(R) ⊇ C so
that Euclidean projections ontoW , which may be required by A, can be performed efficiently.

We now state our main reduction result when the LO Oracle OC◦ is set to the approximate LO
Oracle OPTC◦ (Alg. 3) we described in §3. The full proof of the lemma is in App. I.1.

8



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Lemma 7 Let κ := R/r and A be any OCO algorithm on B(R). Further, for t ≥ 1, letwt, g̃t,xt,
and gt ∈ ∂`t(xt) be as in Alg. 1 with OC◦ ≡ OPTC◦ (Alg. 3) and any tolerance sequence
(δs) ⊂ (0, 1/3). Then, for all t ≥ 1, we have xt ∈ C, and there exists a random variable
∆t ∈

[
0, 152d4κ3δ−2t

]
such that Et−1[∆t] ≤ δt, ‖g̃t‖ ≤ (1 + ∆t + κ)‖gt‖, and for all x ∈ C,

〈gt,xt − x〉 ≤ ˜̀
t(wt)− ˜̀

t(x) + δtR‖gt‖ ≤ 〈g̃t,wt − x〉+ (2δt + ∆t)R‖gt‖, (5)

where ˜̀
t(w) := 〈gt,w〉 − I〈gt,wt〉<0〈gt,xt〉SC(w).

Proof Sketch. For simplicity, we provide a proof of the lemma when Alg. 1 has access to a perfect LO
Oracle OC◦ on C◦, i.e. when ∀w ∈ Rd, δ > 0, (γ, s) = OC◦(w; δ) only if s ∈ arg maxx∈C◦〈x,w〉
and γ = 〈s,w〉. Thus, we will show the claims of the lemma with ∆t = δt = 0.

Let γt, νt, wt, g̃t, and xt be as in Algorithm 1. By the expression of the subdifferential of SC in
Lemma 6 and the definition of ˜̀

t, we have that gt − I〈gt,wt〉<0〈gt,xt〉νt ∈ ∂ ˜̀
t(wt). Thus, since

−I〈gt,wt〉<0〈gt,xt〉 > 0 (see definition of xt in Alg. 1), ˜̀
t is convex and so

∀x ∈ C, ˜̀
t(wt)− ˜̀

t(x) ≤ 〈gt − I〈gt,wt〉<0〈gt,xt〉νt,wt − x〉 = 〈g̃t,wt − x〉.

It remains to show that 〈gt,xt − x〉 ≤ ˜̀
t(wt)− ˜̀

t(x), for all t ≥ 1 and x ∈ C. First note that for
all x ∈ C, we have SC(x) = 0, and so

˜̀
t(x) = 〈gt,x〉, ∀x ∈ C. (6)

We will now compare 〈gt,xt〉 to ˜̀
t(wt) by considering cases. Suppose that γt < 1. In this case, we

have xt = wt and so 〈gt,xt〉 = 〈gt,wt〉 = ˜̀
t(wt). Now suppose that γt ≥ 1 and 〈gt,wt〉 ≥ 0. By

the fact that γC(wt) = γt ≥ 1 and xt = wt/γt, we have

〈gt,xt〉 ≤ 〈gt,wt〉 = ˜̀
t(wt). (7)

Now suppose that γt ≥ 1 and 〈gt,wt〉 < 0. Using the fact that xt = wt/γt = wt/γC(wt) and that
SC(wt) = γC(wt)− 1 (Lemma 6), we have

〈gt,xt〉+ 〈gt,xt〉 · SC(wt) = 〈gt,wt/γC(wt)〉+ 〈gt,wt〉 − 〈gt,wt/γC(wt)〉 = 〈gt,wt〉.

Rearranging this, we get

〈gt,xt〉 = 〈gt,wt〉 − 〈gt,xt〉SC(wt) = ˜̀
t(wt). (8)

By combining (6), (7), and (8), we obtain 〈gt,xt − x〉 ≤ ˜̀
t(wt) − ˜̀

t(x) ≤ 〈g̃t,wt − x〉, for all
x ∈ C, which shows (5) with ∆t = δt = 0. It remains to bound ‖g̃t‖ in terms of ‖gt‖ and show
that xt ∈ C. When γt < 1, we have g̃t = gt and xt = wt, and so ‖g̃t‖ = ‖gt‖. Furthermore,
since γC(wt) = γt < 1, the definition of the Gauge function implies that wt ∈ C and so xt ∈ C
(since xt = wt). Now suppose that γt ≥ 1. In this case, we have xt = wt/γt = wt/γC(wt) and
g̃t = gt − I〈gt,wt〉<0〈gt,xt〉νt. Using this and that γC(wt) = γt ≥ 1, we get that ‖g̃t‖ is equal to

‖gt − I〈gt,wt〉<0〈gt,xt〉νt‖ = ‖gt‖+ ‖gt‖
‖wt‖
γC(wt)

‖νt‖
(∗)
≤ ‖gt‖

(
1 +
‖wt‖
r

)
≤ (1 + κ)‖gt‖.

9



MHAMMEDI

where (∗) follows by the fact that ‖νt‖ ≤ 1/r (since νt ∈ C◦ ⊆ B(1/r)–see Lem. 42 for the set
inclusion). Further, when γt ≥ 1, we have γC(xt) = γC(wt/γC(wt)) = γC(wt)/γC(wt) = 1, and
so xt ∈ C.

Lemma 7 allows us to bound the instantaneous (linearized) regret 〈gt,xt − x〉 of Alg. 1 w.r.t. the
instantaneous regret 〈g̃t,wt−x〉 of subroutine A. Thus by summing (5) in Lemma 7 for t = 1, 2, . . . ,
we can bound the regret of Alg. 1 with respect to that of A. Further, Lemma 7 shows that the scale of
the subgradients (g̃t) of the losses fed to A is at most a constant times the scale of the subgradients
(gt) at the iterates (xt) of Alg. 1; in particular, ‖g̃t‖ ≤ (1 + ∆t + κ)‖gt‖, ∀t ≥ 1, where κ := R/r.
This latter fact ensures that the regret bound of A is not too large as a function of the scale of (gt).

4.1. Algorithm for General Online Convex Optimization

To streamline the discussions that follow, we will instantiate Alg. 1 and state its regret bound
with a specific subroutine A (for a general A, see App. D). In particular, we will set A to Follow-
The-Regularized-Leader Proximal (FTRL-prox) (McMahan, 2017). FTRL-prox is summarized in
Alg. 8 in App. G. The algorithm takes input parameter R > 0 and performs at most one Euclidean
projection onto the ball B(R) per iteration. An advantage of FTRL-prox is that it has a regret
bound (see Prop. 25) of the form O(

√
VT ), where VT :=

∑T
t=1 ‖gt‖2 and (gt) are the observed

subgradients. This is desirable for reasons we outline in §4.2. We now state the regret bound of
Alg. 1 when A is set to FTRL-prox:

Theorem 8 Let δ ∈ (0, 1/3) and κ := R/r, with r and R as in (1). Let (`t) be any adversarial
sequence of convex losses on C and (xt) be the iterates of Alg. 1 in response to (`t). If Alg. 1 is
run with subroutine A set to FTRL-prox with parameter R; OC◦ ≡ OPTC◦ (Alg. 3); and δt = δ/t2,
t ≥ 1, then for all T ≥ 1 and ρ ∈ (0, 1), we have (xt)t∈[T ] ⊂ C and with probability at least 1− ρ:

∀x ∈ C,
T∑
t=1

〈gt,xt − x〉 ≤ 4(1 + κ)R
√
VT +R · (12 + 10δ/ρ) ·max

t≤T
‖gt‖, (9)

where VT :=
∑T

t=1 ‖gt‖2 and gt ∈ ∂`t(xt), for all t ≥ 1.

Proof Sketch. By Lemma 7, we have xt ∈ C, ∀t ≥ 1. Lemma 7 also says that there exists a sequence
(∆t) ⊂ R≥0 of non-negative random variables satisfying Et−1[∆t] ≤ δt, for all t ∈ [T ], such that
for all x and t ≥ 1, 〈gt,xt − x〉 ≤ 〈g̃t,wt − x〉+ (2δt + ∆t)R‖gt‖. Letting Qt :=

∑T
t=1 ‖g̃t‖2,

and summing the latter inequality for t = 1, . . . , T , we obtain,
T∑
t=1

〈gt,xt − x〉 −
T∑
t=1

(2δt + ∆t)R‖gt‖ ≤
T∑
t=1

〈g̃t,wt − x〉 ≤ 2R
√

2QT , for all x ∈ C, (10)

where the last inequality follows by the fact that A is FTRL-prox and the regret bound of the latter
in Prop. 25. Now, by the fact that ‖g̃t‖ ≤ (1 + κ + ∆t)‖gt‖ (Lem. 7) and (a + b)2 ≤ 2a2 + 2b2

for all a, b ∈ R>0, the RHS of (10) can be further bounded by 4(1 + κ)R
√
VT + 4

∑T
t=1 ∆tR‖gt‖.

It remains to bound the sum
∑T

t=1(2δt + 5∆t)R‖gt‖ in terms of δRmaxt≤T ‖gt‖/ρ, which we do
using Doob’s martingale inequality (see App. I.2 for the full proof).

The O(
√
VT ) regret bound in Theorem 8 is known as an adaptive regret bound, and can be much

smaller than the standard O(
√
T ) worst-case regret; e.g. when the losses are smooth (Srebro et al.,

2010a; Cutkosky and Orabona, 2018). We say more on this in §4.2 below.

10



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Oracle Complexity. Note that at each round t, the instance of Alg. 1 in Thm. 8 invokes OPTC◦(·; δt)
once. Thus, in light of the discussion in §3 (see also Rem. 12 in App. B), the algorithm makes at
most O(dT ln(dTκ/δ) calls to the Membership Oracle MEMC after T rounds. We also note that if
one has a Separation Oracle for C, then Alg. 1 can be executed with only Õ(1) calls-per-round to the
latter (instead of Õ(d) calls to MEMC) without compromising the regret bound in Thm. 8.

We can reduce the number of MEMC Oracle calls to a total of O(T ln(dTκ/δ)) by using the
“one-dimensional” stochastic version of OPTC◦ we discussed in §3; i.e. OPT1d,C◦ (Alg. 4). This will
come at the cost of a O(

√
d) multiplicative factor in the regret bound (see App. C.1).

The strongly convex case. In App. C.2, we design a subroutine A (Alg. 5) such that the instance
of Alg. 1 with this subroutine achieves a logarithmic regret whenever the losses are strongly convex,
while maintaining a Õ(

√
T ) regret in the worse case. Further, the algorithm does no require any

curvature parameter as input. Finally, in Appendix E we present a general reduction that makes our
algorithm for the strongly convex case as well as many previous online algorithms (such as those by
(Ross et al., 2013; Wintenberger, 2017; Kotłowski, 2017; Kempka et al., 2019)) scale-invariant; in the
sense that scaling the losses by some positive constant does not change the outputs of the algorithm
(consequently the algorithm does not require any scale information as input). The reduction is a
generalization of previous algorithms by Mhammedi et al. (2019); Mhammedi and Koolen (2020).

4.2. Algorithms for Stochastic and Offline Optimization

The stochastic setting. The guarantee of Alg. 1 in Thm. 8 readily transfers to the stochastic
setting (formally described in App. C.3) via well-known online-to-batch conversion techniques
(Cesa-Bianchi et al., 2004; Shalev-Shwartz et al., 2011), leading to a convergence rate of order
O(κ/

√
T ) which is optimal in T . What is more, it can be shown that the instance of Alg. 1 in Thm. 8

achieves a rate of order Õ(βκ2/T + σκ/
√
T ) when the objective function is β-smooth, without

requiring β or σ (the noise in the subgradients) as input. This follows by the fact that the bound in
Thm. 8 is of the form O(

√
VT )—enabled by the use of FTRL-prox—and (Cutkosky, 2019, Cor. 6).

In App. C.3, we build a subroutine A (Alg. 6) based on an existing reduction due to Cutkosky
(2019), such that the instance of Alg. 1 with this subroutine and OC◦ ≡ OPTC◦ achieves the faster
rate Õ(βκ2/T 2 + σκ/

√
T ), without knowing β or σ (see Thm. 18).

The offline setting. Finally, in the offline setting (a special case of the stochastic setting with
zero noise, i.e. σ = 0), the rates we just mentioned for general [resp. β-smooth] convex functions
imply that at most Õ(dκ2/ε2) [resp. Õ(dκ/

√
ε)] Membership Oracle calls are required to find an

ε-suboptimal point. Since state-of-the-art algorithms based on the cutting plane method require
O(d2 ln(1/ε)) calls to a Membership Oracle to achieve the same guarantee (Lee et al., 2018), our
algorithm provides a viable alternative to the latter whenever d ≥ Ω(κ2/ε2) for general convex
functions or when d ≥ Ω(κ/

√
ε) for smooth functions. We note that the algorithm of Lan and Zhou

(2016) has a similar guarantee to ours in the offline setting, though they require a Linear Optimization
Oracle on C instead of a Membership Oracle.

5. Discussion

In this paper, we presented a novel projection-free reduction that allowed us to turn any OCO
algorithm defined on a Euclidean ball B, to an algorithm on any convex set C contained in B, without
sacrificing the performance of the original algorithm by much. Thanks to this, we were able to

11



MHAMMEDI

build explicit algorithms that achieve optimal regret bounds in OCO without incurring expensive
Euclidean projections. In particular, we swapped the latter for Gauge projections, which can be
performed efficiently using a Membership Oracle; our final algorithms make at most O(dT lnT )
[resp. O(T lnT )] calls to such an Oracle after T rounds and guarantee a O(κ

√
T ) [resp. O(κ

√
dT )]

regret bound, where κ := R/r and R, r > 0 are such that B(r) ⊆ C ⊆ B(R).
The multiplicative factor κ in our regret bounds, which depends implicitly on the dimension,

replaces the
√
d factor in the regret bounds of previous projection-free algorithms (see e.g. (Hazan

and Kale, 2012; Hazan and Minasyan, 2020)). From Table 2, we see that κ ≤
√
d for many sets

of interests (the bounds on κ are derived in App. F). Furthermore, κ can always be assumed to be
less than d [resp.

√
d], without loss of generality, for general [resp. centrally symmetric] convex

sets by applying a certain affine reparametrization if necessary (Flaxman et al., 2005). We note that
κ may be thought of as a measure of how well the set C can be approximated by a Euclidean ball
(a larger κ means that C is not very “round”). If the set C is more like a “box”, then one way to
reduce κ is to apply our reduction (Alg. 1) with a subroutine A defined on, for example, a hypercube
containing C (where Euclidean projections are still cheap), rather than a Euclidean ball. We leave
such investigations for future work.

For the same number of Oracle calls as in our reduction, no existing Frank-Wolfe-based algorithm
guarantees a O(

√
T ) regret for general convex sets (unlike with our approach). However, this would

be comparing apples to oranges unless we consider the computational cost of the different Oracles
involved: Membership versus Linear Optimization Oracle. In Table 2, we see that the computational
complexities of these Oracles are comparable for various popular sets (see also Tab. 3). In many
optimization settings, the set of interest is specified via a small number of inequalities. In such cases,
a Membership Oracle, which simply checks all the inequalities, typically admits a more efficient
implementation than an LOO (e.g. convex-hull of permutation matrices—see Tab. 2). On the other
hand, there are sets with combinatorial structure such as Matroids (where the number of inequalities
defining the set can be exponential), for which performing Linear Optimization can be more efficient
than Membership evaluation. In this case, Frank-Wolfe-style algorithms may be more practical.
More generally, since (C◦)◦ = C for a closed convex set C, and LO on a convex set K is equivalent
to performing separation on its polar K◦, it is always possible to pick a set C on which LO is cheaper
than performing separation/testing membership, and vice versa. For these reasons, our approach
(which relies on separation/membership evaluation) may be viewed as complementary to ones that
use an LOO.

Bonus results. Since our reduction works for any base algorithm, one can achieve different types
of guarantees (e.g. a dynamic/anytime regret or one that scales with the norm of the comparator
(Mhammedi and Koolen, 2020; Cutkosky, 2020)) by substituting A in Alg. 1 with an algorithm that
is known to achieve the desired guarantee. We also note that our reduction can easily be extended to
the setting where the losses are exp-concave instead of strongly convex using existing results due to
Mhammedi et al. (2019). One can also easily extend our reduction to the Bandit setting (Chen et al.,
2019; Garber and Kretzu, 2020).

12



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Domain C Upper bound on κ post-reparam. Computational Complexity of
(see App. F for param. details). LOO OC(x; δ) MOMC(x; δ)

`p-ball in Rd O(d|1/p−1/2|), where C ⊂ Rd O(d) O(d)
Simplex ∆d ∈ Rd O(d), where C ⊂ Rd O(d) O(d)

Trace-norm-ball in Rm×n O(d1/4), where C ⊂ Rd O( nnz(x)√
δ

) Cost(SVD)

Op-norm-ball in Rm×n O(d1/4), where C ⊂ Rd Cost(SVD) O( nnz(x)√
δ

)

Conv-hull of Permutation Matrices in Rn×n O(d1/2), where C ⊂ Rd O(n3) O(n2)

Convex-hull of Rotation Matrices in Rn×n O(d1/4), where C ⊂ Rd Cost(SVD) Cost(SVD)
PSD matrices in Rn×n with unit trace O(d), where C ⊂ Rd O( nnz(x)√

δ
) O( nnx(x)√

δ
)

PSD matrices in Rn×n with diagonals ≤ 1 O(d3/4), where C ⊂ Rd O( nnz(x)√
δ5n−3

) O( nnx(x)√
δ

)

Table 2: If C ⊆ Rn×m, then d := mn. nnz(·) ≡ # of non-zeros. Table entries derived in App. F.

13



MHAMMEDI

Acknowledgments

We thank anonymous reviewers for detailed comments that helped improve the presentation of the
paper. We acknowledge support from the ONR through awards N00014-20-1-2336 and N00014-20-
1-2394.

References

Jacob Abernethy, Chansoo Lee, Abhinav Sinha, and Ambuj Tewari. Online linear optimization via
smoothing. In Conference on Learning Theory, pages 807–823. PMLR, 2014.

Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Interior-point methods for full-information
and bandit online learning. IEEE Transactions on Information Theory, 58(7):4164–4175, 2012.

Shalabh Bhatnagar. Adaptive newton-based multivariate smoothed functional algorithms for simula-
tion optimization. ACM Transactions on Modeling and Computer Simulation (TOMACS), 18(1):
1–35, 2007.

Immanuel M. Bomze, Francesco Rinaldi, and Damiano Zeffiro. Frank–wolfe and friends: a journey
into projection-free first-order optimization methods. 4OR, 19(3):313–345, 2021.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Lin Chen, Mingrui Zhang, and Amin Karbasi. Projection-free bandit convex optimization. In The
22nd International Conference on Artificial Intelligence and Statistics, pages 2047–2056. PMLR,
2019.

Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In International Conference
on Machine Learning, pages 1446–1454. PMLR, 2019.

Ashok Cutkosky. Parameter-free, dynamic, and strongly-adaptive online learning. In International
Conference on Machine Learning, pages 2250–2259. PMLR, 2020.

Ashok Cutkosky and Róbert Busa-Fekete. Distributed stochastic optimization via adaptive sgd.
Advances in Neural Information Processing Systems, 31:1910–1919, 2018.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in
banach spaces. In Conference On Learning Theory, pages 1493–1529. PMLR, 2018.

John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 385–394, 2005.

14



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Michael P Friedlander, Ives Macedo, and Ting Kei Pong. Gauge optimization and duality. SIAM
Journal on Optimization, 24(4):1999–2022, 2014.

Dan Garber. Faster projection-free convex optimization over the spectrahedron. In Proceedings of
the 30th International Conference on Neural Information Processing Systems, pages 874–882,
2016.

Dan Garber and Elad Hazan. A linearly convergent variant of the conditional gradient algorithm
under strong convexity, with applications to online and stochastic optimization. SIAM Journal on
Optimization, 26(3):1493–1528, 2016.

Dan Garber and Ben Kretzu. Improved regret bounds for projection-free bandit convex optimization.
In International Conference on Artificial Intelligence and Statistics, pages 2196–2206. PMLR,
2020.

JL Goffin. Affine and projective transformations in nondifferentiable optimization. Trends in
Mathematical Optimization, pages 79–91, 1988.

M Grötschel, L Lovász, and A Schrijver. Geometric algorithms and combinatorial optimization.
Algorithms and Combinatorics, 1993.

Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer Science & Business Media, 2012.

Elad Hazan. Sparse approximate solutions to semidefinite programs. In Latin American symposium
on theoretical informatics, pages 306–316. Springer, 2008.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2
(3-4):157–325, 2016.

Elad Hazan. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207, 2019.

Elad Hazan and Satyen Kale. Projection-free online learning. In Proceedings of the 29th International
Coference on International Conference on Machine Learning, pages 1843–1850, 2012.

Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 1263–1271, New York, New York, USA, 20–22 Jun 2016. PMLR.

Elad Hazan and Edgar Minasyan. Faster projection-free online learning. In Conference on Learning
Theory, pages 1877–1893. PMLR, 2020.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex analysis. Springer
Science & Business Media, 2004.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
Conference on Machine Learning, pages 427–435. PMLR, 2013.

15



MHAMMEDI

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

Michal Kempka, Wojciech Kotłowski, and Manfred K. Warmuth. Adaptive scale-invariant online
algorithms for learning linear models. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pages 3321–3330,
2019.

Thomas Kerdreux. Accelerating conditional gradient methods. PhD thesis, Université Paris sciences
et lettres, 2020.

Wojciech Kotłowski. Scale-invariant unconstrained online learning. In International Conference on
Algorithmic Learning Theory, ALT 2017, 15-17 October 2017, Kyoto University, Kyoto, Japan,
pages 412–433, 2017.

Ben Kretzu and Dan Garber. Revisiting projection-free online learning: the strongly convex case. In
International Conference on Artificial Intelligence and Statistics, pages 3592–3600. PMLR, 2021.

Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest eigenvalue by the power and
lanczos algorithms with a random start. SIAM journal on matrix analysis and applications, 13(4):
1094–1122, 1992.

Guanghui Lan and Yi Zhou. Conditional gradient sliding for convex optimization. SIAM Journal on
Optimization, 26(2):1379–1409, 2016.

Guanghui Lan, Sebastian Pokutta, Yi Zhou, and Daniel Zink. Conditional accelerated lazy stochastic
gradient descent. In International Conference on Machine Learning, pages 1965–1974. PMLR,
2017.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its
implications for combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pages 1049–1065. IEEE, 2015.

Yin Tat Lee, Aaron Sidford, and Santosh S Vempala. Efficient convex optimization with membership
oracles. In Conference On Learning Theory, pages 1292–1294. PMLR, 2018.

Kfir Levy and Andreas Krause. Projection free online learning over smooth sets. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 1458–1466. PMLR, 2019.

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and accelera-
tion. Advances in Neural Information Processing Systems, 31:6500–6509, 2018.

Mehrdad Mahdavi, Tianbao Yang, Rong Jin, Shenghuo Zhu, and Jinfeng Yi. Stochastic gradient
descent with only one projection. Advances in neural information processing systems, 25:494–502,
2012.

H Brendan McMahan. A survey of algorithms and analysis for adaptive online learning. The Journal
of Machine Learning Research, 18(1):3117–3166, 2017.

16



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Karola Mészáros, Alejandro H Morales, and Jessica Striker. On flow polytopes, order polytopes, and
certain faces of the alternating sign matrix polytope. Discrete & Computational Geometry, 62(1):
128–163, 2019.

Zakaria Mhammedi and Wouter M. Koolen. Lipschitz and comparator-norm adaptivity in online
learning. In Proceedings of Thirty Third Conference on Learning Theory, volume 125, pages
2858–2887. PMLR, 2020.

Zakaria Mhammedi, Wouter M Koolen, and Tim Van Erven. Lipschitz adaptivity with multiple
learning rates in online learning. In Conference on Learning Theory, pages 2490–2511. PMLR,
2019.

Marco Molinaro. Curvature of feasible sets in offline and online optimization. arXiv preprint
arXiv:2002.03213, 2020.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Francesco Orabona and Dávid Pál. Open problem: Parameter-free and scale-free online algorithms.
In Conference on Learning Theory, pages 1659–1664. PMLR, 2016.

Stephane Ross, Paul Mineiro, and John Langford. Normalized online learning. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 537–545, 2013.

James Saunderson, Pablo A Parrilo, and Alan S Willsky. Semidefinite descriptions of the convex hull
of rotation matrices. SIAM Journal on Optimization, 25(3):1314–1343, 2015.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and trends
in Machine Learning, 4(2):107–194, 2011.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. In
J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural
Information Processing Systems, volume 23. Curran Associates, Inc., 2010a.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low-noise and fast rates. In
Proceedings of the 23rd International Conference on Neural Information Processing Systems-
Volume 2, pages 2199–2207, 2010b.

Tim Van Erven and Wouter M. Koolen. Metagrad: Multiple learning rates in online learning. In 29
(NIPS), pages 3666–3674, 2016.

Tim Van Erven, Wouter M. Koolen, and Dirk Van der Hoeven. Metagrad: Adaptation using multiple
learning rates in online learning. arXiv preprint arXiv:2102.06622, 2021.

Olivier Wintenberger. Optimal learning with Bernstein online aggregation. Machine Learning, 106
(1):119–141, 2017.

17



MHAMMEDI

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pages 928–936,
2003.

18



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Appendices

19



MHAMMEDI

Contents

1 Introduction 1

2 Setting and Definitions 5

3 Preliminaries: Gauge Function Approximation 7

4 Efficient Projection-Free Online and Stochastic Convex Optimization 8
4.1 Algorithm for General Online Convex Optimization . . . . . . . . . . . . . . . . . 10
4.2 Algorithms for Stochastic and Offline Optimization . . . . . . . . . . . . . . . . . 11

5 Discussion 11

Appendices 19

A Additional Notation 22

B Efficient Gauge Projections using a Membership OracleMC 22
B.1 Approximating the Gauge Function γC usingMC . . . . . . . . . . . . . . . . . . 23
B.2 Approximating the Subgradients of γC usingMC . . . . . . . . . . . . . . . . . . 24

C Projection-Free Online and Stochastic Optimization (Detailed) 26
C.1 A More Efficient Algorithm for General OCO . . . . . . . . . . . . . . . . . . . . 26
C.2 Algorithm for Strongly Convex Online Optimization . . . . . . . . . . . . . . . . 28
C.3 Efficient Projection-Free Smooth Stochastic Optimization . . . . . . . . . . . . . . 30

D General Regret Reduction 32

E Algorithm Wrapper for Scale-Invariance 33

F Applying the Projection-Free Reduction in Practice 35
F.1 `p-Norm Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
F.2 Simplex ∆d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
F.3 Trace and Operator Norm Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
F.4 Convex-hull of Permutation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 38
F.5 Convex-hull of Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 40
F.6 PSD Matrices with Unit Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
F.7 PSD Matrices with Bounded Diagonals . . . . . . . . . . . . . . . . . . . . . . . 43
F.8 The Flow and Matroid Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

G Adaptive OCO Algorithms 45

H Linear Optimization on C◦ using a Membership Oracle for C 47
H.1 Proof of Lemma 10 (Approximate Gauge Function) . . . . . . . . . . . . . . . . . 51
H.2 Proof of Proposition 11 (Approximate LO Oracle on C◦) . . . . . . . . . . . . . . 52
H.3 Proof of Lemma 13 (Efficient Stochastic LO Oracle on C◦) . . . . . . . . . . . . . 54

20



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

I Proofs of the Regret Bounds and Convergence Rates 54
I.1 Proof of Lemma 7 (Instantaneous Regret Bound) . . . . . . . . . . . . . . . . . . 54
I.2 Proof of Theorem 8 (Regret Bound in High Probability using OPTC◦) . . . . . . . 57
I.3 Proof of Theorem 15 (Regret Bound in Expectation using OPT1d,C◦) . . . . . . . . 58
I.4 Proof of Theorem 16 (Regret Bound in High Probability using OPT1d,C◦) . . . . . 59
I.5 Proof of Theorem 17 (The Strongly Convex Case) . . . . . . . . . . . . . . . . . . 62
I.6 Proof of Theorem 18 (The Smooth Stochastic Case) . . . . . . . . . . . . . . . . . 71

J Technical Lemmas 76

21



MHAMMEDI

Appendix A. Additional Notation

In this section, we present some additional notation that we omitted from §2 of the main body due
to space. We let ln+(u) := 0 ∨ ln(u), for u > 0. For (xt) ⊂ Rd and t ∈ N, we write x1:t :=
(x1, . . . ,xt) ∈ Rd×t. For any real function f : A → R, we denote by arg maxa∈A f(a) [resp.
arg mina∈A f(a)] the subset K of A such that f(b) = supa∈A f(a) [resp. f(b) = infa∈A f(a)], for
all b ∈ K. For any p ∈ R ∪ {∞}, u ∈ Rd, and r ≥ 0 we denote by Bp(u, r), the ‖ · ‖p-ball of
radius r centered at u, where ‖ · ‖p denotes the p-norm. When u = 0, we simply write Bp(r) for
Bp(0, r). For the special case where p = 2, we let ‖ · ‖ := ‖ · ‖2 and B(·) := B2(·). We denote by
ΠB(r) : Rd → B(r) the Euclidean projection operator onto the ball B(r). For any set K, we denote
by convK [resp. bd C] the convex hull [resp. boundary] of K. We let ιK : Rd → {0,+∞} be the
indicator function of the setK, where ιK(w) = 0 if and only ifw ∈ K. Finally, for any mathematical
statement E , we let IE = 1 if E is true, and 0 otherwise.

Appendix B. Efficient Gauge Projections using a Membership OracleMC

In this section, we build explicit algorithms that use MEMC (see Definition 2) to efficiently approx-
imate γC and its subgradients. As a result of this (and thanks to Lemma 6), we show that Gauge
projections can be performed efficiently for any bounded convex set C satisfying Assumption 1 using
a Membership Oracle—requiring only Õ(d) calls to the latter, where Õ hides log factors in the toler-
ated approximation error. Thanks to Lemma 6, Gauge projections have a very simple interpretation;
the projection of a point w /∈ C onto C is the point of intersection of the ray {λw : λ ≥ 0} and the
boundary of C (see Figure 1). Such a point always exists under Assumption 1. Gauge projections are
all we need to ensure the iterates of our new algorithms are within C thanks to the carefully designed
surrogate losses in Section 4.

Our starting point is Lemma 6. To prove it, we need the concept of a normal cone:

Definition 9 (Normal Cone) Let C ⊆ Rd be a convex set. The normal cone of C at u ∈ C is the set
NC(u) := {s ∈ C : 〈s,w − u〉 ≤ 0, ∀w ∈ C}.

We also recall that ιC denotes the indicator function of a set C (see notation in App. A). With this, we
now prove Lemma 6:
Proof of Lemma 6. Suppose that γC(w) > 1 (note that by Assumption 1, we have γC(w) < +∞).
Note that this is equivalent to w 6∈ C by the definition of the Gauge function. We will show that
w/γC(w) ∈ arg minu∈C γC(w − u), which is equivalent to showing that

w/γC(w) ∈ arg min
u∈Rd

{γC(w − u) + ιC(u)} = arg min
u∈Rd

{σC◦(w − u) + ιC(u)} ,

where the last equality follows by Lemma 42-(a). Thus, w/γC(w) ∈ arg minu∈C γC(w − u) if

0 ∈ ∂φ(w/γC(w)), where φ(u) := σC◦(w − u) + ιC(u). (11)

Using the sub-differential chain-rule and the fact that ∂ιC(u) = NC(u) (see e.g. (Hiriart-Urruty and
Lemaréchal, 2004)), where NC(u) is the normal cone at u (see Definition 3), we have

∂φ(u) = −∂σC◦(w − u) +NC(u). (12)

22



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Let s∗ ∈ ∂σC◦(w −w/γC(w)). We will show that s∗ ∈ NC(w/γC(w)), where we recall that

NC(w/γC(w)) = {s ∈ Rd : 〈s,y〉 ≤ 〈s,w/γC(w)〉,∀y ∈ C}, (13)

which will imply (11) thanks to (12). By Lemma 42-(b), we have s∗ ∈ ∂σC◦(w −w/γC(w)) =
∂σC◦(w) = arg maxs∈C◦〈s,w〉, and so by Lemma 42-(a), we get 〈s∗,w〉 = σC◦(w) = γC(w). On
the other hand, by definition of the polar set C◦, we have 〈s∗,y〉 ≤ 1, for all y ∈ C. Using this and
the fact that 〈s∗,w〉 = γC(w), we get

∀y ∈ C, 〈s∗,y〉 ≤ 1 = 〈s∗,w〉/γC(w) = 〈s∗,w/γC(w)〉.

Combining this with the definition of the normal cone NC(w/γC(w)) in (13), we get that s∗ ∈
NC(w/γC(w)). This shows that s∗ ∈ ∂σC◦(w − w/γC(w)) ∩ NC(w/γC(w)), and so 0 ∈
∂φ(w/γC(w)) by (12). This in turn implies that

w/γC(w) ∈ arg min
u∈C

γC(w − u).

From this result and the definition of the proximity function SC(w), we get

SC(w) = γC(w −w/γC(w)) = γC(w · (1− 1/γC(w))) = (1− 1/γC(w)) · γC(w) = γC(w)− 1,
(14)

where the penultimate inequality follows by the current assumption that γC(w) > 1 and the positive
homogeneity of Gauge functions (Lemma 42-(b)). It remains to consider the case where γC(w) ≤ 1.
In this case, we have w ∈ C, and so

SC(w) = inf
u∈C

γC(w − u) = γC(w −w) = 0. (15)

In combination with (14), (15) shows that SC(w) = 0 ∨ (γC(w)− 1), which is a convex function
(since it is the maximum of two convex functions). Finally, (14) [resp. (15)] shows that ∂SC(w) =
arg maxs∈C◦〈s,w〉 when w 6∈ C(≡ γC(w) > 1) [resp. ∂SC(w) = {0} when w ∈ C].

As mentioned earlier, Lemma 6 shows the crucial fact that w/γC(w) ∈ ΠG
C (w), for any w 6∈ C, and

so to perform approximate Gauge projections (which we need to build our efficient algorithms), it
suffices to approximate γC . We technically also need to compute approximate subgradients of SC ,
which according to Lemma 6 reduces to linear optimization on C◦. Since we do not assume access
to a Linear Optimizer Oracle over C◦, we will estimate subgradients of SC using our Membership
Oracle MEMC .

B.1. Approximating the Gauge Function γC usingMC
By definition of the Gauge function, we have for any w ∈ Rd

γC(w) = inf{λ ∈ R≥0 | w ∈ λC} = 1/ sup{ν ∈ R≥0 | νw ∈ C}. (16)

Using the Membership Oracle MEMC , we can approximate the largest ν ≥ 0 such that νw ∈ C via
bisection, which will lead to an approximation of γC(w) by (16). This is exactly what we do in
Algorithm 2. We now state the guarantee of Algorithm 2 (the proof is Appendix H.1):

23



MHAMMEDI

Algorithm 2 GAUC: Approximate Gauge Function using Membership Oracle and the Bisection
Method.
Require: Input (w, δ) ∈ B(6R/5) × (0, 1) with R as in (1). ε-Approximate Membership Oracle

MEMC(·; ε) for C and ε > 0 (see Definition 2).

1: Set ε = δr/(4κ)2. // κ := R/r, where r and R are as in (1)

2: if MEMC(2w; ε) = 1 or ‖w‖ ≤ r/2 then
3: Return γ̃ = 0.
4: end if
5: Set α = 0, β = 2, and µ = (α+ β)/2.
6: while β − α > δ/(8κ2) do
7: Set α = µ if MEMC(µw; ε) = 1; and β = µ otherwise.
8: Set µ = (α+ β)/2.
9: end while

10: Return γ̃ = (α− δ/(8κ2))−1.

Lemma 10 (GAUC : Approximate Gauge Function) Let r,R > 0 be as in (1). For any δ ∈ (0, 1)
and w ∈ B(6R/5), the output γ̃ = GAUC(w; δ) of Algorithm 2 satisfies

γC(w) ≤ γ̃ ≤ γC(w) + δ, if γC(w) ≥ 9/16 or γ̃ ≥ 1.

Furthermore, Alg. 2 calls the Membership Oracle MEMC(·; rδ/(4κ)2) at most dlog2((4κ)2/δ)e+ 1
times.

Algorithm 3 OPTC◦ : Approximate Linear Optimization Algorithm on C◦.
Require: Input point w ∈ B(R) and δ ∈ (0, 1/3).

1: Set ε = r2δ3

103d7/2R2 , ν1 = rδ
10d , and ν2 =

√
εν1r
d1/2

. // r and R are as in (1)

2: Sample u ∈ B∞(w, ν1) and z ∈ B∞(u, ν2) independently and uniformly at random.
3: for i = 1, 2, . . . , d do
4: Let w′i and wi be the end point of the interval B∞(u, ν2) ∩ {z + λei : λ ∈ R}.
5: Set s̃i = 1

2ν2
(GAUC(w

′
i; ε)− GAUC(wi; ε)). // GAUC is as in Algorithm 2

6: end for
7: Set s̃ = (s̃1, . . . , s̃d)

> and γ̃ = GAUC(w; δ).
8: Return (γ̃, s̃).

B.2. Approximating the Subgradients of γC usingMC
In addition to approximating γC , we will also need to approximate its subgradients, which would
then lead to approximate subgradients of the Gauge distance function SC by Lemma 6. The lemma
also implies that approximating subgradients of γC essentially comes down to performing linear
optimization on C◦. Algorithm 3 (OPTC◦), which is based on (Lee et al., 2018, Alg. 2), uses GAUC
and a random partial difference in each coordinate to approximate the subgradients of γC . In the next
proposition, we state the precise guarantee of the algorithm. The proof of the proposition, which is in

24



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Appendix H.2, is somewhat technical and relies heavily on existing results due to Lee et al. (2018)
that we restate in Appendix H.

Proposition 11 (OPTC◦ : Approximate LOO on C◦) Let κ := R/r with r,R > 0 as in (1). For
any w ∈ B(R) and δ ∈ (0, 1/3), let (γ̃, s̃) be the output of Alg. 3 with input (w, δ). Then,
‖s̃‖∞ < +∞ almost surely, and there exists a positive random variable ∆ ∈ [0, 152d4κ3δ−2]
satisfying E[∆] ≤ δ, and such that if γ̃ ≥ 1, then

γC(u) ≥ γC(w) + 〈s̃,u−w〉 −∆ ·max(1, ‖u‖/R), ∀u ∈ Rd;

‖s̃‖∞ ≤
δ

R
+

1

r
; ‖s̃‖ ≤ ∆

R
+

1

r
; and ‖s̃‖2 ≤

(
2

r
+
δ

R

)
∆

R
+

1

r2
.

(17)

Remark 12 (Complexity of OPTC◦) In the setting of Proposition 11, Algorithm 3 (OPTC◦) re-
quires 2d · (dlog2((4κ)2/ε)e + 1) calls to the Membership Oracle MEMC(·; rε/(4κ)2), where
ε = r2δ3/(103d7/2R2), and one call to MEMC(·; rε/(4κ)2). This follows by Lemma 10 and the fact
that OPTC◦ makes 2 · d calls to GAUC(·; ε) and one call to GAUC(·; δ).

In light of Remark 12, Proposition 11 implies that approximating the subgradient of γC at a point
w ∈ B(R) up to some random error ∆ ≥ 0 satisfying E[∆] ≤ δ, requires only O(d ln(dκ/δ)) calls
to the Membership Oracle MEMC . This means that the approximation error decreases exponentially
fast with the number of calls to MEMC , which allows us to build our efficient projection-free
algorithms in Section 4.

Algorithm 4 OPT1d,C◦ : ‘One-Dimensional’ Stochastic Version of OPTC◦ .
Require: Input point w ∈ B(R) and δ ∈ (0, 1/3).

1: Set ε = r2δ3

103d7/2R2 , ν1 = rδ
10d , and ν2 =

√
εν1r
d1/2

. // r and R are as in (1)

2: Sample I ∈ [d], u ∈ B∞(w, ν1), and z ∈ B∞(u, ν2) independently and uniformly at random.
3: Let w′I and wI be the end point of the interval B∞(u, ν2) ∩ {z + λeI : λ ∈ R}.
4: Set s̃I = 1

2ν2
(GAUC(w

′
I ; ε)− GAUC(wI ; ε)). // GAUC is as in Algorithm 2

5: Set γ̂ = GAUC(w; δ) and ŝ = ds̃I · eI .
6: Return (γ̂, ŝ).

In some settings, calling a Membership Oracle Ω(d) times per iteration might still be too
expensive. A way around this is to use a stochastic version OPT1d,C◦ of OPTC◦ that calls MEMC
at most Õ(1) times and has the same output as OPTC◦ in expectation. Algorithm 4, OPT1d,C◦ ,
achieves this by randomly sampling a coordinate I ∈ [d] for estimating the subgradient of γC (Line 4
of Alg. 4) and using importance weights. We now state the guarantee of Algorithm 4 (the proof is in
Appendix H.3):

Lemma 13 Let δ ∈ (0, 1/3), w ∈ B(R), and κ := R/r, where r,R > 0 are as in (1). Further, let
(γ̃, s̃) = OPTC◦(w; δ) and (γ̂, ŝ) = OPT1d,C◦(w; δ) (Alg. 4). Then, ‖ŝ‖ < +∞ a.s.; γ̃ = γ̂; and if
γ̂ ≥ 1, it follows that

E[ŝ] = E[s̃], and E[‖ŝ‖2] ≤ d · (1/r + δ/R)2 .

25



MHAMMEDI

Remark 14 (Complexity of OPT1d,C◦) In the setting of Lemma 13, Algorithm 4 (OPT1d,C◦) re-
quires 2 · (dlog2((4κ)2/ε)e + 1) calls to the Membership Oracle MEMC(·; rε/(4κ)2), where
ε = r2δ3/(103d7/2R2), and one call to MEMC(·; δ). This follows by Lemma 10 and the fact
that OPT1d,C◦ calls GAUC(·; ε) twice and GAUC(·; δ) once.

Note that OPT1d,C◦ randomly selects a single coordinate I along which to estimate the subgradient
of the Gauge function γC . Generalizing this idea to k ≤ d coordinates, one can build a version
of OPT1d,C◦ , call it OPTkd,C◦ , that samples i ∈ [bd/kc] uniformly at random and selects coordi-
nates {ik + j − 1 : j ∈ [k]} ∩ [d] along which to estimate the subgradients of γC . In this case,
OPTkd,C◦ makes Õ(k) calls to the Membership Oracle and would lead to a natural trade-off between
computation (i.e. Oracle calls) and regret (see discussion in Section C.1).

Appendix C. Projection-Free Online and Stochastic Optimization (Detailed)

In this section, we provide the details of the online and stochastic optimization algorithms that we
omitted from §4 due to space. In §C.1, we consider the general OCO setting where the optimization
Oracle OC◦ in Algorithm 1 is set to OPT1d,C◦—the efficient stochastic version of OPTC◦ . In
§C.2, we design a subroutine A (Alg. 5) such that Algorithm 1, instantiated with this subroutine,
achieves a logarithmic regret whenever the losses are strongly convex, while maintain a Õ(

√
T )

regret in the worse case. In §C.3, we formally define the stochastic optimization setting and design a
corresponding subroutine A which, together with Alg. 1, lead to a final algorithm that adapts to the
noise and smoothness of the objective function.

C.1. A More Efficient Algorithm for General OCO

We now state the guarantee of Alg. 1 with OC◦ ≡ OPT1d,C◦ (the proof in in Appendix I.3):

Theorem 15 Let δ ∈ (0, 1/3) and κ := R/r, with r and R as in (1). Let (`t) be any adversarial
sequence of convex losses on C and (xt) be the iterates of Alg. 1 in response to (`t). Further, let
gs ∈ ∂`s(xs), s ≥ 1. If Alg. 1 is run with subroutine A set to FTRL-prox (Alg. 8) with parameter R;
OC◦ ≡ OPT1d,C◦; and δt = δ/t2, t ≥ 1, then (xt) ⊂ C and

∀x ∈ C,
T∑
t=1

E[〈gt,xt − x〉] ≤ 4R

√√√√(1 + d · (κ+ δ)2)
T∑
t=1

E [‖gt‖2] + 6δR · E
[
max
t∈[T ]
‖gt‖

]
.

(18)

The instance of Algorithm 1 in Theorem 15 invokes OPT1d,C◦(·; δt) at each iteration t. Thus, in light
of Remark 14 in App. B, the algorithm makes at mostO(T ln(dTκ/δ) calls to the Membership Oracle
MEMC after T rounds. We also remark that our choice of tolerance sequence (δt) in Theorems 8
and 15 is too conservative, requiring the Membership Oracle to be more accurate than necessary to
achieve a O(

√
T ) regret. In fact, our choice of (δt) in Theorems 8 and 15 ensures that the errors

involved in the approximations of the subgradients of the surrogate losses add up to a lower order
term in the regret bound; i.e. the right-most terms in (9) and (18). We can choose a larger sequence
of tolerances as long as the sum of the approximation errors is of order O(

√
T ). Next we derive a

high probability regret bound for Algorithm 1 and show that one can pick δt as large as O(t−1/2).

26



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

High Probability Regret Bound. We will now derive a high probability regret bound for Algorithm
1 where OC◦ ≡ OPT1d,C◦ (Alg. 4) and A is set to FTRL-prox. For the sake of simplicity, we will
assume that the losses are B-Lipschitz (see (20)). Technically, this condition is not needed to
derive the result in our next theorem (up to log factors in the regret), but we make it to simplify
the probabilistic argument we follow in the proof of the latter. We note that the algorithm does not
require knowledge of B.

Theorem 16 Let δ ∈ (0, 1/3), B > 0, and κ := R/r, with r and R as in (1). Let (`t) be
any adversarial sequence of B-Lipschitz convex losses on C and (xt) be the iterates of Alg. 1 in
response to (gt ∈ ∂`t(xt)). If Alg. 1 is run with subroutine A set to FTRL-prox with parameter
R; OC◦ ≡ OPT1d,C◦ (Alg. 4); and δt = δ/t−1/2, t ≥ 1, then (xt) ⊂ C and for all ρ ∈ (0, 1),
T ≥ d ln(1/ρ), and x ∈ C,

P

[
T∑
t=1

〈gt,xt − x〉 ≤ 8RB(κ+ δ)
√
dT (3 + 2 ln(1/ρ)) + 2dBR(2κ+ 2δ + 3δ

√
T/ρ)

]
≥ 1− ρ.

The proof of the theorem is in Appendix I.4. Once again, the instance of Algorithm 1 in Theorem 16
requires onlyO(T ln(Tdκ/δ)) calls of the Membership Oracle MEMC (see the discussion proceeding
Theorem 15).

Optimality of the bounds and computational trade-offs. All the regret bounds in Theorems
8-16 have an optimal dependence in T . As for the dependence in d, we see that the regret bounds
of Algorithm 1 in the settings of Theorems 15 and 16 can be improved by a factor of O(

√
d) when

making Õ(d) calls to MEMC per round (as in the setting of Theorem 8) or Õ(1) calls to a Separation
Oracle for C, if available. We also note that OPT1d,C◦ (Alg. 4), which is used in the settings of
Theorems 15 and 16, randomly selects a coordinate in [d] and estimates the subgradient of γC in
that coordinate’s direction. A version of this algorithm, call it OPTkd,C◦ , that samples i ∈ [bd/kc]
uniformly at random and selects coordinates {ik+ j − 1 : j ∈ [k]} ∩ [d] to estimate the subgradients
of γC would lead to a regret bound for Algorithm 1, with OC◦ ≡ OPTkd,C◦ , of order O(

√
dT/k),

while making Õ(k) calls to MEMC per round. This leads to a natural trade-off between computation
(Oracle calls) and regret.

Finally, we note that there is another potential dependence in d in the regret bounds through
the asphericity κ. In Section F, we bound this quantity for the popular settings listed on Table 1.
We are able to show that κ is often less than d1/2 in many settings. Nevertheless, we note that κ is
present in our bounds because of our pessimistic upper bounds on the norms of the subgradients of
the surrogate losses; i.e. ‖g̃t‖ ≤ (1 + ∆t + κ)‖gt‖, for all t ≥ 1 (see Lemma 7). In fact, we do not
expect the magnitude of (g̃t) to be often much larger than that of (gt) in practice; recall that g̃t 6= gt
only if the iterate wt of the subroutine A is outside C.

Implications for the stochastic and offline settings. The results we presented so far are also
relevant in the stochastic and offline settings thanks to the online-to-batch conversion technique
(Cesa-Bianchi et al., 2004; Shalev-Shwartz et al., 2011). In the latter settings (which we describe
in more detail in Section C.3), the losses (`t) are i.i.d. and satisfy E[`t] ≡ f for some fixed convex
function f : C → R. Thus, if we let RegretT (·) be the regret of Algorithm 1 in response to (`t) and

27



MHAMMEDI

x∗ ∈ arg minx∈C f(x), then the average iterate x̄T of Alg. 1 after T rounds satisfies

E[f(x̄T )]− inf
x∈C

f(x)
(∗)
≤ 1

T

T∑
t=1

E[`t(xt)− `t(x∗)] ≤
RegretT (x∗)

T
, (19)

where (∗) follows by Jensen’s inequality and the fact that xt is independent of `t. Plugging the regret
bounds of Alg. 1 in the settings of Theorems 15-16 into (19) leads to aO(

√
dκ2/T ) rate in stochastic

and offline optimization, which is optimal in T 2. Therefore, Alg. 1 in the latter settings requires
Õ(dκ2/ε2) calls to the Membership Oracle to attain an ε-suboptimal point in offline optimization.
Thus, whenever d ≥ Ω(κ2/ε2), our algorithm is a viable alternative to those based on the cutting
plane method, which require at least O(d2 ln(1/ε)) calls to a Membership Oracle to achieve the same
guarantee.

When the objective function f is β-smooth our adaptive bounds3 in Theorems 8 and 15 together
with an extension of the online-to-batch conversion analysis (Cutkosky, 2019, Corollary 6) automat-
ically imply a rate of O(βκ2/T + σκ/

√
T ), where σ2 is the variance of the stochastic noise (see

Section C.3 for a precise definition). Thus, in the offline setting (i.e. σ = 0), our algorithm achieves
the fast O(βκ2/T ) rate without knowing the smoothness parameter β. In Section C.3, we show how
this rate can be improved further.

C.2. Algorithm for Strongly Convex Online Optimization

In this section, we will build a subroutine A for Algorithm 1 that will enable the latter to ensure a
logarithmic regret when the losses are strongly convex, while maintaining the worst-case O(

√
T )

regret up to log-factors. The subroutine in question is displayed in Algorithm 5. This subroutine is
based on an exiting reduction due to Cutkosky and Orabona (2018) with the following key differences;
I) we perform clipping of the subgradients (g̃t) in Alg. 5; II) we slightly change the expression of
the variables (Zt) in Line 8 of Alg 5; and III) we use FreeGrad, a parameter-free OCO algorithm
(Mhammedi and Koolen, 2020), as the underlying OCO subroutine. These differences will allow
us to make our final algorithm scale-invariant in the sense that multiplying the losses by a positive
constant does not change the outputs of the algorithm. Crucially, the algorithm does not require any
prior scale information on the losses unlike many existing OCO algorithms (see e.g. (Mhammedi and
Koolen, 2020)).

2. The rate O(1/
√
T ) is optimal when no further assumptions on f are made (other than convexity).

3. Adaptive in the sense that they scale with
√∑T

t=1 ‖gt‖2 instead of
√
T .

28



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Algorithm 5 Subroutine A for Algorithm 1 for Strongly Convex Online Optimization.
Require: Parameters ε, R > 0, with R as in (1) and OCO Algorithm FreeGrad (Alg. 9). Input

(xt, ft) from the Master Algorithm 1 at each round t ≥ 1, where xt ∈ Rd and ft : Rd → R.

1: Initialize FreeGrad with parameters ε, R > 0, and set u0 to FreeGrad’s first output.
2: Set B̃0 = ε; Z0 = 2ε2; and v0 = 0.
3: for t = 1, 2, . . . do
4: Play wt = ut+1 + vt/Zt and observe g̃t ∈ ∂ft(wt). // ft is specified by Alg. 1

5: Set B̃t = B̃t−1 ∨ ‖g̃t‖ and ĝt = g̃t · B̃t−1/B̃t.
6: Send linear loss w 7→ 〈g̃t,w〉 to FreeGrad as the tth loss function.
7: Set ut+1 ∈ B(R) to FreeGrad’s (t+ 1)th output given the history ((ui,w → 〈g̃i,w〉))i≤t.
8: Set Zt = Zt−1 + ‖ĝt‖2 + B̃2

t − B̃2
t−1 and vt = vt−1 + ‖ĝt‖2xt.

// xt is specified by Alg. 1

9: end for

The underlying subroutine FreeGrad is displayed in Algorithm 9 in Appendix G. The key feature
of FreeGrad that allows us to adapt to strong convexity is that its regret is bounded from above
by O(‖w‖

√
VT ), up to log-factors in ‖w‖ and VT , where VT =

∑T
t=1 ‖gt‖2 and (gt) are the

observed subgradients at the iterates of the algorithm (the precise statement of the regret bound
is differed to Appendix G). Thus, similar to FTRL-prox, FreeGrad also has an adaptive regret that
can be much smaller than the worst-case O(

√
T ); e.g. when the losses are smooth (Srebro et al.,

2010a). Furthermore, FreeGrad’s regret bound scales with the norm of the comparator ‖w‖, and
thus becomes small for comparators close to the origin. This property will be crucial to prove a
logarithmic regret for strongly convex losses (Cutkosky and Orabona, 2018).

To simplify the analysis, we will state our result for B-Lipschitz losses (`t) which are those that
satisfy, for all t ≥ 1 and gt ∈ ∂`t(x):

‖gt‖ ≤ B. (20)

We also recall that (`t) are µ-strongly convex, for µ > 0, if for all t ≥ 1, x ∈ C and gt ∈ ∂`t(x):

∀y ∈ C, `t(y) ≥ `t(x) + 〈gt,y − x〉+ µ‖x− y‖2/2,

where ‖ · ‖ is the Euclidean norm. With this, we now state our main result for this subsection (the
proof is in Appendix I.5):

Theorem 17 Let µ,B > 0, δ ∈ (0, 1/3), and κ := R/r, where r and R as in (1). Suppose that
Algorithm 1 is run with OC◦ ≡ OPT1d,C◦ (Alg. 4); δt = δ/t2, ∀t ≥ 1; and sub-routine A set to
Alg. 5 with parameter ε > 0. Then, for any adversarial sequence of convex [resp. µ-strongly convex]
B-Lipschitz losses (`t) on C the iterates (xt) of Algorithm 1 satisfy (xt) ⊂ C, and for all T ≥ 1 and
x ∈ C, we have,

T∑
t=1

E[`t(xt)− `t(x)] ≤ UTRB
√
T +RBU2

T /ν, (21)[
resp.

T∑
t=1

E[`t(xt)− `t(x)] ≤
(
R

ν
+
B

2µ

)
BU2

T

]
,

where UT = O
(
νd1/2 ln(e+ κdRTB

εδ )
)
; ν := 1/(R ∧ 1) + κ+ δ; and gt ∈ ∂`t(xt), ∀t ≥ 1.

29



MHAMMEDI

We note that the instance of Algorithm 1 in the preceding theorem automatically adapts to the strong
convexity constant µ > 0 of the losses (`t), where it achieves a logarithmic regret. For general
convex losses, the algorithm ensures the optimal worst-case O(

√
T ) regret up to log-factors.

Computational Complexity. The instance of Algorithm 1 in Theorem 17 makes the same number
of calls to the Oracle OPT1d,C◦ as in the setting of Theorems 15 and 16. Thus, this instance makes at
most O(T ln(dκT/δ)) calls to the Membership Oracle MEMC . Further, we note that the sequence
(δt) may be set to δt = δ/t−1/2 [resp. δt = δt/t], for all t ≥ 1, for general convex [resp. strong-
convex] functions, allowing the Membership Oracle MEMC to be less accurate while maintaining the
same regret bound as Theorem 17 up to constant factors (see discussion after Theorem 15). Finally,
we restricted the losses to be B-Lipschitz in Theorem 17 only to simplify the proofs—the algorithm
need not know B.

Scale-invariance. Though the instance of Alg. 1 in Theorem 17 does not require a bound on the
norm of the gradients (an information typically required by other OL algorithms (Orabona and Pál,
2016)), the algorithm is not scale-invariant; multiplying the sequence of losses (`t) by some fixed
constant changes the iterates (xt) of the algorithm. In general, this is an undesirable property for OL
algorithms (Orabona and Pál, 2016).

Note also that the regret bound in Theorem 17 can technically be unbounded due to the fraction
B/ε in the expression of UT . This fraction can be arbitrarily large if ε (a parameter of the algorithm)
is too small relative to the Lipschitz constant B. Such a problematic ratio has appeared in previous
works such as (Ross et al., 2013; Wintenberger, 2017; Kotłowski, 2017; Mhammedi et al., 2019;
Kempka et al., 2019). To tame such a ratio, Mhammedi et al. (2019) and Mhammedi and Koolen
(2020) presented a technique for certain OCO algorithms, such as MetaGrad (Van Erven and
Koolen, 2016; Van Erven et al., 2021) and FreeGrad, based on the idea of restarting these algorithms
whenever the ratio between the maximum norm of the observed subgradients and the norm of the
initial subgradient is too large. In Appendix E, we extend this technique and present a general
reduction (Algorithm 7) that makes a large class of Online Learning algorithms (including the
instance of Alg. 1 in the setting of Theorem 17) scale-invariant and gets rid of problematic ratios in
their regret bounds.

Optimality and link to stochastic optimization. The regret bounds in Theorem 17 are optimal
in T . For the dependence in d in the regret bounds, the computational trade-offs, and the link to
stochastic and offline optimization, see the discussion at the end of Section C.1.

C.3. Efficient Projection-Free Smooth Stochastic Optimization

So far, we have mainly considered the setting where (`s) is a sequence convex losses that may be
chosen in an adversarial fashion, and the goal was to choose a sequence of iterates (xt) ⊂ C such
that the cumulative loss

∑T
t=1 `t(xt) is small. In this subsection, we are interested in minimizing a

fixed convex differentiable function f : C 7→ R, with only access to a Stochastic Gradient Oracle for
the function f . Formally, we assume there exists a σ > 0 such that for any round t ≥ 1 and some
query point xt ∈ C, we have access to a subgradient gs ∈ ∂`s(xt), where

`s(x) := f(x) + 〈x, ξs〉, (22)

and (ξs ∈ Rd) are i.i.d. random vectors satisfying

E[ξs] = 0 and E[‖ξs‖2] ≤ σ2, ∀s ≥ 1. (23)

30



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

We will also assume that the function f is β-smooth; that is, f is differentiable4 on C and

∀x,y ∈ C, f(y) ≤ f(x) + 〈∇f(x),y − x〉+
β

2
‖y − x‖2. (24)

It will be instrumental to use the following consequence of (24) (see e.g. (Srebro et al., 2010b; Levy
et al., 2018; Cutkosky and Busa-Fekete, 2018)); if f is β-smooth, then ‖∇f(x) − ∇f(x∗)‖2 ≤
2β · (f(x)− f(x∗)), where x∗ ∈ arg minx∈C f(x). Thus, when x∗ is in the interior of C, we have
∇f(x∗) = 0, and so it follows that

‖∇f(x)‖2 ≤ 2β · (f(x)− f(x∗)). (25)

For the sake of clarity, we now summarize the assumptions we make on the loss process in this
section:

Assumption 2 The sequence (`s) in Algorithm 6 satisfies (22) with I) ξ1, ξ2, · · · ∈ Rd i.i.d. vectors
as in (23); and II) f is β-smooth, for β > 0, and satisfies int(C) ∩ arg minx∈C f(x) 6= ∅, where
int(C) denotes the interior of C.

Without loss of generality (by making R larger if necessary), we assume that there exists R′ ≤ R
such that:

B(r) ⊆ C ⊆ B(R′) ⊆ B(R)/(1 + ν), where ν := 4
√

2(1 + κ), and κ := R′/r. (26)

We now state the main result of this section (the proof is in Appendix I.6):

Theorem 18 Let δ ∈ (0, 1/3), and r,R,R′, ν, and κ be as in (26). Further, suppose that Alg. 1
is run with OC◦ ≡ OPTC◦ (Alg. 3); δt = δ/t3, ∀t ≥ 1; and sub-routine A set to Alg. 6 with input
ε > 0. Then, under Assumption 2, the iterates (xt) of Alg. 6, satisfy (xt) ⊂ C, and for all T ≥ 1,

E [f(xT )− f(x∗)] ≤
2νεR′ + ν2β(R′)2UT + 3δR(lnT + 6)

√
σ2 + 2βR′

T 2
+

2νR′σ
√
UT√

T
,

where x∗ ∈ arg minx∈C f(x) and UT := ln
(
1 + 2ε−2(σ2 + 2R′β)T 3

)
.

The proof of Theorem 18 is based on an extension of a result due to Cutkosky (2019). The instance
of Algorithm 1 in Theorem 18 invokes OPTC◦(·; δt) at each iteration t. Thus, in light of Remark 12
in App. B, the algorithm makes at most O(dT ln(dTκ/δ) calls to the Membership Oracle MEMC
after T rounds.

Optimality of the rate and application to the offline setting. The rate in Theorem 18 is optimal
in T and implies the fast O(βκ2/T 2) rate in the offline smooth setting (i.e. σ = 0), which is also
optimal in T . Thus, Algorithm 1 in the setting of Theorem 18 reaches an ε-sub-optimal point
in offline smooth optimization after Õ(dκ/

√
ε) calls to MEMC . Since state-of-the-art algorithms

based on the cutting plane method require O(d2 ln(1/ε)) calls to a Membership Oracle to reach
an ε-sub-optimal point (Lee et al., 2018), our algorithm provides a viable alternative to the latter
whenever d ≥ Ω(κ/

√
ε) and the objective function is smooth. As we shall see in Section F, κ is less

4. To avoid boundary issues, we assume (similar to (Hiriart-Urruty and Lemaréchal, 2004, Section B.4.1)) that C is
contained in a open set Ω on which f is differentiable.

31



MHAMMEDI

than
√
d in many settings of interest. We also recall that the presence of κ in our bounds is due to an

over conservative upper bound on the norms of the subgradients of the surrogate losses, and so we
expect the rates of our algorithms to scale better with d in practice.

Algorithm 6 Subroutine A for Algorithm 1 for Stochastic Convex Optimization.
Require: r,R,R′, ν, and κ as in (26). Input ε > 0. Input (xt, ft) from the Master Algorithm 1 at

each round t ≥ 1, where xt ∈ Rd and ft : Rd → R.

1: Initialize FTRL-prox with parameter R′ > 0 and set u1 = 0 (i.e. FTRL-prox’s first output).
2: Set Λ1 = 0; Z0 = ε2; and w1 = 0.
3: for t = 1, 2, . . . do
4: Output wt and observe g̃t ∈ ∂ft(wt). // ft is provided by Alg. 1

5: Set ut+1 ∈ B(R′) to FTRL-prox’s (t+ 1)th output given the history (ui,w 7→ i〈g̃i,w〉)i≤t.
6: Set Zt = Zt−1 + Λt‖gt‖2 and ηt = νR′/

√
Zt.

7: Set Λt+1 = Λt + t+ 1 and µt+1 = (t+ 1)/Λt+1.
8: Set wt+1 = (1− µt+1)(xt − ηtgt) + µt+1ut+1. // xt is provided by Alg. 1

9: end for

Appendix D. General Regret Reduction

In this section, we state and prove a regret bound for Algorithm 1, when A is a general OCO
algorithm.

Proposition 19 Let δ ∈ (0, 1), B > 0, T ≥ 1, and A be the sub-routine of Algorithm 1. Suppose
there exists a function RA : C × ∪∞t=1Rd×t → R≥0 such that for any adversarial sequence of convex
losses (ft) on C, the iterates (wt) of A in response to (ft), and the subgradients ∇t ∈ ∂ft(wt),
t ∈ [T ], satisfy

T∑
t=1

〈∇t,wt − x〉 ≤ RA(x,∇1:T ),∀x ∈ C,

as long as ‖∇t‖ ≤ (1 + δ
t + κ)B, for all t ∈ [T ]. Then, for any adversarial sequence of B-Lipschitz

convex losses (`t), the iterates (xt) of Alg. 1 with tolerance sequence δt := δ
t3

, and the subgradients
gt ∈ ∂`t(xt), satisfy

P

[
∀x ∈ C,

∑T
t=1〈gt,xt − x〉 ≤ RA(x, g̃1:T ) +

(
4 + 5δ lnT

ρ

)
RB

and ∀t ∈ [T ], ‖g̃t‖ ≤ (1 + δ/t+ κ)B

]
≥ 1− 2ρ,

for all ρ ∈ (0, 1) and (g̃t) as in Algorithm 1.

Proof By Lemma 7, we have, for all w ∈ C and t ≥ 1,

〈gt,xt − x〉 ≤ 〈g̃t,wt − x〉+ (2δt + ∆t)R‖gt‖, (27)

where ∆t ≥ 0 is a non-negative random variable satisfying Et−1[∆t] ≤ δt. Thus, by the law of total
expectation and Markov’s inequality, we have

P[∆t ≥ t2δt/ρ] ≤ ρ/t2.

32



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Let ET be the event that {∆t ≤ t2δt/ρ,∀t ∈ [T ]}. By a union bound and the fact that
∑∞

t=1 1/t2 ≤ 2,
we get that P[ET ] ≥ 1− 2ρ. For the rest of this proof, we will condition on the event ET . We have,
by our choice of (δt),

T∑
t=1

∆t ≤
T∑
t=1

t2δt/ρ =
T∑
t=1

δ/(ρt) ≤ δ lnT

ρ
. (28)

Also, note that by Lemma 7 (and the fact that ET holds), we have,

‖g̃t‖ ≤ (1 + ∆t + κ)‖gt‖ ≤ (1 + δ/t+ κ)‖gt‖ ≤ (1 + δ/t+ κ)B, (29)

where the last inequality follows by the fact that `t is B-Lipschitz. Now, by summing (27) for
t = 1, . . . , T , we obtain, for all x ∈ C

T∑
t=1

〈gt,xt − x〉 ≤
T∑
t=1

〈g̃t,wt − x〉+
T∑
t=1

(2δt + ∆t)R‖gt‖,

≤ RA(x, g̃1:t) +
T∑
t=1

(2δt + ∆t)R‖gt‖, (30)

≤ RA(x, g̃1:t) + (4 + 5δ/ρ ln(T ))RB,

where (30) follows by (29) and the assumption made about the regret of Algorithm A, and the last
inequality follows by (28) and the fact that `t is B-Lipschitz.

Appendix E. Algorithm Wrapper for Scale-Invariance

In this appendix, we extend the technique of Mhammedi et al. (2019); Mhammedi and Koolen
(2020) by presenting a general reduction (Algorithm 7) that makes a large class of Online Learning
algorithms scale-invariant and gets rid of problematic ratios in their regret bounds. In particular,
we will consider all Online Learning algorithms whose regret bound can be expressed as a map
R : C×∪t≥1Rd×t×R→ R≥0 such that for any comparator x and sequence of observed subgradients
(∇t), the regret of the algorithm after t ≥ 1 rounds is bounded from above by R(x,∇1:T , Lt/ε),
where ε > 0 is a parameter of the algorithm and Lt := ε ∨maxt∈[T ] ‖∇t‖. We note that so far we
have not restricted the class of eligible algorithms by much. We will further require the following
monotonicity property, which is satisfied by most popular Online Learning algorithms:

R(u, g1:s, p) ≤ R(u, g1:t, q), for all p ≤ q, s ≤ t,u ∈ C and (gt) ⊂ Rd. (31)

With this, we now state our reduction result for scale-invariance:

Proposition 20 Let A be the sub-routine of Algorithm 7. Suppose there exists RA satisfying (31)
and such that for any adversarial sequence of convex losses (ft) on C, the iterates (xt) of A in
response to (ft) satisfy

x1 = 0 and
t∑

s=1

〈∇s,xs − x〉 ≤ RA(x,∇1:t, Lt/ε), ∀t ≥ 1,∀x ∈ C, (32)

33



MHAMMEDI

Algorithm 7 Scale-Invariant Wrapper via Restarts.
Require: OCO Algorithm A on C taking parameter ε > 0.

1: Initialize τ = 1, xτ1 = 0, and S0 = B0 = 0.
2: for t = 1, 2, . . . do
3: Play yt = xτt and observe gt ∈ ∂`t(yt).
4: Set Bt = Bt−1∨‖gt‖ and St = St−1 +‖gt‖/Bt. // With the convention that 0/0 = 0

5: if Bt = 0 then
6: Set yt+1 = yt.
7: Continue. // play the zero vector until the first non-zero subgradients

8: else if Bt−1 = 0 then
9: Set τ = t. // (Bt/Bτ ≥ St) ≡ (Bt/Bτ ≥

∑t
s=τ ‖gs‖/Bs)

10: Initialize A with parameter ε = Bτ . // τ is the new ‘round 1’

11: end if
12: Send linear loss w 7→ 〈gt,w〉 to A.
13: Set xτt+1 to A’s (t+ 2− τ)th output given history ((xτi ,w 7→ 〈gi,w〉))τ≤i≤t.
14: end for

where ε > 0 is a parameter of A; ∇s ∈ ∂fs(xs), for all s ∈ [t]; and Lt = ε∨maxs∈[t] ‖∇s‖. Then,
for any adversarial sequence of convex losses (`t), the iterates (yt) of Algorithm 7 in response to
(`t) satisfy

T∑
t=1

〈gt,yt − x〉 ≤ 2RA(x, g1:T , T ) + 4RBT , ∀T ≥ 1, ∀x ∈ C,

where gt, t ∈ [T ], is any subgradients in ∂`t(yt) and BT = ε ∨maxt∈[T ] ‖gt‖.

Proof of Proposition 20. We say that τ = t is the start of an epoch of Algorithm 7 if the condition
in Line 8 is satisfied. We use the convention that the “last epoch” starts at t = T + 1. Let τ < t be
the start of two consecutive epochs. Then, by the condition on Line 8 of Algorithm 7, we have

Bt−1/Bτ ≤
t−1∑
s=1

‖gs‖/Bs ≤ t− 1, and Bt/Bτ >

t∑
s=1

‖gs‖/Bs. (33)

Recall also that at round s = τ , sub-routine A is initialized with ε = Bτ . Thus, by our assumption in
(32), we have xττ = 0 and

∀x ∈ C,
t−1∑
s=τ

〈gt,yt − x〉 = 〈yτ , gτ 〉+
t−1∑
s=τ

〈gt,xτt − x〉
(32)
≤ 〈yτ , gτ 〉+ RA(x, gτ :t−1, Bt−1/ε),

≤ RBt + RA(x, gτ :t−1, t− 1),

≤ RBT + RA(x, g1:T , T ), (34)

where the last inequality follows by the fact that RA satisfies (31). If there are two epochs or less,
summing (34) across the epochs leads to the desired result. Now suppose that there are more than
two epochs, and let τ [resp. t] be the start of the ante-penultimate [resp. penultimate] epoch (recall

34



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

that the last epoch starts at T + 1 by convention). By (34), the regret across these two epochs is
bounded as

T∑
s=τ

〈gt,yt − x〉 ≤ 2RBT + 2RA(x, g1:T , T ). (35)

We will now bound the regret across the earlier epochs. We have

τ−1∑
s=1

〈gt,yt − x〉 ≤ 2R
τ−1∑
s=1

‖gs‖ ≤ 2RBτ

τ−1∑
s=1

‖gs‖
Bs
≤ 2RBτ

t∑
s=1

‖gs‖
Bs

(33)
< 2RBt ≤ 2RBT . (36)

Combining (35) and (36) leads to the desired result.

Appendix F. Applying the Projection-Free Reduction in Practice

In this section, we consider various popular settings where our algorithm may be applied. We note
that Assumption 1, i.e. the condition that B(r) ⊆ C ⊆ B(R) may not always be satisfied in these
settings, but one can easily reparametrize the problem to satisfy the condition. We will derive explicit
reparametrizations for the popular settings studied in (Hazan and Kale, 2012; Jaggi, 2013) (those in
Table 3). But, first we will present a general reparametrization recipe.

Suppose that the available losses (ft) are defined on a convex set K ⊂ Rd that does not
necessarily satisfy (1) (e.g. if K has an empty interior like the simplex). Further, suppose that we
have a Membership OracleMK for K and a subgradient Oracle for (ft). We will show that one can
easily reparametrize the problem on a set C satisfying (1) and whose Membership Oracle can easily
be constructed from that of K.

LetH be the subspace generated by the span of K; that is,H := {λx : λ ∈ R and x ∈ convK}.
Further, let (ui)1≤i≤m, m ≤ d, be an orthogonal basis ofH (this can be computed offline once for
the given problem), and let c be a point in the relative interior of K. Then, one can work with the
surrogate losses `t : Rm → R ∪ {+∞} defined by

`t(x) =

{
ft (c+

∑m
i=1 xiui) , if c+

∑m
i=1 xiui ∈ K;

+∞, otherwise.

The convexity of `t follows immediately from that of ft. We also note that since c was chosen
in the relative interior of K, there exists r,R > 0 such that the domain C ⊂ Rm of `t satisfies
B(r) ⊆ C ⊆ B(R); that is, Assumption 1 is satisfied. We now show that a Membership Oracle
for C [resp. subgradient Oracle for `t] can easily be constructed from a Membership Oracle for K
[resp. subgradient Oracle for ft].

Starting with the Membership Oracle: for any x ∈ C, a Membership OracleMC for C can be
implemented as MC(x) = MK(c +

∑m
i=1 uixi). Now, given a subgradient Oracle for ft, it is

also easy to get a subgradient Oracle for `t; for any x ∈ Rm such that y :=
∑m

i=1 uixi ∈ K, we
have ∂`t(x) = {

∑m
i=1〈ui, ζ〉ui : ζ ∈ ∂ft(y)}. Using this method, one needs to perform O(md)

arithmetic operations at each round to compute a subgradient of `t. It is possible to avoid this
computational overhead by, instead, using a finite difference approach for estimating subgradients of

35



MHAMMEDI

Domain C Operation Required by Computational Complexity of
LOO OC(x; ·) MOMC(x; ·) LOO OC(·; δ) MOMC(·; δ)

`p-ball in Rd ‖x‖q ‖x‖p O(d) O(d)
Simplex ∆d ∈ Rd ‖x‖∞ 〈1,x〉 O(d) O(d).
Trace-norm-ball in Rm×n ‖x‖op ‖x‖tr O(nnz(x)/

√
δ) Cost(SVD)

Op-norm-ball in Rm×n ‖x‖tr ‖x‖op Cost(SVD) O(nnz(x)/
√
δ)

Conv-hull of Permutation
Matrices in Rn×n

e>i x1 = 1;
e>i x

>1 = 1,
∀i O(n3) O(n2)

Convex-hull of Rotation
Matrices in Rn×n Cost(SVD) Cost(SVD)

PSD matrices in Rn×n
with unit trace λmax(x)

λmin(x)
tr(x) O(nnz(x)/

√
δ) O(nnx(x)/

√
δ)

PSD matrices in Rn×n
with diagonals ≤ 1

λmin(x)
maxi∈[n](xii)

O(nnz(x)
√
n3/δ5) O(nnx(x)/

√
δ)

The flow polytope with
(#nodes, #edges)=(d,m) Õ(d+m) O(d+m)

The Matroid polytope for
Matroid M ; #elem.=d Õ(dCost(IM ))

O(d2Cost(IM )
+d3)

Table 3: Computational complexity of performing linear optimization [resp. testing membership]
for different sets of interest. OC [resp.MC] denotes a Linear Optimization Oracle (LOO)
[resp. Membership Oracle (MO)]. δ > 0 represents the allowed Oracle error (see Section
2). We hide any logarithmic dependence in 1/δ. Cost(SVD) [resp. Cost(IM )] represents
the computational cost of performing SVD [resp. testing if a set is independent in M (see
Section F)]. For x ∈ Rn×m, nnz(x) represents the number of non-zeros of x. The details
for the computational cost of the Linear Optimization Oracles listed can be found in (Hazan
and Kale, 2012; Jaggi, 2013). The details for the Membership Oracle complexities can be
found in Section F.

`t, requiring only 2m calls to a value Oracle for ft per round. Lemma 29 provides the means for
doing this5.

We now show that in many popular settings there are natural parametrizations that do not
require any expensive pre-processing step such as identifying a basis for the span ofH. In Table 4,
we summarize the upper bounds we derive on the asphericity κ for different sets of interest after
reparametrization. In Table 3, we summarize the computational complexity of a Membership Oracle
for these sets.

F.1. `p-Norm Balls

Consider the setting where the losses are defined on C = {x : ‖x‖p ≤ 1}. In this case, the span of
C is Rd and we can pick c = 0. For 1 ≤ p ≤ 2 Assumption 1 is satisfied with r = d1/2−1/p and
R = 1; this follows by the fact that the `p norm satisfies ‖x‖ ≤ ‖x‖p ≤ d1/p−1/2‖x‖, ∀x ∈ Rd.
When 2 ≤ p Assumption 1 is satisfied with r = 1 and R = d1/2−1/p. Thus, in either case, the
asphericity is

κ = R/r ≤ d|1/p−1/2|,

5. Technically, Lemma 29 provides a way of approximating the subgradients of a function whose domain is unconstrained.
However, one can extend the result to the constrained case by a careful treatment of the region around the boundary of
the set.

36



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Domain Upper bound on κ post-reparametrization
`p-ball in Rd d|1/p−1/2| O(d|1/p−1/2|), where C ⊂ Rd
Simplex ∆d ∈ Rd 2d O(d), where C ⊂ Rd

Trace-norm-ball in Rm×n
√
m ∧ n O(d1/4), where C ⊂ Rd

Op-norm-ball in Rm×n
√
m ∧ n O(d1/4), where C ⊂ Rd

Conv-hull of Permutation Matrices in Rn×n
√

5n O(d1/2), where C ⊂ Rd

Convex-hull of Rotation Matrices in Rn×n 2n1/2 O(d1/4), where C ⊂ Rd
PSD matrices in Rn×n with unit trace 8n2 O(d), where C ⊂ Rd

PSD matrices in Rn×n with diagonals ≤ 1 4n3/2 O(d3/4), where C ⊂ Rd
The flow polytope with (#nodes, #edges)=(d,m) Problem dependent
The matroid polytope for matroid M ; #elem.=d Problem dependent

Table 4: Upper bounds on the asphericity κ for the different settings of Table 3 after reparametriza-
tion.

and there is no need to reparametrize. The operation needed for the Membership Oracle is simply
computing ‖x‖p, whereas linear optimization on C◦ amounts to evaluation the dual norm ‖x‖q,
where 1/q + 1/p = 1 (Jaggi, 2013).

F.2. Simplex ∆d

Let d > 1 and consider the setting where the losses (ft) are defined on the simplex ∆d := {x ∈
Rd≥0 : 1>x = 1}. Since ∆d has an empty interior, it does not satisfy Assumption 1. However, we
can easily reparametrize the problem to ensure Assumption 1.

Let c := (12 + 1
2d)ed +

∑d−1
i=1

1
2dei and consider the sequence of reparametrized losses (`t) given

by

`t(x) := ft

(
c+ J>x

)
, t ≥ 1, where J :=

[
Id−1 −1

]
∈ Rd−1×d. (37)

For any t, the function `t is convex and defined on the set

C :=

{
x ∈ Rd−1 : xi ≥ −

1

2d
and 1>x ≤ 1

2
+

1

2d

}
. (38)

We now show that for this reparametrized setting, Assumption 1 holds with r = 1/(2d) and R = 1,
which implies a asphericity of κ = R/r ≤ 2d:

Proposition 21 The set C in (38) satisfies B(1/(2d)) ⊂ C ⊂ B(1).

Proof Note that the vertices of the set C are v1, . . . ,vd, where

∀i ∈ [d− 1], vi = ei −
∑

j∈[d−1]

ej
2d
, and vd = −

∑
j∈[d−1]

ej
2d
.

Since vi ∈ B(1) for all i ∈ [d], we get that C ⊆ B(1). We now show that B(1/(2d)) ⊆ C. For this,
we need to find the point u in the boundary of C that is closest to the origin. This point must be the

37



MHAMMEDI

orthogonal projection of the origin onto one of the (d− 2)-dimensional faces of C; there are d-many
such faces corresponding to one of the inequalities defining C being satisfied with equality. Thus, u
must satisfy one of the following:

• u =
(

1
d−1 −

1
2d

)∑
i∈[d−1] ei.

• ∃i ∈ [d− 1], such that u = −ej2d .

In all cases, we have ‖u‖ ≥ 1/(2d), and so this shows that B(1/(2d)) ⊆ C.

It is clear from the definition of the set C that the operations required to test the membership of
a point x ∈ Rd−1 are I) computing 〈1,x〉; and II) evaluating xi, for i ∈ [d − 1]. Therefore, the
corresponding computational complexity is O(d). We now show how to build a subgradient Oracle
for the reparametrized losses (`t). By the chain-rule, g is a subgradient of `t at x if and only if
g = Jζ, for ζ ∈ ∂ft(c+ J>x). Here, Jζ can be evaluated in O(d).

F.3. Trace and Operator Norm Balls

Trace norm ball. Let m,n ≥ 1, s := m ∧ n, and consider the setting where the losses are defined
on the trace-norm ball C := {x ∈ Rm×n :

∑s
i=1 σi(x) ≤ 1}, where σ1(x) ≥ · · · ≥ σs(x) are the

singular values of x in non-increasing order. Implementing a Membership OracleMC for C requires
computing the sum of singular values of a matrix x, and so the computational complexity ofMC is
at most that of performing SVD. Since the trace-norm ‖ · ‖tr satisfies

1√
s
‖x‖tr ≤

√√√√ s∑
i=1

σi(x)2 ≤ ‖x‖tr,

and
√∑s

i=1 σi(x)2 =
√

tr(xx>) = ‖x‖F is just the Euclidean norm on Rm×n (‖ · ‖F denotes the
Frobenius norm), we have that Assumption 1 is satisfied with r = 1 and R =

√
m ∧ n, and so the

asphericity is κ =
√
m ∧ n.

Operator norm Ball. Let m,n ≥ 1, s := m ∧ n, and consider the setting where the losses are
defined on the operator-norm ball C := {x ∈ Rm×n : σ1(x) ≤ 1}, where σ1(x) ≥ · · · ≥ σs(x)
are the singular values of x. The operator norm ‖ · ‖op is the dual to the trace-norm ‖ · ‖tr. Since
‖x‖op is the largest singular value of x, we have ‖x‖op ≤ ‖x‖F ≤

√
s‖x‖op, and so Assumption 1

is satisfied with r = (m ∧ n)−1/2 and R = 1. Implementing a Membership Oracle for C requires
computing the largest singular value of a given matrix x. It is possible to approximate the largest
singular value up to error δ using O(nnz(x)/

√
δ) arithmetic operations, where nnz(x) represents

the number of non-zeros of x (Jaggi, 2013, Proposition 8). That is, the complexity of implementing
a δ-approximate Membership OracleMC(·; δ) (see Definition 2) is O(nnz(x)/

√
δ).

F.4. Convex-hull of Permutation Matrices

We now consider the setting where the losses (ft) are defined on the convex-hull of permutation
matrices, also known as the Birkhoff polytope K := {x ∈ Rn×n≥0 : e>i x1 = e>i x

>1 = 1}.
Assumption 1 is not satisfies since the Birkhoff polytope has an empty interior. However, as we did in

38



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

the case of the simplex, we can easily reparametrize the problem to satisfy Assumption 1. We assume
that n > 1 . Before presenting the reparametrized losses, we first introduce some notation. Let

c :=
∑

1≤i≤n

(
1

2
+

1

2n

)
ein +

∑
1≤j≤n

(
1

2
+

1

2n

)
enj +

∑
1≤i,j≤n

eij
2n
,

and for any x ∈ Rn−1×n−1 define the matrix x̄ ∈ Rn×n such that

x̄ij :=

{
xij , ∀i, j ∈ [n− 1];
0, otherwise.

(39)

With this, consider the sequence of reparametrized losses (`t) given by

`t(x) := ft(c+M x̄+ x̄M>), ∀x ∈ Rn−1×n−1,
where M :=

[
J> 0

]
∈ Rn×n and J as in (37) with d = n. (40)

For any t, the function `t is convex and defined on the set

C :=

{
x ∈ Rn−1×n−1 : ∀i, j ∈ [n− 1], xij ≥ −

1

2n
;
n−1∑
k=1

xik ≤
1

2
+

1

2n
; and

n−1∑
k=1

xkj ≤
1

2
+

1

2n

}
.

We now show that for this reparametrized setting, Assumption 1 holds with r = 1/(2n) and
R =

√
5/2. Note that the vertices of the set C are v1, . . . ,v(n−1)2+1, where

∀i ∈ [(n− 1)2], vi = ẽi −
∑

j∈[(n−1)2]

ẽj
2n
, and v(n−1)2+1 = −

∑
j∈[(n−1)2]

ẽj
2n
,

where ẽi = epq and p, q are the unique integers satisfying i = p+ (n− 1)(q− 1) and p, q ∈ [n− 1].
Since vi ∈ B(

√
5/2), for all i ∈ (n − 1)2 + 1, we get that C ⊆ B(

√
5/2). We now show that

B(1/(2n)) ⊆ C. For this, we need to find the point u in the boundary of C that is closest to the origin.
This point must be the orthogonal projection of the origin onto one of the ((n− 1)2− 1)-dimensional
faces of C; there are (n2 − 1)-many such faces corresponding to one of the inequalities defining C
being satisfied with equality. Thus, u must satisfy one of the following:

• ∃i ∈ [n− 1], such that u =
(

1
n−1 −

1
2n

)∑
j∈[n−1] eij .

• ∃j ∈ [n− 1], such that u =
(

1
n−1 −

1
2n

)∑
i∈[n−1] eij .

• ∃i ∈ [(n− 1)2], such that u = −ẽi
2n .

In all cases, we have ‖u‖ ≥ 1/(2n), and so this shows that B(1/(2n)) ⊆ C. Thus, the asphericity
for this reparametrized setting is

κ = R/r ≤
√

5n.

It is clear from the definition of the set C that the operations required to test membership for a point
x ∈ Rn×n are I) computing e>i x1 and e>i x

>1 for i, j ∈ [n]; and II) evaluating xij , for i, j ∈ [n].
Thus the computational complexity of testing membership in C is O(n2). We now show how to build

39



MHAMMEDI

a subgradient Oracle for the reparametrized losses (`t). By the chain-rule, g is a subgradient of `t at
x, if and only if, for all i, j ∈ [n− 1],

gij = 2ζij − ζnj − ζin, for ζ ∈ ∂ft(c+M x̄+ x̄M>),

where x̄ and M are as in (39) and (40), respectively. Since M has 2(n− 1) non-zero entries, g can
be computed in O(n2) time (this is linear in the dimension of C).

F.5. Convex-hull of Rotation Matrices

We now consider the setting where the losses (ft) are defined on the convex-hull of rotation matrices;
that is,

C := conv SO(n), where SO(n) := {x ∈ Rn×n : x>x = I, det(x) = 1}.

This set satisfies Assumption 1 with r = 1 − 2/n and R = n (implying a asphericity of at most
κ = n2/(n− 2) = O(n)), and so there is not need to reparametrize as we show next:

Proposition 22 Let n > 2. The convex hull C of Orthogonal matrices in Rn×n satisfies

B(1/2) ⊆ C ⊆ B(
√
n).

Proof Let O(n) the set of orthogonal matrices in Rn×n. By (Saunderson et al., 2015, Proposition
4.6), we have

conv SO(n) = (conv O(n)) ∩ ((n− 2)SO−(n)◦), (41)

where SO−(n) := {x ∈ Rn×n : x>x = I, det(x) = −1}. It is know that conv O(n) coincides
with the operator-norm ball (Saunderson et al., 2015), and so we have (see paragraph on the operator
norm ball above)

B(1) ⊆ conv O(n). (42)

We will now show that B(1/
√
n) ⊆ SO−(n)◦ from which we conclude that B(1/2) ⊂ B(1∨(n1/2−

2n−1/2)) ⊂ conv SO(n) using (41), (42), and the fact that n > 2. Let D be the diagonal matrix
satisfying Dii = 1 for all i ∈ [n− 1] and Dnn = −1. It is known that SO−(n) = D · SO(n) (see
e.g. (Saunderson et al., 2015)). Therefore, since D ∈ O(n), we have

sup
x∈SO−(n)

‖x‖op = sup
x∈SO(n)

‖x‖op = 1.

Thus, by the fact that ‖·‖F ≤
√
n‖·‖op, we have SO−(n) ⊆ B(

√
n), which implies that B(1/

√
n) ⊆

SO−(n)◦. In fact, since SO−(n) ⊆ B(
√
n), we have 〈u,x〉 ≤ 1, for all u ∈ B(1/

√
n) and

x ∈ SO−(n), and so B(1/
√
n) ⊆ SO−(n)◦ by definition of a Polar set. Combining this with the

fact that B(1) ⊆ conv O(n) and (41), we get that

B(1/2)
n>2
⊂ B(1 ∨ (n1/2 − 2n−1/2)) ⊆ conv SO(n) = C.

We now show that C ⊆ B(n). This follows by the fact that C = conv SO(n) ⊂ conv O(n) and that
conv O(n) ⊆ B(

√
n) since conv O(n) is the operator norm ball.

40



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

To assess the complexity of a Membership Oracle for conv SO(n), we use the characterization of
SO(n) in (41). Also, as argued in the proof of the previous proposition, conv O(n) coincides with
the operator-norm ball (Saunderson et al., 2015). Thus, in light of (41), to test if x is in conv SO(n),
it suffices to test if x is in the operator norm ball and in the set SO−(n)◦, simultaneously. The
complexity of the former test is at most that of SVD (Saunderson et al., 2015). We now show that
the complexity of testing for x ∈ SO−(n)◦ is also at most that of SVD up to a constant factor.
First, we note that testing membership for SO−(n)◦ can be performed using a single call to a Linear
Optimization Oracle on SO−(n) (by leveraging the definition of a polar set). Furthermore, LO
on SO−(n) can be done using one call to a LOO on SO(n). The latter follows by the fact that
SO−(n) = D · SO(n) (see e.g. (Saunderson et al., 2015)), where D is the diagonal matrix defined
in the proof of Proposition 22, and so

OSO−(n)(x) = sup
y∈SO−(n)

〈y,x〉 = sup
y∈SO(n)

〈y, Dx〉 = OSO(n)(Dx).

Finally, since the complexity of linear optimization on SO−(n) is at most the cost of SVD (Jaggi,
2013), we conclude, in light of (41), that the complexity of a Membership Oracle for conv SO(n) is
also at most that SVD up to a constant factor.

F.6. PSD Matrices with Unit Trace

We now consider the set PSD matrices with unit trace. This set does not satisfy Assumption 1 and
so we need to reparametrize. It will be useful to introduce the operator U : Rn(n−1)/2 → Rn×n,
where for each z ∈ Rn(n−1)/2, U(z) is the upper-triangular matrix whose ith column is equal to
(zi(i−1)/2+1, . . . , zi(i+1)/2, 0, . . . , 0)> ∈ Rn. Further, for any x ∈ Rn, we let diag(x) be the matrix
whose diagonal constructed from the vector x, and define

Θ(y, z) := diag(J>y) + U(z) + U(z)>,

for all y ∈ Rn−1 and z ∈ Rn(n−1)/2, where J is as in (37) with d = n. With this, we consider the
set of reparametrized losses (`t) given by

`t(x) := ft(c+ Θ(y, z)), (43)

where x := (y, z) ∈ Rn−1 × Rn(n−1)/2 and c :=

(
1

2
+

1

2n

)
enn +

n−1∑
i=1

eii
2n
.

For any t, the function `t is convex and defined on the set

C :=
{

(y, z) ∈ Rn−1 × Rn(n−1)/2 : c+ Θ(y, z) � 0
}
. (44)

Furthermore, this set satisfies Assumption 1 with r = n−3/2/4 and R = 2
√
n, leading to an

asphericity of at most κ = 8n2 for the set (this is linear in the dimension of C):

Proposition 23 The set C in (44) satisfies B(n−3/2/4) ⊆ C ⊆ B(2
√
n).

To implement a Membership Oracle for C one needs to be able to test if a matrix of the form
c+ Θ(y, z) is positive definite. Since this matrix is symmetric, it suffices to check if the smallest

41



MHAMMEDI

eigenvalue of Θ(y, z) is non-negative. We now present a way of approximating the smallest
eigenvalue of a symmetric matrix, which will then lead to an approximate Membership Oracle for
C. Given a symmetric matrix M and δ > 0, first approximate its largest singular value σ1(M) up
to error δ/2. This can be done using Õ(nnz(M)/

√
δ) arithmetic operations (see (Kuczyński and

Woźniakowski, 1992) and (Jaggi, 2013, Proposition 8)). Next, approximate the largest singular value
σ1(M

′) of M ′ := M − σ1(M) · In up to error δ/2. This also requires Õ(nnz(M)/
√
δ) arithmetic

operations. Now, since the smallest eigenvalue of M is given by λmin(M) = σ1(M)− σ1(M ′), we
can compute a δ-approximate value of λmin(M), and thus implement a δ-approximate Membership
Oracle, using Õ(nnz(M)/

√
δ) arithmetic operations.

We now show how to build a subgradient Oracle for the reparametrized losses (`t). By the
chain-rule, g := (gy, gz) is a subgradient of `t at x := (y, z) if and only if

gy = Jdiag−1(ζ) and gz := U−1(ζ), for ζ ∈ ∂ft(c+ Θ(y, z)),

where J is as (37) and U−1 : Rn×n → Rn(n−1)/2 [resp. diag−1 : Rn×n → Rn] is any operator
satisfying U−1 ◦ U(z) = z, for all z [resp. diag−1 ◦ diag(x) = x, for all x]. Thus, the subgradient
Oracle for `t requires only an additional O(n2) operations (this is linear in the dimension of C). We
now prove Proposition 23:
Proof of Proposition 23. By the fact that ‖diag(J>y)‖F ≤ 2

√
n‖y‖ and ‖U(z) + U(z)>‖F ≤

2‖U(z)‖F, for all y ∈ Rn−1 and z ∈ Rn(n−1)/2, we have

‖Θ(y, z)‖F/(2
√
n) ≤ ‖(y, z)‖ = ‖y‖+ ‖z‖ ≤ ‖Θ(y, z)‖F. (45)

We will now bound the norm of Θ(y, z). For any orthogonal matrix H ∈ O(n), w ∈ Rn×n, and
λ ∈ Rn−1 , define

ΦH(w) := −enn/(2n) +H>wH; Ψ(λ) := diag(en/2 + J>λ),

and C′ :=
{
λ ∈ Rn−1 : λi ≥

−1

2n
and 1>λ ≤ 1

2
+

1

2n

}
,

where J is as in (37) with d = n. Since a similarity transformation does not change the trace, or the
eigenvalues for that matter, we have c+ ΦH ◦Ψ(λ) ∈ C, ∀H ∈ O(n), ∀λ ∈ C′. In particular, this
implies that ⋃

H∈O(n)

ΦH ◦Ψ(C′) ⊆ Θ(C). (46)

We will now show that for any H ∈ O(n) and λ on the boundary of C′, we have ‖ΦH ◦Ψ(λ)−ΦH ◦
Ψ(0)‖F ≥ 1/(2n). This, combined with (46), would imply that B(1/(2n)) ⊆ Θ(C). Let H ∈ O(n)
and λ ∈ bd C′. Since ΦH is an isometry with respect to the distance induced by the operator norm,
we have

‖ΦH ◦Ψ(λ)− ΦH ◦Ψ(0)‖F ≥ ‖ΦH ◦Ψ(λ)− ΦH ◦Ψ(0)‖op

= ‖Ψ(λ)−Ψ(0)‖op = ‖J>λ‖ ≥ ‖λ‖ ≥ 1/(2n),

where the last inequality follows by Proposition 21. Thus, we have that B(1/(2n)) ⊆ Θ(C).
Combining this with (45) implies that B(n−3/2/4) ⊆ C.

42



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

We will now show that C ⊂ B(2
√
n). For this, we will first show that (46) holds with equality.

Let Θ′(·, ·) := enn/2 + Θ(·, ·), and observe that the constraint defining the set C in (44) translates
to In/(2n) + Θ′(·, ·) � 0. Let (y, z) ∈ C. Since Θ′(y, z) is a real symmetric matrix, there exists
an orthogonal matrix H such that Λ := HΘ′(y, z)H> is a diagonal matrix. Let λ1, . . . , λn be
the diagonal elements of Λ. Since these are the eigenvalues of Θ′(y, z), the fact that I/(2n) +
Θ′(y, z) � 0 implies λi ≥ −1/(2n), for i ∈ [n]. Furthermore, since tr(Θ′(y, z)) = 1/2, we have∑n

i=1 λi = 1/2, and so since λn ≥ −1/(2n), it follows that
∑n−1

i=1 λi ≤ 1/2 + 1/(2n). Thus, we
have λ′ := (λ1, . . . , λn−1) ∈ C′ and

enn/2 + Θ(y, z) = Θ′(y, z) = H>diag(en/2 + J>λ′)H = enn/2 + ΦH ◦Ψ(λ′).

Therefore, we have Θ(C) ⊆
⋃
H∈O(n) ΦH◦Ψ(C′), and so by (46), we have that Θ(C) =

⋃
H∈O(n) ΦH◦

Ψ(C′). Now, for any H ∈ O(n) and λ ∈ C′, we have

‖ΦH ◦Ψ(λ)− ΦH ◦Ψ(0)‖F ≤
√
n‖ΦH ◦Ψ(λ)− ΦH ◦Ψ(0)‖op,

=
√
n‖Ψ(λ)−Ψ(0)‖op,

=
√
n‖J>λ‖ ≤

√
n‖λ‖+

√
n|〈1,λ〉| ≤ 2

√
n,

where the last inequality follows by Proposition 21, and the fact that 〈1,λ〉 ≤ 1/2 + 1/(2n) ≤ 1 by
definition of C′. Therefore, by (45), we have C ⊆ B(2

√
n).

F.7. PSD Matrices with Bounded Diagonals

We now consider the set of PSD matrices with bounded diagonals; that is, K := {x ∈ Rn×n : x �
0, and 0 ≤ xii ≤ 1, for all i ∈ [n]}. This set does not satisfy Assumption 1 and so we need to
reparametrize. As in the case of PSD matrices with unit trace, we let U : Rn(n−1)/2 → Rn×n be the
operator such that for each z ∈ Rn(n−1)/2, U(z) is the upper-triangular matrix whose ith column
is equal to (zi(i−1)/2+1, . . . , zi(i+1)/2, 0, . . . , 0)> ∈ Rn. Also, for any y ∈ R, we let diag(y) be the
matrix whose diagonal constructed from the vector y, and define

Ξ(y, z) := diag(y) + U(z) + U(z)>.

With this, we consider the set of reparametrized losses (`t) given by

`t(x) := ft(c+ Ξ(y, z)), where x := (y, z) and c := In/2.

For any t, the function `t is convex and defined on the set

C :=
{

(y, z) ∈ Rn × Rn(n−1)/2 : c+ Ξ(y, z) � 0, yii ≤ 1/2, ∀i ∈ [n]
}
, (47)

Furthermore, this set satisfies Assumption 1 with r = 1/4 and R = n3/2/2, and so the asphericity is
κ = 2n3/2:

Proposition 24 The set C in (47) satisfies B(1/4) ⊆ C ⊆ B(n3/2).

43



MHAMMEDI

To implement a Membership Oracle for C one needs to be able to test if a matrix of the form
c+ Ξ(y, z) is positive definite. Since this matrix is symmetric, it suffices to check that the smallest
eigenvalue of Ξ(y, z) is non-negative. This can be done in the same way as in Subsection F.6 (PSD
matrices with unit trace), and so a δ-approximate Membership Oracle for C can be implemented
using Õ(nnz(x)/

√
δ) arithmetic operations for any input x ∈ Rn × Rn(n−1)/2 and tolerance δ > 0.

We now show how to build a subgradient Oracle for the reparametrized losses (`t). By the
chain-rule, g := (gy, gz) is a subgradient of `t at x := (y, z) if and only if

gy = diag−1(ζ) and gz := U−1(ζ), for ζ ∈ ∂ft(c+ Ξ(y, z)),

where U−1 : Rn×n → Rn(n−1)/2 [resp. diag−1 : Rn×n → Rn] is an operator satisfying U−1 ◦
U(z) = z, for z [resp. diag−1 ◦ diag(x) = x, for all x]. Thus, the subgradient Oracle for `t only
requires an additional O(n2) operations (this is linear in the dimension of C).
Proof of Proposition 24. By the fact that ‖diag(y)‖F = ‖y‖ and ‖U(z) + U(z)>‖F ≤ 2‖U(z)‖F,
for all y ∈ Rn and z ∈ Rn(n−1)/2, we have

‖Ξ(y, z)‖F/2 ≤ ‖(y, z)‖ := ‖y‖+ ‖z‖ ≤ ‖Ξ(y, z)‖F. (48)

We will now bound the norm of Ξ(y, z). Let (y, z) ∈ C. Since Ξ(y, z) is a real symmetric
matrix, there exists an orthogonal matrix H such that Λ := HΞ(y, z)H> is a diagonal matrix. Let
λ1, . . . , λn be the diagonal elements of Λ. Since these are also the eigenvalues of Ξ(y, z), the fact
that In/2 + Ξ(y, z) � 0 implies that λi ≥ −1/2, for all i ∈ [n]. Furthermore, since yii ≤ 1/2 for
all i ∈ [n], we have tr(Ξ(y, z)) ≤ n/2 and so

∑n
i=1 λi ≤ n/2. That is,

λ ∈ C′ :=
{
x ∈ Rn : xi ≥

−1

2
and 1>x ≤ n

2

}
.

The argument above implies that

Ξ(C) ⊆
⋃

H∈O(n)

ΦH(C′), where ΦH(λ′) = H>diag (λ)H.

Using that ‖λ‖ ≤ n, for all λ ∈ C′, and the fact that multiplication by an orthogonal matrix does not
change the operator norm, we have

n ≥ sup
λ∈C′
‖λ‖ = sup

λ∈C′,H∈O(n)
‖ΦH(λ)‖op ≥ sup

x∈C
‖Ξ(x)‖op ≥ sup

x∈C
‖Ξ(x)‖F/

√
n ≥ sup

x∈C
‖x‖/

√
n,

where the last inequality follows by (48). This implies that

C ⊆ B(n3/2).

We now show that B(1/4) ⊆ C. For this, we need to evaluate the quantity infx∈bdC ‖x‖. Let
x ∈ bdC. The fact that x is on the boundary of C implies that at least one of the inequality constraints
in the definition of C must be satisfied with equality; that is, one of the following must be true:

(a) ∃i ∈ [n], such that xii = 1/2.

(b) ∃u ∈ Rn, such that ‖u‖ = 1 and Ξ(y, z)u = −cu.

44



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

If (a) is true, then ‖x‖ ≥ 1/2. In case (b) holds, then by (48), we have

‖x‖ ≥ ‖Ξ(y, z)‖F/2 ≥ ‖Ξ(y, z)‖op/2 ≥ ‖Ξ(y, z)u‖/2 = ‖cu‖/2 = 1/4.

Since x was chosen arbitrarily on the boundary of C, we have that B(1/4) ⊆ C, which completes the
proof.

F.8. The Flow and Matroid Polytopes

Flow Polytope. For this polytopes, we do not present an explicit parametrization since it is highly
dependent on the specific problem at hand. We only study the complexity of the Membership Oracles
for this case. The flow polytope represents the convex hull of indicator vectors corresponding to paths
in a directed acyclic graph with d nodes and m edges. This polytope can be described with O(m+ d)
linear inequalities (Hazan and Kale, 2012; Mészáros et al., 2019). Therefore, a Membership Oracle
for this polytope can be implemented using O(d+m) arithmetic operations. Linear optimization on
the flow polytope has the same complexity up to log-factor (Schrijver, 2003).

Matroid Polytope. Same as in the case of the flow polytope, we only comment on the computational
complexity of a Membership Oracle. A Matroid Polytope is the convex hull of indicator vectors
corresponding to the independent sets A ∈ I of a matroid M = (E, I). The polytope can be
described using O(2d) linear inequalities where d = |E|. Thus, the naive implementation of the
Membership Oracle that checks all these linear inequalities would be intractable. We will present
an alternative approach to designing a δ-approximate Membership Oracle for M that requires only
O(d3+d2 ln(d)Cost(IM )) ln(1/δ) arithmetic operations, where Cost(IM ) is the computational cost
(number of arithmetic operations) of testing if a subset of E is independent (i.e. an element of I).

Let C denote the matroid polytope corresponding to our matroid M = (E, I). As we have
shown in App. B, the complexity of a Membership Oracle on C is the same as linear optimization
on C◦. Furthermore, a δ-approximate Linear Optimization Oracle for C◦ can be implemented
using O(d3 + dCost(SC◦)) ln(1/δ) arithmetic operations, where Cost(SC◦) is the computational cost
(number of arithmetic operations) of a Separation Oracle on C◦ (Lee et al., 2018). The fact that
(C◦)◦ = C for a closed convex set and our results from App. B (see also (Grötschel et al., 1993;
Molinaro, 2020)) imply that the complexity of SC◦ is the same as linear optimization on C. The
latter can be performed using O(d ln(d)Cost(IM )) arithmetic operations (Schrijver, 2003, Section
40.1). All in all, a Membership Oracle for C can be implemented using O(d3 + d2 ln(d)Cost(IM ))
arithmetic operations (omitting log-factors in 1/δ).

Appendix G. Adaptive OCO Algorithms

We now present two algorithms for Online Convex Optimization that we will build on to derive our
results.

45



MHAMMEDI

Algorithm 8 FTRL-proximal on B(R) (McMahan, 2017, Algorithm 2 & Section 3.3)
Require: Radius R.

1: Initialize w1 = 0,G0 = 0, and V0 = 0.
2: Initialize η0 =∞ and Σ0 = 0,
3: for t = 1, 2, . . . do
4: Play wt and observe ∇t ∈ ∂`t(wt).
5: Set ηt =

√
2R/
√
Vt, σt = 1/ηt − 1/ηt−1, and Σt = Σt−1 + σt.

// With the convention 1/∞ := 0

6: SetGt = Gt−1 + ∇t and Vt = Vt−1 + ‖∇t‖2.
7: Set wt+1 = ΠB(R)(w̃t+1), where w̃t+1 := (−Gt +

∑t
s=1 σsws)/Σt.

8: // The vector wt+1 above satisfies wt+1 ∈ arg minw∈B(R)〈Gt,w〉+
∑t
s=1 σ

2
s‖w −ws‖2/2.

9: end for

The first algorithm, FTRL-prox(Alg. 8), requires R as input, but does not require an upper bound on
the norm of the input loss vectors (∇t) (i.e. the algorithm adapts to the norm of the loss vectors).
We now state the guarantee of FTRL-prox which follows from (McMahan, 2017, Theorem 2 &
Section 3.3) with the choice of learning rate ηt :=

√
2R/
√
Vt, where Vt :=

∑t
s=1 ‖∇s‖2:

Proposition 25 (FTRL-proximal’s regret) For any adversarial sequence of convex losses (`t) on
B(R), the iterates (wt) of FTRL-prox (Alg. 8) with parameter R > 0 in response to (`t), satisfy for
all T ≥ 1 and w ∈ B(R),

T∑
t=1

(`t(wt)− `t(w)) ≤
T∑
t=1

〈∇t,wt −w〉 ≤ 2R
√

2VT ,

where ∇t, t ≥ 1, is any subgradient in ∂`t(wt) and VT :=
∑T

t=1 ‖∇t‖2.

Algorithm 9 FreeGrad (Mhammedi and Koolen, 2020) with the unconstrained-to-constrained reduc-
tion due to Cutkosky (2020).
Require: Parameters ε > 0 and R > 0.

1: Initialize w1 = s1 = 0, B0 = ε,G0 = 0, and Q0 = ε2.
2: for t = 1, 2, . . . do
3: Play wt and observe ∇t ∈ ∂`t(wt).
4: Set Bt = Bt−1 ∨ ‖∇t‖ and ∇̄t := ∇t ·Bt−1/Bt.
5: Set ∇̃t = ∇̄t − I〈∇t,wt〉<0 · 〈∇̄t, st〉st. // st is defined on Lines 1 and 8

6: SetGt = Gt−1 + ∇̃t and Qt = Qt−1 + ‖∇̃t‖2.

7: Set xt+1 := −Gt ·
(2Qt +Bt‖Gt‖) · ε2

2(Qt +Bt‖Gt‖)2
√
Qt
· exp

(
‖Gt‖2

2Qt + 2Bt‖Gt‖

)
.

8: Set wt+1 = ΠB(R)(xt+1) and st+1 = xt+1/‖xt+1‖ · I‖xt+1‖>R.
// We use the convention that 0/0 = 0.

9: end for

Another algorithm that will be instrumental to developing our projection-free (and scale-free)
algorithms for strongly convex losses is FreeGrad (see Algorithm 9). An important property of

46



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

FreeGrad that will be useful to us when developing a projection-free algorithm for strongly convex
losses (see Section C.2) is that its regret scales directly with the norm ‖w‖ of the comparator, as
opposed to the worst-case R. We note that FreeGrad internally clips the sequence of observed
sub-gradients. In our application of FreeGrad, it will be useful to state the guarantee of its iterates
(wt) in response to the sequence of clipped subgradients (∇̄t):

Proposition 26 (FreeGrad’s clipped linearized regret) For any adversarial sequence of convex
losses (`t) on Rd, the iterates (wt) of FreeGrad with parameter ε, R > 0, satisfy for all T ≥ 1 and
w ∈ B(R),

T∑
t=1

〈∇̄t,wt −w〉 ≤ 2‖w‖

√
V̄T ln+

(
2‖w‖V̄T

ε2

)
+ 4BT ‖w‖ ln

(
4BT ‖w‖

√
V̄T

ε2

)
+ ε,

where ∇t ∈ ∂`t(wt) (any sub-grad.), BT := ε ∨ maxt∈[T ] ‖∇t‖, ∇̄t := ∇t · Bt−1/Bt, and
V̄T := ε2 +

∑T
t=1 ‖∇̄t‖2.

Technically, the original version of FreeGrad applies to unbounded OCO, whereas the version of
FreeGrad in Algorithm 9 generates outputs in B(R) using the same constrained-to-unconstrained
reduction due to Cutkosky (2020). We constrain the outputs of FreeGrad to ensure that the iterates
(wt) of Algorithm 1 in the setting of Section C.2 are bounded, which in turn ensures that the
approximation errors of OPTC◦ in Algorithm 1 are not too large. The proof of Proposition 26 follows
by (Mhammedi and Koolen, 2020, Theorem 6) and (Cutkosky, 2020, Theorem 2).

We close this section by mentioning that the unbounded version of FreeGrad, where ∇̃t = ∇t

andwt = xt, is an FTRL instance with the specific sequence of regularizers (φ∗t ), where φ∗t is the
Fenchel dual of

φt(x) :=
1√
Vt−1

exp

(
‖x‖2

2Vt−1 + 2‖x‖

)
, Vt := ε2 +

t∑
s=1

‖∇s‖2.

In particular, the iterate xt+1 on Line 7 of Algorithm 9 is given by

xt+1 ∈ arg min
x∈Rd

{〈Gt,x〉+ φ∗t (x)} = {∇φt(−Gt)} .

We recall that the Fenchel dual φ∗t of φt is defined as φ∗t (x) = supu∈Rd {〈u,x〉 − φt(u)}.

Appendix H. Linear Optimization on C◦ using a Membership Oracle for C

In this section, we restate and prove a slight extension of (Lee et al., 2018, Lemma 9 & 10), which
we need in the proof of Proposition 11 at the end of this section. Our extension involves showing that
the approximate subgradient in (Lee et al., 2018, Lemma 10) has bounded norm in high probability,
which we need in the proof of Proposition 11. We also make the limiting argument used in the proof
of (Lee et al., 2018, Lemma 9 & 10) more explicit; in particular, for any convex function f : Rd → R
(not necessarily differentiable) and ε > 0, we explicitly construct a twice differentiable function f̃ε
such that ‖f − f̃ε‖∞ ≤ ε. This will then allow us to make a limiting argument precise via Fatou’s
lemma to get the final result we want (see proof of Lemma 29).

Throughout this section, we let U∞(u, ν) denote the uniform distribution over B∞(u, ν), for
any u ∈ Rd and ν > 0. The next lemma is taken from (Lee et al., 2018, Lemma 9) with only minor
notation adjustments.

47



MHAMMEDI

Lemma 27 For any w ∈ Rd, 0 < ν2 ≤ ν1, and twice differentiable convex function h defined on
B∞(w, ν1 + ν2) with ‖∇h(z)‖∞ ≤ L for any z ∈ B∞(w, ν1 + ν2) we have

Eu∼U∞(w,ν1)Ez∼U∞(u,ν2) ‖∇h(z)− g(u)‖1 ≤
ν2d

3/2L

ν1
,

where g(u) := Ez∼U∞(u,ν2)[∇h(z)] and U∞(u, ν) denotes the uniform distribution over B∞(u, ν).

Algorithm 10 Approximate Subgradient Oracle (Lee et al., 2018).
Require: Inputs ν1 > 0, L > 0, ε > 0, and w ∈ Rd.

1: Function f̃ : Rd → R.

2: Set ν2 =
√

εν1
d1/2L

.

3: Sample u ∈ B∞(w, ν1) and z ∈ B∞(u, ν2) independently and uniformly at random.
4: for i = 1, 2, . . . , d do
5: Let w′i and wi be the end point of the interval B∞(u, ν2) ∩ {z + λei : λ ∈ R}.
6: Set s̃i = 1

2ν2
(f̃(w′i)− f̃(wi)).

7: end for
8: Set s̃ = (s̃1, . . . , s̃d)

>.
9: Return s̃.

We now restate and slightly extend (Lee et al., 2018, Lemma 10) for twice differentiable functions.
We then extend the result to non-differentiable functions using Fatou’s lemma—see Lemma 29.

Lemma 28 Let L, ν1 > 0, w ∈ Rd, and h : Rd → R be a twice differentiable convex function such
that ‖∇h(x)‖∞ ≤ L, for any x ∈ B∞(w, 2ν1). Also, let ε ∈ (0, ν1

√
dL] and h̃ : Rd → R be such

that ‖h̃− h‖∞ ≤ ε′ for some ε′ > 0. Then, the variables ν2, u, z, s̃, and (wi,w
′
i)i∈[d] generated

during a run of Alg. 10 with input (h̃, ν1, L, ε,w) satisfy

∀v ∈ Rd, h(v) ≥ h(w) + 〈s̃,v −w〉 − ‖∇h(z)− s̃‖1 · ‖v −w‖∞ − 4dν1L,

Furthermore, for s̃i := (h(w′i)− h(wi))/(2ν2), for all i ∈ [d], we have

‖∇h(z)− s̃‖1 ≤ ‖∇h(z)− s̃‖1 + dε′/ν2 and E[‖∇h(z)− s̃‖1] ≤ 2d5/4
√
Lε/ν1.

Proof Let u,wi, and w′i be the random vectors generated during the call to Algorithm 10 in the
lemma’s statement. Further, let s̃ ∈ Rd be such that s̃i := (h(w′i) − h(wi))/(2ν2), for i ∈ [d].
Applying the convexity of h yields, for any v ∈ Rd,

h(v) ≥ h(z) + 〈∇h(z),v − z〉
= h(z) + 〈s̃,v −w〉+ 〈∇h(z)− s̃,v −w〉+ 〈∇h(z),w − z〉
≥ h(w) + 〈s̃,v −w〉 − ‖∇h(z)− s̃‖1 ‖v −w‖∞ − ‖∇h(z)‖∞ ‖w − z‖1 .

Now, ‖∇h(z)‖∞ ≤ L and ‖w − z‖1 ≤ d · ‖w − z‖∞ ≤ 2d(ν1 + ν2) by definition of z in

Algorithm 10. Furthermore, since ε ≤ ν1
√
dL, we have ν2 =

√
εν1
d1/2L

≤ ν1. Plugging these facts in
the inequality of the previous display implies

h(v) ≥ h(w) + 〈s̃,v −w〉 − ‖∇h(z)− s̃‖1 ‖v −w‖∞ − 4dν1L.

48



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

This shows the first inequality we are after. Now, by the definition of s̃ in Algorithm 10 and the fact
that h̃ satisfies ‖h̃− h‖∞ ≤ ε′, we have

‖∇h(z)− s̃‖1 ≤ ‖∇h(z)− s̃‖1 + dε′/ν2.

It remains to bound E[‖∇h(z)− s̃‖]. For this, let g(u) := Ez∼U∞(u,ν2)[∇h(z)] and note that

Ez [|s̃i − [g(u)]i|] = Ez
[∣∣∣∣h(w′i)− h(wi)

2ν2
− [g(u)]i

∣∣∣∣] ,
≤ Ez

[
1

2ν2

∫ ∣∣∣∣ dhdwi (z + λei)− [g(u)]i

∣∣∣∣ dλ] ,
= Ez

[∣∣∣∣ dhdwi (z)− [g(u)]i

∣∣∣∣] ,
where we used that both z+ λei and z are uniform distribution on B∞(u, ν2) in the last line. Hence,
we have

Ez [‖s̃−∇h(z)‖1] ≤ Ez [‖∇h(z)− g(u)‖1 + Ez ‖s̃− g(y)‖1] ≤ 2Ez [‖∇h(z)− g(y)‖1]

≤ 2d5/4
√
εL

ν1
,

where the last inequality follows by Lemma 27 and the fact that ν2 =
√

εν1
d1/2L

≤ ν1.

Lemma 29 Let L, ν1 > 0, w ∈ Rd, and f : Rd → R be convex (not necessarily differentiable)
function such that supg∈∂f(x) ‖g‖ ≤ L, for any x ∈ B∞(w, 2ν1). Also, let ε ∈ (0, ν1

√
dL]

and f̃ : Rd → R be such that ‖f̃ − f‖∞ ≤ ε. Then, the output s̃ of Algorithm 10 with input
(f̃ , ν1, L, ε,w) satisfies

∀v ∈ Rd, f(v) ≥ f(w) + 〈s̃,v −w〉 −X · ‖v −w‖∞ − 4dν1L;

‖s̃‖∞ ≤ L+ d1/4
√
Lε/ν1; ‖s̃‖ ≤ X + L ≤ ‖s̃‖1 + (d+ 1)L;

and ‖s̃‖2 ≤
(

4L+ d1/4
√
Lε/ν1

)
X + L2,

where X ≥ 0 is a non-negative random variable satisfying E[X] ≤ 3d5/4
√
Lε/ν1.

Proof Let ν2, u, z, s̃, and (wi,w
′
i)i∈[d] be the variables generated during the call to Algorithm 10

in the lemma’s statement. Further, let σ > 0 and hσ : Rd → R be such that

hσ(w) := E[f(w + x)], where x ∼ N (0, σ2Id).

It is known that hσ is twice differentiable (Bhatnagar, 2007; Nesterov and Spokoiny, 2017; Abernethy
et al., 2014), and satisfies (Duchi et al., 2012, Lemma 9),

∀w ∈ Rd, ‖∇hσ(w)‖ ≤ L, and f(w) ≤ hσ(w) ≤ f(w) + Lσ
√
d. (49)

49



MHAMMEDI

Thus, we have ‖f̃ − hσ‖∞ ≤ εσ := ε+ Lσ
√
d, and so by Lemma 28

hσ(v) ≥ hσ(w) + 〈s̃,v −w〉 − ‖∇hσ(z)− s̃‖1 · ‖v −w‖∞ − 4dν1L, ∀v ∈ Rd,

and for s̃σ := (hσ(w′1)− hσ(w1), . . . , hσ(w′d)− hσ(wd))
>/(2ν2),

‖∇hσ(z)− s̃‖1 ≤ ‖∇hσ(z)− s̃σ‖1 + dεσ/ν2, and E[‖∇hσ(z)− s̃σ‖1] ≤ 2d5/4
√
Lε/ν1,

(50)

where the expectation is with respect to z ∼ U∞(u, ν2) and u ∼ U∞(w, ν1). Combining this with
(49) leads to

f(v) ≥ f(w) + 〈s̃,v −w〉 − ‖∇hσ(z)− s̃‖1 · ‖v −w‖∞ − 4dν1L− Lσ
√
d, ∀v ∈ Rd.

(51)

Now, define Xn := ‖∇h1/n(z)− s̃‖1, n ≥ 1 and note that

0 ≤ Xn ≤ dL+ ‖s̃‖1 < +∞, ∀n.

Therefore, we have X := lim infn→∞Xn ≤ ‖s̃‖+ dL < +∞. Furthermore, by Fatou’s lemma and
(50), we have

E[X] = E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn] ≤ lim inf
n→∞

E[‖∇h1/n(z)− s̃1/n‖1] + dε/ν2 ≤ 3d5/4
√
Lε/ν1,

where the last inequality also follows by (50) and the fact that ν2 =
√

εν1
d1/2L

. Combining this with

(51) leads to the first inequality of the lemma. Now, we have, for any i ∈ [d],

s̃i =
f̃(w′i)− f̃(wi)

2ν2
≤ |f(w′i)− f(wi)|

2ν2
+

ε

ν2
≤ L+

ε

ν2
= L+ d1/4

√
Lε

ν1
,

where the last inequality follows by the definition ofw′i andwi, and the fact that supg∈∂f(x) ‖g‖ ≤ L
(and so f is L-Lipschitz). In particular, this implies that

∀i ∈ [d], |s̃i − [∇h1/n(z)]i| ≤ 2L+ d1/4
√
Lε/ν1. (52)

Using this, we get

‖s̃‖2 ≤ ‖s̃−∇h1/n(z)‖2 + 2‖s̃−∇h1/n(z)‖‖∇h1/n(z)‖+ ‖∇h1/n(z)‖2,

≤
(

2L+ d1/4
√
Lε/ν1

)
‖s̃−∇h1/n(z)‖1 + 2‖s̃−∇h1/n(z)‖1L+ L2, (by (52))

≤
(

4L+ d1/4
√
Lε/ν1

)
‖s̃−∇h1/n(z)‖1 + L2,

≤
(

4L+ d1/4
√
Lε/ν1

)
lim inf
n→∞

‖s̃−∇h1/n(z)‖1 + L2,

=
(

4L+ d1/4
√
Lε/ν1

)
X + L2.

It remains to bound the norm ‖s̃‖. Similar to how we bounded ‖s̃‖2, we have

‖s̃‖ ≤ ‖s̃−∇h1/n(z)‖+ ‖∇h1/n(z)‖,
≤ ‖s̃−∇h1/n(z)‖1 + L,

≤ lim inf
n→∞

‖s̃−∇h1/n(z)‖1 + L = X + L.

This completes the proof.

50



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

H.1. Proof of Lemma 10 (Approximate Gauge Function)

Proof of Lemma 10. Let ε = δr/(4κ)2. We will first show that for all w ∈ B(6R/5),

[γC(w) ≥ 9/16 or γ̃ ≥ 1] =⇒ [MEMC(2w; ε) = 0 and ‖w‖ ≥ r/2]. (53)

Suppose that γ̃ ≥ 1. By Lines 2 and 3 of Algorithm 2, this implies that MEMC(2w; ε) = 0. Now
suppose that γC(w) ≥ 9/16. Note that MEMC(2w; ε) = 1 only if 2w ∈ B(C, ε). By the fact that
B(r) ⊆ C (Assumption 1) and δ < 1, we have that C + B(ε) = B(C, ε). Thus, by a standard result
in convex analysis, see e.g. (Hiriart-Urruty and Lemaréchal, 2004, Thm C.3.3.2), we have, for all
x ∈ C,

σB(C,ε)(x) = σC(x) + σB(ε)(x). (54)

Let x∗ ∈ ∂γC(w) = arg maxx∈C◦〈x,w〉. Since x∗ ∈ C◦, we have 〈x∗,y〉 ≤ 1, for all y ∈ C, by
definition of C◦. Further, since w/γC(w) ∈ C (implied by Lemma 6) and 〈x∗,w〉 = γC(w), we
have

σC(x∗) = sup
y∈C
〈x∗,y〉 = 〈x∗,w/γC(w)〉 = 1. (55)

Plugging this into (54) and using the fact that σB(ε)(x∗) = δr‖x∗‖/(8κ2), we get

σB(C,ε)(x∗) = 1 + δr‖x∗‖/(8κ2) ≤ 1 + δ/(8κ2) < 9/8, (56)

where the last inequality follows by the fact that δ ∈ (0, 1) and ‖x∗‖ ≤ 1/r (because x∗ ∈ C◦, see
Lemma 42-(c)). On the other hand, since γC(w) ≥ 9/16, we have, by (55)

9/8 = 9/8〈x∗,w/γC(w)〉 ≤ 9/8〈x∗, 16w/9〉 = 〈x∗, 2w〉.

This inequality together with (56) implies that the vector x∗ separates 2w from B(C, ε) and so we
have MEMC(2w; ε) = 0 by definition of the Membership Oracle MEMC(·; ε). It remains to show
that ‖w‖ ≥ r/2. If γC(w) ≥ 9/16, then ‖w‖ ≥ 9r/16 by the fact that γC(w) ≤ ‖w‖/r (Lemma
42-(c)). Also, if γ̃ ≥ 1, then Lines 2 and 3 of Algorithm 2 imply that ‖w‖ ≥ r/2. So far, we have
shown that (53) holds. By definition of α and β in Algorithm 2, (53) implies that if γC(w) ≥ 9/16
or γ̃ ≥ 1, then

MEMC(αw; ε) = 1 and MEMC(βw; ε) = 0. (57)

Next, we will show that if either γC(w) ≥ 9/16 or γ̃ ≥ 1, then for any µ > 0,

MEMC(µw; ε) = 0 =⇒ µ ≥ 1

γC(w)
− δ

8κ2
and MEMC(µw; ε) = 1 =⇒ µ ≤ 1

γC(w)
+

δ

8κ2
.

(58)

Suppose that MEMC(µw; ε) = 0. By (2), this implies that µw 6∈ B(C,−ε). On the other hand, since
w/γC(w) is on the boundary of C (by definition of the Gauge function and Lemma 6), the vector
v := w/γC(w)− εw/‖w‖ is in B(C,−ε). Since v and µw are aligned, the fact that µw 6∈ B(C,−ε)
and C is convex implies that

‖µw‖ ≥ ‖w/γC(w)− εw/‖w‖‖ = ‖w‖/γC(w)− rδ/(16κ2) ≥ ‖w‖/γC(w)− ‖w‖δ/(8κ2),

51



MHAMMEDI

where the last inequality follows by the fact that ‖w‖ ≥ r/2 (see (53)). Dividing by ‖w‖ (this is
non-zero by (53)) on both sides shows the first implication in (58). Similarly, if MEMC(µw; ε) = 1.
Again by (2), this implies that µw ∈ B(C, ε). Combining this with the fact thatw/γC(w)+εw/‖w‖
is on the boundary of B(C, ε) (since w/γC(w) is on the boundary of C) implies that

‖µw‖ ≤ ‖w/γC(w) + εw/‖w‖‖ = ‖w‖/γC(w) + δr/(16κ2) ≤ ‖w‖/γC(w) + δ‖w‖/(8κ2),

where the last inequality follows by the fact that ‖w‖ ≥ r/2 (see (53)). This shows the second
implication in (58). Let α̃ and β̃ be the values of α and β in Algorithm 2 after the while-loop is over.
By combining (57), which we recall holds when γC(w) ≥ 9/16 or γ̃ ≥ 1, and (58), we get

γ̃ ≥ γC(w); and
1

γC(w)
− 1

γ̃
=

1

γC(w)
−
(
α̃− δ

8κ2

)
≤ β̃ − α̃+

δ

8κ
+

δ

8κ2
≤ 3δ

8κ2
, (59)

where the last inequality follows by the fact that the while-loop in Algorithm 2 terminates when
β − α ≤ δ/(8κ2). Multiplying both sides of (59) by γ̃ · γC(w), we get

γ̃ − γC(w) ≤ γ̃ · γC(w) · 3δ/(8κ2). (60)

Using (59), we get that γ̃ ≤ (1/γC(w)− 3δ/(8κ2))−1. Plugging this into (60), we get

γ̃ − γC(w) ≤ γC(w) · 3δ/(8κ2)
1/γC(w)− 3δ/(8κ2)

(a)

≤ 6κ/5 · 3δ/(8κ2)
5/(6κ)− 3δ/(8κ2)

≤ δ,

where (a) follows by the fact that γC(w) ≤ ‖w‖/r ≤ 6κ/5, for all w ∈ B(6R/5), and the last
inequality follows by the fact that δ ∈ (0, 1) and κ ≥ 1.

We now consider the computational complexity. Note that at every iteration of the while-loop
in Line 7 of Algorithm 2, the difference β − α halves. Thus, since β − α is initially equal to 2, the
algorithm terminates (i.e. when β − α ≤ δ/(8κ2)) after at most dlog2((4κ)2/δ)e+ 1 steps.

H.2. Proof of Proposition 11 (Approximate LO Oracle on C◦)

Proof of Proposition 11. Let ε and γ̃ be as in Algorithm 3. First, suppose that γ̃ ≥ 1. We will show
(17) using the result of Lemma 29 with (f, f̃) = (γC ,GAUC(·; ε)) and (ν1, ν2,w) as in Algorithm 3.
First, note that by our choice of ν1 and ε, the technical condition ε ≤ ν1

√
dL under which Lemma

29 holds translates to δ ≤ 10d3/2κ. This holds since δ ∈ (0, 1) and κ, d ≥ 1. We also need to check
the technical condition ‖f − f̃‖∞ ≤ ε of Lemma 29. We note that in Algorithm 3 we only ever
evaluate f̃ = GAUC(·; ε) at the points (wi,w

′
i)i∈[d], and so we only need to check the condition

|γC(wi)− GAUC(wi; ε)| ∨ |γC(w′i)− GAUC(w
′
i; ε)| ≤ ε, ∀i ∈ [d]. (61)

The condition would follow from Lemma 10 if wi and w′i satisfy γC(wi) ∧ γC(w′i) ≥ 9/16 and
wi,w

′
i ∈ B(6R/5), for all i ∈ [d]. Let i ∈ [d] and v ∈ {wi,w

′
i}. By definition of wi, w′i, and u in

Algorithm 3, we have

‖w − v‖ ≤
√
d‖w − u‖∞ +

√
d‖u− v‖∞ ≤

√
dν1 +

√
dν2 ≤

11rδ

100
, (62)

52



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

where the last inequality follows by our choice of ν1 and ν2. Combining (62) with the fact that
w ∈ B(R) and triangular inequality, we get ‖v‖ ≤ ‖w‖+11rδ/100 ≤ 6R/5, and so v ∈ B(6R/5).
On the other hand, by the fact that γC = σC◦ and the sub-additivity of the support function (Lemma
42-(e)), we have

γC(v) = σC◦(v) ≥ σC◦(w)− σC◦(w − v) = γC(w)− γC(w − v)
(a)

≥ γC(w)− 11δ

100
≥ 9

16
,

where (a) follows by the fact that γC(w − v) ≤ ‖w − v‖/r (Lemma 42-(c)) and (62), and the
last inequality follows by the fact that δ ≤ 1/3 and γC(w) ≥ 2/3; the latter is because γ̃ ≥ 1 and
γC(w) ≥ γ̃ − δ (Lemma 10). Therefore, by Lemma 10, (61) holds, and so does the result of Lemma
29 with (f, f̃) = (γC ,GAUC(·; ε)) and (ν1, ν2,w) as in Algorithm 3. We will now use this fact to
show (17).

By Lemma 42 (points (a) and (b)), we have ∂γC(x) ⊆ C◦ for any x ∈ Rd, and so we get

sup
x∈Rd

‖∂γC(x)‖ ≤ sup
y∈C◦

‖y‖ ≤ 1

r
,

where the last inequality follows by Lemma 42-(c). This implies that the Lipschitz constant L in
Lemma 29 can be set to 1/r. Furthermore, by our choice of ε and ν1 in Algorithm 3, we have
ε = ν31/(R

2r
√
d) and so Lemma 29 implies that there exists a non-negative random variable X

satisfying E[X] ≤ 3ν1d/(rR), and for all u ∈ Rd

γC(u) ≥ γC(w) + 〈s̃,u−w〉 −X‖w − u‖∞ − 4dν1/r,

where s̃ is as in Algorithm 3. Thus, with ∆ := 2RX + 4dν1/r ≥ 0, we get

γC(u) ≥ γC(w) + 〈s̃,u−w〉 −∆ ·max(1, ‖u‖/R), and E[∆] ≤ 10dν1/r, (63)

where we used the fact that w ∈ B(R). Further, Lemma 29 implies ‖s̃‖∞ ≤ 1/r + d1/4
√
Lε/ν1,

‖s̃‖ ≤ X + 1/r, and ‖s̃‖2 ≤
(

4/r + d1/4
√
Lε/ν1

)
X + 1/r2, and so

‖s̃‖∞ ≤ d5/4
√
Lε/ν1 + 1/r; ‖s̃‖ ≤ ∆/R+ 1/r; (64)

and ‖s̃‖2 ≤
(

2/r + d1/4
√
Lε/ν1

)
∆/R+ 1/r2. (65)

Now, since ε = ν31/(R
2r
√
d) and ν1 = δr/(10d), we get that 10dν1/r = δ and d1/4

√
Lε/ν1 =

δ/(10Rd). Plugging these into (63) and (65), we get (17) for the case when γ̃ ≥ 1.
It remain to show that ‖s̃‖∞ < +∞ almost surely and bound ∆. We do not assume that γ̃ ≥ 1

anymore. Let i ∈ [n] and (wi,w
′
i) be as in Algorithm 3. Let v ∈ {wi,w

′
i} and suppose that

GAUC(w; ε) ≥ 1, then by Lemma 10 and Lemma 42-(c), we have

1 ≤ GAUC(v; ε) ≤ γC(v) + ε ≤ ‖v‖/r + ε ≤ R+
√
dν1 +

√
dν2

r
+ ε < +∞.

Alternatively, we have 0 ≤ GAUC(v; ε) < 1. Therefore, for all i ∈ [d], we have

|s̃i| =
|GAUC(w′i; ε)− GAUC(wi; ε)|

2ν2
≤ R+

√
dν1 +

√
dν2

ν2r
+

ε

ν2

=
100d5/2κ2

δ2r
+

10d2κ

δr
+

δ

10dR
+

√
d

r
,

≤ 112d5/2κ2

rδ2
< +∞. (66)

53



MHAMMEDI

Finally, by Lemma 29, we have X ≤ ‖s̃‖1 + d/r and so combining this with (66), we get

∆ = 2RX + 4dν1/r ≤
224d4κ3

δ2
+ 2dκ+

4δ

10
≤ 152d4κ3

δ2
,

where the last inequality follows by the fact that δ ≤ 1/3. This completes the proof.

H.3. Proof of Lemma 13 (Efficient Stochastic LO Oracle on C◦)

Proof of Lemma 13. Let I ∈ [d] be the random variable in Algorithm 4 generated during the call
to OPT1d,C◦ in the lemma’s statement. Note that the approximate Gauge function GAUC (Alg. 2)
is deterministic and so γ̂ = γ̃. On the other hand, by definition of s̃ and ŝ in Algorithms 3 and 4,
respectively, we have

E[ŝ] = E[ŝI · eI ] =

d∑
i=1

d−1E[ŝi | I = i] · ei
(∗)
=

d∑
i=1

d−1E[ds̃i] · ei = s̃,

where (∗) follows by the fact that, conditioned on I = i, ŝi/d has the same distribution as s̃i.
Similarly,

E[‖ŝ‖2] = E[‖ŝIeI‖2] =
d∑
i=1

d−1E[ŝ2i ei | I = i] =
d∑
i=1

d−1E[d2s̃2i ei] = dE[‖s̃‖2] ≤ d ·
(

1

r
+
δ

R

)2

,

where the last inequality follows by the fact that ‖s̃‖2 ≤ (2/r + δ/R)∆/R+ 1/r2 (Proposition 11),
where ∆ ≥ 0 is a random variable satisfying E[∆] ≤ δ. Finally, the fact that ‖ŝ‖ < +∞ a.s. follows
from the fact that ‖s̃‖∞ < +∞ a.s. (Prop. 11), and for any i ∈ [d], conditioned on I = i, ŝi/d has
the same distribution as s̃i.

Appendix I. Proofs of the Regret Bounds and Convergence Rates

I.1. Proof of Lemma 7 (Instantaneous Regret Bound)

To avoid expensive projections our main algorithm (Alg. 1) makes use of surrogate losses of the
form ˜̀(w) := 〈g,w〉+ bSC(w), w ∈ Rd and b ≥ 0. The choice of such a surrogate loss function is
inspired by existing constrained-to-unconstrained reductions in OCO due to Cutkosky and Orabona
(2018); Cutkosky (2020). We will use the approximate optimization Oracle OPTC◦ from App. B
to compute approximate subgradients of such surrogate losses. In particular, OPTC◦ (Algorithm 3)
guarantees the following:

Lemma 30 Let g ∈ Rd, b ≥ 0, and δ ∈ (0, 1/3). Let SC be the Gauge distance function in (3) and
define ˜̀(w) := 〈g,w〉+ bSC(w). Then, for w ∈ B(R), the output (γ̃, s̃) of Alg. 3 with input (w, δ)
satisfies (17) and

∀u ∈ B(R), ˜̀(u) ≥ ˜̀(w) + 〈g + bν,u−w〉 − b · (∆ + δ) · I{γ̃≥1}, where ν := I{γ̃≥1}s̃,

and ∆ ∈ [0, 152d4κ3δ−2] is the same random variable satisfying (17); in particular, E[∆] ≤ δ.

54



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Proof First suppose that γ̃ < 1. If γC(w) ≥ 9/16, then by Lemma 10, we have γC(w) ≤ γ̃ < 1.
Alternatively, γC(w) < 9/16 < 1. Therefore, by Lemma 6, ∂SC(w) = {0}, and so g ∈ ∂ ˜̀(w).
Since the function ˜̀ is convex, it follows that

[case where γ̃ < 1] ∀u ∈ B(R), ˜̀(u) ≥ ˜̀(w) + 〈g,u−w〉. (67)

Now, suppose that γ̃ ≥ 1. In this case, by Lemma 10, we have γC(w) ≤ γ̃ ≤ γC(w) + δ. Combining
this with the fact that SC(w) = 0 ∨ (γC(w)− 1) (Lemma 6), we get

γC(w)− 1 ≥ γ̃ − 1− δ
(a)

≥ 0 ∨ (γC(w)− 1)− δ = SC(w)− δ, (68)

where (a) follows from the fact that γ̃ ≥ 1 (by assumption) and γ̃ ≥ γC(w). Using this, we get

[case where γ̃ ≥ 1] ∀u ∈ B(R), ˜̀(u) = 〈g,u〉+ 0 ∨ (bγC(u)− b),
≥ 〈g,u〉+ bγC(u)− b,
≥ 〈g,u〉+ bγC(w)− b+ 〈bs̃,u−w〉 − b∆, (69)

≥ 〈g,u〉+ bSC(w) + 〈bs̃,u−w〉 − b∆− bδ, (70)

= ˜̀(w) + 〈g + bs̃,u−w〉 − b∆− bδ,
= ˜̀(w) + 〈g̃ + bν,u−w〉 − b∆− bδ, (71)

where (69) follows by the fact that γ̃ ≥ 1 and Proposition 11; (70) follows by (68); and (71) follows
by the fact that s̃ = ν since γ̃ ≥ 1. Combining (67) and (71) implies the desired result.

Lemma 30 shows that for any t ≥ 1, the vector g̃t in Algorithm 1 is an approximate subgradient
of the surrogate loss ˜̀

t(·) := 〈gt, ·〉 − I〈gt,wt〉<0〈gt,xt〉SC(·), where gt ∈ ∂`t(xt) and xt is the
tth iterate of Alg. 1. We now use this to prove Lemma 7. We actually state and prove a slight
generalization of Lemma 7, which will be useful when considering the stochastic optimization setting
of Section C.3. In this generalization, we assume that for some R′ ∈ [r,R],

B(r) ⊆ C ⊆ B(R′) ⊆ B(R). (72)

Lemma 31 Let κ := R′/r and A be any OCO algorithm on B(R), for r,R,R′ > 0 as in (72).
Further, for t ≥ 1, let wt, g̃t,xt, and gt ∈ ∂`t(xt) be as in Alg. 1 with OC◦ ≡ OPTC◦ and any
tolerance sequence (δs) ⊂ (0, 1/3). Then, (xt) ⊂ C, and for all t ≥ 1, there exists a variable
∆t ∈

[
0, 152d4(R/r)3δ−2t

]
s.t. Et−1[∆t] ≤ δt, ‖g̃t‖ ≤ (1 + ∆t + κ)‖gt‖, and

∀x ∈ C, 〈gt,xt − x〉 ≤ ˜̀
t(wt)− ˜̀

t(x) + δtR‖gt‖ ≤ 〈g̃t,wt − x〉+ (2δt + ∆t)R‖gt‖. (73)

Proof of Lemma 7. Let γt, νt, wt, g̃t, and xt be as in Algorithm 1. We will first show that

−R‖gt‖ ≤ I〈gt,wt〉<0 · 〈gt,xt〉 ≤ 0 (74)

First suppose that γt < 1. In this case, xt = wt, and so

−R‖gt‖ ≤ I〈gt,wt〉<0 · 〈gt,xt〉 = I〈gt,wt〉<0 · 〈gt,wt〉 ≤ 0.

55



MHAMMEDI

Now suppose that γt ≥ 1, then I〈gt,wt〉<0 · 〈gt,xt〉 = I〈gt,wt〉<0 · 〈gt,wt/γt〉 and so

0 ≥ I〈gt,wt〉<0 · 〈gt,xt〉 ≥ I〈gt,wt〉<0〈gt,wt〉 ≥ −R‖gt‖,

where the last inequality follows by the fact wt ∈ B(R). This shows (74). Now recall the definition
of the surrogate function ˜̀

t : B(R)→ R:

˜̀
t(w) := 〈gt,w〉 − I〈gt,wt〉<0 · 〈gt,xt〉 · SC(w),

where SC is as in (3). By (74) and Lemma 30, there exists a r.v. ∆t ∈ [0, 15
2d4κ3

δ2
] such that

Et−1[∆t] ≤ δt and

∀x ∈ C, ˜̀
t(wt)− ˜̀

t(x) ≤ 〈g̃t,wt − x〉+R‖gt‖ · (∆t + δt). (75)

It remains to show that 〈gt,xt − x〉 ≤ ˜̀
t(wt) − ˜̀

t(x) + δtR‖gt‖, for all t ≥ 1 and x ∈ C. First,
note that for all x ∈ C, we have SC(x) = 0, and so

˜̀
t(x) = 〈gt,x〉, ∀x ∈ C. (76)

We will now compare 〈gt,xt〉 to ˜̀
t(wt) by considering cases. Suppose that γt < 1. In this case, we

have xt = wt and so

〈gt,xt〉 = 〈gt,wt〉 = ˜̀
t(wt). [case where γt < 1] (77)

Now suppose that γt ≥ 1 and 〈gt,wt〉 ≥ 0. In this case, we have xt = wt/γt, and so

〈gt,xt〉 = 〈gt,wt/γt〉 ≤ 〈gt,wt〉 = ˜̀
t(wt). [case where γt ≥ 1, 〈gt,wt〉 ≥ 0] (78)

Now suppose that γt ≥ 1, 〈gt,wt〉 < 0, and wt ∈ C. We note that this implies that γC(wt) ≤ 1 and
so SC(wt) = 0 (Lemma 6). Thus, ˜̀

t(wt) = 〈gt,wt〉. On the other hand, by Lemma 10 we have
γt ≤ γC(wt) + δt ≤ 1 + δt, and so since xt = wt/γt, we have

〈gt,xt〉 ≤ 〈gt,wt〉/(1 + δt) = 〈gt,wt〉 − δt〈gt,wt〉/(1 + δt).

Thus, since ˜̀
t(wt) = 〈gt,wt〉, the previous display implies that

〈gt,xt〉 ≤ ˜̀
t(wt) + δtR‖gt‖. [case where γt ≥ 1, 〈gt,wt〉 < 0,wt ∈ C] (79)

We now consider the last case where γt ≥ 1, 〈gt,wt〉 < 0, and wt 6∈ C. We note that this implies
that γC(wt) ≥ 1. By the fact that γt ≤ γC(wt) + δt (Lemma 10), we have

〈gt,xt〉 ≤
〈gt,wt〉

γC(wt) + δt
=
〈gt,wt/γC(wt)〉
1 + δt/γC(wt)

= 〈gt,wt/γC(wt)〉 −
δt/γC(wt)

1 + δt/γC(wt)
〈gt,wt/γC(wt)〉,

(80)

Thus, since SC(wt) = γC(wt)− 1 (by Lemma 6 and γC(wt) ≥ 1), we get

〈gt,xt〉 · SC(wt) ≤ 〈gt,wt〉 −
δt〈gt,wt〉

1 + δt/γC(wt)
− 〈gt,wt/γC(wt)〉+

δt/γC(wt)

1 + δt/γC(wt)
〈gt,wt/γC(wt)〉.

56



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Adding this together with (80) and using the fact that ‖wt‖ ≤ R, we get

〈gt,xt〉+ 〈gt,xt〉SC(wt) ≤ 〈gt,wt〉+ δtR‖gt‖,

and so after rearranging and using that ˜̀
t(wt) = 〈gt,wt〉 − 〈gt,xt〉SC(wt), we get

〈gt,xt〉 ≤ ˜̀
t(wt) + δtR‖gt‖. [case where γt ≥ 1, 〈gt,wt〉 < 0,wt 6∈ C] (81)

By combining, (77), (78), (79), and (81), we obtain:

〈gt,xt〉 ≤ ˜̀
t(wt) + δtR‖gt‖.

Combining this with (75) and (76), we get

〈gt,xt − x〉 ≤ ˜̀
t(wt)− ˜̀

t(x) + δtR‖gt‖ ≤ 〈g̃t,wt − x〉+ (2δt + ∆t)R‖gt‖, ∀x ∈ C.

This shows (73). It remains to bound ‖g̃t‖ in terms of ‖gt‖ and show that xt ∈ C. When γt < 1,
we have g̃t = gt and xt = wt, and so ‖g̃t‖ = ‖gt‖. Furthermore, we also have that xt ∈ C. In
fact, if γC(wt) ≤ 9/16, then by definition of the Gauge function we have wt ∈ C and the same
holds for xt (since xt = wt). On the other hand, if γC(wt) ≥ 9/16, then by Lemma 10, we have
γC(wt) ≤ γt < 1 (γt < 1 is the case we are currently considering), and so xt = wt ∈ C.

Now suppose that γt ≥ 1. In this case, we have xt = wt/γt and g̃t = gt − I〈gt,wt〉<0〈gt,xt〉νt.
The latter fact together with the positive homogeneity of the Gauge function (Lemma 42-(a,b))
imply that γC(xt) = γC(wt/γt) = γC(wt)/γt ≤ γC(wt)/γC(wt) = 1 (since γC(wt) ≤ γt by
Lemma 10), and so xt ∈ C. Using that xt ∈ C (which implies that ‖xt‖ ≤ R′) and that g̃t =
gt − I〈gt,wt〉<0〈gt,xt〉νt, we get

‖g̃t‖ = ‖gt − I〈gt,wt〉<0〈gt,xt〉νt‖ ≤ ‖gt‖(1 +R′‖νt‖) ≤ (1 + ∆t + κ)‖gt‖,

where the last inequality follows the fact that ‖νt‖ ≤ ∆t/R + 1/r (by (17) which is implied by
Lemma 30).

Proof of Lemma 7. Follows from Lemma 31 with R′ = R.

I.2. Proof of Theorem 8 (Regret Bound in High Probability using OPTC◦)

Proof By Lemma 7, we have, for allw and t ≥ 1, 〈gt,xt−x〉 ≤ 〈g̃t,wt−x〉+ (2δt + ∆t)R‖gt‖,
where (∆t) ⊂ R≥0 is a sequence of positive random variables satisfying Et−1[∆t] ≤ δt, for all
t ∈ [T ]. Summing this inequality for t = 1, . . . , T , we obtain, for all x ∈ C,

T∑
t=1

〈gt,xt − x〉 ≤
T∑
t=1

〈g̃t,wt − x〉+
T∑
t=1

(2δt + ∆t)R‖gt‖,

≤ 2R

√√√√2
T∑
t=1

‖g̃t‖2 +
T∑
t=1

(2δt + ∆t)R‖gt‖, (82)

≤ 4(1 + κ)R

√√√√ T∑
t=1

‖gt‖2 +

T∑
t=1

(2δt + 5∆t)R‖gt‖, (83)

57



MHAMMEDI

where (82) follows by our choice of the subroutine A and the regret bound of FTRL-prox in Proposi-
tion 25, and the last inequality follows by the fact that ‖g̃t‖ ≤ (1 + κ+ ∆t)‖gt‖ (Lem. 7) and the
fact that (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R>0. By Lemma 7, we also have xt ∈ C, ∀t ≥ 1.

We now instantiate (83) with the specific choice of tolerance sequence (δt) in theorem’s statement,
where we explicitly bound the right-most sum in (82) involving (∆t). For this, we let Xt :=∑t

i=1(∆i − δ̄i), where δ̄i := Ei−1[∆i] ≤ δi. The process (Xt) is a martingale; that is, for all i ≥ 1,
we have, Ei[Xt] = Xi, for all i < t. Thus, by Doob’s martingale inequality (Durrett, 2019, Theorem
4.4.2) we have, for any ρ ∈ (0, 1) and T ≥ 1:

P

[
T∑
t=1

∆t ≥ (1 + 1/ρ)
T∑
t=1

δt

]
≤ P

[
XT ≥

T∑
t=1

δt/ρ

]
≤ P

[
max
t≤T

Xt ≥
T∑
t=1

δt/ρ

]

≤ ρE [XT ∨ 0]∑T
t=1 δt

≤ ρ,

where the last inequality follows by the fact that E[XT ∨ 0] ≤ E[
∑T

t=1 ∆t] ≤
∑T

t=1 δt. Using this
and the fact that

∑∞
t=1 1/t2 ≤ 2 in combination with (83), we obtain (9).

I.3. Proof of Theorem 15 (Regret Bound in Expectation using OPT1d,C◦)

Proof Let (γ̃t, s̃t) = OPTC◦(wt; δt) and (γ̂t, ŝt) = OPT1d,C◦(wt; δt). Further, let ν̃t := I{γ̃t≥1}s̃t,
and γt and νt be as in Algorithm 1. Note that by Proposition 11 and Lemma 13, we have ‖s̃t‖∨‖ŝt‖ <
+∞ almost surely and so the expectations Et−1[I{γ̃t≥1}s̃t] and Et−1[I{γ̂t≥1}ŝt] are well defined. We
also note that γt = γ̂t = γ̃t, and γt, wt, gt, and xt are all deterministic functions of the past (wt it
the output of FTRL-prox, which is a deterministic function of the past).

By Lemma 7, there exists a random variable ∆t ≥ 0 satisfying Et−1[∆t] and such that for all
t ≥ 1,

∀x ∈ C, 〈gt,xt − x〉 ≤ 〈gt − I〈gt,wt〉<0〈gt,xt〉ν̃t,wt − x〉+ (2δt + ∆t)R‖gt‖, (84)

Now by Lemma 13, and the law of total expectation, we have, for all x ∈ C,

E[〈gt,xt − x〉] = E[Et−1[〈gt,xt − x〉]],
≤ E[Et−1[〈gt − I〈gt,wt〉<0〈gt,xt〉ν̃t,wt − x〉+ (2δt + ∆t)R‖gt‖]], (by (84))

≤ E[Et−1[〈gt − I〈gt,wt〉<0〈gt,xt〉ν̃t,wt − x〉] + 3δtR‖gt‖],
= E[I{γ̃t<1} · Et−1[〈gt,wt − x〉]]

+ E[I{γ̃t≥1} · Et−1[〈gt − I〈gt,wt〉<0〈gt,xt〉s̃t,wt − x〉] + 3δtR‖gt‖],
= E[I{γ̃t<1} · Et−1[〈gt,wt − x〉]]

+ E[I{γ̂t≥1} · Et−1[〈gt − I〈gt,wt〉<0〈gt,xt〉ŝt,wt − x〉] + 3δtR‖gt‖], (85)

= E[Et−1[〈gt − I〈gt,wt〉<0〈gt,xt〉νt,wt − x〉] + 3δtR‖gt‖],
= E[〈g̃t,wt − x〉+ 3δtR‖gt‖], (86)

58



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

where (85) follows by the facts that γ̃t = γ̂t and Et−1[ŝt] = Et−1[s̃t], when γ̃t ≥ 1 (Lemma 13).
Summing (86) for t = 1, . . . , T , we obtain,

∀x ∈ C,
T∑
t=1

E[〈gt,xt − x〉] ≤ E

[
T∑
t=1

〈g̃t,wt − x〉+ 3

T∑
t=1

δtR‖gt‖

]
,

≤ E

2R

√√√√2

T∑
t=1

‖g̃t‖2 + 3

T∑
t=1

δtR‖gt‖

 , (87)

≤ 2R

√√√√E

[
2

T∑
t=1

Et−1 [‖g̃t‖2]

]
+ E

[
3

T∑
t=1

δtR‖gt‖

]
, (88)

where the last step follows by Jensen’s inequality and (87) follows by our choice of the subroutine A
(≡FTRL-prox) and the regret bound of FTRL-prox in Proposition 25.

It remains to bound ‖g̃t‖ in terms of ‖gt‖ and show that xt ∈ C. First, if γt < 1, then
(g̃t,xt) = (gt,wt), and so ‖g̃t‖ ≤ ‖gt‖(1 + R‖st‖). Furthermore, we also have that xt ∈ C. In
fact, if γC(wt) ≤ 9/16, then by definition of the Gauge function we have wt ∈ C and the same
holds for xt (since xt = wt). On the other hand, if γC(wt) ≥ 9/16, then by Lemma 10, we have
γC(wt) ≤ γt < 1, and so xt = wt ∈ C.

Now suppose that γt ≥ 1. In this case, we have xt = wt/γt and νt = st. Using this, the
triangular inequality, and Cauchy Schwarz, we get

‖g̃t‖ = ‖〈gt,w〉 − I〈gt,wt〉<0 · 〈gt,xt〉 · st‖ = ‖gt‖+ ‖gt‖‖wt‖/γt · ‖st‖ ≤ ‖gt‖(1 +R‖st‖),

where the last inequality follows by the fact that γt ≥ 1. Therefore, using Lemma 13, we get
‖g̃t‖ ≤ ‖gt‖(1 + ∆t + κ) and

Et−1[‖g̃t‖2] ≤ 2‖gt‖2(1 +R2Et−1[‖st‖2]) = 2‖gt‖2(1 +R2Et−1[‖ŝt‖2]) ≤ 2‖gt‖2(1 + d · (κ+ δt)
2).

Plugging this into (88) leads to, for all x ∈ C,

T∑
t=1

E[〈gt,xt − x〉] ≤ 4R

√√√√ T∑
t=1

(1 + d · (κ+ δt)2) · E [‖gt‖2] + 3E

[
T∑
t=1

δtR · ‖gt‖

]
,

≤ 4R

√√√√ T∑
t=1

(1 + d · (κ+ δ)2) · E [‖gt‖2] + 6δR · E
[
max
t∈[T ]
‖gt‖

]
,

where in the last inequality we used that
∑+∞

t=1 1/t2 ≤ 2. Furthermore, when γt ≥ 1, we have
γC(xt) = γC(wt/γt) = γC(wt)/γt ≤ γC(wt)/γC(wt) = 1 (since γC(wt) ≤ γt by Lemma 10), and
so xt ∈ C.

I.4. Proof of Theorem 16 (Regret Bound in High Probability using OPT1d,C◦)

To prove Theorem 16, we need the following extension of Lemma 13:

59



MHAMMEDI

Lemma 32 Let δ ∈ (0, 1), w ∈ B(R), and κ := R/r, with r,R > 0 as in (1). Further, let
(γ̃, s̃) = OPTC◦(w; δ) and (γ̂, ŝ) = OPT1d,C◦(w; δ) (Alg. 4). Then, γ̂ = γ̃, ‖ŝ‖ < +∞ a.s., and if
γ̂ ≥ 1 it follows that

E[ŝ] = E[s̃], E[‖ŝ‖2] ≤ d · (1/r + δ/R)2 , (89)

‖ŝ‖∞ ≤ d · (1/r + δ/R), ‖ŝ‖ ≤ d · (1/r + δ/R), and E[‖ŝ‖4] ≤ d3 · (1/r + δ/R)4 .
(90)

Proof Lemma 13 implies (89). We now show (90). Proposition 11 implies that s̃i ≤ δ/R+ 1/r, for
all i ∈ [d]. Let I ∈ [d] be the random variable in Algorithm 4 generated during the call to OPT1d,C◦

in the lemma’s statement. Since, conditioned on I = i, ŝi/d has the same distribution as s̃i and
ŝi = 0 when I 6= i, we get that ŝi ≤ d · (1/r + δ/R). This implies the first inequality in (90). Using
this, we get

E[‖ŝ‖4] = E[‖ŝIeI‖4] = E[ŝ4I ] ≤ d2 ·
(

1

r
+
δ

R

)2

· E[ŝ2I ] = d2 ·
(

1

r
+
δ

R

)2

· E[‖ŝ‖2]

≤ d3 ·
(

1

r
+
δ

R

)4

,

where the last inequality follows the right-most inequality in (89). This shows the right-most
inequality in (90). Finally, we have

‖ŝ‖ = |ŝI | ≤ max
i∈[d]
|ŝi| ≤ d · (1/r + δ/R),

where the last inequality follows by the first inequality in (90), which we already showed. Now we
do not assume that γ̂ ≥ 1 anymore. Finally, the fact that ‖ŝ‖ < +∞ follows by Lemma 13.

Proof of Theorem 16. The fact that (xt) ⊂ C follows from Lemma 15. Let (γ̃t, s̃t) = OPTC◦(wt; δt)
and (γ̂t, ŝt) = OPT1d,C◦(wt; δt). Further, let ν̃t := I{γ̃t≥1}s̃t, and γt and νt be as in Algorithm 1.
Note that by Proposition 11 and Lemma 13, we have ‖s̃t‖ ∨ ‖ŝt‖ < +∞ almost surely and so the
expectations Et−1[I{γ̃t≥1}s̃t] and Et−1[I{γ̂t≥1}ŝt] are well defined. We also note that γt = γ̂t = γ̃t,
and γt, wt, and xt are all deterministic functions of the past (wt it the output of FTRL-prox, which
is a deterministic function of the past).

By Lemma 7, there exists a random variable ∆t ≥ 0 satisfying Et−1[∆t] and such that for all
t ≥ 1,

∀x ∈ C, 〈gt,xt − x〉 ≤ 〈gt − I〈gt,wt〉<0〈gt,xt〉ν̃t,wt − x〉+ (2δt + ∆t)R‖gt‖,
= 〈g̃t,wt − x〉+ I〈gt,wt〉<0〈gt,xt〉〈νt − ν̃t,wt − x〉

+ (2δt + ∆t)R‖gt‖. (91)

Fix x ∈ C and let Xt := I〈gt,wt〉<0〈gt,xt〉 · 〈νt − ν̃t,wt − x〉. We start by bounding |Xt| from
above. By the fact that xt ∈ C and the B-Lipschitzness of `t, we have

|Xt| ≤ 2‖gt‖R‖νt − ν̃t‖ ≤ 2RB · (‖νt‖+ ‖ν̃t‖) ≤ 4dRB · (κ+ δ), (92)

where the last inequality follows by the fact that νt [resp. ν̃t] has the same distribution as I{γ̂t≥1}ŝt
[resp. I{γ̃t≥1}s̃t], and ‖ŝt · I{γ̂t≥1}‖ ≤ d · (δ/R + 1/r) by Lemma 32 [resp. ‖s̃t · I{γ̃t≥1}‖ ≤

60



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

d · (δ/R + 1/r) by Proposition 11]. We now show that Et−1[Xt] = 0. Using the definition of Xt,
we have

Et−1[Xt] = Et−1[I{γ̃t<1} · I〈gt,wt〉<0〈gt,xt〉 · 〈νt − ν̃t,wt − x〉]
+ Et−1[I{γ̃t≥1} · I〈gt,wt〉<0〈gt,xt〉 · 〈νt − ν̃t,wt − x〉],

= Et−1[I{γ̂t≥1} · I〈gt,wt〉<0〈gt,xt〉 · 〈ŝt − s̃t,wt − x〉] = 0, (93)

where the equalities in (93) follow by the facts that γ̃t = γ̂t = γt (by Lemma 32); νt = ŝt = 0
if γt ≥ 1; and that Et−1[I{γ̃t≥1} · (ŝt − s̃t)] = 0 (by Lemma 32). Using that xt is a deterministic
function of the past, we get

Et−1[X2
t ] ≤ ‖xt‖2‖gt‖2Et−1[‖νt − ν̃t‖2 · ‖wt − x‖2],
≤ 8R4‖gt‖2Et−1[(‖νt‖2 + ‖ν̃t‖2)], (xt ∈ C)
≤ 8R4‖gt‖2Et−1[I{γ̂t≥1} · (‖ŝt‖

2 + ‖s̃t‖2)],
≤ 8R2B2d(κ+ δ)2. (94)

where the last inequality follows by Lemma 32 and Proposition 11. Thus, by (91), (92), (93), (94),
and Freedman’s inequality (Theorem 40), we have, for any ρ ∈ (0, 1), with probability at least 1− ρ,

T∑
t=1

〈gt,xt − x〉

=
T∑
t=1

〈g̃t,wt − x〉+
T∑
t=1

(2δt + ∆t)R‖gt‖+ 4RB(κ+ δ)
√

2dT ln ρ−1 + 4dRB · (κ+ δ),

≤2R

√√√√2
T∑
t=1

‖g̃t‖2 +
T∑
t=1

(2δt + ∆t)R‖gt‖+ 4RB(κ+ δ)
√

2dT ln ρ−1 + 4dRB · (κ+ δ),

(95)

where the last inequality follows by the regret bound FTRL-prox in Proposition 25. We now bound
the first two terms on the RHS of (95). We start with

∑T
t=1 ‖g̃t‖2. With Yt := ‖g̃t‖2, we have

Et−1[Yt] ≤ Et−1[2‖gt‖2 + 2‖gt‖2‖xt‖2‖νt‖2],
≤ 2B2R2Et−1[I{γ̂t<1} · ‖νt‖2] + 2B2R2Et−1[I{γ̂t≥1} · ‖ŝt‖

2] + 2‖gt‖2, (xt ∈ C)
≤ 2dB2(κ+ δ)2 + 2B2, (96)

where the last inequality follows by Lemma 32. Similarly, we also have

Et−1[Y 2
t ] ≤ Et−1[8‖gt‖4 + 8‖gt‖4‖xt‖4‖νt‖4],

= 8B4R4Et−1[‖νt‖4] + 8B4, (xt ∈ C)
= 8B4R4Et−1[I{γ̂t<1} · ‖νt‖4] + 8B4R4Et−1[I{γ̂t≥1} · ‖ŝt‖

4] + 8B4,

≤ 8d3B4(κ+ δ)4 + 8B4, (97)

where the last inequality follows by Lemma 32. Also, we have

|Yt| ≤ ‖gt‖+ ‖gt‖‖xt‖‖νt‖ ≤ B · (1 +R‖νt‖) ≤ B · (1 + d · (κ+ δ)), (98)

61



MHAMMEDI

where the last inequality follows by the fact that νt has the same distribution as I{γ̂t≥1}ŝt, and
‖ŝt‖ ≤ d · (δ/R+ 1/r) by Lemma 32. By combining (96), (97), and (98), and applying Freedman’s
inequality (Theorem 40), we get for all ρ > 0, with probability at least 1− ρ,

T∑
t=1

‖g̃t‖2 ≤
T∑
t=1

Et−1[‖g̃t‖2] + 4
√

2B4(1 + d3(κ+ δ)4)T ln(1/ρ) +B2(1 + d(κ+ δ))2 ln(1/δ),

≤ 4B2d(κ+ δ)2T + 8d3/2B2(κ+ δ)2
√
T ln(1/ρ) +B2(1 + d(κ+ δ))2 ln(1/δ),

≤ 12B2d(κ+ δ)2T + 4B2d2(κ+ δ)2 ln(1/δ), (99)

where the last inequality follows by the fact that d ln(1/ρ) ≤ T . Finally, by Markov’s inequality and
the fact that `t is B-Lipschitz, we have, for all ρ,

P

[
T∑
t=1

∆t‖gt‖ ≥ 2Bδ
√
Tρ−1

]
≤
ρ
∑T

t=1 E[∆t‖gt‖]
2δB
√
T

≤
ρ
∑T

t=1 E[∆t]

2δ
√
T

≤
ρ
∑T

t=1 δt
2δ

≤ ρ,

(100)

where the last inequality follows the fact that δt = δ/t−1/2 and
∑T

t=1 1/t−1/2 ≤ 2
√
T , for all T ≥ 1.

By combining (95), (99), and (100), and a union bound, we get, with probability at least 1− 3ρ,

T∑
t=1

〈gt,xt − x〉

≤4RB(κ+ δ)
√

6dT + 2d ln ρ−1 + 6RBδ
√
T/ρ+ 4RB(κ+ δ)

√
2dT ln ρ−1 + 4dRB · (κ+ δ),

≤8RB(κ+ δ)
√
dT (3 + ln ρ−1) + d ln ρ−1 + 2dBR · (2κ+ δ · (2 + 3

√
T/ρ)),

where the last inequality follows by the fact that
√
a+
√
b ≤
√

2a+ 2b. This completes the proof.

I.5. Proof of Theorem 17 (The Strongly Convex Case)

Before proving Theorem 17, we present a result that may be viewed as an extension of Lemma 7:

Lemma 33 Let wt, g̃t, and xt be as in Algorithm 1 with OC◦ ≡ OPTC◦ , any tolerance sequence
(δs) ⊂ (0, 1/3), and any OCO subroutine A defined on B(R) (R as in (1)). Then, for all t ≥ 1 and
all x ∈ C, we have

〈g̃t,xt〉 ≤ 〈g̃t,wt〉+ (2δt + ∆t)R‖gt‖,

where ∆t ∈ [0, 152d4κ3δ−2t ] is the random variable in Lemma 7, which satisfies Et−1[∆t] ≤ δt.

Proof Instantiating (5) in Lemma 7 with x = xt, we get

〈g̃t,wt〉 ≥ ˜̀
t(wt)− ˜̀

t(xt) + 〈g̃t,xt〉 − (δt + ∆t)R‖gt‖. (101)

Now, to get the desired result, we need to show that ˜̀
t(wt)− ˜̀

t(xt) ≥ −δtR‖gt‖. When γt < 1,
we have xt = wt and so

˜̀
t(xt) = ˜̀

t(wt). [case where γt < 1] (102)

62



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Now, suppose that γt ≥ 1 and 〈gt,wt〉 ≥ 0. By the fact that xt = wt/γt, we get

˜̀
t(xt) = 〈gt,xt〉 ≤ 〈gt,wt〉 = ˜̀

t(wt). [case where γt ≥ 1, 〈gt,wt〉 ≥ 0] (103)

Now suppose that γt ≥ 1, 〈gt,wt〉 < 0, and wt ∈ C. We note that this implies that γC(wt) ≤ 1 and
so SC(wt) = 0 (Lemma 6). Thus, ˜̀

t(wt) = 〈gt,wt〉. On the other hand, by Lemma 10 we have
γt ≤ γC(wt) + δt ≤ 1 + δt, and so since xt = wt/γt, we have

〈gt,xt〉 ≤ 〈gt,wt〉/(1 + δt) = 〈gt,wt〉 − δt〈gt,wt〉/(1 + δt).

Thus, since ˜̀
t(wt) = 〈gt,wt〉 and ˜̀

t(xt) = 〈gt,xt〉 (because xt ∈ C), the previous display implies
that

˜̀
t(xt) = 〈gt,xt〉 ≤ ˜̀

t(wt) + δtR‖gt‖. [case where γ ≥ 1, 〈gt,wt〉 < 0,wt ∈ C] (104)

We now consider the last case where γt ≥ 1, 〈gt,wt〉 < 0, and wt 6∈ C. We note that this implies
that γC(wt) ≥ 1. By the fact that γt ≤ γC(wt) + δt (Lemma 10), we have

〈gt,xt〉 ≤
〈gt,wt〉

γC(wt) + δt
=
〈gt,wt/γC(wt)〉
1 + δt/γC(wt)

= 〈gt,wt/γC(wt)〉 −
δt/γC(wt)

1 + δt/γC(wt)
〈gt,wt/γC(wt)〉,

(105)

Thus, since SC(wt) = γC(wt)− 1 (by Lemma 6 and γC(wt) ≥ 1), we get

〈gt,xt〉 · SC(wt) ≤ 〈gt,wt〉 −
δt〈gt,wt〉

1 + δt/γC(wt)
− 〈gt,wt/γC(wt)〉+

δt/γC(wt)

1 + δt/γC(wt)
〈gt,wt/γC(wt)〉.

Adding this together with (105) and using the fact that ‖wt‖ ≤ R, we get

〈gt,xt〉+ 〈gt,xt〉SC(wt) ≤ 〈gt,wt〉+ δtR‖gt‖,

and so after rearranging and using that ˜̀
t(xt) = 〈xt, gt〉 (since xt ∈ C) and ˜̀

t(wt) = 〈gt,wt〉 −
〈gt,xt〉SC(wt), we get

〈gt,xt〉 ≤ ˜̀
t(wt) + δtR‖gt‖. [case where γ ≥ 1, 〈gt,wt〉 < 0,wt 6∈ C] (106)

By combining, (102), (103), (104), and (106), we obtain:

˜̀
t(xt) ≤ ˜̀

t(wt) + δtR‖gt‖.

Combining this with (101), we get

〈g̃t,xt〉 ≤ 〈g̃t,wt〉+ (2δt + ∆t)R‖gt‖.

We now present the versions of Lemmas 7 and 33 when OC◦ ≡ OPT1d,C◦ :

63



MHAMMEDI

Lemma 34 Letwt, g̃t, and xt be as in Algorithm 1 withOC◦ ≡ OPT1d,C◦; any tolerance sequence
(δs) ⊂ (0, 1/3); any tolerance sequence (δs) ⊂ (0, 1/3); and any OCO subroutine A defined on
B(R) (R as in (1)). Then, for all t ≥ 1, xt ∈ C and there exists a family of random variables
{ξt(x) : x ∈ C} such that for all x ∈ C, Et−1[ξt(x)] = 0, |ξt(x)| < 4d(κ+ δt)R‖gt‖ almost surely,
and

〈gt,xt − x〉 ≤ 〈g̃t,wt − x〉+ (2δt + ∆t)R‖gt‖+ ξt(x); (107)

〈g̃t,xt〉 ≤ 〈g̃t,wt〉+ (2δt + ∆t)R‖gt‖+ ξt(xt), (108)

where ∆t ∈ [0, 152d4κ3δ−2t ] is a random variable satisfying Et−1[∆t] ≤ δt. Furthermore, ‖g̃t‖ ≤
(1 + dκ+ d∆t)‖gt‖ and Et−1[‖g̃t‖2] ≤ 2(1 + d(κ+ δt)

2)‖gt‖2.

Proof Let t ≥ 1; x ∈ C; (γ̃t, s̃t) = OPTC◦(wt; δt); and (γ̂t, ŝt) = OPT1d,C◦(wt; δt). Further,
let ν̃t := I{γ̃t≥1}s̃t and ξt(x) := I〈gt,wt〉<0〈gt,xt〉〈νt − ν̃t,wt − x〉. By Lemma 7, there exists a
random variable ∆t ≥ 0 satisfying Et−1[∆t] ≤ δt and such that for all t ≥ 1 and x ∈ C,

〈gt,xt − x〉 ≤ 〈gt − I〈gt,wt〉<0〈gt,xt〉ν̃t,wt − x〉+ (2δt + ∆t)R‖gt‖,
≤ 〈g̃t,wt − x〉+ (2δt + ∆t)R‖gt‖+ ξt(x).

By Proposition 11 and Lemma 32, we have ‖s̃t‖ ∨ ‖ŝt‖ < d · (1/R+ δ/r) whenever γ̂t = γ̃t ≥ 1.
This implies that ‖ν̃t‖ ∨ ‖ν̂t‖ < d · (1/R+ δ/r), and so |ξt(x)| < 4d(κ+ δ)R‖gt‖. We now show
that the conditional expectation of ξt(x) is zero. By Lemma 13, and the law of total expectation, we
have

Et−1[ξt(x)] ≤ Et−1[I〈gt,wt〉<0〈gt,xt〉〈νt − ν̃t,wt − x〉],
= I{γ̃t≥1} · I〈gt,wt〉<0〈gt,xt〉〈Et−1[νt − ν̃t],wt − x〉, (109)

= I{γ̃t≥1} · I〈gt,wt〉<0〈gt,xt〉〈Et−1[st − s̃t],wt − x〉,
= 0. (110)

where (109) follows by the fact that wt, γt, γ̃t, and gt are deterministic function of the past, and
(110) follows by the fact γ̃t = γ̂t; and Et−1[ŝt] = Et−1[s̃t], when γ̃t ≥ 1 (Lemma 13). This shows
(107). We follow similar steps to show (108), but we use the result of Lemma 33 instead of Lemma
7. By Lemma 33, we have

〈gt − I〈gt,wt〉<0〈gt,xt〉ν̃t,xt〉 ≤ 〈gt − I〈gt,wt〉<0〈gt,xt〉ν̃t,wt〉+ (2δt + ∆t)R‖gt‖,
and so by rearranging, we get

〈g̃t,xt〉 ≤ 〈g̃t,wt〉+ (2δt + ∆t)R‖gt‖+ ξt(xt).

This shows (108). We now bound ‖g̃t‖. When γ̃t < 1, we have gt = g̃t and so ‖g̃t‖ ≤ (1 + dκ+
d∆t)‖gt‖ holds trivially. Now suppose that γ̃t ≥ 1. In this case, νt has the same distribution as
I{γ̂t≥1}ŝt, and so

‖g̃t‖ = ‖〈gt,w〉 − I〈gt,wt〉<0〈gt,xt〉νt‖ = ‖gt‖+ ‖gt‖
‖wt‖
γt
‖νt‖ ≤ ‖gt‖(1 +R‖νt‖)

≤ (1 + d∆t + dκ)‖gt‖,

64



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

where the last inequality follows from the fact that I{γ̂t≥1}‖ŝt‖ ≤ d · (∆t/R+ 1/r), by Lemma 32.
From the penultimate inequality in the above display and Lemma 13, we also have

Et−1[‖g̃t‖2] ≤ 2‖gt‖2(1 +R2Et−1[‖ŝt‖2]) ≤ 2‖gt‖2(1 + d · (κ+ δt)
2).

Finally, the fact that xt ⊂ C follows from Theorem 15. In fact, looking at the proof of Theorem 15 it
is clear that the fact that (xt) ⊂ C only uses the fact that the subroutine A outputs iterates in (xt) in
B(R).

We now present the proof of Theorem 17. We note that the proof follows from that of (Cutkosky and
Orabona, 2018, Theorem 7) with small modifications to account for the differences between their
constrained-to-unconstrained reduction and our projection-free reduction (Algorithm 1), as well as
the differences described in Section C.2 to achieve scale-invariance.
Proof of Theorem 17. First of all, note that (xt) ⊂ C follows directly from Lemma 34. Next, we
will instantiate Theorem 35 below with δt = δ/t2 for all t ≥ 1 and some δ ∈ (0, 1/3). By Lemma
34 and the fact that the losses are B-Lipschitz, the variables ζT , ZT ,MT , and NT in Theorem 35
below satisfy

• E[ζT ] ≤ 1 + dκ+ 2dδT , where we used the fact that Et−1[∆t] ≤ δt and
∑∞

t=1 1/t2 ≤ 2.

• ζT ≤ 162d5κ3/δ2T , where we used the fact that ∆t ≤ 152d4κ3/δ2t , ∀t.

• ZT ≤ ε2 +B2(164d10κ6/δ4T )(1 + T ) ≤ B2(164d10κ6/δ4T )(2 + T ).

• MT ≤ 2
√

ln+

(
2(166d15κ9/δ6T (2T + 1)2RB2/ε2

)
.

• E[NT ] ≤ E[4(1+dκ+2dδ)B ln+

(
4(166d15κ9/δ6T )(2T + 1)2RB2/ε2

)
+ ε/R+(1 +2dκ+

8dδ)B]. This follows by the facts that E[ζT ] ≤ 1 + dκ+ 2dδ and ζT ≤ 162d5κ3/δ2T .

• Et−1[‖g̃t‖2] ≤ 2(1 + d(κ+ δt)
2)‖gt‖2 by Lemma 34.

Thus, for ν := 1/(R ∧ 1) + κ+ 2δ, there exists WT = O (ln(e+ κdRTB/(δε))) such that

E

[
T∑
t=1

〈gt,xt − x〉

]
≤WT

√√√√E

[
T∑
t=1

‖g̃t‖2‖xt − x‖2
]

+ dνRBW 2
T ,

= WT

√√√√E

[
T∑
t=1

Et−1[‖g̃t‖2‖xt − x‖2]

]
+ dνRBW 2

T ,

≤WT

√√√√E

[
2dν2

T∑
t=1

‖gt‖2‖xt − x‖2
]

+ dνRBW 2
T ,

≤ UT

√√√√E

[
T∑
t=1

‖gt‖2‖xt − x‖2
]

+RBU2
T /ν, (111)

65



MHAMMEDI

where UT = O
(
νd1/2 ln(e+ κdRTB/(δε))

)
. Thus, for general convex functions, we have, in

expectation

T∑
t=1

(`t(xt)− `t(x)) ≤ UTRB
√
T +RBU2

T /ν.

For µ-strongly convex functions (`t), we have

E

[
T∑
t=1

(`t(xt)− `t(x))

]

≤E

[
T∑
t=1

〈gt,xt − x〉

]
− E

[
µ

2

T∑
t=1

‖xt − x‖2
]
,

≤UT

√√√√E

[
T∑
t=1

‖gt‖2‖xt − x‖2
]

+RBU2
T /ν − E

[
µ

2

T∑
t=1

‖xt − x‖2
]
, (112)

≤ inf
η>0

{
E

[
T∑
t=1

‖gt‖2‖xt − x‖2/η

]
+ ηU2

T /4

}
− E

[
µ

T∑
t=1

‖xt − x‖2/2

]
+ νRBU2

T /ν,

≤µ
2
E

[
T∑
t=1

‖gt‖2

B2
‖xt − x‖2

]
+
B2U2

T

2µ
− E

[
µ

2

T∑
t=1

‖xt − x‖2
]

+RBU2
T /ν, (113)

≤B2U2
T /(2µ) +RBU2

T /ν,

where (112) follows by (111) and (113) follows by setting η = 2B2/µ.

Theorem 35 Let δ ∈ (0, 1/3) and κ := R/r, with r and R as in (1). Suppose that Algorithm 1 is
run with OC◦ ≡ OPT1d,C◦; δt = δ/t2, ∀t ≥ 1; and sub-routine A set to Alg. 5 with parameter ε > 0.
Then, for any adversarial sequence of convex losses (`t) on C, the iterates (xt) of Alg. 1 in response
to (`t) satisfy,

∀T ≥ 1,∀x ∈ C,
T∑
t=1

〈gt,xt − x〉 ≤MT

√√√√2

[
(ε2 + ζTB2

T )‖x‖2 +
T∑
t=1

‖g̃t‖2‖xt − x‖2
]
· ln ZT

ε2

+ 2RNT ·
(

1 + ln
ZT
ε2

)
+ ΞT (x),

where gt ∈ ∂`t(xt), ∀t, BT := ε ∨maxt∈[T ] ‖gt‖, and ζT , ZT ,MT ,ΞT (x) and NT are such that:

• ζT := 1 + dκ + dmaxt∈[T ] ∆t, with ∆t ≥ 0 a non-negative random variable satisfying
Et−1[∆t] ≤ δt.

• ZT ≤ ε2 + B̃2
T +

∑T
t=1 ‖g̃t‖2 ≤ ε2 + ζ2TB

2
T + ζ2T

∑T
t=1 ‖gt‖2.

• MT := 2
√

ln+

(
2ζ2t (R+ 2ζtRT )QT /ε2

)
, and Qt := ε2 +

∑t
i=1 ‖gi‖2.

66



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

• ΞT (x) :=
∑T

t=1 ξt(x), where {ξt(x) : x ∈ C} is a family of random variables satisfying for
all x ∈ C, Et−1[ξt(x)] = 0.

• NT := 4ζtBT ln+

(
4ζ2tBT (R+ 2ζtRT )

√
QT /ε

2
)
+BT + ε

R+
∑T

t=1(2δt+∆t)‖gt‖+2d(κ+
δ)BT .

Proof Define ζt := 1 + dκ + dmaxs≤t ∆s, where κ = R/r and ∆t is the same random variable
as in Lemma 34. Note that ζt ≥ 0 and E[ζt] ≤ 1 + dκ + d

∑t
s=1 δs. For any t ≥ 1, consider the

random vector Xt that takes value xi for s ≤ t with probability proportional to ‖ĝi‖2, and value
0 with probability proportional to ε2 + B̃2

t , where B̃t := ε ∨maxi∈[t] ‖ĝi‖ and ĝt :− g̃t · B̃t−1/B̃t
(see Algorithm 5). Moving forward, we define

zt := ‖ĝt‖2, and z0,t := ε2 + B̃2
t ,

so that Zt := z0,t +
∑t

i=1 zi = ε2 + B̃2
t +

∑t
i=1 ‖ĝi‖2. We make the following definitions/observa-

tions:

• We define VT (x) = z0,T ‖x‖2 +
∑T

t=1 zt‖xt − x‖2 = ZT · E[‖XT − x‖2] .

• Zt ≤ ζ2TB2
T · (T + 1) + ε2, for all t ∈ [T ], which follows from Lemma 34.

• xt = E[Xt] = Z−1t ·
∑t

i=1 zi · xi = vt/Zt, where (vi) are as in Algorithm 5.

• σ2t := (z0,t‖xt‖2 +
∑t

i=1 zt · ‖xi − xt‖2)/Zt so that σ2t = E[‖Xt − xt‖2].

To prove the theorem, we are going to show for any x ∈ C,

T∑
t=1

〈gt,xt−x〉 ≤MT

√
ZT · ‖x− xT ‖2+MT

√
σ2T · ZT · ln

ZT
ε2

+2RNT ·
(

1 + ln
ZT
ε2

)
+ΞT (x),

(114)
where MT and NT are as in (116) and (117) below, respectively, which implies the desired bound by
a bias-variance decomposition:

ZT · ‖x− xT ‖2 + ZT · σ2T = ZT · E[‖XT − x‖2] = VT (x).

In particular, combining this with (114) and using the fact that
√
x +
√
y ≤

√
2(x+ y) for all

x, y > 0, we get

T∑
t=1

〈gt,xt − x〉 ≤MT

√
2VT (x) · ‖x− xT ‖2 · ln

ZT
ε2

+ 2RNT ·
(

1 + ln
ZT
ε2

)
+ ΞT (x).

To get to (114), first observe that for all x ∈ C, the linearized regret of Algorithm 5 satisfies

T∑
t=1

〈gt,xt − x〉 −
T∑
t=1

〈ḡt,xt − x〉 =
T∑
t=1

〈gt − ḡt,xt − x〉
(∗)
≤ 2R

T∑
t=1

(Bt −Bt−1) ≤ 2RBT ,

67



MHAMMEDI

where (∗) following by Cauchy Schwarz. Using this together with (107) (multiplied by B̃t−1/B̃t)
and the clipped regret of FreeGrad in Proposition 26, we have, for all x ∈ C,

T∑
t=1

〈gt,xt − x〉 − 2RBT

≤
T∑
t=1

〈ḡt,xt − x〉,

≤
T∑
t=1

〈ĝt,wt − x〉+
T∑
t=1

(2δt + ∆t)R‖gt‖+
T∑
t=1

ξt(x),

=
T∑
t=1

〈ĝt,ut − (x− xT )〉+
T∑
t=1

〈ĝt,xt−1 − xT 〉+
T∑
t=1

(ξt(x) + (2δt + ∆t)R‖gt‖),

=MT

√
ZT · ‖x− xT ‖2 +

T∑
t=1

〈ĝt,xt−1 − xT 〉+ 2RNT + ΞT (x), (115)

where ΞT (x) :=
∑T

t=1 ξt(x). Note that the first term on the RHS of (115) is exactly what we want,
so we only have to derive an upper bound on the second one. This is readily done through Lemma 36
that immediately gives us the stated result.

Lemma 36 Under the hypotheses of Theorem 35, we have

T∑
t=1

〈ĝt,xt−1 − xT 〉 ≤MTσT

√
ZT ln

ZT
ε2

+ 2RNT · ln
ZT
ε2
, where

MT := 2

√
ln+

(
2ζ2t (R+ 2ζtRT )QT

ε2

)
; QT := ε2 +

T∑
t=1

‖gt‖2; and (116)

NT := 4ζtBT ln+

(
4ζ2tBT (R+ 2ζtRT )

√
QT

ε2

)
+BT +

ε

R
+

T∑
t=1

(2δt + ∆t)‖gt‖+ 2d(κ+ δ)BT .

(117)

Proof We have that

t∑
i=1

〈ĝi,xi−1 − xt〉 −
t−1∑
i=1

〈ĝi,xi−1 − xt−1〉 =

〈
t∑
i=1

ĝi,xt−1 − xt

〉
.

The telescoping sum gives us

T∑
t=1

〈ĝt,xt−1 − xT 〉 =

T∑
t=1

〈
t∑
i=1

ĝi,xt−1 − xt

〉
≤

T∑
t=1

∥∥∥∥∥
t∑
i=1

ĝi

∥∥∥∥∥ ‖xt−1 − xt‖ .
So in order to bound

∑T
t=1〈ĝt,xt−1 − xT 〉, it suffices to bound

∥∥∑t
i=1 ĝi

∥∥ ‖xt−1 − xt‖ by a
sufficiently small value. First, we will tackle

∥∥∑t
i=1 ĝi

∥∥. By Lemma 34 (in particular (108)) and the

68



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

fact that ĝt = g̃t ·Bt−1/Bt, we have, for all x > 0,
t∑
i=1

−2R‖ĝi‖+

∥∥∥∥∥
t∑
i=1

ĝi

∥∥∥∥∥x ≤
t∑
i=1

〈ĝi,xi − xi−1〉+

∥∥∥∥∥
t∑
i=1

ĝi

∥∥∥∥∥x, (since xi,xi−1 ∈ C)

≤
t∑
i=1

〈ĝi,wi − xi−1〉+

∥∥∥∥∥
t∑
i=1

ĝi

∥∥∥∥∥x+
t∑
i=1

ξi(xi) + (2δi + ∆i)R‖gi‖),

=

t∑
i=1

〈ĝi,ui〉+

∥∥∥∥∥
t∑
i=1

ĝi

∥∥∥∥∥x+

t∑
i=1

(2δi + ∆i)R‖gi‖+

t∑
i=1

ξi(xi),

≤ 2x

√√√√(ε2 +
t∑
i=1

‖ĝi‖2
)

ln+

(
2ζ2t xQt
ε2

)
+

t∑
i=1

ξi(xi)

+

t∑
i=1

(2δi + ∆i)R‖gi‖+ 4ζ ′tx ln

(
4ζ2tBTx

√
Qt

ε2

)
+ ε, (118)

where ui is the ith output of FreeGrad, Qt := ε2 +
∑t

i=1 ‖gi‖2 ≤ ε2 + tB2
t , and ζ ′t := maxs∈[t]{(1+

dκ+ d∆s)Bs}. The passage to (118) follows from the regret bound FreeGrad (see Proposition 26)
and the fact that ‖ĝt‖ ≤ ζt‖gt‖ (see Lemma 34). Moving forward, we let Gt := ε +

∑t
i=1(2δi +

∆i)R‖gi‖. Dividing by x in (118) and solving for
∥∥∑t

i=1 ĝi
∥∥, we get∥∥∥∥∥

t∑
i=1

ĝi

∥∥∥∥∥ ≤ 2

√√√√(ε2 +

t∑
i=1

‖ĝi‖2
)

ln+

(
2ζ2t xQt
ε2

)

+ 4ζ ′t ln

(
4ζ2tBtx

√
Qt

ε2

)
+
Gt
x

+
2R

x

t∑
i=1

‖ĝi‖+
1

x

t∑
i=1

ξi(xi) .

Set x = R + 2R
∑t

i=1(‖ĝi‖ ∨ ‖gi‖)/BT and using the facts that ‖ĝt‖ ≤ ζt‖gt‖ and |ξt(x)| ≤
4d(κ+ δt)R‖gt‖, for all x ∈ C (see Lemma 34), we conclude that:∥∥∥∥∥

t∑
i=1

ĝi

∥∥∥∥∥ ≤Mt

√√√√ε2 +
t∑
i=1

‖ĝi‖2 +Nt, where

Mt := 2

√
ln+

(
2ζ2t (R+ 2ζtRt)Qt

ε2

)
,

and Nt := 4ζ ′t · ln+

(
4ζ2tBt(R+ 2ζtRt)

√
Qt

ε2

)
+Bt +

Gt
R

+ 2d(κ+ δ)Bt.

We recall that Qt := ε2 +
∑t

i=1 ‖gi‖2 ≤ ε2 + tB2
t . With this in hand, we have

T∑
t=1

〈ĝt,xt−1 − xT 〉 ≤
T∑
t=1

∥∥∥∥∥
t∑
i=1

ĝi

∥∥∥∥∥ ‖xt−1 − xt‖,
≤MT

T∑
t=1

√√√√ε2 +
t∑
i=1

‖ĝi‖2‖xt−1 − xt‖+NT

T∑
t=1

‖xt−1 − xt‖ .

69



MHAMMEDI

Now, we relate ‖xt−1 − xt‖ to ‖xt − xt‖:

xt−1−xt = xt−1−
Zt−1xt−1 + ‖ĝt‖2xt

Zt
=
‖ĝt‖2

Zt
(xt−1−xt) =

‖ĝt‖2

Zt
(xt−xt)+

‖ĝt‖2

Zt
(xt−1−xt),

that implies

Zt · (xt−1 − xt) = ‖ĝt‖2(xt − xt) + ‖ĝt‖2(xt−1 − xt),

that is

xt−1 − xt =
‖ĝt‖2

Zt−1
(xt − xt) . (119)

Hence, we have

MT

T∑
t=1

√√√√ε2 +
t∑
i=1

‖ĝi‖2‖xt − xt−1‖ ≤MT

T∑
t=1

√
Zt
‖ĝt‖2

Zt−1
‖xt − xt‖,

and

NT

T∑
t=1

‖xt − xt−1‖ ≤ NT

T∑
t=1

‖ĝt‖2

Zt−1
‖xt − xt‖ ≤ 2RNT

T∑
t=1

‖ĝt‖2

Zt−1
.

Using Cauchy–Schwarz inequality, we have

MT

T∑
t=1

√
Zt
‖ĝt‖2

Zt−1
‖xt − xt‖ ≤MT

√√√√ T∑
t=1

‖ĝt‖2
Zt−1

√√√√ T∑
t=1

Zt
Zt−1

‖ĝt‖2‖xt − xt‖2 .

So, putting together the last inequalities, we have

T∑
t=1

〈ĝt,xt−1 − xT 〉 ≤MT

√√√√ T∑
t=1

‖ĝt‖2
Zt−1

√√√√ T∑
t=1

Zt
Zt−1

‖ĝt‖2‖xt − xt‖2 + 2RNT

T∑
t=1

‖ĝt‖2

Zt−1
.

We now focus on the the term
∑T

t=1
‖ĝt‖2
Zt−1

that is easily bounded:

T∑
t=1

‖ĝt‖2

Zt−1
≤

T∑
t=1

‖ĝt‖2

ε2 +
∑t

i=1 ‖ĝi‖2
≤ ln

ZT
ε2
,

where the first inequality follows by the fact that B̃t−1 ≥ ‖ĝt‖, and in the last inequality we used the
inequality

T∑
t=1

at∑t
i=0 ai

≤ ln

(∑T
t=0 at
a0

)
,

70



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

for all at ≥ 0. To bound the term
∑T

t=1
Zt
Zt−1
‖g̃t‖2‖xt − xt‖2 from above, observe that

σ2TZT = (ε2 + B̃2
T )‖xT ‖2 +

T∑
t=1

‖ĝt‖2‖xt − xT ‖2,

≥ (ε2 + B̃2
T−1)‖xT ‖2 +

T−1∑
t=1

‖ĝt‖2‖xt − xT ‖2 + ‖ĝT ‖2‖xT − xT ‖2,

= ZT−1 · (σ2T−1 + ‖xT − xT−1‖2) + ‖ĝT ‖2‖xT − xT ‖2,

= ZT−1σ
2
T−1 + ‖ĝT ‖2

(
1 +
‖ĝT ‖2

ZT−1

)
‖xT − xT ‖2,

= ZT−1σ
2
T−1 + ‖ĝT ‖2

ZT
ZT−1

‖xT − xT ‖2,

where the third equality comes from bias-variance decomposition and the fourth one comes from (119).
Hence, we have

T∑
t=1

Zt
Zt−1

‖ĝt‖2‖xt − xt‖2 =
T∑
t=1

(σ2tZt − σ2t−1Zt−1) ≤ σ2TZT .

Putting all together, we have the stated bound.

I.6. Proof of Theorem 18 (The Smooth Stochastic Case)

We will need to use the result of Lemma 31 (in particular (73)) to show the desired convergence rate.
In order for the result of Lemma 31 to be valid in the setting of Theorem 18, we need to show that
the iterates (wt) in Algorithm 6 are in B(R), which is what we do next:

Lemma 37 In the setting of Theorem 18, we have (wt) ⊂ B(R).

Proof Let γt be as in Algorithm 6. For t = 1, we have w1 = 0. For t > 1, we have wt =
(1 − µt)(xt−1 − ηt−1gt−1) + µtut and ‖ut‖ ≤ R′ (since it is the output of FTRL-prox with
parameter R′), and so

‖wt‖ ≤ (1− µt)‖xt−1‖+ µtR
′ + |ηt−1|‖gt−1‖ = (1− µt)‖xt−1‖+ µtR

′ +
νR′‖gt−1‖√

Zt−1
,

≤ (1− µt)‖xt−1‖+ (µt + ν)R′.

Thus,wt ∈ B(R) if xt ∈ C (which implies ‖xt‖ ≤ R′). We will now show that xt ∈ C. We consider
two cases. Suppose that γt < 1. In this case, xt = wt. If γC(wt) ≤ 9/16, then by definition of the
Gauge function we have wt ∈ C and the same holds for xt (since xt = wt). On the other hand, if
γC(wt) ≥ 9/16, then by Lemma 10, we have γC(wt) ≤ γt < 1, and so xt = wt ∈ C.

Now suppose that γt ≥ 1. In this case, we have xt = wt/γt and so γC(xt) = γC(wt/γt) =
γC(wt)/γt ≤ γC(wt)/γC(wt) = 1 (since γC(wt) ≤ γt by Lemma 10), and so xt ∈ C.

The following lemma will also be useful to us in the proof of Theorem 18:

71



MHAMMEDI

Lemma 38 Let β > 0, t ≥ 1, ξt ∈ Rd be a random vector satisfying (23) for σ > 0, and `t be as
in (22). Further, suppose that C satisfies (26). When f is β-smooth on C, we have,

E[‖gt‖2] ≤ σ2 + 2R′β, for any x ∈ C and gt ∈ ∂`t(x).

Proof Let x ∈ C and gt ∈ ∂`t(x). First, since f is differentiable, `t is also differentiable. Thus,
gt = ∇f(x) + ξt, and so

E[‖gt‖2] = E[‖∇f(x)‖2 + 2〈∇f(x), ξt〉+ ‖ξt‖2] = ‖∇f(x)‖2 + E[‖ξt‖2] ≤ 2R′β + σ2,

where the last inequality follows (23) and (25).

We now present the proof of Theorem 18. We note that the proof is very similar to that of (Cutkosky,
2019, Theorem 4) with modifications to account for the application of our projection-free reduction
(Algorithm 1).
Proof of Theorem 18. Throughout this proof, we let λt = t, ∀t, and ν and R′ be as in (26). Note
that Λt in Algorithm 6 satisfies Λt =

∑t
s=1 λs. By a standard convexity argument, we have

E

[
T∑
t=1

λt(f(xt)− f(x))

]
≤ E

[
T∑
t=1

λt〈gt,xt − x〉

]

≤ E

[
T∑
t=1

λt〈g̃t,wt − x〉

]
+ E

[
T∑
t=1

3λtδtR‖gt‖

]
, (by Lemma 31)

= E

[
T∑
t=1

λt〈g̃t,ut − x〉+
T∑
t=1

λt〈g̃t,wt − ut〉

]

+ E

[
T∑
t=1

3λtδtR · E[‖gt‖ | xt]

]
,

≤ E

[
T∑
t=1

λt〈g̃t,ut − x〉+
T∑
t=1

λt〈g̃t,wt − ut〉

]

+ 3R
√
σ2 + 2βR′

T∑
t=1

λtδt, (120)

where the last inequality follows by Lemma 38 and Jensen’s inequality. By letting ys := xs − ηsgs,
we have by Line 8 of Algorithm 6

λs · (ws − us) = Λs−1 · (ys−1 −ws), for all s ≥ 1. (121)

Moreover, the first term on the RHS of (120) is the regret of the FTRL-prox instance (Algorithm A)
within Algorithm 6. Thus, by Proposition 25 and Lemma 31, this term is bounded from above by

RFTRL
T (x) := 4(1 + κ)R′

√√√√ T∑
t=1

λ2t ‖gt‖2 + 4R′
T∑
t=1

λt∆t‖gt‖, ∀x ∈ C. (122)

72



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Plugging (121) and (122) into (120), yields

E

[
T∑
t=1

λt(f(xt)− f(x))

]

≤E
[
RFTRL
T (x)

]
+ E

[
T∑
t=1

Λt−1〈g̃t,yt−1 −wt〉

]
+ 3R

√
σ2 + 2βR′

T∑
t=1

λtδt,

≤E
[
RFTRL
T (x)

]
+ E

[
T∑
t=1

Λt−1〈gt,yt−1 − xt〉

]

+ E

[
T∑
t=1

3Λt−1δtR‖gt‖

]
+ 3R

√
σ2 + 2βR′

T∑
t=1

λtδt, (123)

=E
[
RFTRL
T (x)

]
+ E

[
T∑
t=1

Λt−1〈gt,yt−1 − xt〉

]

+ E

[
T∑
t=1

3δtΛt−1R · E[‖gt‖ | xt]

]
+ 3R

√
σ2 + 2βR′

T∑
t=1

λtδt,

≤E
[
RFTRL
T (x)

]
+ E

[
T∑
t=1

Λt−1〈gt,yt−1 − xt〉

]
+ 3R

√
σ2 + 2βR′

T∑
t=1

(λt + Λt−1)δt,

where (123) follows by Lemma 31, and the last inequality follows by Lemma 38 and Jensen’s
inequality. Next, we use convexity again to argue

E[〈gt,yt−1 − xt〉] ≤ E[f(yt−1)− f(xt)],

and then we subtract E[
∑T

t=1 λtf(xt)] from both sides:

E[−ΛT f(x)] ≤ E
[
RFTRL
T (x)

]
+

T∑
t=1

(
Λt−1f(yt−1)− Λtf(xt)

)
+ 3R

√
σ2 + 2βR′

T∑
t=1

(λt + Λt−1)δt.

Now we use smoothness to relate f(yt) to f(xt). Let ν := 4
√

2(1 + κ) so that ηt = νR′/
√
Zt,

where Zt is as in Algorithm 6; i.e. Zt := ε2 +
∑t

s=1 Λs‖gs‖2. With this, we have:

E[f(yt)] ≤ E[f(xt) +∇f(xt)(yt − xt) +
β

2
‖xt − yt‖2],

≤ E
[
f(xt)− ηt‖gt‖2 + ηt〈ξt, gt〉+

βη2t ‖gt‖2

2

]
.

Then multiply by Λt:

E[Λt(f(yt)− f(xt))] ≤ E

− νR′Λt‖gt‖2√
ε2 +

∑t
i=1 Λi‖gi‖2

+
βη2tΛt‖gt‖2

2
+ ηtΛt〈ξt, gt〉

 .
73



MHAMMEDI

Next, we make use of the following facts (see e.g. (Cutkosky, 2019; Levy et al., 2018)): for positive
numbers α0, . . . , αn,√√√√ n∑

i=1

αi ≤
n∑
i=1

αi√∑i
j=1 αj

≤ 2

√√√√ n∑
i=1

αi and
n∑
i=1

αi

α0 +
∑i

j=1 αj
≤ ln

(
α0 +

n∑
i=1

αi

)
− lnα0.

Using this, we obtain

E

[
T∑
t=1

Λt(f(yt)− f(xt))

]
(124)

≤E

−νR′
√√√√ε2 +

T∑
t=1

Λt‖gt‖2 +
ν2(R′)2β

2
ln

(
1 +

∑T
t=1 Λt‖gt‖2

ε2

)
+ νR′ε+ E

[
T∑
t=1

ηt〈ξt,Λtgt〉

]
,

≤E

−νR′
√√√√ε2 +

T∑
t=1

Λt‖gt‖2

+ νR′ε+ E

[
T∑
t=1

ηt〈ξt,Λtgt〉

]

+
ν2(R′)2β

2
ln

(
1 +

∑T
t=1 ΛtE

[
‖gt‖2

]
ε2

)
, (125)

≤E

−νR′
√√√√ε2 +

T∑
t=1

Λt‖gt‖2

+ νR′ε+
ν2(R′)2β

2
ln

(
1 +

(σ2 + 2R′β)
∑T

t=1 Λt
ε2

)

+ E

[
T∑
t=1

ηt〈ξt,Λtgt〉

]
, (126)

where (125) follows by Jensen’s inequality (the log is concave) and the triangular inequality, and
(126) follows by Lemma 38. Using Cauchy-Schwarz, we obtain:

E

[
T∑
t=1

ηt〈ξt,Λtgt〉

]
≤ E


√√√√ T∑

t=1

Λt‖ξt‖2

√√√√ T∑
t=1

η2tΛt‖gt‖2

 ,
≤ E

νR′
√√√√ T∑

t=1

Λt‖ξt‖2 · ln

(
1 + ε−2

T∑
s=1

Λs‖gs‖2
) ,

≤ E

νR′
√√√√ T∑

t=1

Λt‖ξt‖2 · ln

(
1 + 2ε−2

T∑
s=1

Λs(‖ξs‖2 + ‖∇f(xs)‖2)

) ,
≤ E

νR′
√√√√ T∑

t=1

Λt‖ξt‖2 · ln

(
1 + 2ε−2

T∑
s=1

Λs(‖ξs‖2 + 2R′β)

) , (by (25)),

74



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

≤ E

νR′
√√√√ T∑

t=1

Λt‖ξt‖2 · ln

(
1 + 2ε−2

T∑
s=1

Λs(‖ξs‖2 + 2R′β)

) , (127)

≤ νσR′

√√√√ T∑
t=1

Λt · ln

(
1 +

2(σ2 + 2R′β)
∑T

s=1 Λs
ε2

)
,

where (127) follows by the concavity of the function x 7→
√
x · ln(a+ bx), for any a ≥ 1, b > 0,

and x > 0 (see Lemma 41) and Jensen’s inequality, and the last inequality follows by the fact that
E[‖ξt‖2] ≤ σ2.

Combining everything, we get

E

[
T∑
t=1

−λtf(x)

]
≤ E

[
RFTRL
T (x) +

T∑
t=1

(
Λt−1f(yt−1)− Λtf(yt)

)]

+
ν2β(R′)2

2
ln

(
1 +

∑T
t=1 Λt(σ

2 + 2R′β)

ε2

)
− νR′

√√√√ε2 +

T∑
t=1

Λt‖gt‖2

+ νR′ε+ νR′σ

√√√√ T∑
t=1

Λt ln

(
1 +

2(σ2 + 2R′β)
∑T

s=1 Λs
ε2

)

+ 3R
√
σ2 + 2βR′

T∑
t=1

(λt + Λt−1)δt.

Now observe that t2 > Λt > λ2t /2 and recall RFTRL
T (x) = 4(1 + κ)R′

√∑T
t=1 λ

2
t ‖gt‖2 +

4R′
∑T

t=1 λt∆t‖gt‖. Therefore, since ν = 4
√

2(1 + κ) we have:

E

RFTRL
T (x)− νR′

√√√√ε2 +

T∑
t=1

Λt‖gt‖2


≤E

4(1 + κ)R′

√√√√ T∑
t=1

λ2t ‖gt‖2 − 4
√

2(1 + κ)R′

√√√√ T∑
t=1

λ2t ‖gt‖2/2

+ E

[
4R′

T∑
t=1

λt∆t‖gt‖

]
,

=E

[
4R′

T∑
t=1

λt∆t · E[‖gt‖ | xt]

]
≤ 4R′

√
σ2 + 2βR

T∑
t=1

λtδt,

where the last inequality follows by Lemma 38. Also, observe that
∑T

t=1 Λt ≤
∑T

t=1 t
2 ≤ T 3. Thus,

we telescope the sum to obtain:

E[ΛT (f(yT )− f(x))]

≤νR′ε+
ν2(R′)2β

2
ln

(
1 +

(σ2 + 2R′β)T 3

ε2

)
+ νR′T 3/2σ

√
ln

(
1 +

2(σ2 + 2R′β)T 3

ε2

)

+ 3R
√
σ2 + 2βR′

T∑
t=1

(Λt−1 + 3λt)δt,

75



MHAMMEDI

≤νR′ε+
ν2(R′)2β

2
ln

(
1 +

(σ2 + 2R′β)T 3

ε2

)
+ νR′T 3/2σ

√
ln

(
1 +

2(σ2 + 2R′β)T 3

ε2

)
+ 3δR(lnT + 6)

√
σ2 + 2βR′, (128)

where the last inequality follows by the fact that δt = δ/t3,
∑T

t=1 1/t ≤ lnT ; and
∑T

t=1 1/t2 ≤ 2.
Dividing (128) by ΛT =

∑T
t=1 λt = T (T+1)

2 > T 2/2 shows the inequality of theorem. Finally, the
fact that (xt) ⊂ C follows by Lemma 31.

Appendix J. Technical Lemmas

This section contains some technical lemmas we need to prove our results.

Lemma 39 Let (Yt) ⊂ R≥0 be a sequence of random variable satisfying E[Yt | Gt−1] ≤ δt, for all
t ≥ 1, for some sequence (δt) ⊂ R≥0. Then, for any ρ ∈ (0, 1) and T ≥ 1, we have with probability
at least 1− ρ,

P

[
T∑
t=1

Yt ≥ (1 + 1/ρ)
T∑
t=1

δt

]
≤ ρ.

Proof Let Xt :=
∑t

i=1(Yi − δ̄i), where δ̄i := E[Yi | Gi−1] ≤ δi. The process (Xt) is a martingale;
that is, for all i ≥ 1, we have, for all i < t,

E[Xt | Gi] =
i∑

s=1

(Ys − δ̄s) = Xi.

Thus, by Doob’s martingale inequality (Durrett, 2019, Theorem 4.4.2), we have, for any ρ ∈ (0, 1),
and T ≥ 1

P

[
T∑
t=1

Yt ≥ (1 + 1/ρ)

T∑
t=1

δt

]
≤ P

[
XT ≥

T∑
t=1

δt/ρ

]
≤ P

[
max
t≤T

Xt ≥
T∑
t=1

δt/ρ

]
≤ ρE [XT ∨ 0]∑T

t=1 δt

≤ ρ.

Theorem 40 Let F1, . . . ,Fn be a filtration, and X1, . . . , Xn be real random variables such that
Xi is Fi-measurable, E[Xi | Fi−1] = 0, |Xi| ≤ b, and

∑n
i=1 E[X2

i | Fi−1] ≤ V for some b, V ≥ 0.
Then, for any δ ∈ (0, 1), with probability at least 1− δ,

n∑
i=1

Xi ≤ 2
√
Vn ln(1/δ) + b ln(1/δ).

Lemma 41 For any a ≥ 1, b > 0, the map f : x 7→
√
x · ln(a+ bx) is concave for x > 0.

76



PROJECTION-FREE OCO VIA MEMBERSHIP ORACLE

Proof Let a ≥ 1 and b > 0. We will show that the second derivative of f is negative for all x > 0.
We have

∀x > 0, f ′′(x) =
−(a+ bx)2 log2(a+ bx) + 2abx log(a+ bx)− b2x2

4(a+ bx)2(x log(a+ bx))3/2
,

≤ −a
2 log2(a+ bx) + 2abx log(a+ bx)− b2x2

4(a+ bx)2(x log(a+ bx))3/2
,

= − −(a log(a+ bx)− bx)2

4(a+ bx)2(x log(a+ bx))3/2
≤ 0.

Lemma 42 Let w ∈ Rd \ {0} and 0 < r ≤ R. Further, let C be a closed convex set such that
B(r) ⊆ C ⊆ B(R). Then, the following properties hold:

(a) σC◦(w) = γC(w) and (C◦)◦ = C.

(b) σC(αw) = ασC(w) and ∂σC(αw) = ∂σC(w) = arg maxu∈C〈u,w〉, for all α ≥ 0.

(c) r‖w‖ ≤ σC(w) ≤ R‖w‖, ‖w‖/R ≤ γC(w) ≤ ‖w‖/r, and B(1/R) ⊆ C◦ ⊆ B(1/r).

(d) 〈w,u〉 ≤ σC(w) · γC(u), for all u ∈ Rd. (Cauchy Schwarz)

(e) σC(w + u) ≤ σC(w) + σC(u), for all u ∈ Rd. (Sub-additivity)

Proof Points (a), (b), and (e) follow from standard results in convex analysis, see e.g. (Molinaro,
2020, Lemma 2) for point (a) and (Hiriart-Urruty and Lemaréchal, 2004) for points (b) and (e). Point
(d) follows from (Friedlander et al., 2014, Equation 2.3 & Proposition 2.3) and Point (a). We now
show point (c). The first inequality in Point (c) follows by the fact that

R‖w‖
(i)

≥ sup
u∈C
〈u,w〉 = σC(w) ≥ inf

u∈C
〈u,w〉

(ii)

≥ r‖w‖,

where (i) and (ii) follow by the assumption that B(r) ⊆ C ⊆ B(R). We now show that B(1/R) ⊆
C◦ ⊆ B(1/r). For any x ∈ B(1/R), we have 〈x,w〉 ≤ 1 for all w ∈ C, since C ⊆ B(R). By
definition of the polar set, this implies that B(1/R) ⊆ C◦. Now, let x ∈ C◦. This implies that
〈x,w〉 ≤ 1 for all w ∈ C. For w = rx/‖x‖ (which is guaranteed to be in C since B(r) ⊆ C)
this inequality implies that ‖x‖ ≤ 1/r, and so C◦ ⊆ B(1/r). Finally, ‖w‖/R ≤ γC(w) ≤ ‖w‖/r
follows by point (a) and the facts that B(1/R) ⊆ C◦ ⊆ B(1/r) and that (B(r) ⊆ C ⊆ B(R) =⇒
r‖w‖ ≤ σC(w) ≤ R‖w‖), which we just showed.

77


	Introduction
	Setting and Definitions
	Preliminaries: Gauge Function Approximation
	Efficient Projection-Free Online and Stochastic Convex Optimization
	Algorithm for General Online Convex Optimization
	Algorithms for Stochastic and Offline Optimization

	Discussion
	Appendices
	Additional Notation
	Efficient Gauge Projections using a Membership Oracle MC
	Approximating the Gauge Function C using MC
	Approximating the Subgradients of C using MC

	Projection-Free Online and Stochastic Optimization (Detailed)
	A More Efficient Algorithm for General OCO
	Algorithm for Strongly Convex Online Optimization
	Efficient Projection-Free Smooth Stochastic Optimization

	General Regret Reduction
	Algorithm Wrapper for Scale-Invariance
	Applying the Projection-Free Reduction in Practice
	p-Norm Balls
	Simplex d
	Trace and Operator Norm Balls
	Convex-hull of Permutation Matrices
	Convex-hull of Rotation Matrices
	PSD Matrices with Unit Trace
	PSD Matrices with Bounded Diagonals
	The Flow and Matroid Polytopes

	Adaptive OCO Algorithms
	Linear Optimization on C using a Membership Oracle for C
	Proof of Lemma 10 (Approximate Gauge Function)
	Proof of Proposition 11 (Approximate LO Oracle on C)
	Proof of Lemma 13 (Efficient Stochastic LO Oracle on C)

	Proofs of the Regret Bounds and Convergence Rates
	Proof of Lemma 7 (Instantaneous Regret Bound)
	Proof of Theorem 8 (Regret Bound in High Probability using OPTC)
	Proof of Theorem 15 (Regret Bound in Expectation using OPT1d,C)
	Proof of Theorem 16 (Regret Bound in High Probability using OPT1d,C)
	Proof of Theorem 17 (The Strongly Convex Case)
	Proof of Theorem 18 (The Smooth Stochastic Case)

	Technical Lemmas

