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Abstract
We revisit the classic online portfolio selection problem, where at each round a learner selects
a distribution over a set of portfolios to allocate its wealth. It is known that for this problem a
logarithmic regret with respect to Cover’s loss is achievable using the Universal Portfolio Selection
algorithm, for example. However, all existing algorithms that achieve a logarithmic regret for
this problem have per-round time and space complexities that scale polynomially with the total
number of rounds, making them impractical. In this paper, we build on the recent work by Luo
et al. (2018) and present the first practical online portfolio selection algorithm with a logarithmic
regret and whose per-round time and space complexities depend only logarithmically on the horizon.
Behind our approach are two key technical novelties of independent interest. We first show that
the Damped Online Newton steps can approximate mirror descent iterates well, even when dealing
with time-varying regularizers. Second, we present a new meta-algorithm that achieves an adaptive
logarithmic regret (i.e. a logarithmic regret on any sub-interval) for mixable losses.

1. Introduction

In this paper, we consider the problem of online portfolio selection where, at each round t, a learner
chooses a distribution pt ∈ ∆d over a fixed set of d portfolios. Then, the environment reveals a return
vector rt ∈ Rd≥0, and the learner suffers a loss `t(pt) := − ln〈pt, rt〉. The goal of the learner is to
minimize the regret RT (u) :=

∑T
t=1(`t(pt)− `t(u)) after T ≥ 1 rounds, which is the difference

between the cumulative loss of the learner minus that of any distribution u over portfolios. For this
problem, it is known that Cover’s Universal Portfolio Algorithm (UPA) (Cover, 1991) guarantees the
optimal O(d lnT ) regret bound. One implication of this is that if a distribution u has an exponential
return growth rate with constant λ > 0, i.e.

∏
t∈[T ]〈u, rt〉 ∝ eλT , then the total return of UPA also

has an exponential growth rate with constant at least λ−O(d ln(T )/T ).
The main shortcoming of the UPA is that the expression of its outputs involves multi-variate

integrals that make its implementation impractical. One way of approximating these integrals
is via log-concave sampling as done by Kalai and Vempala (2002). The algorithm of the latter
has a computational complexity of order O(d4T 15), measured after T rounds. Even though this
computational complexity can be reduced using more modern log-concave sampling methods (see
e.g. (Narayanan and Rakhlin, 2017; Bubeck et al., 2018)), it remains a large polynomial of T , making
these approaches impractical.

It is possible to use other more efficient online learning algorithms for the portfolio selection
problem. Algorithms such as Online Gradient Descent (Zinkevich, 2003), Online Newton Step
(Hazan et al., 2007), and Exponentiated Gradients (Helmbold et al., 1998) all have regret bounds that
scale with the largest observed gradient norm G. One way to ensure that the gradients are bounded in
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Algorithm Regret Run-Time Space Comp. References
Universal Portfolio d lnT d4T 15 dT (Cover, 1991)

(Kalai and Vempala, 2002)
ONS Gd lnT d3.5T d2 (Hazan et al., 2007)

FTRL G2d ln(dT ) d2.5T 2 dT (Agarwal and Hazan, 2005)
EG G

√
T ln d dT d (Helmbold et al., 1998)

Soft-Bayes
√
dT ln d dT d (Orseau et al., 2017)

Ada-BARRONS d2 ln4 T d2.5T 2 + d3.5T d2T (Luo et al., 2018)
PAE + DONS d2 ln5 T d3T ln2 T d2 ln2 T (this work—Thm. 17)

Table 1: Result comparison.

the online portfolio setting is to mix the outputs of such algorithms with a small amount of uniform
distribution. This approach leads to a regret bound of order d

√
T ln d in the best case (which is not

logarithmic in T ), even after optimizing for the amount of uniform distribution used. The Soft-Bayes
algorithm (Orseau et al., 2017) provides a

√
d improvement over this regret bound. Finally, Agarwal

and Hazan (2005) showed that the Follow-the-Regularized-Leader (FTRL) algorithm achieves a
regret bound of order O(G2d ln(dT )), G (the largest gradient norm) may be merely an artifact of the
analysis. In the concurrent work by Zimmert et al. (2022) it was shown that the FTRL algorithm
cannot guarantee a O(d ln(dT )) regret (i.e. without the dependence on the largest gradient norm
G), refuting a conjecture by Van Erven et al. (2020). Table 1 compares the regret bounds and
computational complexities of the different algorithms mentioned here.

Among known algorithms that achieve a logarithmic regret in the online portfolio setting, Ada-
BARRONS (Luo et al., 2018) is the best in terms of computational cost (see Tab. 1). Ada-BARRONS
consists of I) a base algorithm that is essentially mirror descent with a log-barrier plus a quadratic
regularizer with a parameter β; and II) a meta-algorithm that implements a clever restart scheme to
learn the parameter β and achieve a logarithmic regret. The algorithmic idea behind Ada-BARRONS
can be traced back to the problem of combining bandit algorithms (Agarwal et al., 2017; Wei and Luo,
2018), where the use of a non-decreasing learning rate schedule is used to extract crucial negative
terms in the regret analysis of mirror descent (see §3).

The main drawback of Ada-BARRONS is that its time [resp. space] complexity is quadratic
[resp. linear] in the total number of rounds (see Table 1). Though Ada-BARRONS has a substantially
better computational complexity compared to approaches based on log-concave sampling, it is still
not a practical algorithm when the horizon is large. The main reason for the quadratic time complexity
is the restarts of Ada-BARRONS, which require computing the regularized leader at each round.
Luo et al. (2018) posed the question of whether there exists an algorithm that improves on either the
regret or the computational complexity of Ada-BARRONS without hurting the other.

Contributions. We answer the above question in the positive by presenting an online algorithm
for portfolio selection with a logarithmic regret and that has near constant per-round time and space
complexities. Behind our solution are two techniques of independent interest in online learning.
We first show that one can use the damped Newton steps (Nesterov et al., 2018) to approximate the
mirror descent iterates in Ada-BARRONS without sacrificing the logarithmic regret. Here, existing
results due to Abernethy et al. (2012) do not apply (due to time-varying regularizers in the mirror
descent objective—see §3.1). Even if they did, they would lead a suboptimal O(

√
T ) regret, and so
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a new analysis is needed, which we provide. Using online damped Newton steps confers a O(
√
d)

improvement in the computational cost.
The second and crucial tool we use is a meta-algorithm that achieves an adaptive logarithmic

regret for exp-concave losses (Hazan and Seshadhri, 2007; Zhang et al., 2019); that is, an algorithm
that achieves a logarithmic regret on any interval I ⊆ [T ], whenever the losses are exp-concave (we
also generalize the algorithm to work with mixable losses). Thanks to a novel analysis, we show
that using such a meta-algorithm removes the need for computing the regularized leader, which is
required by Ada-BARRONS. This further improves the time and space complexities by an Õ(T )
factor, leading to our final algorithm that has O(d3T ln2 T ) and O(d2 ln2 T ) total time and space
complexities, respectively.

The techniques we develop are transferable to another prominent online learning problem; that
of learning linear models with the log-loss (Rakhlin and Sridharan, 2015, Section 6).

Limitation. Our new analysis of the damped Newton Step requires a small learning rate which
leads to a large constant in the regret bound of our final algorithm. This, of course, affects the
practicality of our proposed method. It is unclear whether this is a true limitation of the damped
Newton Step or merely an artifact of our current analysis. We leave such investigation for future work.
Nevertheless, we emphasize that our method for avoiding the computation of the regularized leader
in Ada-BARRONS, which costs O(T ) arithmetic operations per round, need not be used together
with the damped Newton Step specifically. In fact, when used with BARRONS—the base algorithm
of Ada-BARRONS (see §3.1)—it already confers a substantial computational improvement over
Ada-BARRONS (by shaving off an Õ(T ) factor in the computational complexity) without sacrificing
the regret bound of Ada-BARRONS by much (the regret bound is at most a 3 lnT factor worse).

Finally, we acknowledge the concurrent work by Zimmert et al. (2022) that achieve similar
results to ours for the Portfolio Selection problem, albeit with a completely different method.

Outline. In §2, we introduce the notation and definitions we need. We also include some results on
self-concordance that we require in our analysis. In §3, we describe the Ada-BARRONS algorithm
in more detail and highlight the challenges involved in the design of an efficient alternative. There,
we also outline our solution and give a sketch of why it works. Finally, in §4, we present the full
details of our algorithm and its guarantee. The proofs are deferred to the appendix.

2. Preliminaries

We define the set Cd−1 := {u ∈ Rd−1
≥0 : 〈1,u〉 ≤ 1}. Throughout, for any v ∈ Cd−1, we denote

v′ := (1− 1/T )v + 1/(dT ), and v̄ := ed + Jᵀv, where J :=
[
I −1

]
.

We may combine the notation and write v̄′ := (1−1/T )v̄+1/(dT ) and v′′ := (1−1/T )v′+1/(dT ).
We will be working with Cover’s loss `t, which for a return vector rt ∈ Rd≥0, is given by

∀u ∈ Cd−1, `t(u) := − ln〈rt, ū〉. (1)

Our goal is to design an efficient algorithm whose outputs (ut) are such that the regret

RegretT (u) :=

T∑
t=1

(`t(ut)− `t(u)) = ln

∏T
t=1〈rt, ū〉∏T
t=1〈rt, ūt〉
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against any comparator u ∈ Cd−1 is bounded by a poly-logarithmic factor in T . Since the regret
is invariant to the scale of (rt), we may assume without loss of generality that (rt) ⊂ [0, 1]d. The
next lemma (taken from (Luo et al., 2018, Lemma 10)), implies that a regret against a comparator
u ∈ Cd−1 is bounded by the regret against u′ up to an additive factor—this will be useful throughout:

Lemma 1 For any u ∈ Cd−1 and u′ = (1− 1
T )u+ 1

dT 1, we have
∑T

t=1 `t(u) ≤
∑T

t=1 `t(u
′) + 2.

Self-Concordant Functions. We now present some results on self-concordant functions that we
will make heavy use of in the proofs of our results. We start by the definition of a self-concordant
function. For the rest of this section, we let K be convex compact set with non-empty interior intK.
For a twice [resp. thrice] differentiable function, we let ∇2f(u) [resp. ∇3f(u)] be the Hessian
[resp. third derivative tensor] of f at u.

Definition 2 A convex function f : intK → R is called self-concordant with constant Mf ≥ 0, if f
is C3 and satisfies I) f(xk)→ +∞ for xk → x ∈ ∂K; and II)

∀x ∈ intK, ∀u ∈ Rd, |∇3f(x)[u,u,u]| ≤ 2Mf‖u‖3∇2f(x).

Note that by definition, if f is self-concordant with constant Mf ≥ 0 it is also self-concordant with
any constant M ≥ Mf . Another property that we will use is that if f1 and f2 are self-concordant
functions with constants M1 and M2, respectively, then for any α, β > 0, the function αf1 + βf2 is
self-concordant with constant M1√

α
∧ M2√

β
(Nesterov et al., 2018, Theorem 5.1.1).

For a self-concordant function f and x ∈ dom f , the quantity λ(x, f) := ‖∇f(x)‖∇−2f(x),
known as the Newton decrement, will be instrumental in our proofs. The following two lemmas
contain properties of the Newton decrement and Hessians of self-concordant functions, which we
will use repeatedly throughout (see e.g. (Nemirovski and Todd, 2008; Nesterov et al., 2018)).

Lemma 3 Let f : intK → R be a self-concordant function with constant Mf ≥ 1. Further, let
x ∈ intK and xf ∈ argminx∈K f(x). Then, I) whenever λ(x, f) < 1/Mf , we have

‖x− xf‖∇2f(xf ) ∨ ‖x− xf‖∇2f(x) ≤ λ(x, f)/(1−Mfλ(x, f));

and II) for any M ≥Mf , the damped Newton step x+ := x− 1
1+Mλ(x,f)∇

−2f(x)∇f(x) satisfies
x+ ∈ intK and λ(x+, f) ≤Mλ(x, f)2(1 + (1 +Mλ(x, f))−1).

Lemma 4 Let f : intK → R be a self-concordant function with constant Mf and x ∈ intK. Then,
for any y such that r := ‖y − x‖∇2f(x) < 1/Mf , we have

(1−Mfr)
2∇2f(y) � ∇2f(x) � (1−Mfr)

−2∇2f(x).

A consequence of the latter lemma is the following useful result whose proof is in Appendix B:

Lemma 5 Let f : intK → R be a self-concordant function with constant Mf > 0. Then, for any
x,y ∈ intK such that r := ‖x− y‖∇2f(x) < 1/Mf , we have

‖∇f(x)−∇f(y)‖2∇−2f(x) ≤
1

(1−Mfr)2
‖y − x‖2∇2f(x).

The result of the lemma is reminiscent of the relationship between the Bregman divergence with
respect to a function f and the one with respect to its Fenchel dual f∗; that is, Df (u,v) =
Df∗(∇f(v),∇f(u)) (Cesa-Bianchi and Lugosi, 2006, Proposition 11.1).
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Mixability. As a by-product of our efficient solution to the portfolio problem, we present an
algorithm that guarantees an adaptive logarithmic regret for mixable losses.

Definition 6 A sequence (ft) ⊂ {f : K → R} of convex functions is said to be η-mixable for η > 0
if for any distribution P on K, there exists u∗ ∈ K such that

∀t ≥ 1, ft(u∗) ≤ −η−1 lnEu∼P e
−ηft(u).

Formally, given an algorithm A whose outputs (ut) achieve a logarithmic regret against any sequence
of η-mixable losses, i.e.

∑T
t=1(`t(ut) − `t(u)) ≤ O(lnT ) for any u ∈ K, we design a meta-

algorithm that aggregates instances of A and generates outputs (wt) that satisfy
∑

t∈I(`t(wt) −
`t(u)) ≤ O(ln2 T ), for any interval I ⊂ [T ] and u ∈ K.

Additional Notation. For a differentiable convex function f : intK → R, we denote byDf (u,v) :=
f(u) − f(v) − 〈∇f(v),u − v〉 the Bregman divergence between u,v ∈ intK with respect to f .
We use the notation Õ(·) to hide poly-log factors in T and d.

3. Background, Challenges, and Solution Sketch

In this section, we start by describing the algorithm Ada-BARRONS (Luo et al., 2018) that we build
on. We then point out key challenges we tackle to design our efficient portfolio selection algorithm.
The analysis we sketch in §3.2 and §3.3 is of independent interest as we discuss below.

3.1. The Ada-BARRONS Algorithm

The Ada-BARRONS algorithm consists of a base algorithm, BARRONS, and a meta-algorithm that
restarts the former under a certain condition on the sequence of returns and iterates of the algorithm.

Base Algorithm. BARRONS is simply mirror descent with a barrier regularizer. In particular, if we
let ∆̄d := {x ∈ ∆d : xi ≥ 1/T, ∀i ∈ [d]}, the outputs (pt) of BARRONS are such that p1 := 1/d
and pt+1 = argminp∈∆̄d

〈p, gt〉+DΦt(p,pt), where

Φt(p) :=
d∑
i=1

− ln pi
ηt,i

+
d‖p‖2

2
+
β

2

t∑
s=1

〈∇t,p〉2, ηt,i := η ·max
s∈[t]

e− logT (dps,i), (2)

and ∇t := rt/〈rt,pt〉. Using the standard analysis of mirror descent and the fact that Cover’s loss
is exp-concave, Luo et al. (2018) show that the regret RT (u) =

∑T
t=1(`t(pt) − `t(u)) against a

comparator u ∈ ∆̄d (competing against comparators in ∆̄d is sufficient—see Lem. 1) is bounded as

RT (u) ≤
T∑
t=1

〈∇t,pt − pt+1〉+
T∑
t=1

(DΦt(u,pt)−DΦt(u,pt+1)− β〈∇t,pt − u〉/2), (3)

as long as β, the parameter in the regularizer in (2), is less than αT (u) := 1
2 ∧mint∈[T ]

1
8|〈u−pt,∇t〉| .

This condition seems strong since the algorithm does not have access to the sequence of returns (rt)
or the comparator u up-front to ensure that β ≤ αT (u). However, this issue is resolved via a clever
restart scheme as we describe further below.

The fact that the regularizers (Φt) have a quadratic term and a log-barrier ensures that the iterates
(pt) are stable. In particular, the first sum on the RHS of (3) can be bounded by O(β−1d lnT ).
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However, this term can still be problematic since β−1 may be large; after all, (3) only holds when
β ≤ αT (u) and αT (u) may be as small at 1/(dT ).

Fortunately, terms of the form O(β−1d lnT ) can be canceled by the second sum on the RHS
of (3), thanks to the log-barrier regularizer Ψt(p) :=

∑d
i=1−η

−1
t,i ln pi in the definition of Φt and

the non-decreasing nature of the learning rates (ηt,i). In particular, Luo et al. (2018) show that the
second sum in (3) is bounded from above by O

(
η−1d lnT

)
plus

T∑
t=1

(DΨt(u,pt)−DΨt−1(u,pt))≤−
1

8η lnT

∑
i∈[d]

max
t∈[T ]

ui
pt,i

. (4)

where the inequality follows by (Luo et al., 2018, proof of Lem. 6). Now the RHS of (4) can cancel
the bound O(β−1d lnT ) on the stability term as long as β ≥ αT (u)/2 (see App. F for details).

The Meta-Algorithm. Since the sequence of returns (rt) is not known up-front, it is not possible
for any algorithm to pick β so that the condition αT (u)/2 ≤ β ≤ αT (u) is always satisfied.
Aggregating multiple instances of BARRONS with different β’s also fails since αT (u) depends on
the outputs of the algorithm; and so, changing β changes the target αT (u) for the base algorithm
(see also discussion in (Luo et al., 2018)). Instead of aggregating base algorithms, the approach taken
by Luo et al. (2018) consists of restarting the base algorithm on round t if the current estimate for β
satisfies β > αt(ut), where ut is the regularized leader:

ut ∈ argmin
u∈∆̄d

d∑
i=1

− lnui
ηt,i

+
t∑

s=τ

`s(u) (5)

and τ is the round where the current instance of the base algorithm was initialized. The technical
reason for why this works is sketched in Appendix F.

Computational Considerations. The computational complexity is dominated by the computation
of the mirror descent iterates for the base algorithm and the FTRL computation (5) for the meta-
algorithm. Both problems can be solved using an interior point method leading to a computational
cost of Õ(d3.5T + d2.5T 2) after T rounds. We will reduce the computational complexity to Õ(d3T )
(where the O(d3) is due to the computation of a matrix inverse) by I) avoiding the expensive FTRL
computation in (5) thanks to an adaptive algorithm for exp-concave losses; and II) providing a new
analysis for the damped Newton step to approximate mirror descent iterates. These techniques, which
we describe next, are of independent interest.

3.2. Avoiding the FTRL Computation

To avoid computing the regularized leader in (5) that is needed to trigger restarts, we will use a
meta-algorithm that aggregates base algorithms initialized at different rounds (one may think of these
as “restarted” instances of the base algorithm). If the meta-algorithm has a small regret against any of
the base algorithms, then this would emulate the effect of performing restarts, without the expensive
cost of FTRL computations. More formally, if we denote by (uτt ) the outputs of an instance of the
base algorithm Aτ that is initialized at round τ , we can emulate the effect of restarts if the outputs
(ut) of the meta-algorithm satisfy

t∑
s=τ

(`s(us)− `s(uτs)) ≤ O(poly-log(T )), (6)
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for all τ ∈ [T ] and t > τ . A regret bound of this type may be achieved using sleeping experts
algorithms, where in our case the instance Aτ is considered “asleep” during the rounds s < τ
and “awake” for s ≥ τ . There are two challenges that come with using standard sleeping experts
algorithms such as those in (Adamskiy et al., 2012; Gaillard et al., 2014). First, such techniques
operate on linearized losses, which is sufficient when seeking a O(

√
T ) regret. This is not the case

in our setting as we are aiming for a logarithmic regret. Second, if we want a regret bound of the
form (6) to hold for all τ ∈ [T ], a naive sleeping experts strategy would require keeping track of T
experts. This would imply a O(T )-per-round computational complexity in the worst case, which
would defeat the purpose of seeking an efficient alternative to the FTRL computation in (5).

We manage to circumvent these issues by using a meta-algorithm due to Zhang et al. (2019) that
enjoys a logarithmic regret on any subinterval for exp-concave losses. To reduce the computational
complexity, we show that it is sufficient to ensure a low regret against base algorithms indexed by a
small set of geometric intervals (Daniely et al., 2015), reducing the number of experts at any round
to at most O(lnT ) (this is discussed in §4.2).

3.3. Damped Newton Step for Mirror Descent

Now that we have a way of avoiding the expensive FTRL computations of Ada-BARRONS, it
remains to find a more efficient alternative to the Mirror Descent (MD) computations of its base
algorithm BARRONS. Before describing how we use Damped Newton Steps (DNS) for this purpose,
we first describe the shortcomings of existing approaches.

Shortcomings of previous DNS results. Abernethy et al. (2012) showed how one can use damped
Newton steps to approximate the iterates (pt) of FTRL given by pt+1 ∈ argminp∈C ft+1(p) :=∑t

s=1〈p, gs〉+ Φ(p), where Φ is a self-concordant barrier for some set of interest C. In particular,
Abernethy et al. (2012) showed that for an appropriate scaling of Φ the damped Newton steps
(wt) defined bywt+1 = wt − 1

1+λ(wt,ft+1)∇
−2ft+1(wt)∇ft+1(wt) are close enough to the FTRL

iterates (pt) so that the regret w.r.t. (wt) is bounded by the regret w.r.t. (pt) up to an additive O(
√
T ).

We note that for a fixed regularizer Φ that is a self-concordant barrier for C, it is known that the
FTRL iterates in the previous paragraph match the MD ones; that is, pt+1 ∈ argminp∈C〈p, gt〉 +
DΦ(p,pt), for all t. However, this is no longer the case when dealing with time-varying regularizers
(Φt); that is, when ft+1(·) = 〈·, gt〉 + DΦt(·,pt) (as in the case of BARRONS). This means that
we cannot directly use the analysis of Abernethy et al. (2012) to show that damped Newton steps
are good approximations of MD iterates with varying regularizers. What is more, the damped
Newton steps with respect to (ft) can no longer be computed directly in this case since the gradient
∇ft+1(wt) = gt +∇Φt(wt) − ∇Φt(pt) in the expression of the DNS depends on the iterate pt,
which is what we seek to efficiently approximate in the first place. Using wt as an estimator for
pt does not work since the approximation errors accumulate across rounds in an unfavorable way
(breaking the analysis of Abernethy et al. (2012)).

One tempting approach around these issues is to target the FTRL iterates (pt) given by pt+1 =
argminp∈C

∑t
s=1〈p, gs〉+ Φt(p) instead of the MD ones. However, we are not aware of an existing

analysis of FTRL that yields negative terms from Bregman divergences in the regret bound as in (4)
(negative terms were needed to cancel the problematic O(β−1d lnT ) term in the regret bound).

Our approach. Our solution consists of approximating FTRL iterates w.r.t. modified gradients that
are chosen in a way to still allow us to use the MD analysis to derive our regret bound (similar in
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spirit to the approach by Foster et al. (2020)). In particular, we consider the objective

ft+1(p) :=
t∑

s=1

pᵀ (gs −∇Φs(ws) +∇Φs−1(ws)) + Φt(p),

with (ws) being the damped Newton iterates w.r.t. (ft). Under mild conditions on (Φt), the FTRL
iterates (pt ∈ argminp∈C ft(p)) can be efficiently approximated by (wt). Despite the fact that the
objective ft+1 does not contain any “unknown” MD iterates, we are still able to take advantage of
the MD analysis and bring back negative terms from Bregman divergences (as in (4)) in the regret
bound. The key fact that enables this is that the FTRL iterates (pt) with respect to (ft) match the
MD iterates with modified gradients (g̃t). In particular, (pt) satisfy (see Lemma 9 and its proof)

pt+1 ∈ argmin
p
〈g̃t,p〉+DΦt(p,pt), where g̃t := gt −∇φt(pt) +∇φt(wt), (7)

and φt := Φt−1 − Φt. We now give a sketch of how this observation allows us to leverage the MD
analysis and extract negative terms as in (4).

MD analysis for FTRL (a sketch). To illustrate how (7) helps in our analysis, consider the
regularizer Φt in (2), which we write as Φt = Ψt + Θt, where Ψt is the barrier part Ψt(p) :=∑

i∈[d]−η
−1
t,i ln pi. We will further define ψt := Ψt−1 − Ψt and note that the fact that (ηt,i) are

non-decreasing, implies that (ψt) are convex, self-concordant functions (the latter fact is all that is
needed to generalize the current analysis). A key step in the analysis of the regret involves bounding
the sum ΣT :=

∑T
t=1〈gt,wt−u〉 of linearized losses. For simplicity of the exposition, suppose that

Θt ≡ 0, for all t; the quadratic terms in Θt present no difficulty when it comes to bounding ΣT (see
proof of Lem. 10 for a derivation with non-zero (Θt)). In this case, the sum ΣT can be written as

ΣT =
T∑
t=1

(〈gt,wt − pt〉+ 〈g̃t,pt − u〉+ 〈∇ψt(pt)−∇ψt(wt),pt − u〉) ,

=
T∑
t=1

(〈gt,wt − pt〉+ 〈g̃t,pt − pt+1〉)

+
T∑
t=1

(〈g̃t,pt+1 − u〉+Dψt(u,pt)−Dψt(u,wt) +Dψt(pt,wt)),

where we used the definitions of g̃t and the Bregman divergence. Using this, and the facts that
〈g̃t,pt+1 − u〉 ≤ DΦt(u,pt)−DΦt(u,pt+1)−DΦt(pt+1,pt) (by optimality of pt+1—see proof
of (Luo et al., 2018, Lem. 5)) and Dψt(u,pt) = DΦt−1(u,pt)−DΦt(u,pt), we can bound ΣT as

ΣT ≤
T∑
t=1

(〈gt,wt − pt〉+ 〈g̃t,pt − pt+1〉+Dψt(pt,wt))

+DΦ0(u,p1)−DΦT (u,pT+1) +

T∑
t=1

(DΦt(u,wt)−DΦt−1(u,wt)). (8)

Thus, one can extract negative terms (as in (4)) from the last sum in (8) to cancel the O(β−1d lnT )
term in the regret bound. The remaining terms in (8) can be shown to be small thanks to I) (wt)
approximate (pt) well, II) stability of the mirror descent iterates, and III) the fact that ψt is self-
concordant together with Lem. 5. Next, we present the full details and guarantee of our algorithm.

8
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4. An Efficient Algorithm for Online Portfolio Selection

Our final algorithm (Alg. 3) will consist of a set of base algorithms (instances of Alg. 1) and a meta
algorithm (instance of Alg. 2). We analyze these algorithms separately in the next two subsections
before combining the results in Subsection 4.3.

4.1. Base Algorithm: Damped Online Newton Step (DONS)

To analyze our base algorithm (Alg. 1), we will consider the following sequence of regularizers that
are defined in terms of the iterates (ut) and (wt) in Algorithm 1; the sequence of observed return
vectors (rt); and the gradients (gt) ≡ (Jrt/〈rt, ūt〉):

Φt(u) := Ψt(u) +
βd‖u‖2

8
+
β

8

t∑
s=1

〈gt,u−wt〉2, ∀u ∈ Cd−1. (9)

where Ψt(x) := −
d∑
i=1

− ln x̄i
ηt,i

, ηt,i := η · elogT (ρt,i/d), (10)

and ρt,i is such that ρt,i ∈
[
maxs∈[t](2ūs,i)

−1,maxs∈[t](ūs,i)
−1
]
, for all i ∈ [d], and ρ0 := d1. In

particular, for every i ∈ [d], (ρt,i)t satisfies the recursion

ρt,i = I{2ρt−1,i <
1
ūt,i
} · 1

ūt,i
+ I{2ρt−1,i ≥ 1

ūt,i
} · ρt−1,i. (11)

Luo et al. (2018) chose the sequence (ρt,i) such that ρt,i = maxs∈[t] 1/ūs,i, ∀i ∈ [d] and t ∈ [T ].
Using our new analysis of the damped Newton steps for MD, this choice leads to a regret bound of
order Õ(dm) with m > 2, which is worse than what we are aiming for. Our choice in (11) ensures
that the barrier Ψt changes at most O(d lnT ) times, which is crucial to proving the desired bound.

For any t ∈ [T ], the output ut+1 of Algorithm 1 at round t + 1 is given by ut+1 = w′t+1 =
(1− 1/T )wt+1 + 1/(dT ), where wt+1 is the damped Newton step:

wt+1 = wt −
∇−2Φt(wt)∇t

1 + 4
√
eη‖∇t‖∇−2Φt(wt)

, (12)

with ∇t := ∇Φt(wt) +
∑t

s=1 (gs −∇Ψs(ws) +∇Ψs−1(ws)) and w1 = 1/d. In part due to the
fact that dom Φt = Cd−1, for all t ≥ 1, the iterates (wt) in Algorithm 1 are only well defined when
the update rule in (12) ensures that wt+1 ∈ Cd−1 for any wt ∈ Cd−1. This is in fact the case as we
show next by leveraging the self-concordant property of Φt. To simplify notation in the proof of the
next lemma (which is in App. B) and in the rest of the paper, we let ϑi : Cd−1 → R be defined by

ϑi(x) := − ln x̄i, ∀i ∈ [d]. (13)

Note that the self-concordant barrier in 10 satisfies Ψt(·) =
∑

i∈[d] ϑi(·)/ηt,i.

Lemma 7 For all t ≥ 1, Φt in (9) is a self-concordant function with constant MΦt ≤
√
ηe.

9
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Algorithm 1 DONS (Base Algorithm): Damped Online Newton Step for Portfolio Selection.
Require: Parameters η, β > 0.

1: Set w1 = 1/d ∈ Rd−1, ρ0 = d1 ∈ Rd, G0 = 0, and V0 = βdI/4 ∈ Rd−1×d−1.
2: for t = 1, 2, . . . do
3: Play ut = (1− 1

T )wt + 1
dT 1 and observe gradient gt = ∇`t(ut) = Jrt/〈rt, ūt〉.

4: Set ρt,i = I{2ρt−1,i <
1
ūt,i
} · 1

ūt,i
+ I{2ρt−1,i ≥ 1

ūt,i
} · ρt−1,i, for all i ∈ [d].

5: Define Ψt(x) = −
∑d

i=1
ln x̄i
ηt,i

, where ηt,i := η · exp(logT (ρt,i/d)), ∀i ∈ [d].
6: Set Gt = Gt−1 + gt · (1− β〈gt,wt〉/4)−∇Ψt(wt) +∇Ψt−1(wt).
7: Set Vt = Vt−1 + βgtg

ᵀ
t /4 and ∇t = Gt + Vtwt +∇Ψt(wt) + βdwt/4.

8: Set wt+1 = wt − 1
1+4
√
ηe‖∇t‖(∇2Ψt(wt)+Vt)

−1
(∇2Ψt(wt) + Vt)

−1∇t.

9: end for

Damped Online Newton Steps as Approximate MD Iterates. A key part of our analysis consists
of showing that the intermediate iterates (wt) on Line 8 of Algorithm 1 are close to the mirror
descent iterates (pt) with respect to the sequence of regularizers (Φt) in (9):

pt+1 ∈ argmin
p∈Cd−1

Ft+1(p) := 〈p, g̃t〉+DΦt(p,pt), where (14)

g̃t := (1 + β〈gt,pt −wt〉/4)gt +
d∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)
(∇ϑi(pt)−∇ϑi(wt)), (15)

and p1 := 1/d (recall (ϑi) from (13)). Next, we formally state this result (recall λ(·, ·) from §2):

Lemma 8 For any β ∈ (0, 1/8) and η ≤ 1/214, the iterates (wt) in Algorithm 1 satisfy,

∀t ≥ 1,
‖wt − pt‖∇2Ft(wt)

24√eη
≤ λ(wt, Ft)

23√eη
≤ λ(wt−1, Ft)

2 ≤ Cη, (16)

where C := 4e
4−1∨(1−1/T )2 . Further, we have

∑T
t=1 ‖wt − pt‖2∇2Φt−1(wt)

≤ 1 + 15β−1d log T .

The next lemma, which will be useful in the proof of Lemma 8, essentially shows that the mirror
descent iterates in (14) match the FTRL iterates with respect to (ft), where ft+1(p) :=

∑t
s=1 p

ᵀ(gs−
∇Φs(ws) +∇Φs−1(ws)) + Φt(p) (c.f. discussion in §3.3).

Lemma 9 For all t ∈ [T ], we have∇Ft+1(wt) = gt +∇Ft(wt) (Ft as in (14)) and ∀w ∈ Cd−1,

∇Ft+1(w) = ∇Φt(w) +
t∑

s=1

(gs −∇Ψs(ws) +∇Ψs−1(ws)).

Regret Decomposition. We now present the main regret decomposition. In the proof, which is
Appendix C, we follow similar steps as the ones outlined in §3.3.

Lemma 10 Let T > 1, cT := 1− 1/T , and ψt := Ψt−1 −Ψt. Further let (ut) and (wt) be as in
Algorithm 1 with parameters η, β > 0, and (pt) as in (14). For any sequence of returns (rt) and

10
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u ∈ Cd−1 such that β ≤ 8−1 ∧ |8〈gt,ut − u′′〉|−1 (recall u′,u′′ from §2), we have, for all t ∈ [T ],
T∑
t=1

`t(ut)− `t(u)

cT
≤

T∑
t=1

〈g̃t,pt − pt+1〉+
T∑
t=1

(Dψt(pt,wt) +DΨt(u
′,wt)−DΨt−1(u′,wt))

+O

(
d lnT

η

)
+

T∑
t=1

〈gt,wt − pt〉+
3β

8
〈gt,wt − pt〉2. (17)

Next, we bound each term in this decomposition starting with
∑T

t=1Dψt(pt,wt). To show that this
term is small, we rely on the fact that ψt is a self-concordant functions, which holds true by our
choice of “doubling” (ρt,i)’s in (11). This enables us to relate Dψt(pt,wt) to ‖wt − pt‖∇2Φt−1(wt)

via Lem. 5, which we can then bound using Lem. 8.

Lemma 11 Let (Ψt) be as in (10). Then, the function ψt := Ψt−1−Ψt is a self-concordant function
with constant

√
eη log2 T . Furthermore, the mirror descent iterates (pt) in (14) and the iterates

(wt) in Algorithm 1 satisfy
∑T

t=1Dψt(pt,wt) ≤ O(d lnT ).

We move to the stability term
∑T

t=1〈g̃t,pt − pt+1〉, which is the most technical one to bound
due to the modified gradients (g̃t). We will use use Hölder’s inequality and the triangle inequal-
ity to bound 〈g̃t,pt − pt+1〉 in terms of ‖pt − pt+1‖∇2Φt(wt), ‖gt‖∇−2Φt(wt), and ‖∇ϑi(pt) −
∇ϑi(wt)‖∇−2Φt(wt). Then, we use the self-concordance property in Lem. 5 to relate the latter term
to ‖wt − pt‖∇2Φt(wt), which (thanks to Lem. 8) will allow us to show that the stability term is small.

Lemma 12 Let T > 1 and (g̃t) be as in (15). If η ≤ 1/214 and β ∈ (0, 1/8), then the iterates (pt)
in (14) satisfy

∑T
t=1〈g̃t,pt − pt+1〉 ≤ 18d lnT

β +O(d lnT ).

We now bound the sum divergences which will allow us to cancel the undesirable O(β−1d lnT )
term in the regret bound as discussed in §3.1.

Lemma 13 Let T > 1 and (ut) be the iterates of Alg. 1 with parameters β ∈ (0, 1/8) and
η ≤ 1/214. For any sequence (rt), the iterates (pt) in (14) satisfy (recall u′ and u′′ from §2)∑T

t=1(DΨt(u
′,wt)−DΨt−1(u′,wt)) ≤ −1

16η lnT

∑d
i=1 maxt≤T

ū′′i
ūt,i

+O (d/η), for all u ∈ Cd−1.

It remains to upper bound the sums
∑T

t=1〈gt,wt − pt〉i, for i ∈ {1, 2} which are expected to be
small since (wt) are close to (pt) by Lemma 8:

Lemma 14 Let T > 1, cT := 1 − 1/T , and ST := 1 + 4
√

15β−1d lnT . Further, let (wt) be the
iterates in Alg. 1 with parameters β ∈ (0, 1/8) and η ≤ 1/214. For any sequence of returns (rt), the
mirror descent iterates in (14) satisfy

∑T
t=1〈gt,wt−pt〉 ≤ ST and

∑T
t=1〈gt,wt−pt〉2 ≤ 64e2η2

c3T
ST .

Combining these results, we obtain the following regret bound for our base algorithm:

Theorem 15 (Base Algorithm Regret) Let T > 1, and (ut) be the iterates of Algorithm 1 with
parameters β ∈ (0, 1/8) and η ≤ 1/214. For any sequence of returns (rt) and u ∈ Cd−1 such that,
for all t ∈ [T ], β ≤ 8−1 ∧ |8〈gt,ut − u′′〉|−1 (recall u′ and u′′ from §2), we have

T∑
t=1

(`t(ut)− `t(u)) ≤ O
(
d lnT

η

)
+

34d lnT

β
− 1

32η lnT

d∑
i=1

max
t≤T

ū′′i
ūt,i

.

The regret bound in Theorem 15 is the same as that of BARRONS up to constant factors. We are
now going to describe the adaptive meta-algorithm which allows us to emulate the effect of restarts
in Ada-BARRONS.

11
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Algorithm 2 PAE: Adaptive Meta-Algorithm for Exp-Concave Losses (Zhang et al., 2019).
Require: I) Grid G of β values, horizon T , and η > 0; and II) Instances (Aβ,I)β∈G,I∈I|T , where
Aβ,I is active during I
Set J0 = ∅.
for t = 1, . . . , T do

Identify the set of newly active intervals J̃t = {I ∈ I|T : min I = t}.
Set Fβ,It−1 = 0 for all β ∈ G and I ∈ J̃t.
Update the set of active intervals Jt = Jt−1 ∪ J̃t.
Receive uβ,It ∈ U from each Aβ,I such that β ∈ G and I ∈ Jt.
Set qβ,It−1 = e−ηF

β,I
t−1/Zt for β ∈ G and I ∈ Jt, where Zt =

∑
β∈G,I∈Jt e

−ηFβ,It−1 .

Play ut =
∑

β,I : t∈I q
β,I
t−1u

β,I
t .

Observe ft and set Fβ,It = Fβ,It−1 + ft(u
β,I
t )− ft(ut), for all β ∈ G and I ∈ Jt.

Send ft to each Aβ,I such that β ∈ G and I ∈ Jt.
Update the set of active intervals Jt = Jt \ {I ∈ I|T : max I = t}.

end for

4.2. Adaptive Meta-Algorithm for Exp-Concave Losses (PAE)

As discussed in §3.2, we will use the adaptive meta-algorithm PAE due to Zhang et al. (2019) for
exp-concave losses to circumvent the restarts required by Ada-BARRONS. In App. E, we present a
version of this meta-algorithm that yields an adaptive regret for the larger class of mixable losses
(see Def. 6). We note that using the Follow-the-Leading-History algorithm by Hazan and Seshadhri
(2007) (which is also an adaptive algorithm for exp-concave losses) instead of PAE would lead to a
similar final result for our application. However, we use PAE due to a slightly simpler analysis.

We now introduce some notation to describe the PAE algorithm (Alg. 2). Let I be the set of
geometric covering intervals:

I :=
⋃
i,k∈N

{
[2ki, 2k(i+ 1)− 1]

}
.

Such a set was first used by Daniely et al. (2015) in the context of strongly adaptive Online Learning.
We further define the “restriction” of I to [T ] as I|T := {I ∩ [T ] : I ∈ I} ∪ {[T ]}. The PAE
algorithm maintains a set of base algorithms/experts (Aβ,I), where for expert Aβ,I , β represents a
parameter in some predefined grid G ⊂ R and I ∈ I|T represents the interval on which the expert is
active; in this case, expert Aβ,I is initialized at round t = min I and terminates after round t = max I .
If (uβ,It )t∈I are the outputs of expert Aβ,I within Alg. 2, then the outputs (ut) of Alg. 2 are given by

ut :=

∑
β,I : t∈I exp(−Lβ,It−1)uβ,It∑
β,I : t∈I exp(−Lβ,It−1)

, where Lβ,It :=
∑

s∈I∩[t]

(`s(u
β,I
s )− `s(us)). (18)

We now state the guarantee of PAE (Alg. 2) relative to the performance of the experts (Aβ,I):

Proposition 16 Let η > 0 and G be a set s.t. |G| ≤M . Further, for β ∈ G and I ∈ I , let (uβ,It )t∈I
be the outputs of the subroutine Aβ,I within Alg. 2 in response to a sequence of η-exp-concave losses

12
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(ft). Then, the outputs (ut) of Algorithm 2 guarantee∑
s∈I∩[t]

(fs(us)− fs(uβ,Is )) ≤ (2 ln t+ lnM)/η, for all I ∈ I, β ∈ G, and t ∈ I.

This regret guarantee can be derived from results by Zhang et al. (2019), and follows directly from
Proposition 25 in Appendix E, which generalizes the result of Proposition 16 to mixable losses.
Next, we combine PAE and DONS to get an algorithm with our desired guarantee for the Portfolio
Selection problem.

4.3. Final Algorithm and Guarantee

For our Portfolio Selection application, we instantiate Alg. 2 with Cover’s loss and the base algorithms
(Aβ,I) set as instances of DONS (Alg. 1) with η = 1/(2862d ln3 T ) and β ∈ G, where

G :=

{
1

d2i+3
: i ∈ [dlog2 T e]

}
. (19)

This specific instance of Alg. 2 is displayed in Alg. 3.
Since the regret of DONS is the same as that of BARRONS (see discussion after Thm. 15), and

the adaptive regret enabled by Alg. 2 allows us to emulate the restarts of Ada-BARRONS (see §3.2),
the regret of our final Alg. 3 will be the same as that of Ada-BARRONS up to log factors:

Theorem 17 The regret of Algorithm 3 is bounded by O(d2 ln5 T ). Furthermore, the algorithm
runs is O(d3 ln2 T ) per round and requires O(d2 ln2 T ) total space.

Algorithm 3 PAE + DONS: Adaptive Meta-Algorithm for Online Portfolio Selection.
Instantiate of Alg. 2 with I) (ft) ≡ (`t) (`t as in (1)) with U = Cd−1; and II) (Aβ,I) set as instances
of Alg. 1 with η = 1

2862d ln3 T
, β ∈ G with G as in (19), and I ∈ I|T .

13
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Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. Sampling from a log-concave distribution with
projected langevin monte carlo. Discrete & Computational Geometry, 59(4):757–783, 2018.
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Appendix A. Technical Lemmas

Lemma 18 Let Ψ(x) := −
∑d

i=1 ln x̄i and f(w) := − log〈r, w̄〉, for r ∈ [0, 1]d, and x,w ∈
Cd−1. Then, for all µ ∈ (0, 1) and w̃ ∈ Cd−1, we have

∇f(w)∇f(w)ᵀ � (1− µ)−2∇2Ψ(w̃), where w := (1− µ)w̃ + µ1/d. (20)

Furthermore, ‖∇f(w)‖2∇−2Ψ(w̃) ≤ (1− µ)−2.

Proof . Since ‖∇f(w)‖2∇−2Ψ(w̃) = ∇f(w)ᵀ∇−2Ψ(w̃)∇f(w), the second claim follows from (20).
Thus, it suffices to show that ∇f(w)∇f(w)ᵀ � (1− µ)−2∇2Ψ(w̃). Letting r̃ := (r1, . . . , rd−1),
we have

∇f(w)∇f(w)ᵀ = (r̃ − rd1)(r̃ − rd1)ᵀ/〈r, w̄〉2,
=
(
r̃r̃ᵀ + r2

d11
ᵀ − rdr̃1ᵀ − rd1r̃ᵀ

)
/〈r, w̄〉2,

�
(
r̃r̃ᵀ + r2

d11
ᵀ) /〈r, w̄〉2,

�
(
r̃r̃ᵀ + r2

d11
ᵀ) /〈r, w̄〉2,

� r̃r̃ᵀ/〈r̃,w〉2 + 11ᵀ/w2
d,

� r̃r̃ᵀ/〈r̃,w〉2 + (1− µ)−211ᵀ/w̃2
d. (21)

We will now show that r̃r̃ᵀ/〈r̃,w〉2 � diag(1/w2
1, . . . , 1/w

2
d−1). For this, it suffices to show that

for any vector u ∈ Rd, we have (
∑d−1

i=1 riui)
2/(
∑d−1

i=1 riwi)
2 ≤

∑d−1
i=1 u

2
i /w

2
i . This is indeed the

case; by Cauchy Schwarz, we have(
d−1∑
i=1

riui

)2

≤

(
d−1∑
i=1

r2
iw

2
i

)(
d−1∑
i=1

u2
i /w

2
i

)
,

≤

(
d−1∑
i=1

riwi

)2(d−1∑
i=1

u2
i /w

2
i

)
,

where the last inequality follows by the fact that ri, wi ≥ 0 for all i. Therefore, we have r̃r̃ᵀ/〈r̃,w〉2 �
diag(1/w2

1, . . . , 1/w
2
d−1). Plugging this into (21) implies that

∇f(w)∇f(w)ᵀ � diag(1/w2
1, . . . , 1/w

2
d−1) + (1− µ)−211ᵀ/w̃2

d � (1− µ)−2∇2Ψ(w̃).

Lemma 19 Let β ≤ 1/8 and η ∈ (0, 1). If T > 1, then the iterates (wt) and (ut) in Alg. 1, satisfy

T∑
t=1

‖gt‖2∇−2Ft(wt)
≤ 16d lnT

β
,

where (Ft) are as in (14) and gt = ∇`t(ut).

17



MHAMMEDI RAKHLIN

Proof . Let cT := 1 − 1/T . First note that by Lemma 18, we have c2
Tgtg

ᵀ
t � ∇2Ψ(wt), where

Ψ(x) := −
∑d

i=1 ln x̄i. Combining this with the fact that ηt ∈ [η, ηe] and the range assumptions on
β, η, and T , we get

‖gt‖2∇−2Ft(wt)
= gᵀt

(
∇2Ψt(wt) + βQt−1/4

)−1
gt ≤ 4β−1gᵀtQ

−1
t gt. (22)

where Qt := dI +
∑t

s=1 gsg
ᵀ
s . Thus, by (22) and (Hazan et al., 2007, Lemma 11), we have

‖gt‖2∇−2Ft(wt)
≤ 4

β

T∑
t=1

gᵀtQ
−1
t gt ≤

4

β
ln
|QT |
|Q0|

≤ 4d ln(1 + T 3)

β
≤ 16d lnT

β
,

where the second inequality uses the fact ln |Q0| = d ln d and by AM-GM inequality ln |QT | ≤
d ln Tr(QT )

d ≤ d ln
(
d+

∑T
t=1‖gt‖

2
2/d
)
≤ d ln(d+ dT 3) since

‖gt‖22 ≤ d
2T 2

∑d
i=1 r

2
t,i(∑d

i=1 rt,i

)2 ≤ d
2T 2.

This completes the proof.

Lemma 20 Suppose that T > 1 and define cT := 1−1/T and αT := 1+βeηc−2
T /4. If η, β ∈ (0, 1),

then the iterates (wt) and gradients (gt) in Algorithm 1, and the regularizers (Φt) in (9) are such
that, for all t ∈ [T ],

∇2Φt(wt) � αT∇2Φt−1(wt), ‖gt‖2∇−2Φt(wt)
≤ eη

c2
T

, and
t∑

s=1

‖gt‖2∇−2Φt(wt)
≤ 16d lnT

β
.

Proof . By Lemma 18, we have ∇2Ψ(wt) � c2
Tgtg

ᵀ
t , where Ψ(x) := −

∑d
i=1 ln x̄i. Us-

ing this and the fact that (ηt,i) ⊂ [η, ηe], we get that βgtg
ᵀ
t /4 ≤ βeηc−2

T ∇2Ψt−1(wt)/4 �
βeηc−2

T ∇2Φt−1(wt)/4. Thus, adding∇2Ψt−1(wt) on both sides and using that αt = 1+βeηc−2
T /4,

we get that

αT∇2Φt−1(wt) � βgtgᵀt /4 +∇2Φt−1(wt) � ∇2Φt(wt),

where the last inequality follows by the fact that ηt,i ≥ ηt−1,i, for all i ∈ [d]. The remaining
inequalities follow from Lemmas 18 and 19.

Lemma 21 Let u,w ∈ Cd−1. For any r ∈ [0, 1]d and f(x) := − log〈r, x̄〉, we have

|〈∇f(w),u−w〉| ≤ 1 ∨max
i∈[d]

ūi
w̄i
.

Proof . We have

〈∇f(w),u−w〉 = 〈r, w̄〉−1〈Jᵀr,u−w〉 = 〈r, w̄〉−1〈r, ū− w̄〉 =
〈r, ū〉
〈r, w̄〉

− 1.

18
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Now since the function r 7→ 〈r,ū〉
〈r,w̄〉 is quasi-convex (Boyd et al., 2004, Example 3.32), its maximum

is reached at the boundary of [0, 1]d. Thus, the previous display implies that

|〈∇f(w),u−w〉| ≤ 1 ∨ sup
r̃∈[0,1]d

〈r̃, ū〉
〈r̃, w̄〉

≤ 1 ∨max
i∈[d]

ūi
w̄i
.

Appendix B. Proof of Lemmas 5, 7, 8, and 9

Proof of Lemma 5. Since∇f(w)−∇f(p) =
∫ 1

0 ∇
2f(wµ)(w−p)dµ, wherewµ := µw+(1−µ)p,

we have,

‖∇f(w)−∇f(p)‖2∇−2f(w)

=(∇f(w)−∇f(p))ᵀ∇−2f(w)(∇f(w)−∇f(p)),

=(w − p)ᵀ
(∫ 1

0
∇2f(wµ)dµ

)ᵀ

∇−2f(w)

(∫ 1

0
∇2f(wν)dν

)
(w − p). (23)

On the other hand, since f is self-concordant with constant Mf and r := ‖p−w‖∇2f(w) ≤ 1/Mf

by assumption, we have (see e.g. (Nesterov et al., 2018, Corollary 5.1.5))

(1−Mfr + 1/3M2
f r

2)∇2f(w) � H � 1

1−Mfr
∇2f(w), (24)

where H :=
∫ 1

0 ∇
2f(wµ)dµ. Since ∇2f(w) is definite positive for all w, (24) further implies that

H � (1−Mfr)∇2f(w). Combining these facts with (23), we get that

‖∇f(w)−∇f(p)‖2∇−2f(w) �
1

(1−Mfr)2
‖p−w‖2∇2f(w).

Proof of Lemma 7. We prove the claim by induction. We start with the base case t = 1. For
t = 1, we have w1 = 1/d ∈ Cd−1. We now check that Φ1 is self-concordant with constant√
eη. For any i ∈ [d], the function ϑi : x → − ln x̄i defined on Cd−1 is self-concordant with

constant 1. Furthermore, the function Θ1 : u 7→ Φ1(u)−Ψ1(u) is self-concordant with constant
0 (since it is a quadratic). Thus, by (Nesterov et al., 2018, Theorem 5.1.1) and the fact that
Φ1(·) = Θ1(·) + Ψ1(·) = Θ1(·) +

∑d
i=1 ϑi(·)/η1,i, we have that Φ1 is self-concordant with constant

less than 0 ∨maxi∈[d]
√
η1,i =

√
η ≤ √ηe.

Now, suppose the claim of the lemma holds for all t ≤ s. We will show that it holds for t = s+ 1.
Since Φs is self-concordant with constant MΦs ≤

√
ηe andws ∈ Cd−1 (by the induction hypothesis),

we have that the Dikin ellipsoid

Ws := {x ∈ Rd−1 : ‖x−ws‖∇2Φs(ws) < 1/
√
ηe}
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is contained within dom Φs = Cd−1 (see e.g. (Nesterov et al., 2018, Thm. 5.1.5)). Thus, to show that
ws+1 ∈ Cd−1, it suffices to show that ws+1 ∈ Ws. By definition of ws+1, we have

‖ws+1 −ws‖∇2Φs(ws) =
‖∇−2Φs(ws)∇s‖∇2Φs(ws)

1 + 4
√
ηe‖∇s‖∇2Φs(ws)

=
‖∇s‖∇2Φs(ws)

1 + 4
√
eη‖∇s‖∇2Φs(ws)

<
1
√
ηe
,

where ∇s is as in (12). This shows that ws+1 ∈ Ws and so ws+1 ∈ Cd−1. As a consequence, the
output us+1 of Algorithm 1 satisfies ūs+1,i ≥ 1/(dT ), for all i ∈ [d], which in turn implies that
ηs+1,i ∈ [η, eη], for all i ∈ [d]. Using this and (Nesterov et al., 2018, Theorem 5.1.1), we have
that Φs+1(·) = Φs+1(·)−Ψs+1(·) +

∑d
i=1 ϑi(·)/ηs+1,i is self-concordant with constant less than

0 ∨maxi∈[d]
√
ηs+1,i ≤

√
ηe.

Proof of Lemma 8. For any twice differentiable function F : W → R and w ∈ W , we recall the
definition of the Newton decrement λ(w, F ) := ‖∇F (w)‖∇−2F (w) which will be useful in this
proof. First, note that if T = 1, then the result holds trivially since w1 = p1 = 1/d. Assume that
T > 1 and let cT := 1− 1/T . Next, we will show by induction that

1

16
√
eη
‖ws − ps‖∇2Fs(ws) ≤

1

8
√
eη
λ(ws, Fs) ≤ λ(ws−1, Fs)

2 ≤ Cη, (25)

for all s ≥ 1, where C := 4e/c2
T with the convention that w0 = 1/d. The base case follows trivially

since ∇F1(w0) = ∇F1(w1) = 0 and w1 = p1. Suppose that (25) holds for s = t. We will show
that it holds for s = t+ 1. By Lemma 9, we have ∇Ft+1(wt) = gt +∇Ft(wt), and so by the fact
that (a+ b)2 ≤ 2a2 + 2b2, we get

λ(wt, Ft+1)2 = ‖∇Ft+1(wt)‖2∇−2Ft(wt)
,

≤ 2‖∇Ft(wt)‖2∇−2Ft(wt)
+ 2‖gt‖2∇−2Ft+1(wt)

,

= 2λ(wt, Ft)
2 + 2‖gt‖2∇−2Φt(wt)

, (26)

≤ 27eC2η3 + 2eη/c2
T ≤ Cη, (27)

where in the penultimate inequality we used the induction hypothesis in (25) for s = t and the bound
on ‖gt‖2∇−2Φt(wt)

from Lemma 20. The last inequality in (27) uses the range assumptions on η. Now,
by the expression of ∇Ft+1(wt) in Lemma 9, one can verify that the iterate wt+1 in Algorithm 1
satisfies

wt+1 = wt −
1

1 + 4
√
eηλ(wt, Ft+1)

∇−2Ft+1(wt)∇Ft+1(wt),

which is the damped Newton step with respect to the function Ft+1. Therefore, by Lemma 3 and
the fact that λ(wt, Ft+1) ≤ 1/(8

√
eη) (which follows from (27) and the range assumption on η), we

have λ(wt+1, Ft+1) ≤ 8
√
eηλ(wt, Ft+1)2. Furthermore, since pt+1 is the minimizer of Ft+1 and

λ(wt+1, Ft+1) ≤ 1/(2
√
eη), we have ‖wt+1 − pt+1‖∇2Ft+1(wt) ≤ 2λ(wt+1, Ft+1) (by Lemma 3

again). Combining these facts with (27), implies (25) for s = t+ 1, which concludes the induction.
This shows (16).

We now use (25) together with (26) to bound the sum
∑T

t=1 ‖wt − pt‖2∇2Φt−1(wt)
. Using that

λ(wt+1, Ft+1) ≤ 8
√
eηλ(wt, Ft+1)2 (as argued above) and (26), we get

λ(wt+1, Ft+1) ≤ 16
√
eηλ(wt, Ft)

2 + 16
√
eη‖gt‖2∇−2Φt(wt)

. (28)
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Summing (28), for t = 1, . . . , T , rearranging, and using that λ(wT+1, FT+1) ≥ 0, we get

T∑
t=2

(
λ(wt, Ft)− 16

√
eηλ(wt, Ft)

2
)
≤ 16

√
eηλ(w1, F1)2 + 16

√
eη

T∑
t=2

‖gt‖2∇−2Φt(wt)
.

Using (26) and the range assumption on η, we have 0 ≤ 16
√
eηλ(wt, Ft) ≤ 27eCη2 ≤ 1/4.

Therefore, we have

3

4

T∑
t=1

λ(wt, Ft) ≤ λ(w1, F1) + 16
√
eη

T∑
t=2

‖gt‖2∇−2Φt(wt)
,

≤ 1

16
+ 16

√
eη

T∑
t=1

‖gt‖2∇−2Φt(wt)
≤ 3

8
+

45d lnT

8β
,

where the last inequality follows by Lemma 20 and the range assumption on η. Now, using the fact
that pt is the minimizer of Ft, we have ‖wt − pt‖∇2Ft(wt) ≤ 2λ(wt, Ft). Combining this with the
previous display, we get the desired result.

Proof of Lemma 9. Let t ∈ [T ], ϑi : x 7→ − ln x̄i, and δt,i := (1/ηt,i − 1/ηt−1,i) with η0 = η1, for
all i ∈ [d]. We will first show that∇Ft+1(w) = g̃t(w) +∇Ft(w), where

g̃t(w) := gt · (1 + β〈gt,w −wt〉/4) +

d∑
i=1

δt,i(∇ϑi(w)−∇ϑi(wt)).

By definition of (Ft) and (pt), we have

∇Ft+1(w) = g̃t +∇Φt(w)−∇Φt(pt),

= g̃t + βgt · (〈gt,w −wt〉 − 〈gt,pt −wt〉)/4 +
d∑
i=1

δt,i(∇ϑi(w)−∇ϑi(pt))

+∇Φt−1(w)−∇Φt−1(pt),

= gt · (1 + β〈gt,w −wt〉/4) +

d∑
i=1

δt,i(∇ϑi(w)−∇ϑi(wt))

+ gt−1 +∇Φt−1(w)−∇Φt−1(pt−1), (29)

= gt · (1 + β〈gt,w −wt〉/4) +
d∑
i=1

δt,i(∇ϑi(w)−∇ϑi(wt)) +∇Ft(w), (30)

where (29) follows by definition of g̃t in (15) and the fact that 0 = ∇Ft(pt) = gt−1 +∇Φt−1(pt)−
∇Φt(pt−1). Setting w = wt in (30) shows the first equality of the lemma. Now, by induction, we
get

∇Ft+1(w) =
t∑

s=1

gs · (1 + β〈gs,w −ws〉/4) +

t∑
s=1

d∑
i=1

δs,i(∇ϑi(w)−∇ϑi(ws)) +∇F1(w),

=

t∑
s=1

gs · (1 + β〈gs,w −ws〉/4) +∇Ψt(w)−
t∑

s=1

d∑
i=1

δs,iϑi(ws) + βdw/4.
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Using that∇Φt(w) = βdw/4 +
∑t

s=1 βgs · 〈gs,w −ws〉/4 +∇Ψt(w) completes the proof.

Appendix C. Proof of Theorem 15 (Regret of Base Algorithm)

We present the proof of Theorem 15 before proving Lemmas 10-14.
Proof of Theorem 15. Our starting point is the regret decomposition in Lemma 10. Using Lemmas 11,
12, and 13 to bound the first two sums on the RHS of the regret decomposition (17), we get

T∑
t=1

(`t(ut)− `t(u′′)) ≤
18d lnT

β
+O

(
d lnT

η

)
− 1

32η lnT

d∑
i=1

max
t≤T

ū′′i
ūt,i

+ cT

T∑
t=1

〈gt,wt − pt〉+
3β

8

T∑
t=1

〈gt,wt − pt〉2. (31)

Now using Lemma 14 to bound the last two sums in (31), we get the desired result.

In addition to Lemmas 10-14 in the main body, we also need the following result (which follows
from the proof of (Luo et al., 2018, Lemma 5)) to prove Theorem 15:

Lemma 22 Let (pt) and (g̃t) be as in (14) and (15), respectively. Then, ∀t ∈ [T ],∀u ∈ Cd−1,

T∑
t=1

〈g̃t,pt+1 − u′〉 ≤ O
(
d lnT

η

)
+

T∑
t=1

(
β

8
〈gt,pt − u′〉2 +DΨt(u

′,pt)−DΨt−1(u′,pt)

)
.

Proof . In this proof, we let Θt := Φt−Ψt, for all t ≥ 1. Since pt+1 is the minimizer ofFt+1, which is
a self-concordant barrier for the set Cd−1, we have 0 = ∇Ft+1(pt+1) = g̃t+∇Φt(pt+1)−∇Φt(pt).
Therefore, we have

〈g̃t,pt+1 − u′〉 ≤ 〈∇Φt(pt+1)−∇Φt(pt),u
′ − pt+1〉,

= DΦt(u
′,pt)−DΦt(u

′,pt+1)−DΦt(pt+1,pt), (32)

≤ DΦt(u
′,pt)−DΦt(u

′,pt+1), (33)

= DΨt(u
′,pt)−DΨt(u

′,pt+1) +DΘt(u
′,pt)−DΘt(u

′,pt+1), (34)

where (32) follows by the definition of the Bregman divergence, and (33) follows by the positivity of
the Bregman divergence. Summing (34) for t = 1 to T , we get

T∑
t=1

〈g̃t,pt+1 − u〉 ≤ DΨ0(u′,w1) +DΘ0(u′,w1) +
T∑
t=1

(DΘt(u
′,pt)−DΘt−1(u′,pt))

+
T∑
t=1

(DΨt(u
′,pt)−DΨt−1(u′,pt)),

= DΨ0(u′,w1) +DΘ0(u′,w1) +
T∑
t=1

β

8
〈gt,pt − u′〉2

+
T∑
t=1

(DΨt(u
′,pt)−DΨt−1(u′,pt)). (35)
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By definition of u′ andw1, we haveDΨ0(u′,w1)+DΘ0(u′,w1) ≤ O(η−1d lnT ), which combined
with (35) implies the desired result.

Proof of Lemma 11. Denote by T ∈ [T ] the subset of rounds t where any of (ρt,i)i∈[d] change. For
t 6∈ T , we have ψt ≡ 0, which is self-concordant with any constant. Now, let t ∈ T . Since ψt is
the sum of self-concordant functions, we have by (Nesterov et al., 2018, Theorem 5.1.1) that ψt is a
self-concordant function with constant less than

max
i∈[d]

√(
1

ηt−1,i
− 1

ηt,i

)−1

= max
i∈[d]

√
ηt,i

elogT (ρt,i/ρt−1,i) − 1

(∗)
≤ max

i∈[d]

√
eη

logT (ρt,i/ρt−1,i)

(∗∗)
≤
√
eη log2 T ,

where (∗) follows by the fact that ex − 1 ≥ x, for all x ∈ R, and that ρt,i > 2ρt−1,i since t ∈ T .
This shows the first claim of the lemma. We now show the second claim. Let t ∈ T and define
wt,µ := µpt + (1− µ)wt, for µ ∈ [0, 1]. By Lemmas 4, 7, and 8, we have

(1−√eηrt)2∇−2Φt−1(wt,µ) � ∇−2Φt−1(wt) � (1−√eηrt)−2∇−2Φt−1(wt,µ), (36)

where rt := ‖wt − pt‖∇2Φt−1(wt). By Taylor’s theorem, there exists µ∗ ∈ [0, 1] such that

Dψt(pt,wt) =
1

2
‖pt −wt‖2∇2ψt(wt,µ∗ ) ≤

1

2
‖pt −wt‖2∇2Φt−1(wt,µ∗ ), (37)

≤ 1

2(1−√eηrt)2
‖pt −wt‖2∇2Φt−1(wt)

. (38)

where (37) follows by the fact that ∇2ψt � ∇2Ψt−1 � ∇2Φt−1 and the last inequality follows
by (36). Plugging the bound on rt = ‖pt − wt‖2∇2Φt−1(wt)

≤ 64(eη)3/2/c2
T (from Lemma 8)

into (38) and using the facts that I) |T | ≤ O(d lnT ) (by definition of (ρt,i) in (11) and the fact
that (ūt,i) ⊂ [1/(dT ), 1]); and II) Dψt(pt,wt) = 0 if t 6∈ T , we get that

∑T
t=1Dψt(pt,wt) ≤

O(η3/2d lnT ) ≤ O(d lnT ).

Proof of Lemma 10. Let cT := 1−1/T and u be as in the lemma’s statement and recall the definition
of (g̃t) from (15). First, we note that by Lemma 1, we have

∑T
t=1 `t(u) ≤

∑T
t=1 `t(u

′′) + 4, and so
it suffices to bound the regret against u′′. Let ĝt := gt(1 + β〈gt,pt −wt〉/4). Using that Cover’s
loss is 1-exp-concave and β ≤ 8−1 ∧ |8〈gt,ut − u′′〉|−1, for all t ≥ 1, we have (see e.g. proof of
(Luo et al., 2018, Lemma 5) for the first inequality)

T∑
t=1

(`t(ut)− `t(u′′))

≤
T∑
t=1

〈gt,ut − u′′〉 −
β

2

T∑
t=1

〈gt,ut − u′′〉2,

≤
T∑
t=1

〈ĝt,ut − u′′〉+
β

4

T∑
t=1

|〈gt,wt − pt〉〈gt,ut − u′′〉| −
β

2

T∑
t=1

〈gt,ut − u′′〉2,
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≤
T∑
t=1

〈ĝt,ut − u′′〉+
β

8

T∑
t=1

〈gt,wt − pt〉2 −
3β

8

T∑
t=1

〈gt,ut − u′′〉2,

=cT

T∑
t=1

〈ĝt,wt − u′〉+
β

8

T∑
t=1

〈gt,wt − pt〉2 −
3c2
Tβ

8

T∑
t=1

〈gt,wt − u′〉2,

=cT

T∑
t=1

〈ĝt,wt − pt〉+
β

8

T∑
t=1

〈gt,wt − pt〉2 −
3c2
Tβ

8

T∑
t=1

〈gt,wt − u′〉2

+ cT

T∑
t=1

〈ĝt,pt − u′〉,

≤cT
T∑
t=1

〈gt,wt − pt〉 −
3c2
Tβ

8

T∑
t=1

〈gt,wt − u′〉2 + cT

T∑
t=1

〈ĝt,pt − u′〉, (39)

where in the last inequality we used the fact that 〈ĝt,wt − pt〉 = 〈gt,wt − pt〉 − β〈gt,wt − pt〉2/4
and cT ≥ 1/2. We now focus on the last sum in (39). By definition of (g̃t) and (ĝt), we have

T∑
t=1

〈ĝt,pt − u′〉 =

T∑
t=1

〈g̃t,pt − u′〉

+
T∑
t=1

d∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)
〈∇ϑi(wt)−∇ϑi(pt),pt − u′〉,

=
T∑
t=1

d∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)
(Dϑi(u

′,wt)−Dϑi(u
′,pt)−Dϑi(pt,wt))

+

T∑
t=1

〈g̃t,pt − pt+1〉+

T∑
t=1

〈g̃t,pt+1 − u′〉, (40)

=

T∑
t=1

〈g̃t,pt − pt+1〉+

T∑
t=1

〈g̃t,pt+1 − u′〉

+
T∑
t=1

d∑
i=1

(
1

ηt−1,i
− 1

ηt,i

)
Dϑi(pt,wt)

+

T∑
t=1

(DΨt(u
′,wt)−DΨt−1(u′,wt)−DΨt(u

′,pt) +DΨt−1(u′,pt)).

where (40) uses the definition of the Bregman divergence. Plugging in the bound on
∑T

t=1〈g̃t,pt+1−
u′〉 from Lemma 22 and letting ψt : p 7→

∑d
i=1

(
1

ηt−1,i
− 1

ηt,i

)
ϑi(p), we get

T∑
t=1

〈ĝt,pt − u′〉 ≤
T∑
t=1

〈g̃t,pt − pt+1〉+

T∑
t=1

Dψt(pt,wt) +

T∑
t=1

(DΨt(u
′,wt)−DΨt−1(u′,wt))

+O

(
d lnT

η

)
+

T∑
t=1

β

8
〈gt,u′ − pt〉2. (41)

24



DAMPED ONLINE NEWTON STEP FOR PORTFOLIO SELECTION

Now, by the fact cT ≥ 1/2 and that (a+ b)2 ≤ 3/2a2 + 3b2, for all T ≥ 1, we get

T∑
t=1

β

8
〈gt,u′ − pt〉2 ≤

3cTβ

8
〈gt,u′ −wt〉2 +

3β

8
〈gt,pt −wt〉2.

By combining this with (41), (39), and the fact that
∑T

t=1 `t(u) ≤
∑T

t=1 `t(u
′′) + 4 (see beginning

of the proof), we obtain the desired result.

Proof of Lemma 12. Let (Ft) be as in (14) and αT := 1 + βeηc−2
T /4, where cT := 1− 1/T . We

start by bounding the Newton decrement λ(pt, Ft+1) = ‖∇Ft+1(pt)‖∇−2Ft+1(pt). Since Ft+1 is
equal to a linear function plus Φt, Lemma 7 implies that Ft+1 is

√
eη-self-concordant. On the other

hand, by Lemmas 20 and Lemma 8, we have

‖wt − pt‖∇2Φt(wt) ≤
√
αT ‖wt − pt‖∇2Φt−1(wt) ≤

26√αT (eη)3/2

c2
T

<
1

2
√
eη
, (42)

where the last inequality follows by the range assumptions on η and β. This, together with the fact
that Ft+1 is

√
eη-self-concordant and Lemma 5, we have

‖∇Ft+1(pt)−∇Ft+1(wt)‖∇−2Ft+1(wt) ≤
‖wt − pt‖∇2Φt(wt)

1−√eη‖wt − pt‖∇2Φt(wt)
≤

27√αT
c2
T (eη)−3/2

. (43)

Thus, by the triangle inequality, we get that

‖∇Ft+1(pt)‖∇−2Ft+1(wt) ≤ ‖∇Ft+1(wt)‖∇−2Ft+1(wt) + ‖∇Ft+1(pt)−∇Ft+1(wt)‖∇−2Ft+1(wt),

= λ(wt, Ft+1) + ‖∇Ft+1(pt)−∇Ft+1(wt)‖∇−2Ft+1(wt),

≤ 2
√
eη/cT + 27√αT (eη)3/2/c2

T ,

where the last inequality follows by (43) and Lemma 8. Now, by (42) and Lemma 4, we have

(1−√eηrt)2∇−2Ft+1(pt) � ∇−2Ft+1(wt) � (1−√eηrt)−2∇−2Ft+1(pt), (44)

where rt := ‖wt − pt‖∇2Φt(wt), and so

‖∇Ft+1(pt)‖∇−2Ft+1(pt) ≤ (1−√eη‖wt − pt‖∇2Φt(wt))
−1‖∇Ft+1(pt)‖∇−2Ft+1(wt),

≤ 4
√
eη/cT + 28√αT (eη)3/2/c2

T ≤
1

2
√
eη
, (45)

where the last inequality follows by the range assumption on η and β. Combining (45) with the fact
that pt+1 is the minimizer of Ft+1 (which is

√
eη-self-concordant as we argued above) and Lem. 3,

we get

r̃t := ‖pt − pt+1‖∇2Ft+1(pt) ≤ 2λ(pt, Ft+1) ≤
8
√
eη

cT
+

29√αT (eη)3/2

c2
T

<
1

2
√
eη
, (46)

where the last inequality follows by the range assumption on η and β. Thus, using Lemma 4 again,
we get that

(1−√eηr̃t)2∇2Ft+1(pt) � ∇2Ft+1(pt+1) � (1−√eηr̃t)−2∇2Ft+1(pt). (47)
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Using this and (46), we have

‖pt − pt+1‖∇2Ft+1(pt+1) ≤
‖pt − pt+1‖∇2Ft+1(pt)

1−√eηr̃t
≤

16
√
eη

cT
+

214√αT (eη)3/2

c2
T

. (48)

The RHS of (48) is at most 1/2 due to the range assumptions on η and β. This, combined with
(Nesterov et al., 2018, Theorem 5.1.8) and the optimality of pt+1 implies that for ω(x) := x− ln(1 +
x), we have

Ft+1(pt)− Ft+1(pt+1) ≥ ∇Ft+1(pt+1)ᵀ(pt − pt+1) + ω(‖pt − pt+1‖∇2Ft+1(pt+1)),

≥ 1

3
‖pt − pt+1‖2∇2Ft+1(pt+1),

where the last inequality follows by the fact that ω(x) ≥ x2/3, for x ∈ [0, 1/2]. On the other hand,
by the definition of Ft+1, non-negativity of Bregman divergence, and Hölder inequality,

Ft+1(pt)− Ft+1(pt+1) = 〈pt − pt+1, g̃t〉 −DΦt(pt+1,pt),

≤ ‖pt − pt+1‖∇2Ft+1(pt+1) · ‖g̃t‖∇−2Ft+1(pt+1).

Combining the above two inequalities we get

‖pt − pt+1‖∇2Ft+1(pt+1) ≤ 3‖g̃t‖∇−2Ft+1(pt+1).

Using this and Hölder’s inequality leads to

〈g̃t,pt − pt+1〉 ≤ ‖g̃t‖∇−2Ft+1(pt+1) · ‖pt − pt+1‖∇2Ft+1(pt+1) ≤ 3‖g̃t‖2∇−2Ft+1(pt+1),

≤ 4‖g̃t‖2∇−2Ft+1(wt)
, (49)

where the last inequality follows by (47), (44), and the range assumptions on η and β. Let ψt :=
Ψt−1 −Ψt and recall the definition of (ϑi) in (13). Let ψt := Ψt−1 −Ψt. By the definition of g̃t in
(15), the fact that (a+ b)2 ≤ (1 + γ)a2 + (1 + 1/γ)b2, for all γ > 0, and (49), we have

〈g̃t,pt − pt+1〉 ≤ 9(1 + β〈gt,pt −wt〉/4)2 · ‖gt‖2∇−2Ft+1(wt)
/8

+ 9

∥∥∥∥∥
d∑
i=1

(
1

ηt−1,i
− 1

ηt,i

)
(∇ϑi(pt)−∇ϑi(wt))

∥∥∥∥∥
2

∇−2Ft+1(wt)

,

≤ 9(1 + β‖gt‖∇−2Φt−1(wt) · ‖pt −wt‖∇2Φt−1(wt)/4)2 · ‖gt‖2∇−2Φt(wt)
/8

+ 9e‖∇ψt(pt)−∇ψt(wt)‖2∇−2ψt(wt)
, (50)

where in the last inequality we used Hölder’s inequality and the fact that e∇2Ft+1 � ∇2Ψt−1 �
∇2ψt (since ηt,i ∈ [η, ηe], for all i ∈ [d] and t ∈ [T ]). On the other hand, since∇2ψt � ∇2Ψt−1 �
∇2Φt−1, we have ‖wt − pt‖2∇2ψt(wt)

≤ ‖wt − pt‖2∇2Φt−1(wt)
. Using this, (42), and Lemmas 11

and 5, we get

‖∇ψt(pt)−∇ψt(wt)‖2∇−2ψt(wt)
≤ I{ρt,i 6= ρt−1,i}

‖wt − pt‖2∇2ψt(wt)

(1−
√
eη log2 T‖wt − pt‖∇2ψt(wt))

2
,

≤ I{ρt,i 6= ρt−1,i}
‖wt − pt‖2∇2Φt−1(wt)

(1−
√
eη log2 T‖wt − pt‖∇2Φt−1(wt))

2
,

≤ 214I{ρt,i 6= ρt−1,i}(eη)3/c4
T , (51)
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where the last two inequalities follow by (42) and the range assumptions on η and β. Since∑T
t=1 I{ρt,i 6= ρt−1,i} ≤ O(d lnT ) (by definition of (ρt,i) in (11) and the fact that (ūt,i) ⊂

[1/(dT ), 1]), (51) implies that
∑T

t=1 ‖∇ψt(pt)−∇ψt(wt)‖2∇−2ψt(wt)
≤ O(η3d lnT ) ≤ O(d lnT ).

Using this together with (42), (50), and Lemma 20 (and the range assumptions on η and β), we get

T∑
t=1

〈g̃t,pt − pt+1〉 ≤
18d lnT

β
+O(d lnT ).

This completes the proof.

Proof of Lemma 14. Let cT := 1− 1/T . By Cauchy Schwarz inequality and Lemmas 8 and 19,

T∑
t=1

〈gt,pt −wt〉 ≤
T∑
t=1

|〈gt,pt −wt〉| ≤

√√√√ T∑
t=1

‖gt‖2∇−2Φt−1(wt)

√√√√ T∑
t=1

‖pt −wt‖2∇2Φt−1(wt)
,

≤
√

42dβ−1 lnT ·
√

1 + 15dβ−1 lnT ,

≤ 1 + 4
√

15dβ−1 lnT. (52)

On the other hand, by Hölder’s inequality, we have

|〈gt,pt −wt〉| ≤ ‖gt‖∇−2Φt−1(wt) · ‖pt −wt‖∇2Φt−1(wt) ≤ 64e2η2/c3
T ,

where the last equality follows by Lemmas 8 and 20. Combining this with the range assumptions on
η and β, we get

T∑
t=1

〈gt,pt −wt〉2 ≤
64e2η2

c3
T

T∑
t=1

|〈gt,pt −wt〉| ≤
64e2η2

c3
T

(
1 + 4

√
15dβ−1 lnT

)
,

where the last inequality follows by (52).

Proof of Lemma 13. Let cT := 1− 1/T . We have

T∑
t=1

(DΨt(u
′,wt)−DΨt−1(u′,wt)) =

T∑
t=2

d∑
i=1

(
1

ηt,i
− 1

ηt−1,i

)
h

(
ū′i
w̄t,i

)
,

where h(x) := x− 1− lnx and (ηt,i) are defined in (10). Fix i ∈ [d] and let T := {t : ρt,i 6= ρt−1,i}.
First, suppose that ūt,i ≥ 1

2d ∧ (cT ū
′
i), for all t ∈ [T ]. In this case, we have maxt∈[T ]

ū′i
ūi,t
≤

2dū′i + c−1
T . Therefore, by positivity of h and the fact that ηt+1,i ≥ ηt,i, we have

T∑
t=2

(
1

ηt,i
− 1

ηt−1,i

)
h

(
ū′i
w̄t,i

)
≤ 0 ≤ c−1

T + 2dū′i −max
t∈[T ]

u′i
ūt,i

. (53)

Now, assume that ūt,i ≤ 1
2d ∧ (cT ū

′
i). Note that this implies that T 6= ∅ (due to ūt,i ≤ 1/(2d) and

the definition of (ρt,i)). Let τ := max T . For notational convenience, we let

u := ū′i, uτ := ūτ,i, wτ := w̄τ,i, and ητ := ητ,i.
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By definition of (ηt,i), we have ητ = η exp(− logT duτ ) ≤ η exp(logT T ) = ηe. Thus, by the
positivity of h, we have

T∑
t=2

(
1

ηt,i
− 1

ηt−1,i

)
h

(
ū′i
w̄t,i

)
≤
(

1

ητ
− 1

ητ−1

)
h

(
u

wτ

)
,

=
1− elogT (uτ−1/uτ )

ητ
· h
(
u

wτ

)
,

≤
− logT

uτ−1

uτ

ητ
· h
(
u

wτ

)
,

≤ −
log2

uτ−1

uτ

eη ln2 T
· h
(
u

wτ

)
,

By definition of (ut,i), we have

uτ
wτ

=
1/(Td) + (1− 1/T )wτ

wτ
≥ 1− 1

T
= cT . (54)

Hence, h(u/wτ ) ≥ h(cTu/uτ ), since cTu/uτ ≥ 1 by assumption and h is positive and decreasing on
[1,+∞[. On the other hand, by construction of (ρt,i) and the definition of τ , we have uτ ≤ uτ−1/2,
which implies that − log2(uτ−1/uτ ) ≤ −1. Plugging these bounds into (54), we get that

T∑
t=2

(
1

ηt,i
− 1

ηt−1,i

)
h

(
ū′i
w̄t,i

)
≤ − 1

eη log2 T
h

(
cTu

uτ

)
,

= − 1

eη log2 T

(
cTu

uτ
− 1− ln

(
cTu

uτ

))
,

= − cT
eη log2 T

max
t∈[T ]

ū′i
ūt,i

+O
(

ln(dT ū′i)

η lnT

)
, (55)

Thus, by (53), (55), and the fact that ū′′i ≤ 2ū′i, for all i ∈ [d], we get the desired result after summing
over i ∈ [d].

Appendix D. Proof of Theorem 17 (Meta-Algorithm Regret)

D.1. Proof of Theorem 17

To prove Theorem 17, we define

u∗ ∈ argmin
u∈Cd−1

T∑
t=1

`t(u), and αβ,It := 8−1 ∧ min
s∈I∩[t],i∈[d]

(ūβ,It,i /(8ū
′′
∗,i)). (56)

With this, we start by stating a regret guarantee against u∗ for the subroutines of Algorithm 3, which
follows from Lemma 8 and the base algorithm’s regret bound in Theorem 15.
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Lemma 23 Let I ∈ I , β ∈ G, and (uβ,It )t∈I be the outputs of the subroutine Aβ,I within Algorithm 3
in response to Cover’s losses (`t). Further, let u∗ be as in (56). If there exists t ∈ I ∩ [T − 1] such
that αβ,It ≥ β > αβ,It+1, and t > min I then,

∑
s∈I∩[t]

(`s(u
β,I
s )− `s(u∗)) ≤ O

(
d2 ln4 T

)
− 204d ln2 T

β
. (57)

Otherwise, if αβ,It ≥ β for all t ∈ I , then
∑

s∈I∩[T ](`s(u
β,I
s )− `s(u∗)) ≤ O

(
d2 ln4 T

)
+ 34d lnT

β .

For the proofs of Lemma 23 and Theorem 15, we need the following Corollary to Lemma 8:

Corollary 24 In the setting of Lemma 8, the iterate of (wt) in Alg. 1 and (pt) in (14) satisfy:

∀i ∈ [d],∀t ∈ [T ], 1− 64(eη)2 ≤ p̄t,i
w̄t,i
≤ 1 + 64(eη)2,

3

4
≤ w̄t+1,i

w̄t,i
≤ 5

4
, and

ūt,i
ūt+1,i

≤ 4

3
.

The proofs of Lemma 23 and Corollary 24 are in Appendix D.2.
Proof of Theorem 17. Recall that G := { 1

d2i+3 : i ∈ [dlog2 T e]}. We note that the outputs of (uβ,It )
of the base algorithms are all in the set

C̄d−1 := {u ∈ Cd−1 : ūi ≥ 1/(dT ),∀i ∈ [d]}.

This is because of the mixing with the uniform distribution on Line 3 of Algorithm 1. By (18), the
outputs (ut) of Algorithm 3 are convex combinations of (uβ,It ), and so (ut) ⊂ C̄d−1. This fact will
be useful below.

For any β ∈ G, we define the set

J β := {t ∈ [T ] : αβ,I0t < β, I0 := [T ]}.

Note that I0 = [T ] ∈ I|T , by definition, where I|T is the set of intervals indexing the base algorithms

of Alg. 3. Furthermore, for β′ = minG, we have J β′ = ∅ since β′ ≤ 1
8dT

(∗)
≤ αβ

′,I
t for any I ∈ I|T

and t ≥ 1, where (∗) follows by the fact that all the outputs (uβ
′,I
t ) are in the set C̄d−1. If Jβ = ∅,

for all β ∈ G, then by Proposition 16 and the second inequality in Lemma 23, instantiated with
β0 := maxG = 1

24d
and I0 = [T ], we get

T∑
t=1

(`t(u)− `t(u∗)) ≤
T∑
t=1

(`t(u
β0,I0
t )− `t(u∗)) +O(lnT ) ≤ O(β−1

0 d lnT ) = O(d2 lnT ),

which implies the desired regret bound. Now, suppose that there exists β ∈ G such that J β 6= ∅ and
let β∗ := min{β ∈ G : J β 6= ∅} and τ := minJ β∗ . By the definition of the base Algorithm 1, we
have uβ∗,I01 = 1/d, and thus,

2β0 =
1

23d
≤ αβ∗,I01 and β∗ ≤ β0 ≤ αβ∗,I02 ,
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where the last inequality follows by the fact that 2β0 ≤ αβ∗,I01 and the bound on ū1,i/ū2,i for i ∈ [d]

from Corollary 24. Therefore, by definition of τ we must have that τ > 2 and αβ∗,I0τ−1 ≥ β∗ > αβ∗,I0τ .
Thus, by invoking Proposition 16 and Lemma 23 (in particular (57)), we get

τ−1∑
t=1

(`t(ut)− `t(u∗)) ≤
τ−1∑
t=1

(`t(u
β∗,I0
t )− `t(u∗)) +O(lnT ),

≤ O
(
d2 ln4 T

)
− 204d ln2 T

β∗
. (58)

Now, let β′ := β∗/2 and S = S([τ + 1, T ]) ⊂ I denote any disjoint partition of [τ + 1, T ]
that contains at most 2 log2 T elements in I; this is guaranteed to exists by (Daniely et al., 2015,
Lemma 1.2). The fact that J β′ = ∅ together with Proposition 16 and the second inequality in
Lemma 23 implies

T∑
t=τ+1

(`t(ut)− `t(u∗)) ≤
∑
I∈S

∑
t∈I

(`t(u
β′,I
t )− `t(u∗)) +O(|S| lnT ),

≤ O
(
|S|d2 ln4 T

)
+

34|S|d lnT

β′
,

≤ O
(
d2 ln5 T

)
+

204d ln2 T

β∗
,

where the last inequality, we used the fact that β′ = β∗/2 and |S| ≤ 2 ln2 T ≤ 3 lnT . Combining
this with (58) and using the fact that `τ (uτ )− `τ (u∗) ≤ ln(dT ) (since uτ ∈ C̄d−1) completes the
proof.

D.2. Proofs of Lemma 23 and Corollary 24

Proof of Corollary 24. We start by the first inequality. By Lemma 8, we have

‖wt − pt‖∇2Ft(wt) ≤ 64(eη)3/2. (59)

Note also that for any i ∈ [d − 1], we have ∇2Ft(wt) � ∇2Ψt(wt) � eie
ᵀ
i /(ηew

2
t,i), since

ηt,i ∈ [η, ηe]. Therefore, (59) implies that (wt,i − pt,i)2/(ηew2
t,i) ≤ 642(eη)3. Rearranging this

implies the bounds on p̄t,i/w̄t,i for the case where i ∈ [d − 1]. Also, we have that ∇2Ft(wt) �
∇2Ψt(wt) � 11ᵀ/(ηew̄2

t,d). Therefore, (59) implies that

642(eη)3 ≥ (〈wt,1〉 − 〈pt,1〉)2/(ηew̄2
t,d) = (w̄t,d − p̄t,d)2/(ηew̄2

t,d).

Rearranging this inequality yields the desired bounds on p̄t,i/w̄t,i for i = d. We now bound
w̄t+1,i/w̄t,i for i ∈ [d]. By definition of wt+1, we have

‖wt+1 −wt‖∇2Ψt(wt) ≤ ‖wt+1 −wt‖(∇2Ψt(wt)+Vt),

=

∥∥∥∥∥ (∇2Ψt(wt) + Vt)
−1∇t

1 + 4
√
eη‖∇t‖(∇2Ψt(wt)+Vt)−1

∥∥∥∥∥
(∇2Ψt(wt)+Vt)

=
‖∇t‖(∇2Ψt(wt)+Vt)−1

1 + 4
√
eη‖∇t‖(∇2Ψt(wt)+Vt)−1

≤ 1

4
√
eη
.
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Thus, since∇2Ψt(wt) � eieᵀi /(ηew̄2
t,i), for all i ∈ [d], we get that (as we did above)

(w̄t+1,i − w̄t,i)2

ηew̄2
t,i

≤ 1

16ηe
, ∀i ∈ [d].

Thus, after rearranging, we obtain the desired bounds on w̄t+1,i/w̄t,i. Finally, we have

ūt,i
ūt+1,i

=
(1− 1/T )w̄t,i + 1/(dT )

(1− 1/T )w̄t+1,i + 1/(dT )
≤ 1 ∨ w̄t,i

w̄t+1,i
≤ 4

3
,

where the last inequality follows by the fact that 3/4 ≤ w̄t+1,i/w̄t,i ≤ 5/4.

Proof of Lemma 23. Let u∗ be as in (56). We first show (57). Since β ≤ αβ,It , Lemma 21 implies
that

β ≤ 8−1 ∧ |8〈gβ,Is ,u′′∗ − uβ,Is 〉|−1,

for all s ∈ I ∩ [t], where gβ,Is := ∇`s(uβ,Is ). Therefore, by the assumption that t > min I and
Theorem 15, we have∑

s∈I∩[t]

(`s(u
β,I
s )− `s(u∗) ≤ O

(
d lnT

η

)
+

34d lnT

β
− at

32η lnT
, (60)

where at := maxs∈I∩[t]

∑d
i=1 ū

′′
∗,i/ūs,i. Now the fact that β > αβ,It+1 implies

1

β
≤ 8 ∨ max

s∈I∩[t+1],i∈[d]

8ū′′∗,i
ūs,i

≤ 8at+1 + 8 ≤ 32at/3 + 8,

where the last step follows by the bound on ūt,i/ūt+1,i from Corollary 24. Further, combining this
with (60), we get that

t∑
s∈I∩[t]

(`s(u
β,I
s )− `s(u∗)) ≤ O

(
d lnT

η

)
+

34d lnT

β
− 1

32η lnT

(
3

32β
− 3

4

)
,

≤ O
(
d2 ln4 T

)
− 204d ln2 T

β
.

where we used that η = 1/(2862d ln3 T ). When, β ≤ αβ,It , for all t ∈ I , we can simply invoke (60)
and discard the negative term to obtain the second claimed bound of the lemma.

Appendix E. Adaptive Meta-Algorithm for Mixable Losses (AdaMix)

In this section, we present a version of PAE (Zhang et al., 2019) that yields an adaptive, logarithmic
regret in the expert setting with mixable losses (see Definition 6). That is, we present an algorithm
that enjoys a logarithmic regret on any interval I ⊆ [T ] when the losses are mixable.

Recall the sets I and I|T from §4.2 which are defined as

I :=
⋃
i,k∈N

{
[2ki, 2k(i+ 1)− 1]

}
and I|T := {I ∩ [T ] : I ∈ I} ∪ {[T ]}.
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Algorithm 4 AdaMix: Adaptive Meta-Algorithm for Mixable Losses.
Require: I) Grid G of β values, horizon T , and η > 0; II) Instances (Aβ,I)β∈G,I∈I|T , where Aβ,I

is active during I; III) a substituting function Υ:
⋃
J⊆I|T ∆(G × J ) × U |G|×|J | → U for the

losses (ft : U → R).// The substitution function Υ will be chosen to satisfy (62).

Set J0 = ∅.
for t = 1, . . . , T do

Identify the set of newly active intervals J̃t = {I ∈ I|T : min I = t}.
Set Fβ,It−1 = 0 for all β ∈ G and I ∈ J̃t.
Update the set of active intervals Jt = Jt−1 ∪ J̃t.
Receive uβ,It ∈ U from each Aβ,I such that β ∈ G and I ∈ Jt.
Set qβ,It−1 = e−ηF

β,I
t−1/Zt for β ∈ G and I ∈ Jt, where Zt =

∑
β∈G,I∈Jt e

−ηFβ,It−1 .

Play ut = Υ (Qt−1, Ut), where Qt−1 := (qβ,It−1)β∈G,I∈Jt and Ut := (uβ,It )β∈G,I∈Jt .
Observe ft and set Fβ,It = Fβ,It−1 + ft(u

β,I
t )− ft(ut), for all β ∈ G and I ∈ Jt.

Send ft to each Aβ,I such that β ∈ G and I ∈ Jt.
Update the set of active intervals Jt = Jt \ {I ∈ I|T : max I = t}.

end for

Much like PAE, AdaMix (Alg. 4) takes in a set of base algorithms/experts (Aβ,I), where for expert
Aβ,I , β represents a parameter in some predefined grid G ⊂ R and I ∈ I|T represents the interval on
which the expert is active; in this case, expert Aβ,I is initialized at round t = min I and terminates
after round t = max I . Alg. 2 assumes access to a substitution function Υ:

⋃
J⊆I|T ∆(G × J )×

U |G|×|J | → U for the losses ft : U → R, such that, for all J ⊆ I|T , Q ∈ 4(G × J ), and
U := (uβ,I) ∈ U |G|×|J |,

ft(Υ(Q,U)) ≤ −η−1 log
∑

β∈G,I∈J
Qβ,Ie−ηft(u

β,I),∀t ≥ 1. (62)

Such a substitution function is guaranteed to exist when the losses (ft) are η-mixable (see Def. 6).
For the case of Cover’s loss (1), which is 1-mixable (in fact 1-exp-concave), the substitution function
can be set to Υ(Q,U) =

∑
β,I Q

β,IUβ,I (this recovers PAE), which satisfies (62) with U = Cd−1

and (ft) ≡ (`t). We now state the guarantee of AdaMix (Alg. 4) relative to the performance of the
experts (Aβ,I):

Proposition 25 Let η > 0 and G be a set s.t. |G| ≤M . Further, let (uβ,It )t∈I , β ∈ G and I ∈ I , be
the outputs of the subroutine Aβ,I within Alg. 4 in response to a sequence of η-mixable losses (ft).
Then, the outputs (ut) of Algorithm 4 with a substitution function Υ satisfying (62), guarantee∑

s∈I∩[t]

(fs(us)− fs(uβ,Is )) ≤ (2 ln t+ lnM)/η, for all I ∈ I, β ∈ G, and t ∈ I. (63)

Now, an adaptive, logarithmic regret for mixable losses follows easily from this proposition. To see
this, let J be any interval in [T ]. Then, by (Daniely et al., 2015, Lemma 1.2) we know that there exist
disjoint sets I1, . . . , IN ∈ I such that

⋃
i∈[N ] Ii = J and |N | ≤ O(lnT ). Now, if any subroutines

Aβ,I achieves a logarithmic regretRβI (u) ≤ O(η−1lnT ) within the interval I against any comparator
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u, (63) implies that
∑

s∈J(fs(us) − fs(u)) ≤ 1
η (2|N | lnT + |N | lnM) +

∑
i∈[N ]R

β
Ii

(u) ≤
O( ln2 T

η ).
Proof of Proposition 25. The proof of the proposition follows from an extension of the proof of
(Zhang et al., 2019, Lemma 6).

In this proof, we denote by At the set of active experts at round t; that is, At := {Aβ,I : I ∈
Jt, β ∈ G}. For notational convenience, we will write

∑
Aβ,I∈At to mean

∑
β∈G,I∈Jt . By the

assumption on the substitution function in (62), we have

e−ηft(ut) = e−ηft(Υ(Qt−1,Ut)) ≥
∑

Aβ,I∈At

qβ,It−1e
−ηft(wβ,I

t ), (64)

where Qt−1 = (qβ,It−1)β∈G,I∈Jt , Ut = (uβ,It )β∈G,I∈Jt , and

qα,Jt−1 =
e−ηF

α,J
t−1∑

Aβ,I∈At e
−ηFβ,It−1

.

for any J ∈ I|T and α ∈ G. Rearranging (64) we get∑
Aβ,I∈At

e−ηF
β,I
t =

∑
Aβ,I∈At

e−ηF
β,I
t−1 · eηft(ut)−ηft(w

β,I
t ) ≤

∑
Aβ,I∈At

e−ηF
β,I
t−1 . (65)

Summing (65) over t = 1, . . . , s, we have
s∑
t=1

∑
Aβ,I∈At

exp(−ηFβ,It ) ≤
s∑
t=1

∑
Aβ,I∈At

exp(−ηFβ,It−1)

which can be rewritten as

∑
Aβ,I∈As

exp(−ηFβ,Is ) +
s−1∑
t=1

 ∑
Aβ,I∈At\At+1

exp(−ηFβ,It ) +
∑

Aβ,I∈At∩At+1

exp(−ηFβ,It )


≤

∑
Aβ,I∈A1

exp(−ηFβ,I0 ) +
s∑
t=2

 ∑
Aβ,I∈At\At−1

exp(−ηFβ,It−1) +
∑

Aβ,I∈At∩At−1

exp(−ηFβ,It−1)


implying

∑
Aβ,I∈As

exp(−ηFβ,Is ) +

s−1∑
t=1

∑
Aβ,I∈At\At+1

exp(−ηFβ,It )

≤
∑

Aβ,I∈A1

exp(−ηFβ,I0 ) +

s∑
t=2

∑
Aβ,I∈At\At−1

exp(−ηFβ,It−1)

=
∑

Aβ,I∈A1

exp(0) +

s∑
t=2

∑
Aβ,I∈At\At−1

exp(0)

=|A1|+
s∑
t=2

|At \ At−1|.

(66)
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Note that |A1|+
∑s

t=2 |At \ At−1| is the total number of experts created until round s. From the
structure of geometric covering intervals and the fact that |G| ≤M , we have

|A1|+
s∑
t=2

|At \ At−1| ≤Ms (blog2 sc+ 1) ≤Ms2. (67)

From (66) and (67), we have

∑
Aβ,I∈As

exp(−ηFβ,Is ) +
s−1∑
t=1

∑
Aβ,I∈At\At+1

exp(−ηFβ,It ) ≤Ms2.

Thus, for any interval I ∈ I and s ∈ I , we have

exp(−ηFβ,Is ) = exp

η ∑
t∈I∩[s]

(ft(ut)− ft(uβ,It ))

 ≤Ms2,

which completes the proof.

Appendix F. Why the Ada-BARRONS Restarts Work

Before discussing the Ada-BARRONS restarts, we first give some more details on the regret bound
of the base algorithm. In particular, we highlight that the RHS of (4) (which is a bound on the
sum of divergences in the regret bound of BARRONS) can cancel the bound O(β−1d lnT ) on
the stability term as long as β ≥ αT (u)/2 and η ≤ O(1/(d lnT )). This is because αT (u) ≥
1
8 ∧mini∈[d],t∈[T ]

pt,i
8ut,i

. In fact, by choosing η small enough and as long as αT (u)/2 ≤ β ≤ αT (u)

on can ensure that what remains in the regret bound of BARRONS is

RT (u) ≤ Õ(d2)− Cd ln2 T

β
,

for some C > 0. Before discussing how one might ensure that αT (u)/2 ≤ β ≤ αT (u), we
reiterate that what enables the cancellation of the term O(β−1d lnT ) is the sum

∑T
t=1(DΦt(u,pt)−

DΦt(u,pt+1)) in (3) that comes out of the mirror descent analysis. This idea of canceling terms
thanks to negative Bregman divergence terms originated from the work by Agarwal et al. (2017)
on combining Bandit algorithms. Foster et al. (2020) recently showed that on can use FTRL with
slightly modified gradients instead of mirror descent to achieve the same goal in a Bandit setting.
The approach of the latter fails to lead to an efficient algorithm in our setting since it is not possible
to show that the Newton decrement of the damped Newton step is small on rounds where the iterates
(ut,i) reach new minima.

As we already discussed in §3.1, since the sequence of returns (rt) is not known up-front, it
is not possible for any algorithm to pick β so that the condition αT (u)/2 ≤ β ≤ αT (u) is always
satisfied. Aggregating multiple instances of BARRONS with different β’s also fails since αT (u)
depends on the outputs of the algorithm; and so changing β changes the target αT (u) for the base
algorithm (see also discussion in (Luo et al., 2018)). Instead of aggregating base algorithms, the
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approach taken by Luo et al. (2018) consists of restarting the base algorithm on round t if the current
estimate for β satisfies β > αt(ut), where ut is the regularized leader:

ut ∈ argmin
u∈∆̄d

d∑
i=1

− lnui
ηt,i

+
t∑

s=τ

`s(u).

and τ is the round where the current instance of the base algorithm was initialized. By stability
of the iterates (ut) and (pt) it is possible to show that αt−1(ut−1) ≥ β ≥ αt−1(ut−1)/2, and so
invoking the regret bound of the base algorithm for the current epoch yields

∑t−1
s=τ (`t(pt)−`t(ut)) ≤

O(d2 ln2 T )− Cβ−1d lnT . When there are no restarts, the regret bound of the algorithm is simply∑t−1
s=τ (`t(pt) − `t(ut)) ≤ O(d2 lnT ) + Cβ−1d ln2 T . Starting with β = β0 and halving β every

time there is a restart and letting τi [resp. βi] be the start round [resp. the β] of epoch i and M be the
total number of epochs, the regret of the meta-algorithm is bound by

RT (u) ≤
M∑
i=1

|`τi(pτi)− `τi(u)|+
M∑
i=1

τi+1−1∑
t=τi+1

(`t(pt)− `t(u)),

≤
M∑
i=1

|`τi(pτi)− `τi(u)|+
M∑
i=1

τi+1−1∑
t=τi+1

(`t(pt)− `t(ut)),

≤
M−1∑
i=1

Õ(1) +

M−1∑
i=1

(
Õ(d2)− Cd ln2 T

βi

)
+ Õ(d2) +

Cd ln2 T

βM
, (68)

= Õ(d2)−
M−1∑
i=1

Cd ln2 T

21−iβ0
+
Cd ln2 T

21−Nβ0
= Õ(d2) +

Cd ln2 T

β0
, (69)

where (68) follows from the regret bound of the base algorithm and the fact that pt,u ∈ ∆̄d, for
all t (the latter ensures that `t(pt)− `t(u) ≤ Õ(1)), and the last inequality follows by the fact that
M ≤ O(lnT ) since infu∈∆̄d

αT (u) ≥ 1/(dT ) (also because (pt) ⊂ ∆̄d). By choosing β0 = Ω(1),
(69) leads to the desired regret bound.
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