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Abstract
Gradient Langevin dynamics (GLD) and stochastic GLD (SGLD) have attracted considerable

attention lately, as a way to provide convergence guarantees in a non-convex setting. However, the
known rates grow exponentially with the dimension of the space under the dissipative condition.
In this work, we provide a convergence analysis of GLD and SGLD when the optimization space
is an infinite-dimensional Hilbert space. More precisely, we derive non-asymptotic, dimension-
free convergence rates for GLD/SGLD when performing regularized non-convex optimization in a
reproducing kernel Hilbert space. Amongst others, the convergence analysis relies on the properties
of a stochastic differential equation, its discrete time Galerkin approximation and the geometric
ergodicity of the associated Markov chains.

1. Introduction

Convex, finite-dimensional optimization problems have been studied at length, and there exists a va-
riety of well-understood algorithms to solve them efficiently (Nesterov, 1983, 2004; Hiriart-Urruty
and Lemaréchal, 1993; Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006). In a non-convex
optimization setting, however, these methods are only guaranteed to converge to stationary points
of the objective function. This is to be contrasted with the ubiquity of non-convex optimization in
machine learning applications, e.g., deep learning (Robbins and Monro, 1951; Duchi et al., 2011;
Zeiler, 2012; Kingma and Ba, 2014), tensor factorization (Signoretto et al., 2013; Suzuki et al.,
2016), Bayesian optimization (Vien et al., 2018; Vellanki et al., 2019), and non-convex loss learning
such as robust classification (Masnadi-Shirazi and Vasconcelos, 2009). In a different perspective,
stochastic gradient Langevin dynamics (SGLD), which can be seen as stochastic gradient descent
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methods with additive Gaussian noise injection at each iteration, was introduced by Welling and
Teh (2011). In the case of a strongly convex objective function L, recent studies (Dalalyan, 2017b)
highlighted the connections between sampling from log-concave densities f(x) ∝ exp(−βL(x))
concentrated around the minimum of L, and minimizing L. Such distributions can be obtained as
the stationary distributions of a first order Langevin dynamics. Chiang et al. (1987); Gelfand and
Mitter (1991); Roberts and Tweedie (1996) studied the convergence of the dynamics to the station-
ary Gibbs distribution, and the concentration of the samples around the global minimum, while more
recently Dalalyan (2017a); Durmus and Moulines (2016, 2017) analyzed the convergence rates of
discrete time Langevin updates for sampling from log-concave densities.

Recent studies have shown that Langevin-dynamics-based algorithms converge near a global
minimum of L, even when L is not convex (Raginsky et al., 2017; Xu et al., 2018; Erdogdu et al.,
2018; Vempala and Wibisono, 2019; Nagapetyan et al., 2017; Duncan et al., 2017). The analysis re-
lies on the connection between the iterates of Langevin dynamics based algorithms and the Markov
chain solution of the continuous time Langevin equation, which admits the Gibbs measure as invari-
ant distribution. Raginsky et al. (2017) provided a non-asymptotic convergence rate in expectation
to an almost minimizer of SGLD. Xu et al. (2018) improved the convergence rate while also pro-
viding an extension to variance-reduced algorithms. In an alternative approach, Zhang et al. (2017)
provided bounds on the hitting time of SGLD to neighborhoods of local minima. However, these
results only apply to finite-dimensional optimization, with rates growing exponentially with the di-
mension under the dissipative condition. This is quite problematic for optimizing high dimensional
models such as deep learning networks that frequently appear in machine learning.

In this paper, we resolve this problem by extending Langevin dynamics algorithms to the
infinite-dimensional setting and study their convergence rates. Our results rely on assumptions that
are classical in the GLD/SGLD literature, and in the literature of approximation of invariant laws
of stochastic partial differential equations (SPDE) in infinite dimension. In particular, we leverage
the weak approximation error of the discrete time scheme of SPDEs analyzed by Bréhier (2014);
Bréhier and Kopec (2016) for general inverse parameter β > 1, where Debussche (2011); Wang and
Gan (2013); Andersson and Larsson (2016) gave discretization error non-uniformly over the time
horizon, and utilize the geometric ergodicity1 of continuous time dynamics (Jacquot and Royer,
1995; Goldys and Maslowski, 2006). Results in the infinite-dimensional setting usually involve a
linear operator acting as a regularizer and whose spectrum “replaces” dimension in the convergence
rates. More specifically, our contributions can be summarized as follows:

• We give a non-asymptotic error bound of the infinite-dimensional GLD/SGLD implemented with
a spectral Galerkin method, which has an explicit dependency on the inverse temperature β and
is uniform over all time horizons.

• For that purpose, the geometric ergodicity of the time-discretized dynamics is proven, which is
known to be non-trivial. Besides this, we also give a bound on the discrepancy between continu-
ous and discrete time dynamics that is optimal with respect to the step size.

• We give an upper bound of the distance between the expected objective value under the invariant
measure and the global optimal solution in the infinite-dimensional setting.

1. The term “geometric ergodicity” means exponential convergence to its stationary distribution Kendall (1959)
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2. Notation and Framework

2.1. Notation and background on RKHS

Let (H, ⟨·, ·⟩) be a Hilbert space. We will also use the notation ∥ · ∥H to explicitly indicate the norm
∥ · ∥ is of H. C2

b is the set of bounded, twice continuously Fréchet differentiable functions with
bounded first and second derivatives. We denote by B(H) the set of bounded linear operators from
H to H and ∥ · ∥B(H) denotes the operator norm. For a discrete or continuous Markov chain {Xt},
note Ex[·] ≜ E[· | X0 = x]. To consider a “regularization” in the space H, we define a subspace
HK ofH as

HK =
{∑∞

k=0 αkfk :
∑∞

k=0
α2
k

µk
<∞

}
, (1)

where (fk)
∞
k=0 is a complete orthonormal system in H and (µk)

∞
k=0 is a sequence of non-negative

reals in decreasing order. We equip HK with an inner product ⟨·, ·⟩HK
defined as ⟨f, g⟩HK

=∑∞
k=0

αkβk
µk

for f =
∑

k≥0 αkfk ∈ HK and g =
∑

k≥0 βkfk ∈ HK , while the inner product in
H can be expressed by ⟨f, g⟩ =

∑∞
k=0 αkβk. Accordingly, we define the norm ∥ · ∥HK

as the one
induced by the inner product ⟨·, ·⟩HK

. As an important example ofHK , we suppose a Reproducing
Kernel Hilbert Space (RKHS), with a reproducing kernel K. Suppose that H is the Hilbert space
of L2-integrable functions with respect to a measure ρ. Then, we can define the integral operator
with the kernel K as TKf(x) ≜

∫
K(x, y)f(y) dρ(y) for f ∈ H, and the RKHS corresponding to

the kernel K can be written as HK = T
1/2
K L2(ρ) (Caponnetto and De Vito, 2007; Steinwart and

Christmann, 2008). Actually, it is known that, if (µk, fk)∞k=0 are the eigenvalue-eigenfunction pairs
of TK (i.e., TKfk = µkfk), then the RKHS HK defined in this way is expressed as in Eq. (1). In
this sense, we say “RKHS” to indicate HK in this paper, but we note that our analysis covers more
general situations than the usual RKHS setting.

In the following, for L : H → R, the gradient ∇L(x) is defined as the Riesz representor
of the Fréchet derivative of L, DL(x) (i.e., the unique vector satisfying ∀h, L(x + h) = L(x) +
⟨∇L(x), h⟩+O(∥h∥2)). We will identify n-order derivatives with nth-linear forms, and with vectors
when there is no ambiguity (e.g., we write D3L(x) · (h, k) for the Riesz representor of l ∈ H 7→
D3L(x) · (h, k, l)).

2.2. Algorithm: gradient Langevin dynamics

We consider the following optimization problem:

min
x∈H

L(x) ≜ L(x) +
λ

2
∥x∥2HK

, (2)

where λ > 0 and L is potentially non-convex. Assuming L admits at least one global minimizer,
we note x∗ ≜ argminx∈H L(x), x̃ ≜ argminx∈H L(x) +

λ
2∥x∥

2
HK

. The difference between
the expected loss of the two optimal solutions, L(x∗) and L(x̃), has been extensively studied, for
example, in least squares estimation in RKHS (Caponnetto and De Vito, 2007).

We study the gradient Langevin dynamics (GLD) iterations to solve Problem (2). To define
GLD, we need to make a heavy use of the infinite-dimensional Brownian motion.

Definition 1 (Cylindrical Brownian motion/Wiener process (Da Prato and Zabczyk, 1996)) Given

• a complete orthonormal system ofH, (fi)i∈I , where I ⊂ N,
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• a family ({W i(t)}t≥0)i∈I of independent real Brownian motions,

then {W (t)}t≥0 ≜ {
∑

i∈I W
i(t)fi}t≥0 is called a cylindrical Brownian motion.

Then, GLD updates are defined as follows: X0 = x0 ∈ H, and

Xn+1 = SηXn − ηSη∇L(Xn) +
√

2 η
βSηεn, (3)

where η > 0 is the stepsize, β ≥ η is the inverse temperature parameter, the variables εn are
i.i.d. cylindrical standard Gaussian (i.e., εn =

∑∞
k=0 εn,kfk for εn,k ∼ N(0, 1) i.i.d.) and Sη ≜

(Id+η λ
2∇∥·∥

2
HK

)−1 (i.e., Sηx =
∑∞

k=0 xk/(1 + ηλµ−1
k ) for x =

∑∞
k=0 xkfk). Here, note that

εn is not included in HK , but by applying Sη it is pushed back to HK under Assumption 1 that we
will mention later. This can be seen by noticing ∥Sηεn∥2HK

=
∑∞

k=0 µ
−1
k ε2n,k/(1 + ηλµ−1

k )2 ≤∑∞
k=0 ε

2
n,k/[ηλ(1 + ηλµ−1

k )] ≲
∑∞

k=0 ε
2
n,k/[(ηλ)

2k2] = Op(1). A crucial analysis tool is to see
Eq. (3) as a time discretization of the following SPDE (Da Prato and Zabczyk, 1996): X(0) = x0,
and

dX(t) = −∇L(X(t)) +
√

2
β dW (t)

= −∇
(
L(X(t)) + λ

2∥X(t)∥2HK

)
+
√

2
β dW (t), (4)

where {W (t)}t≥0 is a cylindrical Brownian motion (Definition 1). Although the cylindrical stan-
dard Gaussian variable εn and Brownian motion W (t) are not included in H a.s., the dynamics is
pushed back into H thanks to the existence of the regularization term. We refer to Da Prato and
Zabczyk (1996) for the existence of solutions, its regularity conditions and related mathematical
details. Note that the scheme Eq. (3) is semi-implicit: applying (Sη)

−1 to both terms yields

Xn+1 = Xn − η(∇L(Xn) +
λ
2∇∥Xn+1∥2HK

) +
√
2 η
β εn.

Approximated computation. Strictly speaking, the infinite-dimensional GLD scheme presented
above is computationally intractable. The Galerkin approximation method projects the dynamics
to a finite-dimensional subspace to make them computationally feasible. Let HN be an N + 1-
dimensional subspace of H that is spanned by (fk)

N
k=0: HN ≜ Span{fk | k = 0, . . . , N}. Let

PN : H → HN be the orthogonal projection operator onto HN : PN (
∑∞

k=0 αkfk) =
∑N

k=0 αkfk.
Then, the GLD with Galerkin approximation can be formulated as

XN
n+1 = Sη

(
XN

n − η∇LN (XN
n ) +

√
2 η
βPNεn

)
, (5)

where XN
0 = PNx0 ∈ HN and ∇LN (x) ≜ PN (∇L(PNx)). Since this scheme is essentially

finite-dimensional, it can be implemented in practice.
Next, we consider a stochastic gradient variant of GLD (stochastic GLD; SGLD). Let us con-

sider a finite sum risk minimization setting where L(x) = 1
ntr

∑ntr
i=1 ℓi(x) for ℓi : H → R which is

Fréchet differentiable2. SGLD makes use of a mini-batch of stochastic gradients (Welling and Teh,

2. We may generalize the setting to a situation where ∇L(x) = Eξ[g(x, ξ)] with a stochastic gradient g(·, ξ) in a
straightforward way.
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2011) instead of the full gradient ∇L(x): gn(x) = 1
nb

∑
i∈In ∇ℓi(x) where In is a random subset

of {1, . . . , N} chosen uniformly at random and nb = |In|. Then, its update rule is given by

Y N
n+1 = Sη

(
Y N
n − ηgn,N (Y N

n ) +
√

2 η
βPNεn

)
, (6)

where gn,N (x) ≜ PN (gn(PNx)) and Y N
0 = PNx0 ∈ HN . These approximation techniques

significantly reduce the computational cost.

2.3. Assumptions

Our goal is to study the convergence of the iterations Eq. (3), i.e., to bound L(Xn) − L(x∗) with
high probability. For this, we need to make assumptions on the RKHSHK and on L. We first make
the following assumption onHK , independently of the objective L:

Assumption 1 There exists a constant CK > 0 such that µk ≤ CK/(k + 1)2 (∀k).

We note that a finite-dimensional situation is also allowed, i.e., µk = 0 (∀k ≥ k0) for some k0 ∈
N, as long as Assumption 1 is satisfied for k ≤ k0. The weaker assumption µk ∼ k−p with
p > 1 is sometimes made in the literature (Caponnetto and De Vito (2007, Definition 1. iii)), and
Steinwart and Christmann (2008)). While we focus on the specific p = 2 setting for technical
simplicity, our analysis also applies to the more general setting of Andersson et al. (2016). To deal
with more general settings, one can consider the case where H itself is an RKHS for a kernel K ′,
with Mercer decomposition K ′(x, y) =

∑
k νkgk(x)gk(y). Then, the “rescaled” kernel K(x, y) =∑

k µkνkgk(x)gk(y) with µk ∼ 1
k2

satisfies Assumption 1.
Next, we put assumptions on the objective function L. The first one is classical for gradient-

based optimization (Nesterov, 2004).

Assumption 2 (Smoothness) L is M -smooth: ∀x, y ∈ H, ∥∇L(x)−∇L(y)∥ ≤M ∥x− y∥.

In view of Eq. (1), we have that A ≜ −λ
2∇∥·∥

2
HK

is a diagonal operator, characterized by
Afk = − λ

µk
fk. The following assumptions enforce more smoothness on L w.r.t. a norm induced

by A through its second and third order derivatives.

Assumption 3 There exists α ∈ (1/4, 1) and λ0, Cα,2 ∈ (0,∞) such that ∀x, h, k ∈ H, |D2L(x) ·

(h, k)| ≤ Cα,2∥h∥H∥k∥α, where ∥x∥ε ≜
(∑

k≥0(µk)
2ε|⟨x, fk⟩|2

)1/2
.

This assumption is not standard in the previous works. However, we put this assumption so that the
time-discretized dynamics satisfies geometric ergodicity. Fortunately, this assumption is not restric-
tive in machine learning applications (see the discussion just after Assumption 1 and Section 2.4 for
details). The next one is common in the SPDE discretization literature (Bréhier and Kopec (2016,
Assumption 2.7), Debussche (2011, Assumption (2.3))). It is used in Section 3.1.2 to obtain the con-
vergence of the stationary distribution µη of the discrete time dynamics (3) to that of the continuous
time one (4) as η goes to zero.

Assumption 4 (Bréhier and Kopec (2016, Assumption 2.7)) LetLN : HN → R,LN = L(PNx).
L is three times differentiable, and there exists α′ ∈ [0, 1), Cα′ ∈ (0,∞) such that for all
N ∈ N and ∀x, h, k ∈ HN ,

∥∥D3LN (x) · (h, k)
∥∥
α′ ≤ Cα′ ∥h∥0 ∥k∥0 and

∥∥D3LN (x) · (h, k)
∥∥
0
≤

Cα′ ∥h∥−α′ ∥k∥0 hold.

5
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As an example, Assumption 4 is satisfied with α = 0 when L is C3 with bounded second and third-
order derivatives. Next, we assume the following condition to ensure the dissipativity (Proposition
2) which is essential to show geometric ergodicity.

Assumption 5 One of the following two conditions holds:

i) (Strict Dissipativity) λ > Mµ0, or

ii) (Bounded gradients) ∥∇L(·)∥ ≤ B for a constant B > 0.

Under Assumption 5 (i), the objective function becomes convex because the regularization term is
sufficiently strong, which induces faster convergence. On the other hand, under Assumption 5 (ii),
the lower bound of λ is no longer imposed so that the objective function is not necessarily convex,
but the boundedness of the gradient is assumed instead to ensure convergence. The C0-semigroup
(St)t≥0 generated by A is the one of diagonal operators determined by Stfk = e−λt/µkfk. It is easy
to check that this semigroup is strongly continuous. Therefore, the Langevin SDE (4) is an instance
of the more general semilinear SDE:

dX(t) =
(
AX(t) + F (X(t))

)
dt+

√
QdW (t), (7)

where F is globally M -Lipschitz, Q is bounded and symmetrical and A is a linear unbounded op-
erator on H generating a strongly continuous semigroup (Da Prato and Zabczyk, 1996; Bréhier,
2014; Bréhier and Kopec, 2016). For the SDE (4), we have F = −∇L, Q = 2β−1 Id and
A = −λ

2∇∥·∥
2
HK

. The SDE (7) has been extensively studied in finite dimension (Khasminskii,
2011); in the infinite-dimensional case, several results have been shown such as the existence
and uniqueness of its invariant measure (Da Prato and Zabczyk, 1992; Maslowski, 1989; Sowers,
1992), the exponential convergence of the time t distribution to this invariant measure (Jacquot and
Royer, 1995; Shardlow, 1999; Hairer, 2002) and its explicit convergence rate evaluation (Goldys
and Maslowski, 2006); the invariant measure π is given by

dπ

dνβ
(x) ∝ exp(−βL(x)),

where νβ is the Gaussian measure in H with mean 0 and covariance (−βA)−1 (see Da Prato and
Zabczyk (1996) for the precise definition of infinite-dimensional Gaussian measures). If these
assumptions are verified, we have a weaker condition than strong convexity: dissipativity (Hale,
1988).

Proposition 2 (Dissipativity (Hale, 1988)) Under Assumptions 1, 2 and 5 there exist constants
m, c > 0 verifying

∀x ∈ H, ⟨Ax−∇L(x), x⟩ ≤ −m ∥x∥2 + c. (8)

The dissipative condition proved in this proposition is quite standard to show the existence of
the invariant law. For example, Raginsky et al. (2017); Xu et al. (2018) showed the convergence to
the invariant law under the dissipative condition in the finite-dimensional situation. This condition
intuitively indicates that the dynamics stays inside a bounded domain with high probability. If Xn

(or X(t)) is far away from the origin, then the dynamics is forced to get back around the origin.
Thanks to this condition, the dynamics can possess finite moments, which is important to ensure the
existence of an invariant law. In fact, Assumption 5 ensures existence of a invariant law.

6
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Proposition 3 Under Assumption 5, the processes {X(t)}t≥0 and {Xn}n∈N+ admit (at least) an
invariant law.

The proof can be found for example in Proposition 4.1 of Bréhier and Kopec (2016), which utilizes
the Krylov-Bogoliubov criterion (Da Prato and Zabczyk, 1996, Section 3.1). This proposition does
not indicates the uniqueness of an invariant law. However, Bréhier and Kopec (2016) also showed
that the continuous time dynamics X(t) has a unique invariant law and is geometrically ergodic.
As for the discrete time dynamics Xn, the uniqueness of the invariant law is already well-known
under the strict dissipative condition (Assumption 5 (i)) (see Bréhier and Kopec (2016) for exam-
ple). However, the uniqueness has not been shown under the bounded gradient condition (Assump-
tion 5 (ii)). In Section 3.1.1, we will show that the uniqueness also holds under Assumption 5 (ii) if
we assume Assumption 3, which has not been assumed in previous work.

Finally, in the SGLD setting we put the following stronger assumption on each ℓi.

Assumption 6 Each ℓi satisfies Assumptions 2 to 4 and Assumption 5 (ii) instead of L, where the
constants in each assumption are uniform over all ℓi (i = 1, . . . , ntr).

2.4. Motivating examples

There are several machine learning problems in which non-convex optimization on a high/infinite-
dimensional Hilbert space is required. Such examples include deep learning, tensor factorization
(Signoretto et al., 2013; Suzuki et al., 2016), robust classification using non-convex losses such as
Savage (Masnadi-Shirazi and Vasconcelos, 2009), Bayesian optimization on function space (Vien
et al., 2018; Vellanki et al., 2019), and any other kernel method with non-convex loss. For the
sake of instructive exposition, let us consider a situation where we observe ntr input-output pairs
(zi, yi)

ntr
i=1, where zi ∈ Z is an input and yi ∈ Y is its label. Accordingly, we define a loss function

ℓ : R× R→ R and an empirical risk: L̃(f) = 1
n

∑ntr
i=1 ℓ(f(zi), yi) for a function f : Z → R.

(i) Neural network: Consider a neural network fW (z) =
∑M

m=1 amσ(w
⊤
mz) where σ is the sig-

moid function, the width M can be either finite or infinite, W = (wm)Mm=1 ⊂ Rd is the learnable
parameter, and (am)Mm=1 ⊂ R is a fixed parameter. Then, by considering x = [w⊤

1 , w
⊤
2 , . . . ]

⊤ as an
element of a Hilbert space, optimizing the parameter W falls into our setting if |am| = o(m−1/2):
minW

1
n

∑n
i=1 ℓ(fW (zi), yi) +

λ
2

∑
m µ

−1
m ∥wm∥2 where ℓ is a smooth loss function. Note that the

widthM can be arbitrary (infinite/finite), which is quite different from typical analysis of neural net-
work optimization such as mean field theory (Sirignano and Spiliopoulos, 2018; Mei et al., 2018;
Nitanda and Suzuki, 2017; Chizat and Bach, 2018). See also Suzuki (2020); Suzuki and Akiyama
(2021) for statistical analyses of neural networks optimized by the infinite dimensional Langevin
dynamics presented in this paper.
(ii) Tensor decomposition: Signoretto et al. (2013); Suzuki et al. (2016) considered a nonparamet-
ric low-rank tensor model which is given as f(x) =

∑R
r=1

∏K
k=1 fr,k(xk) where fr,k ∈ HKk

is
included in an RKHS HKk

. Fitting f to a training data by minimizing an empirical risk is not a
convex optimization problem but falls into our setting whereHK = HK1 ⊕ · · · ⊕ HKK

.
(iii) General formulation: Here, we let H be a Hilbert space of functions on Z (which could be
an RKHS) with complete orthonormal system (fk)

∞
k=0. From the expression (1), the (sub-)RKHS

HK can be expressed as an image of T 1/2
K , i.e., HK = {f = T

1/2
K h | h ∈ H} and ∥f∥HK

=

inf
h∈H:f=T

1/2
K h
∥h∥H. More generally, we define an RKHS HKγ for 0 < γ as an image of T

γ
2
K :

7
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HKγ = {f = T
γ/2
K h | h ∈ H}. We see that γ = 1 corresponds to HK . We employ HKγ

as a model for f and let the corresponding empirical risk be L(x) = L̃(T
γ
2
Kx) (if needed, we

may add a smooth regularization term). In this situation, if we have maxi supu |ℓ′′i (u)| ≤ G and
supz∈Z Kγ(z, z) ≤ Rγ for G,Rγ > 0, then

∥∇L(x)−∇L(x′)∥ ≤ GRγ∥x− x′∥H, |D2L(x) · (h, k)| ≤ G
√
Rγ
∑∞

k=0 µ
γ−2α
k , (9)

for x, h, k ∈ H with ∥h∥ = 1 and ∥k∥α = 1. The proof of these inequalities is given in Appendix
A. Therefore, Assumptions 2 and 3 are satisfied as long asRγ <∞ for γ > 1 because the condition
µk ≲ 1/k2 makes the right hand of Eq. (9) finite by setting α = (γ − 1)/2 + 1/4 > 1/4. Assump-

tion 4 is also verified in the same manner. Finally, if we let f = T
γ
2
Kx, then ∥x∥HK

= ∥f∥HK1+γ

holds, and thus it follows that

L(x) + λ∥x∥2HK
= L̃(f) + λ∥f∥2HK1+γ

.

Therefore, we see that our formulation covers a wide range of kernel regularization learning by
adjusting γ appropriately. We would like to remark that we may deal with a situation where L(x)
contains a regularization term λ0

2 ∥x∥
2 like L(x) = L̂(x)+ λ0

2 ∥x∥
2. See Section A.1 for more details

about this issue.

3. Main Result

Here, we give our main result on the the non-asymptotic error bound of the GLD algorithm. Define
a constant ĉβ as ĉβ = 1 under Assumption 5 (i) and ĉβ =

√
β under Assumption 5 (ii).

Theorem 4 (Main Result, GLD convergence rate) Let Assumptions 1, 2, 4 and 5 hold. If only
the bounded gradient condition (Assumption 5 (ii)) holds in Assumption 5, then we additionally
assume Assumption 3. Suppose the initial solution satisfies ∥x0∥ ≤ 1. Then, there exist Λ∗

η > 0 for
η ≥ 0 and constants Cx0 , C > 0 such that for any 0 < κ < 1/4 and δ ∈ (0, 1), it holds that,

P(L(Xn)− L(x∗) > δ) ≤ δ−1
{
L(x̃)− L(x∗)

+ Cx0 exp(−Λ∗
η(ηn− 1)) + C

[ ĉβ
Λ∗
0

η1/2−κ + 1
β

(√
2M
λ +1

)
+λ

(∥x̃∥HK√
β

+ ∥x̃∥2HK

) ]}
, (10)

where the precise description of the spectral gap Λ∗
η and the constant Cx0 is given in the statement

of Proposition 8 with M ′ = 4
√
M/e.

The proof is in Section C. Λ∗
η may depend on β and η, but is uniformly lower-bounded with

respect to η > 0. As can be seen in Eq. (10), there is a competing effect between the regu-
larization Λ∗

η (ensuring faster convergence of the discrete chain) and the inverse temperature β
(ensuring better concentration of the Langevin stationary distribution π). We can see that, for
fixed λ, by setting η ≤ log(1/λ)

Λ∗
ηn

, Eq. (10) excluding the optimization unrelated term L(x̃) −

L(x∗) is of order Op

( ĉβ
Λ∗
0

( log(1/λ)
Λ∗
ηn

)1/2−κ
+ 1

β
√
λ
+ λ

)
. Hence, by setting β = λ−3/2 and n ≥

log(1/λ)/[Λ∗
η(Λ

∗
0λ/ĉβ)

(1/2−κ)−1
], we have L(Xn) − L(x∗) = Op(λ). Note also that contrary to

the finite-dimensional setting where 1-order weak convergence is possible, the 1/2 rate in η is opti-
mal (Bréhier, 2014). See Remark 6 for the connection to the finite-dimensional analysis. Next, we
give the convergence rate of SGLD.
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Theorem 5 (Main Result, SGLD convergence rate) Under Assumptions 1 and 6 and ∥x0∥ ≤ 1,
SGLD has the following convergence rate:

P(L(Y N
n )− L(x∗) > δ) ≲ δ−1

(
Θn +

ĉβ
Λ∗
0

µ
1/2−κ
N+1 +min {

√
rT ∗∧n + 4

√
rT ∗∧n, qnb

}
)
,

where Θn = exp(−Λ∗
η(ηn−1)) +

ĉβ
Λ∗
0
η1/2−κ+ 1

β

(√
2M
λ +1

)
+λ
(∥x̃∥HK√

β
+ ∥x̃∥2HK

)
+ L(x̃) −

L(x∗) which is the convergence rate of GLD shown in Theorem 4, rk = kβη(ntr−nb)
nb(ntr−1) , T ∗ =

log+{nb(ntr−1)/[βη(ntr−nb)]}
Λ∗
ηη

+ 1
η , and qnb

:=
√

η
λ/µ0

(ntr−nb)
nb(ntr−1)

{
1 + Mµ0

λ exp
(
Mµ0

λ

)}
.

The approximation error induced by the Galerkin approximation corresponds to (ĉβ/Λ
∗
0)µ

1/2−κ
N+1 .

Since µN+1 ≲ N−2, the approximation error decreases in a quadratic order as the dimension N
increases. The error induced by the stochastic gradient corresponds to

√
rn+ 4
√
rn. As the minibatch

size nb increases, the stochastic gradient error converges to 0. This rate is slightly better than its
finite-dimensional counter part (Raginsky et al., 2017; Xu et al., 2018) by a factor of

√
nη. This is

due to the regularization term λ∥x∥2HK
.

Remark 6 (Connection to finite-dimensional analysis) The existing finite-dimensional analysis
contains an exp(d) term and thus our bound cannot be achieved by starting from these kinds of
finite-dimensional analysis. In our analysis, we overcame this difficulty by imposing regularization
so that the solution is included in an RKHS, which is essentially assuming that the global optimum
is well approximated by an element in the RKHS. The error term η1/2−κ with arbitrary small κ > 0
is affected by the “complexity” of the space. This term is replaced by η in the finite dimension case.
The complexity of the RKHS can be characterized by the decay rate of the eigenvalues (µk)

∞
k=0

(Assumption 1). If the eigenvalue decay behaves as 1/kp instead of 1/k2, then the error term η1/2−κ

would be modified to η(p−1)/p−κ (Andersson et al., 2016). The finite-dimensional case corresponds
to the limit of p→∞ and the existing bound η is recovered.

3.1. Proof Scheme

Applying GLD and SGLD for non-convex optimization in a finite-dimensional space has been re-
cently extensively investigated by Raginsky et al. (2017); Xu et al. (2018); Erdogdu et al. (2018)
to name a few. However, unlike in the proof of such existing analyses for the finite-dimensional
case, E[L(Xn) − L(x∗)] cannot be directly bounded in an infinite-dimensional setting where only
convergence for bounded test functions is shown (see Corollary 1.2 in Bréhier (2014) for example).
Instead, the bounded function ϕ(x) = σ(L(x)−L(x∗)) with σ(x) = 1/(1 + e−x)− 1/2 is used to
bound the probability of the n-th iterate Xn of Eq. (3) being in a certain level set of L(x)− L(x∗),
by bounding E[ϕ(Xn)] and applying Markov’s inequality (If L is bounded, we don’t need to operate
σ and we can directly evaluate E[L(Xn)− L(x∗)]).

The seminal paper (Raginsky et al., 2017) derived the finite time error bound of SGLD for
non-convex learning problem utilizing the decomposition

E[ϕ(Xn)−ϕ(x∗)] = E[ϕ(Xn)−ϕ(X(nη)))]+E[ϕ(X(nη))−ϕ(Xπ)]+E[ϕ(Xπ)−ϕ(x∗)], (11)

where π is the stationary distributions of the continuous Markov chain {X(t)}t≥0 and we denote
by Xµ a random variable obeying a probability distribution µ. On the other hand, Xu et al. (2018)

9
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observed that this decomposition could be improved by utilizing the geometric ergodicity of discrete
time dynamics and proposed to use the following decomposition:

E[ϕ(Xn)− ϕ(x∗)] = E[ϕ(Xn)− ϕ(Xµη)] + E[ϕ(Xµη)− ϕ(Xπ)] + E[ϕ(Xπ)− ϕ(x∗)], (12)

where µη is the stationary distribution of the discrete Markov chain {Xn}n∈N (the existence of
which is not trivial). By using this, it is shown that some polynomial order term with respect to n
can be dropped to obtain a faster rate.3 Our analysis employs this strategy. That is, we control each
term in the decomposition of Eq. (12).

Extending this strategy to an infinite-dimensional setting is not trivial. For example, the bound-
edness of the norm of noise ∥ϵn∥H does no longer hold, and thus we need an additional regulariza-
tion term AX(t) to make the solution bounded in H and hit a compact set with high probability.
The time discretization of the infinite-dimensional Langevin dynamics has been studied especially
as a numerical scheme of stochastic partial differential equation (Kuksin and Shirikyan, 2001; De-
bussche, 2011; Bréhier, 2014; Bréhier and Kopec, 2016; Andersson et al., 2016; Chen et al., 2017,
2018). Bréhier (2014); Bréhier and Kopec (2016) derived a weak approximation error of the time
discretization scheme (3) from the stationary distribution π. However, their proof strategy utilizes
the decomposition Eq. (11) like Raginsky et al. (2017) in the finite-dimensional counter part. As
we have pointed out above, the error bound could be improved by using the decomposition Eq. (12)
instead. Unfortunately, the geometric ergodicity of the discrete time dynamics has not been estab-
lished so far. Therefore, we have introduced Assumption 3 so that the geometric ergodicity holds.

3.1.1. FIRST TERM: GEOMETRIC ERGODICITY OF THE DISCRETE CHAIN

First, we need a moment bound of the chain {Xn}n∈N as follows

Proposition 7 Let Assumptions 1, 2 and 5 hold. Let {Zn}n∈N solve the dynamics with ∇L = 0:

Z0 = 0 and Zn+1 = SηZn +
√

2η
β Sηεn with β > η. Then, ∀p > 0, it holds that k(p) ≜

supn≥0 E(∥Zn∥p) < ∞. Using this evaluation, we have Ex0 ∥Xn∥ ≤ ρn ∥x0∥ + b (∀n ∈ N) with
(i) (for Strict Dissipativity) ρ = 1+ηM

1+λη/µ0
< 1, b = ∥x∗∥ + 2k(1), or (ii) (for Bounded gradients)

ρ = 1
1+λη/µ0

< 1, b = µ0

λ B + k(1).

The proof is given in Section D. This is also called a Lyapunov condition. Combined with
this and so called minorization condition, we can show the geometric ergodicity in the following
proposition.

Proposition 8 (Geometric ergodicity) Let Assumptions 1, 2, 4 and 5 hold. If only the bounded
gradient condition holds in Assumption 5, then we additionally assume Assumption 3. Let η >
0, β > η and V (x) = ∥x∥+ 1. Then, there exists a unique invariant measure µη and Λ∗

η > 0 such
that for all ϕ : H → R with |ϕ(·)| ≤ V (·) and ∥ϕ(x)− ϕ(y)∥ ≤M ′∥x− y∥ (x, y ∈ H), we have

|Ex0 [ϕ(Xn)]− E[ϕ(Xµη)]| ≤ Cx0 exp(−Λ∗
η(ηn− 1)), (13)

where Cx0 and Λ∗
η > 0 are given by

3. We would like to point out that we have found some incorrect analysis of the error bound in Xu et al. (2018). In
particular, there are several wrong evaluations about dependency of constants (including the spectral gap) on the
inverse temperature parameter β.
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i) (Strict dissipativity, Assumption 5 (i)) Λ∗
η =

λ
µ0

−M

1+η λ
µ0

, Cx0 =M ′(∥x0∥H + b),

ii) (Bounded Gradient, Assumption 5 (ii)) Λ∗
η =

min
(

λ
2µ0

, 1
2

)
4 log(a(V̄+1)/(1−δ))

δ, Cx0 = a[V̄+1]+
√
2(V (x0)+b)√

δ

for 0 < δ < 1 satisfying δ = Ω(exp(−O(β)))4, b̄ = max{b, 1}, a = b̄ + 1 and V̄ =
4b̄/(
√

(1+ρ1/η)/2−ρ1/η) where ρ and b are given in Proposition 7.

The proof is given in Section E. Unlike existing work, this theorem asserts the geometric ergodic-
ity of the discrete time dynamics, whilst the geometric ergodicity for “continuous time” dynamics
(Eq. (4)) has been well known, see as an example (Debussche, 2011, 2013). Transforming the
continuous time argument to the discrete time setting is far from trivial because there appears a “in-
tegrability” problem. Indeed, Bréhier (2014); Bréhier and Kopec (2016) pointed out there has been
no work that showed the geometric ergodicity of the time-discretized dynamics. This difficulty does
not occur in the finite-dimensional setting. We resolved this problem by imposing Assumption 3.
Thanks to this, we have exponential convergence exp(−Λ∗

ηnη) improving the polynomial order rate
1
Λ∗
0
(nη)−1 of existing work.

3.1.2. SECOND TERM: WEAK CONVERGENCE OF THE DISCRETE SCHEME

The second term is linked to the weak convergence of the numerical scheme, i.e., in our case the
convergence of ϕ(Xn) to ϕ(X(nη)) for any admissible test function ϕ ∈ C2

b . We rely directly on
the results of Bréhier and Kopec (2016), who prove 1/2 order weak convergence in time and 1 order
weak convergence in space for numerical schemes that have a semi-implicit discretization in time
with β = 1, and a finite elements discretization in space; that is, they showed

|E[ϕ(Xµη
)− ϕ(Xπ)]| ≤ C ∥ϕ∥0,2 η1/2−κ, (14)

where ∥ϕ∥0,2 ≜ max{∥ϕ∥∞, supx∈H ∥∇ϕ(x)∥H, supx∈H ∥D2ϕ(x)∥B(H)} for ϕ ∈ C2
b .

In the general setting, β ̸= 1, we need to evaluate the effect of β. To that purpose, we essentially
consider a re-scaling argument, that is, we observe that if we replace L with L′ ≜ βL, λ with

λ′ ≜ βλ and η with η′ ≜ η
β in Eq. (4) and Eq. (3), then it holds that Sη =

(
Id+η λ

2∇∥ · ∥
2
HK

)−1
=(

Id+ η
β
βλ
2 ∇∥ · ∥

2
HK

)−1
=: S̃η′ , and thus

Xn+1 = S̃η′Xn − η′S̃η′∇L′(Xn) +
√
2η′S̃η′εn,

i.e., {Xn}n∈N is the numerical approximation of dX(t) = −∇L′(X(t)) +
√
2 dW (t) with time

step η′. We carefully evaluate how the constant C is Eq. (14) will be changed after rescaling. We
can see that β affects the rate through the spectral gap Λ∗

0, which corresponds to the continuous
dynamics (η = 0). Eventually, we get the following result:

Proposition 9 (Case β ̸= 1) Under the same setting as Proposition 8, for any 0 < κ < 1/2, 0 <
η0, there exists a constant C such that for any bounded test function ϕ ∈ C2

b and 0 < η < η0, it
holds that

|E[ϕ(Xµη
)− ϕ(Xπ)]| ≤ C(Λ∗

0)
−1 ∥ϕ∥0,2 ĉβη

1/2−κ. (15)

The proof is given in Section G. Note that due to the infinite-dimensional setting, the 1/2 rate
w.r.t the time discretization η is optimal (Bréhier, 2014). This is to be contrasted with the finite-
dimensional case, where 1 order weak convergence is attainable.

4. More detailed evaluation of δ can be found in the proof.
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3.1.3. THIRD TERM: CONCENTRATION OF THE GIBBS DISTRIBUTION AROUND THE GLOBAL

MINIMUM

The last term corresponds to the concentration of the stationary Gibbs distribution around the global
minimum of L. In this infinite-dimensional setting, the regularizing effect of operator A is neces-
sary to ensure good convergence properties of the discrete and continuous chains. Hence, even in
the limit case β → 0 one cannot expect to have arbitrary tight concentration around the global min-
imum. This is to be contrasted with the finite-dimensional case (Chiang et al. (1987); Gelfand and
Mitter (1991); Roberts and Tweedie (1996)). In fact, A constrains the chain to remain within the
support of a Gaussian process which is compactly embedded inH.

Proposition 10 Under Assumptions 1 and 2, it holds that∫
Ldπ − L(x̃) ≲ 1

β

(√
2M

λ
+ 1

)
+ λ

(
∥x̃∥HK√

β
+ ∥x̃∥2HK

)
.

The proof can be found in Section F. The proposition can be shown by utilizing an analogous
technique to the convergence rate analysis of Gaussian process regression (van der Vaart and van
Zanten, 2011). Along with this technique, the Gaussian correlation inequality (Royen, 2014; Latała
and Matlak, 2017) is used. This inequality gives a powerful tool to lower-bound the Gaussian
probability measure of the intersection of two centered convex sets.

3.1.4. ERROR BOUND FOR THE GALERKIN APPROXIMATION AND STOCHASTIC GRADIENT

The error induced by the Galerkin approximation can be evaluated as in the following proposition.

Proposition 11 Let Assumptions 1, 2, 4 and 5 hold and suppose ∥x∥ ≤ 1. Then, there exists an
invariant measure µ(N,η) for the discrete time Galerkin approximation scheme (Eq. (5)), and for
any 0 < κ < 1/2, 0 < η0, there exists a constant C > 0 such that, for any N ∈ N and 0 < η < η0,

E[ϕ(Xµ(N,η))− ϕ(Xπ)] ≤ C∥ϕ∥0,2
Λ∗
0

ĉβ

(
µ
1/2−κ
N+1 + η1/2−κ

)
.

The proof is in Section G. We see that, by takingN →∞, we can replicate Proposition 9. Moreover,
the geometric ergodicity of the time discretized dynamics with the Garelkin approximation holds
completely in the same manner as Proposition 8. The discrepancy between GLD and SGLD with
the Garelkin approximation can be bounded as follows.

Proposition 12 Suppose ∥x0∥ ≤ 1. There exists a constant C > 0 such that, for any n,N ∈ N,
any β > 1 and sufficiently small η > 0,

E[ϕ(XN
n )− ϕ(Y N

n )] ≤ Cmin {
√
rT ∗∧n + 4

√
rT ∗∧n, qnb

} ,

where rk, T ∗ and qnb
are as defined in Theorem 5.

The proof is given in Section H. From these propositions, we can see that the SGLD with the
Garelkin approximation also gives a reasonably good solution for sufficiently large N ∈ N, suf-
ficiently small η > 0 and sufficiently large mini-batch size. Proposition 12 is analogous to those
given for finite-dimensional situations (Raginsky et al., 2017; Xu et al., 2018). However, thanks to
the regularization term (appearing as Sη), our rate is better by a factor of

√
nη.
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4. Other Related Work

Here, we mention other related work that have not been exposed above. An analogous assumption
to Assumption 3 has already been introduced in the analysis of infinite-dimensional dynamics with
nonlinear diffusion term, that is, dW (t) is replaced by a nonlinear quantity σ(X(t)) dW (t) for
σ(X(t)) ∈ B(H) (Conus et al., 2019; Debussche, 2011; Bréhier and Debussche, 2018). These pa-
pers analyzed the existence of stationary distribution for continuous dynamics and discrete time ap-
proximation for finite time horizon. Chen et al. (2017, 2018) analyzed linear/nonlinear Schrödinger
equations and derived geometric ergodicity, but they analyzed much more specific situations or
stronger assumptions (e.g. the strong dissipativity condition). The geometric ergodicity of infinite-
dimensional Markov processes for discrete time settings has been investigated by Kuksin and Shirikyan
(2001) and infinite-dimensional MCMC such as preconditioned Crank–Nicolson (pCN) (Hairer
et al., 2014; Eberle, 2014; Vollmer, 2015; Rudolf and Sprungk, 2018), and in particular the Metropolis-
Adjusted Langevin Algorithm (MALA) (Durmus and Moulines, 2015; Beskos et al., 2017). Among
them, MALA is the most related to our setting. The biggest difference is the existence of a rejection
step. Since the purpose of our work is rather optimization than sampling, and since the rejection
step is not compatible with stochastic gradient descent, we do not pursue this direction.

Conclusion and Future Work

In this paper, we have presented a non-asymptotic analysis of the convergence of GLD and SGLD in
a RKHS and for a non-convex objective function. The bounds obtained in this infinite-dimensional
setting involve the spectrum of the associated integral operator and a regularization factor instead of
the dimension d, which to the best of our knowledge is the first result on applying GLD in RKHS
to infinite-dimensional non-convex optimization. In future work, we hope to alleviate the somewhat
strict Assumption 1 linked to current results from the numerical approximation literature. Drawing
inspiration from Xu et al. (2018), we also plan to extend our analysis to variance-reduced SGLD
algorithms.
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C.-E. Bréhier and G. Vilmart. High order integrator for sampling the invariant distribution of a
class of parabolic stochastic pdes with additive space-time noise. SIAM Journal on Scientific
Computing, 38(4):A2283–A2306, 2016.

A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. Founda-
tions of Computational Mathematics, 7(3):331–368, 2007.

C. Chen, J. Hong, and X. Wang. Approximation of invariant measure for damped stochastic nonlin-
ear Schrödinger equation via an ergodic numerical scheme. Potential Analysis, 46(2):323–367,
Feb 2017.

Z. Chen, S. Gan, and X. Wang. A full-discrete exponential Euler approximation of invariant measure
for parabolic stochastic partial differential equations, 2018.

T.-S. Chiang, C.-R. Hwang, and S. Sheu. Diffusion for global optimization in Rˆn. SIAM Journal
on Control and Optimization, 25(3):737–753, 1987.

L. Chizat and F. Bach. A note on lazy training in supervised differentiable programming. arXiv
preprint arXiv:1812.07956, 2018.

D. Conus, A. Jentzen, and R. Kurniawan. Weak convergence rates of spectral Galerkin approxima-
tions for SPDEs with nonlinear diffusion coefficients. The Annals of Applied Probability, 29(2):
653–716, 04 2019.

G. Da Prato and J. Zabczyk. Non-explosion, boundedness and ergodicity for stochastic semilinear
equations. J. Diff. Equations, 98:181–195, 1992.

G. Da Prato and J. Zabczyk. Ergodicity for Infinite Dimensional Systems. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1996.

14



DIMENSION-FREE CONVERGENCE RATES FOR GRADIENT LANGEVIN DYNAMICS IN RKHS

A. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densi-
ties. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651–676,
2017a.

A. Dalalyan. Further and stronger analogy between sampling and optimization: Langevin Monte
Carlo and gradient descent. arXiv preprint arXiv:1704.04752, 2017b.

A. Debussche. Weak approximation of stochastic partial differential equations: the nonlinear case.
Mathematics of Computation, 80(273):89–117, 2011.

A. Debussche. Ergodicity results for the stochastic Navier–Stokes equations: an introduction. In
Topics in mathematical fluid mechanics, pages 23–108. Springer, 2013.

A. Debussche, Y. Hu, and G. Tessitore. Ergodic BSDEs under weak dissipative assumptions.
Stochastic Processes and their Applications, 121(3):407–426, 2011.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. JMLR, 12:2121–2159, 2011.
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C. R. Acad. Sci. Paris Sér. I Math., 320(2):231–236, 1995.

D. Kendall. Unitary dilations of markov transition probabilities and the corresponding integral
representations for transitions probability matrices. In U. Grenander, editor, Probability and
Statistics: the Harald Cramér Volume, pages 139–161. 1959.

R. Khasminskii. Stochastic stability of differential equations. Springer Science & Business Media,
2011.

D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

M. Kopec. Numerical methods for stochastic equations. Theses, Ecole normale supérieure de
Rennes - ENS Rennes, June 2014.

R. Kruse. Optimal error estimates of Galerkin finite element methods for stochastic partial differ-
ential equations with multiplicative noise. IMA Journal of Numerical Analysis, 34(1):217–251,
2013.

J. Kuelbs and W. V. Li. Metric entropy and the small ball problem for gaussian measures. Journal
of Functional Analysis, 116(1):133–157, 1993.

S. Kuksin and A. Shirikyan. A coupling approach to randomly forced nonlinear PDEs. I. Commu-
nications in Mathematical Physics, 221(2):351–366, 2001.

R. Latała and D. Matlak. Royen’s Proof of the Gaussian Correlation Inequality, pages 265–275.
Springer International Publishing, 2017.

W. V. Li and Q.-M. Shao. Gaussian processes: inequalities, small ball probabilities and applications.
Stochastic Processes: Theory and Methods, 19:533–597, 2001.

B. Maslowski. Strong Feller property for semilinear stochastic evolution equations and applications.
In Stochastic systems and optimization (Warsaw, 1988), volume 136 of Lect. Notes Control Inf.
Sci., pages 210–224. Springer, Berlin, 1989.

H. Masnadi-Shirazi and N. Vasconcelos. On the design of loss functions for classification: theory,
robustness to outliers, and savageboost. In Advances in Neural Information Processing Systems
21, pages 1049–1056. 2009.

16



DIMENSION-FREE CONVERGENCE RATES FOR GRADIENT LANGEVIN DYNAMICS IN RKHS

J. Mattingly, A. Stuart, and D. Higham. Ergodicity for sdes and approximations: locally lipschitz
vector fields and degenerate noise. Stochastic Processes and their Applications, 101(2):185 –
232, 2002.

S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018. doi:
10.1073/pnas.1806579115.

S. Mischler. An introduction to evolution PDEs, Chapter 0: On the Gronwall lemma, 2019.
URL https://www.ceremade.dauphine.fr/˜mischler/Enseignements/
M2evol2018/chap0.pdf.

T. Nagapetyan, A. B. Duncan, L. Hasenclever, S. J. Vollmer, L. Szpruch, and K. Zygalakis. The
true cost of stochastic gradient langevin dynamics. arXiv preprint arXiv:1706.02692, 2017.

Y. Nesterov. A method for solving a convex programming problem with rate of convergence
O(1/k2). Soviet Math. Doklady, 269(3):543–547, 1983.

Y. Nesterov. Introductory lectures on convex optimization, volume 87 of Applied Optimization.
Kluwer Academic Publishers, Boston, MA, 2004.

A. Nitanda and T. Suzuki. Stochastic particle gradient descent for infinite ensembles. arXiv preprint
arXiv:1712.05438, 2017.

J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research and
Financial Engineering. Springer, New York, second edition, 2006.

D. Nualart. The Malliavin Calculus and Related Topics. Springer, 2006.

Y. Polyanskiy and Y. Wu. Wasserstein continuity of entropy and outer bounds for interference
channels. IEEE Transactions on Information Theory, 62(7):3992–4002, 2016.

J. Printems. On the discretization in time of parabolic stochastic partial differential equations.
ESAIM: Mathematical Modelling and Numerical Analysis, 35(6):1055–1078, 2001.

M. Raginsky, A. Rakhlin, and M. Telgarsky. Non-convex learning via Stochastic Gradient Langevin
Dynamics: a nonasymptotic analysis. arXiv e-prints, page arXiv:1702.03849, 2017.

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statis-
tics, pages 400–407, 1951.

G. Roberts and R. Tweedie. Exponential convergence of Langevin distributions and their discrete
approximations. Bernoulli, 2(4):341–363, 1996.

T. Royen. A simple proof of the gaussian correlation conjecture extended to multivariate gamma
distributions. arXiv preprint arXiv:1408.1028, 2014.

D. Rudolf and B. Sprungk. On a generalization of the preconditioned Crank–Nicolson Metropolis
algorithm. Foundations of Computational Mathematics, 18(2):309–343, 2018.

17

https://www.ceremade.dauphine.fr/~mischler/Enseignements/M2evol2018/chap0.pdf
https://www.ceremade.dauphine.fr/~mischler/Enseignements/M2evol2018/chap0.pdf


MUZELLEC SATO MASSIAS SUZUKI
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Appendix A. Proof of Eq. (9)

Note that, for x =
∑∞

k=0 αkfk ∈ H, T
γ
2
Kx(z) =

∑∞
k=0 µ

γ
2
k αkfk(z), and thus we can obtain a repro-

ducing formula T
γ
2
Kx(z) = ⟨x, ψγ(z)⟩H where ψγ(z) ≜

∑∞
k=0 µ

γ
2
k fk(z)fk. ψγ defines the kernel

function ofHKγ as Kγ(z, z
′) = ⟨ψγ(z), ψγ(z

′)⟩H =
∑K

k=0 µ
γ
kfk(z)fk(z

′). Using this, we see that
∥ψγ(z)∥2H =

∑∞
k=0 µ

γ
kf

2
k (z) = Kγ(z, z) and ∥ψγ(z)∥2ϵ =

∑∞
k=0 µ

γ+2ϵ
k f2k (z) = Kγ+2ϵ(z, z).

If ∥ℓ′′i ∥∞ ≤ G, then it is G-Lipschitz continuous. Therefore, it holds that

∥∇L(x)−∇L(x′)∥

≤ 1

ntr

ntr∑
i=1

|ℓ′i(⟨x, ψγ(z)⟩H)− ℓ′i(⟨x′, ψγ(z
′)⟩H)|∥ψγ(zi)∥H + λ0∥x− x′∥H

≤ 1

ntr

ntr∑
i=1

|ℓ′i(⟨x, ψγ(z)⟩H)− ℓ′i(⟨x′, ψγ(z
′)⟩H)|

√
Kγ(zi, zi) + λ0∥x− x′∥H

≤ sup
z

√
Kγ(z, z)G

1

ntr

ntr∑
i=1

∥⟨x− x′, ψγ(zi)⟩H∥+ λ0∥x− x′∥H

≤ G sup
z
Kγ(z, z)∥x− x′∥H + λ0∥x− x′∥H ≤ (GRγ + λ0)∥x− x′∥H.

This yields the first inequality in Eq. (9). As for the second order derivative (the second term in
Eq. (9)), first note that

D2L(x) · (h, k) = 1

ntr

ntr∑
i=1

ℓ′′(⟨x, ψγ(zi)⟩H)⟨ψγ(zi), h⟩H⟨ψγ(zi), k⟩H + λ0⟨h, k⟩H

for h, k ∈ H. Therefore, we have that

|D2L(x) · (h, k)− λ0⟨h, k⟩H|

≤ 1

ntr

ntr∑
i=1

|ℓ′′(⟨x, ψγ(zi)⟩H)||⟨ψγ(zi), h⟩H|∥ψγ(zi)∥−α∥k∥α

≤ Gmax
i
∥ψγ(zi)∥H∥h∥H

1

ntr

ntr∑
i=1

∥ψγ(zi)∥−α∥k∥α

= Gmax
i

√
Kγ(zi, zi)∥h∥H

1

ntr

ntr∑
i=1

√
Kγ−2α(zi, zi)∥k∥α

≤ Gmax
i

√
Kγ(zi, zi)∥h∥H

√√√√ 1

ntr

ntr∑
i=1

Kγ−2α(zi, zi)∥k∥α

≤ Gmax
i

√
Kγ(zi, zi)∥h∥H

√√√√ ∞∑
k=0

µγ−2α
k ∥k∥α ≤ G

√
Rγ∥h∥H

√√√√ ∞∑
k=0

µγ−2α
k ∥k∥α.

□
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A.1. Remark on existence of regularization term

As an example of L(x), it is useful to consider a setting where L(x) can be expressed as L(x) =
L̃(x) + λ0

2 ∥x∥
2 for L̃(x) that satisfies the assumptions listed in the main text and λ0 ≥ 0. In

this case, L(x) does not satisfy the bounded gradient condition Assumption 5 (ii). However, by
considering the following update rule, we can show the same error bound for L(x):{

X0 = x0 ∈ H,
Xn+1 = S′

η(Xn −∇L̃(Xn) +
√

2 η
β εn),

(16)

where S′
η =

[
Id+η(λ0

2 ∇∥·∥HK
+ λ

2∇∥·∥H)
]−1

.

Appendix B. Proof of Proposition 2

Proof Let us assume λ > Mµ0 (Strict Dissipativity). Assumption 1 implies, for x =
∑∞

k=0 αkfk,

⟨Ax, x⟩ = −λ
〈 ∞∑

k=0

αk

µk
fk,

∞∑
k=0

αkfk

〉
= −λ

∞∑
k=0

α2
k

µk

≤ − λ

µ0

∞∑
k=0

α2
k = − λ

µ0
∥x∥2 , (17)

and Assumption 2 implies

⟨−∇L(x), x⟩ ≤M ∥x− x∗∥ ∥x∥
≤M ∥x∥2 +M ∥x∥ ∥x∗∥ . (18)

Hence,
⟨Ax−∇L(x), x⟩ ≤−( λ

µ0
−M) ∥x∥2+M ∥x∥ ∥x∗∥ .

Therefore, if M < λ
µ0

, there exists m, c > 0 such that Eq. (8) holds. The proof when Assump-
tion 5 (ii) holds is similar.

Appendix C. Proof of main result: Theorem 4 and Theorem 5

In light of Sections 3.1.1 to 3.1.3, we can now state our final result. We introduce the following
bounded test function:

ϕ(x) = σ(L(x)− L(x∗)) (x ∈ H), (19)

where σ(u) = 1
1+e−u − 1

2 (u ∈ [0,∞)) is concave and takes values in [0, 1) (note that L(x) −
L(x∗) ≥ 0 for any x ∈ H). We can show that ϕ(x) is 4

√
M/e-Lipschitz continuous. By the

M -smoothness of L, it holds that

L(y) ≤ L(x) + ⟨y − x,∇L(x)⟩+ M

2
∥y − x∥2.
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Therefore, by the optimality of x∗, we have

L(x∗) ≤ inf
ϵ>0

L(x− ϵ∇L(x))

≤ inf
ϵ>0

{
L(x)− ⟨ϵ∇L(x),∇L(x)⟩+ Mϵ2

2
∥∇L(x)∥2

}
= L(x)− 1

2M
∥∇L(x)∥2.

Hence,

∥∇ϕ(x)∥ = ∥σ′(L(x)− L(x∗))∇L(x)∥ ≤ σ′(L(x)− L(x∗))

≤ |σ′(L(x)− L(x∗))|
√
2M(L(x)− L(x∗))

≤
√
2M sup

u≥0

{
σ′(u)u1/2

}
=
√
2M sup

u≥0

{
1

(1 + e−u)2
e−uu1/2

}
≤ 4
√
2M sup

u≥0

{
e−uu1/2

}
= 4
√
2M

(
1/2

e

)1/2

= 4
√
M/e.

This yields M ′-Lipschitz continuity of ϕ where M ′ = 4
√
M/e. Moreover, we can check that

|ϕ(·)| ≤ V (·) for V (x) = ∥x∥ + 1 (because ϕ(x) ≤ 1 (∀x ∈ H)), and ϕ ∈ C2
b (H), hence ϕ falls

within the scope of Propositions 8 and 9.
First, we note that there exists a unique invariant measure µη for the discrete time dynamics

{Xn}n and there also exists a unique invariant measure µ(N,η) for the discrete time Garelkin ap-
proximated dynamics {XN

n }n by Proposition 10. To obtain the result, we make use of Markov’s
inequality: for any 0 < δ < 1,

P (L(Xn)− L(x∗) > δ)

≤ P (ϕ(Xn) > σ(δ))

≤ E[ϕ(Xn)]

σ(δ)
(∵ Markov’s inequality)

=
1

σ(δ)
(E[ϕ(Xn)− ϕ(Xη)] + E[ϕ(Xη)− ϕ(Xπ)] + E[ϕ(Xπ)]) .

The first term (E[ϕ(Xn)−ϕ(Xη)]) can be bounded by Proposition 8. The second term (E[ϕ(Xη)−
ϕ(Xπ)]) can be bounded by Proposition 9. Next, we bound the third term. Since σ(u) ≤ u for all
u ∈ [0,∞) and L(x)− L(x∗) ≥ 0 for all x ∈ H, it holds that

E[ϕ(Xπ)] ≤ E[L(Xπ)− L(x∗)] = (E[L(Xπ)]− L(x̃)) + (L(x̃)− L(x∗)). (20)

Then, the first term (E[L(Xπ)]−L(x̃)) in the right hand side is bounded by Proposition 10. Finally,
we observe that 1/σ(δ) ≤ 5/δ for all δ ∈ (0, 1). Combining all results, we obtain Theorem 4.

As for the Theorem 5, we use the following decomposition

E[ϕ(Xn)] =E[ϕ(Y N
n )− ϕ(XN

n )] + E[ϕ(XN
n )− ϕ(Xµ(N,η))]

+ E[ϕ(Xµ(N,η))− ϕ(Xπ)] + E[ϕ(Xπ)].

We apply Proposition 12 to the first term (E[ϕ(Y N
n ) − ϕ(XN

n )]) and apply Proposition 11 to the
third term (E[ϕ(Xµ(N,η))− ϕ(Xπ)]). As for the remaining terms, the same bound as Proposition 8
can be applied to the second term (E[ϕ(XN

n ) − ϕ(Xµ(N,η))]), and the last term E[ϕ(Xπ)] can be
bounded by Eq. (20) with Proposition 10. This yields Theorem 5.
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Appendix D. Proof of Proposition 7

Proof
First, we show the first assertion about {Zn}n∈N. This is proved in Bréhier (2014) for β = 1.

The β > η assumption is necessary to ensure that k(p) can be treated as a constant w.r.t β and
η in the following. We recall the main arguments of the proof. {Zn}n∈N is the semi-implicit
approximation of the continuous Markov chain defined by:{

dZ(t) = AZ(t) dt+
√

2
β dW (t),

Z(0) = 0.
(21)

Under Assumption 1, it can be shown that supt≥0 E(∥Z(t)∥
p) < ∞, ∀p ≥ 1. Finally, {Zn} is a

numerical scheme with strong order 1
4 ((Printems, 2001, Theorem 3.2)), which implies the result.

Next, we show the assertion on {Xn}n∈N. The discrete chain Yn ≜ Xn − Zn, n ≥ 0 satisfies

Yn+1 = SηYn − ηSη∇L(Xn).

Hence, using Assumption 2 and the fact that Xn = Yn + Zn, we get

∥Yn+1∥ ≤ ∥Sη∥op ∥Yn − η∇L(Xn)∥
≤ 1

1+λη/µ0
((1 + ηM) ∥Yn∥+ ηM(∥x∗∥+∥Zn∥)).

Taking the expectation and using E ∥Zn∥ ≤ k(1), this yields

E ∥Yn+1∥ ≤ 1
1+λη/µ0

((1 + ηM)E ∥Yn∥+ ηM(∥x∗∥+ k(1))),

from which we deduce

E ∥Yn∥ ≤ ρn ∥x0∥+ η(1−ρn)M
(1−ρ)(1+λη/µ0)

(∥x∗∥+ k(1)). (22)

Therefore,

Ex0 ∥Xn∥ ≤ ρn ∥x0∥+
ηM(∥x∗∥+ k(1))

(1− ρ)(1 + λη/µ0)
+ k(1). (23)

Finally, we conclude by observing that η
1−ρ

M
1+ηλ/µ0

= 1.
The proof with bounded gradients is similar. Since

∥Yn+1∥ ≤ ∥Sη∥op ∥Yn − η∇L(Xn)∥
≤ 1

1+λη/µ0
(∥Yn∥+ ηB),

we have

∥Yn∥ ≤ ρn ∥x0∥+
(1− ρn)
1− ρ

ηB

1 + λη/µ0
≤ ρn ∥x0∥+

µ0
λ
B,

where ρ = 1
1+λη/µ0

. Hence, noting ∥Xn∥ ≤ ∥Yn∥ + ∥Zn∥, we have that E[∥Xn∥] ≤ ρn ∥x0∥ +
µ0

λ B + k(1)

23



MUZELLEC SATO MASSIAS SUZUKI

Appendix E. Proof of Proposition 8

Proof under the Strict Dissipativity Condition (Assumption 5 (i)) First we prove the geometric
ergodicity under Assumption 5 (i). To show that we first prove the exponential contraction:

∥Xn − Yn∥H ≤

(
1− η

λ
µ0
−M

1 + η λ
µ0

)n

∥X0 − Y0∥H. (24)

Once we have shown this inequality, it is easy to show the geometric ergodicity.
According to the update rule, we have that

Xn+1 = Sη

(
Xn − η∇L(Xn) +

√
2η

β
ϵn

)
,

Yn+1 = Sη

(
Yn − η∇L(Yn) +

√
2η

β
ϵn

)
.

Therefore, by taking difference, we obtain

Xn+1 − Yn+1 = Sη [(Xn − Yn)− η(L(xn)− L(Yn))] .

Then, by the triangular inequality, this yields

∥Xn+1 − Yn+1∥H ≤
1

1 + η λ
µ0

(∥Xn − Yn∥H + η∥L(Xn)− L(Yn)∥H)

≤ 1

1 + η λ
µ0

(∥Xn − Yn∥H + ηM∥Xn − Yn∥H)

≤ 1 + ηM

1 + η λ
µ0

∥Xn − Yn∥H

≤

(
1− η

λ
µ0
−M

1 + η λ
µ0

)
∥Xn − Yn∥H ≤

(
1− η

λ
µ0
−M

1 + η λ
µ0

)n

∥X0 − Y0∥H.

Now, we already know that there exists an invariant low µη under the strong dissipativity condition.
By assuming Y0 ∼ µη and X0 = x0 ∈ H, we can show the following geometric convergence:

E[ϕ(Xn)]− EX∼µη [ϕ(X)] = E[ϕ(Xn)]− E[ϕ(Yn)] ≤M ′E[∥Xn − Yn∥H]

≤M ′

(
1− η

λ
µ0
−M

1 + η λ
µ0

)n

E[∥X0 − Y0∥H].

Now, we see that

E[∥X0 − Y0∥H] ≤ ∥x0∥H + E[∥Y0∥H] ≤ ∥x0∥H + b.

In the last inequality, we used that E[∥Y0∥H] = E[∥Yn∥H] ≤ ρnE[∥Y0∥H] + b for all n = 1, 2, . . .
by Proposition 7 and we took n→∞. As a consequence, we obtain

E[ϕ(Xn)]− EX∼µη [ϕ(X)] ≤M ′ exp

(
−nη

λ
µ0
−M

1 + η λ
µ0

)
(∥x0∥H + b),

where we used the relation 1− a ≤ exp(−a) for a > 0. This yields the assertion.
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Proof under the Bounded Gradient Condition (Assumption 5 (ii)) Next, we prove the theorem
under the bounded gradient case (Assumption 5 (ii)). Under the strict dissipative condition, the
statement can be immediately shown and thus we omit the proof.

We adopt the technique of Theorems 5.2 & 5.3 from Goldys and Maslowski (2006), and show
the geometric ergodicity via Theorem 2.5 of Mattingly et al. (2002). We note that Theorem 2.5
of Mattingly et al. (2002) is shown for a finite-dimensional setting, but it can be adopted for an
infinite-dimensional setting if the “minorization condition” (Lemma 2.3 of Mattingly et al. (2002))
and “Lyapunov condition” (Assumption 2.2 of Mattingly et al. (2002)) are satisfied.

Since the Lyapunov condition is already shown by Proposition 7, we only need to show the
minorization condition. Let µxk,η be the law of

Zx
k,η = Sk

ηx+

√
2η

β

k−1∑
l=0

Sk−l
η εl, (25)

and µk,η be the law of

Zk,η =

√
2η

β

k−1∑
l=0

Sk−l
η εl. (26)

Let Q ≜ 2η
β Id, and

Qk ≜
k−1∑
l=0

QS2(k−l)
η ,

for k = 1, 2, . . . , and Q0 = 0. Then, µxk,η is the Gaussian process on H with mean Sk
ηx and

covariance operator Qk, and µk,η is the centered Gaussian process on H with the same covariance
operator. By the Cameron-Martin formula, µxk,η and µk,η are equivalent with density given by

dµxk,η
dµk,η

(y) = exp

{
⟨Q−1

k Sk
ηx, y⟩ −

1

2

∥∥∥Q−1/2
k Sk

ηx
∥∥∥2} , (27)

(see Da Prato and Zabczyk (1996) for example). We can easily check that Qk ⪰ kQS2k
η . Then, we

have that

⟨x, Sk
ηQ

−1
k y⟩ − 1

2

∥∥∥Q−1/2
k Sk

ηx
∥∥∥2 ≥ −β

2
∥x∥2 − 1

2β
∥Sk

ηQ
−1
k y∥2 − β

4ηk
∥x∥2.

and thus we have the following lower bound of the density:

dµxk,η
dµk,η

(y) ≥ exp

{
−β
2

(
1 +

1

2kη

)
∥x∥2 − 1

2β
∥Sk

ηQ
−1
k y∥2

}
. (28)

For a given N (where N will be determined later on), let

Kk ≜ QkS
N−k
η Q

−1/2
N ,

for k = 0, . . . , N . Here, we define

Ẑx,y
k,η ≜ Zx

k,η −KkQ
−1/2
N (Zx

N,η − y),
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for x, y ∈ H, and denote Ẑk,η ≜ Ẑ0,0
k,η . In particular, we notice that

Ẑk,η = Zk,η −KkQ
−1/2
N ZN,η,

by definition. Let

Yk ≜
N−1∑
l=k

SN−l
η Q1/2ϵl,

Hk ≜ Q
−1/2
N−kS

N−k
η Q1/2.

By a simple calculation, we can show that

Yk = ZN,η − SN−k
η Zk,η = QN−kQ

−1
N ZN,η − SN−k

η Ẑk,η.

Finally, let

αk ≜ Q
−1/2
N−kHkYk = Q

1/2
N−kHkQ

−1
N︸ ︷︷ ︸

≜B1(k)

ZN,η −Q−1/2
N−kHkS

N−k
η︸ ︷︷ ︸

≜B2(k)

Ẑk,η,

and accordingly, define

ζk ≜ ϵk − αk.

Then, we can show that (Ẑk,η)k and (ζk)k are independent of ZN,η by the same reasoning as
Goldys and Maslowski (2006). To see this, we only have to show that their correlation is 0 because
they are Gaussian process. First, we can show that5

E [ϵkα
∗
k′ ] = Q

−1/2
N−k′Hk′E [ϵkY

∗
k′ ] =

{
Q

−1/2
N−k′Hk′(Q

1/2SN−k
η − SN−k′

η Q1/2Sk′−k
η ) (k′ < k)

Q
−1/2
N−k′Hk′(Q

1/2SN−k
η ) (k′ ≥ k)

=

{
0 (k′ < k)

Q
−1/2
N−k′Hk′Q

1/2
N−kHk (k′ ≥ k)

.

For k ≤ k′,

E [αkα
∗
k′ ] = Q

−1/2
N−kHkE [YkY

∗
k′ ]Hk′Q

−1/2
N−k′ = Q

−1/2
N−kHk

(
N−1∑
l=k′

S2(N−l)
η Q

)
Hk′Q

−1/2
N−k′

= Q
−1/2
N−kHk

(
N−k′−1∑

l=0

S2(N−k′−l)
η Q

)
Hk′Q

−1/2
N−k′

= Q
−1/2
N−kHkQN−k′Hk′Q

−1/2
N−k′ = Q

−1/2
N−kHkQ

1/2
N−k′Hk′ .

5. Here, for x, y ∈ H, the bounded linear operator z 7→ x⟨y, z⟩ is denoted by xy∗ for simplicity.
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Hence, when k < k′, it holds that

E[(ϵk − αk)(ϵk′ − αk′)
∗] = 0,

and when k = k′, we have that

E[(ϵk − αk)(ϵk − αk)
∗] = Id−H2

k .

Finally, we can see that

E[(ϵk − αk)Z
∗
N,η] = Q1/2SN−k

η −
{
Q

1/2
N−kHkQ

−1
N QN −Q−1/2

N−kHkS
N−k
η (QkS

N−k
η −KkQ

−1/2
N QN )

}
= Q1/2SN−k

η −Q1/2SN−k
η = 0,

which indicates ζk = ϵk − αk is independent of ZN,η. Furthermore, we have that

E[ZN,η(Ẑ
x,y
k,η − E[Ẑx,y

k,η ])
∗] = E[ZN,η(Ẑ

x,y
k,η )

∗] = E[ZN,ηZ
∗
k,η]− E[ZN,ηZ

∗
N,ηQ

−1/2
N Kk]

= Q

k−1∑
l=0

Sk−l
η SN−l

η −QNQ
−1/2
N Kk = QkS

N−k
η −QkS

N−k
η = 0.

This also yields that ZN,η and Ẑx,y
k,η (k = 1, . . . , N − 1) are independent.

As we have stated, we now show the minorization condition. Let P η
n (x, ·) be the probability

measure of the law of Xn with X0 = x, then by the Girsanov’s theorem, P η
N (x, ·) is absolutely

continuous with respect to µxN,η and the Radon-Nikodym density is given by

dP η
N (x, ·)
dµxN,η

(y) = E

[
exp

{
β

2η

N−1∑
k=0

(
⟨−η∇L(Zx

k,η), ϵk⟩
√
2η/β − η2

2
∥∇L(Zx

k,η)∥2
)} ∣∣Zx

N,η = y

]
.

The right hand side can be evaluated as

E

[
exp

{
β

2η

N−1∑
k=0

(
⟨−η∇L(Zx

k,η), ϵk⟩
√
2η/β − η2

2
∥∇L(Zx

k,η)∥2
)} ∣∣ZN,η = y − SN

η x

]

=E

[
exp

{
β

2η

N−1∑
k=0

(
⟨−η∇L(Zx

k,η), ζk⟩
√
2
η

β
+ ⟨−η∇L(Zx

k,η), (B1(k)ZN,η −B2(k)Ẑk,η)⟩
√
2
η

β

−η
2

2
∥∇L(Zx

k,η)∥2
)} ∣∣ZN,η = y − SN

η x

]
=E

[
exp

{
β

2η

N−1∑
k=0

(
⟨−η∇L(Ẑx,y

k,η ), ζk⟩
√
2
η

β

+ ⟨−η∇L(Ẑx,y
k,η ), B1(k)(y − SN

η x)−B2(k)Ẑk,η⟩
√

2η

β
−η

2

2
∥∇L(Ẑx,y

k,η )∥
2

)}]
,

where we used the fact that (Ẑk)k and (ζk)k are independent of ZN,η. Therefore, by Jensen’s
inequality, the right hand side is lower-bounded by

exp

{
β

2η

N−1∑
k=0

(
E
[
⟨−η∇L(Ẑx,y

k,η ), B1(k)(y − SN
η x)−B2(k)Ẑk,η⟩

]√2η

β
− η2

2
E[∥∇L(Ẑx,y

k,η )∥
2]

)}
.
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Thus, by the assumption that ∥∇L(·)∥ ≤ B, the right hand side is lower-bounded by

exp

{
−

√
β

2η

N−1∑
k=0

(
E
[
⟨−η∇L(Ẑx,y

k,η ), B1(k)(y − SN
η x)

]
+ ηBE[∥B2(k)Ẑk,η∥]

)
− βηN

2
B2

}

≥ exp

{√
βη

2

N−1∑
k=0

E
[
⟨∇L(Ẑx,y

k,η ), B1(k)(y − SN
η x)

]
− βηN

2
B2 −

N−1∑
k=0

E[∥B2(k)Ẑk,η∥2]−
βηN

2
B2

}

≥ exp

{√
βη

2

N−1∑
k=0

E
[
⟨∇L(Ẑx,y

k,η ), B1(k)(y − SN
η x)

]
− βηNB2 −

N−1∑
k=0

E[∥B2(k)Ẑk,η∥2]

}
.

(29)

For z ∈ H, we have√
β

2η

N−1∑
k=0

E
[
⟨η∇L(Ẑx,y

k,η ), B1(k)z⟩
]

=

√
β

2η

N−1∑
k=0

E [⟨η∇L(0), B1(k)z⟩] +

√
β

2η

N−1∑
k=0

E
[
⟨η(∇L(Ẑx,y

k,η )−∇L(0)), B1(k)z⟩
]

=

√
βη

2

〈(
N−1∑
k=0

B1(k)

)
∇L(0), z

〉
+

√
βη

2

N−1∑
k=0

E
[
⟨(∇L(Ẑx,y

k,η )−∇L(0)), B1(k)z⟩
]
.

The first term of the right hand side can be lower-bounded by

−βηN
4
− 1

2

N−1∑
k=0

⟨B1(k)∇L(0), z⟩2 = −
βηN

4
− 1

2

N−1∑
k=0

〈
QSN−k

η Q−1
N ∇L(0), z

〉2
.

The second term can be evaluated as√
βη

2

N−1∑
k=0

E
[
⟨(∇L(Ẑx,y

k,η )−∇L(0)), B1(k)z⟩
]
=

√
βη

2

N−1∑
k=0

E
[
⟨(D2L(Z̃x,y

k,η ) · Ẑ
x,y
k,η ), B1(k)z⟩

]
,

where Z̃x,y
k,η is an intermediate point between Ẑx,y

k,η and 0, i.e., there exists θ ∈ [0, 1] such that

Z̃x,y
k,η = θẐx,y

k,η . By Assumption 3, this can be further evaluated as√
βη

2

N−1∑
k=0

E
[
⟨(D2L(Z̃x,y

k,η ) · Ẑ
x,y
k,η ), B1(k)z⟩

]
≥ −

√
βη

2

N−1∑
k=0

Cα,2E
[
∥Ẑx,y

k,η ∥H∥B1(k)z∥α
]

≥ −βη
4
C2
α,2

N−1∑
k=0

E
[
∥Ẑx,y

k,η ∥
2
H

]
− 1

2

N−1∑
k=0

∥B1(k)z∥2α

= −βη
4
C2
α,2

N−1∑
k=0

E
[
∥Ẑx,y

k,η ∥
2
H

]
− 1

2

N−1∑
k=0

∥QSN−k
η Q−1

N z∥2α.
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Here, we have

E
[
∥Ẑx,y

k,η ∥
2
H

]
= Tr[QkQN−kQ

−1
N ] + ∥(Sk

η −KkQ
−1/2
N SN

η )x+KkQ
−1/2
N y∥2H

≤ Tr[QS2
η(Id−S2N

η )−1] + 2∥x∥2H + 2∥y∥2H,

where we used ∥Sk
η −KkQ

−1/2
N SN

η ∥ ≤ 1 and ∥KkQ
−1/2
N ∥ ≤ 1. Therefore, we obtain√

β

2η

N−1∑
k=0

E
[
⟨η∇L(Ẑx,y

k,η ), B1(k)z⟩
]

≥− βηN

4
− βη

4
C2
α,2

N−1∑
k=0

(Tr[QS2
η(Id−S2N

η )−1] + 2∥x∥2H + 2∥y∥2H)

− 1

2

N−1∑
k=0

(
〈
QSN−k

η Q−1
N ∇L(0), z

〉2
+ ∥QSN−k

η Q−1
N z∥2α).

Next we give another bound for z = SN
η x. In this situation, thanks to the factor SN

η , we have a
simpler bound:√

β

2η

N−1∑
k=0

E
[
⟨η∇L(Ẑx,y

k,η ), B1(k)S
N
η x⟩

]
≥ −

√
βη

2

N−1∑
k=0

B∥B1(k)S
N
η x∥ ≥ −

βηN

4
B2 +

1

2

N−1∑
k=0

∥B1(k)S
N
η x∥2.

Notice that
N−1∑
k=0

B1(k)
2 =

N−1∑
k=0

(Q
1/2
N−kHkQ

−1
N )2 =

N−1∑
k=1

QN−kH
2
kQ

−2
N =

N−1∑
k=0

QN−kQ
−1
N−kS

2(N−k)
η QQ−2

N

=
N−1∑
k=0

S2(N−k)
η QQ−2

N = Q−1
N .

Therefore,
∑N−1

k=0 ∥B1(k)S
N
η x∥2 can be bounded as

N−1∑
k=0

∥B1(k)S
N
η x∥2 = ∥Q

−1/2
N SN

η x∥2 ≤
1

N
Q−1∥x∥2 = β

2Nη
∥x∥2,

where we used QN ⪰ NQS2N
η and Q = 2η

β Id. Therefore, we have√
β

2η

N−1∑
k=0

E
[
⟨η∇L(Ẑx,y

k,η ), B1(k)S
N
η x⟩

]
≥ −βηN

4
B2 − β

4Nη
∥x∥2.

N−1∑
k=0

E[∥B2(k)Ẑk,η∥2] =
N−1∑
k=0

Tr[(Q−1
N−kS

2(N−k)
η Q1/2)2(Qk − 2Q2

kQ
−1
N S2(N−k)

η +QN )]
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≤
N−1∑
k=0

Tr[(Q−1
N−kS

2(N−k)
η Q1/2)2(Qk − 2QkQ

−1
N QN +QN )]

=

N−1∑
k=0

Tr[(Q−1
N−kS

2(N−k)
η Q1/2)2(QN −Qk)]

≤
N−1∑
k=0

Tr

[
Q−2

N−kS
4(N−k)
η Q

(
N−k−1∑

l=0

SN−l
η

)]
=

N−1∑
k=0

Tr[Q−2
N−kS

4(N−k)
η QQN−kS

2k
η ]

=

N−1∑
k=0

Tr[Q−1
N−kS

2N
η S2(N−k)

η Q] =

N−1∑
k=0

Tr{(S−2
η − Id)[Q(Id−S2(N−k)

η )]−1S2N
η S2(N−k)

η Q}

= Tr

[
(S−2

η − Id)S2N
η

N−1∑
k=0

(S−2(N−k)
η − Id)−1

]
≤ Tr

[
(S−2

η − Id)S2N
η (S−2

η − Id)−1
N−1∑
k=0

S2k
η

]
= Tr

[
(S−2

η − Id)S2N
η (S−2

η − Id)−1(S2N
η − Id)(S2

η − Id)−1
]
= Tr

[
S2N
η (S2N

η − Id)(S2
η − Id)−1

]
≤ Tr

[
(S4N

η − S2N
η )(S2

η − Id)−1
]
≤ Tr

[
(S2N+2

η − S2N
η )(S2

η − Id)−1
]

(∵ N ≥ 1)

≤ Tr
[
S2N
η

]
≤ Tr

[
(Id+2NηA)−1

]
.

Therefore, we obtain, for all y ∈ Im(Q
1/2
N ),

dP η
N (x, ·)
dµxN,η

(y)

≥ exp

{
− βηN

4
− βη

4
C2
α,2

N−1∑
k=0

(Tr[QS2
η(Id−S2N

η )−1] + 2∥x∥2H + 2∥y∥2H)

− 1

2

N−1∑
k=0

(〈
QSN−k

η Q−1
N ∇L(0), y

〉2
+ ∥QSN−k

η Q−1
N y∥2α

)
− βηN

4
B2 − β

4Nη
∥x∥2

− βηNB2 − Tr
[
(Id+2NηA)−1

]}

≥ exp

{
−βηN(1 + 5B2)

4
− βηN

4
C2
α,2Tr[QS

2
η(Id−S2N

η )−1]− Tr
[
(Id+2NηA)−1

]
︸ ︷︷ ︸

=:−Cη,N,β

−
(
βηN

2
C2
α,2 +

β

4Nη

)
∥x∥2︸ ︷︷ ︸

=:−Λ̃x(x)

−βηN
2

C2
α,2∥y∥2 −

1

2

N−1∑
k=0

(
〈
QSN−k

η Q−1
N ∇L(0), y

〉2
+ ∥QSN−k

η Q−1
N y∥2α)︸ ︷︷ ︸

=:−Λ̃y(y)

}
.
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Combining the inequalities (28) and (29), we finally obtain that

dP η
N (x, ·)
dµN,η

(y) =
dP η

N (x, ·)
dµxN,η

(y)
dµxN,η

dµN,η
(y)

≥ exp

{
−β
2

(
1 +

1

2ηN

)
∥x∥2 − 1

4β
∥SN

η Q
−1
N y∥2 − Cη,N,β − Λ̃x(x)− Λ̃y(y)

}
. (30)

Fro now on, we give a lower bound of the right hand side. To do so, we set N = 1/η. Under this
setting, let Λx(x) :=

β
4 ∥x∥

2 + Λ̃x(x) and Λy(y) :=
1
4β∥S

N
η Q

−1
N y∥2 + Λ̃y(y), i.e.,

dP η
N (x, ·)
dµN,η

(y) ≥ exp {−Cη,N,β − Λx(x)− Λy(y)} . (31)

We evaluate the terms in the exponent in the right hand side one by one.
(i) (Bound of Cη,N,β): Note that

∥(Id− S2N
η )−1∥B(H) ≤ [1− (1 + ηλ/µ0)

−2N ]−1 ≤ (1 + ηλ/µ0)
2N [(1 + ηλ/µ0)

2N − 1]−1

≤ exp(2Nηλ/µ0)

2Nηλ/µ0
=

exp(2λ/µ0)

2λ/µ0
, (32)

and thus

Tr[QS2
η(Id− S2N

η )−1] =
2η

β
Tr[S2

η(Id− S2N
η )−1] ≤ 2η

β
Tr[S2

η ]∥S2
η(Id− S2N

η )−1∥B(H)

≤ 2η

β

exp(2λ/µ0)

2λ/µ0

∞∑
k=0

(1 + ηλ/µk)
−2 ≤ Cµ

2η

β

exp(2λ/µ0)

2λ/µ0

√
1

ηλ

= Cµ

√
η

β

µ0 exp(2λ/µ0)

λ3/2
,

where Cµ is a constant depending on (µk)
∞
k=1 and we used µk ≲ 1/k2 in the last inequality. This

converges to 0 as η → 0 and β →∞, thus Tr[QS2
η(Id− S2N

η )−1] = O(1). Consequently, we have

Cη,N,β =
β(1 + 5B2)

4
+

1

4
C2
α,2Cµ

√
η
µ0 exp(2λ/µ0)

λ3/2
+Tr

[
(Id+2A)−1

]
= O(β).

(ii) (Bound of Λx(x)): By the definition of Λx(x), it holds that

Λx(x) =

(
β

2

(
1 +

1

2ηN

)
+
βηN

2
C2
α,2 +

β

4Nη

)
∥x∥2 =

(
β +

β

2
C2
α,2

)
∥x∥2 = O(β∥x∥2).

(ii) (Bound of Λy(y)): Finally, we evaluate Λy(y). When η = 1/N ,

Λy(y) =
1

4β
∥SN

η Q
−1
N y∥2 + β

2
C2
α,2∥y∥2 +

1

2

N−1∑
k=0

(
〈
QSN−k

η Q−1
N ∇L(0), y

〉2
+ ∥QSN−k

η Q−1
N y∥2α).

We can show that Λy(Z) < ∞ for Z ∼ µN,η almost surely, as follows. Since 0 ≤ Λy(y), we
only have to evaluate EZ∼µN,η

[Λy(Z)]. To do so, we note that µN,η is a Gaussian process in H
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with mean 0 and covariance QN , which can be easily checked by its definition. By using this, we
evaluate the expectation of each term as follows.

EZ∼µN,η

[
1

4β
∥SN

η Q
−1
N y∥2

]
=

1

4β
Tr[S2N
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N QN ] =

1
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1
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2
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−1]
exp(2λ/µ0)
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(∵ Eq. (32))

=
1
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exp(2λ/µ0)
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2λ/µ0

∞∑
k=0

1

(1 + λ/µk)

(
2λ/µk

(1 + λ/µk)
+

η(λ/µk)
2

(1 + 1
2λ/µk)

2

)

≤ 1

8

exp(2λ/µ0)

2λ/µ0

∞∑
k=0

1

(1 + λ/µk)
(2 + 4η)

≤ 1 + 2η

4

exp(2λ/µ0)

2λ/µ0

C ′
µ√
λ
= O(1),

where C ′
µ is a constant depending only on (µk)k and we again used µk ≲ 1/k2 in the last inequality.

EZ∼µN,η

[
β

2
C2
α,2∥Z∥2

]
=
β

2
C2
α,2Tr[QN ] =

β

2
C2
α,2Tr[Q(S2

η − S2(N+1)
η )(Id−S2

η)
−1]

= ηC2
α,2Tr[(Id−S2N

η )(S−2
η − Id)−1]

= ηC2
α,2

∞∑
k=0

(1− (1 + ηλ/µk)
−2N )(2ηλ/µk + η2(λ/µk)

2)−1

≤ ηC2
α,2

∞∑
k=0

(2ηλ/µk)
−1 =

C2
α,2

2λ

∞∑
k=0

µk ≤
C2
α,2

2λ
C ′′
µ = O(1),

whereC ′′
µ is a constant depending only on (µk)k and we again used µk ≲ 1/k2 in the last inequality.

EZ∼µN,η

[
N−1∑
k=0

(〈
QSN−k

η Q−1
N ∇L(0), Z

〉2
+ ∥QSN−k

η Q−1
N Z∥2α

)]
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=
N−1∑
k=0

{〈
QSN−k

η Q−1
N ∇L(0), QNQS

N−k
η Q−1

N ∇L(0)
〉
+Tr[QSN−k

η Q−1
N

√
QN Idα

√
QNQS

N−k
η Q−1

N ]
}

where Idα : H → H is a linear operator defined by ⟨x, Idα y⟩ =
∑∞

k=0(µk)
2αxkyk for x =

(xk)k, y = (yk)k ∈ H. The first term in the right hand side can be evaluated as〈
QSN−k

η Q−1
N ∇L(0), QNQS

N−k
η Q−1

N ∇L(0)
〉
=
〈
Q2S2(N−k)

η Q−1
N ∇L(0),∇L(0)

〉
,

and its summation becomes

∞∑
k=0

〈
Q2S2(N−k)

η Q−1
N ∇L(0),∇L(0)

〉
=
〈
QQNQ

−1
N ∇L(0),∇L(0)

〉
= ⟨Q∇L(0),∇L(0)⟩ = 2η

β
∥L(0)∥2 = O(η/β).

The second term can be evaluated as

∞∑
k=0

Tr[QSN−k
η Q−1

N

√
QN Idα

√
QNQS

N−k
η Q−1

N ] =

∞∑
k=0

Tr[Q2S2(N−k)
η Q−1

N Idα]

=
∞∑
k=0

Tr[QQNQ
−1
N Idα] =

∞∑
k=0

2η

β
Tr[Idα] =

2η

β

∞∑
k=0

µ2αk =
2η

β
Cµ,α = O(η/β),

where we used the assumption α > 1/4 and µk ≲ 1/k2. Summarizing the above arguments, we
obtain that

EZ∼µN,η
[Λy(Z)] ≤ O(1). (33)

(iv) (Combining all bounds (i), (ii), (iii)). Combining these bounds for Cη,N,β ,Λx(x),Λy(y),
we may give a lower bound of P η

N (x,Γ) for a measurable set Γ ⊂ H uniformly for all x with norm
smaller than a given R, which is required to show the minorization condition. Let

cR ≜ exp

(
−Cη,N,β −

β

2
(2 + C2

α,2)R
2

)
forR ≥ 3

2k(1) which will be determined later, then we have shown that for all x ∈ Hwith ∥x∥ ≤ R,

exp(−Cη,N,β − Λx(x)) ≥ cR.

By Eq. (30), this gives that

P η
N (x,Γ) ≥ cR

∫
Γ
e−Λy(z)µN,η(dz),

for all x ∈ BR and a measurable set Γ ⊂ H. In particular, if we define

µ̄(Γ) ≜
1

Z̄

∫
Γ∩BR

e−Λy(z)µN,η(dz)
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where Z̄ =
∫
BR
e−Λy(z)µN,η(dz) so that µ̄ is a probability measure, then

P η
N (x,Γ) ≥ cR

∫
Γ∩BR

e−Λy(z)µN,η(dz) ≥ δµ̄(Γ), (34)

where

δ ≜ cRZ̄.

Here, we give a lower bound of δ. By Proposition 7,

µN,η(BR) ≥ 1−
EZ∼µN,η

[∥Z∥]]
R

≥ 1− 1

R
k(1) ≥ 1

3
,

where we used R ≥ 3
2k(1) and thus δ can be lower-bounded as

δ = cR

∫
BR

e−Λy(z)µN,η(dz) = cRµN,δ(BR)
1

µN,δ(BR)

∫
BR

e−Λy(z)µN,η(dz)

≥ cRµN,δ(BR) exp
(
− 1

µN,δ(BR)

∫
BR

Λy(z)µN,η(dz)

)
≥ 1

3
cR exp

(
−2
∫
H
Λy(z)µN,η(dz)

)
≥ 1

3
cR exp (−O(1)) ,

where we used Eq. (33) in the final inequality. Therefore, we have shown that there exists a proba-
bility measure µ̄, with µ̄(BR) = 1 and µ̄(BcR) = 0, such that Eq. (34) is satisfied for any x ∈ BR and
a measurable set Γ ∈ B(H), where δ ≥ 1

3cR exp (−O(1)) ≥ 1
3 exp(−Cη,N,β − Λx(x) − O(1)) ≳

exp(−O(β)).
By Proposition 7, the following contraction condition holds for αN = ρN = ( 1

1+λη/µ0
)N ≤

exp(−λ/µ0) < 1, b̄ = max{µ0

λ B + k(1), 1} under the bounded gradient condition:

Ex0 ∥XN∥ ≤ αN ∥x0∥+ b̄ (∀n ∈ N).

Set V (x) = ∥x∥+ 1 and C =

{
x ∈ H | V (x) ≤ 2b̄√

(1+αN )/2−αN

}
, then we have that C = BR

for R = 2b̄√
(1+αN )/2−αN

− 1. Here, we give lower and upper bounds of R. As for the lower bound,

we can easily see that R ≥ 5
2 b̄ − 1 ≥ 3

2 b̄ ≥
3
2k(1). Next, we give an upper bound. Jensen’s

inequality and the fact 0 < αN < 1 yield
√
(1 + αN )/2 − αN ≥

1+
√
αN

2 − √αN =
1−√

αN

2 .
Here for a > 0, it is easy to see (1 + a)N/2 ≥ 1 + aN/2 and thus we have 1 − (1 + a)−N/2 ≥
1 − (1 + aN/2)−1 = aN/2

1+aN/2 . Substituting a = λη/µ0, 1−√
αN

2 ≥ Nλη/(2µ0)
1+Nλη/(2µ0)

. Then, by using

η = 1/N , we obtain that 2b̄√
(1+αN )/2−αN

≤ 4bµ0(1+λ/(2µ0))
λ = 2b̄(1 + 2µ0

λ ).

Then, Theorem 2.5 of Mattingly et al. (2002) asserts that there exits a invariant measure µη for
the Markov chain (XlN )l and the chain satisfies the geometric ergodicity: for ϕ : H → R such that
|ϕ(·)| ≤ V (·),

E[ϕ(XlN )]− EX∼µη [ϕ(X)] ≤ κ[V̄ + 1](1− δ)al +
√
2V (x0)γ

l(κ[V̄ + 1])al
1√
δ
, (35)
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where κ = b̄ + 1, V̄ = 2 supx∈C V (x) = 4b̄√
(1+αN )/2−αN

, γ =
√

(αN + 1)/2 and a ∈ (0, 1) so

that γ(κ[V̄ + 1])a ≤ (1− δ)a. In particular, we may choose a ∈ (0, 1) as

a =
log(1/γ)

log(κ(V̄ + 1)/(1− δ))
.

Here, by noting that

log(1/γ) = −1

2
log

(
1 + αN

2

)
= −1

2
log

(
1− 1− αN

2

)
≥ 1

2

(
1− αN

2

)
≥ 1

4
min

(
λ

2µ0
,
1

2

)
= Ω(λ/µ0),

we may assume

a ≥
min

(
λ

2µ0
, 12

)
4 log(κ(V̄ + 1)/(1− δ))

.

Then Eq. (35) is simplified to

E[ϕ(XlN )]− EX∼µη [ϕ(X)] ≤

(
κ[V̄ + 1] +

√
2V (x0)√

δ

)
(1− δ)al. (36)

This shows the geometric ergodicity of the sequence (XlN )∞l=1. To extend this result to “unsampled”
sequence (Xn)

∞
n=1, we may apply the same argument to the sequence (XlN+n)

∞
l=0 for each n =

1, . . . , N − 1. Applying Eq. (35) where x0 is replaced with Xn and taking expectation with respect
to Xn, we have

E[ϕ(XlN+n)]− EX∼µη [ϕ(X)] (37)

≤

(
κ[V̄ + 1] +

√
2E[V (Xn)]√

δ

)
(1− δ)al

≤

(
κ[V̄ + 1] +

√
2(ρn∥x0∥+ b+ 1)√

δ

)
(1− δ)al (∵ Proposition 7)

≤

(
κ[V̄ + 1] +

√
2(V (x0) + b)√

δ

)
(1− δ)al. (38)

Finally, we note that for 0 ≤ n < N ,

(1− δ)al ≤ (1− δ)a(lN+n−N)/N ≤ (1− δ)a[(lN+n)/N−1] ≤ exp (−δa[(lN + n)/N − 1])

≤ exp
(
−Λ∗

η[η(lN + n)− 1]
)
,

where we set

Λ∗
η ≜ aδ ≥

min
(

λ
2µ0

, 12

)
4 log(κ(V̄ + 1)/(1− δ))

δ = Ω(exp(−O(β))).

This yields the assertion. □
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Appendix F. Proof of Proposition 10

Lemma 13 (Gaussian correlation inequality) Let ν∞ be the Gaussian measure in H given by
a random variable

∑∞
i=0 ξiγifi where (ξ)∞i=0 is a sequence of i.i.d. standard normal variables

and (γi)
∞
i=0 is a sequence of real variables with 0 <

∑∞
i=0 γ

2
i < ∞. For two sets C1 = {X =∑∞

i=0 αifi ∈ H |
∑∞

i=0 α
2
iµ

(1)
i ≤ 1} and C2 = {X =

∑∞
i=0 αifi ∈ H | |

∑∞
i=0 αiµ

(2)
i | ≤ 1}

where (µ
(1)
i )∞i=1 is a fixed non-negative sequence and (µ

(2)
i )∞i=1 is a fixed sequence of real numbers

satisfying
∑∞

i=0(µ
(2)
i )2 <∞, we have

ν∞(C1 ∩ C2) ≥ ν∞(C1)ν∞(C2).

Proof Let C1n an C2n be the cylinder set that “truncates” C1 an C2 up to index n: C1n = {X =∑∞
i=0 αifi ∈ H |

∑n
i=0 α

2
iµ

(1)
i ≤ 1} and C2n = {X =

∑∞
i=0 αifi ∈ H | |

∑n
i=0 αiµ

(2)
i | ≤ 1}. By

the Gaussian correlation inequality (Royen, 2014; Latała and Matlak, 2017), it holds that

ν∞(C1n ∩ C2n) ≥ ν∞(C1n)ν∞(C2n).

We note that (C1n)n is a monotonically decreasing sequence, i.e., C1n ⊆ C1m for m < n, and we see
that ∩∞n=1C1n = C1. By the continuity of probability measure, this yields that limn→∞ ν∞(C1n\C1) =
0 and limn→∞ ν∞(C1n) = ν(C1). On the other hand, for any ϵ > 0, there exists N such that∑∞

i=N (γiµ
(2)
i )2 ≤ ϵ by the assumption (

∑∞
i=0 γ

2
i < ∞ and

∑∞
i=0(µ

(2)
i )2 < ∞). Hence, it holds

that E[(
∑∞

i=N γiξiµ
(2)
i )2] =

∑∞
i=N (γiµ

(2)
i )2 ≤ ϵ, which indicates that, by Markov’s inequality,

ν∞ ({
∑∞

i=0 αifi | |
∑∞

i=N αiµ
(2)
i | > δ }) ≤ ϵ/δ2

for any δ > 0. If we set C2(ϵ) = {
∑∞

i=0 αifi ∈ H | |
∑∞

i=0 αiµ
(2)
i | ≤ 1 + ϵ}, then this and the

continuity of Gaussian measures (note that
∑∞

i=0 ξiγiµ
(2)
i is a one dimensional Gaussian measure

and has density with respect to the Lebesgue measure) yield that, for any ϵ > 0, there exists N such
that for all n ≥ N , it holds that

ν∞(C2(−ϵ))− ϵ ≤ ν∞(C2n) ≤ ν∞(C2(ϵ)) + ϵ,

ν∞(C1 ∩ C2(−ϵ))− ϵ ≤ ν∞(C1 ∩ C2n) ≤ ν∞(C1 ∩ C2(ϵ)) + ϵ.

Since limn→∞ ν∞(C1n\C1) = 0, the second inequality also gives

ν∞(C1n ∩ C2(−ϵ))− 2ϵ ≤ ν∞(C1n ∩ C2n) ≤ ν∞(C1n ∩ C2(ϵ)) + 2ϵ.

for any n ≥ N ′ with sufficiently large N ′. Therefore, since limϵ→0 ν∞((C2(ϵ)\C
2) ∪ (C2\C2(ϵ))) = 0

by the continuity of Gaussian measures and limn→∞ ν∞(C1n\C1), by taking the limit of ϵ and n of
this inequality, we have

ν∞(C1 ∩ C2) = lim
n→∞

ν∞(C1n ∩ C2n).

Hence, applying the Gaussian correlation inequality to the right hand side yields

ν∞(C1 ∩ C2) = lim
n→∞

ν∞(C1n ∩ C2n)
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≥ lim
n→∞

ν∞(C2n)ν∞(C2n) = ν∞(C2)ν∞(C2).

Proof [Proof of Proposition 10] The proof relies on comparing the stationary distribution π of
Eq. (4) to the Gaussian stationary distribution ν(β)∞ of Eq. (21) (case F = 0). We then conclude by
using the small ball probability theorem (Kuelbs and Li, 1993; Li and Shao, 2001) and Lemma 13
on ν∞. First note that ∫

L(x) dπ(x)− L(x̃)

= − 1
β

∫
log{e−β(L(x)−L(x̃))}dπ(x)

= − 1
β

∫
log{ 1Λe

−β(L(x)−L(x̃))} dπ(x)− 1
β log Λ

= − 1
βKL(π||ν(β)∞ )− 1

β log(Λ), (39)

where ν(β)∞ is the invariant distribution of Eq. (21), i.e., the centered Gaussian onH with covariance
operator (−βA)−1, Λ ≜

∫
exp[−β(L(x) − L(x̃))] dν(β)∞ (x), and KL(µ||ν) ≜

∫
log(dµ/dν) dµ

for probability measures µ and ν that are mutually absolutely continuous. Since the KL-divergence
KL(π||ν(β)∞ ) is non-negative, the right hand side is upper bounded by − 1

β log(Λ). By definition of
x̃, it holds that

∇L(x̃) = −λ
2
∇∥x̃∥2HK

= −λ
∑
k≥0

⟨x̃,fk⟩
µk

fk.

Hence, using the M -smoothness of L, we obtain

L(x)− L(x̃)
≤ 1

2M∥x− x̃∥
2 + λ⟨x̃, x− x̃⟩HK

≤ 1
2M∥x− x̃∥

2 + λ∥x̃∥HK

〈
x̃

∥x̃∥HK

, x− x̃
〉

HK

.

Therefore, log(Λ) can be lower-bounded by

log(Λ) ≥ log

∫
exp

{
−β
[
1
2M∥x− x̃∥

2

+ λ∥x̃∥HK

〈
x̃

∥x̃∥HK

, x− x̃
〉

HK

]}
dν(β)∞ (x)

≥ −β
[
1
2Mε2 + λ∥x̃∥HK

U
]

+ log[ν(β)∞ ({x ∈ x̃+ Cε,U})],

where Cε,U ≜ {x ∈ H | ∥x∥ ≤ ε, |⟨ x̃
∥x̃∥HK

,x⟩HK
| ≤ U} for arbitrary ε > 0 and U > 0 (if

∥x̃∥HK
= 0, then we treat x̃

∥x̃∥HK
= 0). Then, by Borell’s inequality (Borell (1975), van der Vaart

and van Zanten (2008, Lemma 5.2)), we have

log[ν(β)∞ ({x ∈ x̃+ Cε,U})] ≥ log(ν(β)∞ (Cε,U ))−
βλ

2
∥x̃∥2HK

.
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Finally, we lower bound log(ν
(β)
∞ (Cε,U )). Let C(1)ε ≜ {x ∈ H | ∥x∥ ≤ ε} and C(2)U ≜ {x ∈ H |

|⟨ x̃
∥x̃∥HK

,x⟩HK
| ≤ U} (that is, Cϵ,U = C(1)ε ∩ C(2)U ), then by Lemma 13, it holds that

log(ν(β)∞ (Cε,U )) ≥ log(ν(β)∞ (C(1)ε )) + log(ν(β)∞ (C(2)U )).

By the small ball probability theorem (Kuelbs and Li, 1993; Li and Shao, 2001), we can lower
bound the first term of the left hand side as

− log(ν(β)∞ (C(1)ε )) ≲ (
√
βλε)−2.

To evaluate ν(β)∞ (C(2)U ), we note that

E
x∼ν

(β)
∞

[〈
x̃

∥x̃∥HK

, x

〉2

HK

]
≤ β−1.

Therefore, by the Markov’s inequality,

ν(β)∞ (C(2)U ) ≥ 1− 1

βU2
.

By setting U =
√
2/β, we also have

− log(ν(β)∞ (C(2)U )) ≤ log(1/2).

Combining these inequalities, we finally arrive at∫
Ldπ − L(x̃)≤ − 1

β
log(Λ)

≤ 1
2Mε2 + λ∥x̃∥HK

√
2

β
+
λ

2
∥x̃∥2HK

+ β−1[C(
√
βλε)−2 + log(1/2)]

≲
M

2
ε2 + λ

(
∥x̃∥HK

β−1/2 + ∥x̃∥2HK

)
+ (β

√
λε)−2 + β−1. (40)

Finally, differentiating the above w.r.t. ε, we get that the optimal bound is attained for ε =(
2

Mβ2λ

)1/4
, and is then equal to

1

β

(√
2M

λ
+ 1

)
+ λ

(
∥x̃∥HK

β−1/2 + ∥x̃∥2HK

)
.

38



DIMENSION-FREE CONVERGENCE RATES FOR GRADIENT LANGEVIN DYNAMICS IN RKHS

Appendix G. Proof of time and space approximation error (Proposition 9 and
Proposition 11)

In this section, we prove Proposition 9 and Proposition 11. As we have noted, Proposition 9 is
obtained as a corollary of Proposition 11 by taking the limit of N → ∞. More strongly, we can
show the following lemma. Let

ĉβ =

{
1 (strict dissipativity condition: Assumption 5 (i))),
√
β (bounded gradient condition: Assumption 5 (ii)).

(41)

Lemma 14 Suppose ∥x0∥ ≤ 1. Under the same assumptions and notations as in Propositions 9
and 11, it holds that:

1

n

n−1∑
k=0

E
[
ϕ
(
XN

k

)
− ϕ (Xπ)

]
≤ C1

Λ∗
0

ĉβ
(
1 + (nη′)−1+κ + (nη′)−1

) (
η1/2−κ + µ

1/2−κ
N+1 + (nη′)−1

)
.

(42)

Proof [Proof of Proposition 9 and Proposition 11] Once we obtain this lemma (Lemma 14), then it
is easy to show both propositions by taking into account that

lim
n→∞

1

n

n−1∑
k=0

E
[
ϕ
(
XN

k

)]
= E[ϕ(Xµ(N,η))] (43)

where µ(N,η) is the invariant measure of (XN
k )k whose existence and uniqueness can be shown in

the same manner as Proposition 8 (see also Bréhier and Kopec (2016) for this argument). This gives
Proposition 11 under the condition ∥x0∥ ≤ 1. Since the invariant measure µ(N,η) is independent of
the initial solution x0, we may drop the condition ∥x0∥ ≤ 1. Then, we obtain Proposition 11.

We can see that the proof of Proposition 8 is valid to show the convergence of Eq. (43) uniformly
over all N and its convergence is uniform over all N . Moreover, it has been already shown (see
Bréhier (2014) for example) that

lim
N→∞

E[ϕ(XN
k )] = E[ϕ(Xk)] (∀k ∈ N).

Consequently, we can exchange the order of limit, and by applying the geometric ergodicity
limk→∞ E[ϕ(Xk)] = E[ϕ(Xµη)] (Proposition 8) again, we also have

lim
N→∞

E[ϕ(Xµ(N,η))] = lim
N→∞

lim
n→∞

1

n

n−1∑
k=0

E
[
ϕ
(
XN

k

)]
= lim

n→∞
lim

N→∞

1

n

n−1∑
k=0

E
[
ϕ
(
XN

k

)]
(∵ uniformity of convergence)

= lim
n→∞

1

n

n−1∑
k=0

E [ϕ (Xk)] = E[ϕ(Xµη)].
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Therefore, Lemma 14 gives the proof of Proposition 9 by taking the limit of n→∞ and N →∞.
Here again, we would like to note that the assumption ∥x∥ ≤ 1 can be dropped in the limit because
the invariant measure µη is independent of the initial solution.

In the following, we prove Lemma 14. Our proof follows the line of Bréhier and Kopec (2016).
For lighter notation, our constants may differ from line to line.

G.1. Preliminaries

In this subsection, we prepare some notations and state lemmas necessary to prove the statement.
Here, we introduce the continuous time dynamics with the Galerkin approximation as{

XN (0) = PNx0 ∈ HN ,

dXN (t) = (AXN (t)−∇LN (XN (t)))dt+
√

2
βPNdW (t).

(44)

Here, we denote by X(t, x) to represent X(t) with X0 = x and similarly we write Y (t, x) for a
continuous time process {Y (t)}t to indicate Y (t) with Y (0) = x. Notice that our constants should
not depend on β while Bréhier and Kopec (2016) sets β = 1. Our technical contribution is to extend
the work of Bréhier and Kopec (2016) to general case. To this end, we apply a change of variables
with t′ ≜ 2t/β. Accordingly, Eq. (4) transforms into

X(0) = x0 ∈ H,
dX(t′) = −∇L′(X(t′))dt′ + dW (t′)

= (A′X(t′)−∇L′(X(t′)))dt′ + dW (t′),

(45)

where A′ ≜ (β/2)A, L′ ≜ (β/2)L, L′ ≜ (β/2)L. Accordingly, let the “time re-scaled version” of
the process X(t) be

X̂(t′) ≜ X
(
β
2 t

′
)
, X̂N (t′) ≜ XN

(
β
2 t

′
)

(t′ ≥ 0).

Similarly, the change of variables with η′ = η/(β/2) translates the time discretized Galerkin ap-
proximation scheme (5) into

XN
0 = PNx0 ∈ HN ,

XN
n+1 = XN

n − η′(A′XN
n+1 −∇L′

N (XN
n )) +

√
η′ϵn

⇔ XN
n+1 = S̃η′(X

N
n − η′∇L′

N (XN
n ) +

√
η′ϵn),

(46)

whereL′
N ≜ (β/2)LN , S̃η′ = Sη. Here we used the abuse of notation to letA′, S̃η′ indicate the map

from HN to HN which is naturally defined by A′, S̃η′ : H → H through the canonical imbedding
ι : x ∈ HN ↪→ H: Ax ≜ (A◦ ι)x for x ∈ HN (the same argument is also applied to S̃η′). Note that
we may set S̃η′ = Sη because η′A′ = ηA. We write the (rescaled) continuous time corresponding
to the k-th step as

tk ≜ kη′.

Our approach is to follow the proofs of Bréhier and Kopec (2016); Kopec (2014) and uncover
the dependency of β step by step. For completeness, we restate the results of Bréhier and Kopec
(2016) in our notations.
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Proposition 15

1. We have for any N ∈ N, γ ∈ [−1/2, 1/2], and x ∈ H,∥∥(−A′)γPNx
∥∥ ≤ ∥∥(−A′)γx

∥∥ . (47)

2. For PN , we have the following error estimate:

∥∥∥(−A′)s/2(I − PN )(−A′)−r/2
∥∥∥
B(H)

=

(
µ′N+1

β/2

)(r−s)/2

∀0 ≤ s ≤ 1, s ≤ r ≤ 2, (48)

where
µ′i ≜ µi/λ.

The corresponding result in Bréhier and Kopec (2016) is on finite element approximations; see
Andersson and Larsson (2016) for more details. However, it can be naturally extended to spectral
Galerkin projection as pointed out in Bréhier and Kopec (2016). In fact, these two approximations
are essentially the same; see Kruse (2013). As a consequence, we get the following result.

Proposition 16 For any κ > 0, the linear operator on H, PN (−A′)−1/2−κPN is continuous,
self-adjoint and positive semi-definite. Moreover, there exists Cκ > 0 such that for any β > 0

sup
N∈N

Tr
(
PN (−A′)−1/2−κPN

)
<

Cκ

β1/2+κ
. (49)

This is an extension of Proposition 3.4 in Kopec (2014), where β is fixed to 1. The following
fundamental inequality is important for the proof of Proposition 16.

Proposition 17 For M,N ∈ B(H) such that M is symmetric and positive semi-definite,

|Tr(MN)| ≤ ∥M∥B(H) |Tr(N)|. (50)

Our next step is to extend Lemma 3.7 of Kopec (2014) to our case.

Lemma 18 For any 0 ≤ κ ≤ 1, N ∈ N, β ≥ η0, and j ≥ 1,∥∥∥(−A′)1−κS̃j
η′PN

∥∥∥
B(H)

≤ (β/2)1−κ

(jη)1−κ

1

(1 + η/µ′0)
jκ

=
1

t1−κ
j

1

(1 + η/µ′0)
jκ
. (51)

Moreover,

∀ γ ≥ 1 ∃ Cγ > 0 ∀ j ≥ γ
∥∥∥(−A′)γS̃j

η′PN

∥∥∥
B(H)

≤ Cγ

(jη)γ
(β/2)γ =

Cγ

tγj
, (52)

and for any 0 ≤ γ ≤ 1, ∥∥∥(−A′)−γ(S̃η′ − I)PN

∥∥∥
B(H)

≤ 2
ηγ

(β/2)γ
= 2η′

γ
. (53)
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The proof is almost the same as in Lemma 3.7 of Kopec (2014), and thus we omit the proof. The
relationship that η′ = η/(β/2), A′ = (β/2)A specifies the dependence on β.

As in Bréhier and Kopec (2016), we have the following expression of XN
k :

XN
k = S̃k

η′PNx− η′
k−1∑
l=0

S̃k−l
η′ PN∇L(XN

l ) +
√
η′

k−l∑
l=0

S̃k−l
η′ PN ϵl+1, (54)

√
η′

k−l∑
l=0

S̃k−l
η′ PN ϵl+1 =

∫ tk

0
S̃k−ls
η′ PNdW (s), (55)

where ls ≜ ⌊ sη′ ⌋ with the notation ⌊·⌋ is the floor function. The advantage of this expression is that
we can handle each term by simple estimates.

We introduce the following interpolation processes: for 0 ≤ k ≤ m − 1 and tk ≤ t ≤ tk+1, it
holds that:

X̃N (t) = XN
k +

∫ t

tk

S̃η′
[
A′XN

k − PN∇L′(XN
k )
]
ds+

∫ t

tk

S̃η′PNdW (s). (56)

The process {X̃N (t)}t≥0 is a natural interpolation of the discrete scheme {XN
k }k∈N: {X̃N (tk)}k∈N

and {XN
k }k∈N have the same joint distribution.

G.2. Bounds on Moments

In this subsection, we give a few bounds on moments of {X(t)}t≥0, {XN (t)}t≥0, {XN
k }k∈N. Note

that the constants are uniform with respect to N ∈ N, 0 < η ≤ η0 and β ≥ η0.

Lemma 19 For any p ≥ 1, there exists a constantCp > 0 such that for everyN ∈ N, t ≥ 0, β ≥ η0
and x ∈ H,

E [∥X(t, x)∥p] , ,E
[∥∥∥X̂(t, x)

∥∥∥p] , E [∥∥XN (t, x)
∥∥p] , E [∥∥∥X̂N (t, x)

∥∥∥p] ≤ Cp(1 + ∥x0∥p).
(57)

Lemma 20 For any p ≥ 1, η0 > 0, there exists a constant Cp such that for every N ∈ N, 0 < η ≤
η0, β ≥ η0, k ∈ N, t ≥ 0 and x ∈ H,

E
[∥∥XN

k

∥∥p] , E [∥∥∥X̃N (t)
∥∥∥p] ≤ Cp(1 + ∥x0∥p). (58)

Intuitively, these lemmas hold thanks to dissipativity, a kind of boundedness of a global optimum.
Proof [Proof of Lemma 19 and Lemma 20] The proof is very similar to that of Proposition 7. We
only prove the statement for the bounded gradient condition. For the strict dissipativity condition,
see Proposition 3.2 of Bréhier and Vilmart (2016). We prove the statement following the same line
as Lemma 4.1 and 4.2 of Bréhier (2014). There is no essentially new ingredient, but we need to take
care of the effect of β. We define Z(t) = X̂(t) −WA′

(t) where WA′
(t) =

∫ t
0 e

(t−s)A′
dW (s). It

holds that WA′
(t/(β/2)) =WA(t)/

√
β/2. (2.6) in Kopec (2014) implies:

E sup
t′≥0

∥∥∥WA′
(t′)
∥∥∥p = E sup

t≥0

∥∥∥∥WA′
(

t

β/2

)∥∥∥∥p = E sup
t≥0

∥∥∥∥∥WA(t)√
β/2

∥∥∥∥∥
p

<
Cp

(β/2)p/2
< C ′

p,
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where Cp, C
′
p > 0 are constants independent from β.

Then, we study ∥Z(t)∥. We have Z(0) = X̂(0) = x0,

dZ(t)

dt
=
β

2
(AZ(t)−∇L(X̂(t))),

and by Proposition 2,

1

2

d ∥Z(t)∥2

dt
=
β

2
⟨AZ(t)−∇L(X̂(t)), Z(t)⟩

=
β

2
⟨AZ(t)−∇L(Z(t)), Z(t)⟩+ β

2
⟨∇L(Z(t))−∇L(X̂(t)), Z(t)⟩

≤ β

2
(−m ∥Z(t)∥2 + c+ ∥∇L∥∞ ∥Z(t)∥)

≤ β

2
(−m′ ∥Z(t)∥2 + C ′),

where m′ and C ′ are positive constants depending only on m, c,B. Thus, we have for any t ≥ 0

| ∥Z(t)∥2 − C ′/m′| ≤ exp(−βm′t)| ∥x0∥2 − C ′/m′|
=⇒ ∥Z(t)∥2 ≤ exp(−βm′t)| ∥x0∥2 − C ′/m′|+ C ′/m′ ≤ C(∥x0∥2 + 1),

for a constant C > 0, which concludes the proof of Lemma 19, since the estimates do not depend
on the dimension parameter N .

Similarly, we introduce Zk = Xk − wk, where {wk}k is the numerical approximation of WA′

defined by

wk+1 = S̃η′wk +
√
η′S̃η′ξk+1.

The same argument yields

E ∥wk∥2 ≤
C

β
≤ C ′. (59)

Now we have Z0 = X0 = x0,

Zk+1 = S̃η′Zk − η′S̃η′∇L′(Xk),

since
∥∥∥S̃η′∥∥∥

B(H)
≤ 1

1+η/µ′
0
, we obtain the almost sure estimates

∥Zk+1∥ ≤
1

1 + η/µ′0
∥Zk∥+ Cη′,

and therefore for β ≥ 1

∥Zk∥ ≤ C(1 + ∥x0∥),

which concludes the proof of Lemma 20.
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G.3. The Rate of Convergence to the Invariant Measure

Our focus in this subsection is just to state the convergence result to an invariant measure. For the
existence and uniqueness of the invariant measure of the continuous time dynamics, see Debussche
et al. (2011), Goldys and Maslowski (2006) and Bréhier and Kopec (2016). We have the following
result thanks to a coupling argument presented in Debussche et al. (2011).

Proposition 21 Under Assumptions 1, 2, 4 and 5. There exist the “spectral gap” λ∗ and a constant
C > 0 such that for any bounded test function ϕ : H → R, t ≥ 0, N ∈ N, β ≥ η0 and x1, x2 ∈ HN ,∣∣E[ϕ(XN (t, x1))]− E[ϕ(XN (t, x2))]

∣∣ ≤ C ∥ϕ∥∞ (1 + ∥x1∥2 + ∥x2∥2)e−λ∗t. (60)

This also implies∣∣∣E[ϕ(X̂N (t, x1))]− E[ϕ(X̂N (t, x2))]
∣∣∣ ≤ C ∥ϕ∥∞ (1 + ∥x1∥2 + ∥x2∥2)e−βλ∗t. (61)

A proof of this result in case β = 1 can be found in Debussche et al. (2011). We can easily see
the statement holds if β is arbitrary but we have to notice the convergence rate λ∗ can be varied
depending on β. More concrete characterization of λ∗ will be given in Remark 23. As pointed out
in Raginsky et al. (2017), this spectral gap is supposed to decrease exponentially with respect to β.

Corollary 22 For any N ∈ N, the process XN admits a unique invariant probability measure πN

and satisfies the following bound:

∃ c, C, λ∗ > 0, ∀ ϕ : H → R, t ≥ 0, x ∈ HN ,∣∣∣∣E[ϕ(XN (t, x))]−
∫
HN

ϕdπN
∣∣∣∣ ≤ C ∥ϕ∥∞ (1 + ∥x∥2)e−λ∗t.

(62)

These results naturally extend to an infinite-dimensional scheme by similar arguments.

Remark 23 (Characterization of λ∗) Bréhier (2014, Theorem 1.1) showed that

lim
η→0
|E[ϕ(X⌊t/η⌋)]− E[ϕ(X(t))]| = 0.

In addition to that we have shown in Proposition 8 that the discrete time dynamics satisfies the
geometric ergodicity:

|E[ϕ(Xn)]− E[ϕ(Xµη)] ≤ C(1 + ∥x∥) exp(−Λ∗
η(nη − 1))(≤ C ′(1 + ∥x∥2) exp(−Λ∗

η(nη))),

where we used a fact that we may set Λ∗
η ≤ 1 (if this is not satisfied, we may set Λ∗

η ← min{Λ∗
η, 1}).

Moreover, Bréhier (2014, Corollary 1.2) gives that

lim
η→0
|E[ϕ(Xµη)− E[ϕ(Xπ)]| = 0.

Combining these arguments, we see that

|E[ϕ(X(t))]− E[ϕ(Xπ)]| = lim
η→0
|E[ϕ(X⌊t/η⌋)]− E[ϕ(Xµη)]| ≤ lim

η→0
C(1 + ∥x∥2) exp(−Λ∗

η(nη)).

Finally, we note that Proposition 21 and Corollary 22 are used only for ϕ : H → R satisfying
∥ϕ∥∞ ≥ c for a positive constant c > 0. Hence, we may set λ∗ = limη→0 Λ

∗
η = Λ∗

0.
The same argument is also applied to {XN

k }k, {XN (t)}t and {X̂N (t)}t with the same value of
Λ∗
η. In the following, we use the notation λ∗ to indicate Λ∗

0.
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Lemma 24 For any bounded test function ϕ : H → R, we have

lim
N→∞

ϕ̄N := lim
N→∞

∫
HN

ϕdπN =

∫
H
ϕdπ =: ϕ̄. (63)

Proof For any t ≥ 0 and any fixed initial condition x ∈ H, we have

ϕ̄N − ϕ̄ =ϕ̄N − Eϕ(XN (t))

+ Eϕ(XN (t))− Eϕ(X(t))

+ Eϕ(X(t))− ϕ̄.

Since limN→∞ Eϕ(XN (t))− Eϕ(X(t)) = 0 Bréhier (2014), we get that for any t ≥ 0

lim sup
N→∞

|ϕ̄N − ϕ̄| ≤ Ce−λ∗t,

and then we may take t → ∞. Notice that the constants are independent of the dimensionality N .

G.4. Proof of Lemma 14

In this subsection, we present a technical proof procedure of Lemma 14. As in Bréhier and Kopec
(2016), we will use the following decomposition:

1

n

n−1∑
k=0

Eϕ(XN
k )− ϕ̄ =

1

n

n−1∑
k=0

Eϕ(PN ′XN
k )− ϕ̄N ′

+ ϕ̄N ′ − ϕ̄+
1

n

n−1∑
k=0

(
Eϕ(XN

k )− Eϕ(PN ′XN
k )
)
.

Our aim is to derive a N ′-free bound of each term of this decomposition and to take N ′ →∞. It is
obvious the last two terms converges to 0 as N ′ → +∞ thanks to Lemma 24 and PN ′XN

k = XN
k if

N ′ ≥ N .
It remains to bound the first term. We decompose the term by the solution of the Poisson

equation defined in the following. Let N ′ ∈ N, ϕ ∈ C2
b (H). We define ΨN ′

as the unique solution
of the Poisson equation

LN ′
ΨN ′

= ϕ ◦ PN ′ − ϕ̄N ′ and
∫
HN′

ΨN ′
dπN

′
= 0, (64)

where LN ′
is the infinitesimal generator of the SPDE6:{

X̂N ′
(0) = PN ′x0 ∈ HN ′ ,

dX̂N ′
(t) = (A′X̂N ′

(t)−∇L′
N ′(X̂N ′

(t)))dt+ PN ′dW (t),

6. Note that from here we also use the notation t to indicate t′ for notational simplicity.
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defined for C2 functions ψ : H → R and x ∈ H by

LN ′
ψ(x) = ⟨A′PN ′x− PN ′∇L′(x), Dψ(x)⟩+ 1

2
Tr(PN ′D2ψ(x)).

The following proposition is essential for our result. This is an extension of Proposition 6.1 in
Bréhier and Kopec (2016) in that dependence on β is specified.

Proposition 25 Let N ′ ∈ N and ϕ ∈ C2
b (H). The function ΨN ′

defined for any x ∈ HN ′ by

ΨN ′
(x) =

∫ ∞

0
E
[
ϕ(X̂N ′

(t, x))− ϕ̄N ′

]
dt,

is of class C2
b and the unique solution of Eq. (64). Moreover, we have the following estimates: for

any 0 ≤ ϵ, γ < 1/2 there exist C,Cϵ, Cϵ,γ , which are independent of N ′ and β, such that for any
x ∈ HN ′ ∥∥∥ΨN ′

(x)
∥∥∥ ≤ C

λ∗β
(1 + ∥x∥2) ∥ϕ∥∞ ,∥∥∥(−A′)ϵDΨN ′

(x)
∥∥∥ ≤ Cϵ

λ∗β
ĉββ

ϵ(1 + ∥x∥2) ∥ϕ∥0,1 ,∥∥∥(−A′)ϵD2ΨN ′
(x)(−A′)γ

∥∥∥
B(HM )

≤ Cϵ,γ

λ∗β
ĉ2ββ

ϵ+γ(1 + ∥x∥2) ∥ϕ∥0,2 ,

where ∥ϕ∥0,i ≜ max
{
max0<j≤i ∥ϕ∥(j), ∥ϕ∥∞

}
for ∥ϕ∥(1) := supx∈H ∥∇ϕ(x)∥ and ∥ϕ∥(2) :=

supx∈H ∥D2ϕ(x)∥B(H).

We give the proof of this proposition in Section G.6.
To show the proof, we prepare more theoretical tools. We define the function Ψ̃N ′

for x ∈ H by

Ψ̃N ′
(x) = ΨN ′

(PN ′x).

This can be interpreted as an extension of ΨN ′
to the entire domainH. Then we have for any x ∈ H

and h, k ∈ H,

⟨DΨ̃N ′
(x), h⟩ = ⟨DΨN ′

(PN ′x), hPN ′⟩,

D2Ψ̃N ′
(x) · (h, k) = D2ΨN ′

(PN ′x) · (PN ′h, PN ′k).

Proposition 25 can be also applied to Ψ̃N ′
by these equations.

Then we define the generator Lη′,k,N , discrete time version of LN ′
, for all k ∈ N as

for x0 ∈ HN , ϕ ∈ B(H),

Lη′,k,Nϕ(x) = ⟨S̃η′(A′XN
k − PN∇L′(XN

k )), Dϕ(x)⟩+ 1

2
Tr(S̃η′S

∗
η′PND

2ϕ(x)).

Thanks to the Itô formula, we have

EΨ̃N ′
(XN

k+1)− EΨ̃N ′
(XN

k ) =

∫ tk+1

tk

ELη′,k,N Ψ̃N ′
(X̃N (s))ds,
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(remember the definition (56) of the interpolation process X̃N (s)). Similarly, we define the gener-
ator LN of XN by

LNϕ(x) = ⟨A′x− PN∇L′(x), Dϕ(x)⟩+ 1

2
Tr(PND

2ϕ(x)).

Putting all of the operators defined above, we have the following decomposition:

EΨ̃N ′
(XN

k+1)− EΨ̃N ′
(XN

k ) =

∫ tk+1

tk

E
(
Lη′,k,N − LN

)
Ψ̃N ′

(X̃N (s))ds

+

∫ tk+1

tk

E
(
LN − LN ′

)
Ψ̃N ′

(X̃N (s))ds

+

∫ tk+1

tk

ELN ′
Ψ̃N ′

(X̃N (s))ds.

(65)

Furthermore, the following equality for x ∈ H

LN ′
Ψ̃N ′

(x) = LN ′
ΨN ′

(x) + ⟨−PN ′∇L′(x) + PN ′∇L′(PN ′x), DΨN ′
(PN ′x)⟩,

and the definition of ΨN ′
yields∫ tk+1

tk

ELN ′
Ψ̃N ′

(X̃N (s))ds

=

∫ tk+1

tk

E
[
ϕ(PN ′X̃N (s))− ϕ̄N ′

]
ds

+

∫ tk+1

tk

E⟨PN ′

(
−∇L′(X̃N (s)) +∇L′(PN ′X̃N (s))

)
, DΨN ′

(PN ′X̃N (s))⟩ds

=η′
(
Eϕ(PN ′XN

k )− ϕ̄N ′
)

+

∫ tk+1

tk

E
[
ϕ(PN ′X̃N (s))− ϕ(PN ′XN

k )
]
ds

+

∫ tk+1

tk

E⟨PN ′

(
−∇L′(X̃N (s)) +∇L′(PN ′X̃N (s))

)
, DΨN ′

(PN ′X̃N (s))⟩ds.

By substituting this to (65), we obtain

EΨ̃N ′
(XN

k+1)− EΨ̃N ′
(XN

k )

=

∫ tk+1

tk

E
(
Lη′,k,N − LN

)
Ψ̃N ′

(X̃N (s))ds

+

∫ tk+1

tk

E
(
LN − LN ′

)
Ψ̃N ′

(X̃N (s))ds

+ η′
(
Eϕ(PN ′XN

k )− ϕ̄N ′
)

+

∫ tk+1

tk

E
[
ϕ(PN ′X̃N (s))− ϕ(PN ′XN

k )
]
ds

+

∫ tk+1

tk

E⟨PN ′

(
−∇L′(X̃N (s)) +∇L′(PN ′X̃N (s))

)
, DΨN ′

(PN ′X̃N (s))⟩ds,
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and therefore taking the sum of both terms over k = 0, . . . , n− 1 yields

1

n

n−1∑
k=0

Eϕ(PN ′XN
k )− ϕ̄N ′

=
1

nη′
E
[
ΨN ′

(PN ′XN
n )−ΨN ′

(PN ′XN
1 )
]

+
1

n

(
ϕ(PN ′x)− ϕ̄N ′

)
+

1

nη′

n−1∑
k=0

∫ tk+1

tk

E
(
LN ′ − LN

)
Ψ̃N ′

(X̃N (s))ds

+
1

nη′

n−1∑
k=0

∫ tk+1

tk

E
(
LN − Lη′,k,N

)
Ψ̃N ′

(X̃N (s))ds

− 1

nη′

n−1∑
k=0

∫ tk+1

tk

E
[
ϕ(PN ′X̃N (s))− ϕ(PN ′XN

k )
]
ds

+
1

nη′

n−1∑
k=0

∫ tk+1

tk

E
[〈
PN ′

(
∇L′(X̃N (s))−∇L′(PN ′X̃N (s))

)
, DΨN ′

(PN ′X̃N (s))
〉]

ds

=:I1 + I2 + I3 + I4 + I5 + I6.

As in Bréhier and Kopec (2016), the fact that∇L′ is Lipschitz, Proposition 25 and Lemma 20 yield

lim
N ′→∞

I6 = 0,

and Proposition 25 and Lemma 20 yield for 0 < η ≤ η0 and β ≥ η0,

|I1 + I2| ≤
C

λ∗βnη′
(1 + ∥x0∥2).

The remaining three terms are controlled by the following lemmas, whose proofs we omit for the
sake of conciseness. However, they can be shown by carefully tracing the proof line of Bréhier
and Kopec (2016); Kopec (2014) (more specifically, Lemmas 6.3, 6.4 and 6.5 of Bréhier and Kopec
(2016) respectively) with the estimates in Proposition 25, Lemma 18 and Section G.5.

Lemma 26 (The control of I3; space discretization) For any 0 < κ < 1/2 and η0, there exists a
constant C > 0 such that for any ϕ ∈ C2

b (H), x ∈ H, β ≥ η0 and 0 < η ≤ η0

lim sup
N ′→∞

1

nη′

n−1∑
k=0

∫ tk+1

tk

E
(
LN ′ − LN

)
ΨN ′

(X̃N (s))ds

≤ C

λ∗
(1 + ∥x0∥3) ∥ϕ∥0,2 ĉβµ

1/2−κ
N+1 (1 + (nη′)−1).

(66)
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Lemma 27 (The control of I4; time discretization) For any 0 < κ < 1/2 and η0, there exists a
constant C > 0 such that for any ϕ ∈ C2

b (H), N ′ ∈ N, x ∈ H, β ≥ η0 and 0 < η ≤ η0∣∣∣∣∣ 1

nη′

n−1∑
k=0

∫ tk+1

tk

E
(
LN − Lη′,k,N

)
Ψ̃N ′

(X̃N (s))ds

∣∣∣∣∣
≤ C

λ∗
∥ϕ∥0,2 (1 + ∥x0∥

3)ĉβη
1/2−κ(1 + (nη′)−1+κ + (nη′)−1).

Lemma 28 (The control of I5; more time discretization) For any 0 < κ < 1/4 and η0, there
exists a constant C, c′ > 0 such that for any ϕ ∈ C2

b (H), N ′ ∈ N, x ∈ H, β ≥ η0 and 0 < η ≤ η0∣∣∣∣∣ 1

nη′

n−1∑
k=0

∫ tk+1

tk

E
[
ϕ(PN ′X̃N (t))− ϕ(PN ′XN

k )
]
dt

∣∣∣∣∣
≤ C ∥ϕ∥0,2 ĉβη

1/2−2κ

(
1 +

∥x0∥
(nη′)1−κ

)
.

Putting them together, we get the main result (Lemma 14).

G.5. A Malliavin Integration by Parts Formula

In the proofs of Lemmas 26 to 28, an integration by parts formula issued from Malliavin calculus is
necessary to transform irregular stochastic integral terms into controllable ones; see Nualart (2006);
Sanz-Solé (2005). Therefore, we restate the statement in this subsection. The notations are the same
as in Bréhier and Kopec (2016); Debussche (2011).

Lemma 29 LetN ′ ∈ N. For anyG ∈ D1,2(HN ′), u ∈ C2
b (HN ′) and Ψ ∈ L2(Ω×[0, T ],L2(HN ′)),

an adapted process,

E
[
Du(G).

∫ T

0
Ψ(s)dWN ′

(s)

]
= E

[∫ T

0
Tr(Ψ(s)∗D2u(G)DsG)ds

]
,

where DsG : x ∈ H 7→ Dx
sG ∈ HN ′ stands for th Malliavin derivative of G, and D1,2(HN ′) is the

set ofHN ′-valued random variables G =
∑

i≤N ′ Gifi, with Gi ∈ D1,2 the domain of the Malliavin
derivative for R-valued random variables for any i.

In the proof of Lemmas 26 to 28, we use the following estimates; see Bréhier and Kopec (2016);
Bréhier (2014); Kopec (2014) for details.

Lemma 30 For any 0 ≤ γ < 1 and η0 > 0, there exists a constant C > 0 such that for every
h ∈ (0, 1), k ≥ 1, 0 < η ≤ η0, β > η0 and s ∈ [tk − 1/β, tk]∥∥∥(−A′)γDx

sX
N ′
k

∥∥∥
HN

≤ C(1 +Mη)k−ls

(
βγ +

1

(1 + η/µ′0)
(1−γ)(k−ls)tγk−ls

)
∥x∥HN′ , (67)

for all x ∈ HN ′ . Moreover, if tk ≤ t < tk+1, we have∥∥∥(−A′)γDx
s X̃

N ′
(t)
∥∥∥
HN′
≤ C

∥∥∥(−A′)γDx
sX

N ′
k

∥∥∥
HN′

, (68)

for x ∈ HN ′ .

49



MUZELLEC SATO MASSIAS SUZUKI

Note that the constant C > 0 is uniform with respect to N ′ ∈ N, β > η0.
Proof The proof is almost the same as that of Lemma 6.5 in Kopec (2014).

The second inequality is a consequence of the following equality for s ≤ tk ≤ t < tk+1, thanks
to (56):

Dx
s X̃

N ′
(t) = Dx

sX
N ′
k + (t− tk)(A′S̃η′Dx

sX
N ′
k − S̃η′D(PN ′∇L′)(XN ′

k ) · Dx
sX

N ′
k ),

and the conclusion follows since

sup
N ′∈N

∥∥∥η′A′S̃η′
∥∥∥
B(HN′ )

≤ C,

where C is a constant that does not depend on β and the norm ∥ · ∥B(HN′ ) is taken as a linear map
fromHN ′ toHN ′ .

Then we prove the first estimate. For any k ≥ 1, x ∈ HN , and s ∈ [tk − 1/β, tk], we have

Dx
sX

N ′
k = S̃k−ls

η′ x− η′
k−1∑

i=ls+1

S̃k−i
η′ D(PN ′∇L′)(XN ′

i ).Dx
sX

N ′
i .

We recall that ls = ⌊s/η′⌋, so that when i ≤ ls we have Dx
sX

N ′
i = 0.

As a consequence, the discrete Gronwall’s inequality ensures that for k ≥ ls + 1 and a constant
C > 0, ∥∥∥Dx

sX
N ′
k

∥∥∥
HN′
≤ (1 +Mη)k−ls ∥x∥HN′ ,

where we used η′L′ = ηL and the Lipchitz continuity of∇L. Now using Lemma 18, we have∥∥∥(−A′)γDx
sX

N ′
k

∥∥∥
HN′

≤ 1

(1 + η/µ′0)
(1−γ)(k−ls)tγk−ls

∥x∥HN′ +Mη

k−1∑
i=ls+1

(1 +Mη)i−ls

(1 + η/µ′0)
(1−γ)(k−i)tγk−i

∥x∥HN′ .

Note that k − ls ≤ 1/(η′β) ≤ 1/η yields (1 +Mη)k−ls ≤ C. To conclude, we see that when
0 < η ≤ η0, it holds that for a constant c0 (could be dependent on η0, µ′0),

η
k−1∑

i=ls+1

1

(1 + η/µ′0)
(1−γ)(k−i)tγk−i

≤ βC
∫ ∞

0

t−γ

(1 + η/µ′0)
(1−γ)t/η′

dt

≤ βC
∫ ∞

0
t−γ exp

[
−c0(1− γ)(t/η′)(η/µ′0)

]
dt

≤ βC
∫ ∞

0
t−γ exp

[
−β
2
c0(1− γ)t/µ′0

]
dt

≤ Cβγ .

50



DIMENSION-FREE CONVERGENCE RATES FOR GRADIENT LANGEVIN DYNAMICS IN RKHS

G.6. Proof of Proposition 25

In this subsection, we prove Proposition 25. Our argument follows the same line as Bréhier and
Kopec (2016). Let ϕ ∈ C2

b (H). For lighter notation, we assume ϕ̄ = 0 in this section. We define
the function u for any t > 0 and x ∈ HN ′ by

u(t, x) = E
[
ϕ(X̂N ′

(t, x))
]
, (69)

which is the solution of a finite-dimensional Kolmogorov equation associated with (44) where N =
N ′:

du

dt
(t, x) = Lu(t, x) =

1

2
Tr(D2u(t, x)) + ⟨A′x−∇L′

N ′(x), Du(t, x)⟩.

To prove Proposition 25, we only need to show that u ∈ C2 and that u and its two first deriva-
tives have estimates which are integrable with respect to t. Specifically we prove the following
proposition.

Proposition 31 Let ϕ ∈ C2
b such that ϕ̄ = 0 and u defined by (69). Remember that ĉβ is defined in

Eq. (41) as

ĉβ =

{
1 (strict dissipativity condition: Assumption 5 (i))),
√
β (bounded gradient condition: Assumption 5 (ii)).

There exist constant c, C > 0 such that for any 0 ≤ ϵ, γ < 1/2 there exist constants Cϵ and Cϵ,γ ,
which is independent of β, such that for any t > 0 and x ∈ HN ′ ,

∥u(t, x)∥ ≤ Ce−βλ∗t(1 + ∥x∥2) ∥ϕ∥∞ , (70)

∥∥(−A′)ϵDu(t, x)
∥∥ ≤ Cϵĉββ

ϵ(1 +
1

(βt)ϵ
)e−βλ∗t(1 + ∥x∥2) ∥ϕ∥0,1 , (71)

∥∥(−A′)ϵD2u(t, x)(−A′)γ
∥∥
B(H)

≤ Cϵ,γ ĉ
2
ββ

ϵ+γ

(
1 +

1

(βt)α′ +
1

(βt)ϵ+γ

)
e−βλ∗t(1 + ∥x∥2) ∥ϕ∥0,2 ,

(72)

where λ∗ > 0 is the spectral gap introduced in Remark 23 (see also Proposition 21) and α′ ∈ [0, 1]
is the constant introduced in Assumption 4.

In fact the estimation (71) is true for α < 1. The proof is a slight modification of the proof of
Proposition 8.1 in Kopec (2014). Since ϕ ∈ C2, bounded and with bounded derivatives, u ∈ C2

and the derivatives can be calculated in the following way:

• For any h ∈ HN ′ , we have

Du(t, x).h = E
[
Dϕ(X̂N ′

(t, x)).ηh,x(t)
]
, (73)

where ηh,x(t) is the solution of

dηh,x(t)

dt
= A′ηh,x(t)−D2L′

N ′(X̂N ′
(t, x)).ηh,x(t),

ηh,x(0) = h.
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• For any h, k ∈ HN ′ , we have

D2u(t, x).(h, k) = E
[
D2ϕ(X̂N ′

(t, x)).(ηh,x(t), ηk,x(t)) +Dϕ(X̂N ′
(t, x)).ζh,k,x(t)

]
,

(74)

where ζh,k,x is the solution of

dζh,k,x

dt
= A′ζh,k,x(t)−D2L′(X̂N ′

(t, x)).ζh,k,x(t)−D3L′(X̂N ′
(t, x)).(ηh,x(t), ηk,x(t)),

ζh,k,x(0) = 0.

Moreover, we already have the inequality (70) thanks to Corollary 22.

The proof requires several steps. First in Lemma 32 below we prove estimates for 0 < t ≤ 1/β and
general 0 ≤ α, γ < 1/2; then in Lemma 33 we study the long-time behavior in case α = γ = 0;
we finally conclude with the proofs of Proposition 31.

Lemma 32 Assume Assumption 5 (ii) (bounded gradient condition). For any 0 ≤ ϵ, γ < 1/2, there
exist constants Cϵ, Cϵ,γ such that for any x ∈ HN ′ , and any 0 < t ≤ 1/β,∥∥(−A′)ϵDu(t, x)

∥∥ ≤ Cϵ

tϵ
∥Dϕ∥∞ ,∥∥(−A′)ϵD2u(t, x)(−A′)γ

∥∥
B(HN′ )

≤ Cϵ,γβ
ϵ+γ

(
1

(βt)α′ +
1

(βt)ϵ+γ

)(
∥Dϕ∥∞ +

∥∥D2ϕ
∥∥
∞
)
,

where α′ is defined in Assumption 4.

Proof Owing to (73) and (74), we only need to prove the following almost sure estimates for some
constants - which may vary from line to line below: for any 0 < t ≤ 1/β∥∥∥ηh,x(t)∥∥∥ ≤ Cϵ

(βt)ϵ
∥h∥ϵ ,∥∥∥ζh,k,x(t)∥∥∥ ≤ Cϵ,γβ
ϵ+γ

(
1

(βt)α′ +
1

(βt)ϵ+γ

)
∥h∥ϵ ∥k∥γ .

To show these inequalities, first note that∥∥∥etA′
h
∥∥∥ =

∥∥∥t−ϵ(−tA′)ϵetA
′
(−A′)−ϵh

∥∥∥ = t−ϵ
∥∥∥(−tA′)ϵetA

′
∥∥∥
B(H)

∥∥(−A′)−ϵh
∥∥

≤ t−ϵ sup
x≥0
{xϵe−x}

∥∥(−A′)−ϵh
∥∥ =

Cϵ

tϵ
∥∥(−A′)−ϵh

∥∥ (75)

where Cϵ ≜ supx≥0{xϵe−x}. From this, we deduce that∥∥∥ηh,x(t)∥∥∥
=

∥∥∥∥etA′
h−

∫ t

0
e(t−s)A′

D2L′(X̂(s, x)).ηh,x(s)ds

∥∥∥∥
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≤ Cϵ

tϵ
∥∥(−A′)−ϵh

∥∥+ C

∫ t

0
β
∥∥∥ηh,x(s)∥∥∥ds.

and by the Gronwall’s inequality and t ≤ 1/β, we get the result.
For the second-order derivative, we moreover use the properties of L to get∥∥∥ζh,k,x(t)∥∥∥

=

∣∣∣∣∫ t

0
e(t−s)A′

D2L′(X̂(s, x)).ζh,k,x(s)ds

+

∫ t

0
e(t−s)A′

D3L′(X̂(s, x)).(ηh,x(s), ηk,x(s))ds

∣∣∣∣
≤C

∫ t

0
β
∥∥∥ζh,k,x(s)∥∥∥ds+ ∫ t

0

Cα′β1−α′

(t− s)α′

∥∥∥ηh,x(s)∥∥∥∥∥∥ηk,x(s)∥∥∥ds
≤C

∫ t

0
β
∥∥∥ζh,k,x(s)∥∥∥ds

+ Cα′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥βϵ+γ(βt)1−α′−ϵ−γ

∫ 1

0

1

(1− s)α′sϵ+γ
ds.

The Gronwall’s inequality yields the conclusion since for any 0 < βt ≤ 1 we have (βt)1−α′−ϵ−γ <
(βt)−α′

due to the assumption ϵ+ γ < 1.

Lemma 33 Assume Assumption 5 (ii) (bounded gradient condition). There exist constantsC, c > 0
such that for any t ≥ 0, and any x ∈ H,

∥Du(t, x)∥ ≤ C
√
βe−βλ∗t(1 + ∥x∥2) ∥ϕ∥∞ ,

and ∥∥D2u(t, x)
∥∥
B(H)

≤ Cβe−βλ∗t

(
1 +

1

(βt)α′

)
(1 + ∥x∥2) ∥ϕ∥∞ .

Proof [Proof of Lemma 33] As in Kopec (2014), we use the Bismut-Elworthy-Li formula (Bismut,
1984; Elworthy and Li, 1994) to get for Φ : HN ′ → R which belongs to class C2 with bounded
derivative and with at most quadratic growth, i.e.,

∃M(Φ) > 0, ∀ x ∈ HN ′ , ∥Φ(x)∥ ≤M(Φ)(1 + ∥x∥2),

and v(t, x) ≜ EΦ(X̂N ′
(t, x)), we have two following formula:

Dv(t, x).h =
1

t
E
[∫ t

0
⟨ηh,x(s), dW (s)⟩Φ(X̂N ′

(t, x))

]
.

Moreover, by the Markov property v(t, x) = Ev(t/2, X̂N ′
(t/2, x)), we obtain

Dv(t, x).h =
2

t
E

[∫ t/2

0
⟨ηh,x(s),dW (s)⟩v(t/2, X̂N ′

(t/2, x))

]
.
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and thus

D2v(t, x).(h, k) =
2

t
E

[∫ t/2

0
⟨ζh,k,x(s), dW (s)⟩v(t/2, X̂N ′

(t/2, x))

]

+
2

t
E

[∫ t/2

0
⟨ηh,x(s),dW (s)⟩Dv(t/2, X̂N ′

(t/2, x)).ηk,x(t/2)

]
.

We then see, using Lemma 19 and Lemma 32 with ϵ = γ = 0 that there exists C > 0 such that for
any 0 < t ≤ 1/β, x, h, k ∈ HN ′ ,

∥Dv(t, x).h∥ ≤ C√
t
M(Φ)(1 + ∥x∥2) ∥h∥ ,∥∥D2v(t, x).(h, k)

∥∥ ≤ C

t
M(Φ)(1 + ∥x∥2) ∥h∥ ∥k∥ .

(76)

Indeed, to see the first inequality, the Cauchy-Schwartz inequality gives

Dv(t, x).h =
1

t
E
[∫ t

0
⟨ηh,x(s),dW (s)⟩Φ(X̂N ′

(t, x))

]

≤ 1

t

√√√√E

[(∫ t

0
⟨ηh,x(s), dW (s)⟩

)2
]√

E[Φ(X̂N ′(t, x))2],

and the isometry property of Ito integral and Lemma 32 give a bound of the first term as√√√√E

[(∫ t

0
⟨ηh,x(s),dW (s)⟩

)2
]
=

√∫ t

0
∥ηh,x(s)∥2 ds ≤ C

√
t∥h∥,

for t ≤ 1/β and Lemma 19 gives a bound of the second term as√
E[Φ(X̂N ′(t, x))2] ≤ CM(Φ)(1 + ∥x∥2).

Now when βt ≥ 1 the Markov property implies that u(t, x) = E[u(t− 1/β, X̂N ′
(1/β, x))] and by

Corollary 22, we have∥∥∥∥∥u(t− 1/β, x)−
∫
HN′

ϕdµ̄

∥∥∥∥∥ ≤ Ce−βλ∗(t−1/β)(1 + ∥x∥2) ∥ϕ∥∞ .

If we choose Φt(x) = u(t − 1/β, x) −
∫
H ϕdµ̄, we have u(t, x) = EΦt(X̂

N ′
(1/β, x)) +

∫
H ϕµ̄,

with M(Φt) ≤ Ce−βλ∗(t−1/β) ∥ϕ∥∞. With (76) at t = 1/β, we obtain for t ≥ 1/β,

∥Du(t, x).h∥ ≤ C
√
β ∥ϕ∥∞ e−βλ∗(t−1/β)(1 + ∥x∥2) ∥h∥ ,∥∥D2u(t, x).(h, k)

∥∥ ≤ Cβ ∥ϕ∥∞ e−βλ∗(t−1/β)(1 + ∥x∥2) ∥h∥ ∥k∥ .

We have a control when 0 ≤ t ≤ 1/β in Lemma 32, so with a change of constants we get the result.

Next we show a corresponding lemma for the strict dissipativity condition in the following lemma.
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Lemma 34 Assume Assumption 5 (i) (strict dissipativity condition). For any 0 ≤ ϵ, γ < 1/2, there
exist constants Cϵ, Cϵ,γ such that for any x ∈ HN ′ , and any 0 < t,

∥∥(−A′)ϵDu(t, x)
∥∥ ≤ Cϵβ

ϵ

(
1 +

1

(βt)ϵ

)
e−tβλ∗ ∥Dϕ∥∞ ,

∥∥(−A′)ϵD2u(t, x)(−A′)γ
∥∥
B(HN′ )

≤ Cϵ,γβ
ϵ+γ

(
1 +

1

(βt)α′ +
1

(βt)ϵ+γ

)
e−tβλ∗ (∥Dϕ∥∞ +

∥∥D2ϕ
∥∥
∞
)
,

where α′ is defined in Assumption 4.

Proof From the definition of ηh,x, we have that∥∥∥ηh,x(t)∥∥∥ =

∥∥∥∥etA′
h−

∫ t

0
e(t−s)A′

D2L′(X̂N ′
(s, x)).ηh,x(s)ds

∥∥∥∥
≤
∥∥∥etA′

h
∥∥∥+ ∫ t

0
e−(t−s)λ/µ0Mβ

∥∥∥ηh,x(s)∥∥∥ds.
As in Eq. (75), for any 0 ≤ c0 < 1, the first term can be bounded by∥∥∥etA′

h
∥∥∥ =

∥∥∥t−ϵ(−tA′)ϵec0tA
′
(−A′)−ϵe(1−c0)tA′

h
∥∥∥

= t−ϵ
∥∥∥(−tA′)c0ϵetA

′
∥∥∥
B(H)

∥∥∥(−A′)−ϵe(1−c0)tA′
h
∥∥∥

≤ t−ϵ sup
x≥0
{xϵe−c0x}

∥∥(−A′)−ϵh
∥∥ =

Cϵ,c0

tϵ

∥∥∥(−A′)−ϵe(1−c0)tA′
h
∥∥∥

where Cϵ,c0 ≜ supx≥0{xϵe−c0x}. Then, Gronwall’s inequality gives

etβλ/µ0

∥∥∥ηh,x(t)∥∥∥ ≤ Cϵ,c0

tϵ
ec0tβλ/µ0

∥∥(−A′)−ϵh
∥∥+ ∫ t

0
βMesβλ/µ0

∥∥∥ηh,x(s)∥∥∥ds
⇒ etβλ/µ0

∥∥∥ηh,x(t)∥∥∥ ≤ Cϵ,c0

tϵ
ec0tβλ/µ0

∥∥(−A′)−ϵh
∥∥+ ∫ t

0
βMesβλ/µ0

∥∥∥ηh,x(s)∥∥∥ds
⇒ etβλ/µ0

∥∥∥ηh,x(t)∥∥∥ ≤ Cϵ,c0

tϵ
ec0tβλ/µ0

∥∥(−A′)−ϵh
∥∥

+ Cϵ,c0

∫ t

0

ec0sβλ/µ0

sϵ
βM exp((t− s)βM) ds

∥∥(−A′)−ϵh
∥∥

≤ Cϵ,c0

∥∥(−A′)−ϵh
∥∥[ 1

tϵ
ec0tβλ/µ0 + βϵMetβM

∫ ∞

0

eτ(c0λ/µ0−M)

τ ϵ
dτ

]

⇒
∥∥∥ηh,x(t)∥∥∥ ≤ Cϵ,c0

tϵ

(
e−(1−c0)tβλ/µ0 + (βtM)ϵ

∫ ∞

0

eτ(c0λ/µ0−M)

(Mτ)ϵ
M dτe−tβ(λ/µ0−M)

)
.

Therefore, if we choose c0 as c0 = (λ/µ0)
−1M/2, then 0 ≤ c0 < 1 by the strict dissipativity

assumption and we obtain∥∥∥ηh,x(t)∥∥∥ ≤ C 1 + (tβM)ϵ

tϵ
exp[−tβ(λ/µ0 −M)]

∥∥(−A′)−ϵh
∥∥
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= C
1 + (tβM)ϵ

tϵ
exp[−tβλ∗]

∥∥(−A′)−ϵh
∥∥ , (77)

where we used λ∗ = λ/µ0 −M (> 0). Applying this to Eq. (73), we have the first inequality.
The second inequality is also shown in the same way as Lemma 32. Notice that by the Lipschitz

continuity of∇L, we have∥∥∥ζh,k,x(t)∥∥∥
≤
∫ t

0
e−(t−s)βλ/µ0βM

∥∥∥ζh,k,x(s)∥∥∥ds+ ∫ t

0

Cα′,c0β
1−α′

(t− s)α′ e−(1−c0)(t−s)βλ/µ0

∥∥∥ηh,x(s)∥∥∥∥∥∥ηk,x(s)∥∥∥ds
≤
∫ t

0
e−(t−s)βλ/µ0βM

∥∥∥ζh,k,x(s)∥∥∥ds
+ C ′

α′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥β1−α′
∫ t

0

(1 + (Mβs)ϵ+γ)

(t− s)α′sϵ+γ
e−2sβ(λ/µ0−M)e−(1−c0)(t−s)βλ/µ0 ds.

From this inequality, we have

etβλ/µ0

∥∥∥ζh,k,x(t)∥∥∥
≤
∫ t

0
βMesβλ/µ0

∥∥∥ζh,k,x(s)∥∥∥ds
+ Cα′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥β1−α′
etβλ/µ0−tβmin{2(λ/µ0−M),(1−c0)λ/µ0}

∫ t

0

(1 + (Mβs)ϵ+γ)

(t− s)α′sϵ+γ
ds

≤
∫ t

0
βMesβλ/µ0

∥∥∥ζh,k,x(s)∥∥∥ds
+ Cα′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥β1−α′
etβλ/µ0−tβmin{2(λ/µ0−M),(1−c0)λ/µ0}×

(1 + (Mβt)ϵ+γ)t1−α′−ϵ−γ

∫ 1

0

1

(1− s̃)α′ s̃ϵ+γ
ds̃

≤
∫ t

0
βMesβλ/µ0

∥∥∥ζh,k,x(s)∥∥∥ds
+ C ′

α′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥β1−α′
(1 + (Mβt)ϵ+γ)t1−α′−ϵ−γ×

etβλ/µ0−tβmin{2(λ/µ0−M),(1−c0)λ/µ0}.

Here, we set c0 = (λ/µ0)
−1M/2, then we further obtain

etβλ/µ0

∥∥∥ζh,k,x(t)∥∥∥
≤C ′

α′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥β1−α′×(
etβM

∫ t

0
Mβ(1 + (Mβs)ϵ+γ)s1−α′−ϵ−γe−sβmin{λ/µ0−M,M/2} ds+

(1 + (Mβt)ϵ+γ)t1−α′−ϵ−γetβMe−tβmin{λ/µ0−M,M/2}
)

=C ′
α′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥β1−α′
etβM×
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(∫ t

0
Mβ(1 + (Mβs)ϵ+γ)s1−α′−ϵ−γe−sβmin{λ/µ0−M,M/2} ds

+ (1 + (Mβt)ϵ+γ)t1−α′−ϵ−γe−tβmin{λ/µ0−M,M/2}

)
≤C ′′

α′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥β1−α′
etβM×

[β−(1−α′−ϵ−γ) + (1 + (Mβt)ϵ+γ)t1−α′−ϵ−γe−tβmin{λ/µ0−M,M/2}]

By multiplying both terms by e−tβλ/µ0 , we obtain∥∥∥ζh,k,x(t)∥∥∥ ≤ C ′
α′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥βϵ+γ [1 + (βt)1−α′−ϵ−γ ]e−tβ(λ/µ0−M),

where we used that supt>0(1 + (Mβt)ϵ+γ)e−tβmin{λ/µ0−M,M/2} < C (bounded by a constant
independent of β). Since 1 − ϵ − γ > 0 and 1 − α′ > 0, it holds that (βt)1−α′−ϵ−γ ≤ (βt)−α′

+
(βt)−ϵ−γ . Then, we finally obtain∥∥∥ζh,k,x(t)∥∥∥ ≤ C ′

α′,ϵ,γ

∥∥(−A′)−ϵh
∥∥∥∥(−A′)−γk

∥∥βϵ+γ
[
1 + (βt)−α′

++(βt)−ϵ−γ
]
e−tβλ∗

,

where we used λ∗ = λ/µ0−M (> 0). Applying this inequality and Eq. (77) to Eq. (74), we obtain
the second inequality.

Remark 35 Note that Lemma 34 for the strict dissipativity condition does not require the restriction
t ≤ 1/β while Lemma 32 is for the bounded gradient condition. This is advantageous to show better
dependency on β under the strict dissipativity condition than the bounded gradient condition.

We can finally prove Proposition 31. The proof is again in line with Kopec (2014).
Proof [Proof of Proposition 31.] First, we show the assertion for the bounded gradient condition.
By the Markov property and Lemma 33, for any t ≥ 1/β, we have

∥Du(t, x).h∥ ≤ C
√
β ∥ϕ∥∞ e−βλ∗(t−1/β)E

[
(1 +

∥∥∥X̂N ′
(1/β, x)

∥∥∥2) ∥∥∥ηh,x(1/β)∥∥∥]
≤ C

√
β ∥ϕ∥∞ e−βλ∗(t−1/β)(1 + ∥x∥2)βϵ

∥∥(−A′)−ϵh
∥∥ ,

where the last estimate comes from Lemma 19 and Lemma 32. Combining this estimate and
Lemma 32, we obtain Eq. (71). We can easily see Eq. (72) follows from the similar argument.

As for the strict dissipativity condition, Lemma 34 directly gives the assertion.

Appendix H. Proof of SGLD convergence rate (Proposition 12)

In this chapter, we prove Proposition 12. Before that, we need to prepare the following lemmas to
bound E[L(Y N

k )− L(XN
k )]. For lighter notation, our constants may differ from line to line.
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Lemma 36 For any x ∈ HN , it holds that

E ∥∇L(x)− gk(x)∥2 ≤
C(ntr − nb)
nb(ntr − 1)

,

where nb is the mini-batch size and C > 0 is some constant.

We can prove the following bound similarly to Lemma 19 and 20 thanks to Assumption 6.

Lemma 37 For any p ≥ 1, there exists a constant Cp such that for every N ∈ N, β ≥ η0, and
x ∈ HN ,

E
∥∥Y N

k

∥∥p ≤ Cp(1 + ∥x0∥p).

Lemma 38 It holds that:

∃ C1, C2 > 0, ∀ β > 2µ′0
2 + η/µ′0

,

logE
[
exp(

∥∥XN
k

∥∥2)] ≤ ∥x0∥2 + C1/β + C2,

where C1, C2 > 0 is an constant.

Remark 39 Note that our estimate is not subject to “the curse of dimensionality” which explicitly
appears in Lemma C.7 in Xu et al. (2018).

Proof The proof is similar to that of Lemma C.7 in Xu et al. (2018). The main difference lies in the
existence of regularizer in our scheme and the absence of dissipativity assumption of LN . Instead,
we assume Assumption 6.

Let Q = 2η
β and pj = 1

(1+η/µ′
j)

2 . Let S′ := diag((qj)
N
j=0) for qj > 0 (j = 0, . . . , N) and

1 > q0 ≥ q1 ≥ · · · ≥ qN , then we have

E
[
exp ∥XN

k+1∥2S′
]

=E

[
exp

∥∥∥∥Sη(XN
k − η∇LN (XN

k ) +

√
2η

β
ϵNk

∥∥∥∥2
S′

]
,

where ϵNk ∼ N (0, IN ). Let xi and ϵi denote the i-th component of XN
k − η∇LN (XN

k ) and ϵNk
respectively, which corresponds to the coefficient of fi, the i-th basis in the representation (1).
Under this notation, we have the following estimate:

E

[
exp

∥∥∥∥Sη(XN
k − η∇LN (XN

k ) +

√
2η

β
ϵNk )

∥∥∥∥2
S′

]

= E

[
E

[
exp

∥∥∥∥Sη(XN
k − η∇LN (XN

k ) +

√
2η

β
ϵNk )

∥∥∥∥2
S′

∣∣∣∣XN
k

]]

= E

[
N∏
i=0

∫
exp

(
piqi

(
x2i + 2

√
2η

β
xiϵi +

2η

β
ϵ2i

))
1√
2π

exp

(
−ϵ

2
i

2

)
dϵi

]
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= E
N∏
i=0

1√
1− piqiQ

exp

(
x2i

1
piqi
− 2Q

)

≤ exp

 N∑
j=0

Qpjqj
1− 2Qp0q0

E

[
exp

(
N∑
i=0

x2i
1

piqi
− 2Q

)]
,

thanks to the formula of Gaussian integral, µ′0 ≥ µ′i and log(1− x) ≥ −x/(1− x).
Then, we have

exp

 N∑
j=0

Qpjqj
1− 2Qp0q0

E

[
exp

(
N∑
i=0

x2i
1

piqi
− 2Q

)]

≤ exp

 N∑
j=0

Qpjqj
1− 2Qp0q0

E

[
exp

(
N∑
i=0

1
1

piqi
− 2Q

(
XN

k,i
2 − 2ηXN

k,i∇LN,i(X
N
k ) + η2∇LN,i(X

N
k )2

))]
,

where XN
k,i, LN,i(X

N
k ) denotes the i-th component of XN

k , LN (XN
k ) respectively.

Then Assumption 6 implies

exp

 N∑
j=0

Qpjqj
1− 2Qp0q0

E

[
exp

(
N∑
i=0

1
1

piqi
− 2Q

(
XN

k,i
2 − 2ηXN

k,i∇LN,i(X
N
k ) + η2∇LN,i(X

N
k )2

))]
,

≤ exp

 N∑
j=0

Qpjqj
1− 2Qp0q0

E

[
exp

(
N∑
i=0

1
1

piqi
− 2Q

(
XN

k,i
2
+ 2ηB|XN

k,i|+B2η2
))]

,

≤ exp

 N∑
j=0

Qpjqj
1− 2Qp0q0

E

[
exp

(
N∑
i=0

1
1

piqi
− 2Q

(
(1 + κ)XN

k,i
2
+ C

(
1 +

1

κ

)
η2
))]

≤ exp

 N∑
j=0

Qpjqj
1− 2Qp0q0

E

{
exp

[
N∑
i=0

(
1 + κ
1

piqi
− 2Q

(XN
k,i)

2 +
Cpiqi(1 +

1
κ)

1− 2Qp0q0
η2

)]}

= E

exp

∥XN
k ∥2S(k) +

N∑
j=0

(
Qpjqj

1− 2Qp0q0
+
Cpjqj(1 +

1
κ)

1− 2Qp0q0
η2

) ,

where S(k) := diag

((
1+κ
1

pjqj
−2Q

)N

j=0

)
.

Since q0 ≤ 1, it holds that

Qpjqj
1− 2Qp0q0

≤ Qpjqj
1− 2Qp0

.

If we have chosen κ so that 1+κ
1

p0q0
−2Q

< 1, then

q
(k)
j :=

1 + κ
1

pjqj
− 2Q

≤ 1 + κ
1

p0q0
− 2Q

< 1,
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and we also have q(k)0 ≥ q(k)1 ≥ · · · ≥ q(k)N . Here again, since qj ≤ 1, it holds that

q
(k)
j =

1 + κ
1

pjqj
− 2Q

≤ 1 + κ

(p−1
j − 2Q)q−1

j

.

Let κ = 1
2(2η/µ

′
0 + (η/µ′0)

2 − 2η/β), then it holds that

1 + κ

p−1
j − 2Q

=
1 + 1

2 [2η/µ
′
0 + (η/µ′0)

2 − 2η/β]

1 + 2η/µ′j + (η/µ′j)
2 − 2η/β

≤ 1

1 + 1
4 [2η/µ

′
j + (η/µ′j)

2 − 2η/β]
=:

1

1 + αj
< 1.

Therefore, we obtain the following evaluation for q(k)j :

q
(k)
j ≤ qj

1 + αj
,

which implies ∥·∥S(k) ≤ ∥·∥S′ . Hence, by noticing pj ≤ (1 + αj)
−1, a recursive argument yields

E
[
exp

(
∥XN

k+1∥2S′
)]
≤ exp

∥x0∥2 + Q+ C (1 + 1/κ) η2

1− 2Qp0q0

N∑
j=0

k∑
i=0

qj
(1 + αj)k+1−i

 .
The second term in the right hand side can be evaluated as

k∑
i=0

1

(1 + αj)k+1−i
=

(1 + αj)
−1 − (1 + αj)

−(k+2)

1− (1 + αj)−1
≤ 1

αj
.

Finally, if we set qj = 1, then by observing that

N∑
j=0

1

αj
≲
∫ ∞

1

1

ηx2
dx ≲

1

η
,

we have

Q+ C (1 + 1/κ) η2

1− 2Qp0q0

N∑
j=0

k∑
i=0

1

(1 + αj)k+1−i
qj ≲

Q+ (1 + 1/κ) η2

η
=

1

β
+

(
1 +

1

α0

)
η.

Since α0 = O(η), the second term in the right hand side can be evaluated(
1 +

1

α0

)
η ≲ 1.

Combining all arguments, we obtain that

E
[
exp

(
∥XN

k+1∥2
)]
≤ exp

(
∥x0∥2 +

C1

β
+ C2

)
.
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Lemma 40 The discrepancy between L(XN
n ) and L(Y N

n ) can be bounded as

|E[L(XN
n )− L(Y N

n )]| ≤ B

√
η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

{
1 +

Mµ0
λ

exp

(
Mµ0
λ

)}
,

where the expectation is with respect to the choice of the mini-batches in each update.

Proof Remember that XN
n and Y N

n are updated as

XN
n+1 = Sη

(
XN

n − η∇LN (XN
n ) +

√
2 η
βPNεn

)
,

Y N
n+1 = Sη

(
Y N
n − ηgn,N (Y N

n ) +
√

2 η
βPNεn

)
,

where the same noise εn is applied for updating both variables. Hence, by taking the difference
between XN

n and Y N
n , XN

n − Y N
n is updated as

XN
n+1 − Y N

n+1 = Sη
[
(XN

n − Y N
n )− η(∇LN (XN

n )− gn,N (Y N
n ))

]
.

Noticing that XN
0 − Y N

0 = 0, it holds that

XN
n+1 − Y N

n+1 =− η
n∑

k=0

Sn−k+1
η (∇LN (XN

k )− gn,N (Y N
k ))

=− η
n∑

k=0

Sn−k+1
η (∇LN (XN

k )−∇LN (Y N
k ))

− η
n∑

k=0

Sn−k+1
η (∇LN (Y N

k )− gn,N (Y N
k )).

Here, Lemma 36 yields that

E

∥∥∥∥∥
n∑

k=0

Sn−k+1
η (∇LN (Y N

k )− gn,N (Y N
k ))

∥∥∥∥∥
2

≤
n∑

k=0

∥Sn−k+1
η ∥2op

C(ntr − nb)
nb(ntr − 1)

≤
n∑

k=0

(
1 + η

λ

µ0

)−2(n−k+1) C(ntr − nb)
nb(ntr − 1)

≤ C

ηλ/µ0

(ntr − nb)
nb(ntr − 1)

,

where the expectation is taken with respect to the choice of the mini-batch. By the smoothness
assumption (Assumption 2), we also have ∥∇LN (XN

k ) − ∇LN (Y N
k )∥ ≤ M∥XN

k − Y N
k ∥. Thus,

we obtain that

E
∥∥XN

n+1 − Y N
n+1

∥∥ ≤η n∑
k=0

∥Sn−k+1
η ∥opME

∥∥XN
k − Y N

k

∥∥+ η

√
C

ηλ/µ0

(ntr − nb)
nb(ntr − 1)
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≤ηM
n∑

k=0

(
1 + η

λ

µ0

)−(n−k+1)

E
∥∥XN

k − Y N
k

∥∥+√ η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

.

Applying Gronwall’s inequality (see, for example, Mischler (2019, Lemma 5.2)) to this evaluation
yields that

E
∥∥XN

n+1 − Y N
n+1

∥∥
≤

√
η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

×{
1 + ηM

n∑
k=0

(
1 + η

λ

µ0

)−(n−k+1) n∏
i=k+1

[
1 + ηM

(
1 + η

λ

µ0

)−(n−i+1)
]}

≤

√
η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

×{
1 + ηM

n∑
k=0

(
1 + η

λ

µ0

)−(n−k+1)

exp

[
ηM

n∑
i=k+1

(
1 + η

λ

µ0

)−(n−i+1)
]}

≤

√
η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

{
1 + ηM

n∑
k=0

(
1 + η

λ

µ0

)−(n−k+1)

exp

(
ηM

µ0
ηλ

)}

≤

√
η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

{
1 + ηM

µ0
ηλ

exp

(
Mµ0
λ

)}

=

√
η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

{
1 +

Mµ0
λ

exp

(
Mµ0
λ

)}
.

Then, by the bounded gradient condition Assumption 5 (ii), the discrepancy between L(XN
n ) and

L(Y N
n ) can be bounded as

|E[L(XN
n )− L(Y N

n )]| ≤ BE
∥∥XN

n − Y N
n

∥∥
≤ B

√
η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

{
1 +

Mµ0
λ

exp

(
Mµ0
λ

)}
,

where the expectation is with respect to the choice of the mini-batches in each update.

In addition to the bound in Lemma 40, we obtain another bound on |E[L(XN
n )−L(Y N

n )]|. The
following two lemmas are used to prove a version of Theorem 3.6 in Xu et al. (2018). These results
can only be applied to finite-dimensional spaces. However, our schemes Y N

k , XN
k are no longer

infinite-dimensional, which means we can follow the same argument in Xu et al. (2018).

Lemma 41 (Polyanskiy and Wu (2016); Raginsky et al. (2017); Xu et al. (2018)) For any two prob-
ability density functions µ, ν with bounded second moments, let g : Rd → R be a C1 function such
that

∥∇g(x)∥2 ≤ C1 ∥x∥2 + C2, ∀ x ∈ Rd,
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for some constants C1, C2 ≥ 0. Then∣∣∣∣∫
Rd

gdµ−
∫
Rd

gdν

∣∣∣∣ ≤ (C1σ + C2)W2(µ, ν),

whereW2 is the 2-Wasserstein distance and σ2 = max
{∫

Rd ∥x∥22 µ(dx),
∫
Rd ∥x∥22 ν(dx)

}
.

Lemma 42 (Corollary 2.3 in Bolley and Villani (2005)) Let ν be a probability measure on Rd.
Assume that there exist x0 and a constant α > 0 such that

∫
exp(α ∥x− x0∥2)ν(dx) < ∞. Then

for any probability measure µ on Rd, it satisfies

W2(µ, ν) ≤ Cν(D(µ||ν)1/2 +D(µ||ν)1/4),

where Cν is defined as

Cν = inf
x0∈Rd,α>0

√
1

α

(
3

2
+ log

∫
exp(α ∥x− x0∥22)ν(dx)

)
.

Proof [Proof of Proposition 12] Let Pk, Qk denote the probability measures for GLD scheme XN
k

and SGLD scheme Y N
k respectively. Applying Lemma 41, Lemma 37 and Lemma 20 yields

|E
[
L(Y N

k )
]
− E

[
L(XN

k )
]
| ≤ C(1 + ∥x0∥)W2(Qk, Pk), (78)

where C > 0 are absolute constants. We further apply Lemma 42 to bound Wasserstein distance
and get the following bound:

|E
[
L(Y N

k )
]
− E

[
L(XN

k )
]
| ≤ C(1 + ∥x0∥)Λ(D(Qk||Pk)

1/2 +D(Qk||Pk)
1/4), (79)

where Λ =

√
3/2 + logE

[
exp

∥∥XN
k

∥∥2]. Moreover, Lemma 38 yields

Λ ≤

√
3

2
+ ∥x0∥2 +

C1

β
+ C2, (80)

where C1, C2 > 0 is some constants. To bound KL-divergence between Pk and Qk, we use the
following decomposition:

D(Qk||Pk) ≤ D(Qk||Pk) + D(Q1:k−1|Qk||P1:k−1|Pk) = D(Q1:k||P1:k)

= D(Q1||P1) +

k∑
i=2

D(Qi|Q1:i−1||Pi|P1:i−1)

=
k∑

i=1

D(Qi|Qi−1||Pi|Pi−1),

where P1:k, Q1:k denotes joint distribution of (XN
1 , · · · , XN

k ) and (Y N
1 , · · · , Y N

k ) respectively and
Qi|Qi−1 denotes the conditional distribution of XN

i given XN
i−1. The first inequality is based on
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non-negativity of KL-divergence and the final equality comes from the fact that Q0, P0 are deter-
ministic and that XN

i and (XN
1 , · · · , XN

i−2) are conditionally independent given XN
i−1. For clarity,

we write down the definition of conditional KL-divergence in the following line:

D(F2|F1||G2|G1) =

∫
f(x1, x2) log

f(x2|x1)
g(x2|x1)

dx1dx2.

Now that Qi|Qi−1 and Pi|Pi−1 are both gaussian, that is,

XN
i |XN

i−1 = x ∼ N (Sη(x− η∇LN (x)),
η

β
ST
η Sη),

Y N
i |Y N

i−1 = x ∼ N (Sη(x− ηgi−1(x)),
η

β
ST
η Sη),

we can calculate each conditional KL-divergence as below:

D(Qi|Qi−1||Pi|Pi−1) = EQ

[
log

dQi|Qi−1

dPi|Pi−1

]
=

β

2η
E(x,y)∼Qi−1:i

[∥∥S−1
η y − (x− η∇LN (x))

∥∥2 − ∥∥S−1
η y − (x− ηgi−1(x))

∥∥2]
=

β

2η
E(x,y)∼Qi−1:i

[
2η⟨S−1

η y − x,∇LN (x)− gi−1(x)⟩+ η2(∥∇LN (x)∥2 − ∥gi−1(x)∥2)
]

=
β

2η
Ex∼Qi−1

[
2η⟨−ηgi−1(x),∇LN (x)− gi−1(x)⟩+ η2(∥∇LN (x)∥2 − ∥gi−1(x)∥2)

]
=
βη

2
Ex∼Qi−1

[
∥∇LN (x)− gi−1(x)∥2

]
≤ βη

2
Ex∼Qi−1

[
C(ntr − nb)
nb(ntr − 1)

]
≤ Cβη(ntr − nb)

nb(ntr − 1)
,

thanks to Lemma 36 and 37. Therefore, we finally get the following bound:

D(Qk||Pk) ≤
βηk(ntr − nb)
nb(ntr − 1)

= Crk. (81)

Combining all of the above yields the claim:

|E[L(XN
k )− L(Y N

k )]| ≤ C(1 + ∥x0∥)Λ (
√
rk + 4

√
rk) . (82)

Now, for a non-negative integer K, let XN
n|K be the solution following the update 5 with the full

gradient for n ≥ K, but XN
K|K = Y N

K . That is, XN
K|K = Y N

K , and

XN
n+1|K = Sη

(
XN

n|K − η∇LN (XN
n|K) +

√
2 η
βPNεn

)
,

for n ≥ K. Then, notice that, for n ≥ K, Proposition 8 yields that

|E[L(Y N
n )− L(XN

n )]|
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≤|E[L(Y N
n )− L(XN

n|K)]|+ |E[L(XN
n|K)− L(XN

n )]|

≤|E[L(Y N
n )− L(XN

n|K)]|+ |E[L(XN
n|K)− L(Xµ(N,η))]|+ |E[L(XN

n )− L(Xµ(N,η))]|

≤|E[L(Y N
n )− L(XN

n|K)]|+ E
[
CY N

K

]
exp

{
−Λ∗

η[η(n−K)− 1]
}
+ Cx0 exp

(
−Λ∗

η(ηn− 1)
)

≤|E[L(Y N
n )− L(XN

n|K)]|+ CCx0 exp
{
−Λ∗

η[η(n−K)− 1]
}
,

where C > 0 is a constant and we used E[CY N
K
] ≲ Cx0 from Lemma 37 in the last inequality.

Applying the bound (82) with x0 = Y N
K and k = n−K to |E[L(Y N

n )− L(XN
n|K)]|, we have

|E[L(Y N
n )− L(XN

n )]| ≲ √rn−K + 4
√
rn−K + exp

{
−Λ∗

η[η(n−K)− 1]
}
,

where we used Lemma 37 again. Since the choice of K ∈ {0, . . . , n} is arbitrary, we may pick up
the one that minimizes the right hand side. Indeed, T ∗ =

log+{nb(ntr−1)/[βη(ntr−nb)]}
Λ∗
ηη

+ 1
η minimizes

it as a choice of n−K up to constant. If n ≥ T ∗, then we may set K = 0 because XN
n|0 = XN

n .
On the other hand, Lemma 40 also asserts that

|E[L(Y N
n )− L(XN

n )]| ≤ B

√
η

λ/µ0

C(ntr − nb)
nb(ntr − 1)

{
1 +

Mµ0
λ

exp

(
Mµ0
λ

)}
.

Then, by taking the smaller upper bound, we finally obtain that

|E[L(Y N
n )− L(XN

n )]|

≲min

{
√
rT ∗∧n + 4

√
rT ∗∧n, B

√
η

λ/µ0

(ntr − nb)
nb(ntr − 1)

{
1 +

Mµ0
λ

exp

(
Mµ0
λ

)}}
,

which yields the assertion.
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