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Abstract

We revisit the classic online portfolio selection problem, where at each round a learner selects
a distribution over a set of portfolios to allocate its wealth. It is known that for this problem a
logarithmic regret with respect to Cover’s loss is achievable using the Universal Portfolio Selection
algorithm, for example. However, all existing algorithms that achieve a logarithmic regret for
this problem have per-round time and space complexities that scale polynomially with the total
number of rounds, making them impractical. In this paper, we build on the recent work by Luo
et al. (2018) and present the first practical online portfolio selection algorithm with a logarithmic
regret and whose per-round time and space complexities depend only logarithmically on the horizon.
Behind our approach are two key technical novelties of independent interest. We first show that
the Damped Online Newton steps can approximate mirror descent iterates well, even when dealing
with time-varying regularizers. Second, we present a new meta-algorithm that achieves an adaptive
logarithmic regret (i.e. a logarithmic regret on any sub-interval) for mixable losses.

1. Introduction

In this paper, we consider the problem of online portfolio selection where, at each round ¢, a learner
chooses a distribution p; € A4 over a fixed set of d portfolios. Then, the environment reveals a return
vector 1y € R‘io, and the learner suffers a loss ¢;(p;) == — In(p;, r¢). The goal of the learner is to

minimize the regret Ry (u) = 2?:1(& (pt) — ¢i(u)) after T > 1 rounds, which is the difference
between the cumulative loss of the learner minus that of any distribution w over portfolios. For this
problem, it is known that Cover’s Universal Portfolio Algorithm (UPA) (Cover, 1991) guarantees the
optimal O(d1InT") regret bound. One implication of this is that if a distribution w has an exponential
return growth rate with constant A > 0, i.e. [ [,y (u, 7¢) o e ', then the total return of UPA also
has an exponential growth rate with constant at least A — O(d In(T")/T).

The main shortcoming of the UPA is that the expression of its outputs involves multi-variate
integrals that make its implementation impractical. One way of approximating these integrals
is via log-concave sampling as done by Kalai and Vempala (2002). The algorithm of the latter
has a computational complexity of order O(d*T*®), measured after 7' rounds. Even though this
computational complexity can be reduced using more modern log-concave sampling methods (see
e.g. (Narayanan and Rakhlin, 2017; Bubeck et al., 2018)), it remains a large polynomial of 7', making
these approaches impractical.

It is possible to use other more efficient online learning algorithms for the portfolio selection
problem. Algorithms such as Online Gradient Descent (Zinkevich, 2003), Online Newton Step
(Hazan et al., 2007), and Exponentiated Gradients (Helmbold et al., 1998) all have regret bounds that
scale with the largest observed gradient norm (G. One way to ensure that the gradients are bounded in
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Algorithm Regret Run-Time Space Comp. References
Universal Portfolio dinT d*rts dT (Cover, 1991)
(Kalai and Vempala, 2002)
ONS GdlnT d3>T d? (Hazan et al., 2007)
FTRL G?dIn(dT) d>>T? dT (Agarwal and Hazan, 2005)
EG GvVTInd dT d (Helmbold et al., 1998)
Soft-Bayes VdT Ind dT d (Orseau et al., 2017)
Ada-BARRONS T d?°T? + d3°T d*T (Luo et al., 2018)
PAE + DONS T EPTIn®>T 2 In*T (this work—Thm. 17)

Table 1: Result comparison.

the online portfolio setting is to mix the outputs of such algorithms with a small amount of uniform
distribution. This approach leads to a regret bound of order dv/7" In d in the best case (which is not
logarithmic in 7"), even after optimizing for the amount of uniform distribution used. The Soft-Bayes
algorithm (Orseau et al., 2017) provides a v/d improvement over this regret bound. Finally, Agarwal
and Hazan (2005) showed that the Follow-the-Regularized-Leader (FTRL) algorithm achieves a
regret bound of order O(G?dIn(dT)), G (the largest gradient norm) may be merely an artifact of the
analysis. In the concurrent work by Zimmert et al. (2022) it was shown that the FTRL algorithm
cannot guarantee a O(dIn(dT’)) regret (i.e. without the dependence on the largest gradient norm
G), refuting a conjecture by Van Erven et al. (2020). Table 1 compares the regret bounds and
computational complexities of the different algorithms mentioned here.

Among known algorithms that achieve a logarithmic regret in the online portfolio setting, Ada-
BARRONS (Luo et al., 2018) is the best in terms of computational cost (see Tab. 1). Ada-BARRONS
consists of I) a base algorithm that is essentially mirror descent with a log-barrier plus a quadratic
regularizer with a parameter (; and II) a meta-algorithm that implements a clever restart scheme to
learn the parameter 3 and achieve a logarithmic regret. The algorithmic idea behind Ada-BARRONS
can be traced back to the problem of combining bandit algorithms (Agarwal et al., 2017; Wei and Luo,
2018), where the use of a non-decreasing learning rate schedule is used to extract crucial negative
terms in the regret analysis of mirror descent (see §3).

The main drawback of Ada-BARRONS is that its time [resp. space] complexity is quadratic
[resp. linear] in the total number of rounds (see Table 1). Though Ada-BARRONS has a substantially
better computational complexity compared to approaches based on log-concave sampling, it is still
not a practical algorithm when the horizon is large. The main reason for the quadratic time complexity
is the restarts of Ada-BARRONS, which require computing the regularized leader at each round.
Luo et al. (2018) posed the question of whether there exists an algorithm that improves on either the
regret or the computational complexity of Ada-BARRONS without hurting the other.

Contributions. We answer the above question in the positive by presenting an online algorithm
for portfolio selection with a logarithmic regret and that has near constant per-round time and space
complexities. Behind our solution are two techniques of independent interest in online learning.
We first show that one can use the damped Newton steps (Nesterov et al., 2018) to approximate the
mirror descent iterates in Ada-BARRONS without sacrificing the logarithmic regret. Here, existing
results due to Abernethy et al. (2012) do not apply (due to time-varying regularizers in the mirror
descent objective—see §3.1). Even if they did, they would lead a suboptimal O(\/T ) regret, and so
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a new analysis is needed, which we provide. Using online damped Newton steps confers a O(+/d)
improvement in the computational cost.

The second and crucial tool we use is a meta-algorithm that achieves an adaptive logarithmic
regret for exp-concave losses (Hazan and Seshadhri, 2007; Zhang et al., 2019); that is, an algorithm
that achieves a logarithmic regret on any interval I C [T'], whenever the losses are exp-concave (we
also generalize the algorithm to work with mixable losses). Thanks to a novel analysis, we show
that using such a meta-algorithm removes the need for computing the regularized leader, which is
required by Ada-BARRONS. This further improves the time and space complexities by an O(T)
factor, leading to our final algorithm that has O(d*T'In? T') and O(d? In? T') total time and space
complexities, respectively.

The techniques we develop are transferable to another prominent online learning problem; that
of learning linear models with the log-loss (Rakhlin and Sridharan, 2015, Section 6).

Limitation. Our new analysis of the damped Newton Step requires a small learning rate which
leads to a large constant in the regret bound of our final algorithm. This, of course, affects the
practicality of our proposed method. It is unclear whether this is a true limitation of the damped
Newton Step or merely an artifact of our current analysis. We leave such investigation for future work.
Nevertheless, we emphasize that our method for avoiding the computation of the regularized leader
in Ada-BARRONS, which costs O(T") arithmetic operations per round, need not be used together
with the damped Newton Step specifically. In fact, when used with BARRONS—the base algorithm
of Ada-BARRONS (see §3.1)—it already confers a substantial computational improvement over
Ada-BARRONS (by shaving off an O(T') factor in the computational complexity) without sacrificing
the regret bound of Ada-BARRONS by much (the regret bound is at most a 3 InT" factor worse).
Finally, we acknowledge the concurrent work by Zimmert et al. (2022) that achieve similar
results to ours for the Portfolio Selection problem, albeit with a completely different method.

Outline. In §2, we introduce the notation and definitions we need. We also include some results on
self-concordance that we require in our analysis. In §3, we describe the Ada-BARRONS algorithm
in more detail and highlight the challenges involved in the design of an efficient alternative. There,
we also outline our solution and give a sketch of why it works. Finally, in §4, we present the full
details of our algorithm and its guarantee. The proofs are deferred to the appendix.

2. Preliminaries
We define the set Cy_1 == {u € R‘Sl : (1,u) < 1}. Throughout, for any v € C4_1, we denote
=(1-1/T)v+1/(dT), and v:=eq+ JTv, where J:=[I -1].

We may combine the notation and write v’ :== (1—1/T)v+1/(dT) andv” := (1-1/T)v'+1/(dT).
We will be working with Cover’s loss ¢;, which for a return vector r; € Réo, is given by

Yu € Cd_l, Et(u) = —1n<rt,'&>. (1)

Our goal is to design an efficient algorithm whose outputs (u;) are such that the regret

T
Regret,(u Z (U (uy) — £y(u)) = Ht 1 {re, @)
t=1 Ht 1 (e, Ut)
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against any comparator u € C4_1 is bounded by a poly-logarithmic factor in 7". Since the regret
is invariant to the scale of (7;), we may assume without loss of generality that (r;) C [0, 1]%. The
next lemma (taken from (Luo et al., 2018, Lemma 10)), implies that a regret against a comparator
u € Cg4_1 is bounded by the regret against ' up to an additive factor—this will be useful throughout:

Lemma 1 Foranyu € Cy_q andu' = (1 — £)u+ 7=1, we have ST l(u) < SO (u!) +2

Self-Concordant Functions. We now present some results on self-concordant functions that we
will make heavy use of in the proofs of our results. We start by the definition of a self-concordant
function. For the rest of this section, we let IC be convex compact set with non-empty interior int K.
For a twice [resp. thrice] differentiable function, we let V2 f(u) [resp. V3 f(u)] be the Hessian
[resp. third derivative tensor] of f at u.

Definition 2 A convex function f: int K — R is called self-concordant with constant My > 0, if f
is C° and satisfies 1) f(xy) — +oo for xy — x € K; and II)

Vo € int K,Vu e RY,  |V3f(x)[u,u,u]| < 2MfHuH3V2f(:):)

Note that by definition, if f is self-concordant with constant My > 0 it is also self-concordant with
any constant M > M. Another property that we will use is that if f; and fo are self-concordant
functions with constants M7 and Ma, respectively, then for any «, 5 > 0, the function o f; + B fo is
self-concordant with constant J‘} A \Aﬁ (Nesterov et al., 2018, Theorem 5.1.1).

For a self-concordant function f and € dom f, the quantity A(z, f) = ||V f(x)|lv-2f(a)
known as the Newton decrement, will be instrumental in our proofs. The following two lemmas
contain properties of the Newton decrement and Hessians of self-concordant functions, which we

will use repeatedly throughout (see e.g. (Nemirovski and Todd, 2008; Nesterov et al., 2018)).

Lemma3 Let f: int K — R be a self-concordant function with constant My > 1. Further, let
x € int IC and x5 € argmingci f(x). Then, I) whenever X(x, f) < 1/My, we have

[ = xfllv2p@,) VIIE = 2fllv2p@) < A, [)/(1 = MpA(z, [));

and II) for any M > My, the damped Newton step ¢4 = = — W “2f(x)V f(x) satisfies
xy €intKand Nz, f) < MA(z, £)?(1+ (1 + MX(z, f))7L).

Lemmad4 Let f: int K — R be a self-concordant function with constant My and x € int KC. Then,
for any y such that v .= ||y — x||g2 4y < 1/My, we have

(1= Mr)*V2 f(y) 2 V2 f(z) < (1 - Myr) V2 f(z).
A consequence of the latter lemma is the following useful result whose proof is in Appendix B:

Lemma5 Let f: int £ — R be a self-concordant function with constant My > 0. Then, for any
x,y € int K such that v = || — y||y2 p(a) < 1/My, we have

1
IVF(@) = VT2 < m”y 2|92 (@)

The result of the lemma is reminiscent of the relationship between the Bregman divergence with
respect to a function f and the one with respect to its Fenchel dual f*; that is, Df(u,v) =
D+ (V f(v),V f(u)) (Cesa-Bianchi and Lugosi, 2006, Proposition 11.1).
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Mixability. As a by-product of our efficient solution to the portfolio problem, we present an
algorithm that guarantees an adaptive logarithmic regret for mixable losses.

Definition 6 A sequence (fi) C {f: K — R} of convex functions is said to be n-mixable for n > 0
if for any distribution P on K, there exists w, € KC such that

VE> 1, fi(uy) < —n ' InEyope M),

Formally, given an algorithm A whose outputs (u;) achieve a logarithmic regret against any sequence
of n-mixable losses, i.e. Zle(ﬁt(ut) —l(u)) < O(InT) for any u € K, we design a meta-
algorithm that aggregates instances of A and generates outputs (w;) that satisfy >, (/s (w;) —
l¢(u)) < O(In®T), for any interval I C [T] and u € K.

Additional Notation. For a differentiable convex function f: int K — R, we denote by D¢ (u,v) =
f(u) — f(v) = (Vf(v),u — v) the Bregman divergence between u, v € int K with respect to f.

We use the notation O(+) to hide poly-log factors in 7" and d.

3. Background, Challenges, and Solution Sketch

In this section, we start by describing the algorithm Ada-BARRONS (Luo et al., 2018) that we build
on. We then point out key challenges we tackle to design our efficient portfolio selection algorithm.
The analysis we sketch in §3.2 and §3.3 is of independent interest as we discuss below.

3.1. The Ada-BARRONS Algorithm

The Ada-BARRONS algorithm consists of a base algorithm, BARRONS, and a meta-algorithm that
restarts the former under a certain condition on the sequence of returns and iterates of the algorithm.

Base Algorithm. BARRONS is simply mirror descent with a barrier regularizer. In particular, if we
let Ay :={x € Ay: z; > 1/T,Vi € [d]}, the outputs (p;) of BARRONS are such that p; := 1/d

and pyy1 = argming,ex (P, gt) + Do, (P, pt), where

d

—Inp; d||p||2 B : 2 —1 dp. ;
@ = — V i = . OgT( ps,z) 2
+(p) Z-El o + 5 + 5 SE:1< 6HP), M, n I;lez%t}]ce , (2)

and V; := 7y /(r, p). Using the standard analysis of mirror descent and the fact that Cover’s loss
is exp-concave, Luo et al. (2018) show that the regret Ry (u) = Zle(ﬁt (pt) — li(u)) against a
comparator u € A, (competing against comparators in A is sufficient—see Lem. 1) is bounded as
T T
Rr(u) <Y (Vipi = pra1) + Y (Do, (u,pt) — Do, (w,pry1) — B{Ve, pr — u)/2), (3)
t=1 t=1

as long as 3, the parameter in the regularizer in (2), is less than ap(u) = % A minge 7 m.
This condition seems strong since the algorithm does not have access to the sequence of returns ()
or the comparator u up-front to ensure that 5 < ar(u). However, this issue is resolved via a clever
restart scheme as we describe further below.

The fact that the regularizers (®;) have a quadratic term and a log-barrier ensures that the iterates
(p;) are stable. In particular, the first sum on the RHS of (3) can be bounded by O(3~dInT).
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However, this term can still be problematic since 5~! may be large; after all, (3) only holds when
B < ar(u) and ar(uw) may be as small at 1/(dT).

Fortunately, terms of the form O(3~'dInT) can be canceled by the second sum on the RHS
of (3), thanks to the log-barrier regularizer ¥;(p) = Zle =1, Z-l In p; in the definition of ®; and
the non-decreasing nature of the learning rates (7 ;). In particufar, Luo et al. (2018) show that the

second sum in (3) is bounded from above by O (n_ld InT ) plus

T

> (D, (u,p1) — Dy,_, (u,py))< —
t=1

Us
max —. 4
8ninT g{;} te[T] Pri “)

where the inequality follows by (Luo et al., 2018, proof of Lem. 6). Now the RHS of (4) can cancel
the bound O(3~1dInT') on the stability term as long as 3 > a7 (u)/2 (see App. F for details).

The Meta-Algorithm. Since the sequence of returns (7;) is not known up-front, it is not possible
for any algorithm to pick [ so that the condition ar(u)/2 < f < ar(u) is always satisfied.
Aggregating multiple instances of BARRONS with different 3’s also fails since ar(u) depends on
the outputs of the algorithm; and so, changing /3 changes the target cvp(u) for the base algorithm
(see also discussion in (Luo et al., 2018)). Instead of aggregating base algorithms, the approach taken
by Luo et al. (2018) consists of restarting the base algorithm on round ¢ if the current estimate for 3
satisfies 3 > oy (uy), where uy is the regularized leader:

t

d
—Inw;
w, € argmin Y~ + 3" (u) 5)

ucAy i=1 T]t,’i S=T

and 7 is the round where the current instance of the base algorithm was initialized. The technical
reason for why this works is sketched in Appendix F.

Computational Considerations. The computational complexity is dominated by the computation
of the mirror descent iterates for the base algorithm and the FTRL computation (5) for the meta-
algorithm. Both problems can be solved using an interior point method leading to a computational
cost of O(d*5T + d*>5T?) after T rounds. We will reduce the computational complexity to O(d>T)
(where the O(d?) is due to the computation of a matrix inverse) by I) avoiding the expensive FTRL
computation in (5) thanks to an adaptive algorithm for exp-concave losses; and II) providing a new
analysis for the damped Newton step to approximate mirror descent iterates. These techniques, which
we describe next, are of independent interest.

3.2. Avoiding the FTRL Computation

To avoid computing the regularized leader in (5) that is needed to trigger restarts, we will use a
meta-algorithm that aggregates base algorithms initialized at different rounds (one may think of these
as “restarted” instances of the base algorithm). If the meta-algorithm has a small regret against any of
the base algorithms, then this would emulate the effect of performing restarts, without the expensive
cost of FTRL computations. More formally, if we denote by (u] ) the outputs of an instance of the
base algorithm AT that is initialized at round 7, we can emulate the effect of restarts if the outputs
(u;) of the meta-algorithm satisfy
t

Z(fs(us) — €s(ug)) < O(poly-log(T)), (6)

S=T
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forall 7 € [T] and t > 7. A regret bound of this type may be achieved using sleeping experts
algorithms, where in our case the instance A" is considered “asleep” during the rounds s < 7
and “awake” for s > 7. There are two challenges that come with using standard sleeping experts
algorithms such as those in (Adamskiy et al., 2012; Gaillard et al., 2014). First, such techniques
operate on linearized losses, which is sufficient when seeking a O(+/T) regret. This is not the case
in our setting as we are aiming for a logarithmic regret. Second, if we want a regret bound of the
form (6) to hold for all 7 € [T, a naive sleeping experts strategy would require keeping track of 7'
experts. This would imply a O(T')-per-round computational complexity in the worst case, which
would defeat the purpose of seeking an efficient alternative to the FTRL computation in (5).

We manage to circumvent these issues by using a meta-algorithm due to Zhang et al. (2019) that
enjoys a logarithmic regret on any subinterval for exp-concave losses. To reduce the computational
complexity, we show that it is sufficient to ensure a low regret against base algorithms indexed by a
small set of geometric intervals (Daniely et al., 2015), reducing the number of experts at any round
to at most O(InT") (this is discussed in §4.2).

3.3. Damped Newton Step for Mirror Descent

Now that we have a way of avoiding the expensive FTRL computations of Ada-BARRONS, it
remains to find a more efficient alternative to the Mirror Descent (MD) computations of its base
algorithm BARRONS. Before describing how we use Damped Newton Steps (DNS) for this purpose,
we first describe the shortcomings of existing approaches.

Shortcomings of previous DNS results. Abernethy et al. (2012) showed how one can use damped
Newton steps to approximate the iterates (p;) of FTRL given by p;11 € argminy,ce fir1(p) =
22:1 (p,gs) + ®(p), where ® is a self-concordant barrier for some set of interest C. In particular,
Abernethy et al. (2012) showed that for an appropriate scaling of ® the damped Newton steps
(wy) defined by w11 = wy — mV*th+1(wt)Vft+1(wt) are close enough to the FTRL

iterates (p;) so that the regret w.r.t. (w;) is bounded by the regret w.r.t. (p;) up to an additive O(v/T).

We note that for a fixed regularizer ® that is a self-concordant barrier for C, it is known that the
FTRL iterates in the previous paragraph match the MD ones; that is, p;1 € argming,cc(p, g¢) +
Dg(p, pt), for all t. However, this is no longer the case when dealing with time-varying regularizers
(®,); that is, when fi11(-) = (-, g+) + Do, (-, pt) (as in the case of BARRONS). This means that
we cannot directly use the analysis of Abernethy et al. (2012) to show that damped Newton steps
are good approximations of MD iterates with varying regularizers. What is more, the damped
Newton steps with respect to (f;) can no longer be computed directly in this case since the gradient
V fir1(wy) = g¢ + VO, (w;) — VPy(p) in the expression of the DNS depends on the iterate py,
which is what we seek to efficiently approximate in the first place. Using w; as an estimator for
p: does not work since the approximation errors accumulate across rounds in an unfavorable way
(breaking the analysis of Abernethy et al. (2012)).

One tempting approach around these issues is to target the FTRL iterates (p;) given by py+1 =
argming, e S (p,gs) + ®i(p) instead of the MD ones. However, we are not aware of an existing
analysis of FTRL that yields negative terms from Bregman divergences in the regret bound as in (4)
(negative terms were needed to cancel the problematic O(3~*dInT') term in the regret bound).

Our approach. Our solution consists of approximating FTRL iterates w.r.t. modified gradients that
are chosen in a way to still allow us to use the MD analysis to derive our regret bound (similar in
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spirit to the approach by Foster et al. (2020)). In particular, we consider the objective

fr1(p ZP Dy (ws) + Vs1(ws)) + P4(p),

with (wy) being the damped Newton iterates w.r.t. ( f;). Under mild conditions on (®;), the FTRL
iterates (p; € argmin,cc fi(p)) can be efficiently approximated by (wy). Despite the fact that the
objective f;11 does not contain any “unknown” MD iterates, we are still able to take advantage of
the MD analysis and bring back negative terms from Bregman divergences (as in (4)) in the regret
bound. The key fact that enables this is that the FTRL iterates (p;) with respect to (f;) match the
MD iterates with modified gradients (g;). In particular, (p;) satisfy (see Lemma 9 and its proof)

Di+1 € argmin(gs, p) + Das, (P, pt), where g; == g; — Vi (pr) + Vi (wy), @)
p

and ¢, == ®,_; — ®;. We now give a sketch of how this observation allows us to leverage the MD
analysis and extract negative terms as in (4).

MD analysis for FTRL (a sketch). To illustrate how (7) helps in our analysis, consider the
regularizer ®; in (2), which we write as &, = ¥; + O, where ¥, is the barrier part ¥,(p) =
Zie[d} =y, Z.l Inp;. We will further define ¢, :== ¥, 1 — ¥; and note that the fact that (1, ;) are
non-decreasing, implies that (1);) are convex, self-concordant functions (the latter fact is all that is
needed to generalize the current analysis). A key step in the analysis of the regret involves bounding
the sum X7 = Z?zl (gt, wy — u) of linearized losses. For simplicity of the exposition, suppose that
O, = 0, for all ¢; the quadratic terms in O, present no difficulty when it comes to bounding X7 (see
proof of Lem. 10 for a derivation with non-zero (©;)). In this case, the sum Y7 can be written as

T

Xr = Z ((gt, we — pt) + (gt, Pt — u) + (VYi(pr) — Vb (wy), pr — u))
=1

((gt, we — pt) + (g1, Pt — Pr+1))

Il
M=

-
Il

1
T

+) (@, Per1 — w) + Dy, (u, pr) — Dy, (w,wy) + Dy, (pr, wr)),
t=1
where we used the definitions of g; and the Bregman divergence. Using this, and the facts that
(9t, Pr+1 — u) < Do, (u,pt) — Do (u, pti1) — Do, (Pr+1, pt) (by optimality of pt1—see proof
of (Luo et al., 2018, Lem. 5)) and Dy, (u, p;) = Ds, ,(u,pr) — Do, (u, pt), we can bound X7 as

Z ((gt;wr — pr) + (gt Pt — Pr+1) + Dy, (pr, wr))
- T
+ Doy (u,p1) = Doy (w, pri1) + (Do, (u,wy) — Do,_, (u, wy)). ®)
t=1

Thus, one can extract negative terms (as in (4)) from the last sum in (8) to cancel the O(B*1d InT)
term in the regret bound. The remaining terms in (8) can be shown to be small thanks to I) (w;)
approximate (p;) well, II) stability of the mirror descent iterates, and III) the fact that 1) is self-
concordant together with Lem. 5. Next, we present the full details and guarantee of our algorithm.
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4. An Efficient Algorithm for Online Portfolio Selection

Our final algorithm (Alg. 3) will consist of a set of base algorithms (instances of Alg. 1) and a meta
algorithm (instance of Alg. 2). We analyze these algorithms separately in the next two subsections
before combining the results in Subsection 4.3.

4.1. Base Algorithm: Damped Online Newton Step (DONS)

To analyze our base algorithm (Alg. 1), we will consider the following sequence of regularizers that
are defined in terms of the iterates (u;) and (w;) in Algorithm 1; the sequence of observed return
vectors (7); and the gradients (g¢) = (Jr:/(r¢, uy)):

d||ul?
@) = W) + PN TS g w? vue o ©)
s=1
g
where U;(x) = — L Nei =1 eIOgT(pt,i/d)7 10)
R Ve

and Pt,i is such that Pti € [maxse[t]@ﬂs,i)*l, maXge¢] (’17,3’071] ,foralli € [d], and pg = d1. In
particular, for every i € [d], (p: ;)¢ satisfies the recursion

pri =1{2p1, < %} . % +{2pi—1, > %} CPt—1- (1)

Luo et al. (2018) chose the sequence (p,;) such that p;; = max,cp 1/us, Vi € [d] and t € [T'.
Using our new analysis of the damped Newton steps for MD, this choice leads to a regret bound of
order O(d™) with m > 2, which is worse than what we are aiming for. Our choice in (11) ensures
that the barrier ¥; changes at most O(d InT') times, which is crucial to proving the desired bound.

For any ¢ € [T7], the output u;, 1 of Algorithm 1 at round ¢ 4 1 is given by w41 = wj | =
(1 = 1/T)wi1 + 1/(dT), where wy; is the damped Newton step:

. V*2®t(wt)Vt
14+ 4/en||Villv-20,(w:)

W1 = Wy (12)

with V; := V& (w;) + 3L, (gs — VVUs(ws) + VU1 (w;)) and w; = 1/d. In part due to the
fact that dom &, = C4_1, for all ¢ > 1, the iterates (w;) in Algorithm 1 are only well defined when
the update rule in (12) ensures that w;41 € C4_1 for any wy € C4_1. This is in fact the case as we
show next by leveraging the self-concordant property of ®,. To simplify notation in the proof of the
next lemma (which is in App. B) and in the rest of the paper, we let ¥;: C4—1 — R be defined by

ﬁl(w) =—InZx;, Vic€ [d] (13)
Note that the self-concordant barrier in 10 satisfies W¢(-) = 3_;c(4 Ui (") /7t,i-

Lemma 7 Forallt > 1, &, in (9) is a self-concordant function with constant Mg, < /ne.
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Algorithm 1 DONS (Base Algorithm): Damped Online Newton Step for Portfolio Selection.
Require: Parameters 7, 5 > 0.

I: Setw; =1/d € R¥1, py = dl € RY, Go = 0, and Vy = BdI /4 € RI-1xd=1,

2: fort=1,2,... do

33 Playu; = (1— %)'wt + %1 and observe gradient g; = V{;(uy) = Jry/(ry, uy).

4: Set Pti = H{th—l,i < %} . % + H{2Pt—1,z’ > %} ©Pt—1,i» forall i € [d]

U

Define ¥, (x) = — Zf 1 lgtii, where 17 ; :== 1 - exp(logr(pri/d)), Vi € [d].
Set Gy =Gy_1+ g - ( ﬂ<gt, 'wt)/4) V\Ilt('wt) + VU, _ 1(wt)

5
6:
7: SetV, =V,_1 + /Bgtgt /4 and Vt =Gy + Vwy + V\I/t(wt) + ﬂdwt/él
8.
9

2 1
Set wiy1 = wy — 1+4W|‘Vt||(v2wi(wt)+vt) 1 (V \I’t(wt) + Vt) V.
: end for

Damped Online Newton Steps as Approximate MD Iterates. A key part of our analysis consists
of showing that the intermediate iterates (w;) on Line 8 of Algorithm 1 are close to the mirror
descent iterates (p;) with respect to the sequence of regularizers (®;) in (9):

Pit1 € argcmin Fiy1(p) = (p,gt) + Ds,(p,p:), where (14)
peCd—1

1 1

L+ B{gt, e — wi) /4)g: + <_
= (1+ B(gt, pt — wi)/4)g: Z Nei M1,

) (Vii(pe) = Vis(wr),  (15)

and p; = 1/d (recall (¢;) from (13)). Next, we formally state this result (recall A(+, -) from §2):
Lemma8 Forany 3 € (0,1/8) andn < 1/2%, the iterates (w;) in Algorithm 1 satisfy,

[|we _ptHvQFt(wt) < Awy, Fy)

vt >1 < AMNwi—1, F)*<C 16
= 1, 24\/% ~ 23\/@ =~ (wt 1 t) = mn, ( )
where C = 4_1\/(;1%. Further, we have Zthl |lw: — ptH2V2<I>t71(wt) <1+158 dlogT.

The next lemma, which will be useful in the proof of Lemma 8, essentially shows that the mirror
descent iterates in (14) match the FTRL iterates with respect to ( f;), where fi11(p) = >\, pT(gs—
Vo (ws) + VO,_;1(ws)) + D4(p) (c.f. discussion in §3.3).

Lemma9 Forallt € [T), we have VFi1(w;) = gt + VF(wy) (F; as in (14)) and Vw € Cy_1,

t

VEii(w) = VO, (w) + Y (gs — VU(wy) + VT, 1 (wy)).

s=1

Regret Decomposition. We now present the main regret decomposition. In the proof, which is
Appendix C, we follow similar steps as the ones outlined in §3.3.

Lemma 10 LetT > 1, cp:=1—1/T, and 1y := V1 — V. Further let (u;) and (wy) be as in
Algorithm 1 with parameters 1, 3 > 0, and (p;) as in (14). For any sequence of returns () and

10
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u € Cyq_1 such that B < 871 A |8(gs, uy — u")| ! (recall u',u” from §2), we have, for all t € [T),

T T T

Li(uy) — U(u -

Zt(t)cTt() §Z<gt,1)t—pt+1 +Z (Dy, (pe, we) + Dy, (u',w) = Dy,_, (u', wy))
t=1 t=1 =1

T
dlnT 3
< > Z gt, Wt — Py) 8B<gta'wt —p)°. 17
=1

Next, we bound each term in this decomposition starting with Zthl Dy, (pe, wy). To show that this
term is small, we rely on the fact that v, is a self-concordant functions, which holds true by our
choice of “doubling” (p;)’s in (11). This enables us to relate Dy, (pt, wt) to [wi — Pellv20, , (w,)
via Lem. 5, which we can then bound using Lem. 8.

Lemma 11 Let (V) be as in (10). Then, the function 1, .= V,_1 — U, is a self-concordant function
with constant /enlogy T. Furthermore, the mirror descent iterates (p;) in (14) and the iterates
(w;) in Algorithm 1 satisfy 31— Dy, (pt,w) <O(dInT).

We move to the stability term Zle@, Pt — Pr+1), Which is the most technical one to bound
due to the modified gradients (g;). We will use use Holder’s inequality and the triangle inequal-

ity to bound (g, pt — pi+1) in terms of [|py — Prt1llv2e, (wy)> [19t]v-20,(w,)» and [[VIi(pr) —
Vii(wi) || w28, (w,)- Then, we use the self-concordance property in Lem. 5 to relate the latter term

to |wt — ptllv2a, (w,)> Which (thanks to Lem. 8) will allow us to show that the stability term is small.
Lemma 12 Let T > 1 and (g;) be as in (15). If n < 1/2 and 3 € (0,1/8), then the iterates (p;)
in (14) satisfy Y, (Gt ot — Pr1) < BG2T + O(dInT).

We now bound the sum divergences which will allow us to cancel the undesirable O(3~dInT)
term in the regret bound as discussed in §3.1.

Lemma 13 Let T > 1 and (u;) be the iterates of Alg. 1 with parameters ﬁ € (0,1/8) and
n < 1/2Y. For any sequence (), the iterates (p;) in (14) satzsfy (recall u' and u" from §2)

Z;‘F:l(Dq,t(u’,wt) Dy, (v, w)) < 16n1nTz _ max<T 3 _‘ + O (d/n), forallu € Cyq_;.

It remains to upper bound the sums Zt:1<gt, w; — py)?, for i € {1,2} which are expected to be

small since (wy) are close to (p;) by Lemma 8:

Lemmal4 LetT > 1, cy :=1—1/T, and St := 1 + 4158~ dInT. Further, let (w;) be the

iterates in Alg. 1 with parameters 3 € (0,1/8) and n < 1/2'. For any sequence of returns (v), the

mirror descent iterates in (14) satisfy EtT:l (g, w—pi) < St and Zthl (gs, w;—py)? < GA‘S#ST.
T

Combining these results, we obtain the following regret bound for our base algorithm:

Theorem 15 (Base Algorithm Regret) Let T' > 1, and (u;) be the iterates of Algorithm 1 with
parameters 3 € (0,1/8) and n < 1/2. For any sequence of returns (r;) and w € Cq_1 such that,
forallt € [T), B <8 L A|8(gs, uy — u")| 7! (recall w' and u" from §2) we have

T
> (belur) = by(u)) <O

<dlnT> 34dInT 1 a”
_|_
t=1

n 3 32pln T t<T Ug

The regret bound in Theorem 15 is the same as that of BARRONS up to constant factors. We are
now going to describe the adaptive meta-algorithm which allows us to emulate the effect of restarts
in Ada-BARRONS.

11
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Algorithm 2 PAE: Adaptive Meta-Algorithm for Exp-Concave Losses (Zhang et al., 2019).
Require: I) Grid G of 3 values, horizon T, and 17 > 0; and II) Instances (A%1) B8eg,1e1|y» Where
A1 is active during I
Set Jp = 0.
fort=1,...,7T do
Identify the set of newly active intervals 7, = {I € Z|p: minT = t}.
Set F* = 0forall € Gand I € J,.
Update the set of active intervals J; = J;—1 U jt
Recelve ut I ¢ U from each A% such that BeGand I € J;.
Set qt_1 =e 77]Ct—l/Zt for 3 € Gand I € J;, where Z; = ZBEQ’IE% e‘"‘FtﬂiIl

I b
Play uy = > 51 4er g u)

Observe f; and set ]-"tﬁ e fffl + ft(uf’l) — fi(uy), forall B € Gand I € ;.
Send f; to each A%/ such that 3 € Gand I € 7.
Update the set of active intervals J; = J; \ {I € Z|r: max[ = t}.

end for

4.2. Adaptive Meta-Algorithm for Exp-Concave Losses (PAE)

As discussed in §3.2, we will use the adaptive meta-algorithm PAE due to Zhang et al. (2019) for
exp-concave losses to circumvent the restarts required by Ada-BARRONS. In App. E, we present a
version of this meta-algorithm that yields an adaptive regret for the larger class of mixable losses
(see Def. 6). We note that using the Follow-the-Leading-History algorithm by Hazan and Seshadhri
(2007) (which is also an adaptive algorithm for exp-concave losses) instead of PAE would lead to a
similar final result for our application. However, we use PAE due to a slightly simpler analysis.

We now introduce some notation to describe the PAE algorithm (Alg. 2). Let Z be the set of
geometric covering intervals:

7= |/ {[2’%,2’“(”1) - 1]}.

i,keN

Such a set was first used by Daniely et al. (2015) in the context of strongly adaptive Online Learning.
We further define the “restriction” of Z to [T] as Z|p == {IN[T] : I € Z} U {[T]}. The PAE
algorithm maintains a set of base algorithms/experts (A%1), where for expert A%/, 3 represents a
parameter in some predefined grid G C R and I € Z|r represents the interval on which the expert is
active; in this case, expert AB1 is initialized at round ¢ = min I and terminates after round ¢ = max I.
If (utﬁ ’I)te 1 are the outputs of expert A% within Alg. 2, then the outputs (u;) of Alg. 2 are given by

ex £ ﬁl
Lp1: ter OXP( t;) ,where L) = 3 (4(ul) — fy(us).  (18)
Zﬁ,l: ter €Xp(— [’t—l) selnlt]

Uy ‘=

We now state the guarantee of PAE (Alg. 2) relative to the performance of the experts (A%7):

Proposition 16 Letn > 0 and G be a set s.t. |G| < M. Further, for 5 € G and I € T, let (’U;f’l)te]
be the outputs of the subroutine AP within Alg. 2 in response to a sequence of n-exp-concave losses

12
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(ft). Then, the outputs (u;) of Algorithm 2 guarantee

Z (fs(us) — fs(u?D) < (2Int+InM)/n, foralll €T, € G, andt € I.
seln[t]

This regret guarantee can be derived from results by Zhang et al. (2019), and follows directly from
Proposition 25 in Appendix E, which generalizes the result of Proposition 16 to mixable losses.
Next, we combine PAE and DONS to get an algorithm with our desired guarantee for the Portfolio
Selection problem.

4.3. Final Algorithm and Guarantee

For our Portfolio Selection application, we instantiate Alg. 2 with Cover’s loss and the base algorithms
(A1) set as instances of DONS (Alg. 1) with 7 = 1/(2862dIn3T') and 8 € G, where

1
G = {d2i+3:i€ HlogQT”}. (19)

This specific instance of Alg. 2 is displayed in Alg. 3.

Since the regret of DONS is the same as that of BARRONS (see discussion after Thm. 15), and
the adaptive regret enabled by Alg. 2 allows us to emulate the restarts of Ada-BARRONS (see §3.2),
the regret of our final Alg. 3 will be the same as that of Ada-BARRONS up to log factors:

Theorem 17 The regret of Algorithm 3 is bounded by O(d? In® T). Furthermore, the algorithm
runs is O(d> In® T') per round and requires O(d? In® T') total space.

Algorithm 3 PAE + DONS: Adaptive Meta-Algorithm for Online Portfolio Selection.

Instantiate of Alg. 2 with I) (f;) = (¢;) (¢; asin (1)) withif = C4_1; and IT) (AP1) set as instances
of Alg. 1 withn = B € GwithGasin (19),and I € Z|r.

D S
2862d1n° T’

13
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Appendix A. Technical Lemmas

Lemma 18 Let U(z) = — > % Inz; and f(w) = —log(r, @), for r € [0,1]% and @, w €
Cq—1. Then, forall . € (0,1) and w € Cyq_1, we have

Vi(w)Vf(w)T < (1 —p) 2V2U(w), where w = (1—p)w+ pl/d. (20)

(w)”2v—2\1/(ﬁ,) < (1- M)iQ-

Proof . Since ||V f(w )Hv 20 () = Vf(w)TV 2 (@) V f(w), the second claim follows from (20).

flw
Thus, it suffices to show that V f (w)V f(w)T < (1 — )" 2V?W¥(w). Letting 7 == (r1,...,74-1),
we have

V)V f(w)T = (7 —rql)(F — rq1)7/(r,w)?,
= (rr7 + r211T — rgrlT — ral7T) /(r, w)?,
=< (~ rT 4+ 11T) /<T,w>2,
< (FFT +r3117) /(r,w)?,
< 7T/ (7, w)? + 117 Jw?,
< AT/ (F, w)? + (1 — p) 2117 Jw3. (1)
We will now show that 777 /(7, w)? < diag(1/w},...,1/w3 ;). For this, it suffices to show that

for any vector u € R%, we have (Zf{;ll Til;) /(Zf llrlwz) < Zl ! u? Jw?. This is indeed the
case; by Cauchy Schwarz, we have

d—1 2 d—1 d—1
(z ) < (z r3w3> (z u%/w3),
i=1 =1 =1

d—1 2 0
< (z) (zu%/wz),
=1 =1

where the last inequality follows by the fact that ;, w; > 0 for all i. Therefore, we have 777 / (7, w)? <
diag(1/w?,...,1/w?_,). Plugging this into (21) implies that

V(w)Vf(w)T < diag(1/w,..., 1/ w2 )+ (1 — p) 2117 /03 < (1 — p) 7 2V20(w).

Lemma 19 Let B < 1/8andn € (0,1). If T > 1, then the iterates (w;) and (wu;) in Alg. 1, satisfy

R 16d1n T
Z ”gtHV*QFt(wt) < 3
t=1

where (Fy) are as in (14) and g, = Vi (uy).

17
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Proof . Let cr := 1 — 1/T. First note that by Lemma 18, we have ¢2.g1g] < V?W¥(w;), where
U(x) = — Zgzl In Z;. Combining this with the fact that 7; € [n, ne| and the range assumptions on
8,7, and T, we get

-1 _ _
19e1% 25,0y = 97 (V2 Ws(wr) + BQi-1/4) " g0 < 457 'g]Q; ' g1 (22)

where QQy := dI + Eizl gsg:. Thus, by (22) and (Hazan et al., 2007, Lemma 11), we have

T
_ Qr| _4dln(1+7T3) _16dInT
196152, (ups) < E:C%bt 1 @r] ( ) <

\Q!_ B B

‘(b\rlk

where the second inequality uses the fact In |Qy| = dInd and by AM-GM inequality In |Qr| <
din Q1) < g1n <d + ZtT:1||gt||§/d> < dIn(d + dT?) since

d 2

N S

Hgt”%SdQTZ Zz_l t,3
d

22
5 < d°T?.

> im1 Tt
This completes the proof. n
Lemma 20 Suppose that T > 1 and define cr = 1—1/T and ap = 1+6encr_}2/4. Ifn, B € (0,1),

then the iterates (w;) and gradients (g;) in Algorithm 1, and the regularizers (®;) in (9) are such
that, for all t € [T,

t
en 16dInT
V2P (wy) 2 ar V201 (wy), HgtH2V*2<I>t(wt) < 20 and Z ”gt||2vf2q>t(wt) < 5
T =1
Proof . By Lemma 18, we have V2U(w;) = cig:g], where ¥(zx) = —Z?lenii. Us-

ing this and the fact that (n;;) C [n,ne], we get that 3g.g] /4 < Bency V20, (wy) /4 <
Benc;QVQQt_l (w;) /4. Thus, adding V2W;_ (w;) on both sides and using that o;; = 1 +,Benc}2/4,
we get that

arV2®,_1(wy) = Bgig] [4+ V2Pu1(wy) = V204 (wy),
where the last inequality follows by the fact that 7, ; > 79—y, for all ¢ € [d]. The remaining

inequalities follow from Lemmas 18 and 19. |

Lemma 21 Letu,w € Cy_y. Foranyr € [0,1]% and f(x) := —log(r, &), we have

U;
<1 il
(Vf(w),u — w)| vﬁﬁﬁwl

Proof . We have

(V(w),u —w) = (r, o) {(JTru—w) = (ro) {r,a— o) = -1

18
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(r,u)

Now since the function r — ) is quasi-convex (Boyd et al., 2004, Example 3.32), its maximum

is reached at the boundary of [0, 1]%. Thus, the previous display implies that

(7, u) U
Vilw),u—w)| <1V sup -—— <1V max —.
v £(ew) ) 7€[0,1)¢ a (T, w) i€ld] W;

Appendix B. Proof of Lemmas 5, 7, 8, and 9

Proof of Lemma 5. Since V f(w)—V f(p) = fol V2 f(w,)(w—p)du, where w,, == pw+(1—pu)p,
we have,

IV £(w) = V(D)3 2 fa)
=(Vf(w) = Vf(p))TV?f(w)(Vf(w) -

Vi)
—(w—p)T ( / 1 V2f(’wu)d/~t>T V2 f(w) < / 1 VQf(wu)dV> (w-p). @

On the other hand, since f is self-concordant with constant My and r == [|p — w||g2f(w) < 1/My
by assumption, we have (see e.g. (Nesterov et al., 2018, Corollary 5.1.5))

1
(1= Myr +1/3M3r?)V? f(w) < H = 1_7Mfrv2f(w), 24)

where H = fol V2 f(w,)du. Since V2 f(w) is definite positive for all w, (24) further implies that
H = (1 — Mr)V?f(w). Combining these facts with (23), we get that

2 1 2
IVf(w) = VID)G-2 ) = m“p = W[|92 f(aw)-

Proof of Lemma 7. We prove the claim by induction. We start with the base case ¢ = 1. For
= 1, we have w; = 1/d € C4_1. We now check that ®; is self-concordant with constant
yen. For any i € [d], the function ¥;: £ — —InZ; defined on C4_; is self-concordant with
constant 1. Furthermore, the function ©1: u — ®1(u) — ¥y (u) is self-concordant with constant
0 (since it is a quadratlc) Thus, by (Nesterov et al., 2018, Theorem 5.1.1) and the fact that
() =01()+V1(-) = ©1() + 3%, 9i(-) /m1.i, we have that B is self-concordant with constant
less than 0 V max;c(q) /71i = /11 < /7€
Now, suppose the clann of the lemma holds for all ¢ < s. We will show that it holds for t = s+ 1.
Since ®; is self-concordant with constant Mg, < /ne and w, € Cy4—1 (by the induction hypothesis),
we have that the Dikin ellipsoid

Wy ={x € R . |l — wsva%(ws) < 1/y/ne}
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is contained within dom ®; = C4_1 (see e.g. (Nesterov et al., 2018, Thm. 5.1.5)). Thus, to show that
ws41 € Cq_1, it suffices to show that ws11 € W;. By definition of wg1, we have

Hv_2(p8(wS)VSHV2<I>S(wS) HVSHVQCDS(ws) 1
|ws+1 — ws|lv2a, (w,) = = < :
L+4ymel|Vsllvea,w,) 1+ 4v/EnIVslvee,w,) V7€

where V is as in (12). This shows that w1 € W, and so w,1 € C4_1. As a consequence, the
output us41 of Algorithm 1 satisfies 4511, > 1/(dT), for all i € [d], which in turn implies that
Ns+1,i € [n,en], for all i € [d]. Using this and (Nesterov et al., 2018, Theorem 5.1.1), we have
that @1 1(-) = Bey1(-) — Wer1(-) + 320, 9i(-)/msr1, is self-concordant with constant less than

0V max;eq) /Ms+1,i < /M€ n
Proof of Lemma 8. For any twice differentiable function F': WW — R and w € W, we recall the
definition of the Newton decrement A\(w, F) = ||V F(w)|y-2p(w) Which will be useful in this

proof. First, note that if 7" = 1, then the result holds trivially since w; = p; = 1/d. Assume that
T > 1andlet ¢y =1 — 1/T. Next, we will show by induction that

1
16,/en
for all s > 1, where C' := 4e/c? with the convention that wy = 1/d. The base case follows trivially
since VI (wp) = VFi(w;) = 0 and w; = p;. Suppose that (25) holds for s = ¢. We will show
that it holds for s = ¢t + 1. By Lemma 9, we have VF;,1(w;) = g: + VF;(w;), and so by the fact
that (a + b)? < 2a? + 2b%, we get
AW, Fiin)? = [V (w) I3 25y o
< 2V I3 2y ) + 2191221 oy
= 2\ (wi, 1) + 2/|9elI3-20, (a0, (26)
< 27eC%n 4 2en/c% < On, (27)

1 2
lws — Pslv2r,(w.) < %)‘(W&FS) < Mws—1, F)” < Cn, (25)

where in the penultimate inequality we used the induction hypothesis in (25) for s = ¢ and the bound
on ||g; ||2v,2 ®, (w,) Trom Lemma 20. The last inequality in (27) uses the range assumptions on 7). Now,
by the expression of V Fj 1 (w;) in Lemma 9, one can verify that the iterate w,; in Algorithm 1
satisfies

1
1+ 4y/en\(wy, Fyi1)

which is the damped Newton step with respect to the function F;y;. Therefore, by Lemma 3 and
the fact that A(wy, Fy11) < 1/(8,/en) (which follows from (27) and the range assumption on 1), we
have A(wgy1, Fiy1) < 8 /enA(w, F,+1)%. Furthermore, since p;1 is the minimizer of F},1 and
Mwiy1, Fiv1) < 1/(24/en), we have [|wii1 — prvillvemy  (w) < 2AM(Wes1, Fiq1) (by Lemma 3
again). Combining these facts with (27), implies (25) for s = ¢ + 1, which concludes the induction.
This shows (16).

We now use (25) together with (26) to bound the sum 7 |jw; — you [ By 1

Mwiy1, Fri1) < 8./en(wy, Fyy1)? (as argued above) and (26), we get

Mwyy1, Fror) < 16y/en)\(wy, Fy)* + 16, ﬁenugt\\%%t(w”. (28)

V2 Fg1 (wy) VE g (wy),

W41 = Wy

) Using that

wy
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Summing (28), fort = 1, ..., T, rearranging, and using that \(wr1, Fry1) > 0, we get
T

T
(Mawy, Fy) — 16 /enh(wy, Fr)?) < 16\/enA(wy, Fi)? + 16,/en > 191% 20, (200 -
t=2 t=2

Using (26) and the range assumption on 7, we have 0 < 16,/en\(wy, F;) < 27eCn? < 1/4.
Therefore, we have

T T

3

1 > Aawr, Fy) < Mwi, Fr) +163/e0 Y (1961320, )
t=1 t=2

45dInT
85
where the last inequality follows by Lemma 20 and the range assumption on 7. Now, using the fact

that p; is the minimizer of F;, we have ||w: — pt|lv2F, (w,) < 2A(wt, Ft). Combining this with the
previous display, we get the desired result. |

T
: 3
<+ 16v/en Y [19ellZ -2, () < 8"
t=1

Proof of Lemma 9. Let t € [T, ¥;: ® — —InZ;, and 6;; == (1/n; — 1/mi—14) with g = n1, for
all i € [d]. We will first show that VF; 1 (w) = g(w) + VF;(w), where

d
Gi(w) = gi - (L+ Blge,w — w))/4) + 3 6,:(Vi(w) — V,(wy)).
i=1

By definition of (F}) and (p;), we have
VFt+1(’lU) = gt + V(I)t(’lU) — V‘I)t(pt),

d
= G + B9s - ((gr,w — wy) — (g, pr — wi)) /4 + Y 613(VIi(w) — V()

F VB (w) — V&1 (py), -
=g:- (14 B(ge,w —wi)/4) + zd: 0r.i(VIi(w) — Vii(wy))

+ g1+ VO (w) — Vq)tflz(:;tfl), (29)
=g (14 B(ge, w —wi)/4) + zd; 0r,i(VUi(w) — Vi(wy)) + VEF(w),  (30)

where (29) follows by definition of g; in (15) and the fact that 0 = VF}(p;) = g1—1 + VP41 (pt) —
V&, (pi—1). Setting w = w; in (30) shows the first equality of the lemma. Now, by induction, we
get

VEi(w) = ge- (14 Blge,w — ws)/4) + Y > 55,i(Vii(w) — VIi(ws)) + VFi (w),

t t d
=3 " gs (14 Blge,w — wy)/4) + VI (w) = >3 6, 10i(w,) + Bdw /4.

s=1 s=1 i=1
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Using that V&, (w) = Bdw/4+ 3| Bgs - (gs, w — w;) /4 + V¥, (w) completes the proof. W

Appendix C. Proof of Theorem 15 (Regret of Base Algorithm)

We present the proof of Theorem 15 before proving Lemmas 10-14.
Proof of Theorem 15. Our starting point is the regret decomposition in Lemma 10. Using Lemmas 11,
12, and 13 to bound the first two sums on the RHS of the regret decomposition (17), we get

T d _
18dInT dInT 1 ul
14 4 Yy < O _ i
;( () — Gl < =g+ ( " > 320 T &= 15T 0y,
T 33 T
+ er Z<gtawt —Pt) +§Z<gt,wt —pi)”. (3D
t=1 t=1
Now using Lemma 14 to bound the last two sums in (31), we get the desired result. |

In addition to Lemmas 10-14 in the main body, we also need the following result (which follows
from the proof of (Luo et al., 2018, Lemma 5)) to prove Theorem 15:

Lemma 22 Let (p;) and (g;) be as in (14) and (15), respectively. Then, V't € [T],Yu € C4_1,

T dInT\ < (8
> (Gepr—u) <O ( ; ) +) <8<gt,pt —u')’ 4 Dy, (v, pr) — D\I/tl(u/,pt)> :

t=1 t=1

Proof . In this proof, we let ©; := &,— Wy, forall ¢ > 1. Since p; 1 is the minimizer of F}, 1, which is
a self-concordant barrier for the set C4_1, we have 0 = VF;11(pi+1) = Gt + Vi (pir1) — Vi (pr).
Therefore, we have

(96, Prr1 — u') < (VP(pri1) — Vi (pr), v — prya),
= D‘Pt (u/’pt) D‘Pt( 7pt+1) D<I>t (thrlapt)a (32)
< D<I>t (u,7pt) DCIH( ,?pt+1) (33)

= D‘I’t (u,’pt) - D\I’t( ,)pt+1) + D@t (u,apt) - D@t (u,7pt+1), (34)

where (32) follows by the definition of the Bregman divergence, and (33) follows by the positivity of
the Bregman divergence. Summing (34) fort = 1 to 7', we get

T T
> (G, pri1 — u) < Dy, (', w1) + Do, (v, w1) + Y (De, (v, pe) — De,_, (v, pr))
t=1 t=1
T
+ (D, (u', 1) — Dy, _, (u', pr)),
=1
= Dy, (v, w;) + Dg, (u', w1) Jrzé (g, pr —u')?
0 0 — 8 9
T
+ Z(D‘I’t(ulvpt) - D‘I’t71(u/7pt))' (35)

&
Il
—_
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By definition of u’ and wy, we have Dy, (v, w1)+ Do, (u/,w1) < O(n~tdInT), which combined
with (35) implies the desired result. |

Proof of Lemma 11. Denote by 7" € [T] the subset of rounds ¢ where any of (p; ;);c[q change. For
t ¢ T, we have 1y = 0, which is self-concordant with any constant. Now, let t € 7. Since v is
the sum of self-concordant functions, we have by (Nesterov et al., 2018, Theorem 5.1.1) that ¢/, is a
self-concordant function with constant less than

1 1\ Mti
max - — = ma
icld] M—1i M ze[d] elogr(pti/pi-1,1) — 1

(s

) )
< max \/ il < Venlogy T,
‘ log( )

1€[d] pt,i/Ptfl,i

where (x) follows by the fact that e* — 1 > z, for all x € R, and that p;; > 2p;_1; since t € T.
This shows the first claim of the lemma. We now show the second claim. Let ¢ € 7 and define
wy = upr + (1 — p)wy, for p € [0, 1]. By Lemmas 4, 7, and 8, we have

(1 — /enr) >V 28,1 (wy ) < V7281 (wy) < (1 — Jenry) 2V 20,1 (wy,),  (36)

where r; = ||lw; — ptllv2s,_, (w,)- By Taylor’s theorem, there exists p1. € [0, 1] such that
1 9 9
Dy, (pt?wt) = 7Hpt B thV2¢t (Wi, ) -2 Hpt thv2¢'t—l('wt,H*)7 G7)
sy o G8)

where (37) follows by the fact that V2¢; < V2W,_; < V2®,_; and the last inequality follows
by (36). Plugging the bound on r; = ||p; — wt”QVQ(thl(wt) < 64(en)*?/c2. (from Lemma 8)
into (38) and using the facts that I) |7| < O(dInT') (by definition of (p;;) in (11) and the fact
that (u;) C [1/(dT),1]); and II) Dy, (pr, w;) = 0if t & T, we get that S Dy, (ps, wy) <
O(n*/?dInT) < O(dInT). u

Proof of Lemma 10. Let ¢z := 1—1/7 and w be as in the lemma’s statement and recall the definition
of (g;) from (15). First, we note that by Lemma 1, we have S 7 £;(u) < Y7 ¢;(u”) + 4, and so
it suffices to bound the regret against u”. Let g; :== g+(1 + 53(g¢, pt — w¢)/4). Using that Cover’s
loss is 1-exp-concave and 3 < 871 A |8(gy, u; — u”)| ™1, for all t > 1, we have (see e.g. proof of
(Luo et al., 2018, Lemma 5) for the first inequality)

E

(Lr(wr) — £ (u"))

N
Il
A

<gt,’ut —u’ gtaut )

w\m

(9t,ur — u”> + 1(gs, wi — pe)(ge, ur — u”

>~

N ||Mﬂ

M\Q

T
§ gtaut_u

-

4~
I
—

t=1
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T 5 T 38 T
Z (g1, wy — ") gZ(gta'wt —pt>2 - §Z<gt7ut —u”>2,
t=1 t=1 t=1
B T 3¢ 26 T
=cr Z<gt7'wt —u) +t3 Z gi, wi —py)° — g > gr,w, — ')’
t=1 t=1 t=1
T T T
- 3c
=cr Z<Qt,’wt —pi)+ g Z(gu Wi — pt>2 - gﬁ Z(gt, Wi — Ul)2
t=1 t=1 t=1
T
+cr Z@)t,Pt -
t=1
T 3¢2,3 T T
<cr Z<gt7’wt —pi) — g Z(Qu w; —u')? + o Z@tapt — '), (39)
t=1 t=1 t=1

where in the last inequality we used the fact that (g;, w; — p;) = (gs, Wi — pi) — B(ge, wi — py)? /4
and cp > 1/2. We now focus on the last sum in (39). By definition of (g;) and (g;), we have

T d
+ ZZ (1 — 1 > <V’l91(UJt) - Vl(}i(Pt),Pt - ul>7

Mi  M—14

T
- ZZ < ! - ! > (Dﬁi(ulawt> - Dﬁi(u/apt) - Dﬁi(pt,wt))

=1 i1 \Mio M=
T T

+ Z<gt7pt —Pi+1) + Z@t,ptﬂ — '), (40)
=1 =1

T T
Z<gt7pt Pey1) + Z<gtapt+1 — )
=1

+sz:< L 1) Dy, (pt, we)

Nt—1,i i

T
+ Z(D‘Pt (u/, wt) - D‘I’t—l(u/7 wt) - D‘Ift ('U//,pt) + D‘Ift—l (u/7pt))'

where (40) uses the definition of the Bregman divergence. Plugging in the bound on Z::F:l (g1, Dt+1—

. d
u') from Lemma 22 and letting ¢ p — > 7, <ﬁ - %) 9i(p), we get
T T T
Z(Qtapt —u') < Z@lt,pt —Pi+1) + Z‘Dwt(ptth + Z Dy, (u',w) — Dy, _, (v, w;))
t=1 t=1 t=1 t=1
dinT T 3
O = " py)?. 41
+ < 7 >+;8<gtvu Pt) (41)
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Now, by the fact e > 1/2 and that (a + b)? < 3/2a? + 3b%, forall T > 1, we get

3
§<gtapt _'wt>2'

By combining this with (41), (39), and the fact that 37| £;(u) < 321, £;(u”) + 4 (see beginning
of the proof), we obtain the desired result. |

Proof of Lemma 12. Let (F}) be as in (14) and oy := 1 + Benc;?/4, where ¢ == 1 — 1/T. We
start by bounding the Newton decrement \(py, Fy1) = HVFt_t,_l(pt)Hv—QFt+l(pt). Since Fyyq is
equal to a linear function plus ®;, Lemma 7 implies that F3; is \/en-self-concordant. On the other
hand, by Lemmas 20 and Lemma 8, we have

2 ar(en)*? 1

< )
c% 2,/en
where the last inequality follows by the range assumptions on 7 and 5. This, together with the fact
that £} is \/en-self-concordant and Lemma 5, we have

Jw; — PtHv2<1>t(wt) < 27\/0z
- \/enHwt - ptHVQ‘bt('UJt) B C%(en) 3/2°

|wi = pellvza, ) < Vorlw: —pilvze, ; (w) < (42)

IVE1(pr) — VE (W) lv-2F4 1 (wr) < (43)

Thus, by the triangle inequality, we get that

IVE1(Pllv-2F 10 w) S IV (W) 92541 () + IV E+1(P) — V1 (W) [v-2F,0 4 (w0
= Mwt, Fi1) + [[VE11(pt) — VE1(wi)l[v-25,4 1 (we)s
< 2/en/er + 2"\ /ar(en)*?/c},
where the last inequality follows by (43) and Lemma 8. Now, by (42) and Lemma 4, we have
(1= Venr)*V 2 Fra(p) 2 V2 Fga(wy) < (1= Venr) °V 2 Fa(p),  (44)

where r; = ||lw; — pt|v25, (w,)> and s0

IVE1(p)lv—27,1 p) < (1= Venllwe — pellves, (w,) )71HVFt-‘rl(pt)HV*QFHl(wt)v
< 4y/en/er + 28\ Jar(en)®? /3 <

45
<3 f 45
where the last inequality follows by the range assumption on 7 and 3. Combining (45) with the fact
that p;y1 is the minimizer of F;, (which is ,/en-self-concordant as we argued above) and Lem. 3,
we get

Ty = ||pt - pt+1HV2Ft+1(Pt) < 2/\(pt’FH'1) =

8yven 2 Jar(en® _ 1 46)
cr C% 2\/%7

where the last inequality follows by the range assumption on 7 and /3. Thus, using Lemma 4 again,
we get that

(1= \/enie)* V2 Fra(pe) 2 V2E1(piy1) = (1 — Jenie) *V2Fiiq(py). 47)
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Using this and (46), we have

1Pt — Peillver, o p) _ 16y/En  2Y /ap(en)®/?
L T e R

The RHS of (48) is at most 1/2 due to the range assumptions on 7 and /3. This, combined with
(Nesterov et al., 2018, Theorem 5.1.8) and the optimality of p;; implies that for w(x) =z — In(1+
x), we have

Fii1(pt) — Fiy1(Pes1) = VE41 (D) T(Pr — Pev1) + w(lPe — Pev1llv2r, (o))
1
> 2Pt — pra ||2v2Ft+1(pt+1)>

where the last inequality follows by the fact that w(x) > x?/3, for x € [0,1/2]. On the other hand,
by the definition of F1, non-negativity of Bregman divergence, and Holder inequality,
Fii1(pt) — Fiy1(pe+1) = (Pt — Pr+1,9t) — Do, (P41, P1),
<|lpt - pt+1"V2Ft+1(pt+1) ) ||gt||V*2Ft+1(pt+l)'

Combining the above two inequalities we get

[ pt"’lHVthH(PtH) < 3”gtHV*2Ft+1(pt+l)'

Using this and Holder’s inequality leads to

; ~ <12
(G, Pt = Per) < Hgt”V_QFtH(PtH) P — pt+1”V2Ft+l(pt+1) = 3Hgt”V—2Ft+1(pt+1)’
-2
§4Hgt”V*2Ft+1(wt)a (49)

where the last inequality follows by (47), (44), and the range assumptions on 7 and 3. Let ¢, :=
U;_; — ¥, and recall the definition of (¢;) in (13). Let ¢y :== W;_; — W;. By the definition of g; in
(15), the fact that (a + b)2 < (14 7)a? + (1 + 1/7)b?, for all v > 0, and (49), we have

(9, Pt — Prv1) < 91+ B(ge, pr — wt>/4)2 ) ”gtH2V*2Ft+1(wt)/8

LNV | 1 ’
(- o) (Vi) - Vi)
1 Tt—1, Tlt,i 9
3 V2Fi4+1(wy)

<9+ Blgillv-—20,_, (wr) - 1Pt = willv20,_, (wi) /4 - 19:1% 20, (a0r) /8
+9¢|[ V(D) — Ve (wi) 1524, (200 (50)
where in the last inequality we used Holder’s inequality and the fact that eV2F; | = V20, | =
V2, (since n; € [n,nel, forall i € [d] and ¢ € [T]). On the other hand, since V¢, < V2¥;_; <
V2®, 1, we have ||w; — ptHZV%(W) < J|wy — pr2V2<I>t_1( . Using this, (42), and Lemmas 11
and 5, we get

+9

9

wi)

Hwt B ptH2V2¢t(wt)
(1 = /enlogy Tllwt — ptllv2y, (w,))?
[|wy _Pt||2v2q>t71(wt)

(1 — /enlogy T|we — pellvea, ,(w))?

< 2" pr; # pr—1,:}(en)? /et D

IV (e) = V(w3 -2y, ) < WP # pr—1.}

< Hpti # pi—1,i}
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where the last two inequalities follow by (42) and the range assumptions on 7 and 3. Since
Zthl H{pi # pi—1:} < O(dInT) (by definition of (p;;) in (11) and the fact that (@;;) C
[1/(dT),1]), (51) implies that 37, | Vbt (pr) — V@Z’t(wt)sz—%t(wt) <Om*dInT) < O(dInT).
Using this together with (42), (50), and Lemma 20 (and the range assumptions on 7 and 3), we get

T 18dIn T

(9t, Pt — Pr+1) < 5 +0(dInT).

t=1

This completes the proof. n

Proof of Lemma 14. Let ¢p := 1 — 1/T. By Cauchy Schwarz inequality and Lemmas 8 and 19,

IN

T T
Z<gt7pt - Z gt7pt | Z ||gtHv 2, 4 ’wt Z Hpt thVQCDt 1 wt
t=1 t=1

\/42d6—1 InT-+/1+15d—'InT,
<1+4V15d3 ' InT. (52)

IN

On the other hand, by Holder’s inequality, we have

[(gt, Pt — wi)| < ||ge]lv- 20, 1 (wy) Pt — wt||v2<1>t,1(wt) < 6462"72/03%,

where the last equality follows by Lemmas 8 and 20. Combining this with the range assumptions on
n and (3, we get

d 64e2n? 64627]2
> {gepr—w)® < = Z (ge, Pt — wi)| < (1 +4v15d8 ' In T) ,
t=1 T =1 T

where the last inequality follows by (52). |

Proof of Lemma 13. Let ¢p := 1 — 1/7. We have

T T d a
(Dy, (v, w Dy, (v, wy)) = h{—],
; i )= Doy 2 ZZ(UH Te— 12) (wt,i>

t=2 i=1

where h(x) = 2 —1—Inx and (1) are defined in (10). Fix ¢ € [d] and let T := {t: py; # pr—1,i}-
First, suppose that u;; > 2—1d A (era}), for all ¢ € [T]. In this case, we have max;e |y % <

2dul + c;l. Therefore, by positivity of & and the fact that 7,41 ; > 7 ;, we have

T le u’
Z( >h< ><0<CT + 2dii; — max —. (53)
i—p \Tti  Tt—1: Wt te[T] Ut

Now, assume that 4 ; < % A (era). Note that this implies that 7 # () (due to @;; < 1/(2d) and
the definition of (p;;)). Let 7 := max 7. For notational convenience, we let

o
U =1u

i Ur = Urg, Wy = Wrs, and 7, = Nryi-
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By definition of (1), we have 1, = nexp(—logydu,;) < nexp(logrT) = ne. Thus, by the

positivity of h, we have
( s > " ( ; ) ’
Nr Nr—1 Wr

T =/
(o) () <
Mt Nt—1,i Wt i

t=2
_ 1= elogr (ur—1/ur) 0 (u> 7
Nr Wr

By definition of (u;), we have

ur  1/(Td)+ (1 —1/T)w, 1
== o >1- 5 =cr. (54)

Hence, h(u/w;) > h(cru/ur), since epu/u, > 1 by assumption and h is positive and decreasing on
[1,400[. On the other hand, by construction of (p; ;) and the definition of 7, we have u, < u,_1/2,
which implies that — logy (ur—1/u,) < —1. Plugging these bounds into (54), we get that

T —/
o)) e ()
Mti  Mt—1, W ; enlogy, T Uy

t=2
1
1 (cTu 1 <CTU>) 7
enlogy, T\ u, Us

cr ) In(dTa})
= L+ O ———% 55
enlogy T ?61%2]( (% * < ninT )’ )

Thus, by (53), (55), and the fact that @ < 2@}, for all ¢ € [d], we get the desired result after summing
over i € [d]. [ |

Appendix D. Proof of Theorem 17 (Meta-Algorithm Regret)

D.1. Proof of Theorem 17

To prove Theorem 17, we define

T
i I -1 . _B,I _n
u, € argmin Y fy(u), and o« =8 A min (u,; /(84 ;)). (56)
u€Cqy_1 tz:; t(u) t sem[t},ie[d}( ti /(8 ;)

With this, we start by stating a regret guarantee against u., for the subroutines of Algorithm 3, which
follows from Lemma 8§ and the base algorithm’s regret bound in Theorem 15.
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Lemma23 Letl €7, 3 € G, and (ut’B ’I)te 1 be the outputs of the subroutine AB1 vithin Algorithm 3
in response to Cover’s losses ({;). Further, let w, be as in (56). If there exists t € I N [T — 1] such

that af >8> atﬁ_’é, and t > min I then,

2
> (ba(ud") = Lo(u,)) < O (d°In* T) — 204dIn" T (57)

seln[t] s
Otherwise, if o 1> Bforallt € I, then > seln(T] (fs(u'sg’l) —ls(uy)) <O (d? In? T) + %.
For the proofs of Lemma 23 and Theorem 15, we need the following Corollary to Lemma 8:

Corollary 24 [In the setting of Lemma 8, the iterate of (wy) in Alg. 1 and (p;) in (14) satisfy:

i 3
Vi [,V e [T], 1—64(en)?® < Ph <14 64(en)?, o<

We i Wt 5 U415
The proofs of Lemma 23 and Corollary 24 are in Appendix D.2.

Proof of Theorem 17. Recall that G := {dTﬂg 24 € [[logy T']]}. We note that the outputs of (uf 1y
of the base algorithms are all in the set

C_d—l = {u €Cq_1:u; > 1/(dT),Vi S [d]}

This is because of the mixing with the uniform distribution on Line 3 of Algorithm 1. By (18), the
outputs (u;) of Algorithm 3 are convex combinations of (uf 1), and so (u;) C C4_1. This fact will
be useful below.

For any 3 € G, we define the set

TP = {te[T): ol < 8,1 == [T]}.

Note that Iy = [T'] € Z|r, by definition, where Z| is the set of intervals indexing the base algorithms

(*)
of Alg. 3. Furthermore, for 3/ = min G, we have JP = 0 since f/ < SdT < a T for any [ € Z|p

and ¢t > 1, where (x) follows by the fact that all the outputs (uf I) are in the set Cq—1. If 75 = 0,
for all 5 € G, then by Proposition 16 and the second inequality in Lemma 23, instantiated with
Bo = max§G = ﬁ and Iy = [T], we get

T

Z (ft ( Et ’U,*

t=1 t:l

uf”™) — ty(u.)) + O T) < O(fy dInT) = O(d* InT),

Mﬂ

which implies the desired regret bound. Now, suppose that there exists 3 € G such that 7” # (} and

let 3, :== min{B € G: J° # ()} and 7 := min J%*. By the definition of the base Algorithm 1, we
* IO

have u}*"° = 1/d, and thus,

1
260 = 357 < o1 and B, < By < abo
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where the last inequality follows by the fact that 25y < 041*’10

and the bound on @ ;/us ; for i € [d]
from Corollary 24. Therefore, by definition of 7 we must have that 7 > 2 and afi’{o > By > af*’lo.

Thus, by invoking Proposition 16 and Lemma 23 (in particular (57)), we get

T—1 T—1
D () = b)) <D (6w ™) = bi(w)) + O(n T),
t=1 t=1
2
<O (PW*T) - QOMﬁlnT. (58)

Now, let 8 == B./2 and S = S([r + 1,T]) C Z denote any disjoint partition of [7 + 1,7
that contains at most 2 log, 1" elements in Z; this is guaranteed to exists by (Daniely et al., 2015,
Lemma 1.2). The fact that 75 = () together with Proposition 16 and the second inequality in
Lemma 23 implies

T
D7 (ue) = lr(ua)) <D () = by(us)) + O(|S| In T),
t=7+1 IeS tel
41S|dIn T
<0 (IS|d* " T) + 3|‘S|B,n
204d1n*T

<O(d*In°7T) + 5 :

where the last inequality, we used the fact that 3’ = 8,/2 and |S| < 2Inp T' < 3InT. Combining
this with (58) and using the fact that £, (u,) — ¢, (u.) < In(dT) (since u, € C4_1) completes the
proof. |

D.2. Proofs of Lemma 23 and Corollary 24
Proof of Corollary 24. We start by the first inequality. By Lemma 8, we have

”wt - pt”VQFt(wt) S 64(677)3/2 (59)
Note also that for any i € [d — 1], we have V*F;(w;) = V*¥;(w;) = e;e]/(newt;), since
i € [n,ne]. Therefore, (59) implies that (wy; — ptyi)2/(newt27i) < 642(en)3. Rearranging this
implies the bounds on p; ;/w;; for the case where i € [d — 1]. Also, we have that V2F(wy) =
VU, (w;) = 117 /(newy ;). Therefore, (59) implies that

64%(en)® > ((we, 1) — (pr, 1))/ (new; 4) = (We.q — Pr.a)’/ (newy ).
Rearranging this inequality yields the desired bounds on p;;/w;; for i = d. We now bound
Wy41,i/We; for i € [d]. By definition of wy 1, we have
|wit1 — el 2w, w) < Wi — well(v2w, (w)+ 1)
(V20 (wy) + V3) 1V,
L+ 4/en|| Vil (v2w, (w)+v) -

__ IVilwrey v 1
1+ 4/en| Vil (vew, w11~ 4v/eEn

(V22U (we)+Vz)
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Thus, since V2, (w;) = e;e] /(newy,), for all i € [d], we get that (as we did above)

- -2
(thrl,i - wt,i)
newy; ~ 16ne’

Vi € [d].

Thus, after rearranging, we obtain the desired bounds on w1 ;/w; ;. Finally, we have

Ui _ (1-— 1/T)’U_)t’i +1/(dT) <1v W5 < %
U1 (1= 1/T)Wer1:+1/(dT) = w1 ~ 3
where the last inequality follows by the fact that 3/4 < w41 /w:; < 5/4. [ |

Proof of Lemma 23. Let u, be as in (56). We first show (57). Since 8 < ozf ’[, Lemma 21 implies
that
B <8 AB(gH ul — w7

forall s € I N [t], where g2 = Vﬂs(uf 1), Therefore, by the assumption that ¢ > min I and
Theorem 15, we have

> (i) -t <0 (

seln[t]

dinT 34dInT
n >+ n a; 60)

n B 32nInT’
where a; = maxe 2?:1 ) ;/tus,;. Now the fact that 3 > afjfl implies

=1
8“*,1’

1
B§8\/ max < 8aty1 + 8 < 32a/3 + 8,

seln(t+1]i€[d] Us;

where the last step follows by the bound on @ ; /41 ; from Corollary 24. Further, combining this
with (60), we get that

zt: (0 (uBT) — £4() SO(dlgT) | HdInT 1 < 3 3)7

et I3 2nInT \ 328 4
204d In* T
<o (@w'r) - 2T
g
where we used that ) = 1/(2862d In> T'). When, 8 < o} ! forall ¢ € I, we can simply invoke (60)
and discard the negative term to obtain the second claimed bound of the lemma. |

Appendix E. Adaptive Meta-Algorithm for Mixable Losses (AdaMix)

In this section, we present a version of PAE (Zhang et al., 2019) that yields an adaptive, logarithmic
regret in the expert setting with mixable losses (see Definition 6). That is, we present an algorithm
that enjoys a logarithmic regret on any interval I C [T'] when the losses are mixable.

Recall the sets Z and Z|p from §4.2 which are defined as

7= p {[2k¢,2k(¢+1)—1]} and I|p={IN[T] : I eZ}U{T]}.
i,kEN
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Algorithm 4 AdaMix: Adaptive Meta-Algorithm for Mixable Losses.

Require: I) Grid G of /3 values, horizon 7', and > 0; IT) Instances (A%) 8eg,1€1|» Where ABL
is active during J; III) a substituting function Y: (J 7c7, A(G x J) X U9IX1I1 — 1 for the
losses (ft: U — R).// The substitution function T will be chosen to satisfy (62).
Set Jp = 0.
fort=1,...,T do

Identify the set of newly active intervals J; = {I € Z|p: minI = t}.

Set ]-'f_’ll =0forall € Gand I € J,.

Update the set of active intervals J; = J;—1 U jt

Receive u; T < U from each AP such that BeGandl € 7.

Set qt;11 = e*”ftﬁ—’[l /Zfor p € Gand I € J;, where Z; = Zﬂeg,lejt e*"ftfi]l.

Play w; = T (Qu—1,Uy). where Qi1 = (¢,"))peg.1e, and Uy = (u;"")peg.1e-
Observe f; and set ff’l = .7-"1@8;[1 + ft(uf’l) — fi(uy), forall g € Gand I € J;.
Send f; to each A%/ such that 3 € Gand I € 7.
Update the set of active intervals J; = J; \ {I € Z|r: max [ = t}.

end for

Much like PAE, AdaMix (Alg. 4) takes in a set of base algorithms/experts (A?1), where for expert
A1 3 represents a parameter in some predefined grid G C R and I € Z|7 represents the interval on
which the expert is active; in this case, expert A%/ is initialized at round ¢ = min I and terminates
after round ¢ = max I. Alg. 2 assumes access to a substitution function T : \J 77, A(G x J) x

UI9XITT s 1/ for the losses fi: U — R, such that, for all 7 C Z|p, Q € A(G x J), and
U = (ufl) e yl9x171,

AN@Q.U) < —ntlog Y Qe ™) v > 1. (62)
BeG,IeT

Such a substitution function is guaranteed to exist when the losses ( f;) are 7-mixable (see Def. 6).
For the case of Cover’s loss (1), which is 1-mixable (in fact 1-exp-concave), the substitution function
canbesetto Y (Q,U) = > B QPIUB ! (this recovers PAE), which satisfies (62) with U = Cyq_
and (f;) = (¢¢). We now state the guarantee of AdaMix (Alg. 4) relative to the performance of the
experts (AS1):

Proposition 25 Letn > 0 and G be a set s.t. |G| < M. Further, let (uf’l)tg, BeGandlI € I, be
the outputs of the subroutine AP within Alg. 4 in response to a sequence of n-mixable losses (fe)-
Then, the outputs (u) of Algorithm 4 with a substitution function Y satisfying (62), guarantee

Y (folug) = fs(uldh) < @It + M) /g, foralll €Z,5€G, andtel. (63)
seln[t]

Now, an adaptive, logarithmic regret for mixable losses follows easily from this proposition. To see
this, let JJ be any interval in [T']. Then, by (Daniely et al., 2015, Lemma 1.2) we know that there exist
disjoint sets I1,..., Iy € T such that ;e [i = J and [N| < O(InT). Now, if any subroutines

AP I achieves a logarithmic regret R? (u) < O(n~'InT) within the interval I against any comparator
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u, (63) implies that ) _ ;(fs(us) — fs(u)) < (2|N\lnT + |N|InM) + > . N]R (u) <
o1,
Proof of Proposition 25. The proof of the proposition follows from an extension of the proof of
(Zhang et al., 2019, Lemma 6).

In this proof, we denote by A; the set of active experts at round ¢; that is, A; == {A?1: T €
Ji. B € G}. For notational convenience, we will write > ps.rc 4, to mean > 5.; ;o 7. By the
assumption on the substitution function in (62), we have

efﬁft(ut) — e*ﬁft(T(Qt—hUt)) > Z qtﬁ_aflefnft(wf’l) (64)
ABTc Ay

g I
where Q1 = (¢,"")seg.1e2> Ur = (w)")seg.re,» and

a,J
a,J 6_77]'}71
41 = 3.1 "
ZAB’IG.At 6—77]-}_1
for any J € Z|r and « € G. Rearranging (64) we get
Z e F Z e IFUL L enfelw)=nfi(wi") < Z TN (65)
AB.TeA, AB.TeA, ABIe A,
Summing (65) overt =1, ..., s, we have
S
> 2 ew(nF) < Z Z exp(—1F)
t=1 AB.Te A, t=1 AB.Tec A

which can be rewritten as

s—1
> exp(—nFP) + ) Yoo ep(=nF)+ Y exp(-nF)

Aﬁ’IEAS t=1 Aﬁ’IEAt\At+1 AB’IE.AtﬁAH_1
s
) I Ni
< Y exp(-nF)) + > exp(-nFI)+ D exp(—nFY)
AE’IEA1 t=2 Aﬁ’IEAt\At_l Aﬁ’IEAtﬂAt_l
implying

Z exp(— .7-"5 4+ Z Z exp(—n]—"f’l)

ABTc A, t=1 ABTe A\ Ars1
s
T I
< Z exp(—nfég )+ Z Z exp(—n]:f_l)
ABIc Ay t=2 ABvIEAt\At—l (66)
s
= Z exp(0) + Z Z exp(0)
ABIc Ay =2 ABTc A N\AL—1

=[A1] + D 1A\ Aeal.

t=2
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Note that [A;| + > ;5 |A¢ \ Ai—1] is the total number of experts created until round s. From the
structure of geometric covering intervals and the fact that |G| < M, we have

AL+ 1A\ Ara| < Ms([logy s| +1) < Ms?, (67)
t=2

From (66) and (67), we have

s—1
Z exp(—nF2T) + Z Z exp(—nFP) < Ms?,

AB e A, t=1 ABTc AN\ A s

Thus, for any interval I € Z and s € I, we have

exp(—nF") = exp [ n Z (fr(ue) — fr(u)")) | < Ms?,
teln(s]

which completes the proof. |

Appendix F. Why the Ada-BARRONS Restarts Work

Before discussing the Ada-BARRONS restarts, we first give some more details on the regret bound
of the base algorithm. In particular, we highlight that the RHS of (4) (which is a bound on the
sum of divergences in the regret bound of BARRONS) can cancel the bound O(S~'dInT) on
the stability term as long as § > ar(u)/2 and n < O(1/(dInT)). This is because ar(u) >
% A MiNge(q) (7] 8’;%. In fact, by choosing 7 small enough and as long as ap(u)/2 < 8 < ar(u)

,T

on can ensure that what remains in the regret bound of BARRONS is

Cdln*T

/B Y
for some C' > 0. Before discussing how one might ensure that ar(u)/2 < < ar(u), we
reiterate that what enables the cancellation of the term O(3~1dIn T') is the sum Zthl (Dg,(u,pt) —
Dg,(u,p+1)) in (3) that comes out of the mirror descent analysis. This idea of canceling terms
thanks to negative Bregman divergence terms originated from the work by Agarwal et al. (2017)
on combining Bandit algorithms. Foster et al. (2020) recently showed that on can use FTRL with
slightly modified gradients instead of mirror descent to achieve the same goal in a Bandit setting.
The approach of the latter fails to lead to an efficient algorithm in our setting since it is not possible
to show that the Newton decrement of the damped Newton step is small on rounds where the iterates
(ut ;) reach new minima.

As we already discussed in §3.1, since the sequence of returns () is not known up-front, it
is not possible for any algorithm to pick 3 so that the condition ap(u)/2 < 8 < ap(u) is always
satisfied. Aggregating multiple instances of BARRONS with different 3’s also fails since ap(u)
depends on the outputs of the algorithm; and so changing 3 changes the target ap(u) for the base
algorithm (see also discussion in (Luo et al., 2018)). Instead of aggregating base algorithms, the

Ry(u) < O(d?) —
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approach taken by Luo et al. (2018) consists of restarting the base algorithm on round ¢ if the current
estimate for /3 satisfies 5 > ay(u;), where u; is the regularized leader:

d t
“Inw;
uy € argr{linz n Zﬁs(u).

u€Ag Mt.i s=T

and 7 is the round where the current instance of the base algorithm was initialized. By stability
of the iterates (u;) and (p) it is possible to show that ay_1(wi—1) > 5 > ay—1(u¢—1)/2, and so
invoking the regret bound of the base algorithm for the current epoch yields ZZ;IT (b (pr) —le(uy)) <
O(d*1n*T) — CB~*dInT. When there are no restarts, the regret bound of the algorithm is simply
Zi;i(ﬁt(pt) —li(uy)) < O(d?InT) 4+ CB~'dIn? T. Starting with 3 = 3y and halving /3 every
time there is a restart and letting 7; [resp. ;] be the start round [resp. the 5] of epoch ¢ and M be the
total number of epochs, the regret of the meta-algorithm is bound by

M M Tit1—1
Rr(u) <Y |lr(pr) = tu(w)| + Y D (4(pr) — b(w)),
i=1 i=1 t=ri+1
M Tit1—1
<D Nn(pr) = @)+ D (lpr) — b)),
i=1 i=1 t=ri+1
-1 M—1 2 2
<Som+> (6(d2) _ GdinT T) + o) + YT (68)
i=1 i=1 Bi Bum
M-1 2 2 2
~ Cdln*T CdIn*T  « Cdln*T
— O(d?) — : =0O(d?) + ———, 69
(@)= > S + 3wy~ O +—5 (69)

i=1

where (68) follows from the regret bound of the base algorithm and the fact that p;, u € Ay, for
all ¢ (the latter ensures that £;(p;) — £;(u) < O(1)), and the last inequality follows by the fact that
M < O(InT) since inf,c 5 , aop(w) > 1/(dT) (also because (p;) C Ag). By choosing Sy = (1),
(69) leads to the desired regret bound.
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