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Abstract

Gradient Langevin dynamics (GLD) and stochastic GLD (SGLD) have attracted considerable
attention lately, as a way to provide convergence guarantees in a non-convex setting. However, the
known rates grow exponentially with the dimension of the space under the dissipative condition.
In this work, we provide a convergence analysis of GLD and SGLD when the optimization space
is an infinite-dimensional Hilbert space. More precisely, we derive non-asymptotic, dimension-
free convergence rates for GLD/SGLD when performing regularized non-convex optimization in a
reproducing kernel Hilbert space. Amongst others, the convergence analysis relies on the properties
of a stochastic differential equation, its discrete time Galerkin approximation and the geometric
ergodicity of the associated Markov chains.

1. Introduction

Convex, finite-dimensional optimization problems have been studied at length, and there exists a va-
riety of well-understood algorithms to solve them efficiently (Nesterov, 1983, 2004; Hiriart-Urruty
and Lemaréchal, 1993; Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006). In a non-convex
optimization setting, however, these methods are only guaranteed to converge to stationary points
of the objective function. This is to be contrasted with the ubiquity of non-convex optimization in
machine learning applications, e.g., deep learning (Robbins and Monro, 1951; Duchi et al., 2011;
Zeiler, 2012; Kingma and Ba, 2014), tensor factorization (Signoretto et al., 2013; Suzuki et al.,
2016), Bayesian optimization (Vien et al., 2018; Vellanki et al., 2019), and non-convex loss learning
such as robust classification (Masnadi-Shirazi and Vasconcelos, 2009). In a different perspective,
stochastic gradient Langevin dynamics (SGLD), which can be seen as stochastic gradient descent
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methods with additive Gaussian noise injection at each iteration, was introduced by Welling and
Teh (2011). In the case of a strongly convex objective function £, recent studies (Dalalyan, 2017b)
highlighted the connections between sampling from log-concave densities f(z) o exp(—BL(x))
concentrated around the minimum of £, and minimizing £. Such distributions can be obtained as
the stationary distributions of a first order Langevin dynamics. Chiang et al. (1987); Gelfand and
Mitter (1991); Roberts and Tweedie (1996) studied the convergence of the dynamics to the station-
ary Gibbs distribution, and the concentration of the samples around the global minimum, while more
recently Dalalyan (2017a); Durmus and Moulines (2016, 2017) analyzed the convergence rates of
discrete time Langevin updates for sampling from log-concave densities.

Recent studies have shown that Langevin-dynamics-based algorithms converge near a global
minimum of £, even when £ is not convex (Raginsky et al., 2017; Xu et al., 2018; Erdogdu et al.,
2018; Vempala and Wibisono, 2019; Nagapetyan et al., 2017; Duncan et al., 2017). The analysis re-
lies on the connection between the iterates of Langevin dynamics based algorithms and the Markov
chain solution of the continuous time Langevin equation, which admits the Gibbs measure as invari-
ant distribution. Raginsky et al. (2017) provided a non-asymptotic convergence rate in expectation
to an almost minimizer of SGLD. Xu et al. (2018) improved the convergence rate while also pro-
viding an extension to variance-reduced algorithms. In an alternative approach, Zhang et al. (2017)
provided bounds on the hitting time of SGLD to neighborhoods of local minima. However, these
results only apply to finite-dimensional optimization, with rates growing exponentially with the di-
mension under the dissipative condition. This is quite problematic for optimizing high dimensional
models such as deep learning networks that frequently appear in machine learning.

In this paper, we resolve this problem by extending Langevin dynamics algorithms to the
infinite-dimensional setting and study their convergence rates. Our results rely on assumptions that
are classical in the GLD/SGLD literature, and in the literature of approximation of invariant laws
of stochastic partial differential equations (SPDE) in infinite dimension. In particular, we leverage
the weak approximation error of the discrete time scheme of SPDEs analyzed by Bréhier (2014);
Bréhier and Kopec (2016) for general inverse parameter 5 > 1, where Debussche (2011); Wang and
Gan (2013); Andersson and Larsson (2016) gave discretization error non-uniformly over the time
horizon, and utilize the geometric ergodicity' of continuous time dynamics (Jacquot and Royer,
1995; Goldys and Maslowski, 2006). Results in the infinite-dimensional setting usually involve a
linear operator acting as a regularizer and whose spectrum “replaces” dimension in the convergence
rates. More specifically, our contributions can be summarized as follows:

* We give a non-asymptotic error bound of the infinite-dimensional GLD/SGLD implemented with
a spectral Galerkin method, which has an explicit dependency on the inverse temperature 5 and
is uniform over all time horizons.

* For that purpose, the geometric ergodicity of the time-discretized dynamics is proven, which is
known to be non-trivial. Besides this, we also give a bound on the discrepancy between continu-
ous and discrete time dynamics that is optimal with respect to the step size.

* We give an upper bound of the distance between the expected objective value under the invariant
measure and the global optimal solution in the infinite-dimensional setting.

1. The term “geometric ergodicity” means exponential convergence to its stationary distribution Kendall (1959)
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2. Notation and Framework

2.1. Notation and background on RKHS

Let (M, (-, -)) be a Hilbert space. We will also use the notation || - |3 to explicitly indicate the norm
| - || is of H. Cf is the set of bounded, twice continuously Fréchet differentiable functions with
bounded first and second derivatives. We denote by B(H) the set of bounded linear operators from
H to H and || - ||3(3) denotes the operator norm. For a discrete or continuous Markov chain { X},
note E,[] £ E[- | Xo = z]. To consider a “regularization” in the space #, we define a subspace
Hg of H as

i = { SR onfi + iy ok < oo}, 1)

where (f1,)72, is a complete orthonormal system in H and (u1)72, is a sequence of non-negative
reals in decreasing order. We equip Hyx with an inner product (-, )7, defined as (f, g)y, =
Py O‘Zf’“ for f = Zkzo apfr € Hix and g = Zkzo Brfr € Hi, while the inner product in
H can be expressed by (f,g) = > pe oSk Accordingly, we define the norm || - ||7;, as the one
induced by the inner product (-, -)7/, . As an important example of H i, we suppose a Reproducing
Kernel Hilbert Space (RKHS), with a reproducing kernel K. Suppose that H is the Hilbert space
of L’-integrable functions with respect to a measure p. Then, we can define the integral operator

with the kernel K as T f(z) £ [ K(z,y)f(y) dp(y) for f € H, and the RKHS corresponding to

the kernel K can be written as Hx = T[1</ 2L2(p) (Caponnetto and De Vito, 2007; Steinwart and
Christmann, 2008). Actually, it is known that, if (p, fi)3, are the eigenvalue-eigenfunction pairs
of Tk (i.e., Tk fr = prfr), then the RKHS Hx defined in this way is expressed as in Eq. (1). In
this sense, we say “RKHS” to indicate H i in this paper, but we note that our analysis covers more
general situations than the usual RKHS setting.

In the following, for L : H — R, the gradient VL(x) is defined as the Riesz representor
of the Fréchet derivative of L, DL(x) (i.e., the unique vector satisfying Vh, L(z + h) = L(x) +
(VL(x), h)+O(||n]|*)). We will identify n-order derivatives with nth-linear forms, and with vectors
when there is no ambiguity (e.g., we write D3L(x) - (h, k) for the Riesz representor of | € H
D3L(x) - (h,k,1)).

2.2. Algorithm: gradient Langevin dynamics

We consider the following optimization problem:

A
in £ A L - 2 2
min £(z) 2 L(z) + 5 [l#]. @
where A > 0 and L is potentially non-convex. Assuming L admits at least one global minimizer,
we note ¥* £ argmingy L(z), ¥ £ argmin,cy L(z) + %HmH?HK The difference between
the expected loss of the two optimal solutions, L(z*) and L(Z), has been extensively studied, for
example, in least squares estimation in RKHS (Caponnetto and De Vito, 2007).

We study the gradient Langevin dynamics (GLD) iterations to solve Problem (2). To define
GLD, we need to make a heavy use of the infinite-dimensional Brownian motion.

Definition 1 (Cylindrical Brownian motion/Wiener process (Da Prato and Zabczyk, 1996)) Given

* a complete orthonormal system of H, (f;)icr, where I C N,
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o afamily ({W*(t)}+>0)ier of independent real Brownian motions,
then {W (t)}1>0 = {3_;c; W'(t) fi}e>0 is called a cylindrical Brownian motion.

Then, GLD updates are defined as follows: Xg = ¢ € H, and
Xnt1 = SpXn —nS,VL(X,,) + ,/Q%Snen, 3)

where 17 > 0 is the stepsize, § > 5 is the inverse temperature parameter, the variables &,, are
iid. cylindrical standard Gaussian (i.e., €, = > €nifi for enr ~ N(0,1)iid.) and S =
(Id+n3V H”%K)_l (ie., Syr = S0 ok /(1 + nAug ') for z = 332k fr). Here, note that
€y is not included in H g, but by applying .S, it is pushed back to H i under Assumption 1 that we
will mention later. This can be seen by noticing HS,,an%{K =Y ,u,;lsik/(l + nA,u,;l)Q <
Yoreo 6%7]6/[17)\(1 + )] S, 5%7,6/[(77)\)214:2] = Op(1). A crucial analysis tool is to see
Eq. (3) as a time discretization of the following SPDE (Da Prato and Zabczyk, 1996): X (0) = x,
and

AX(1) = ~VL(X (1) +4/2aW ()
=~V (LX) + 3IXO3,) + /2w (e), )

where {W (t) }+>0 is a cylindrical Brownian motion (Definition 1). Although the cylindrical stan-
dard Gaussian variable ¢,, and Brownian motion W (t) are not included in # a.s., the dynamics is
pushed back into H thanks to the existence of the regularization term. We refer to Da Prato and
Zabczyk (1996) for the existence of solutions, its regularity conditions and related mathematical
details. Note that the scheme Eq. (3) is semi-implicit: applying (Sn)_l to both terms yields

X1 = Xo = n(VE(Xa) + 3V [ XnialZy) + /250

Approximated computation. Strictly speaking, the infinite-dimensional GLD scheme presented
above is computationally intractable. The Galerkin approximation method projects the dynamics
to a finite-dimensional subspace to make them computationally feasible. Let Hy be an N + 1-
dimensional subspace of A that is spanned by (f)Y_: Hy = Span{fi | ¥ = 0,...,N}. Let
Py : " — Hn be the orthogonal projection operator onto Hy: Py (> pe ok fi) = E,JCV:O g fr.
Then, the GLD with Galerkin approximation can be formulated as

XN = 8y (XN = gVLn(XY) + /28 Pven) )

where Xév = Pyxg € Hy and VLy(z) £ Pyn(VL(Pyz)). Since this scheme is essentially
finite-dimensional, it can be implemented in practice.

Next, we consider a stochastic gradient variant of GLD (stochastic GLD; SGLD). Let us con-
sider a finite sum risk minimization setting where L(z) = nln S €i(x) for ¢; : H — R which is

Fréchet differentiable’. SGLD makes use of a mini-batch of stochastic gradients (Welling and Teh,

2. We may generalize the setting to a situation where VL(z) = E¢[g(x, )] with a stochastic gradient g(-,€) in a
straightforward way.
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2011) instead of the full gradient VL(x): g,(x) = % i1, VVUi(r) where I, is a random subset
of {1,..., N} chosen uniformly at random and ny, = |I,,|. Then, its update rule is given by
Vs =8y (VY = ngan (V) + 25 Pyen) ©

where g, v () 2 Pn(gn(Pyx)) and YON = Pnyxzog € Hy. These approximation techniques
significantly reduce the computational cost.

2.3. Assumptions

Our goal is to study the convergence of the iterations Eq. (3), i.e., to bound L(X,,) — L(z*) with
high probability. For this, we need to make assumptions on the RKHS H  and on L. We first make
the following assumption on H x, independently of the objective L:

Assumption 1 There exists a constant C > 0 such that p, < Cx/(k + 1)? (Vk).

We note that a finite-dimensional situation is also allowed, i.e., up = 0 (Vk > ko) for some ko €
N, as long as Assumption 1 is satisfied for £ < kg. The weaker assumption pp ~ kP with
p > 1 is sometimes made in the literature (Caponnetto and De Vito (2007, Definition 1. iii)), and
Steinwart and Christmann (2008)). While we focus on the specific p = 2 setting for technical
simplicity, our analysis also applies to the more general setting of Andersson et al. (2016). To deal
with more general settings, one can consider the case where H itself is an RKHS for a kernel K’,
with Mercer decomposition K'(z,y) = >, vkgx()gx(y). Then, the “rescaled” kernel K (z,y) =
> i leVkgk(2) gr (y) with pug, ~ 1?12 satisfies Assumption 1.

Next, we put assumptions on the objective function L. The first one is classical for gradient-
based optimization (Nesterov, 2004).

Assumption 2 (Smoothness) L is M-smooth: Vz,y € H, ||VL(z) — VL(y)|| < M ||z —y|.

In view of Eq. (1), we have that A £ —%VHH%K is a diagonal operator, characterized by

Afy = —ik fx. The following assumptions enforce more smoothness on L w.r.t. a norm induced
by A through its second and third order derivatives.

Assumption 3 There exists o € (1/4,1) and Ao, Ca 2 € (0,00) such that ¥z, h, k € H, |D*L(z) -
1/2
(h,})] < Bkl where 2l 2 (Sysolmw)= |t fil2)

This assumption is not standard in the previous works. However, we put this assumption so that the
time-discretized dynamics satisfies geometric ergodicity. Fortunately, this assumption is not restric-
tive in machine learning applications (see the discussion just after Assumption 1 and Section 2.4 for
details). The next one is common in the SPDE discretization literature (Bréhier and Kopec (2016,
Assumption 2.7), Debussche (2011, Assumption (2.3))). It is used in Section 3.1.2 to obtain the con-
vergence of the stationary distribution p"7 of the discrete time dynamics (3) to that of the continuous
time one (4) as n goes to zero.

Assumption 4 (Bréhier and Kopec (2016, Assumption 2.7)) Let Ly : Hy — R, Ly = L(Pnx).
L is three times differentiable, and there exists o/ € [0,1), Co € (0,00) such that for all
N € NandVa,h,k € Hy, |D3Ly(x) - (h, k)|, < Cor lIhllo Ikllg and || D*Ly () - (h, l{:)HO <
Co 1]y Elly ol
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As an example, Assumption 4 is satisfied with & = 0 when L is C* with bounded second and third-
order derivatives. Next, we assume the following condition to ensure the dissipativity (Proposition
2) which is essential to show geometric ergodicity.

Assumption 5 One of the following two conditions holds:
i) (Strict Dissipativity) X > M pg, or
ii) (Bounded gradients) ||V L(-)|| < B for a constant B > 0.

Under Assumption 5 (i), the objective function becomes convex because the regularization term is
sufficiently strong, which induces faster convergence. On the other hand, under Assumption 5 (ii),
the lower bound of ) is no longer imposed so that the objective function is not necessarily convex,
but the boundedness of the gradient is assumed instead to ensure convergence. The Cy-semigroup
(St)t>0 generated by A is the one of diagonal operators determined by Sy f, = e M/tk fi. Ttis easy
to check that this semigroup is strongly continuous. Therefore, the Langevin SDE (4) is an instance
of the more general semilinear SDE:

dX () = (AX(t) + F(X(t))) dt + QAW (b), )

where F'is globally M-Lipschitz, () is bounded and symmetrical and A is a linear unbounded op-
erator on H generating a strongly continuous semigroup (Da Prato and Zabczyk, 1996; Bréhier,
2014; Bréhier and Kopec, 2016). For the SDE (4), we have F = —VL, Q = 237 '1d and
A= —%VHH%K The SDE (7) has been extensively studied in finite dimension (Khasminskii,
2011); in the infinite-dimensional case, several results have been shown such as the existence
and uniqueness of its invariant measure (Da Prato and Zabczyk, 1992; Maslowski, 1989; Sowers,
1992), the exponential convergence of the time ¢ distribution to this invariant measure (Jacquot and
Royer, 1995; Shardlow, 1999; Hairer, 2002) and its explicit convergence rate evaluation (Goldys
and Maslowski, 2006); the invariant measure 7 is given by

dm

@(:B) o exp(—BL(x)),

where vg is the Gaussian measure in H with mean 0 and covariance (—(3A4)~! (see Da Prato and
Zabczyk (1996) for the precise definition of infinite-dimensional Gaussian measures). If these
assumptions are verified, we have a weaker condition than strong convexity: dissipativity (Hale,
1988).

Proposition 2 (Dissipativity (Hale, 1988)) Under Assumptions 1, 2 and 5 there exist constants
m, c > 0 verifying
Vo e H, (Ax — VL(z),z) < —m ||z]* + ¢ (8)

The dissipative condition proved in this proposition is quite standard to show the existence of
the invariant law. For example, Raginsky et al. (2017); Xu et al. (2018) showed the convergence to
the invariant law under the dissipative condition in the finite-dimensional situation. This condition
intuitively indicates that the dynamics stays inside a bounded domain with high probability. If X,
(or X (t)) is far away from the origin, then the dynamics is forced to get back around the origin.
Thanks to this condition, the dynamics can possess finite moments, which is important to ensure the
existence of an invariant law. In fact, Assumption 5 ensures existence of a invariant law.
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Proposition 3 Under Assumption 5, the processes { X (t)}i>0 and { Xy }nen, admit (at least) an
invariant law.

The proof can be found for example in Proposition 4.1 of Bréhier and Kopec (2016), which utilizes
the Krylov-Bogoliubov criterion (Da Prato and Zabczyk, 1996, Section 3.1). This proposition does
not indicates the uniqueness of an invariant law. However, Bréhier and Kopec (2016) also showed
that the continuous time dynamics X (¢) has a unique invariant law and is geometrically ergodic.
As for the discrete time dynamics X,,, the uniqueness of the invariant law is already well-known
under the strict dissipative condition (Assumption 5 (i)) (see Bréhier and Kopec (2016) for exam-
ple). However, the uniqueness has not been shown under the bounded gradient condition (Assump-
tion 5 (ii)). In Section 3.1.1, we will show that the uniqueness also holds under Assumption 5 (ii) if
we assume Assumption 3, which has not been assumed in previous work.
Finally, in the SGLD setting we put the following stronger assumption on each ;.

Assumption 6 Each {; satisfies Assumptions 2 to 4 and Assumption 5 (ii) instead of L, where the
constants in each assumption are uniform over all 0; (i = 1,... ,ny).

2.4. Motivating examples

There are several machine learning problems in which non-convex optimization on a high/infinite-
dimensional Hilbert space is required. Such examples include deep learning, tensor factorization
(Signoretto et al., 2013; Suzuki et al., 2016), robust classification using non-convex losses such as
Savage (Masnadi-Shirazi and Vasconcelos, 2009), Bayesian optimization on function space (Vien
et al., 2018; Vellanki et al., 2019), and any other kernel method with non-convex loss. For the
sake of instructive exposition, let us consider a situation where we observe n, input-output pairs
(zi,y:i)i, where 2z; € Z is an input and y; € ) is its label. Accordingly, we define a loss function
¢:R x R — R and an empirical risk: L(f) = 1 S°™" ¢(f(z;), y;) for a function f : Z — R.

T n i=1

(i) Neural network: Consider a neural network fy(z) = 2%21 amo(w,},z) where o is the sig-
moid function, the width M can be either finite or infinite, W = (wy,,)}_; C R? is the learnable
parameter, and (a,,)M_; C R is a fixed parameter. Then, by considering x = [w{ ,wg ,...]" as an
element of a Hilbert space, optimizing the parameter W falls into our setting if |a,,| = o(m~/?):
miny = S0 0(fw (21), vi) + % > bt llwm || where £ is a smooth loss function. Note that the
width M can be arbitrary (infinite/finite), which is quite different from typical analysis of neural net-
work optimization such as mean field theory (Sirignano and Spiliopoulos, 2018; Mei et al., 2018;
Nitanda and Suzuki, 2017; Chizat and Bach, 2018). See also Suzuki (2020); Suzuki and Akiyama
(2021) for statistical analyses of neural networks optimized by the infinite dimensional Langevin
dynamics presented in this paper.

(ii) Tensor decomposition: Signoretto et al. (2013); Suzuki et al. (2016) considered a nonparamet-
ric low-rank tensor model which is given as f(z) = Ef‘:l Hszl fri(xr) where f, € Hg, is
included in an RKHS H, . Fitting f to a training data by minimizing an empirical risk is not a
convex optimization problem but falls into our setting where Hx = Hy, © -+ @ Hi -

(iii) General formulation: Here, we let { be a Hilbert space of functions on Z (which could be
an RKHS) with complete orthonormal system ( f;)2,. From the expression (1), the (sub-)RKHS

Hx can be expressed as an image of T2 ie., Hi = {f = T11</2h | h € H} and || f||l2

inf

ol

heH: =T /h /2|3 More generally, we define an RKHS H g~ for 0 < + as an image of T;2:
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Hir = {f = T](/Qh | h € H}. We see that v = 1 corresponds to Hy. We employ H g~

~ X
as a model for f and let the corresponding empirical risk be L(x) = L(T2x) (if needed, we
may add a smooth regularization term). In this situation, if we have max; sup,, |¢/(u)| < G and
sup,cz K,(z,2) < R, for G, R, > 0, then

IVL(z) = VL@ < GRyllz — o/[l3. [DL(x) - (h. )] < G/ By S0 . ©)

for z, h, k € H with ||h| = 1 and ||k||o = 1. The proof of these inequalities is given in Appendix
A. Therefore, Assumptions 2 and 3 are satisfied as long as 12, < oo for vy > 1 because the condition
wr < 1/k? makes the right hand of Eq. (9) finite by setting o = (v — 1)/2 + 1/4 > 1/4. Assump-

X
tion 4 is also verified in the same manner. Finally, if we let f = T2, then |[z|l3, = || fll#,.11
holds, and thus it follows that

L(z) + Mzl = L(F) + Allf11%

Therefore, we see that our formulation covers a wide range of kernel regularization learning by
adjusting y appropriately. We would like to remark that we may deal with a situation where L(z)
contains a regularization term 22 ||z||? like L(z) = L(z)+ 20||z||2. See Section A.1 for more details
about this issue.

Kl+v°

3. Main Result

Here, we give our main result on the the non-asymptotic error bound of the GLD algorithm. Define
a constant ¢g as ¢g = 1 under Assumption 5 (i) and ¢g = /3 under Assumption 5 (ii).

Theorem 4 (Main Result, GLD convergence rate) Let Assumptions 1, 2, 4 and 5 hold. If only
the bounded gradient condition (Assumption 5 (ii)) holds in Assumption 5, then we additionally
assume Assumption 3. Suppose the initial solution satisfies ||xo|| < 1. Then, there exist A > 0 for
n > 0 and constants Cy,,, C > 0 such that for any 0 < k < 1/4 and § € (0,1), it holds that,

P(L(X,) — L(z*) > §) < 5_1{L(§:) ~ L(aY)

¢ i -
+ Gy exp(=Aj = 1) + C[ 27 + ( 2§”+1) (1303, a0

where the precise description of the spectral gap A;‘] and the constant Cy is given in the statement
of Proposition 8 with M' = 4/ M /e.

The proof is in Section C. A} may depend on 3 and 7, but is uniformly lower-bounded with
respect to 7 > 0. As can be seen in Eq. (10), there is a competing effect between the regu-
larization A} (ensuring faster convergence of the discrete chain) and the inverse temperature (3
(ensuring better concentration of the Langevin stationary distribution 7). We can see that, for

fixed A, by setting n < logA(*l T/L A) Eq. (10) excluding the optimization unrelated term L(Z) —
n

L(z*) is of order Op(f\—%(logA(%?/{\))l/Q_ki + ﬁ + A). Hence, by setting 3 = A™%2 and n >
log(l/)\)/[A;(AS)\/ég)(l/%“)*l], we have L(X,,) — L(z*) = O,()\). Note also that contrary to
the finite-dimensional setting where 1-order weak convergence is possible, the 1/2 rate in 7 is opti-
mal (Bréhier, 2014). See Remark 6 for the connection to the finite-dimensional analysis. Next, we
give the convergence rate of SGLD.
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Theorem 5 (Main Result, SGLD convergence rate) Under Assumptions 1 and 6 and ||xo|| < 1,
SGLD has the following convergence rate:

¢ —k .
P(L(YnN) - L(l.*) > 5) S.; 571 (671 + Kiﬂ%il + min {\/TT*/\n + \4/7'T*/\n7 Q’nb} )7
0

_ * ép 1/2— 1( /2M 121l =112 ~
where ©, = exp(—A;(nm—1)) + A—%n / 50/ L) A Tt I23,,.) + L(&) —
L(x*) which is the convergence rate of GLD shown in Theorem 4, rj, = %, T =
log  {np(ner—1)/[Bn(ner—np)]} | 1 — (ntr—mp) M M

+ t T t + w and dny, = )\/’7#0 n:zmrribl) {1 + /\uo exp ( ){Ao) }

The approximation error induced by the Galerkin approximation corresponds to (¢g/Af) ,u%izﬁ.

Since puny1 < N2, the approximation error decreases in a quadratic order as the dimension N
increases. The error induced by the stochastic gradient corresponds to /7y, + /7. As the minibatch
size ny, increases, the stochastic gradient error converges to 0. This rate is slightly better than its
finite-dimensional counter part (Raginsky et al., 2017; Xu et al., 2018) by a factor of /n7. This is
due to the regularization term )\||93H3{K

Remark 6 (Connection to finite-dimensional analysis) The existing finite-dimensional analysis
contains an exp(d) term and thus our bound cannot be achieved by starting from these kinds of
finite-dimensional analysis. In our analysis, we overcame this difficulty by imposing regularization
so that the solution is included in an RKHS, which is essentially assuming that the global optimum
is well approximated by an element in the RKHS. The error term n*/2~% with arbitrary small k > 0
is affected by the “complexity” of the space. This term is replaced by 1 in the finite dimension case.
The complexity of the RKHS can be characterized by the decay rate of the eigenvalues (i)
(Assumption 1). If the eigenvalue decay behaves as 1/kP instead of 1/k?, then the error term 171/ 2K
would be modified to n\P~V/P=5 (Andersson et al., 2016). The finite-dimensional case corresponds
to the limit of p — oo and the existing bound 7 is recovered.

3.1. Proof Scheme

Applying GLD and SGLD for non-convex optimization in a finite-dimensional space has been re-
cently extensively investigated by Raginsky et al. (2017); Xu et al. (2018); Erdogdu et al. (2018)
to name a few. However, unlike in the proof of such existing analyses for the finite-dimensional
case, E[L(X,) — L(x*)] cannot be directly bounded in an infinite-dimensional setting where only
convergence for bounded test functions is shown (see Corollary 1.2 in Bréhier (2014) for example).
Instead, the bounded function ¢(x) = o(L(x) — L(z*)) witho(x) =1/(1 + e~ *) — 1/2 is used to
bound the probability of the n-th iterate X,, of Eq. (3) being in a certain level set of L(z) — L(z*),
by bounding E[¢(X,,)] and applying Markov’s inequality (If L is bounded, we don’t need to operate
o and we can directly evaluate E[L(X,,) — L(z*)]).

The seminal paper (Raginsky et al., 2017) derived the finite time error bound of SGLD for
non-convex learning problem utilizing the decomposition

E[¢(Xn) =¢(27)] = E[p(Xn) = o(X (nn)))]+E[G(X (nm)) = o(XT) |+ E[p(XT) —o(27)], (1)

where 7 is the stationary distributions of the continuous Markov chain {X (¢)}+>0 and we denote
by X*# arandom variable obeying a probability distribution . On the other hand, Xu et al. (2018)



MUZELLEC SATO MASSIAS SUZUKI

observed that this decomposition could be improved by utilizing the geometric ergodicity of discrete
time dynamics and proposed to use the following decomposition:

E[¢(Xn) — o(2")] = E[p(Xn) — ¢(XH7)] + E[p(XH7) — ¢(XT)] + E[p(XT) — ¢(z7)], (12)

where /1, is the stationary distribution of the discrete Markov chain {X,,},cn (the existence of
which is not trivial). By using this, it is shown that some polynomial order term with respect to n
can be dropped to obtain a faster rate.> Our analysis employs this strategy. That is, we control each
term in the decomposition of Eq. (12).

Extending this strategy to an infinite-dimensional setting is not trivial. For example, the bound-
edness of the norm of noise ||¢, || does no longer hold, and thus we need an additional regulariza-
tion term AX (¢) to make the solution bounded in # and hit a compact set with high probability.
The time discretization of the infinite-dimensional Langevin dynamics has been studied especially
as a numerical scheme of stochastic partial differential equation (Kuksin and Shirikyan, 2001; De-
bussche, 2011; Bréhier, 2014; Bréhier and Kopec, 2016; Andersson et al., 2016; Chen et al., 2017,
2018). Bréhier (2014); Bréhier and Kopec (2016) derived a weak approximation error of the time
discretization scheme (3) from the stationary distribution 7. However, their proof strategy utilizes
the decomposition Eq. (11) like Raginsky et al. (2017) in the finite-dimensional counter part. As
we have pointed out above, the error bound could be improved by using the decomposition Eq. (12)
instead. Unfortunately, the geometric ergodicity of the discrete time dynamics has not been estab-
lished so far. Therefore, we have introduced Assumption 3 so that the geometric ergodicity holds.

3.1.1. FIRST TERM: GEOMETRIC ERGODICITY OF THE DISCRETE CHAIN

First, we need a moment bound of the chain { X, },cn as follows

Proposition 7 Let Assumptions 1, 2 and 5 hold. Let {Z,},cn solve the dynamics with VL = 0:
Zo = 0and Zngy = SyZn + (/3 Syen with B > 1. Then, Yp > 0, it holds that k(p) =
sup,,>o E(||Z,||”) < oco. Using this evaluation, we have By || X,|| < p" ||zo|| + b (Vn € N) with
(i) (for Strict Dissipativity) p = 1}&2%(} < 1, b = ||=*|| + 2k(1), or (ii) (for Bounded gradients)
<Lb=RB+k(1)

_ 1
P = T¥xn/no

The proof is given in Section D. This is also called a Lyapunov condition. Combined with
this and so called minorization condition, we can show the geometric ergodicity in the following
proposition.

Proposition 8 (Geometric ergodicity) Let Assumptions 1, 2, 4 and 5 hold. If only the bounded
gradient condition holds in Assumption 5, then we additionally assume Assumption 3. Let n >

0,8 > nand V(x) = ||z|| + 1. Then, there exists a unique invariant measure ji, and Ay > 0 such
that for all ¢ : H — Rwith |¢(-)| < V() and ||¢p(x) — ¢(y)|| < M'||z —y| (x,y € H), we have

By [¢(Xn)] = E[p(XH7)]] < Cug exp(=Ay (0 — 1)), (13)

where Cy, and A, > 0 are given by

3. We would like to point out that we have found some incorrect analysis of the error bound in Xu et al. (2018). In
particular, there are several wrong evaluations about dependency of constants (including the spectral gap) on the
inverse temperature parameter 3.

10
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A

A
i) (Strict dissipativity, Assumption 5 (i)) A}, = *° Cry = M'(||zol|% +0),

1+77%0‘7 A1
it) (Bounded Gradient, Assumption 5 (ii)) A}, = 410g121;?‘£j_"1(’)’/?1>_5))6, Cyo = a[f/—i—l]—i—%

for 0 < 6 < 1 satisfying 6 = Q(exp(—O(B)))*, b = max{b,1}, a = b+ 1 and V =
4b/(\/(1+pl/n)/2—p'/7) where p and b are given in Proposition 7.

The proof is given in Section E. Unlike existing work, this theorem asserts the geometric ergodic-
ity of the discrete time dynamics, whilst the geometric ergodicity for “continuous time” dynamics
(Eq. (4)) has been well known, see as an example (Debussche, 2011, 2013). Transforming the
continuous time argument to the discrete time setting is far from trivial because there appears a “in-
tegrability” problem. Indeed, Bréhier (2014); Bréhier and Kopec (2016) pointed out there has been
no work that showed the geometric ergodicity of the time-discretized dynamics. This difficulty does
not occur in the finite-dimensional setting. We resolved this problem by imposing Assumption 3.
Thanks to this, we have exponential convergence exp(—A;;nn) improving the polynomial order rate
A%(nn)*l of existing work.

3.1.2. SECOND TERM: WEAK CONVERGENCE OF THE DISCRETE SCHEME

The second term is linked to the weak convergence of the numerical scheme, i.e., in our case the
convergence of ¢(X,,) to ¢(X (nn)) for any admissible test function ¢ € CZ. We rely directly on
the results of Bréhier and Kopec (2016), who prove 1/2 order weak convergence in time and 1 order
weak convergence in space for numerical schemes that have a semi-implicit discretization in time
with 8 = 1, and a finite elements discretization in space; that is, they showed

E[p(XH") = (XM < Cllgllg n'/>, (14)

where [|¢]|o.2 £ max{[[¢loo, Sup,er V(@) |30, Sup,er [|1D* 6 ()| 530) } for ¢ € CF.
In the general setting, 5 # 1, we need to evaluate the effect of 5. To that purpose, we essentially

consider a re-scaling argument, that is, we observe that if we replace L with L' £ 3L, A with
-1
N £ BXand 7 with £ 7 in Eq. (4) and Eq. (3), then it holds that S, = (Id AVl - \|${K) -

n BA 2 \7! g
(Id —i—ETVH ) HHK) =: Sn/, and thus

Xpt1 = gﬂ’Xn - n/gn’VL/(Xn) +v 277/‘§n’5n,

i.e., {X, }nen is the numerical approximation of dX (t) = —VL'(X(t)) + v2dW (t) with time
step n’. We carefully evaluate how the constant C' is Eq. (14) will be changed after rescaling. We
can see that 3 affects the rate through the spectral gap Aj, which corresponds to the continuous
dynamics (n = 0). Eventually, we get the following result:

Proposition 9 (Case § # 1) Under the same setting as Proposition 8, for any 0 < k < 1/2, 0 <
N0, there exists a constant C' such that for any bounded test function ¢ € Cf and 0 < n < ng, it
holds that

E[p(X*") = p(X M| < C(AG) " 16llgo éan™/> " (15)

The proof is given in Section G. Note that due to the infinite-dimensional setting, the 1/2 rate
w.r.t the time discretization 7 is optimal (Bréhier, 2014). This is to be contrasted with the finite-
dimensional case, where 1 order weak convergence is attainable.

4. More detailed evaluation of ¢ can be found in the proof.

11
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3.1.3. THIRD TERM: CONCENTRATION OF THE GIBBS DISTRIBUTION AROUND THE GLOBAL
MINIMUM

The last term corresponds to the concentration of the stationary Gibbs distribution around the global
minimum of L. In this infinite-dimensional setting, the regularizing effect of operator A is neces-
sary to ensure good convergence properties of the discrete and continuous chains. Hence, even in
the limit case 3 — 0 one cannot expect to have arbitrary tight concentration around the global min-
imum. This is to be contrasted with the finite-dimensional case (Chiang et al. (1987); Gelfand and
Mitter (1991); Roberts and Tweedie (1996)). In fact, A constrains the chain to remain within the
support of a Gaussian process which is compactly embedded in H.

Proposition 10 Under Assumptions I and 2, it holds that

/de—L(:T:) 5; <W+ 1> A <H:cr\/qu + ||@||;K> .

The proof can be found in Section F. The proposition can be shown by utilizing an analogous
technique to the convergence rate analysis of Gaussian process regression (van der Vaart and van
Zanten, 2011). Along with this technique, the Gaussian correlation inequality (Royen, 2014; Latata
and Matlak, 2017) is used. This inequality gives a powerful tool to lower-bound the Gaussian
probability measure of the intersection of two centered convex sets.

3.1.4. ERROR BOUND FOR THE GALERKIN APPROXIMATION AND STOCHASTIC GRADIENT

The error induced by the Galerkin approximation can be evaluated as in the following proposition.

Proposition 11 Let Assumptions 1, 2, 4 and 5 hold and suppose ||x|| < 1. Then, there exists an
invariant measure [ ) for the discrete time Galerkin approximation scheme (Eq. (5)), and for
any 0 < k < 1/2, 0 < no, there exists a constant C' > 0 such that, for any N € N and 0 < n < nq,

Cliolloz. ( 125 | 1/2-s
A i (V" + 7).

Elp(XHVm) — ¢(XT)] <

The proof is in Section G. We see that, by taking N — 0o, we can replicate Proposition 9. Moreover,
the geometric ergodicity of the time discretized dynamics with the Garelkin approximation holds
completely in the same manner as Proposition 8. The discrepancy between GLD and SGLD with
the Garelkin approximation can be bounded as follows.

Proposition 12 Suppose ||xo|| < 1. There exists a constant C' > 0 such that, for any n, N € N,
any 3 > 1 and sufficiently small n > 0,

E[(b(X?]lV) - ¢(YnN)] S len {\/TT*/\TL + \4/74T*/\n7 Q'rlb} ’

where ry,, T™ and qy, are as defined in Theorem 5.

The proof is given in Section H. From these propositions, we can see that the SGLD with the
Garelkin approximation also gives a reasonably good solution for sufficiently large N € N, suf-
ficiently small > 0 and sufficiently large mini-batch size. Proposition 12 is analogous to those
given for finite-dimensional situations (Raginsky et al., 2017; Xu et al., 2018). However, thanks to
the regularization term (appearing as S"), our rate is better by a factor of ,/n7.

12
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4. Other Related Work

Here, we mention other related work that have not been exposed above. An analogous assumption
to Assumption 3 has already been introduced in the analysis of infinite-dimensional dynamics with
nonlinear diffusion term, that is, dWW (¢) is replaced by a nonlinear quantity o (X (¢)) dW (t) for
o(X(t)) € B(H) (Conus et al., 2019; Debussche, 2011; Bréhier and Debussche, 2018). These pa-
pers analyzed the existence of stationary distribution for continuous dynamics and discrete time ap-
proximation for finite time horizon. Chen et al. (2017, 2018) analyzed linear/nonlinear Schrodinger
equations and derived geometric ergodicity, but they analyzed much more specific situations or
stronger assumptions (e.g. the strong dissipativity condition). The geometric ergodicity of infinite-
dimensional Markov processes for discrete time settings has been investigated by Kuksin and Shirikyan
(2001) and infinite-dimensional MCMC such as preconditioned Crank—Nicolson (pCN) (Hairer
etal., 2014; Eberle, 2014; Vollmer, 2015; Rudolf and Sprungk, 2018), and in particular the Metropolis-
Adjusted Langevin Algorithm (MALA) (Durmus and Moulines, 2015; Beskos et al., 2017). Among
them, MALA is the most related to our setting. The biggest difference is the existence of a rejection
step. Since the purpose of our work is rather optimization than sampling, and since the rejection
step is not compatible with stochastic gradient descent, we do not pursue this direction.

Conclusion and Future Work

In this paper, we have presented a non-asymptotic analysis of the convergence of GLD and SGLD in
a RKHS and for a non-convex objective function. The bounds obtained in this infinite-dimensional
setting involve the spectrum of the associated integral operator and a regularization factor instead of
the dimension d, which to the best of our knowledge is the first result on applying GLD in RKHS
to infinite-dimensional non-convex optimization. In future work, we hope to alleviate the somewhat
strict Assumption 1 linked to current results from the numerical approximation literature. Drawing
inspiration from Xu et al. (2018), we also plan to extend our analysis to variance-reduced SGLD
algorithms.
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Appendix A. Proof of Eq. (9)

X X
Note that, for x = > )7 g o fr € H, T2x(z) = Y 5o 142 0k fi(2), and thus we can obtain a repro-

X X
ducing formula T2 z(z) = (x,1(2)) where ¥, (2) = Y72° o 7 fi(2) fr. ¥~ defines the kernel
function of Hy~ as K (2, 2") = (¥ (2), ¥ (2)))n = Z,If o Ky f1(2) fe(2"). Using this, we see that

+2
vy ()13, = o720 i fi(2) = Ky (2, 2) and [y (2)[12 = 32020 1 12 (2) = Kyyae(2, 2).
If ||¢!]|co < G, then it is G-Lipschitz continuous. Therefore, it holds that

HVL ) — VL(z')]|
< o D ) — s O Gl Al 'L
< Tlitrzwl )_ﬁ’(<x/7,¢)’y(z/)>%)| K’Y(Zivzi)+)\0||$_$,”%

Ntr
< sup \/ Ko (2 Z [{z — 2’ 9 (z0))ull + Xollz — 2l

< Gsup Ky(z,z)||lx — H”H + Xoflz — ||y < (GRy + Xo)ljx — || x.

This yields the first inequality in Eq. (9). As for the second order derivative (the second term in
Eq. (9)), first note that

Ntr

— > (0 (20))20) (W (20), M)3a (y (20), K)o + Aol )

=1

1

Ntr

DL(x) - (h, k) =

for h, k € ‘H. Therefore, we have that

ID*L(x) - (h, k) = Ao(h, k)a]
< EZ'”' Wy 2Ol (), )l (20 | —a K
T =1
1 Ntr
< Gmax [y ()12l - > 4y (20) | =all Lo
T =1

Ntr

= Gmax /Ky (i, 2) IIhllﬂfz K20 (2i; 2i) | Fl|o

Ntr

ZK'Y 2a sz Z’L)HkHOz

i=1

1

S GmaX Kfy(zzazl)Hh’”H T
4 Tty

o0

—2
> Ko

< G\ [ (a2l | 3772 Kl < G/ bl
= k=0
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A.1. Remark on existence of regularization term

As an example of L(x), it is useful to consider a setting where L(z) can be expressed as L(z) =
L(x) + ’\2—0||:U||2 for L(x) that satisfies the assumptions listed in the main text and Ao > 0. In
this case, L(z) does not satisfy the bounded gradient condition Assumption 5 (ii). However, by
considering the following update rule, we can show the same error bound for L(x):

Xpi1 = S;(Xn — VE(Xn) + @En)a
/ Ao A -
where S = [Id (Vo + 3V I | -

Appendix B. Proof of Proposition 2

Proof Let us assume A > My (Strict Dissipativity). Assumption 1 implies, for x =372, o fr,

(Az,z) = —)\< kZ:O %fk, ];)akfk>

=-)\) &

o M

A2 Ay
<——)> ap=——|z|7, (17)
MOkZ:Ok ol

and Assumption 2 implies

(=VL(z),z) < M ||z — 27| [l]

< M lal|* + M ]| ]l (18)
Hence,
2 *
(Az = VL(z), ) <—(g — M) ||+ M || [|lz*]|.
Therefore, if M < ﬁ there exists m,c > 0 such that Eq. (8) holds. The proof when Assump-
tion 5 (ii) holds is similar. |

Appendix C. Proof of main result: Theorem 4 and Theorem 5

In light of Sections 3.1.1 to 3.1.3, we can now state our final result. We introduce the following
bounded test function:

¢(z) = o(L(z) — L(z")) (z € H), (19)
where o(u) = 1+i*u — % (u € [0,00)) is concave and takes values in [0, 1) (note that L(z) —

L(z*) > 0 for any x € #H). We can show that ¢(x) is 41/ M /e-Lipschitz continuous. By the
M -smoothness of L, it holds that

Ly) < L) + (g~ 2. VL() + oy — o]
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Therefore, by the optimality of x*, we have
L(z*) < inf L(z — eVL(x))
e>0

62
ggg{L@)—@VL@LVL@»+V€ HVLw»R}:L@»—ZLHVL@MH

Hence,
V()| = llo’(L(x) — L(z"))VL(z)|| < o'(L(z) — L(z"))
< |o’(L(z) — L(z*))|/2M (L(z) — L(z*))

< V2M sup {Ul(u)ul/Q} = V2M sup {mi_u)ze“ulﬂ}

u>0 u>0

1/2

< 4V2M sup {e*uulﬂ} = 4V2M (?) : =4/ M]/e.
u>0

This yields M’-Lipschitz continuity of ¢ where M’ = 4,/M/e. Moreover, we can check that

lp(-)| < V() for V(z) = ||z|| + 1 (because ¢(z) < 1 (Vo € H)), and ¢ € CZ(H), hence ¢ falls

within the scope of Propositions 8 and 9.

First, we note that there exists a unique invariant measure i, for the discrete time dynamics
{Xn}n and there also exists a unique invariant measure 1y, for the discrete time Garelkin ap-
proximated dynamics {X,]LV }n by Proposition 10. To obtain the result, we make use of Markov’s
inequality: forany 0 < § < 1,

P(L(X,) — L(z*) > 6)

< P(9(X,) > 0(5))
E[¢(X,,)

=7 00)
1

= 5o (Blo(Xn) — (X)) + E[p(X") — o(XT)] + E[p(XT)]).

The first term (E[¢(X,,) — ¢(X™)]) can be bounded by Proposition 8. The second term (E[¢(X ") —
¢(X™)]) can be bounded by Proposition 9. Next, we bound the third term. Since o(u) < u for all
u € [0,00) and L(z) — L(z*) > 0 for all z € H, it holds that

Elp(X™)] < E[L(XT) — L(«")] = (E[L(XT)] = L(Z)) + (L(Z) — L(z"))- (20)

(. Markov’s inequality)

Then, the first term (E[L(X™)] — L(Z)) in the right hand side is bounded by Proposition 10. Finally,
we observe that 1/0(0) < 5/6 forall § € (0, 1). Combining all results, we obtain Theorem 4.
As for the Theorem 5, we use the following decomposition

E[¢(Xn)] =E[p(Y,") — ¢(X)] + E[p(X,)) — ¢p(XFxvm)]
+ E[p(XHNm) — (X)) + E[p(X™)].
We apply Proposition 12 to the first term (E[¢(Y,Y) — ¢(XV)]) and apply Proposition 11 to the
third term (E[¢(X#(Vm) — ¢(X™)]). As for the remaining terms, the same bound as Proposition 8

can be applied to the second term (E[p(X.Y) — ¢(X*@)]), and the last term E[¢(X™)] can be
bounded by Eq. (20) with Proposition 10. This yields Theorem 5.
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Appendix D. Proof of Proposition 7

Proof

First, we show the first assertion about {Z,, },,cn. This is proved in Bréhier (2014) for 5 = 1.
The S > n assumption is necessary to ensure that k(p) can be treated as a constant w.r.t § and
7 in the following. We recall the main arguments of the proof. {Z,},cn is the semi-implicit
approximation of the continuous Markov chain defined by:

{dz(t) = AZ(t)dt + \/%dW(t), @1
Z(0) = 0.

Under Assumption 1, it can be shown that sup,~o E(||Z(t)||") < oo, Vp > 1. Finally, {Z,} is a
numerical scheme with strong order % ((Printems, 2001, Theorem 3.2)), which implies the result.
Next, we show the assertion on { X, },cn. The discrete chain Y, £ X, — Zn,n > 0 satisfies

Yot1 = 5yY, —nS,VL(X,).
Hence, using Assumption 2 and the fact that X,, =Y, + Z,,, we get

Yos1ll < [1Spllop [Yn = nVL(Xn)]l
< 7 (LM IVl + nM (2" [| +1 Zal)))-

Taking the expectation and using E || Z,,|| < k(1), this yields
E[[Ynsill <tz (1 + nM)E [V +0M (2" + k(1))),
from which we deduce
E (Yol < o7 llzoll + 29520 ([l + (1)), @)

Therefore,
nM ([|z*]| + k(1))

Beq Xl < " lwoll + = sy, s + K1), 23)
Finally, we conclude by observing that 1= pm =
The proof with bounded gradients is similar. Since
Yosall < [1Spllop [Yn = nVL(Xn)|]
< m(HYnH +nB),
we have ( )
1—-p") nB Ko
Yol < p"|lzol| + xol| + B
where p = m Hence, noting || X, || < ||Y,] + ||ZnH, we have that E[|| X,[|] < p" ||zl +
RB+ k(1) |
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Appendix E. Proof of Proposition 8

Proof under the Strict Dissipativity Condition (Assumption 5 (i)) First we prove the geometric
ergodicity under Assumption 5 (i). To show that we first prove the exponential contraction:

A\
1 X0 = Yollu < [ 1= n2—r | [ Xo— Yol (24)

Once we have shown this inequality, it is easy to show the geometric ergodicity.
According to the update rule, we have that

2
Xm1=:%(Xﬁ—nVLmay+vC§%),
/2n
Y1 =29, <Yn —nVL(Y,) + Ben> .

Therefore, by taking difference, we obtain
X1 = Yoq1 = 5y [(Xn = Vo) = n(L(zn) — L(Yn))].

Then, by the triangular inequality, this yields

1
[ Xns1 — Yoqalln < m(”Xn — Yolla + 0l L(Xn) — L(Ya) %)
Ho
1
< By (1 X5 = Yalla + M| Xy — Yall)
1+7]%
1+nM
< ol Xa = Yal
+77%
<1 w — M 1X0 — Yol < [ 1 w = M n||X Yol
< 1-n— —Yallu < (1 —n—v 0 — Yol xu.
T A L+n

Now, we already know that there exists an invariant low j1,, under the strong dissipativity condition.
By assuming Yy ~ py, and Xg = xg € H, we can show the following geometric convergence:

E[¢(Xn)] — Exnp, [0(X)] = E[p(Xn)] — E[¢(Y,)] < ME[|| Xy, — Yal2]

A n
sMQ—M*%)MMrmML
1+77%

Now, we see that
E[ll Xo — Yolla] < llzollw + E[[[Yolln] < llzolla + b.

In the last inequality, we used that E[||Yo||%] = E[||Yallz] < p"E[||Yo||%] + bforalln =1,2,...
by Proposition 7 and we took n — oco. As a consequence, we obtain

A

M
El¢(Xn)] = Exop, [$(X)] < M'exp (—nn f°+ 77>\> (l[zoll# + b),
Ho

where we used the relation 1 — a < exp(—a) for a > 0. This yields the assertion.
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Proof under the Bounded Gradient Condition (Assumption 5 (ii)) Next, we prove the theorem
under the bounded gradient case (Assumption 5 (ii)). Under the strict dissipative condition, the
statement can be immediately shown and thus we omit the proof.

We adopt the technique of Theorems 5.2 & 5.3 from Goldys and Maslowski (2006), and show
the geometric ergodicity via Theorem 2.5 of Mattingly et al. (2002). We note that Theorem 2.5
of Mattingly et al. (2002) is shown for a finite-dimensional setting, but it can be adopted for an
infinite-dimensional setting if the “minorization condition” (Lemma 2.3 of Mattingly et al. (2002))
and “Lyapunov condition” (Assumption 2.2 of Mattingly et al. (2002)) are satisfied.

Since the Lyapunov condition is already shown by Proposition 7, we only need to show the
minorization condition. Let ,uim be the law of

k—1
2
Z¢, = Ska+ | /E77 Y sk, (25)
=0
and p, ,, be the law of .
20 " ke
T = 1 /ﬁ77 3 skl (26)
=0

Let@ £ %77 Id, and

k—1
Qr 2 Qs
=0

for k = 1,2,..., and ()9 = 0. Then, uj , is the Gaussian process on H with mean S,"]“a: and
covariance operator ), and i, is the centered Gaussian process on H with the same covariance
operator. By the Cameron-Martin formula, 2, " and p,, are equivalent with density given by

dug

- 1 — 2
T 0) = exp {<les!;x,y> -5 @ ?skal| } , @7)

(see Da Prato and Zabczyk (1996) for example). We can easily check that Qp > kQS,QIk. Then, we
have that

oy Ul P B L ke 8
k-1, * 1/2 ok > P2 — sk o112 — 2
(. 50y = 5 Q2 Sha | = el — st I — g el

and thus we have the following lower bound of the density:

1 1
)= exp {5 (15 5. ) ol = 51855 w1 | 28)

For a given NV (where N will be determined later on), let

dllll£7n
d:“’k,n

Ky £ QkS;]]Viij_Vl/za
for k =0,...,N. Here, we define

AQ?, €T —1/2 €T
Zkf{ = Zk,n — KiQy / (ZN,n —Y),
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for z,y € H, and denote Z kn = 22’2. In particular, we notice that

-1/2

Zk,n = Zgy — KkQN ZN s
by definition. Let
N-1
0E Y sy
=k

Hy 2 Qy 1/2SN kQU2,
By a simple calculation, we can show that
Yie=Znn—S) " Ziy = Qn-iQN'Zny — 57]7V_k2k,n-
Finally, let

ap = QN1/2HkYk = Q HkQXfl ZNy — QN1/2 kSéV*k 21@,7,,
\—,_/ ~—_——
£B1(k) £B3(k)
and accordingly, define
Gk = e — ay.

Then, we can show that (ZM) 1 and ((x)y are independent of Zy ,, by the same reasoning as
Goldys and Maslowski (2006). To see this, we only have to show that their correlation is 0 because
they are Gaussian process. First, we can show that

Q_1/2 Hk,(Q1/2S7]7ka _ Sé\ffk’Ql/ZSf;’—k) (K < k)

* —1/2 * Lt
E[exap] = Qka'Hk/]E lerYyi] = {Q]—Vl/g Hy (QY/28N=F) (K > k)
N—kHE n =
_Jo (K < k)
N He QY2 Hy (K > k)
For k < K/,
E [apag] = Qj}l_/,fHkIE [YiY)'] Hk’QN”i/ — 1/2Hk (Z 52 V- ) Hk'Q;\/l,/;f/
1=K/
N—k'—1
1/2 - ~1/2
_QN/ (Z Ssz NQ >Hk’QN/k/
= Q;_/szQN—k'kaQNl_,fl = 1/2HkQ%2 o Hi.

5. Here, for x,y € H, the bounded linear operator z — z(y, z) is denoted by xy* for simplicity.
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Hence, when k < £/, it holds that
El(ex — a)(ew — awr)’] = 0,
and when k = &/, we have that
E[(ex — ag)(ex — ax)] = 1d —H}.
Finally, we can see that
El(ex — ax) Ziv ] = Q255 — { QN2 HiQ7' Qn — QR HS) ~H(@QuS ™ — K@y PQn) |
_ Q1/2S7]7ka _ Q1/2srzivfk ~0,

which indicates ¢, = € — «y is independent of Zy ;. Furthermore, we have that

E[ZNn< ~E[ZPY)) = ElZny(Z70)Y) = ElZnaZi,) — ElZngZi ,Qn' ' Kl
-Q Z Sf;—lsff—l — QNN KL = QuSN TF — QoI F = 0.
=0

This also yields that Zy ,, and ZZS (k=1,...,N — 1) are independent.

As we have stated, we now show the minorization condition. Let P/ (x,-) be the probability
measure of the law of X,, with X, = x, then by the Girsanov’s theorem, Py, (x, -) is absolutely
continuous with respect to z%; . and the Radon-Nikodym density is given by

. N-1
Pule) ) g [exp {fn > <<—77VL(Z§,7,),6k>\/277//3 T viz,) |P)} 123, = ] .

dufy M k=0

The right hand side can be evaluated as

B N—1
E |exp {2” 3 <<—WL<zz,n>,ek>¢2n/ - viLzg,) H2>} Zny =y — SV ]
k=0
N—1
_E |exp {fn > <<—WL(ZZ,77), C’”\@ T VL(ZE,), (By(k) Zny — Bﬂk)ék,n»\@
2
~DIVEEZEI?) | |20 = 53
=K

/B N-—1 R
exp {277 kZ:O (<—WL<Z,if;y> cm/%

>T > 2 2 T
AV LZE. BB — S)0) - Bal) Zag)y | —’;rwzk;z)nz) }] |

where we used the fact that (Z);, and (Cy)y are independent of Z N, Therefore, by Jensen’s
inequality, the right hand side is lower-bounded by

exp {fn > (E[-09LZE). B - 5Yo) - Bat)Ze)] [ - BB LEEDI) } -

k=0
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Thus, by the assumption that ||V L(-)|| < B, the right hand side is lower-bounded by

exp{‘ Z( (CIVLEZ), Bk = 80| + nBE(IB2(6) 2 ]) 5"%2}

N-1
>eXp{\r > E (VL. B - S| - P - > B0 el - il 32}
N-1 N
>exp{\/>Z]E VL Zx,y) Bl( )(y_S7]7V$)] _577]\732_ kZO]E[HBQ(k)ZkW’Q}}'
(29)

For z € H, we have

Z [V L(Z5), Bi(k)2)|

N-1
Z B (VL) Bi(k)2)] + 13- > B [(VL(E) - VL), Ba(h)2)]
N-1 Bk_J?[_l N
\F<(Z Bi(k ) (0), z> /5 Y E[((VL(ZE) — VLO), Bi(k)2)]
k=0 k=0
The first term of the right hand side can be lower-bounded by
N N—-1 N N-1
fj”T - % S (Bi(K)VL(0), ) = ﬁ”T - % > (@) Q' VL), 2)
k=0 k=0

The second term can be evaluated as

\/> (VL(Z{¥) - VL(0), B \/> L(Z3Y) - 2}’5;3),31(@@}7

where Z,fg is an intermediate point between 2,?}7/ and 0, i.e., there exists § € [0, 1] such that

Z,ff; = 02;:3 . By Assumption 3, this can be further evaluated as

e

L(Z7Y) - ZPY), B \/ ZCQQE !Z“’HHIIBl( )2l
b ~

> -0, Y B[22 -

lﬁ

=2
2

HBl( )zl5

=2
N

e
Il
)
2»
Il
,_.o

e " lQSY Ry 2.

22 Y E[IZENIE] -

=~
Il
=}
[\D\ =
=~
Il
=}
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Here, we have

~ _ ~1/2 ~1/2
E[IZ7 23] = TriQu@n QR+ 155 - Kv@y 28w + K@yl
< Tr[QS, (Id —S3™) 71 + 2|3, + 2y 1%,
where we used ||Sk K Q_1/2SN|| < 1and ||KkQ_1/2|| < 1. Therefore, we obtain
N-1

B Zx,y
2 2 [V L(ZY), Bi(k)2)|

pnN
> _ L_ﬁ QZ Te[Q Sy (1d —S3™) ™1 + 2|13, + 2[lyl3,)

4
N—

,_.

5 S (QSY QR VLO). ) + 18y IR,
k=0

Next we give another bound for z = Sflv x. In this situation, thanks to the factor S,]]V , we have a
simpler bound:

B N-1 R
\/; E|[(nVL(Z{Y), Bi(k)Sy )]
k=0

Bn BnN
>[5 D] BIBi(k)S) x| > — Z 1B (k) S x>
k=0
Notice that

N—-1 N-—1 s N-—1
ST Bik)?2 = Y QN HRQNV)? = Y Qv ik HEQY = ZQN kOS2 N TR QQR?
k=0 k=0 k=1

N-—1
_ Sg(N—k)QQ]—V2 _ ]—Vl

k=0

Therefore, Zi\:ol | B1 (l<:)S,]7Va:H2 can be bounded as
N .12 /2gN 112 < —1 2 _ p 2
> 18108 el = 1Q3 280l < 5 el = g el
where we used Qn = N QS%N and Q) = %’7 Id. Therefore, we have

. N
Z (VL. Bubsy )] 2 - B - P

=

-1

N—-1
E[|Ba (k) Zil?) = > Tr(Q7- 152V MQYV2)(Qr — 2QF QN S2VH) + Q)]
k=0

£
Il

0

29



MUZELLEC SATO MASSIAS SUZUKI

N-1
< Ty SENTPQYH2(Q) — 2QkQy' QN + Q)]
k=0
N-1
= TlQy5 MY (Q — Qn)l
k=0
N-1 N—k—1 N-1
S Tr QN2 ks4 (N— k ( Z Sn l)] — Z [QN2 kS4(N k) QQ —kSQk]
k=0 k=0
N-1 N-1
= > T[QRL SV SIN Q) = Z Tr{(S,” — 1) [Qd —53N )~ EN STV =R Q)
k=0 =0
N-1
= —1d)S2N Z S 2NR 1) < T | (S, - Td) SN (S, R 1) Y SR
k=0
=Tr (5,72 —1d)spY (S 2 — Id) YSEN —1d)(Sp —1d) '] = Tr [S2N (SN — 1d)(S7 — 1d)~
< T [(SpN = S2V) (S —1d) 7' < T [(S2NF2 = 52N)(S2 —1d) ™! (N >1)
< Tr [S2V] < Tr [(Id +2NnA) 7' .
Therefore, we obtain, for all y € Im( %2),
dP) (x, -
)
KN
BnN B
> exp{ - ===l 3 (T5QS2d -52) ) + 2l + 21wl
k=0
1 N—-1 9
= <<Qs,§v—’%2;v1w0>,y> + HQSgV-’“Q;VIyHi)
k=0
- BB - el
4

— BnNB? — Tr [(Id+2NnA)~'] }

C2,Tr[QS:(1d —S2N) 71 — Tr [(Id +2NnA) ']

2
. eXp{_BnN(lJrE)B ) BN

4
=—Ln,N,B8
BN 5 p 2
(75t g ) el
=—Ry(2)
BnN 15 2
~EC oI = 5 Y- (@S TFQRIVLO0)y) + 1QSY QR IR) }
k=0
::—]\y(y)
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Combining the inequalities (28) and (29), we finally obtain that

dPW ($> ) dPW (iE, ) dlu’?\/
= y) = — 2 (y)—(y)
dpny dpgy, dpny

1 1 ~ -
> e { =5 (14 gy ) bol? = GISVQRIP - Covs = Rulo) = R t0) ). G0)

Fro now on, we give a lower bound of the right hand side. To do so, we set N = 1/n. Under this

setting, let A (z) := ngHQ + Ay (x) and Ay (y) := ﬁHS,]?VQ]_VIyH2 + Ay (y), e,

dPX,(m, )

1 (y) > exp{—Cynp— A(z) — Ay(y)}. (31)
/‘LN,n

We evaluate the terms in the exponent in the right hand side one by one.
(i) (Bound of €, y g): Note that

11 = S3™) Mlsery < [1— (L + 02 ) 27 < (Lm0 o) M1+ 1A o)™ — 17

< eXp(anA/:U’O) _ eXp(2)\/u0) ’ (32)

2NnA/ o 2X/ 1o

and thus

_ 2n _ 2n _
Tr[QS;(Id — 5PN~ = gTr[Sﬁad — SN < ETr[Si]HS%(Id — S s

21 exp(2)/ 1) i L 2n exp(2A/po) [ 1
< STEDEEIINA (1) 2 < €, P R [

B 20w = B 2\ o nA
_ ¢, Y10 exp(2A o)

K B A3/2 )

where C,, is a constant depending on ()72, and we used py, < 1/k? in the last inequality. This
converges to 0 as 7 — 0 and 3 — oo, thus Tr[QS7(Id — S7V)~!] = O(1). Consequently, we have

B(1 +5B2%)

I + icg,zcux/ﬁ’”‘“e’q)(w’“) + Tr [(Id+24) 7] = O(B).

C”’Nvﬁ - 2\3/2

(i) (Bound of Ay (x)): By the definition of Ay (z), it holds that

(B LN BN B e B e 2 _ 2
M) = (5 (14 g0 ) + 25 €t g Yol = (B4 5622 ) el = 0@l

(ii) (Bound of Ay(y)): Finally, we evaluate Ay(y). Whenn = 1/N,

N-1

1 ol 2 ol
C2allyl?+5 D (@SN QR VL) y) + Q8 QR ).
k=0

B

1 _
M) = ISy QI+

We can show that Ay(Z) < oo for Z ~ pup, almost surely, as follows. Since 0 < Ay(y), we
only have to evaluate Ez.,, . [Ay(Z)]. To do so, we note that iy, is a Gaussian process in #
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with mean 0 and covariance ), which can be easily checked by its definition. By using this, we
evaluate the expectation of each term as follows.

1 _ 1 _
B, | 55V QR = (5T Q20N = TS5

@Tr[SQN(S +o 5N TR

@Tr[Q‘ngN(Id—Sﬁ)(Sﬁ(Id—S%N))‘l]

1 —1@2N 2\ @2y—1 exp(2)/ o) ..
S@TY[Q Sy (Id=53)(55) ]W (. Eq. (32))
-1 gaN g2 gy €PN o)
= —Tr[Q'SPN(S,? — 1d)] N i

48

1 exp(2)/po)
< %TY[&%N(QWA + UQAQ)]W
_ Lexp(2)/po) i 20/ e + (N 1)

8  2M\ o (1 +nA/pe)?NY

k=0
_ Lexp(2A/po) i 1 20/ n n(\ )
8 2Mpo = (LA )N \ (L4 0N )N (14 A /) 22
1exp(2M/10) < 1 2/ ik n(\ )
=8 20/ z;) (14X ) ((1 M) (L %A/Mk:)2>
1 exp(2)/410) 1
=8 20/ kzzo (1+ )‘/Mk)(2 )

1+ 2nexp(2X/uo) Cp
< —£ —0(1),
-4 2M o VA W)

where (', is a constant depending only on (4 )1, and we again used j1; < 1/ k2 in the last inequality.

: :
B, | 5CAIZIF] = 202, TQw) -

— nC2,T{(1d - 52V)(S; — 1d) ™!

8 :
5 Ca a2 TrQ(S] — S7 ) (1d —57) 7]

=nC2, i(l — (LM )72 @0 e+ 0P (N p)?) !
k=0

<770§,2Z(2?7/\/Mk)’1= o) Zuk_ “20” o(1),
k=0

where C}; is a constant depending only on (1)), and we again used 1, S 1/ k? in the last inequality.

N-1

> ((@syax'vL.2)" + los) oy 212 )

EZ’VMNJ] [
k=0

32



DIMENSION-FREE CONVERGENCE RATES FOR GRADIENT LANGEVIN DYNAMICS IN RKHS

=

il

0

where Id, : # — H is a linear operator defined by (z,Iday) = Y 5%, (k)**@xyy for z =
(2k)k,y = (yr)k € H. The first term in the right hand side can be evaluated as

<QSéV QN VL(0), QN QS —’“Qﬁvm)} = <QQS$(N_’“)Q]V1VL(O),VL(O)>,

and its summation becomes

> {(@2SNNQIVL(0), VL(0) ) = (QQNQR VL(0), VL(0)

k=0

— (QVL(0), VL(0)) = ?HL(O)P — O(n/p).

The second term can be evaluated as

> TQS) QN VAN 1da VONQS) PO = Z Tr[Q?S2N-F Q! 1d,]

0

i

TrQQNQN 1da] Z 2 (1, ”Z 2o = ”cu,a—om/ﬁ)

M

B
Il

0

where we used the assumption o > 1/4 and y;, < 1/k%. Summarizing the above arguments, we
obtain that

Bz, [Ay(Z)] < O(1). (33)

(iv) (Combining all bounds (i), (ii), (iii)). Combining these bounds for C), n g, Ax(x), Ay (y),
we may give a lower bound of P} (z,T") for a measurable set I' C 7 uniformly for all 2 with norm
smaller than a given R, which is required to show the minorization condition. Let

B

CR é exp <—C,77N75 - 5(2 + 0312)R2>

for R > 3k(1) which will be determined later, then we have shown that for all z € H with ||z]| < R,
exp(~Cyng — Ax(@)) > cp.

By Eq. (30), this gives that

Pl (,T) > cr / M)y (d2),
T

for all x € Br and a measurable set I' C . In particular, if we define

/ e My, (dz)
I'nBgr

33
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where Z = |, By ey, (dz) so that [i is a probability measure, then

Pl(z,T) > cr / e ME o (dz) > su(I), (34)
I'nBg

where
§ & cpZ.

Here, we give a lower bound of §. By Proposition 7,

Ezpun o 1211 1 1
>1-————=>1—-—=k(1) > -
where we used R > %k:( 1) and thus ¢ can be lower-bounded as
1
6= CR/ e My (dz) = CRNN,&(BR)/ e My (dz)
Br uns(Br) sy

> crin,s(Br) exp <— Ay(Z)MN,n(dZ)>

uns(Br) Jpy,
1
> genesp (<2 [ A (a2
H
1

where we used Eq. (33) in the final inequality. Therefore, we have shown that there exists a proba-
bility measure fi, with i(Br) = 1 and fi(B%) = 0, such that Eq. (34) is satisfied for any = € B and
a measurable set I' € B(#), where § > %CR exp (—0(1)) > fexp(—Cy s — Ax(z) — O(1)) 2
exp(=0(8)).

By Proposition 7, the following contraction condition holds for ay = pV = (m)N <
exp(—A/po) < 1, b= max{52 B + k(1), 1} under the bounded gradient condition:
Eqp [| XNl < an[lzof +5 (Vn € N).
Set V(z) = ”:UH +1landC = {x eEH|V(x) < \/(lJrTib)/?—aN}’ then we have that C = B
for R = ———20_ — 1. Here, we give lower and upper bounds of R. As for the lower bound,

V(tan)/2—an B B
we can easily see that R > %b -12> %b > %k(l) Next, we give an upper bound. Jensen’s
inequality and the fact 0 < ay < 1yield /(14 an)/2 —an > Hyon N Jan = Iovon N
Here for a > 0, it is easy to see (1 + a)¥/? > 1 + aN/2 and thus we have 1 — (1 4 a)~ /2 >

1—(1+aN/2)7t = 11%,2/2 Substituting a = An/po, 17@ > 141:71(\/%7(/2(22)0) Then, by using

o . 2b 4bpo(1+2/(2p0)) _ o7 Ko
n = 1/N, we obtain that WAETTRyEE < 5 =2b(1 +252).

Then, Theorem 2.5 of Mattingly et al. (2002) asserts that there exits a invariant measure p” for
the Markov chain (X;x); and the chain satisfies the geometric ergodicity: for ¢ : H — R such that

() <V (),

E[¢(Xin)] = Exmpun[d(X)] < &V +1](1 = 6)% + V2V (20)y' (k[V + 1))

1
— 35
75 (35)
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where kK = b+ 1,V = 2sup,ec V(z) = ﬁ, v=+/(ay+1)/2and a € (0,1) so
an)/2—an
<

that y(x[V + 1])® < (1 — 6)°. In particular, we may choose a € (0,1) as

_ log(1/)
log(k(V +1)/(1=14))

Here, by noting that

W€ may assume

> = .
~ 4log(k(V+1)/(1-9))
Then Eq. (35) is simplified to

E[6(Xin)] — Exn[6(X)] < (n[f/ F1)4 m) (1- 0y, (36)

This shows the geometric ergodicity of the sequence (X;n);°;. To extend this result to “unsampled”
sequence (X,,)72;, we may apply the same argument to the sequence (X;n1,)72, for each n =
1,..., N —1. Applying Eq. (35) where x is replaced with X,, and taking expectation with respect
to X,,, we have

E[¢(Xin-4n)] = Exmpn [¢(X)] 37
. < fE[\/g( >]) 1 g
< ( V2(p" Hx\o/’; bt 1)> (1—6)* (- Proposition 7)
< <m +1] + W) (1—8)a, (38)

Finally, we note that for 0 <n < N,

(1—0)% < (1 — §)2tNFn=N)/N < (1 — §)alUN+m/N=1] < oxpy (—a[(IN 4 n) /N — 1])
< exp (—A;;[n(lN +n)— 1]) ,

where we set

A1
- min (2%, 5) B
=002 oamv + 0y oy~ Hep(=0@)).

This yields the assertion. []
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Appendix F. Proof of Proposition 10

Lemma 13 (Gaussian correlation inequality) Let v, be the Gaussian measure in ‘H given by
a random variable Y2 &ivifi where (§)32 is a sequence of i.i.d. standard normal variables
and (v;)32, is a sequence of real variables with 0 < Y22 2 < oo. For two sets C! = {X =

SRpaif; € H | XRg0iutY <1pand = {X = X% if; € H | | D2 0inl”| < 1}
where (ugl));‘il is a fixed non-negative sequence and (MEQ));‘il is a fixed sequence of real numbers

satisfying > 2, (,u(?))2 < 00, we have

Voo (C1 N C?) > 1 (CHrae (C).

Proof Let C. an C2 be the cylinder set that “truncates” C! an C? up to index n: C} = {X =

1 2
SXgoufi € M| Xigaut) <1} and €2 = {X = XX aifi € H | | Tl gaunl”| < 1}. By
the Gaussian correlation inequality (Royen, 2014; Latata and Matlak, 2017), it holds that

VOO(CT% N C’IQL) > VOO(CrlL)VOO(Ci>-

We note that (C.),, is a monotonically decreasing sequence, i.e., C; C C} for m < n, and we see
that N, C} = C!. By the continuity of probability measure, this yields that lim,, o Voo (CL\C') =
0 and lim,, o Vso(CL) = v(C'). On the other hand, for any ¢ > 0, there exists N such that
Z;’iN(%MZ@))Q < ¢ by the assumption (3 52,72 < oo and Z;ﬁo(u?’)? < 00). Hence, it holds
that E[(3°52 v %&u?))Q] =y N(%MEQ))2 < ¢, which indicates that, by Markov’s inequality,

Voo ({20 aifi | |52y aind?| > 6}) < ¢/

forany § > 0. If weset C2, = {> % a;f; € H ;| < 1+ €}, then this and the
(e) =0 =0 i

(2)

continuity of Gaussian measures (note that Zfio §i7vil; 1s a one dimensional Gaussian measure

and has density with respect to the Lebesgue measure) yield that, for any € > 0, there exists /N such
that for all n > N, it holds that

I/OO(C(2_€)> —e< Voo(cz) < VOO(C(QE)) + ¢
Voo(C N CE ) — € S oo(C' N CR) < voo(C' NCEy) + €.

Since lim;, o0 Voo (CL\C1) = 0, the second inequality also gives
Voo (Cp N CT_oy) — 26 < 1o (Ch N CR) < woo(Cp N CT) + 26

for any n > N with sufficiently large N'. Therefore, since lime_o Voo ((C7,)\C?) U (C*\C7,))) = 0
by the continuity of Gaussian measures and lim,, VOO(C}l\C 1), by taking the limit of ¢ and n of
this inequality, we have

Voo (CP N C?) = lim voo(CL N C2).
n—oo
Hence, applying the Gaussian correlation inequality to the right hand side yields

Vao(C1 N C?) = lim Vso(CL N C%)
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> M Voo (C3)reo (C2) = Voo (C)ao (CP).

T n—oo

Proof [Proof of Proposition 10] The proof relies on comparing the stationary distribution 7 of

Eq. (4) to the Gaussian stationary distribution yég ) of Eq. (21) (case F' = 0). We then conclude by

using the small ball probability theorem (Kuelbs and Li, 1993; Li and Shao, 2001) and Lemma 13
0ON V. First note that

/L@Mﬂ@—L@)
=3 / log{e ™" (H=)=L@)} dr(z)

___é/k%{keﬁﬂ£ﬂL@D}dﬂ@Q-—élogA

= —KL(x[[v{)) — §log(A), (39)
where 1/(’8 ) | is the invariant distribution of Eq. (21), i.e., the centered Gaussian on H with covariance

operator (—3A)1, A £ [exp[-B(L(z) — L(%))] P (z), and KL(y||v) 2 [log(dp/ dv) du
for probability measures p and v that are mutually absolutely continuous. Since the KL-divergence

KL(7| |ué§ )) is non-negative, the right hand side is upper bounded by —% log(A). By definition of
Z, it holds that

VL@):_fVHHHK —Ay BN g
k>0

Hence, using the M -smoothness of L, we obtain
L(z) — L(z)
< IM|z—F|? + ME, 7 — )y
< Ml 4 Ml (e —3)

Therefore, log(A) can be lower-bounded by

log(A) > log / exp {6 [LM |z — 7|

A # <H — >H ]}dv£§><x>

> —ﬁ[lMEQ + M U]
+log[v{d ({z €  +Cou})],

where C.y £ {z € H | ||z|| < &, )| < U} for arbitrary e > 0 and U > 0 (if

lem

|Z||%, = 0O, then we treat W = 0). Then, by Borell’s inequality (Borell (1975), van der Vaart
K
and van Zanten (2008, Lemma 5.2)), we have

g

~ A
loglv{)({z € & + Cor})] = log(vl) (C-v)) — = 1713
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Finally, we lower bound log(uég)(c v)). Let ch) & {r e H ||| <e}and C L {zeH]|
(aie— 2w, | < U} (thatis, Cop = Cé ’n CUQ)), then by Lemma 13, it holds that

Tl

log({ (C-r)) = log(vD) (€V)) + log (D) (CP)).

By the small ball probability theorem (Kuelbs and Li, 1993; Li and Shao, 2001), we can lower
bound the first term of the left hand side as

—log) (€M) S (v/BAe)
(8)

To evaluate Voo (C[(J2 )), we note that

By setting U = /2//3, we also have
—log(V{P (7)) < log(1/2).

Combining these inequalities, we finally arrive at

/L dr — L(#) < —; log(A)

N 2 AL
< %MeQ ; Auxuﬂ,{\fﬁ + 21,
C(v/BAe) ™2 +1og(1/2)]
e\ (rrf\\HKﬁ-l/z + 3, )
+(BVA) 2+ 5L (40)

<%
~

Finally, differentiating the above w.r.t. &, we get that the optimal bound is attained for ¢ =

1/4
<L> , and is then equal to

MAZX
1 2M N ~1/2 ~112
8 < DY 1) +A (Hxﬂmﬁ 24 HJC”HK> :
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Appendix G. Proof of time and space approximation error (Proposition 9 and
Proposition 11)

In this section, we prove Proposition 9 and Proposition 11. As we have noted, Proposition 9 is
obtained as a corollary of Proposition 11 by taking the limit of N — oo. More strongly, we can
show the following lemma. Let
. 1 (strict dissipativity condition: Assumption 5 (i))), @n
C =
g VB (bounded gradient condition: Assumption 5 (ii)).

Lemma 14 Suppose ||zo|| < 1. Under the same assumptions and notations as in Propositions 9
and 11, it holds that:

1 n—1 N

LS B o () o7
k=0 (42)

1, - - - 1/2— _

< Kgcﬂ (1 + (7”7/) 1+k + (7”7/) 1) (771/2 K +MI\{+IK + (7”7/) 1) )

Proof [Proof of Proposition 9 and Proposition 11] Once we obtain this lemma (Lemma 14), then it

is easy to show both propositions by taking into account that

n—1

Tim 3B [ (X)) = Efp(x#ov)] (43)
k=0

where fi(x ) is the invariant measure of (X év ) Whose existence and uniqueness can be shown in
the same manner as Proposition 8 (see also Bréhier and Kopec (2016) for this argument). This gives
Proposition 11 under the condition ||zo|| < 1. Since the invariant measure /i ,,) is independent of
the initial solution xy, we may drop the condition ||zg|| < 1. Then, we obtain Proposition 11.

We can see that the proof of Proposition 8 is valid to show the convergence of Eq. (43) uniformly
over all V and its convergence is uniform over all N. Moreover, it has been already shown (see
Bréhier (2014) for example) that

Jim E[(X)] = E[p(Xy)] (vk € N).

Consequently, we can exchange the order of limit, and by applying the geometric ergodicity
limg o0 E[p(X)] = E[¢(X#7)] (Proposition 8) again, we also have

. T
Jim E[p(X#)] = lim lim ~ kz_o E [¢ (X)]
.

1
= lim lim 1 Z E [gf) (X ,iv )] (. uniformity of convergence)

n—o00 N—oo N

k=0
n—1
= Tim S R[5 (X)) = Elp(X*)].
k=0

39



MUZELLEC SATO MASSIAS SUZUKI

Therefore, Lemma 14 gives the proof of Proposition 9 by taking the limit of n — oo and N — oo.
Here again, we would like to note that the assumption ||z|| < 1 can be dropped in the limit because
the invariant measure i, is independent of the initial solution. |

In the following, we prove Lemma 14. Our proof follows the line of Bréhier and Kopec (2016).
For lighter notation, our constants may differ from line to line.

G.1. Preliminaries

In this subsection, we prepare some notations and state lemmas necessary to prove the statement.
Here, we introduce the continuous time dynamics with the Galerkin approximation as

XN(O) = Pyxo € Hp, 4
dXN(t) = (AXN() — VL (XN (1)))dt + \f PndW (¢ )

Here, we denote by X (¢, x) to represent X (¢) with Xy = z and similarly we write Y (¢, z) for a
continuous time process {Y (¢)}; to indicate Y (¢) with Y (0) = x. Notice that our constants should
not depend on 3 while Bréhier and Kopec (2016) sets 5 = 1. Our technical contribution is to extend
the work of Bréhier and Kopec (2016) to general case. To this end, we apply a change of variables
with ¢ £ 2t/B. Accordingly, Eq. (4) transforms into

X(O) =x0 € H,
dX(t") =-VL(X{))dt +dW(t') (45)
= (A'X({)—VL(X{))dt' +dW(t),

where A’ £ (8/2)A, L' & (8/2)L, L' = (8/2)L. Accordingly, let the “time re-scaled version” of
the process X (¢) be

X({t)&2x (ga) , XNy & xN (gt’) (' >0).

Similarly, the change of variables with ' = 7/(3/2) translates the time discretized Galerkin ap-
proximation scheme (5) into

X} = Pyxo € Hu,
XN, =X -0 (AX) = VIV(XD) + Ve (46)
& XNy =Sy (XN = VLQV(XAV) +Vnen),

where L'y, £ (3/2) Ly, 5'7,/ = 5,,. Here we used the~abuse of notation to let A, 5’ » indicate the map
from Hy to Hy which is naturally defined by A’, S,y : H — H through the canomcal imbedding

cx € Hy — H: Ax 2 (Aou)x for z € Hy (the same argument is also applied to S w)- Note that
we may set S » = Sy because 77 A’ = nA. We write the (rescaled) continuous time corresponding
to the k-th step as

tr = kn'.

Our approach is to follow the proofs of Bréhier and Kopec (2016); Kopec (2014) and uncover
the dependency of 3 step by step. For completeness, we restate the results of Bréhier and Kopec
(2016) in our notations.
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Proposition 15
1. We have forany N € N, v € [-1/2,1/2], and x € H,

(=AY Pyz|| < [[(-4")=|. (47)

2. For Py, we have the following error estimate:

/ (r—s)/2
|y = oy, = (”BN/gl> W<s<1, 5<r <2, (48)

where
M; 2 i/ A

The corresponding result in Bréhier and Kopec (2016) is on finite element approximations; see
Andersson and Larsson (2016) for more details. However, it can be naturally extended to spectral
Galerkin projection as pointed out in Bréhier and Kopec (2016). In fact, these two approximations
are essentially the same; see Kruse (2013). As a consequence, we get the following result.

Proposition 16 For any k > 0, the linear operator on H, PN(—A’)_1/2_“PN is continuous,
self-adjoint and positive semi-definite. Moreover, there exists C, > 0 such that for any 5 > 0

C

sup Tr (PN(—A’)_1/2_“PN> < BT;M 49)

NeN

This is an extension of Proposition 3.4 in Kopec (2014), where [ is fixed to 1. The following
fundamental inequality is important for the proof of Proposition 16.

Proposition 17 For M, N € B(H) such that M is symmetric and positive semi-definite,
[Te(MN)| < [[M]| 550 | TE(V) (50)

Our next step is to extend Lemma 3.7 of Kopec (2014) to our case.

Lemma 18 Forany0 < x <1, NeN, 8 >mng, andj > 1,

(B/2)t" 1 1 1

_A 1—/451]'/]3 < — —, 51
|98 < G (L4 /i)™~ £17% (1+ n/i» oD
Moreover,
Vyz1 3C,>0 Vjizy |(-A)8P < L= o
vz v iz |[=4) ﬂ’NB(H)_(jn)”(ﬁ/) g 97
J

and forany 0 <~ <1,

|Gy e, <2 = (53)
v N sy = 2~
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The proof is almost the same as in Lemma 3.7 of Kopec (2014), and thus we omit the proof. The
relationship that ' = n/(8/2), A’ = (8/2)A specifies the dependence on f3.
As in Bréhier and Kopec (2016), we have the following expression of X ,iv :

Xy =Sk Pyx = Yy Sy PNVLIXY) + /'Y Sk Pyas, (54)
= anes "k

\/WZ ST]'_ PNEZ—H = / ST]' SPNdW(S), (55)
1=0 0

where [ £ L%j with the notation | -] is the floor function. The advantage of this expression is that
we can handle each term by simple estimates.
We introduce the following interpolation processes: for 0 < k < m — land ty, <t < g1, it
holds that:
t t
XNty=xY+ | Sy [AXY —PyVL(XQ)]ds+ [ Sy PndW(s). (56)

173 tg

The process { XV (¢) };>0 is a natural interpolation of the discrete scheme { XY }ren: {X N (tx) bren
and { X} }ren have the same joint distribution.

G.2. Bounds on Moments

In this subsection, we give a few bounds on moments of { X (¢)}¢>0, { X (t) }+>0, {X} }ren. Note
that the constants are uniform with respectto N € N, 0 < n < g and 8 > nq.

Lemma 19 Foranyp > 1, there exists a constant Cy, > 0 such that for every N € N, t > 0, 8 > 19
and x € H,

E(IX (o)) E ([ &) ] B[Ix¥ o], B[V @] < Gt +llaolP).
(57)

Lemma 20 Foranyp > 1,19 > 0, there exists a constant C), such that for every N € N, 0 < n <
No, B>mo, kEN, t>0andx € H,

E[IxN7], B0 ] < 6 + ol (58)

Intuitively, these lemmas hold thanks to dissipativity, a kind of boundedness of a global optimum.
Proof [Proof of Lemma 19 and Lemma 20] The proof is very similar to that of Proposition 7. We
only prove the statement for the bounded gradient condition. For the strict dissipativity condition,
see Proposition 3.2 of Bréhier and Vilmart (2016). We prove the statement following the same line
as Lemma 4.1 and 4.2 of Bréhier (2014). There is no essentially new ingredient, but we need to take
care of the effect of 5. We define Z(t) = X (t) — W4'(t) where WA (t) = fg =AW (s). 1t
holds that W4'(t/(3/2)) = WA(t)/+/B/2. (2.6) in Kopec (2014) implies:

v ()| == ]
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where Cp, Cz/> > 0 are constants independent from /.
Then, we study || Z(t)||. We have Z(0) = X (0) = o,
dz(t) B
2

= Az - VLX),

and by Proposition 2,

LUZOE 34 700) - vr0k), 260y
= 2{AZ() ~ VL(Z (W), Z(0) + LVL(Z () - VLK (D), Z0)
< DemlZ@I? + e + VLI 1Z0)
< m |2 + ),

where m’ and C” are positive constants depending only on m, ¢, B. Thus, we have for any ¢t > 0
[IZ@)]* = C'/m| < exp(=Bm't)] |aol* — C'/n'|
= [Z)|* < exp(=pm't)] |aol* = C'/m'| + C'fm" < C(||zo]* + 1),

for a constant C' > 0, which concludes the proof of Lemma 19, since the estimates do not depend
on the dimension parameter V.

Similarly, we introduce Z = X} — wy, where {wy }, is the numerical approximation of wA
defined by

Wiyl = Sn"wk- + \/W&;’fkﬂ-
The same argument yields
C
E[Jwy||> < — < C". (59)
g
Now we have Zy = Xy = xg,
Zis1 = Sy Zy, — /'Sy VL (Xg),

since H S,]/ , we obtain the almost sure estimates

< 1
B(H) — 1+n/pg

1
1Zks1ll € ——— 1 Zll + C',
L+n/up
and therefore for 8 > 1

1Zk]] < C(A + [lzoll),

which concludes the proof of Lemma 20. |
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G.3. The Rate of Convergence to the Invariant Measure

Our focus in this subsection is just to state the convergence result to an invariant measure. For the
existence and uniqueness of the invariant measure of the continuous time dynamics, see Debussche
et al. (2011), Goldys and Maslowski (2006) and Bréhier and Kopec (2016). We have the following
result thanks to a coupling argument presented in Debussche et al. (2011).

Proposition 21 Under Assumptions 1, 2, 4 and 5. There exist the “spectral gap” X\* and a constant
C' > 0 such that for any bounded test functionp : H - R, t > 0, N € N, 8 > noand x1,x2 € HNn,

Blg(XN (t,21))] — E[6(XV (£, 22))]| < Cllo]lo (1 + 1] + [l (60)
This also implies
El6(XN (¢ 1)) — BIo(X™ (8, 22))]| < C ol (1+ aa]* + o)™ (61)

A proof of this result in case 3 = 1 can be found in Debussche et al. (2011). We can easily see
the statement holds if § is arbitrary but we have to notice the convergence rate A* can be varied
depending on 5. More concrete characterization of A* will be given in Remark 23. As pointed out

in Raginsky et al. (2017), this spectral gap is supposed to decrease exponentially with respect to 3.
Corollary 22 Forany N € N, the process X admits a unique invariant probability measure 7™

and satisfies the following bound:
Fe,CN*>0,Vo:H—->R, t>0, € Hy,

* 62
BlCC ()] - [ odn| < Cllol 1+ el (©2)

These results naturally extend to an infinite-dimensional scheme by similar arguments.
Remark 23 (Characterization of \*) Bréhier (2014, Theorem 1.1) showed that
lim [E[¢(X|;/,))] — E[p(X(2))]] = 0.

n—0

In addition to that we have shown in Proposition 8 that the discrete time dynamics satisfies the
geometric ergodicity:

[E[p(Xn)] = E[p(X*)] < C(1+ [J)) exp(=Aj (nn = 1))(< C'(1 + ||2]*) exp(= A5 (nn))),

where we used a fact that we may set A}, < 1 (if this is not satisfied, we may set A}, < min{A:‘], 1}).
Moreover, Bréhier (2014, Corollary 1.2) gives that

Jim [E[¢(X*7) — E[¢(X™)]| = 0.
Combining these arguments, we see that
[Elo(X (0)] — Elp(X™)]| = limy [B[¢(X|1/y))] — Elg(X*)]] < limy C(1 + l[|?) exp(—A; (nm)).

Finally, we note that Proposition 21 and Corollary 22 are used only for ¢ : H — R satisfying
9]l > ¢ for a positive constant ¢ > 0. Hence, we may set \* = lim; o A} = Ag.

The same argument is also applied to { X}N }1, { XN (t)}; and { XN (t)}; with the same value of
AJ. In the following, we use the notation X* to indicate Ag.
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Lemma 24 For any bounded test function ¢ : H — R, we have

lim ¢y := hn1 ¢dw g/)¢dw-— b (63)

N—oo

Proof For any ¢ > 0 and any fixed initial condition x € H, we have

oN — ¢ =pn —Ed(XN (1))
+E¢(XN (1) — E¢(X (1))
+ES(X (1) - ¢.
Since limpy o0 Ep(X N (1)) — E¢(X(t)) = 0 Bréhier (2014), we get that for any ¢ > 0

limsup [¢y — ¢ < Ce ™™,

N—oo

and then we may take ¢ — oo. Notice that the constants are independent of the dimensionality V.
|

G.4. Proof of Lemma 14

In this subsection, we present a technical proof procedure of Lemma 14. As in Bréhier and Kopec
(2016), we will use the following decomposition:

1 n—1 1 — B
~ ) Eo(X{) -6 = Z $(Pn X)) — b
k=0 =0
B B 1 n—1
+ v — b+~ kZ:U (Eo(XE') — E¢(Pv X[))

Our aim is to derive a N'-free bound of each term of this decomposition and to take N’ — oo. It is
obvious the last two terms converges to 0 as N’ — 400 thanks to Lemma 24 and Py+ X ’va =X ,f/,v if
N’ > N.

It remains to bound the first term. We decompose the term by the solution of the Poisson
equation defined in the following. Let N’ € N, ¢ € C’g (H). We define ¥V " as the unique solution
of the Poisson equation

LYY = g0 Py — b and/ vV arN =, (64)
H

Nl

where £V is the infinitesimal generator of the SPDES:

XN/(O) = Pnrxg € Hpr,
dXN' () = (AXN () = VL (XN(1)))dt + PrdW (2),

6. Note that from here we also use the notation ¢ to indicate ¢’ for notational simplicity.
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defined for C? functions ) : # — R and 2 € H by
/ 1
LV (@) = (A'Pyrw — Py VL (2), DY(@)) + 5 Te(Py D*(x)).

The following proposition is essential for our result. This is an extension of Proposition 6.1 in
Bréhier and Kopec (2016) in that dependence on g is specified.

Proposition 25 Let N’ € Nand ¢ € CZ(H). The function U " defined for any x € Hy by
/ o0 RN _
V(@)= [TE[o0EY (1) - ] at,
0
is of class C’g and the unique solution of Eq. (64). Moreover, we have the following estimates: for

any 0 < ¢,v < 1/2 there exist C,Ct, Ce -, which are independent of N’ and 3, such that for any
x € Hpr

o @) < Afﬁu +l20?) llc
|y De @) < C5eas e+ Ll
|arpe @eay], < SEEa ) ol

where |||y ; = max {maxo<j<i[|6[l;), 18]l } for [|6llq) = sup,ex [[Vo()| and ||¢]|(2) =
sup,ey [D*0(2) | 53)-

We give the proof of this proposition in Section G.6. }
To show the proof, we prepare more theoretical tools. We define the function UV "forz € H by

IV (2) = OV (Pyia).

This can be interpreted as an extension of ¥V to the entire domain 7{. Then we have for any = €
and h, k € H,

(DUN' (), h) = (DUN (Pyix), hPyi),
D*UN' () - (h, k) = D*UN' (Pyia) - (Pyoh, Pyik).

Proposition 25 can be also applied to gV by these equations.
Then we define the generator L£rkN , discrete time version of £V /, forall £ € N as

for xo € Hy, ¢ € B(H),

L7EN g () = (S (A XY — PyVL/(X)), Do(x)) + %Tr(gn/S;,PNquﬁ(:r)).

Thanks to the 1td6 formula, we have

~ nj/ ~ N7/ tk+1 / ~ N5
EON (X)) — EVY (X)) = / ELTFNEN (XN (s5))ds,

173
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(remember the definition (56) of the interpolation process XN (s)). Similarly, we define the gener-
ator LV of X by

LN¢(z) = (A'x — PyVI (z), Do(x)) + %Tr(PND%(:r)).

Putting all of the operators defined above, we have the following decomposition:

~ ’ ~ / tk+1 / ~ 1,5
ETN (X)) — BV (X)) = / E (m mN _ LN) V(XN (s))ds
tg

tet1 N\ =N,
n / E (LN N ) IV (XN (s))ds (65)

tg

tk+1 1~ N,

+ / ELY TNV (XN (s))ds.
g

Furthermore, the following equality for z € H
LN (2) = VOV (2) + (= Py VL () + Py VL (Pyiz), DUN (Pyiz)),

and the definition of ¥V' yields

thfl ! = N,
/ ELY TN (XN (s5))ds

ty

_ / " [ng(PN/XN () — &N,} ds

ty

+ /tk+1 E(Pyr (—VL’(XN<3)) + VL/(PN’XN(S))) DU (Py XN (s)))ds

123

=1 (E¢(Py' XPY) — o)

[ E ot () - o(pw )] as

ty

s [ mey (T E) + VL (P Y (6)) DB (P KN )

tr

By substituting this to (65), we obtain
BV (X[,) - BUY (X))

te+1 ’ ~ N, 5
_ / E (L8N — V) &Y (XN (5))ds

ti

te+1 N\ =~ N/, o
+/ E(EN—£N>\IJN (XN (s))ds
ty

+1f (EQZ)(PN'XJ?]) - éf;N')

+ /t k+1 E [(ZS(PN'XN(S)) — (b(PN/X;iV)] ds
b [ B (YRR )+ VE XN (6)) DY (P XY (),

ty
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and therefore taking the sum of both terms over £ = 0,...,n — 1 yields

n—1
S Eo(PwXY) — b

kO

- 'g [\IJN/(PN/XN) \IJN/(PN,X{V)}

nn

+ 1 (9(Pwa) — b))

- 7;7 Zj / E [6(Py XY (5)) — (P X1)] ds

s kzo / E[( Py (VE(XN(s)) - VI (Py XN (5))) , DU (Pyo X (s)) )] ds

=0 +1Is+ I3+ Iy + Is + Is.
As in Bréhier and Kopec (2016), the fact that VL' is Lipschitz, Proposition 25 and Lemma 20 yield

lim I =0,

N’'—o0

and Proposition 25 and Lemma 20 yield for 0 < n < ng and 5 > 1,

I+ D) < ——— (1 + |Jzo|?).

S 5
The remaining three terms are controlled by the following lemmas, whose proofs we omit for the
sake of conciseness. However, they can be shown by carefully tracing the proof line of Bréhier

and Kopec (2016); Kopec (2014) (more specifically, Lemmas 6.3, 6.4 and 6.5 of Bréhier and Kopec
(2016) respectively) with the estimates in Proposition 25, Lemma 18 and Section G.5.

Lemma 26 (The control of /3; space discretization) For any 0 < k < 1/2 and 1y, there exists a
constant C > 0 such that for any ¢ € CZ(H), x € H, B> noand 0 < n <

et / ’
hmsupZ/ EN [,N> TN (XN (s5))ds
N'—oo NI 0  tk (66)

< = (L llol®) llo o Eamn 2y (1 + (nn) ™).

V‘Q
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Lemma 27 (The control of I,; time discretization) For any 0 < k < 1/2 and no, there exists a
constant C' > 0 such that for any ¢ € CE(H), N' € N, x € H, B > ngand 0 < n < g

n—1 t
1 /k+1 N "N &N SN
— E (LY — L5 ) w™ (X7 (s))ds
nn’; t ( ) (s)

¢ A —K —1+k —
< 1l (1 + llaoll*)esn™> = (1 + () 7% 4 () 7).

Lemma 28 (The control of /5; more time discretization) For any 0 < k < 1/4 and 1y, there
exists a constant C, > 0 such that for any ¢ € CE(H), N' e N,z € H, B> noand 0 < n < g

n—1

LS [ e o £ @) - opex) a
=
< Cléllg2 egnt/Fn (1 + %) .

Putting them together, we get the main result (Lemma 14).

G.5. A Malliavin Integration by Parts Formula

In the proofs of Lemmas 26 to 28, an integration by parts formula issued from Malliavin calculus is
necessary to transform irregular stochastic integral terms into controllable ones; see Nualart (20006);
Sanz-Solé (2005). Therefore, we restate the statement in this subsection. The notations are the same
as in Bréhier and Kopec (2016); Debussche (2011).

Lemma 29 Let N' € N. Forany G € DY2(Hy/),u € CF(Hn') and ¥ € L?(2x[0,T], Lo(Hnr)),
an adapted process,

E [Du(G). /0 T\I/(s)dWN/(s)] =E [ /0 ' Tr(U(s)* D*u(G)DyG)ds |

where DG : © € H — DIG € Hy stands for th Malliavin derivative of G, and DY2(H ) is the
set of H n+-valued random variables G = ZigN' G f;, with G; € DY? the domain of the Malliavin
derivative for R-valued random variables for any i.

In the proof of Lemmas 26 to 28, we use the following estimates; see Bréhier and Kopec (2016);
Bréhier (2014); Kopec (2014) for details.

Lemma 30 For any 0 < v < 1 and ng > 0, there exists a constant C' > 0 such that for every
he(0,1), k>1,0<n<mny, f>mnoands € [ty — 1/0,tk]

1
(L m/pp) -ty

|y DXy

N

< C(1 + Mp)ks (ﬁ"’ + > lll#y,, (67)

forall x € Hyr. Moreover, if ty, <t < tx41, we have

|caymexo)|, < ofcayprxy (68)

H'HN/ ’

forx € Hyr.
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Note that the constant C' > 0 is uniform with respect to N’ € N, 3 > nq.
Proof The proof is almost the same as that of Lemma 6.5 in Kopec (2014).

The second inequality is a consequence of the following equality for s < ¢, < ¢ < {41, thanks
to (56):

DIXN(t) = DEXY + (t — ta) (A8, DEXY = Sy D(Pv VL) (XY) - DIX]Y),

and the conclusion follows since

sup H <C,
N’eN B(Hyr)
where C'is a constant that does not depend on 8 and the norm || - ||5(3,,,) is taken as a linear map

from H v to H .
Then we prove the first estimate. For any k > 1, © € Hy, and s € [ty — 1//3,tx], we have

DIXY = S la —of Z SED(Py VL) (X)) DEX]Y
i=ls+1

We recall that [, = |s/7/], so that when i < I, we have D XN = 0.
As a consequence, the discrete Gronwall’s inequality ensures that for £ > s + 1 and a constant
C >0,

[pex|, < Mt paly,,

where we used ' L’ = nL and the Lipchitz continuity of V L. Now using Lemma 18, we have

|(—ayDixy

H

1

1+M77)’ s
< —— @)l ,, + Mn 2y, -
(1+ n/pp) A= =ledgy TN Z;ﬂ (L m/ )= =0ag e

Note that k — I, < 1/(n/8) < 1/n yields (1 + Mn)*¥~!s < C. To conclude, we see that when
0 < n < 19, it holds that for a constant ¢y (could be dependent on 79, 1),

o 1 =
ZZ; Lt n/pp) == 50/ T+ i
< C / 1= exp [—eo(1 — 7)(t/7)(n/uy)] dt

< g0 [t e [~Den(a = e/ a
<,
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G.6. Proof of Proposition 25

In this subsection, we prove Proposition 25. Our argument follows the same line as Bréhier and
Kopec (2016). Let ¢ € C’g(’H) For lighter notation, we assume ¢ = 0 in this section. We define
the function v for any ¢ > 0 and z € H - by

ut,) = E [o(X™ (t,2))] (69)
which is the solution of a finite-dimensional Kolmogorov equation associated with (44) where N =
N':

du
dt
To prove Proposition 25, we only need to show that « € C? and that u and its two first deriva-

tives have estimates which are integrable with respect to ¢. Specifically we prove the following
proposition.

Proposition 31 Let ¢ € Cl? such that ¢ = 0 and u defined by (69). Remember that Cg is defined in
Eq. (41) as

(t,x) = Lu(t,x) = %Tr(D2u(t,x)) + (A'z — VL (x), Du(t, z)).

R 1 strict dissipativity condition: Assumption 5 (i))
( pativity p :
Cp =

? VB (bounded gradient condition: Assumption 5 (ii)).

There exist constant ¢, C' > 0 such that for any 0 < €,y < 1/2 there exist constants C, and C, -,
which is independent of B, such that for any t > 0 and x € Hn,

lu(t, )] < Ce™™ (1 + [|2]*) 18] (70)
e A e 1 G
|4 Dut, )| < Cetsp L+ e A+ llal) oo, an
e / ~ € 1 1 ALk
I(=A) Dt 2) (= A') || gy < Cen@38 (1 e T Wﬂ) U1+ al®) I16lo.2

(72)

where \* > 0 is the spectral gap introduced in Remark 23 (see also Proposition 21) and o/ € [0, 1]
is the constant introduced in Assumption 4.

In fact the estimation (71) is true for &« < 1. The proof is a slight modification of the proof of
Proposition 8.1 in Kopec (2014). Since ¢ € C?2, bounded and with bounded derivatives, u € C?
and the derivatives can be calculated in the following way:

» For any h € H -, we have
Du(t,z).h =E | D(XN (¢, 2)).n" ()], (73)

where 7™ (t) is the solution of

dn"=(t)

o = A () = DLy (XY (¢,2)) " (1),

"*(0) = h.
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» For any h, k € H v, we have
D?u(t,x).(h, k) = E [ D*$(X'(t,2)).(n"" (£),n"* (1)) + DS(XN (¢, 2)).C"** (1) |,
(74)
where ("% is the solution of

dCh,k,m

5 = A - DAL/(XN'(¢,2)).¢" () = DAL/ (XN (¢, 2)). (" (8), 0" (1)),

¢Mh(0) = 0.
Moreover, we already have the inequality (70) thanks to Corollary 22.

The proof requires several steps. First in Lemma 32 below we prove estimates for 0 < ¢ < 1/ and
general 0 < o, < 1/2; then in Lemma 33 we study the long-time behavior in case « = v = 0;
we finally conclude with the proofs of Proposition 31.

Lemma 32 Assume Assumption 5 (ii) (bounded gradient condition). For any 0 < €,y < 1/2, there
exist constants C, Ce  such that for any v € H s, and any 0 <t < 1/p,

€ 06
[(=A) Du(t,z)[| < = 1Dl

1 1
G+ e ) 1081+ 10%].).

Ay Dot 2) (A ) < e
where o is defined in Assumption 4.

Proof Owing to (73) and (74), we only need to prove the following almost sure estimates for some
constants - which may vary from line to line below: forany 0 <t < 1/

Ce
(Bt)¢

ferset0] < oo (

[ < =< Il

1 1
i + e ) Il el

To show these inequalities, first note that

tA’ _lp—€r_+ ANNELEA [ ANN—€ _g—ellr_4 Ane A AV —€
]| = oo (—earyee (—ayen|| = | (—earye s 140701
C. .
< ¢ sup{a®e "} || (—4) 7 h]| = 7 [|(=A)7R| (75)

where C. £ sup,~o{z‘e¢*}. From this, we deduce that
o=

¢
etA/h—/ N D2L(X (5, 2)).0" (s)ds
0
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< S far v [ oo as

and by the Gronwall’s inequality and ¢t < 1/, we get the result.
For the second-order derivative, we moreover use the properties of L to get

ol

t
/ e D21 (5, 2)).CPR (5)ds
0

+ / el DI LR (5, ). (1 (), (5))ds
0
sc/otﬁHchv’Ws)HdH/ot%

<C/Ot5HCh’k’x(s)Hds

o) [ o]

1

1
- Cut o | (=) B (=) 5 [

The Gronwall’s inequality yields the conclusion since for any 0 < 8t < 1 we have (8t)' =% ¢~ <

(Bt)~ due to the assumption € + v < 1. [ |

Lemma 33 Assume Assumption 5 (ii) (bounded gradient condition). There exist constants C,c > 0
such that for any t > 0, and any x € H,

IDu(t,z)l| < Ov/Be (1 + lall) 16l »

and

« 1
D240,y < €8 (14 i ) 1+ [elP) o]

Proof [Proof of Lemma 33] As in Kopec (2014), we use the Bismut-Elworthy-Li formula (Bismut,
1984; Elworthy and Li, 1994) to get for ® : H s — R which belongs to class C? with bounded
derivative and with at most quadratic growth, i.e.,

AM(®) >0, Vo € Hy, |®(2)]| < M(@)(1+ |z]?),
and v(t,z) 2 E®(XY'(t,2)), we have two following formula:

Dolt, z).h %E [ /0 <n’w(s),dW(s)><1>(XN’(t,x))] |

Moreover, by the Markov property v(t, z) = Ev(t/2, XN'(t/2, x)), we obtain

t/2 L
Do(t,z).h = %E [ / (" (s), dW (s))o(t/2, X (t/m))] :
0
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and thus

D2u(t, z).(h, k) :%E

t/2 .
/0 (M (s), AW (s))o(t/2, XN (t/2793))]

2
-E
+t

t/2 .
/0 (" (s),dW (s)) Du(t/2, X (t/Q,x))-nk’x(tﬂ)] :

We then see, using Lemma 19 and Lemma 32 with € = « = 0 that there exists C' > 0 such that for
any 0 <t <1/8, x,h,k € Hp,

[Du(t, x).h]| < %M@)(l + ) 1]l
c (76)
[D?v(t,2).(h, k)| < —M(@)(A+ l]*) IR ] 1Kl

Indeed, to see the first inequality, the Cauchy-Schwartz inequality gives

Du(t,xz).h = %E [/0 <nh’m(s),dW(5)><I)(XN/(t, x))}

([ oo dw<s>>)2

and the isometry property of Ito integral and Lemma 32 give a bound of the first term as

(/Ot@h’m(S),dW(S)))Q] = \//Ot [k (s)]|2ds < CVE|R),

fort < 1//3 and Lemma 19 gives a bound of the second term as

<1 B
1

VER(XY (¢, 2))2),

E

VE®XN (1,2))2) < CM(@)(1 + |]).

Now when (¢ > 1 the Markov property implies that u(t, z) = E[u(t — 1/8, X' (1/8, z))] and by
Corollary 22, we have

u(t —1/8,x) —/ ¢dja|| < Ce P D1 4 Jl2)?) |19 -

H o

If we choose ®;(x) = u(t — 1/8,x) — [;, ¢dfi, we have u(t, ) = Ed: (XN (1/8,2)) + J5 it
with M (®;) < Ce PN (=1/8) || ¢|| . With (76) at t = 1/, we obtain for t > 1/,

IDu(t,z).hl| < CV/B |1lloe e VP L+ 1)) ||
[D?u(t,z).(h, k)| < OB || 8lloe e DL+ [ll|*) IR ] 1K1

We have a control when 0 < ¢ < 1/ in Lemma 32, so with a change of constants we get the result.
[ |

Next we show a corresponding lemma for the strict dissipativity condition in the following lemma.
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Lemma 34 Assume Assumption 5 (i) (strict dissipativity condition). For any 0 < €,y < 1/2, there
exist constants C, C¢  such that for any x € Hn+, and any 0 < t,

I(=A)Dut, z)|| < Cep* ( ( ﬁ}) e IDg | o

1 1
(=AY D2ult2) (=AY g, < CenBH <1 BCORE

(Bt)+

) (100l + D7),

where o/ is defined in Assumption 4.

Proof From the definition of nh’x, we have that

-

¢
Hn etA/h—/ et=A D2 (XN (s, 2)).n™ (s)ds

0
o+ [ et innag (o) as
0

As in Eq. (75), for any 0 < ¢g < 1, the first term can be bounded by

< HetA/

HetA’h ‘ _ Ht—e(_tA/)eecotA’(_A/)—se(l—co)tA’h ’
— € (_tA/)coeetA’ H H(_Al)fee(lfco)tA’h ‘
B(H)
<t € Sup{xee—cox} H A/ ehH _ €CO (_Al)—ee(l—co)tA’h ‘
x>0

where Ce ., £ sup,~o{z‘e~“"}. Then, Gronwall’s inequality gives

Q

etBM ko nh’x(t)

IN

" (s) H ds

t
;7;0066015,@\/#0 H(_A/>_ehH+/O BMCSBA/'“O

Q

— tBM1o nh’x(t)

IN

t
;;co ecot,B)\/uo H(_A/)—ehH +/O BMesBA/uo

" (s)| as

9

= B 1o nh’x(t)

IN

€,co cot,@k/uo H A/)—ehH

t cosﬁ)\/,uo ,
+Cery /O M exp((t — 5)3M) ds [[(—4) |

L % gr(co o)
S 05150 H(—A/)*ehH [#GCOtﬁ)\/MO + ﬂeMetﬁM/O % .

o] < = (i)

T(coA -M
< Ce,co <e—(1—co)t,8)\/u0 + (ﬂtMy /OO eT(coA/ 1o )MdTe_tﬁ()‘/“O_M)> .
0
Therefore, if we choose co as co = (A/pg) "1M/2, then 0 < ¢y < 1 by the strict dissipativity
assumption and we obtain

h@(t)H < oLt BM)

L expl—tB(M o — M) || (—4)h|

I
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_ oLt (BM)

e exp[—tS/AY] H

(77)
where we used A* = /g — M (> 0). Applying this to Eq. (73), we have the first inequality.

The second inequality is also shown in the same way as Lemma 32. Notice that by the Lipschitz
continuity of VL, we have

ol

t to, 1—ao/
S/ e_(t_s)ﬁ’\/“(’BM Hchkﬁv(s)H ds + / Lﬁale—(l—m)(t—s)ﬁk/uo
0 o (t—s)

o (s) | [ (5)]| s

S/t 6—(t—s),8/\/,uoﬁM Hch,k,m(s)H ds
0

Ol =) -y g1 [ CEIBITD ozttt g,

From this inequality, we have

BN 1o Ch,k,x(t)H
t
S/ /BMesﬂ)‘/“O Ch’k"”(s)Hds
0
—€ a min C 1+ M E+’\/
+ Cot ey [[(=A) <R [ (=AY k|| B BN o= tB min{2(A o =M), (1= ox/uo}/ t_s)fi)m)ds
t
< / B ||k (5)] | ds
0
+ Co/,e,'y H(_A/)—ehH H(_A/)—'ka Bl—a’et,@)\/uo—tﬂmin{Z(A/MO—M),(1—00))\/ug}X
1
/ 1
(L (Mt /0 =g &
t
< / M e ||k ()| ds
0

+ Corery [|(=A) R (=AY T7R|| B (14 (M) )t 77

BN po—tBmin{2(X/po—M),(1-co)A/po}

Here, we set cg = (\/pg) ~1M /2, then we further obtain

SOl
<y oo (=AY RI (=AY 7R]| 87

efﬂ)\/ 1o

tﬂM/ Mﬂ Mﬁs)e—&—v) 1—a/—e— ’ye—sﬁmln{)\/uo M,M/2} ds+
(14 (MBt) )=~ tAM o —tFmin{A/po— MM/Q})

=,

a 7677 H

(_A/)fehH H(_Al)ffka /Blfa ez‘ﬂM><
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t
</ Mﬁ(l+(Mﬂs)e-‘rv)sl—a'_e—ye—sﬁmin{)\/MO—M7M/2} ds
0

+ (1 + (Mﬁt)e—l—v)tl—o/_e—fye—tﬁmin{A/uo—M,M/2}>
<CU o [[(A) R | (=A") k|| B e x
[ﬂ_(l—a’_E—"/) + (1 + (Mﬁt)e-i-’y)tl—o/—e—’ye—tﬁ min{k/uo—M,M/2}]
By multiplying both terms by et 1o we obtain

HCh,k,x(t)H < C«(/)/’e’7 H(_A/)—ehH H(_A/)—»ka Be+’y[1 I (/Bt)1—o¢’—e—’y]e—t6()\/NO—M)’

where we used that sup,.o(1 + (MBt)T7)etBmin{Amo=MM/2} ~ ' (bounded by a constant
independent of ). Since 1 — e —y > 0 and 1 — o/ > 0, it holds that (5t)' =% ~¢=7 < (Bt)~ +
(B8t)~¢7. Then, we finally obtain

|52 @)] < Chver 1= <R (=) k]| B4 [1 4 (B + +(88) 7] &7,

where we used A* = \/uo — M (> 0). Applying this inequality and Eq. (77) to Eq. (74), we obtain
the second inequality. |

Remark 35 Note that Lemma 34 for the strict dissipativity condition does not require the restriction
t < 1/ while Lemma 32 is for the bounded gradient condition. This is advantageous to show better
dependency on (B under the strict dissipativity condition than the bounded gradient condition.

We can finally prove Proposition 31. The proof is again in line with Kopec (2014).
Proof [Proof of Proposition 31.] First, we show the assertion for the bounded gradient condition.
By the Markov property and Lemma 33, for any ¢ > 1/, we have

IDute. )4 < CVB el Oz |04 X /8,0 ) a5

< CVB[8lloe e V(L4 Jl2)) 8[| (—A) N

)

where the last estimate comes from Lemma 19 and Lemma 32. Combining this estimate and
Lemma 32, we obtain Eq. (71). We can easily see Eq. (72) follows from the similar argument.
As for the strict dissipativity condition, Lemma 34 directly gives the assertion. |

Appendix H. Proof of SGLD convergence rate (Proposition 12)

In this chapter, we prove Proposition 12. Before that, we need to prepare the following lemmas to
bound E[L(Y;") — L(X})]. For lighter notation, our constants may differ from line to line.
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Lemma 36 Forany x € Hpy, it holds that

C(ntr - nb)

2
B VL) — gefa)| < TR

where ny, is the mini-batch size and C' > 0 is some constant.

We can prove the following bound similarly to Lemma 19 and 20 thanks to Assumption 6.

Lemma 37 For any p > 1, there exists a constant C, such that for every N € N, 3 > no, and
reH N>

EV)" < Gp(1+ [lzo]?).
Lemma 38 It holds that:

30, Cy>0,¥53 > 210
1? 2 ] 77
241/

2
log E [exp(HX;éVH )} < ||xo|® + C1/B + Cs,
where C1,C5 > 0 is an constant.

Remark 39 Note that our estimate is not subject to “the curse of dimensionality” which explicitly
appears in Lemma C.7 in Xu et al. (2018).

Proof The proof is similar to that of Lemma C.7 in Xu et al. (2018). The main difference lies in the
existence of regularizer in our scheme and the absence of dissipativity assumption of L . Instead,
we assume Assumption 6.
_ 27 o 1
Let Q = 5 and p; = gE=ymALs
1>gqo>q1> - > qn,then we have

Let S := diag((qj)év:o) forg; > 0(j =0,...,N) and

2
’
S’]

where €Y ~ N(0,Iy). Let z; and ¢; denote the i-th component of XY — nV Ly (X)) and €Y
respectively, which corresponds to the coefficient of f;, the i-th basis in the representation (1).
Under this notation, we have the following estimate:

2

S’]

2
Sp(XN — VLN (X)) + %e{!) X;iV”

N 2n 2n 1 €2

2 / 2 i
|| pigi | i +2 priG T G — —— | de
izo/exp< q (:c + Ti€; + e)) 5 exp( 2) e]
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E [eXP ||X1ﬁ1”?s”]

5
-E Sy (XN = VL (XN) + | el

B *

exp ‘

2
Sy(XN = VLN (XN) + [/ Lel)

E IBEk

exp ‘
2

=E |E

exp
S/

=E
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1
=E
111) V1 —piq;Q P ( 2@)
)
>q0) Z exp Z )
=0 pz‘h

1 —2Qpoqo
thanks to the formula of Gaussian integral, p > w1 and log(1 — z) > —z/(1 — z).

§ : )

Qp] q;
< E
P Z 1= 2Qpogo

Qpjq;
E
P Z 1 — 2Qpoqo

=0 Pigqi

N
1 2
exp (Z w5~ 20 (X,,ivZ — 277X,%VLN71-(X]{:V) + 772VLN7¢(X]£:V)2)>] ’

where X ,i\;-, Ly ,i(X}) denotes the i-th component of X7, Ly (X2) respectively.
Then Assumption 6 implies

Qpjiq;
E
P Z 1 — 2Qpoqo

=0 Piqi

N
1 2
exp (Z e (X,ﬁV — 20XV Ly (X)) + 7’ VLN (X )2)>] :

)

N B N
Qp;qj 1 N 2.2
< E —— = | E E _ (X 2nB|X:.'.| + B )
=~ exp par 1— 20poqo exp o p‘lq‘ %) ki 21 | k,z‘ + n

<ex i@qu] E |ex il (1+/1)XN~2+C 1—|—l 2
~ p jzol_Qonqo b pars 1 _2Q ki P n

Piq;

N N 1
Qpiq; 14+ k N Cpig(l1+2)
< S g S (x4 SR k)
- =1~ 2Qpoqo P - QQ( ki) ¥ !

=0 Piqi 1= 2@]?0(]0

N 1
Qp;q; Cpig;(1+5)
=E exp ||X]iVH§(k) + Z ( + K n 5
o \1—2Q@pogo 1 —2@poqo

N
where S*) .= diag ( 1+“2Q) .
Pjdj j=0

Since g9 < 1, it holds that

Qpjai Qg
1 —2Qpogo ~ 1 —2Cpo

If we have chosen & so that tr__ < 1, then
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and we also have q(()k) > qgk) > > q](\];). Here again, since ¢; < 1, it holds that

q(k) 14k < 14+ k&
g 1 _ = (p—1 _ -1
P4 2Q) (pj 2Q)Qj

Let k = 3(2n/ph + (n/ph)? — 2n/ ), then it holds that

Lt i _ 1+ 5020/pp+ (0/mp)* — 20/ 6]
p;t—2Q 1420/ + (n/p))? —2n/B
< 1 / x / = : <l
1+ z[2n/u; + (n/u})* —2n/B] 1+

Therefore, we obtain the following evaluation for q](-k):

q(k) < 4
7 - l—l—aj’

which implies ||-|| &) < ||-||s/- Hence, by noticing p; < (1 + «j) ™1, a recursive argument yields

+C 141
E [exp (1X012)] < exp | ool + & ) >3 g

The second term in the right hand side can be evaluated as

| /\

Zk: C(te) Tt (a1
— ( 1+a ktl—i 1—(14a;)7 ! a;’

Finally, if we set g; = 1, then by observing that

1
> [ hes
~o
we have

N k

+C(1+1 2 +(1+1 2 1 1

Q /mzz O Vo L WY U
1-2Qpogo ‘== 1+a e U B

Since oy = O(n), the second term in the right hand side can be evaluated

1
<1+>77§1.
Qg

Combining all arguments, we obtain that

C
E [exp (|1 X2, 1P)] < exp <||$0H2 sy 02) .
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Lemma 40 The discrepancy between L(XN) and L(Y,N) can be bounded as

LX) - L) < B\/ 1Ol {1y 00 o (M)

A ko np(ng — 1)
where the expectation is with respect to the choice of the mini-batches in each update.

Proof Remember that X2 and Y, are updated as

XN = Sy (X0 = nVLy(XY) +/28Pxen)

Y = Sy (Y = ngnn (V) 4+ \ 25 Pen) |

where the same noise ¢,, is applied for updating both variables. Hence, by taking the difference
between XY and YV, XV — Y,V is updated as

XY =Yh =5, [(Xév —Y,N) = n(VLn (X)) - gn,N(YnN))] .

n

Noticing that X — Y{¥ = 0, it holds that

X =Y = - UZ Sy VLN (X)) = gnn (YY)
k=0

=—nY Sy VLN(XY) - VLN (Y))
k=0

n
N Z Sﬁ"““(VLN(YkN) - gn,N(YkN>)'
k=0
Here, Lemma 36 yields that

2

E|D Sy VLN (YY) = gnn(VY))
k=0

< ZHSn k+1H2 C(?tr ))

A\ 2okt C(ng — ny)
<3S (149> — N T )
kzzo ( %) (e — 1)
C (ntr - nb)
= A/ po np(nge — 1)

where the expectation is taken with respect to the choice of the mini-batch. By the smoothness
assumption (Assumption 2), we also have |[VLy (X)) — VLy (V)| < M| XY - Y;V|. Thus,
we obtain that

n - C (n —n )
N ekl N N tr b
E || Xph = Yot <n kZ:OHSn lop ME [[ X5 = 3|} + n\/nx\/uo np (g — 1)
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n —(n—k+1) ~
anr 3= (102 ) w5 O
k=0

A po np(nge — 1)

Applying Gronwall’s inequality (see, for example, Mischler (2019, Lemma 5.2)) to this evaluation
yields that

E HXn+1 Yn]\jrl H
n C(ntr - nb)
<
—\/ Mo (e — 1)

A —(n—k+1) n
{1+77MZ<1+77M0> 1T

k=0 i=k+1
S n C(ntr - nb) %
A ko np(ne — 1)
3\ (kD) )\ (i)
1+17MZ<1+17M> exp nMZ (1—1—77 >
0

k=0 i1=k+1

n C(ntr _ nb) ( )\ >(nk+1) < ,UJO)
< 1+nM 1+ ex M—
_\/)\/Mo np (e — 1) { ! kZO o P
n Cng —ny { o <M,UO> }
< 14+ nM—ex
\/)\/uo np(ng — 1 g A PA7A

— M M
_ n Clng —np {1 n Ho exp < H0> } '
Ao np(ng — 1 A A
Then, by the bounded gradient condition Assumption 5 (ii), the discrepancy between L(X/V) and
L(Y,N) can be bounded as

14+nM <1 + ?7>
Ho

~—

~— ~—

[E[LX,)) = LI < BE[|XY - v,

n C(ng —ny) { M po <MM0>}
<B 1+ ex ,
\/)\/uo np(ng — 1) A PA7A

where the expectation is with respect to the choice of the mini-batches in each update. |

In addition to the bound in Lemma 40, we obtain another bound on |E[L(XN) — L(Y;V)]|. The
following two lemmas are used to prove a version of Theorem 3.6 in Xu et al. (2018). These results
can only be applied to finite-dimensional spaces. However, our schemes YkN , X ,ﬁv are no longer
infinite-dimensional, which means we can follow the same argument in Xu et al. (2018).

Lemma 41 (Polyanskiy and Wu (2016); Raginsky et al. (2017); Xu et al. (2018)) For any two prob-
ability density functions ji, v with bounded second moments, let g : R® — R be a C function such
that

IVg(2)|ly < C1[|]ly + Ca, Yo € RY,
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for some constants C1,Cy > 0. Then

/ gdp — / gdv
Rd R4

where W is the 2-Wasserstein distance and 0> = max {fRd Hx||§ p(dz), [pa Hx||§ I/(dZL’)}.

< (Cro + Co)Wa(u,v),

Lemma 42 (Corollary 2.3 in Bolley and Villani (2005)) Let v be a probability measure on R%.
Assume that there exist xo and a constant o > 0 such that [ exp(a ||z — xol|y)v(dx) < oo. Then
for any probability measure 1 on R?, it satisfies

Wa(p,v) < Gy (D(pl )/ + D(ullv) /%),

where C\, is defined as

. 1/3 ,
O = et \/a (2 + log/exp(a Iz — xo”z)”(dx)).

Proof [Proof of Proposition 12] Let Py, Q)i denote the probability measures for GLD scheme X ,ﬁv
and SGLD scheme YkN respectively. Applying Lemma 41, Lemma 37 and Lemma 20 yields

[E L] = E L] | < COA+ zol)Wa(Qr, Pr), (78)

where C' > 0 are absolute constants. We further apply Lemma 42 to bound Wasserstein distance
and get the following bound:

B [L)] = E [LXG)] | < CA+ [l )ADQlIPL)'? + D@12, (79)

where A = \/3/2 +logE [exp HXéVHQ] . Moreover, Lemma 38 yields

3 C
A< \/2+\\$0112+ﬂ1+02, (80)

where C'1,Co > 0 is some constants. To bound KL-divergence between P, and (), we use the
following decomposition:

D(Qk||Pr) < D(Qk||Px) + D(Q1:k—1|Qk||Pr:k—1|Px) = D(Q1:x]| Pr:x)
k

=D(Q:[P1) + ZD(Q1|Q1:¢—1||P1‘!P1:¢—1)
. =2

= D(QilQi-1||P|Pi-),
i=1

where Py.;, Q1. denotes joint distribution of (X3¥,--- , X¥) and (Y{",--- , ;") respectively and
Qi|Qi—1 denotes the conditional distribution of XzN given Xﬁ 1- The first inequality is based on
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non-negativity of KL-divergence and the final equality comes from the fact that (g, Py are deter-
ministic and that X ZN and (X fV yo X f\i ,) are conditionally independent given Xﬁ ;- For clarity,
we write down the definition of conditional KL-divergence in the following line:

f(za|z1)
g(w2|71)

D(Fg’F1||G2|G1) = /f(a:l,xg) log dﬂjldl‘g.
Now that Q;|Q;—1 and P;|P;_; are both gaussian, that is,

XV XN = & ~ N (S, (@ — 1V Ly (2)), LST'S,),

B
YNV, = o~ NSy = ngica (@), 557 Sy),
we can calculate each conditional KL-divergence as below:
Q2|Qz 1]
D(Qi|Qi-1||Pi|Pi—1) = Eq |lo
(QQAIPIP-1) = g [l {221
B - 2 _
= 5y B~ 1571y = @ =V Lx@)|* = [|57"y = (@ = ngima (@)
- g [20(5; "y = 2, VLn(2) = gia(2)) + (VLN @) = llgia(2))]
= oY (,)~Qi14 |4T1\Py Y — T, N\T) — gi—1{Z n N(T gi—1\T
_ PR 2n(—ng; VLn(z)— gi 2(|IVL 2 |gs 2
= g eQiar | 21(=n9i-1(@), VEN (2) = i1 (@) + 7 (IVEn (@) 7 = llgi-1(2) %)
Bn
= g [IVIN (@) = i1 @)
Bn C(ny — ny)
< —FE. 0. S —
— Q’L—l nb(ntr _ 1)
< Cﬂn(ntr - nb)7
np(ng — 1)

thanks to Lemma 36 and 37. Therefore, we finally get the following bound:

ﬁnk(ntr - nb)

D P < = Cryg. (81)
(Qrl[Pr) (s — 1) 2
Combining all of the above yields the claim:
[BIL(XE) = LGOI < CA + [lzol)A (Vrk + /%) - (82)
Now, for a non-negative integer K, let X ]\If . be the solution following the update 5 with the full
gradient for n > K, but XK‘K = Y . That is, XK|K = YI](V, and

X7]~LV+1|K =5y (XﬁK - nVLN(XﬁK) + @PA@J ,
for n > K. Then, notice that, for n > K, Proposition 8 yields that

E[L(Y,") = L))
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<|E[L(Y,Y) = LX) + [EIL(X ) — LX)

<|E[L(Y,Y) = LX) + [E[L(X ) — L(XHO)]| 4+ [E[L(X,) = L(XFvm)]|
<EIL(Y,Y) - L(XN)l + E [cyg] exp {—A3[n(n — K) = 1]} + Cuy exp (=A% (s — 1))
<[E[L(Y,Y) = LX) + CCoy exp {—Aj[n(n — K) — 1]},

where C' > 0 is a constant and we used E[Cyév] < Oy, from Lemma 37 in the last inequality.

Applying the bound (82) with 7o = Y and k = n — K to |E[L(Y,Y) — L(XY

n‘K)]|, we have

[EIL(Y,Y) = LN S Ve + rn—x + exp {=Aj[n(n — K) — 1]},

where we used Lemma 37 again. Since the choice of K € {0, ...,n} is arbitrary, we may pick up
the one that minimizes the right hand side. Indeed, 7™ = log+{nb(n"7i1/n[ﬁ (e —n)[} + % minimizes
n
it as a choice of n — K up to constant. If n > T, then we may set K = 0 because X éV'O = XN,
On the other hand, Lemma 40 also asserts that
C(ng — nw) My My
E[L(YY) - L(XY))| < By /L i 1 .
EIL(YY) - LX) < \/WO e e (]
Then, by taking the smaller upper bound, we finally obtain that
E[L(Y,") — L(X))]]
: n (e —np) M po M po
< * 4 * B 1
len{\/rT An + VT An,s \/A/uonb(ntr—l){ + = exp( 3 ;
which yields the assertion. |
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