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Abstract
We provide improved differentially private algorithms for identity testing of high-dimensional dis-
tributions. Specifically, for d-dimensional Gaussian distributions with known covariance Σ, we can
test whether the distribution comes from N (µ∗,Σ) for some fixed µ∗ or from some N (µ,Σ) with
total variation distance at least α from N (µ∗,Σ) with (ε, 0)-differential privacy, using only

Õ

(
d1/2

α2
+

d1/3

α4/3 · ε2/3
+

1

α · ε

)
samples if the algorithm is allowed to be computationally inefficient, and only

Õ

(
d1/2

α2
+

d1/4

α · ε

)
samples for a computationally efficient algorithm. We also provide a matching lower bound show-
ing that our computationally inefficient algorithm has optimal sample complexity. We also extend
our algorithms to various related problems, including mean testing of Gaussians with bounded but
unknown covariance, uniformity testing of product distributions over {−1, 1}d, and tolerant testing.
Our results improve over the previous best work of Canonne et al. (2020b) for both computationally
efficient and inefficient algorithms, and even our computationally efficient algorithm matches the
optimal non-private sample complexity of O

(√
d

α2

)
in many standard parameter settings. In addi-

tion, our results show that, surprisingly, private identity testing of d-dimensional Gaussians can be
done with fewer samples than private identity testing of discrete distributions over a domain of size
d (Acharya et al., 2018b), which refutes a conjectured lower bound of Canonne et al. (2020b).
Keywords: Differential Privacy, Hypothesis Testing, Multivariate Distributions

1. Introduction

Hypothesis testing is one of the oldest and most widely studied problems in statistical inference,
and is critical in research for nearly every scientific branch. Simply put, hypothesis testing asks,
given a collection of N data points X = {X(1), . . . , X(N)}, whether the data points come from a
distribution proposed by a null hypothesisH0 or by an alternative hypothesisH1.

Classical hypothesis testing often focuses on univariate or discrete distributions. However, these
distributions may be insufficient in many applications. For instance, if we wish to test a hypothesis
on patient data, each patient may have numerous features such as those corresponding to vitals,
organ function, metabolic rate, presence or severity of diseases, etc. Consequently, it is crucial to
develop hypothesis testing procedures for high-dimensional distributions.

In many practical applications of hypothesis testing, the data may reveal highly sensitive in-
formation about an individual. For instance, the data may include whether a patient has a certain
disease, or has participated in a crime or embarrassing activity. For this reason, an increasingly
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important challenge that has arisen in hypothesis testing to ensure that the test is not only accurate
but also preserves the privacy of the individuals that contribute data. The notion of privacy we wish
to guarantee is commonly called differential privacy, which was first formulated by Dwork et al.
(2006). Differential privacy has emerged as the leading notion of privacy both in theory and prac-
tice, and has been utilized to measure privacy by companies such as Apple (Team, 2017), Google
(Erlingsson et al., 2014), and Microsoft (Ding et al., 2017), as well as the US Census Bureau (Dajani
et al., 2017). Informally, differential privacy provably ensures that changing one piece of the data
does not affect the output of the algorithm significantly. Hence, an adversary cannot reconstruct any
single user’s data based on the algorithm’s output, thereby ensuring that each user’s data is secure.

In this paper, we study differentially private hypothesis testing for high-dimensional distribu-
tions. We primarily study two major classes of distributions: multivariate Gaussians and Boolean
product distributions. Specifically, we consider the following problems, as well as certain general-
izations of them, and improve over the previous state-of-the-art results by Canonne et al. (2020b).

1. How many samples from a multivariate Gaussian distribution N (µ,Σ), where µ ∈ Rd is the
mean vector and Σ ∈ Rd×d is the covariance matrix, are necessary to privately determine
whether µ = µ∗ for some fixed µ∗ ∈ Rd or µ is “far” from µ∗?

2. How many samples from a product distribution D over {−1, 1}d are necessary to privately
determine whether D equals some fixed product distribution D∗ or D is “far” from D∗?

1.1. Private Hypothesis Testing

In this subsection, we describe the basics of differential privacy and differentially private hypothesis
testing. First, we define the notion of neighboring datasets and differential privacy.

Definition 1 (Neighboring Datasets) Let X be some domain, and let X = (X(1), . . . , X(N)) ∈
XN and X′ = (X ′(1), . . . , X ′(N)) ∈ XN be two datasets of size N from X . Then, we say that X
and X′ are neighboring datasets if there is at most one value of 1 ≤ i ≤ N such that X(i) ̸= X ′(i).

Definition 2 (Differential Privacy (Dwork et al., 2006)) Let 0 ≤ ε, δ ≤ 1. A randomized algo-
rithm A : XN → O is said to be (ε, δ)-differentially private (DP) if for any two neighboring
datasets X,X′ ∈ XN and any subset O ⊂ O,

P[A(X′) ∈ O] ≤ eε · P[A(X) ∈ O] + δ. (1)

We next describe hypothesis testing. A hypothesisH represents a class of distributions over X ,
which may consist of either a single distribution or a family of distributions with certain constraints.
In distribution testing, we are given two hypothesesH0 andH1 that are disjoint, meaning no distri-
bution is in both classes. We are then given N i.i.d. samples from D, where D is a distribution from
H0 ∪H1, and our goal is to determine whether D ∈ H0 or D ∈ H1.

We now give a formal definition for hypothesis testing, and then we formally define private
hypothesis testing.

Definition 3 Fix N ∈ N as the number of samples, and let A : (Rd)N → {0, 1} be an algorithm
that takes as input X(1), . . . , X(N) ∈ Rd. Given disjoint hypotheses H0 and H1, and parameters
0 ≤ ε, δ ≤ 1, we say that an algorithm A is a hypothesis testing algorithm that can distinguish
betweenH0 andH1 if:
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• For all distributionsD ∈ H0, if each X(i) is drawn i.i.d. fromD, then for X = (X(1), . . . , X(N)),
P[A(X) = 0] ≥ 2

3 , where the probability is over both the samples X(1), . . . , X(N) ← D and
the randomness of the algorithm A.

• For all distributions D′ ∈ H1, if each X(i) is drawn i.i.d. from D′, then P[A(X) = 1] ≥ 2
3 .

Definition 4 Fix N ∈ N as the number of samples, and let A : (Rd)N → {0, 1} be an algorithm
that takes as input X(1), . . . , X(N) ∈ Rd. Given disjoint hypotheses H0 and H1, and parameters
0 ≤ ε, δ ≤ 1, we say that an algorithm A can (ε, δ)-privately distinguish betweenH0 andH1 if:

• A can distinguish betweenH0 andH1.

• A is (ε, δ)-DP (where X = Rd and O = {0, 1}).

Note that the privacy must hold for any neighboring datasets X,X′ ∈ (Rd)N , even if they are not
drawn from any distribution.

1.2. Our Results

In all of the problems we investigate, our goal is to devise an algorithm A that can (ε, δ)-privately
distinguish between a null hypothesis H0 and an alternative hypothesis H1, where the number of
samples N is as small as possible. We also are interested in constructing such an algorithm that is
efficient, meaning that the runtime is polynomial in the number of samples N and the dimension d.

Identity testing of Gaussians with known covariance: The main and perhaps simplest problem
we study in this paper is private identity testing of a multivariate Gaussian with known covariance
matrix Σ. In identity testing, the goal is to distinguish between a null hypothesis that only consists
of N samples drawn i.i.d. from a single hypothesis distribution N (µ∗,Σ), and an alternative hy-
pothesis consisting of N samples drawn i.i.d. fromN (µ,Σ), where the mean µ is “far” from µ∗. In
this work, we improve over work by Canonne et al. (2020b) by improving their sample complexity
both in the case of inefficient and efficient algorithms, and by providing an optimal lower bound to
complement these results.

First, we state our sample complexity upper bound where we allow for an inefficient algorithm.

Theorem 5 (Inefficient Upper Bound) Fix µ∗ ∈ Rd and Σ ∈ Rd×d as a known positive definite
covariance matrix. Also, fix parameters 0 < α, ε ≤ 1

2 . Then, there exists an algorithm that, using

N = Õ

(
d1/2

α2
+

d1/3

α4/3 · ε2/3
+

1

α · ε

)

samples1, can (ε, 0)-privately distinguish between H0, which solely consists of N (µ∗,Σ), and H1,
which consists of all distributions N (µ,Σ) for µ with

√
(µ− µ∗)TΣ−1(µ− µ∗) ≥ α.

Expressed more simply, our goal is to privately distinguish between the mean of a multi-
variate Gaussian being some fixed µ∗ and the mean being far away from µ∗, given some num-
ber of samples from the multivariate Gaussian. Our notion of far away depends on the quantity

1. We use N = Õ(F ) to mean that there exists a fixed constant C such that N = O(F (logF )C).
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√
(µ− µ∗)TΣ−1(µ− µ∗), which is also called the Mahalanobis distance dΣ(µ

∗, µ). While this
choice may appear more confusing than simply using ℓ2 (a.k.a. Euclidean) distance, it is more
practical than ℓ2 distance as it scales properly with linear transformations of multivariate Gaussian
distributions. When Σ = I , the identity matrix, this is equivalent to ∥µ − µ∗∥, the Euclidean dis-
tance between µ and µ∗. In addition, whenever the Mahalanobis distance is smaller than 1, it is
asymptotically equivalent to the total variation distance dTV (N (µ,Σ),N (µ∗,Σ)).

Our result improves over the previous best inefficient algorithm of Canonne et al. (2020b), which
had a sample complexity of N = Õ

(
d1/2

α2 + d1/2

α
√
ε
+ d1/3

α4/3ε2/3
+ 1

αε

)
. Importantly, we remove the

dependence on d1/2

α
√
ε

that was present in (Canonne et al., 2020b), which provides a strict improvement

whenever ε < α2 and 1
d < α2 ·ε. We remark that the inefficient algorithm of (Canonne et al., 2020b)

has a mild inaccuracy, and an important part of our result involves fixing the previous proof.

Next, we show that Theorem 5 is tight, even if the algorithm is allowed to be (0, ε)-differentially
private as opposed to (ε, 0)-differentially private2. Specifically, we prove the following:

Theorem 6 (Lower Bound) Let all notation be as in Theorem 5. Then, any algorithm that can
(0, ε)-privately distinguish betweenH0 andH1 must have sample complexity at least

N = Ω

(
d1/2

α2
+

d1/3

α4/3 · ε2/3
+

1

α · ε

)
.

This improves over the previous lower bound of Ω
(
d1/2

α2 + 1
α·ε

)
(Canonne et al., 2020b), which

combines the non-private lower bound of Ω
(
d1/2

α2

)
(Canonne et al., 2020a) and the private lower

bound of Ω
(

1
α·ε
)

for testing 1-dimensional distributions (Acharya et al., 2018b). We remark that
the previous lower bound was technically shown only for testing Boolean product distributions, but
it extends to multivariate Gaussians easily.

Because the algorithm we devise for Theorem 5 has very slow runtime, a natural question is how
many samples are necessary if the algorithm must run in polynomial time in N and d. Indeed, we
show the following result, that only needs a slightly larger number of samples but runs efficiently.

Theorem 7 (Efficient Upper Bound) Let all notation be as in Theorem 5. Then, there exists an
algorithm that, using

N = Õ

(
d1/2

α2
+

d1/4

α · ε

)
samples, can (ε, 0)-privately distinguish betweenH0 andH1 in time polynomial in N and d.

This improves over the previous best polynomial-time algorithm of Canonne et al. (2020b),
which required Õ

(
d1/2

α2 + d1/2

α·ε

)
samples. This algorithm matches even the optimal non-private

algorithm as long as α
d1/4

≤ ε, and strictly improves over the previous best efficient algorithm
whenever ε < α. It also strictly improves even over the previous best inefficient private algorithm if

2. We remark that in the case of private hypothesis testing, (ε, δ)-DP and (ε+ δ, 0)-DP are known to be asymptotically
equivalent for any ε, δ < 1

2
(Acharya et al., 2018b). In general, however, it is harder to achieve (ε+ δ, 0)-DP.
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1√
d
< ε < α2. In addition, if we consider the dependence on d as the bottleneck and only consider

the terms dependent on
√
d, the number of samples needed is only roughly

√
d · 1

α2 , matching
the optimal non-private sample complexity! In contrast, Canonne et al. (2020b) required roughly√
d ·
(

1
α2 + 1

α·ε
)

for efficient algorithms, and
√
d ·
(

1
α2 + 1

α·
√
ε

)
for inefficient algorithms.

Generalizations to other distributions: Our results above generalize to related hypothesis testing
problems, such as hypothesis testing for Gaussians with unknown covariance, hypothesis testing for
Boolean Product distributions, and tolerant identity testing. We describe the results informally here,
and provide more formal statements in the Appendix.

First, we show that our results on privately testing multivariate Gaussians with known covariance
can be extended to Gaussians with unknown but bounded covariance. One caveat is that we are no
longer able to distinguish between µ = µ∗ and µ, µ∗ being far in Mahalanobis distance, as the
Mahalanobis distance depends on the unknown matrix Σ. Instead, we distinguish between µ = µ∗

and µ, µ∗ being far in ℓ2 distance, if we are promised that Σ has bounded spectral norm.

Theorem 8 (Bounded but Unknown Covariance, Informal) LetH0 consist ofN (µ∗,Σ) over all
covariance matrices with bounded spectral norm ∥Σ∥2 ≤ 1, and H1 consist of N (µ,Σ) over all
covariance matrices ∥Σ∥2 ≤ 1 and µ : ∥µ − µ∗∥ ≥ α. Then, to distinguish between H0 and H1,
the same upper and lower bounds as in Theorems 5, 6, and 7 hold.

Next, we show that our results on testing multivariate Gaussians also extend to identity testing
for “balanced” Boolean product distributions over {−1, 1}d, i.e., distributions where each coor-
dinate is independent (but not necessarily identically distributed). Namely, we can privately test
whether a product distribution is some fixed P∗ or has total variation distance far from P∗, as long
as the expectation of P∗ is between −1/2 and 1/2 in each coordinate3.

Theorem 9 (Product Distributions, Informal) Fix µ∗ ∈ [−1/2, 1/2]d, and suppose thatH0 con-
sists only of the product distribution P∗ over {−1, 1}d with mean µ∗, andH1 consists of all product
distributions P over {−1, 1}d such that dTV(P,P∗) ≥ α. Then, to distinguish betweenH0 andH1,
the same upper and lower bounds as in Theorems 5, 6, and 7 all hold for any µ∗ ∈ [−1/2, 1/2]d.

Theorem 9 implies bounds for private uniformity testing of Boolean product distributions, since
the uniform distribution over {−1, 1}d is a product distribution with mean 0. Theorem 9 improves
over both the previous best upper bound of Õ

(
d1/2

α2 + d1/2

αε1/2
+ d1/3

α4/3ε2/3
+ 1

αε

)
for inefficient algo-

rithms and Õ
(
d1/2

α2 + d1/2

αε

)
for efficient algorithms (Canonne et al., 2020b). In addition, it also

improves over the best lower bound of Ω
(
d1/2

α2 + 1
αε

)
(Canonne et al., 2020b). Note that the pre-

vious best upper and lower bounds for privately testing balanced Boolean product distributions and
multivariate Gaussian distributions match, as do our bounds.

We remark that identity testing of “unbalanced” Boolean product distributions, i.e., where µ∗

is not promised to be in [−1/2, 1/2]d, is not always achievable with the same number of samples.
Indeed, Canonne et al. (2020b) showed that if the null hypothesis distribution P∗ is sufficiently
unbalanced, there is a sample complexity lower bound of Ω

(
d1/2

α2 + d1/2

α
√
ε
+ d1/3

α4/3ε2/3
+ 1

αε

)
.

3. −1/2 and 1/2 can be replaced by any constants bounded away from −1 and 1.
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Finally, we show that our results on private identity testing of Gaussians and Boolean product
distributions extend to private tolerant identity testing. In this setting, we allow for some slack in the
null hypothesis, and have to distinguish between the mean µ being far from µ∗ versus close to µ∗,
as opposed to just equaling µ∗. Tolerant testing is useful as it provides meaningful guarantees even
if the underlying distribution is very close to, but does not perfectly satisfy, the null distribution.

Theorem 10 (Tolerant Hypothesis Testing, Informal) Theorems 5, 6, and 7 all hold if we replace
the null hypothesis H0 with all distributions N (µ,Σ) such that

√
(µ− µ∗)TΣ−1(µ− µ∗) ≤ α

2 .
Likewise, for any µ∗ ∈ [−1/2, 1/2]d and for P∗ the product distribution with mean µ∗, Theorem 9
holds even if H0 consists of all product distributions P with dTV(P,P∗) ≤ α

C and H1 consists of
product distributions P with dTV(P,P∗) ≥ α, for a sufficiently large constant C.

One surprising consequence of our algorithms is that the number of samples we require for
private identity testing of d-dimensional Gaussians and private uniformity testing of d-dimensional
Boolean product distributions is in fact smaller than the number of samples needed for private uni-
formity testing of a discrete distribution over just d elements. Indeed, private uniformity testing
of a discrete distribution requires Θ

(√
d

α2 +
√
d

α
√
ε
+ d1/3

α4/3ε2/3
+ 1

αε

)
samples (Acharya et al., 2018b),

whereas for d-dimensional product distributions and Gaussians, we are able to remove the depen-
dence on

√
d

α
√
ε
. Hence, we refute a conjecture of Canonne et al. (2020b), which postulates that private

uniformity testing of discrete distributions over [d] and of product distributions over {−1, 1}d have
asymptotically equivalent sample complexities.

1.3. Related Work

Ignoring privacy constraints, hypothesis testing from a statistical point of view dates back nearly
a century, notably to Neyman and Pearson (1933). Hypothesis testing has become a popular area
of study in theoretical computer science more recently (where it is also called distribution testing),
starting with (Goldreich and Ron, 2000; Batu et al., 2000), and with a large body of subsequent
literature over the past two decades (see, for instance, (Canonne, 2020) for a survey of the distribu-
tion testing field). While much of the work has focused on discrete or univariate distributions, there
has recently been significant work in the multivariate setting as well. This work on multivariate
hypothesis testing has come both from statistical (Hotelling, 1931; Srivastava and Du, 2008; Chen
and Qin, 2010; Cai and Ma, 2013; Javanmard and Montanari, 2014; Ramdas et al., 2016) and com-
putational (Alon et al., 2007; Rubinfeld and Xie, 2010; Acharya et al., 2015; Daskalakis and Pan,
2017; Acharya et al., 2018a; Daskalakis et al., 2018; Gheissari et al., 2018; Bezáková et al., 2020;
Canonne et al., 2020a; Diakonikolas and Kane, 2021) perspectives.

Differentially private hypothesis testing began with work by Vu and Slavkovic (2009); Uhler
et al. (2013), and has seen significant work during the past decade. Apart from the work by Canonne
et al. (2020b), which this paper primarily improves over, perhaps the work most closely related to
ours is that of Cai et al. (2017); Aliakbarpour et al. (2018); Acharya et al. (2018b), which study
the problem of private identity testing (as well as closeness testing) of discrete distributions. Var-
ious other problems in private hypothesis testing have also been studied, including testing simple
hypotheses (Cummings et al., 2018; Canonne et al., 2019), selection from a discrete set of mul-
tiple hypotheses (Bun et al., 2019), goodness-of-fit and independence testing (Wang et al., 2015;
Gaboardi et al., 2016; Rogers and Kifer, 2017; Kakizaki et al., 2017; Aliakbarpour et al., 2019),
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ANOVA testing (Campbell et al., 2018; Swanberg et al., 2019), and nonparametric hypothesis test-
ing (Couch et al., 2019). Finally, hypothesis testing has also been studied with respect to local
differential privacy (Duchi et al., 2013; Gaboardi and Rogers, 2018; Sheffet, 2018; Acharya et al.,
2019; Gopi et al., 2020; Lam-Weil et al., 2022).

Apart from private hypothesis testing of high-dimensional multivariate distributions, there has
also been been work on private learning of Gaussians and multivariate distributions (Karwa and
Vadhan, 2018; Kamath et al., 2019a,b; Biswas et al., 2020; Kamath et al., 2020; Cai et al., 2021;
Wang and Xu, 2021). Notably, however, learning a distribution requires a linear dependence on the
dimension d, whereas hypothesis testing only requires a square-root dependence on the dimension.

1.4. Roadmap

In Section 2, we give a technical outline for Theorems 5 through 10. All formal proofs are deferred
to the appendix. In Appendix A, we define notation and prove some preliminary results. In Ap-
pendix B, we prove several important concentration bounds. In Appendix C, we prove Theorem 5.
In Appendix D, we prove Theorem 6. In Appendix E, we prove Theorem 7. Finally, in Appendix F,
we prove Theorems 8, 9, and 10.

2. Technical Overview

In this section, we provide an outline for each of the theorems we prove. We first describe the non-
private algorithm for testing the mean of a known-covariance Gaussian. We then outline Theorems
7, 5, and 6 (in that order), and then outline how we can generalize these results to prove Theorems
8, 9, and 10. We view Theorems 7 and 6 as our most interesting results from a technical perspective.

If the covariance Σ is known, we may scale and shift so that WLOG µ∗ = 0 and Σ = I is the
identity covariance matrix in d dimensions. So, our goal is to determine whether µ = 0 or ∥µ∥ ≥ α.
For simplicity, we will assume that the alternative hypothesis is ∥µ∥ = α as opposed to ∥µ∥ ≥ α.

Non-Private Hypothesis Testing: The optimal non-private algorithm (Srivastava and Du, 2008;
Canonne et al., 2020a) is incredibly simple: given N samples X(1), . . . , X(N) ∈ Rd, it just takes
the sum of the samples, X̄ = X(1) + · · · + X(N), and computes the statistic T = ∥X̄∥2. Based
on how large T is, the algorithm decides whether µ = 0 or ∥µ∥ ≥ α. It is simple to show that if
each X(i) is drawn i.i.d. from N (0, I), then E[T ] = N · d and Var[T ] = O(N2 · d). Conversely,
if each X(i) is drawn i.i.d. from N (µ, I) where ∥µ∥ = α, then E[T ] = N · d + α2 · N2 and
Var[T ] = O(N2 · d+N3 · α2).

For the statistic T to successfully distinguish between the two hypotheses, by Chebyshev’s
inequality, the square of difference in the means must significantly exceed the variances. As the
difference in means is α2 ·N2 and the variances are O(N2 · d+N3 ·α2), it suffices to choose N so
that (α2 ·N2)2 ≥ Ω(N2 ·d+N3 ·α2). This is equivalent to N ≥ Ω(

√
d/α2), so for N ≥ C

√
d/α2

for a sufficiently large constant C, we will be able to distinguish between µ = 0 and ∥µ∥ = α.

Theorem 7: We note that our algorithm, while somewhat based on the non-private hypothesis test-
ing result, deviates significantly from Canonne et al. (2020b) and other work on private hypothesis
testing. For that reason, we do not describe the previous techniques of Canonne et al. (2020b).

Before returning to the private setting, we note that ∥X̄∥2, where X̄ = X(1) + · · · + X(N),
can be rewritten as

∑N
i=1

∑N
j=1⟨X(i), X(j)⟩. Because of this, if we write Ti,j = ⟨X(i), X(j)⟩, the
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non-private algorithm can be rephrased as outputting 0 (null hypothesis) if
∑

i,j Ti,j < N ·d+ α2N2

2

and 1 (alternative hypothesis) if
∑

i,j Ti,j > N · d+ α2N2

2 .

This motivates our private algorithm, which will attempt to compute T =
∑N

i=1

∑N
j=1 Ti,j

privately. However, we note that when a single data sample X(i) changes, this affects Ti,j and Tj,i

for all j. In other words, instead of preserving privacy when a single entry in the matrix {Ti,j}
changes, we need to preserve privacy when an entire row and column in the matrix changes.

We will modify the matrix T consisting of all the entries Ti,j , by subtracting d from each diago-
nal entry and then dividing the matrix by Õ(

√
d) to get a new matrix V. By applying classic concen-

tration bounds, we can show that, assuming the original datapoints X(1), . . . , X(N) are drawn i.i.d.
from some N (µ, I), with ∥µ∥ ≤ 1, then each entry in V is bounded in the range [−1, 1] and each
row/column sum of V is bounded in magnitude by

√
N. Our goal will roughly be to distinguish

between the sum of all the entries in V being either in the range [−N,N ] or [γN2 −N, γN2 +N ],
for γ ≈ α2

√
d

. In addition, we wish to perform this privately, where we consider two matrices

V,V′ ∈ RN×N to be adjacent if they differ only in a single row or a single column.

If we may restrict ourselves to matrices where every row and column sum is at most
√
N in

absolute value, the algorithm is quite simple. Let V̄ :=
∑N

i=1

∑N
j=1 Vi,j . By our restriction, V̄

cannot change by more than 2
√
N if we only change a single row or column, so the statistic V̄ +

Lap(ε−1 ·2
√
N) is (ε, 0)-differentially private. This means that as long as N, ε−1

√
N ≪ γN2, our

algorithm will be accurate. This is equivalent to N ≥ Ω
(
d1/2

α2 + d1/3

α4/3ε2/3

)
. The problem, however,

is that we want differential privacy for arbitrary adjacent datasets X(1), . . . , X(N), for which we
may not have the

√
N bound on the row and column sums of the corresponding matrix V . Even if

each entry is bounded in the range [−1, 1], we can increase V̄ by N in the worst case.

A common approach to fixing this is to “clip” each data point, i.e., replace a data point x with
max(xmin,min(xmax, x)) to keep x in the range [xmin, xmax]. This technique has been used in
statistical data analysis since the early 20th century. In our case, a natural first attempt to clip the
row and column sums. Indeed, we can rewrite V̄ = 1

2

[∑N
i=1

∑N
j=1 Vi,j +

∑N
j=1

∑N
i=1 Vi,j

]
, i.e.,

V̄ is simply the average of the sum over all row sums and the sum over all column sums. Since
we want each row sum and column sum to be bounded by the range [−

√
N,
√
N ], we can consider

replacing our statistic V̄ with

G(V) :=
1

2

 N∑
i=1

g

 N∑
j=1

Vi,j

+

N∑
j=1

g

(
N∑
i=1

Vi,j

) , (2)

where g(x) := min(
√
N,max(−

√
N, x)) prevents each row/column sum from exceeding

√
N in

absolute value. However, this still runs into the same problem as before. If we alter a row of V by
increasing each entry in the row by 1, while the modified row sum does not increase by more than√
N now, we still have that each column sum could potentially increase by 1, causing an overall

increase by N .
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To fix this, we consider an even stronger version of clipping, where after x exceeds
√
N , the

function starts going back down again. Specifically, we instead consider the function

g(x) :=


x |x| ≤

√
N

2
√
N − x x ≥

√
N

−2
√
N − x x ≤ −

√
N

.

Note that while g(x) = x in the range [−
√
N,
√
N ], for general x we have that g(x) ∈ [−x −

O(
√
N),−x + O(

√
N)]. Replacing g in our Equation (2) with the new function g, we now see

what happens when we change a single row. If we increase every element in a row by 1, each
column sum increases by 1, from which we would ideally hope that that g applied to each column
sum increases by 1. Conversely, for the row that we update, we use the fact that g(x) ∈ [−x −
O(
√
N),−x+O(

√
N)] to say that in fact g applied to the row decreases by roughly N −O(

√
N).

So, the overall change in the statistic G(V) is ideally O(
√
N), because the increase of each column

sum by 1 cancels out with the decrease in g applied to the row sum.
The problem with this, however, is that if a column sum exceeds

√
N in absolute value, g

applied to that column sum goes down instead. This is not an issue even if up to
√
N column sums

exceed
√
N in absolute value, as even in this case, we have that

√
N column sums are decreasing

by 1 instead of increasing by 1, so overall the statistic G(V) still does not change by more than
O(
√
N). To fix this, we propose another private algorithm which detects and throws out matrices

if too many row and column sums exceed
√
N in absolute value. We remark that if V comes from

X(1), . . . , X(N) drawn from either the null or alternative hypothesis, with high probability no row or
column sum will exceed

√
N in absolute value, so we do not sacrifice accuracy with this algorithm.

We will consider a new threshold function f(x) = max(0,min( |x|√
N
−1, 1)): this function takes

|x|√
N
− 1 and clips it to keep it in the range [0, 1]. Suppose we apply f to each row and column sum

of V , i.e., we consider the statistic

F (V) :=
1

2

 N∑
i=1

f

 N∑
j=1

Vi,j

+

N∑
j=1

f

(
N∑
i=1

Vi,j

) .

If X(1), . . . , X(N) actually came from the distribution, then f applied to each row and column is 0
with very high probability, as no row or column sum exceeds

√
N in absolute value. In addition,

because f is capped by 0 and 1, f applied to a row sum doesn’t change by more than 1 if we
change the entire row. In addition, each column sum does not change by more than 1, so f does not
change by more than 1/

√
N for each column sum. So, F (V) does not change by more than

√
N for

adjacent datasets. In addition, if more than 2
√
N row/column sums of V exceed 2

√
N in absolute

value, then F (V) ≥
√
N . It will be quite simple to utilize a Laplace Mechanism to privately reject

any datasets with F (V) exceeding 2ε−1
√
N , which is an ε−1 factor greater than desired. However,

with this weaker bound we can ensure G(V) does not change by more than ε−1
√
N if a single

row/column changes, which can be used to obtain a Õ
(
d1/2

α2 + d1/3

α4/3ε4/3

)
-sample upper bound. This

is already an improvement in many regimes.
To improve upon this, we create a series of logarithmic threshold functions fk for 1 ≤ k ≤

O(logN), which have increasing thresholds. This will allow us to create statistics Fk(V) for each
k, similar to F (V). Roughly, we will show that in order for Fk+1 to change significantly if we

9
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change a single row/column, we require Fk to be large. From here, we can show that the relative
change in Fk+1 is much smaller than the relative change in Fk, unless Fk is sufficiently large that
we could use a Laplace Mechanism to reject such a dataset. We can use these to privately reject any
X with FO(logN)(V)≫ Õ(

√
N), which will allow for a better sample complexity bound for N .

Theorem 5: The proof of Theorem 5 is based on the corresponding result in Canonne et al.
(2020b): while their result is not fully accurate, we show how to simultaneously fix their result
and improve upon it.

We first sketch the ideas behind the computationally inefficient algorithm of Canonne et al.
(2020b). The objective in Canonne et al. (2020b) is to create a map T̂ that sends any dataset
X ∈ (Rd)N to R with two properties. The first property is that for any two adjacent datasets
X,X′, T̂ (X) and T̂ (X′) are “close” in value. The second is that T̂ (X) should almost always be
“small” if X is a sample of N i.i.d. N (0, I) values, and T̂ (X) should almost always be “large” if X
is a sample of N i.i.d. N (µ, I) values, for any µ with ∥µ∥ = α. (“Close”, “small”, and ”large” can
be effectively quantified.) By adding Laplace noise to T̂ (X) and determine if the output exceeds a
certain threshold, one can privately distinguish between µ = 0 and ∥µ∥ = α.

In the case where the data points X(1), . . . , X(N) i.i.d.∼ N (µ, I), we have strong concentration
of the row and column sums of the corresponding matrix T ∈ RN×N , due to the independence
of the data points. (Recall that T is the matrix with Ti,j = ⟨X(i), X(j)⟩.) If we restrict ourselves
exclusively to such datasets where the row and column sums of T are properly bounded (call this
set C), we can successfully obtain that any two adjacent datasets X,X′ have relatively close values
of T (X) := ∥

∑
X(i)∥2 and T (X′) = ∥

∑
X ′(i)∥2. Hence, T̂ (X) = T (X) would actually be a

suitable choice if we could restrict ourselves to C.
Canonne et al. (2020b) combines this observation with a theorem about Lipschitz extensions

(McShane, 1934). The theorem by McShane (1934) states that if there exists a function T : C ⊂ X
where X is equipped with some metric (in our case X = (Rd)N and the metric measures the
number of different data points), and T is D-Lipschitz for some D, then there exists an extension
T̂ : X → R that is also D-Lipschitz. Expressed more simply in our setting, if we can ensure that
|T (X)− T (X′)| ≤ K ·D for X,X′ ∈ C that differ in exactly K data points, then we can extend the
function T to some T̂ which ensures that T̂ does not change by more than K on adjacent datasets.
The smaller we can make D as a function of N , the smaller our sample complexity needs to be.

The main issue in Canonne et al. (2020b) is that they only prove that |T (X) − T (X′)| ≤ D
for adjacent datasets X,X′ ∈ C. While this ostensibly ensures that |T (X) − T (X′)| ≤ K · D for
datasets X,X′ ∈ C that differ in at most K data points, this does not actually hold. For instance, if
we change K of the data points in X to make X′, the intermediate datasets (obtained by changing
the data points one at a time) may not be in C. As a result, we in fact must prove that for all integers
K, |T (X) − T (X′)| ≤ K · D for X,X′ ∈ C that differ in exactly K data points. To do this, we
further restrict the class C ⊂ (Rd)N , by showing a tight concentration of the norm of

∑
i∈S X(i)

for all subsets S ⊂ [N ] of size K simultaneously, assuming each X(i) was drawn i.i.d. from some
N (µ, I), and restricting C to datasets that satisfy these tight concentration bounds. We then prove
that for the restricted set C, we obtain our desired Lipschitz property. Our concentration analysis is
tighter than that of Canonne et al. (2020b), which provides a smaller Lipschitz parameter D, and
therefore we obtain a reduced value of N as well. Hence, we are able to fix their inaccuracy as well
as improve upon their result.
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Theorem 6: Our starting point for the lower bound is a theorem of Acharya et al. (2018b), which
relates a coupling of two distributions U and V overXN with privacy lower bounds. A coupling of U
and V is a joint distribution over (X,X′) ∼ XN×XN where the marginal of X is U and the marginal
of X′ is V . Specifically, they prove that if there exists a coupling over X = (X(1), . . . , X(N)) and
X′ = (X ′(1), . . . , X ′(N)) where the expected number of i ≤ N such that X(i) ̸= X ′(i) is at most
O(1/ε), then it is impossible to (0, ε)-privately distinguish between U and V . This method has been
used to provide privacy lower bounds in the discrete distribution setting Acharya et al. (2018b).

As noted by Canonne et al. (2020b), proving lower bounds for multivariate Gaussians is much
more challenging than for discrete distributions, as the coupled distributions U ,V must be generated
as Gaussians with identity covariance, which will usually need strong independence guarantees in
each coordinate. In contrast, proving similar lower bounds for distributions over a discrete domain
{1, 2, . . . , d} do not require us to prove any independence guarantees.

Hence, to apply this result in our setting, two things are necessary. First, we need to decide the
distributions U and V . Next, we need to establish a suitable coupling. The choice for U is simple:
it will just be the distribution over (Rd)N where each sample is i.i.d. N (0, I). For V , we wish to
find some distribution of mean vectors µ with ∥µ∥ ≥ α, and then sample N points from N (µ, I).
The distribution for the mean vectors we choose will roughly be µ ∼ N (0, α

2

d · I). While this
does not ensure that ∥µ∥ ≥ α, a simple concentration inequality ensures that ∥µ∥ ≥ Ω(α) with
overwhelming probability, which will end up being sufficient.

Next, how do we establish a coupling between U and V? The first trick we use is to rewrite
the distributions U ,V based on the mean vector X̄ = X(1)+···+X(N)

N of the N points in U (or V),
which we will write as a · v, where a := ∥X̄∥ ∈ R≥0 and v := X̄/∥X̄∥ is a unit vector. Given X̄ ,
we consider each vector X(i) = X̄ + y(i) · v + z(i) = (a + y(i)) · v + z(i), where y(i) ∈ R and
z(i) ∈ Rd is orthogonal to v. This means that we decompose X(i) − X̄ into a component in the v
direction and a component in the hyperplane orthogonal to v. (See Figure 1 for an example of this
decomposition.) The advantage of this is that one can show that for both the distribution U and V ,
the distribution of the vector v is uniform across the unit sphere, and the distribution of z(i) are the
same for both U and V .

Hence, we can reduce our coupling problem to a single dimension, by considering the distribu-
tions {a + y(i)}Ni=1 and {b + y(i)}Ni=1, where a = ∥X̄∥ for X ∼ U and b = ∥X̄∥ for X ∼ V. Note
that a, b are also random variables. One can show that a and b converge (in total variation distance)

to roughly N (
√

d
N , 1

2N ) and N (
√

d
N + α2, 1

2N ), respectively. To explain the intuition behind the
Normality, since X̄ is a spherical Gaussian, a2 behaves exactly like a χ2-random variable with d
degrees of freedom, as the mean of the distribution U is the origin. Likewise, b2 behaves like an
off-centered χ2-random variable with d degrees of freedom, as the mean of the distribution V is not
the origin but is somewhat close. Therefore, a behaves like a χ random variable and b behaves like
an off-centered χ random variable, and as d grows, this converges to Normal. (We remark that the
rate of convergence of a, b to Normal will not matter: it will just matter that for sufficiently large
d, the total variation distances between a, b and their respective Normal distributions is less than,
say, 0.01.) In addition, one can show that {y(i)} are distributed as i.i.d. standard Normals minus
their mean, which has distribution N (0, 1

N ). Indeed, one can use this observation to show that if
a, b were approximately Normal with variance 1

N instead of 1
2N , then {a+y(i)}Ni=1 would converge

in total variation distance to the distribution of N i.i.d. samples from N (
√

d
N , 1), and similarly,
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•

•

•

a · v
y (i)· v

z
(i
)

X̄

X(i)

Figure 1: In this figure, we have a series of black points X(1), . . . , X(N) and a red point represent-
ing their mean X̄ . We decompose an individual X(i) as (a+y(i)) ·v+ z(i), such that a ·v
equals X̄ , y(i) · v goes in the same direction as X̄ from the origin, and z(i) is perpendicu-
lar to v. Our reduction ignores the direction of v and the orthogonal component z(i), and
focuses on the quantities a+ y(i).

{b+ y(i)}Ni=1 would converge in total variation distance to the distribution of N i.i.d. samples from

N (
√

d
N + 2α2, 1).

To fix the issue that a, b have the wrong variance, we use the fact that the total variation dis-
tance between N (0, 1

N ) and N (0, 1
2N ) is less than 0.2. We use this to show that if could privately

distinguish between {a+ y(i)}Ni=1 and {b+ y(i)}Ni=1 with 0.9 probability, then we could distinguish

between N i.i.d. samples from N (
√

d
N , 1) and from N (

√
d
N + 2α2, 1) with a weaker 0.7 proba-

bility. Now that we have reduced it to univariate and independent samples, we are in a position to
create a coupling, which will indeed get us the correct lower bound.

2.1. Generalizations

Theorem 8: In the case where the samples come fromN (µ,Σ) where Σ is unknown, we run into
the problem that T := ∥X(1) + · · · + X(N)∥2 is no longer concentrated around Nd (if µ = 0) or
Nd+ α2N2 (if ∥µ∥ = α), since Σ is not necessarily the identity matrix. Instead, we will show that
T is concentrated around N · J (if µ = 0) or N · J + α2N2 (if ∥µ∥ = α), where J = Tr(Σ) is
unknown. Because J is unknown, we cannot attempt to directly privately estimate T and accept or
reject the hypothesis based on whether T exceeds a threshold.

Instead, we will use the fact that given samples from N (µ,Σ), we can generate samples from

N (0,Σ). This is because if X,Y
i.i.d.∼ N (µ,Σ) for any µ ∈ Rd, then X−Y√

2
∼ N (0,Σ). Therefore,

we can use this to privately estimate J and privately estimate T , and then accept or reject based on
whether our estimate for T significantly exceeds our estimate for N · J . Indeed, we can estimate
both T and J similarly with the same sample complexity (up to constant factors) as in Theorem

12
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5 and Theorem 7, using the fact that Σ is spectrally bounded by I . Since estimating T and J are
sufficient for the testing problem, we can therefore generalize both Theorems 5 and 7.

Theorem 9: This case will be almost identical to the Gaussian case. For simplicity, we consider
testing whether a product distribution P(µ) has mean µ = 0 or mean µ with ∥µ∥2 = α. (Indeed,
the ℓ2 norm of µ is asymptotically equal to the total variation distance between P(µ) and P(0).)
For the upper bound, if we let Ti,j := ⟨X(i), X(j)⟩, we are able to obtain the same concentration
bounds as in the Gaussian case for each entry Ti,j and the sum of each row/column of the matrix T,
which is required in proving Theorem 7. In addition, we are able to obtain the same concentration
bounds as in the Gaussian case for the sum

∑
i∈S X(i) for all subsets S ⊂ [N ]. From here, the rest

of the upper bounds proceed in the same way as in the Gaussian case.
For the lower bound, there is a known reduction (Canonne et al., 2020b) from private identity

testing of Gaussians to private uniformity testing of Boolean products, i.e., any upper bound for
uniformity testing of Boolean products also holds for Gaussians. Therefore, our lower bound for
identity testing of Gaussians implies a lower bound for uniformity testing of Boolean products.

Theorem 10: While in many scenarios tolerant identity testing is more difficult than standard
identity testing, it will not be so in our case. For instance, suppose we wished to distinguish between
i.i.d. samples from N (µ, I), where either ∥µ∥ = α

2 or ∥µ∥ = α. In the non-private setting, we can
use the fact that the statistic T has expectation N ·d+ α2

4 ·N
2 in the former setting, and expectation

N ·d+α2 ·N2 in the latter setting. In other words, the difference between the mean of the respective
statistics is still Ω(α2 · N2). Because of this, we can still do non-private hypothesis testing using
the same number of samples. The private setting will work similarly, as our goal has been to output
a private version of the statistic T (or some scaled version of it like V̄ ). Hence, we can apply the
same algorithms as before, but change the threshold value accordingly, and still require the same
number of samples up to an asymptotic factor.
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Appendix A. Preliminaries

A.1. Notation

We first note several pieces of notation that we use in our proofs.

• We use X = (X(1), . . . , X(N)) to represent a dataset of N points in Rd. We use X̄ to denote
either the sum or average of the data points in X, depending on context.

• For two datasets X,X′, we use ρ(X,X′) to represent the number of data points X(i) ̸= X ′(i).

• We useN (µ,Σ) to represent the d-dimensional Multivariate Gaussian distribution with mean
vector µ and covariance matrix Σ. We use I to represent the d× d identity matrix.

• We use P(µ) to represent the Boolean product distribution over {−1, 1}d with expectation µ.

• We use ∥·∥ to represent the Euclidean (ℓ2) norm of a vector, and ∥·∥2 to represent the spectral
(operator) norm of a symmetric matrix.

• We use a = ±b to mean −b ≤ a ≤ b, and a = b± c to mean b− c ≤ a ≤ b+ c.

• We use a lazy Õ notation where Õ(f) = f · (logN)O(1) for general f , even if f is sub-
polynomial in N . Note that N will always be at least

√
d, α−1, and ε−1, so any logarithmic

factors in d, α−1, and ε−1 can be incorporated into the Õ notation.

• We use dTV(D,D′) to represent the total variation distance between two distributions D and
D′ over the same domain.

Finally, we will always assume that our privacy parameter ε and error parameter α are at most a
small constant (such as 1/3).

A.2. Preliminary Propositions

We define a subgaussian random variable and recall some important properties of it.

Definition 11 A 1-dimensional random variable X with mean µ is subgaussian if there exists a
constant C such that P(|X − µ| ≥ t) ≤ 2e−t2/C2

for all t ≥ 0. We define the subgaussian norm of
such a variable X to be the infimum over all C such that P(|X − µ| ≥ t) ≤ 2e−t2/C2

for all t ≥ 0.

We note the following standard propositions about subgaussian random variables.

Proposition 12 The univariate Normal distribution N (µ, σ2) has subgaussian norm σ.
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Proposition 13 (Boucheron et al., 2013) If X1, . . . , Xn are independent variables with each Xi

having subgaussian norm σi, then the random variable X1 + · · · + Xn has subgaussian norm at

most O(
√∑n

i=1 σ
2
i ).

Next, we note the following proposition linking the total variation distance between two multi-
variate Gaussians with covariance Σ and their Mahalanobis distance.

Proposition 14 (Folklore) For two distributionsN (µ,Σ) andN (ν,Σ), recall that the Mahalanobis
distance between these two distributions is

√
(µ− ν)TΣ−1(µ− ν). Then, dTV(N (µ,Σ),N (ν,Σ)) =

Θ(min(
√
(µ− ν)TΣ−1(µ− ν), 1)), i.e., the total variation distance and the Mahalanobis distance

are asymptotically equivalent assuming the Mahalanobis distance does not exceed Θ(1).

We also have a similar proposition linking the total variation distance between two product
distributions with their means.

Proposition 15 (Canonne et al., 2020b, Lemma 2.8) LetP(µ),P(µ∗) be product distributions over
{−1, 1}d, where µ, µ∗ ∈ [−1, 1]d. Also, suppose that µ∗ ∈ [−1/2, 1/2]d. Then, dTV(P(µ),P(µ∗)) =
Θ(min(∥µ− µ∗∥, 1)).

Proposition 15 implies the following are equivalent: distinguishing between µ∗ = µ and ∥µ∗ −
µ∥ ≥ α, and distinguishing between P(µ) = P(µ∗) and dTV(P(µ),P(µ∗)) ≥ Θ(α), assuming
that µ∗ ∈ [−1/2, 1/2]d. Hence, in Theorem 9, it is sufficient to distinguish between P∗ := P(µ∗)
and all distributions P(µ) with ∥µ− µ∗∥ ≥ α. Likewise, in Theorem 10, if C is sufficiently large,
it is sufficient to distinguish between P(µ) with ∥µ− µ∗∥ ≤ α

2 and P(µ) with ∥µ− µ∗∥ ≥ α.

Next, we recall a basic proposition about sufficient statistics of Normal distributions.

Definition 16 Given a distribution D(θ) over Rd parameterized by some θ in a domain Θ, and

given samples X(1), . . . , X(N) i.i.d.∼ D(θ), we say that a function T = T (X(1), . . . , X(N)) is a
sufficient statistic for θ if the distribution of X(1), . . . , X(N) conditioned on T is the same as the
distribution of X(1), . . . , X(N) conditioned on T and θ.

Proposition 17 Let Σ be a fixed covariance matrix, and let N (µ,Σ) be parameterized only by
µ. Then, given samples X(1), . . . , X(N), the empirical mean X̄ = X(1)+···+X(N)

N is a sufficient
statistic for µ. In other words, if given N i.i.d. samples from N (µ,Σ), the conditional distribution
of X(1), . . . , X(N) conditioned on X(1)+···+X(N)

N is independent of µ.

Corollary 18 Let X(1), . . . , X(N) be distributed i.i.d. as N (µ,Σ), and let X̄ = X(1)+···+X(N)

N .

Then, for Z(1), . . . , Z(N) i.i.d.∼ N (0,Σ) and Z̄ = Z(1)+···+Z(N)

N , we have that X(1), . . . , X(N) has
the same distribution as X̄ + Z(1) − Z̄, . . . , X̄ + Z(N) − Z̄.

Proof It suffices to show they have the same distribution if we condition on X̄ and Z̄.
By Proposition 17, if we know X̄ , it does not matter whether X(1), . . . , X(N) were origi-

nally drawn from N (µ,Σ) or from N (µ′,Σ) for some µ′ ̸= µ. So, we can instead pretend that
X(1), . . . , X(N) were drawn from N (v,Σ), for v = X̄ − Z̄. In this case, by an additive shift of

v, the conditional distribution of X(1), . . . , X(N) i.i.d.∼ N (v,Σ) conditioned on X̄ is the same as
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the conditional distribution of Z(1) + v, . . . , Z(N) + v
i.i.d.∼ N (0,Σ) conditioned on Z̄. Hence, by

writing v = X̄ − Z̄, we are done.

Finally, we note the following concentration bound, due to Laurent and Massart (2000).

Theorem 19 (Laurent and Massart, 2000, Lemma 1) Let a1, . . . , an be nonnegative reals, all

bounded by some |a|∞ > 0. Let |a|2 =
√

a21 + · · ·+ a2k. Let Z1, . . . , Zn
i.i.d∼ N (0, 1), and let

Z =
∑n

i=1 aiZ
2
i . Then, for any positive real t, we have that

P

(∣∣∣∣∣Z −
n∑

i=1

ai

∣∣∣∣∣ ≥ 2|a|2
√
t+ 2|a|∞t

)
≤ 2e−t.

A.3. Reductions

In this subsection, we note several reductions between problems that will make things easier to
prove.

First, we note the asymptotic equivalence between (ε, δ)-DP and (ε+δ, 0)-DP in the hypothesis
testing case. Roughly, this follows because we assume the probability of acceptance/rejection has
two-sided error. For instance, if we additively change the probability of acceptance from 1/3 to
1/3 + ε, this is also a multiplicative 1 + O(ε) change in the probability of acceptange, and a
multiplicative 1−O(ε) change in the probability of rejection. Formally, we have the following:

Proposition 20 (Acharya et al., 2018b, Lemma 5) There is an (ε, δ)-DP algorithm for a testing
problem if and only if there is an (O(ε+ δ), 0)-DP algorithm for the same testing problem.

Next, we recall Propositions 14 and 15. From here, we note that it is asymptotically equivalent
to distinguish between the the distribution being far from the null hypothesis distribution in total
variation distance and the mean being far from the null hypothesis mean in Mahalanobis distance
(in the known-covariance Gaussian case) or ℓ2 distance (in the Boolean product case). As we saw
in Subsection A.2, in the Boolean product case the equivalence also extends to tolerant distribution
testing.

Next, we note that by shifting the distribution, we may always assume WLOG (in the multi-
variate Gaussian cases) that µ∗ = 0. In addition, if the covariance is known, we may also assume
WLOG that Σ = I , by multiplying all data points by the matrix Σ−1/2.

We also note that in the Boolean product case, we may assume that µ∗ = 0. Indeed, we have
the following lemma, due to Canonne et al. (2020b):

Lemma 21 (Canonne et al., 2020b, Lemma 5.1, rephrased) Suppose thatP(µ∗) is a known Boolean
product distribution, and we are given a sample X ∼ P(µ) where µ is unknown. Then, there exists
a randomized transformation Y = fµ∗(X) such that Y ∼ P(µ−µ∗

2 ).

Thus, up to changing α by a factor of 2, we may assume WLOG that µ∗ = 0 for identity testing
of Boolean products, since µ = µ∗ is equivalent to µ−µ∗

2 = 0 and ∥µ − µ∗∥ ≥ α is equivalent to∥∥∥µ−µ∗

2

∥∥∥ = α
2 . Note that this reduction also holds for the tolerant testing case as well.

Next, we note a proposition showing that testing known-covariance Gaussians is easier than
Testing Product distributions. Because of this, the only lower bounds we need to show is for testing
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known-covariance Gaussians. Of course, testing of unknown-covariance Gaussians and tolerant
testing of Gaussians are harder problems, so the same lower bounds must hold, and the proposition
we are about to state also implies that the same lower bounds hold for testing (and tolerant testing)
of product distributions as well.

Proposition 22 (Canonne et al., 2020b, Theorem 3.1, rephrased) There exists a function F : Rd →
{−1, 1}d and an absolute constant c > 0 such that the following holds. Suppose that X ∼ N (µ, I),
where µ is unknown (so, F does not depend on µ). Then:

• If µ = 0, the distribution of F (X) is uniform on {−1, 1}d.

• If µ ̸= 0, the distribution of F (X) is a product distribuiton P(µ′) where dTV(P(0),P(µ′)) ≥
c ·min(1, ∥µ∥).

Hence, we have a reduction from testing the mean of a Gaussian with identity covariance to testing
uniformity of a product distribution, which implies that any lower bound for testing the mean of
a identity covariance Gaussian implies the same lower bound for testing uniformity of a product
distribution.

Finally, we note that in all of our cases, our alternative hypothesis may be phrased as ∥µ∥ ≥ α
(since we may assume µ∗ = 0 and since we have provided an equivalence between total variation
distance being large and ∥µ∥ being large in the Boolean product case). In the following proposition,
we show that it suffices to consider the weaker alternative hypothesis of α ≤ ∥µ∥ ≤ 2α.

Proposition 23 Let 0 < α ≤ 1, and fix some positive integer N , where N ≥ ε−1. Suppose A
is an algorithm that can (ε, 0)-privately distinguish between H0 : N samples drawn i.i.d. from
N (0, I), and H1 : N samples drawn i.i.d. from N (µ, I) where α ≤ ∥µ∥ ≤ 2α. Then, using N ′ =
O(N log d

α log log d
α) samples, we can (O(ε), 0)-privately distinguish between H0 : N samples

drawn i.i.d. from N (0, I), andH1 : N samples drawn i.i.d. from N (µ, I) where ∥µ∥ ≥ α.

Proof First, we can learn the mean µ with 1− o(1) probability up to error O(
√
d) and with (0, ε)-

privacy, by picking a random point among the sampled N ′ ≥ N ≥ 1
ε points and outputting that as

our initial guess µ̃. If the estimate µ̃ is not O(
√
d) in magnitude, we can instantly reject the null

hypothesis and output 1.
Next, consider partitioning the points X(1), . . . , X(N ′) into groups that each contain N points,

and the groups are in turn partitioned into “supergroups” that each contain O(log log d
α). There are

a total of O(log d
α) supergroups. Now, for each point X(j) in the tth supergroup, we replace it with

X ′(j) := (X(j) +
√
22t−2 − 1 · Zj)/2

t−1, where Zj ∼ N (0, I) is independent for each point X(j).
Note that if X(j) ∼ N (µ, I), then X ′(j) ∼ N (µ/2t−1, I). Now, for each group, we runA on the N
points X ′(j) that are now in it. The output for each group will either be 0 or 1. Next, for each t, we
compute the majority output for all groups in the tth supergroup to obtain a bit bt, which is either 0
or 1. Our final algorithm returns 0 if and only if bt = 0 for all 1 ≤ t ≤ O(log d

α).
First, suppose that the samples X(j) are drawn i.i.d. from N (0, I). Then, the samples X ′(j)

are also i.i.d. from N (0, I). This means that each time we run A on some group, we output 0
with probability at least 2/3, which means that the majority output in any supergroup will be 0 with
probability at least 1 − c

log d/α for some small constant c. So, each bt equals 0 with probability at
least 1 − c

log d/α , which means that all of the bt’s equal 0 with probability at least 3/4. In addition,

21



NARAYANAN

our initial guess µ̃ has norm at most O(
√
d) with 1 − o(1) probability, so we output 0 as our final

answer with probability at least 3/4− o(1) ≥ 2/3.
Next, suppose that the samples are drawn i.i.d. from N (µ, I), where O(

√
d) ≥ ∥µ∥ ≥ α. Let

t ≥ 1 be the unique integer such that 2t−1 · α ≤ ∥µ∥ < 2t · α. Note that t ≤ O(log d
α). Then,

every X ′(j) in the th supergroup is i.i.d. N (µ/2t−1, I), where α ≤ ∥µ/2t−1∥ ≤ 2α. So, in each
group in the tth supergroup,A outputs 1 with probability at least 2/3, which means that bt = 1 with
probability at least 1 − c

log d/α ≥ 2/3. We may have rejected the null hypothesis immediately, but
that only helps us.

Finally, if the samples are drawn i.i.d. from N (µ, I), where µ ≥ O(
√
d), then we would have

rejected the null hypothesis immediately with probability at least 1 − o(1). Hence, the overall
algorithm is accurate.

To verify that the algorithm is private, note that replacing each X(j) with X ′(j) only depends
on the value X(j) and the position j. In addition, we are performing (ε, 0)-DP algorithms on each
group, but the groups are distinct. So, any algorithm that only depends on the output of A on each
group is still (ε, 0)-DP. In addition, the first part of the algorithm of determining µ̃ is (0, ε)-DP,
so the overall algorithm is (ε, ε)-DP by the weak composition theorem. Thus, we can modify the
algorithm to be (O(ε), 0)-DP, by Proposition 20.

Remark 24 We note that Proposition 23 extends easily to the cases of unknown but bounded co-
variance Gaussians, product distributions, and tolerant identity testing. Indeed, for the case of
bounded covariance Gaussians, we note that we can replace each X(j) in the tth supergroup with
X ′(j) := (X(j) +

√
22t−2 − 1 · Zj)/2

t−1 where Zj ∼ N (0, I), and then each X ′(j) in the tth su-
pergroup is independent and has distributionN (µ/2t, (1− 1/22t−2) · I + (1/22t−2) ·Σ), and note
that if ∥Σ∥2 ≤ 1, then ∥(1 − 1/22t−2) · I + (1/22t−2) · Σ∥2 ≤ 1 as well. For the case of product
distributions, if each sample X(j) were drawn from P(µ), we can replace it with X ′(j) where each
coordinate of X ′(j)

i is independently equal to X
(j)
i with probability 1

2 +
1
2t and is −X(j)

i with prob-
ability 1

2 −
1
2t . Then, note that the distribution of X ′(j) is precisely P(µ/2t−1). Finally, in the case

of tolerant testing, note that if ∥µ∥ ≤ α/2, then ∥µ/2t−1∥ ≤ α/2t ≤ α/2 for all t ≥ 1, so the same
reduction in Proposition 23 holds.

Therefore, in all of our theorems, it suffices to consider the null hypothesis of µ = 0 and the
alternative hypothesis of α ≤ ∥µ∥ ≤ 2α. (Recall that we can assume WLOG that µ∗ = 0 always,
and that Σ = I in the known-covariance Gaussian case.)

Appendix B. Concentration Bounds

The main focus of this section is to state and prove various concentration bounds that are crucial
in establishing accuracy of our differentially private algorithms. These bounds establish important
properties of a matrix T where Ti,j = ⟨X(i), X(j)⟩, and each X(i) is drawn i.i.d. either from some
Gaussian N (µ, I) or some Boolean Product distribution P(µ). We have 4 types of bounds.

1. Lemmas 25 and 26 provide bounds on the sum over all entries in T .

2. Lemmas 27 and 28 provide bounds on individual terms of the matrix Ti,j .

3. Proposition 29 and Lemma 30 provide bounds on the sum of a row or column of T .
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4. Proposition 31 to Lemma 36 provide bounds on the sum of submatrices of T .

We will combine these bounds together in Theorem 37.
We will also prove related results (Propositions 38 and 39, and Theorem 40) for when each

sample X(i) is drawn i.i.d. from some Gaussian N (µ,Σ), where ∥Σ∥2 ≤ 1 is unknown. This will
be important for generalizing our upper bound results in Theorem 8.

Finally, we will also prove two results relating to univariate Normal and chi variables (Proposi-
tions 41 and 42), which will be important in establishing our sample complexity lower bound.

Lemma 25 (Canonne et al., 2020b) Let X(1), . . . , X(N) i.i.d.∼ N (µ, I), and let X̄ =
∑N

i=1X
(i).

Then,

• E
[
∥X̄∥2

]
= Nd+N2 · ∥µ∥2.

• V ar
[
∥X̄∥2

]
= O(N2d+N3 · ∥µ∥2).

Lemma 26 (Canonne et al., 2020b) Let X(1), . . . , X(N) i.i.d.∼ P(µ), where ∥µ∥ ≤ 1, and let X̄ =∑N
i=1X

(i). Then,

• E
[
∥X̄∥2

]
= Nd+Θ(N2 · ∥µ∥2).

• V ar
[
∥X̄∥2

]
= O(N2d+N3 · ∥µ∥2).

Lemma 27 Let X,Y
i.i.d.∼ N (µ, I), where ∥µ∥ ≤ 1. Then, with probability at least 1 − 1

N3 ,
∥X∥2 = d±O(

√
d · logN). Likewise, with probability at least 1− 1

N3 , ⟨X,Y ⟩ = ±O(
√
d · logN).

Proof By rotational symmetry of Gaussians, we may assume WLOG that µ = (β, 0, 0, . . . , 0),

where β = ∥µ∥. Then, ∥X∥2 = (β+Z1)
2+Z2

2 + · · ·+Z2
d , where each Zi

i.i.d.∼ N (0, 1). First, note
that |Z1| ≤ O(

√
logN) with at least 1 − 1

2N3 probability, in which case (β + Z1)
2 = O(logN).

Next, Z2
2 + · · ·+Z2

d ∼ χ2
d−1. By Theorem 19, we have that P(|χ2

k−k| ≥ 2
√
kt+2t) ≤ 2e−t for all

t ≥ 0, so by setting k = d−1 and t = O(logN), we have that P(|χ2
d−1−(d−1)| ≥ O(

√
d logN+

logN)) ≤ 1
4N3 . Therefore, we have that P

(∣∣∥X∥2 − d
∣∣ ≥ O(

√
d logN + logN)

)
≤ 1− 1

N3 .

Next, ⟨X,Y ⟩ = (β +Z1)(β +Z ′
1) +Z2Z

′
2 + · · ·+ZdZ

′
d, where each Zi, Z

′
i
i.i.d.∼ N (0, 1). We

have |Z1|, |Z ′
1| ≤ O(

√
logN) with at least 1− 1

2N3 probability, in which case (β+Z1)(β+Z ′
1) =

O(logN). Next,

Z2Z
′
2 + · · ·+ ZdZ

′
d =

1

4

[
(Z2 + Z ′

2)
2 + · · ·+ (Zd + Z ′

d)
2 − (Z2 − Z ′

2)
2 + · · ·+ (Zd − Z ′

d)
2
]
,

and using the fact that Zi + Z ′
i, Zi − Z ′

i are i.i.d. N (0, 2) variables, this equals 1
2 [A − B] where

A,B
i.i.d∼ χ2

d−1. As we have already seen, P(|A − (d − 1)| ≥ O(
√
d logN + logN)) ≤ 1

4N3 and
P(|B− (d−1)| ≥ O(

√
d logN +logN)) ≤ 1

4N3 , so P(|A−B| ≥ O(
√
d logN +logN)) ≤ 1

2N3 .
Therefore, writing ⟨X,Y ⟩ = 1

2(A−B)+(β+Z1)(β+Z ′
1), we have that P(⟨X,Y ⟩ ≥ O(

√
d logN+

logN)) ≤ 1
N3 .

23



NARAYANAN

Lemma 28 Let µ ∈ [−1, 1]d be such that ∥µ∥ ≤ 1. Let X,Y
i.i.d.∼ P(µ). Then, ∥X∥2 = d with

probability 1, and with probability at least 1− 1
N3 , ⟨X,Y ⟩ = ±O(

√
d · logN).

Proof Since X ∈ {−1, 1}d, we always have ∥X∥2 = 1. So, the first part of the lemma is immediate.
For the second part of the lemma, we have ⟨X,Y ⟩ =

∑d
i=1XiYi. For each i ∈ [d], XiYi has

mean E[Xi] · E[Yi] = µ2
i . In addition, XiYi is bounded, so it has variance O(1). By Hoeffding’s

inequality, with probability at least 1 − 1
N3 ,

∑d
i=1XiYi is not more than O(

√
d logN) away from

its expectation, which is
∑d

i=1 µ
2
i = ∥µ∥2 = O(1). This proves the second part of the lemma.

Proposition 29 Fix a vector v ∈ Rd of magnitude 1 and a vector µ ∈ [−1, 1]d, and let K ≥ 1
be a fixed integer. Let X(1), . . . , X(K) be distributed either as i.i.d. d-dimensional Gaussians
N (µ, I) or as i.i.d. product distributions P(µ), and define X̄ := X(1) + · · · + X(K). Then,
Y := ⟨X̄ −K · µ, v⟩ is a subgaussian random variable with subgaussian norm at most O(

√
K),

meaning that P[|Y | ≥ t] ≤ 2e−Ω(t2/K) for all t ≥ 0.

Proof Suppose X̄ is distributed as the sum of K i.i.d. d-dimensional Gaussians N (µ, I). Then,
X̄ ∼ N (K · µ,K · I). Then, X̄ −K · µ = N (0,K · I), so ⟨X̄ −K · µ, v⟩ = N (0,K). Hence it
has subgaussian norm at most

√
K.

Suppose X̄ is distributed as the sum of K i.i.d. d-dimensional product distributions over
{−1, 1}d with mean µ. Then, X̄i −K · µi is the sum of K i.i.d. mean 0 variables bounded in mag-
nitude by 2. Hence, each of these bounded variables has subgaussian norm O(1), so X̄i−K ·µi has
subgaussian norm O(

√
K) by Proposition 13. Now, note that ⟨X̄−K ·µ, v⟩ =

∑d
i=1 vi(X̄i−K ·µi),

and the random variables X̄i −K · µi have mean 0 and are independent. Therefore, by Proposition
13,

∑d
i=1 vi(X̄i − K · µi) has squared subgaussian norm at most O(K) ·

∑d
i=1 v

2
i = O(K), so

⟨X̄ −K · µ, v⟩ =
∑d

i=1 vi(X̄i −K · µi) has subgaussian norm at most O(
√
K).

Lemma 30 Let X(1), . . . , X(N) be distributed either as i.i.d. d-dimensional Gaussians N (µ, I)
or as i.i.d. product distributions P(µ), where ∥µ∥ ≤ 1. Then, ⟨X(1), X(1) + · · · + X(N)⟩ =
d± Õ(

√
Nd+ ∥µ∥ ·N) with probability at least 1− 3

N3 .

Proof First, note that by Lemmas 27 and 28, we have that ∥X(1)∥2 = d ± O(
√
d · logN) with

probability at least 1− 1
N3 . Next, since X(1) is independent of X(2), . . . , X(N), by setting K = N−

1, v = X(1)/∥X(1)∥, and t = O(
√
(N − 1) logN) in Proposition 29, we have that with probability

at least 1− 1
N3 ,

∣∣⟨X(1), X(2) + · · ·+X(N) − (N − 1)µ⟩
∣∣ ≤ O(

√
N logN) · ∥X(1)∥. In addition,

we know that ∥X(1)∥ ≤ O

(√
d+
√
d logN

)
= O(

√
d logN) with probability at least 1 − 1

N3 .

Finally, we note that in the Gaussian setting, ⟨X(1), µ⟩ is distributed as N (0, ∥µ∥2), and in the
product distribution testing, ⟨X(1), µ⟩ is distributed as

∑d
i=1X

(1)
i µi, which has subgaussian norm

O

(√∑d
i=1 µ

2
i

)
= O(∥µ∥). Thus, with probability at least 1− 1

N3 , ⟨X(1), µ⟩ = O(
√
logN ·∥µ∥),

for both the Gaussian and product settings.
To summarize, we have that

⟨X(1), X(1)+· · ·+X(N)⟩ = ∥X(1)∥2+⟨X(1), X(2)+· · ·+X(N)−(N−1)µ⟩+(N−1)·⟨X(1), µ⟩,

24



PRIVATE HIGH-DIMENSIONAL HYPOTHESIS TESTING

which with probability at least 1− 3
N3 is

d±O
(√

d logN +
√

N logN ·
√

d logN +N
√
logN · ∥µ∥

)
= d± Õ

(√
Nd+ ∥µ∥ ·N

)
.

Proposition 31 Let Z ∼ N (0, 1) be a standard univariate Gaussian. Then, for any − 1
10 ≤ γ ≤

1
10 , E[eγ·Z2

] ≤ 1 + γ +O(γ2).

Proof By integrating the PDF of the standard normal, we have that

E
[
eγ·Z

2
]
=

∫ ∞

−∞
eγ·x

2 · 1√
2π

e−x2/2dx

=

∫ ∞

−∞

1√
2π

e−(1−2γ)x2/2dx

=
1√

1− 2γ
= 1 + γ +O(γ2)

for all γ ∈ [−1/10, 1/10].

Proposition 32 Let K ≥ 1 be an integer, and Z ′ = 1√
K

∑K
i=1 Z

′
i, where each Z ′

i is an i.i.d. random
variable with support in [−1, 1]. Finally, let Z = Z ′ − E[Z ′], and let η = V ar(Z) = V ar(Z ′).
Then, for any − 1

10 ≤ γ ≤ 1
10 , E[eγ·Z2

] ≤ 1 + η · γ +O(γ2).

Proof First, by Hoeffding’s inequality, we have that for any t ≥ 0, P(|Z| ≥ t) ≤ 2e−t2/2. There-
fore,

E
[
e1/3·Z

2
]
=

∫ ∞

0
P
(
e1/3·Z

2 ≥ t
)
dt

=

∫ ∞

0
P
(
|Z| ≥

√
3 ln t

)
dt

=

∫ ∞

0
min

(
1, 2e−3 ln t/2

)
dt

≤ 1 +

∫ ∞

1

2

t3/2
dt = O(1).

Now, for all x ∈ R, note that ex ≤ 1 + x + x2e|x|, which is immediate by the Taylor series
expansion of x. Hence, for any − 1

10 ≤ γ ≤ 1
10 , eγZ

2 ≤ 1 + γZ2 + γ2Z4e|γ|Z
2
. Further, we can

write x ≤ ex for all x, which means Z2/10 ≤ eZ
2/10, so Z2 ≤ 10eZ

2/10. Therefore,

eγZ
2 ≤ 1 + γZ2 + γ2Z4e|γ|Z

2 ≤ 1 + γZ2 + 102γ2e(|γ|+1/5)Z2
.

Now, using the fact that E[Z2] = Var(Z) = η, we have that

E
[
eγ·Z

2
]
≤ E

[
1 + γZ2 + 102γ2e(|γ|+1/5)Z2

]
= 1 + η · γ +O(γ2),

since |γ|+ 1
5 ≤

1
3 .
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Proposition 33 Let X(1), . . . , X(K) ∼ N (0, 1) be i.i.d. d-dimensional Gaussians. Then, for any
sufficiently large C, ∥X(1) + · · · +X(K)∥2 = Kd ± C(K

√
Kd +K2) with failure probability at

most e−(C/20)·K .

Proof Let X̂ = X(1) + · · · + X(K). Note that each coordinate X̂i has distribution N (0,K).
Therefore, for any γ ∈ [−0.1, 0.1], E[e(γ/K)·X̂2

i ] ≤ 1 + γ + O(γ2) = eγ+O(γ2). Therefore, since
each coordinate of X̂ is independent, by Proposition 31,

E
[
e(γ/K)·∥X̂∥2

]
=

d∏
i=1

E[e(γ/K)·X̂2
i ] ≤ edγ+O(d·γ2). (3)

If we set 0 < γ < 0.1, this means that for any C ≥ 0,

P(∥X̂∥2 ≥ Kd+ C(K
√
Kd+K2)) = P

(
e(γ/K)·∥X̂∥2 ≥ e(γ/K)·(Kd+CK

√
Kd+CK2)

)
≤ edγ+O(dγ2)−(γ/K)·(Kd+CK

√
Kd+CK2)

≤ e−C·|γ|
√
Kd−C·|γ|·K+O(dγ2)

Likewise, if we set −0.1 < γ < 0, this means that for any C ≥ 0,

P(∥X̂∥2 ≤ Kd− C(K
√
Kd+K2)) = P

(
e(γ/K)·∥X̂∥2 ≥ e(γ/K)·(Kd−CK

√
Kd−CK2)

)
≤ edγ+O(dγ2)−(γ/K)·(Kd−CK

√
Kd−CK2)

≤ e−C·|γ|
√
Kd−C·|γ|·K+O(dγ2).

In the case that K ≤ d/100, we set γ = ±
√
K/d to obtain that e−C·|γ|

√
Kd−C·|γ|·K+O(dγ2) ≤

e−C·K+O(K) ≤ e−(C/2)·K , assuming C is sufficiently large. In the case that K ≥ d/100, we set
γ = ± 1

10 to obtain that e−C·|γ|
√
Kd−C·|γ|·K+O(dγ2) ≤ e−C/10·K+O(d/100) ≤ e−C/20·K , assuming C

is sufficiently large. Hence, we have that

P
(
∥X̂∥2 = Kd± C(K

√
Kd+K2)

)
≥ 1− 2e−C/20·K .

Proposition 34 Let X(1), . . . , X(K) ∼ N (0, 1) be i.i.d. from P(µ), where µ ∈ [−1, 1]d. Then, for
any sufficiently large C, ∥X(1) + · · ·+X(K) −K · µ∥2 = (d− ∥µ∥2)K ±C(K

√
Kd+K2) with

failure probability at most e−(C/20)·K .

Proof The proof is almost identical to that of Proposition 33. Now, note that X(k)
i for each k ∈ [K]

is i.i.d., bounded in magnitude by 1, and has mean µi. Therefore, the ith coordinate of X̂ :=
X(1) + · · · + X(K) − K · µ has a distribution

√
K · Z, where Z is captured by the distribution

in Proposition 32, and V ar(Z) = 1 − µ2
i . Therefore, for any γ ∈ [−0.1, 0.1], E[e(γ/K)·X̂2

i ] ≤
1 + (1− µ2

i )γ +O(γ2) = e(1−µ2
i )γ+O(γ2). Therefore, since each coordinate of X̂ is independent,

E
[
e(γ/K)·∥X̂∥2

]
=

d∏
i=1

E[e(γ/K)·X̂2
i ] ≤

d∏
i=1

e(1−µi)
2γ+O(γ2) = e(d−∥µ∥2)γ+O(d·γ2). (4)
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The remainder of the proof is identical, except with replacing Kd+C(K
√
Kd+K2) with K(d−

∥µ∥2)+C(K
√
Kd+K2) and Kd−C(K

√
Kd+K2) with K(d−∥µ∥2)−C(K

√
Kd+K2).

Lemma 35 Let X(1), . . . , X(K) be distributed i.i.d. from N (µ, I), where ∥µ∥ ≤ 1. Then, with
probability at least 1−O(N−2K), we have that ∥X(1)+ · · ·+X(K)∥2 = Kd± Õ(K

√
Kd+K2).

Proof By Proposition 33, if we set C as a sufficiently large multiple of logN , then with probability
at least 1−N−2K , ∥X(1) + · · ·+X(K)−Kµ∥2 = Kd±O(logN) · (K

√
Kd+K2). In addition,

since X(1) + · · · + X(K) − Kµ ∼ N (0,K), we have that for any fixed vector µ, ⟨X(1) + · · · +
X(K) − Kµ, µ⟩ ∼ N (0,K · ∥µ∥2), which with probability at least 1 − 2N−2K does not exceed
O(
√
K · ∥µ∥2 ·

√
K logN) = O(K

√
logN) in absolute value.

Therefore, with probability at least 1−O(N−2K), we have

∥X(1) + · · ·+X(K)∥2 = ∥X(1) + · · ·+X(K) −Kµ∥2 + 2K⟨X(1) + · · ·+X(K) −Kµ, µ⟩+K2∥µ∥2

= Kd± Õ(K
√
Kd+K2)± 2K · Õ(K)±K2

= Kd± Õ(K
√
Kd+K2).

Lemma 36 Let X(1), . . . , X(K) be distributed i.i.d. from P(µ), where ∥µ∥ ≤ 1. Then, with
probability at least 1−O(N−2K), we have that ∥X(1)+ · · ·+X(K)∥2 = Kd± Õ(K

√
Kd+K2).

Proof By Proposition 34, if we set C as a sufficiently large multiple of logN , then with probability
at least 1−N−2K , ∥X(1) + · · ·+X(K) −Kµ∥2 = K(d− ∥µ∥2)± O(logN) · (K

√
Kd+K2).

However, note that ∥µ∥2 ≤ 1, so K(d− ∥µ∥2) = Kd−O(K). In addition, for any fixed vector µ,
by Proposition 29, ⟨X(1) + · · · + X(K) − Kµ, µ|, with probability at least 1 − 2N−2K , does not
exceed O(∥µ∥ ·

√
K ·
√
K logN) = O(K

√
logN).

Therefore, with probability at least 1−O(N−2K), we have

∥X(1) + · · ·+X(K)∥2 = ∥X(1) + · · ·+X(K) −Kµ∥2 + 2K⟨X(1) + · · ·+X(K) −Kµ, µ⟩+K2∥µ∥2

= Kd−O(K)± Õ(K
√
Kd+K2)± 2K · Õ(K)±K2

= Kd± Õ(K
√
Kd+K2).

Combining these concentration bounds together, we obtain the following theorem.

Theorem 37 Let α ≤ 1
2 , and let µ ∈ Rd satisfy ∥µ∥ ≤ 2α. Let X(1), . . . , X(N) be drawn

i.i.d. either according to N (µ, I) or according to P(µ). Finally, let T be the matrix with entries
Ti,j = ⟨X(i), X(j)⟩. Then, with probability at least 0.99, the following all hold simultaneously.

1. We have
∑N

i=1

∑N
j=1 Ti,j = Nd+N2∥µ∥2 ±O(N

√
d+ αN

√
N)

2. For all i, Ti,i = d± Õ(
√
d) and for all i ̸= j, Ti,j = ±Õ(

√
d).
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3. For all i,
∑N

j=1 Ti,j = d±Õ(
√
Nd+α ·N), and for all j,

∑N
i=1 Ti,j = d±Õ(

√
Nd+α ·N).

4. For all subsets S ⊂ [N ], if |S| = K, then
∑

i,j∈S Ti,j = Kd± Õ(K
√
Kd+K2).

Proof Part 1 of the theorem is immediate from Lemmas 25 and 26, if we use Chebyshev’s inequality
to make the failure probability 0.005. Part 2 is immediate from Lemmas 27 and 28, and since we
need this to be true for all pairs (i, j), the failure probability is at most O(1/N3) ·N2 = O(1/N).

To see why Part 3 follows from Lemma 30, note that by symmetry, the result of Lemma 30 also
holds for

∑N
j=1 Ti,j = ⟨X(i), X(1) + · · ·+X(N)⟩. Since we need this to be true for all i, the failure

probability is at most O(1/N3) · N = O(1/N2). In addition, since T is a symmetric matrix, we
have that the sum of the entries in row i and the sum of the entries in column i are the same, so we
also have that for all j,

∑N
i=1 Ti,j = d± Õ(

√
Nd+ α ·N).

Finally, Part 4 follows from Lemmas 35 and 36, since they imply that ∥
∑

i∈S X(i)∥2 =
∑

i,j∈S Ti,j =

Kd ± Õ(K
√
Kd + K2) with failure probability O(N−2K). Union bounding this over all sub-

sets of size K in [N ] and over all choices of K still means the failure probability is at most∑N
K=1O(N−2K) ·

(
N
K

)
=
∑N

K=1O(N−K) = O(1/N).
Hence, the overall failure probability is at most 0.005 +O(1/N) ≤ 0.01.

Proposition 38 Let X ∼ N (0,Σ), where ∥Σ∥2 ≤ 1. In addition, let J := Tr(Σ). Then, for any
sufficiently large C, ∥X∥2 = J ± (

√
Cd+ C) with probability at least 1− e−C/10.

Proof By rotating, we may assume WLOG that Σ is diagonal. Then, note that ∥X∥2 =
∑d

i=1ΣiiZ
2
i ,

where each Zi
i.i.d.∼ N (0, 1). We apply Theorem 19, where n = d, and ai = Σii (so J =

∑n
i=1 ai).

Note that |a|∞ = ∥Σ∥2 ≤ 1 and |a|2 ≤
√
d. Thus, we have that P

(∣∣∥X∥2 − J
∣∣ ≥ √Cd+ C

)
≤

2e−C/4 ≤ e−C/10 if C is sufficiently large.

Proposition 39 Let X ∼ N (0,Σ), where ∥Σ∥2 ≤ 1. Then, for any vector µ of magnitude at most
2α, ⟨µ,Σ⟩ has subgaussian norm at most O(α).

Proof Note that ⟨µ,Σ⟩ is a Gaussian with variance µTΣµ ≤ ∥µ∥2 · ∥Σ∥2 ≤ 4α2. So, the subgaus-
sian norm is at most O(α).

Theorem 40 Let α ≤ 1
2 , and let µ ∈ Rd satisfy ∥µ∥ ≤ 2α. Let X(1), . . . , X(N) be drawn i.i.d.

either according to N (µ,Σ), where ∥Σ∥2 ≤ 1 is unknown. Finally, let T be the matrix with entries
Ti,j = ⟨X(i), X(j)⟩. Then, with probability at least 0.99, the following all hold simultaneously.

1. We have
∑N

i=1

∑N
j=1 Ti,j = N · J +N2∥µ∥2 ±O(N

√
d+ αN

√
N)

2. For all i, Ti,i = d± Õ(
√
d) and for all i ̸= j, Ti,j = ±Õ(

√
d).

3. For all i,
∑N

j=1 Ti,j = d±Õ(
√
Nd+α ·N), and for all j,

∑N
i=1 Ti,j = J±Õ(

√
Nd+α ·N).

4. For all subsets S ⊂ [N ], if |S| = K, then
∑

i,j∈S Ti,j = KJ ± Õ(K
√
Kd+K2).
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Proof For part 1 of the theorem, note that
∑N

i=1

∑N
j=1 Ti,j = ∥X̄∥2, where X̄ =

∑N
i=1X

(i) ∼
N (N · µ,N · Σ). We can write X̄ = N · µ +

√
N · X, where X ∼ N (0,Σ). Then, ∥X̄∥2 =

N2∥µ∥2 + 2N3/2 · ⟨µ,X⟩ + N · ∥X∥2. But we know that since ⟨µ,X⟩ has subgaussian norm at
most O(α), so doesn’t exceed O(α) in absolute value with probability at least 0.999. In addition,
by Proposition 38, we have that ∥X∥2 = J ±O(

√
d) with probability at least 0.999. Together, this

implies that ∥X̄∥2 = N · J +N2∥µ∥2 ±O(N
√
d+ αN

√
N).

For part 2 of the theorem, note that Ti,i has distribution ∥µ + X∥2, where ∥µ∥ ≤ 1 and X ∼
N (0,Σ). In addition, note that ∥µ+X∥2 = ∥µ∥2 + 2⟨µ,X⟩+ ∥X∥2. By Proposition 38, ∥X∥2 =
J±Õ(

√
d) with probability at least 1− 1

N3 , and by Proposition 39, ⟨µ,X⟩ = ±Õ(1) with probability
at least 1 − 1

N3 . Finally, ∥µ∥2 ≤ 1. Overall, this implies that with probability at least 1 − 2
N2 ,

Ti,i = J ± Õ(
√
d) for all i.

For i ̸= j, note that Ti,j has distribution ⟨µ+X,µ+X ′⟩, where X,X ′ i.i.d.∼ N (0,Σ). So, ⟨µ+
X,µ+X ′⟩ = ∥µ∥2+⟨µ,X⟩+⟨µ,X ′⟩+⟨X,X ′⟩. We already know that ∥µ∥2, ⟨µ,X⟩, ⟨µ,X ′⟩ are all
in the range ±Õ(1) with probability 1− 2

N3 . In addition, ⟨X,X ′⟩ = 1
4

[
(X +X ′)2 − (X −X ′)2

]
,

but since X,X ′ are independent, this means X +X ′, X −X ′ are both N (0, 2 · Σ), which means
∥X+X ′∥2, ∥X−X ′∥2 are both in the range 2J± Õ(

√
d) with probability at least 1− 2

N3 . Overall,
we have that for all i ̸= j, Ti,j = ⟨µ+X,µ+X ′⟩ = ±Õ(

√
d) with probability at least 1−O( 1

N ).

For part 3 of the theorem, by symmetry it suffices to show that
∑N

j=1 Ti,j = d±Õ(
√
Nd+α·N)

for any fixed i with probability at least 1 − O( 1
N2 ). Note that

∑
j ̸=i Ti,j = ⟨X(i),

∑
j ̸=iX

(j)⟩
and

∑
j ̸=iX

(j) has distribution N ((N − 1) · µ, (N − 1) · Σ). Hence,
∑

j ̸=i Ti,j has distribution

⟨µ+X, (N − 1)µ+
√
N − 1X ′⟩, where X,X ′ i.i.d.∼ N (0,Σ). We can write this as (N − 1)∥µ∥2+

(N − 1)⟨µ,X⟩+
√
N − 1⟨µ,X ′⟩+

√
N − 1 · ⟨X,X ′⟩. We know that (N − 1)∥µ∥2 = O(N ·α2).

Also, we already saw that with probability at least 1 − O( 1
N2 ), ⟨µ,X⟩, ⟨µ,X ′⟩ = ±Õ(α), and

⟨X,X ′⟩ = Õ(
√
d). So overall, with failure probability at most O( 1

N2 ),
∑

j ̸=i Ti,j = ±Õ(α ·
N +

√
Nd). Finally, since Ti,i = J ± Õ(

√
d) with probability at least 1 − O( 1

N3 ), we have that∑N
j=1 Ti,j = J ± Õ(α ·N +

√
Nd) with the desired failure probability.

For part 4, note that for any fixed subset S ⊂ [N ] of size K,
∑

i,j∈S Ti,j = ∥
∑

i∈S X(i)∥2,
and

∑
i∈S X(i) = K · µ+

√
K ·X , for X ∼ N (0,Σ). So,

∑
i,j∈S Ti,j has distribution K2∥µ∥2 +

2K
√
K⟨X,µ⟩ + K · ∥X∥2. Note that K2∥µ∥2 ≤ K2 always, and since ⟨X,µ⟩ has subgaussian

norm at most O(1) by Proposition 39, we have that 2K
√
K⟨X,µ⟩ = ±Õ(K2) with probability at

least 1 − N−2K . Finally, by Proposition 38, we have that K · ∥X∥2 = K ·
[
J ± Õ(

√
Kd+K)

]
with probability at least 1 − N−2K . Hence, with probability at least 1 − 2N−2K , we have that∑

i,j∈S Ti,j = K · J ± Õ(K
√
Kd + K2). Taking a union bound over all 1 ≤ K ≤ N and all(

N
K

)
≤ NK sets S of size K, we have that this holds for all S with probability at least 1−O( 1

N ).

Finally, we also prove a result relating the Normal distribution and the χd distribution, as well
as a result relating Normal distributions with different scalings.

Proposition 41 As d→∞, we have that limd→∞ dTV

(
χd,N (

√
d, 12)

)
= 0.
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Proof It is well known that χd has PDF

1

2(d/2)−1Γ(d/2)
· xd−1e−x2/2 =

(
1±O(

1

d
)

)
· 1

2(d/2)−1 ·
(

d
2e

)d/2 ·√ 2π
d/2

· xd−1e−x2/2

=

(
1±O(

1

d
)

)
· ed/2

d(d−1)/2 ·
√
π
· xd−1e−x2/2,

where the first equality follows by Stirling’s formula and the second equality follows by rearrange-
ment. For x =

√
d+ θ for any θ bounded by a constant, this equals(
1±O(

1

d
)

)
· ed/2

d(d−1)/2 ·
√
π
·
√
d
d−1

(
1 +

θ√
d

)d−1

· e−(
√
d+θ)2/2

=

(
1±O(

1

d
)

)
· e

d/2

√
π
· e(θ/

√
d−θ2/2d)·d±O(1/

√
d) · e−(

√
d+θ)2/2

=

(
1±O(

1√
d
)

)
· 1√

π
· e−θ2 ,

where the first equality follows by setting x =
√
d + θ, the second equality follows using a Taylor

expansion for ln(1 + x) for x = θ√
d

and noting that θ = ±O(1), and the third equality follows by
rearrangement.

Hence, for any fixed constant C, the PDF of χd at
√
d+θ, for any |θ| ≤ C, equals

(
1±O( 1√

d
)
)
·

1√
π
·e−θ2 . For any two distributionsF ,G over with PDFs f(x), g(x), it is well known that dTV(F ,G) ≤∫∞

−∞max(f(x) − g(x), 0). Hence, by setting f(x) as the PDF of N (0, 1/2) and g(x) as the PDF
of χd, we have that

dTV

(
N
(
0,

1

2

)
, χd

)
≤ O

(
1√
d

)
·
∫ C

−C

1√
π
e−θ2 +

∫
x ̸∈[−C,C]

f(x) = O

(
1√
d
+ e−C2

)
,

which means that lim supd→∞ dTV

(
χd,N (

√
d, 12)

)
≤ O(e−C2

). As this is true for all C, the result
is immediate.

Proposition 42 We have that dTV
(
N (0, 12),N (0, 1)

)
≤ 1

6 .

Proof We can compute the total variation distance as

1

2
·
∫ ∞

−∞

∣∣∣∣ 1√
π
· e−x2 − 1√

2π
· e−x2/2

∣∣∣∣ dx ≤ 0.1661,

which is at most 1
6 .
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Appendix C. Proof of Theorem 5

In this section, we prove Theorem 5, which establishes a (tight) sample complexity upper bound
of Õ

(
d1/2

α2 + d1/3

α4/3·ε2/3 + 1
α·ε

)
for identity testing of Gaussians with known covariance. We also

conclude with a brief section describing the necessity of changing the construction used by Canonne
et al. (2020b) in order to make the construction fully correct.

First, we note by Proposition 23, we may assume that the null hypothesisH0 is that we are given
N samples i.i.d. from N (0, I), and the alternative hypothesis H1 is that we are given N samples
i.i.d. from N (µ, I), where α ≤ ∥µ∥ ≤ 2α.

The major tool we use in developing our sample-optimal but inefficient upper bound is the
McShane-Whitney Extension theorem, which we now state.

Theorem 43 (McShane, 1934) Let X be any metric space with a metric ρ, and let C ⊂ X . Suppose
there is a function F : C → R and a positive real number D such that F is D-Lipschitz on C, i.e.,
for all x, y ∈ C, |F (x) − F (y)| ≤ D · ρ(x, y). Then, there exists an extension F̂ : X → R such
that F̂ (x) = F (x) for all x ∈ C, and F̂ is D-Lipschitz on all of X , meaning that for all x, y ∈ X ,
|F (x)− F (y)| ≤ D · ρ(x, y).

We will apply Theorem 43 with X = (Rd)N , i.e., X is the set of all datasets of size N in
Rd. The distance metric ρ that we use measures the number of differing rows, i.e., for X =
{X(1), . . . , X(N)} and X′ = {X ′(1), . . . , X ′(N)}, we define ρ(X,X′) =

∣∣{i : X(i) ̸= X ′(i)}
∣∣. For a

dataset X ∈ (Rd)N , we associate with it the matrix T ∈ RN×N with entries Ti,j := ⟨X(i), X(j)⟩.
We will define C := Cα ⊂ (Rd)N to be the set of datasets {X(1), . . . , X(N)} that satisfy Prop-
erties 2, 3, and 4 listed in Theorem 37. More precisely, we choose some sufficiently large L =
poly(logN), and define C to be the set of all datasets X ∈ (Rd)N such that

• For all i ∈ [N ], Ti,i = d± L ·
√
d, and for all i ̸= j ∈ [N ], Ti,j = ±L ·

√
d.

• For all i,
∑N

j=1 Ti,j = d± L(
√
Nd+ αN), and for all j,

∑N
i=1 Ti,j = d± L(

√
Nd+ αN).

• For all subsets S ⊂ [N ], if |S| = K, then
∑

i,j∈S Ti,j = K ·
[
d± L · (

√
Kd+K)

]
.

We prove the following lemma.

Lemma 44 Let X,X′ ⊂ C be datasets that differ in K ≤ C
ε rows, for some fixed C. Let X̄ =∑N

i=1X
(i), and X̄ ′ =

∑N
i=1X

′(i). Then,

∣∣∥X̄∥2 − ∥X̄ ′∥2
∣∣ ≤ 6K · L ·

(√
Nd+ αN +

C

ε

)
.

Proof Write X̄ = Y + Z and X̄ ′ = Y + Z ′, where Y is the sum of the identical rows in X and
X′, Z is the sum of the rows in X that are not the same in X′, and Z ′ is the sum of the rows in X′

that are not the same in X. Let T be the matrix with Ti,j = ⟨X(i), X(j)⟩, and T′ be the matrix with
T ′
i,j = ⟨X ′(i), X ′(j)⟩. Let S ⊂ [N ] represent the indices of the rows in X and X′ that differ. Then,

note that ⟨Z, X̄⟩ equals the sum of the entries Ti,j with i ∈ S, j ∈ [N ] (and similarly ⟨Z ′, X̄ ′⟩ is the
sum of the entries T ′

i,j with i ∈ S, j ∈ [N ]). Also, ∥Z∥2 is the sum of the entries Ti,j with i, j ∈ S

(and similarly ∥Z ′∥2 is the sum of the entries T ′
i,j with i ∈ S).
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Next, note that ∥X̄∥2 − ∥X̄ ′∥2 = 2⟨Z, X̄⟩ − 2⟨Z ′, X̄ ′⟩ − (∥Z∥2 − ∥Z ′∥2). Then, note that
⟨Z, X̄⟩ = K · (d± L(

√
Nd+ α ·N)), since it is the sum of the entries of K rows in T . Likewise,

⟨Z ′, X̄ ′⟩ = K · (d± L(
√
Nd+ α ·N)). In addition, since ∥Z∥2 is the sum of the entries Ti,j with

i, j ∈ S, and since |S| = K, we have that ∥Z∥2 = Kd±L(K
√
Kd+K2). Similarly, we also have

∥Z ′∥2 = Kd± L(K
√
Kd+K2).

Therefore,

∥X̄∥2 − ∥X̄ ′∥2 = 2⟨Z, X̄⟩ − 2⟨Z ′, X̄ ′⟩ − (∥Z∥2 − ∥Z ′∥2)

= ±K · 4L · (
√
Nd+ αN)± 2L ·K · (

√
Kd+K)

= ±6KL ·
(√

Nd+ αN +
C

ε

)
,

where the last line follows because K ≤ C
ε and K ≤ N .

Let C be a sufficiently large constant, and let ∆ := 6L
(√

Nd+ αN + C
ε

)
. Define D :=

ε
C ·α

2 ·N2, and suppose that ∆ ≤ D. We now consider the statistic function T̃ : C → R that sends
a dataset X to max(0,min(∥X̄∥2−Nd, α2 ·N2)), where X̄ = X(1)+ · · ·+X(N). Note that T̃ (X)
is simply ∥X̄∥2 −Nd but clipped by 0 and α2N2.

We first show that T̃ : C → R is D-Lipschitz, where we recall that the distance metric ρ over C
is the number of differing rows.

Lemma 45 Assume that ∆ ≤ D. Then, for any integer K and any datasets X,X′ ∈ C that differ
in K rows, |T̃ (X)− T̃ (X′)| ≤ K ·D.

Proof First, assume that K ≥ C · ε−1, where we recall that C is a large constant and that D =
ε
C ·α

2 ·N2. Then, since T̃ (X) and T̃ (X′) are bounded below by 0 and bounded above by α2 ·N2 =

ε−1 · C ·D ≤ K ·D, we indeed have that |T̃ (X)− T̃ (X′)| ≤ K ·D.
Next, assume that K ≤ C · ε−1. Then, by Lemma 44, we have that

∣∣∥X̄∥2 − ∥X̄ ′∥2
∣∣ ≤ K ·∆.

Since T̃ (X) simply takes ∥X̄∥2, subtracts Nd, and then prevents the statistic from being less than
0 or more than α2 · N2 (and similar for T̃ (X′)), we will also have that |T̃ (X) − T̃ (X′)| ≤ K ·∆.
Since we are assuming that ∆ ≤ D, this also implies that |T̃ (X)− T̃ (X′)| ≤ K ·D.

Hence, by Theorem 43, there exists an extension T̂ of T̃ from (Rd)N → R, such that for any
datasets X,X′ ∈ (Rd)N that differ in K rows, |T̂ (X)− T̂ (X′)| ≤ K ·D. Our final (computationally
inefficient) algorithm will be the following. We compute T̂ (X)+Lap(D/ε). If this exceeds α2·N2

2 ,
we output 1, and otherwise we output 0. (Note that this algorithm is computationally inefficient
because computing the extension T̂ is computationally inefficient.)

We are now ready to prove Theorem 5.
Proof of Theorem 5: First, we note that this algorithm is (ε, 0)-differentially private because T̂ (X)
has sensitivity at most D whenever we change a single row of X, by the properties of our Lipschitz
extension.

To verify accuracy, note that if each row of X is drawn i.i.d. fromN (0, I), then with probability
at least 0.99, X ∈ C and ∥X̄∥2 ≤ Nd ± CN

√
d by Theorem 37, assuming C is sufficiently large.

Hence, with probability at least 0.99, T̂ (X) = T̃ (X) ≤ CN
√
d, which means that with probability

at least 0.9, T̂ (X) + Lap(D/ε) ≤ CN
√
d + 10 · Dε , which we want to be at most α2·N2

2 . Indeed,
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if C is sufficiently large, then 10 · Dε ≤
1
4 · α

2N2, so we just need that ∆ ≤ D = ε
C · α

2 ·N2 and
CN
√
d ≤ 1

4 · α
2 ·N2.

Next, if each row of X is drawn i.i.d. fromN (µ, I), where α ≤ ∥µ∥ ≤ 2α, then with probability
at least 0.99, X ∈ C and ∥X̄∥2 ≥ Nd+N2α2 −C(N

√
d+αN

√
N) by Theorem 37. Hence, with

probability at least 0.99, T̂ (X) = T̃ (X) ≥ N2α2 − C(N
√
d + αN

√
N), which means that with

probability at least 0.9, T̂ (X) + Lap(D/ε) ≥ N2α2 − C(N
√
d + αN

√
N) − 10 · Dε , which we

want to be at least α2·N2

2 . If C is sufficiently large, then 10 · Dε ≤
1
4 · α

2N2, so we just need that
∆ ≤ D and that C(N

√
d+ αN

√
N) ≤ 1

4 · α
2 ·N2.

Hence, our algorithm is both accurate and private as long as N is sufficiently large so that
∆ = 6L

(√
Nd+ αN + C

ε

)
≤ ε

C · α
2 · N2 and C(N

√
d + αN

√
N) ≤ 1

4α
2 · N2. Since C is a

fixed large constant and L is polylogarithmic in N , it suffices that

N ≥ Õ

(√
d

α2
+

d1/3

α4/3 · ε2/3
+

1

α · ε

)
.

This completes the proof.

C.1. On changing the construction of Canonne et al. (2020b)

An important part of both our argument and the argument of Canonne et al. (2020b) for the ineffi-
cient testing algorithm was that the statistic F on the subset C is D-Lipschitz. The previous work
of Canonne et al. (2020b) made the subtle mistake of assuming that it suffices for any two adjacent
datasets X ,X ′ in C to satisfy |F (X ) − F (X ′)| ≤ D. In reality, we need that for any datasets
X ,X ′ ∈ C that differ in K positions (for any K ≤ N ), |F (X )− F (X ′)| ≤ D ·K. It is reasonable
to believe these definitions are equivalent: indeed, if X ,X ′ ∈ C differ by K positions, then we can
construct a series of adjacent datasets X =: X (0),X (1),X (2), . . . ,X (N) := X ′ where X (i−1) and
X (i) are adjacent. A natural guess is that if X ,X ′ ∈ C, then one can ensure that each X (i) is also
in C. If so, then a triangle inequality implies the statistic F is D-Lipschitz on C, as long as adjacent
datasets in C have the statistic differ by at most D.

Unfortunately, it may be impossible to make the intermediate datasets X (i) be in C for the
choice of C used in Canonne et al. (2020b). Indeed, the choice of C used in Canonne et al. (2020b)
was the set of data X = {X(1), . . . , X(N)} (where each X(i) ∈ Rd) such that ∥X(i)∥2 ≤ ∆ and
|⟨X(i), X(1)+· · ·+X(N)⟩| ≤ ∆ for some appropriate choice of ∆. However, even if N = 2, d = 3,
and K = 2, we lose our desired property. For instance, define a = (1, 0, 1), b = (−1, 0, 1), c =
(0, 1, 1), and d = (0,−1, 1) to be points in Rd. Let C be the set of pairs {X(1), X(2)} such that
∥X(i)∥2 ≤ 2 and |⟨X(i), X(1) + X(2)⟩| ≤ 2, for both i = 1 and i = 2. It is clear that the sets
{a, b} and {c, d} are in C, and they differ in K = 2 positions. However, any method of 2 steps
used to convert {a, b} to {c, d} cannot stay in C throughout, because one can see that none of
{a, c}, {a, d}, {b, c}, or {b, d} are in C.

Appendix D. Proof of Theorem 6

In this section, we prove Theorem 6. In other words, we show that any (0, ε)-differentially private
algorithm that can successfully distinguish between samples fromN (0, I) andN (µ, I) for ∥µ∥ ≥ α
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requires at least Ω
(
d1/2

α2 + d1/3

α4/3·ε2/3 + 1
α·ε

)
samples. We reiterate that in the case of differentially

private hypothesis testing, the sample complexity required for (ε, 0)-DP and (0, ε)-DP are known to
be asymptotically equivalent for any ε < 1

2 (Acharya et al., 2018b).
First, we note that even a non-private algorithm that can successfully distinguish between N

samples from N (0, I) and N (µ, I) where ∥µ∥ ≥ α requires N ≥ Ω
(
d1/2

α2

)
(Srivastava and Du,

2008; Canonne et al., 2020a). Hence, it suffices to show that a (0, ε)-private algorithm that can
successfully distinguish between N samples from N (0, I) and N (µ, I) where ∥µ∥ ≥ α requires
N ≥ Ω

(
d1/3

α4/3·ε2/3

)
and N ≥ Ω

(
1
α·ε
)
. We remark that in the related scenario of privately testing a

binary discrete distribution, the N ≥ Ω
(

1
α·ε
)

has already been established (Acharya et al., 2018b).
The proof in the Multivariate Gaussian case will not be significantly different (in fact, this part of
the lower bound holds even for a univariate Gaussian), but we include the proof for completeness.

First, we will generalize our previous notion of privately distinguishing between two hypotheses
of i.i.d. samples to privately distinguishing between hypotheses of possibly non-i.i.d. samples. Now,
we will consider the problem of privately distinguishing between two distributions U and V over
XN . Here, U and V need not be i.i.d. samples. For an algorithm A : XN → {0, 1} to (ε, δ)-
privately distinguish between two distributions U and V over XN (in our case X = Rd), it must
hold that:

• A is (ε, δ)-differentially private.

• If X = (X(1), . . . , X(N)) ∼ U , then P(A(X) = 0) ≥ 2
3 .

• If X = (X(1), . . . , X(N)) ∼ V , then P(A(X) = 1) ≥ 2
3 .

To prove our lower bound on the number of samples N , it suffices to prove a lower bound for
distinguishing between U and V where U is the distribution of N i.i.d. samples from N (0, I), and
V is generated by first taking some distribution D supported only on points µ ∈ Rd with ∥µ∥2 ≥ α,
and then sampling X(1), . . . , X(N) ∼ N (µ, I), where µ ∼ D. To see why, suppose there existed an
algorithm A that could privately distinguish betweenH0 of all samples being i.i.d. N (0, I) andH1

of all samples being i.i.d. N (µ, I) for any ∥µ∥ ≥ α. Then, A would be (ε, δ)-DP, and if X ∼ U ,
then P(A(X) = 0) ≥ 2

3 . Finally, if X = (X(1), . . . , X(N)) ∼ V , then P(A(X) = 1) ≥ 2
3 . This is

true because we can condition on the choice of µ ∼ D, and we always have that P(A(X) = 1) ≥ 2
3

regardless of what choice of µ we picked.4

Next, we note the following theorem which will be crucial in establishing our lower bounds.

Theorem 46 (Acharya et al., 2018b, Theorem 11, rephrased) Let X represent the domain that
samples are coming from, and assume U and V be distributions overXN (which may not necessarily
be i.i.d. samples), such that there is a coupling between U ,V such that EX∼U ,X′∼V [ρ(X,X′)] ≤ D.
Then, if there existed an algorithm that could (0, ε)-privately distinguish between H0 : X ∼ U and
H1 : X ∼ V, then D ≥ c1/ε for some constant c1 > 0.

As a corollary, we have the following result.

Corollary 47 Again, let X represent the domain, and let U , V be distributions over XN . Suppose
that there exist distributions U ′,V ′ such that dTV(U ,U ′), dTV(V,V ′) ≤ 1

4 . In addition, suppose

4. This idea of choosing a distribution for µ is quite standard, and is similar to Yao’s Minimax Principle (Yao, 1977).
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there is a coupling between U ′,V ′ such that EX∼U ′,X′∼V ′ [ρ(X,X′)] ≤ D. Then, if there existed an
algorithm that could (0, ε)-privately distinguish between H0 : X ∼ U and H1 : X ∼ V, then
D ≥ c2/ε for some constant c2 > 0.

Proof Suppose there exists an algorithmA that could (0, ε)-privately distinguish betweenH0 : X ∼
U and H1 : X ∼ V . This means that if X ∼ U , A = 0 with probability at least 2/3, and if X ∼ V,
A = 1 with probability at least 2/3. By repeating the algorithm O(1) times and taking the majority,
we can improve the value 2/3 to 11/12, though the algorithm is now (0, Cε)-DP for some constant
C. But then, since dTV(U ,U ′) ≤ 1/4, this means that |PX∼U (A(X) = 0)− PX∼U ′(A(X) = 0)| ≤
1/4 for any algorithm A, which means that PX∼U ′(A(X) = 0) ≥ 11

12 −
1
4 ≥

2
3 . By a symmetric

argument, PX∼V ′(A(X) = 1) ≥ 2
3 . Therefore, we can apply Theorem 46 to conclude that D ≥

c1/(C · ε) = c2/ε for c2 = c1/C.

Before we prove the main part of the lower bound (i.e., that N ≥ Ω
(

d1/3

α4/3·ε2/3

)
), we first show

how Theorem 46 implies an Ω
(

1
α·ε
)
-lower bound. We first have the following proposition.

Proposition 48 Let U represent the distribution of selecting X = {X(1), . . . , X(N)} i.i.d.∼ N (0, I),

and let V represent the distribution of selecting X′ = {X ′(1), . . . , X ′(N)} i.i.d.∼ N (µ, I), where
µ = (α, 0, 0, . . . , 0) ∈ Rd, and 0 < α ≤ 1. Then, there exists a coupling between U ,V such that
EX∼U ,X′∼V [ρ(X,X′)] ≤ O(α) ·N .

Proof We start by considering univariate Normal distributions. Consider drawing the PDF of
N (0, 1) and of N (α, 1). Let S be the region of points (x, y) ∈ R2, where y is nonnegative but
below the PDF of N (0, 1) at x. Likewise, let S′ be the region of points (x, y) ∈ R2, where y is
nonnegative but below the PDF of N (α, 1) at x. Both S, S′ have area 1 by definition of PDF, and
the intersection of S, S′ has area 1− dTV(N (0, 1),N (α, 1)) = 1−Θ(α).

Now, we consider the following method of generating samples X(1), . . . , X(N) and X ′(1), . . . , X ′(N)

over Rd. For each i, pick a point (x, y) uniformly at random in S, and let X(i)
1 = x. If (x, y) ∈ S′,

then we define (x′, y′) = (x, y). Otherwise, we choose (x′, y′) uniformly at random from S′\S.
Finally, we let X ′(i)

1 = x′. Finally, we draw X
(i)
2 = X

′(i)
2 , . . . , X

(i)
n = X

′(i)
n each as an i.i.d.

N (0, 1).
First, note that each X(i) is independent and has the correct distribution. Also, note that each

X ′(i) is independent. To check the distribution of X ′(i), note that we select a point (x, y) in S ∩ S′

with probability 1− dTV(N (0, 1),N (α, 1)) = 1−Θ(α), which equals the area of S ∩ S′. Hence,
with probability equal to this area, we select a uniform point (x′, y′) in S ∩ S′, and otherwise, we
select a uniform point (x′, y′) in S′\S, so the overall distribution of (x, y) is just uniform from S′.
Hence, X ′(i)

1 has the distribution N (α, 1), which means that X ′(i) has the correct distribution.
The final thing we verify is that E[ρ(X,X′)] = O(α) · N . Indeed, note that X(i) = X ′(i)

whenever we selected (x, y) ∈ S ∩ S′, so P(X(i) ̸= X ′(i)) is at most 1 minus the area of S ∩ S′,
which is O(α). Hence, by linearity of expectation, we have that E[ρ(X,X′)] = O(α) ·N .

Note that we immediately get an Ω
(

1
α·ε
)

sample complexity lower bound, even in 1 dimension.
Indeed, to determine whether we have N samples from N (0, I) or from N (µ, I), by combining
Proposition 48 and Theorem 46, we need that O(α) ·N ≥ c1/ε, which means that N ≥ Ω

(
1
α·ε
)
.
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We now set up our main lower bound. Let D be the distribution N (0, 2α
2

d · I) conditioned on
the magnitude being at least α. Note that D has no support in the region {x : ∥x∥ ≤ α}. Let V
be the distribution over {X(1), . . . , X(N)} where we first draw µ ∼ D and then draw each X(i)

from N (µ, I). Also, let U be the distribution over {X(1), . . . , X(N)} where we draw each X(i)

from N (0, I). Our goal will be to show the following: unless N ≥ Ω
(

d1/3

ε2/3·α4/3

)
, there exist

distributions U ′,V ′ over (Rd)N such that dTV(U ,U ′), dTV(V,V ′) ≤ 1
4 , and a coupling of U ′,V ′

such that EX∼U ′,X′∼V ′ [ρ(X,X′)] < c2/ε.
We will also need the following two basic propositions.

Proposition 49 Let X(1), . . . , X(N) ∼ N (0, I) and X̄ = X(1)+···+X(N)

N . Then, ∥X̄∥ ∼ 1√
N
· χd,

where χd is the square root of a chi-square variable with d degrees of freedom.

Proof This is immediate from the fact that X̄ ∼ N (0, 1
N · I) = 1√

N
· N (0, I). Thus, ∥X̄∥2 =

1
N ·
∑d

i=1 Z
2
i , where each Zi

i.i.d.∼ N (0, 1), which completes the proof.

Proposition 50 Let X(1), . . . , X(N) ∼ N (µ, I), where µ ∼ N (0, 2α
2

d I), and let X̄ = X(1)+···+X(N)

N .

Then, ∥X̄∥ ∼
√

1
N + 2α2

d · χd.

Proof This is immediate from the fact that X̄ = µ+N (0, 1
N · I) = N (0, 2α

2

d + 1
N ).

We now prove the following result.

Theorem 51 Let D,U ,V be as defined previously. Suppose that d ≥ C and d
α2 ≥ C ·N for some

sufficiently large constant C. Then, unless N ≥ Ω
(

d1/3

ε2/3·α4/3

)
, there exist distributions U ′,V ′ over

(Rd)N such that dTV(U ,U ′) ≤ 0.25, dTV(V,V ′) ≤ 0.25, along with a coupling of U ′,V ′ such that
EX∼U ′,X′∼V ′ [ρ(X,X′)] ≤ c2

ε .

Proof We first show how to sample X(1), . . . , X(N) in a different manner that ends up with the
same distribution as U . By Corollary 18, the distribution of X(1), . . . , X(N) is the same as the
distribution of X̄+Z(1)−Z̄, X̄+Z(2)−Z̄, . . . , X̄+Z(N)−Z̄, where Z(1), . . . , Z(N) i.i.d.∼ N (0, I)

and Z̄ = Z(1)+···+Z(N)

N . By Proposition 49 and the rotational symmetry of Gaussians, we can sample

X̄ = a · v, where v is drawn uniformly from the unit sphere, and a ∼
√

1
N · χd. Again using the

rotational symmetry of Gaussians, we can write Z(i) = y(i) · v+ z(i), where we draw each y(i) i.i.d.
from the univariate distribution N (0, 1) and each z(i) i.i.d. from the distribution N (0, I − vvT ), or
equivalently, from the distribution N (0, I) but projected onto the subspace orthogonal to v. Hence,
if we write y′(i) := y(i) − y(1)+···+y(N)

N and z′(i) := z(i) − z(1)+···+z(N)

N for all i ∈ [N ], we obtain
the following equivalent sampling procedure to sampling from U . First, sample v uniformly from

the unit sphere and a ∼
√

1
N · χd, and compute X̄ = a · v. Next, sample each y′(i), z′(i) as above,

and let X(i) = (a+ y′(i)) · v + z′(i) for all i ∈ [N ].

Next, we replace the distribution a ∼
√

1
N · χd with a′ ∼ N

(√
d
N , 1

N

)
. By Proposi-

tion 41, if d is sufficiently large, then dTV(χd,N (
√
d, 1/2)) ≤ 0.01, and by Proposition 42,
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dTV(N (
√
d, 1/2),N (

√
d, 1)) ≤ 1

6 . Therefore, if d is sufficiently large, then dTV(χd,N (
√
d, 1)) ≤

0.01 + 1
6 ≤ 0.2. By scaling, we have that dTV

(√
1
N · χd,N

(√
d
N , 1

N

))
≤ 0.2. Thus, if we

let U ′ be the distribution where we sample v uniformly from the unit sphere, a′ ∼ N
(√

d
N , 1

N

)
,

and X(i) = (a′ + y′(i)) · v + z′(i) for all i (where y′(i), z′(i) are sampled as before), we have that
dTV(U ,U ′) ≤ 0.2.

Now, note that a′ has the same distribution as
√

d
N + w̄, where w̄ ∼ N (0, 1

N ) is the distribution

of averaging N i.i.d. N (0, 1) variables. Hence, by Corollary 18, the tuple {a′ + y′(i)}Ni=1 has

the same overall distribution as {
√

d
N + y(i)}Ni=1, where we recall that y(i) i.i.d.∼ N (0, 1). So, to

generate a sample from U ′ we can instead sample X(i) =

(√
d
N + y(i)

)
· v + z′(i) for all i, where

each y(i)
i.i.d.∼ N (0, 1).

We similarly generate a method of sampling from V ′ with dTV(V ′,V) small. First, we modify
D to D1 by removing the conditioning on the magnitude being at least α. Note that if µ ∼ D1,
∥µ∥2 ∼ 2α2

d · χ
2
d. Thus, basic concentration of χ2

d distributions, if d is sufficiently large then
∥µ∥2 ≥ α2 with probability at least 0.99. Hence, dTV(D,D1) ≤ 0.01. This also implies that if we
let V1 be the distribution over {X(1), . . . , X(N)} where we first select µ ∼ D1 and then draw each

X(i) i.i.d.∼ N (µ, I), then dTV(V,V1) ≤ 0.01.
Next, by Proposition 50 and a similar calculation as in the U case, we can generate a sample

from V1 by writing X(i) = (b+y′(i)) ·v+z′(i), where v, y′(i), z′(i) are generated in the same manner

as previously, but b is distributed as
√

1
N + 2α2

d ·χd. Since dTV(χd,N (
√
d, 1)) ≤ 0.2, we have that

by scaling,

dTV

(√
1

N
+

2α2

d
· χd,N

(√
d

N
+ 2α2,

1

N
+

2α2

d

))
≤ 0.2.

Using the fact that 1
N + 2α2

d ≤
1+ 2

C
N assuming that d

α2 ≥ C ·N , and letting C be sufficiently large,
we have that

dTV

(√
1

N
+

2α2

d
· χd,N

(√
d

N
+ 2α2,

1

N

))
≤ 0.21.

Therefore, we can replace the distribution b ∼
√

1
N + 2α2

d ·χd with b′ ∼ N
(√

d
N + 2α2, 1

N

)
.

From here, we consider the distribution V ′ over {X ′(1), . . . , X ′(N)} where we draw each X ′(i) ∼

(b′+y′(i))·v+z′(i). Since the total variation distance between
√

1
N + 2α2

d ·χd andN
(√

d
N + 2α2, 1

N

)
is at most 0.21, we have that dTV(V1,V ′) ≤ 0.21. Thus, dTV(V,V ′) ≤ dTV(V,V1)+ dTV(V1,V ′) ≤
0.01+ 0.21 ≤ 0.22. In addition, as in the U case, we have that samples from {b′ + y′(i)}Ni=1 has the

same distribution as samples from
{√

d
N + 2α2 + y(i)

}
, where each y(i)

i.i.d.∼ N (0, 1). So, we can

draw samples from V ′ by sampling v uniformly from the unit sphere, sampling y(i), z′(i) as before,

and letting X(i) =

(√
d
N + 2α2 + y(i)

)
· v + z′(i) for all i.
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To finish, we have to establish a coupling between U ′ and V ′. To do this, we sample the same
v uniformly on the sphere for both U ′ and V ′, and the same choices of z′(i) for each i ∈ [N ] for

both U ′ and V ′. Next, we note that we can couple the samples of
√

d
N + y(i) and the samples of√

d
N + 2α2 + y(i), using the fact that

√
d
N + 2α2 −

√
d
N =

√
d√
N
·
(√

1 + 2α2N
d − 1

)
=

√
d√
N
·

O
(
2α2N

d

)
= O

(
α2

√
N√
d

)
. Therefore, by setting γ =

√
d
N + 2α2 −

√
d
N = O

(
α2

√
N√
d

)
and

applying Proposition 48 in the one-dimensional case, we have that there exists a coupling between
U ′ and V ′ that differ in O

(
α2

√
N√
d
·N
)
≤ c3

(
α2·N3/2

√
d

)
samples for some constant c3. We wish

to show that this is at most c2
ε , unless Ω

(
d1/3

ε2/3·α4/3

)
. But note that if c3

(
α2·N3/2

√
d

)
≥ c2

ε , then

N ≥
(
c2
c3

)2/3
· d1/3

α4/3ε2/3
, as desired. This completes the proof.

We are now ready to prove Theorem 6.
Proof of Theorem 6: First, we already know that N ≥ Ω

(√
d

α2

)
even in the non-private setting, and

that N ≥ Ω
(

1
α·ε
)

using Proposition 48. So, it suffices to show that N ≥ Ω
(

d1/3

α4/3ε2/3

)
.

Now, if d ≥ C and d
α2 ≥ C·N for some sufficiently large constant C, we will apply Theorem 51.

Consider the null hypothesisH0 where the distribution {X(1), . . . , X(N)} is generated by sampling

each X(i) i.i.d.∼ N (0, I), and the alternative hypothesis H1 where the distribution is generated by

sampling µ ∼ D and {X(1), . . . , X(N)} is generated by sampling each X(i) i.i.d.∼ N (µ, I). Since D
only has support on ∥µ∥2 ≥ α, this is a valid alternative hypothesis. In this case, by Corollary 47
and Theorem 51, we must have that if an algorithm can (0, ε)-privately distinguish betweenH0 and
H1, then N ≥ Ω

(
d1/3

α4/3ε2/3

)
.

Finally, we consider the cases where d ≤ C or d
α2 ≤ C · N . If d ≤ C, then d = O(1), which

means that d1/3

α4/3ε2/3
≤ O

(
1
α·ε +

√
d

α2

)
. This is true because when d = O(1), 1

α4/3ε2/3
is a weighted

geometric average of 1
α·ε and 1

α2 . So, the lower bound of Ω
(

1
α·ε +

√
d

α2

)
implies the lower bound

of Ω
(

d1/3

α4/3ε2/3

)
if d = O(1). If d

α2 ≤ C · N, then N ≥ Ω
(

d
α2

)
. In addition, we also know that

N ≥ Ω
(

1
α·ε
)
. It is simple to verify that d1/3

α4/3·ε2/3 is a weighted geometric average of d
α2 and 1

α·ε , so

we therefore also have N ≥ Ω
(

d1/3

α4/3·ε2/3

)
. This completes the proof.

Appendix E. Proof of Theorem 7

In this section, we prove Theorem 7. Again, we may apply Proposition 23, and assume WLOG the
null hypothesisH0 is that we are given N samples i.i.d. fromN (0, I), and the alternative hypothesis
H1 is that we are given N samples i.i.d. from N (µ, I), where α ≤ ∥µ∥ ≤ 2α. In addition, due to
Proposition 20, it suffices to show (0, O(ε))-DP rather than (ε, 0)-DP.

The main technical contribution in our proof is the following theorem, which provides an algo-
rithm that can test whether the sum of the entries of a matrix is large or small, but the algorithm’s
output does not change significantly even if we alter an entire row or column of the matrix.
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Theorem 52 Fix parameters γ ≤ 1 and L ≥ 1. Suppose that γ ·N2 ≥ C
(
L·logN

ε + log2 N
ε2

)
for

some sufficiently large constant C. Then, there exists an algorithm A that runs in poly(N) time on
matrices in [−1, 1]N×N and outputs either 0 or 1, with the following properties.

• For any matrices V,V′ ∈ [−1, 1]N×N that only differ in a single row (or only differ in a single
column), |P[A(V) = 0]− P[A(V′) = 0]| ≤ 2ε.

• For any matrix V ∈ [−1, 1]N×N that has every row and column sum at most L in absolute
value, and with sum of all entries at most γ·N2

4 , then P[A(V) = 0] ≥ 0.99.

• For any matrix V ∈ [−1, 1]N×N that has every row and column sum at most L in absolute
value, and with sum of all entries at least 3γ·N2

4 , then P[A(V) = 1] ≥ 0.99.

Proof Consider setting a threshold τ := L+ 16K
ε , where K := log2N . Now, consider the following

set of functions {fk}Kk=1. For each k ∈ [N ], we define fk(x) := max
(
min(1, |x|τ − k), 0

)
, i.e., it

takes the function |x|
τ − k and prevents it from exceeding 1 or becoming negative.

Now, given a matrix V ∈ [−1, 1]N×N and for each k ∈ [K], we define the statistic

Fk(V) :=

N∑
i=1

fk

( N∑
j=1

Vi,j

)
+

N∑
j=1

fk

( N∑
i=1

Vi,j

)
.

We prove the following fact.

Proposition 53 Consider two matrices V,V′ ∈ [−1, 1]N×N that only differ either in a single row
or in a single column, and consider some k ≥ 2. Then,

|Fk(V)− Fk(V′)| ≤ 1 +
4

τ
· Fk−1(V).

Proof By symmetry of Fk with respect to rows and columns, assume WLOG that V,V′ only differ
in a single row i. Then, we can bound the absolute difference between Fk(V) and Fk(V′) by
considering only how the ith row changes, and how each column changes at the ith row position.
As a result, we have

|Fk(V)− Fk(V′)| ≤

∣∣∣∣∣∣fk
( N∑

j=1

Vi,j

)
− fk

( N∑
j=1

V ′
i,j

)∣∣∣∣∣∣+
N∑
j=1

∣∣∣∣∣fk
( N∑

i′=1

Vi′,j

)
− fk

( N∑
i′=1

V ′
i′,j

)∣∣∣∣∣ .
We note that since the range of fk is bounded in the range [0, 1], the first part of the sum-

mand above is at most 1. To bound the second part of the summand, we note that for all j ∈ [N ],∑N
i′=1 Vi′,j and

∑N
i′=1 V

′
i′,j differ by at most 2, since only a single row changes and each entry

remains in [−1, 1]. In this case, the difference between fk

(∑N
i′=1 Vi′,j

)
and fk

(∑N
i′=1 V

′
i′,j

)
is

at most 2
τ , and in fact only changes if either

∑N
i′=1 Vi′,j or

∑N
i′=1 V

′
i′,j is at least k · τ in abso-

lute value. This means that
∑N

i′=1 Vi′,j is at least k · τ − 2 in absolute value, which means that

fk−1

(∑N
i′=1 Vi′,j

)
≥ 1− 2

τ ≥
1
2 . Overall, this means that for all j ∈ [N ],∣∣∣∣∣fk

(
N∑

i′=1

Vi′,j

)
− fk

(
N∑

i′=1

V ′
i′,j

)∣∣∣∣∣ ≤ 4

τ
· fk−1

(
N∑

i′=1

Vi′,j

)
.
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Combining everything, we have that if V,V′ ∈ [−1, 1]N×N differ in a single row, then

|Fk(V)− Fk(V′)| ≤

∣∣∣∣∣∣fk
( N∑

j=1

Vi,j

)
− fk

( N∑
j=1

V ′
i,j

)∣∣∣∣∣∣+
N∑
j=1

∣∣∣∣∣fk
( N∑

i′=1

Vi′,j

)
− fk

( N∑
i′=1

V ′
i′,j

)∣∣∣∣∣
≤ 1 +

N∑
j=1

4

τ
fk−1

(
N∑

i′=1

Vi′,j

)

≤ 1 +
4

τ
· Fk−1(V).

Now, let η := 8·K
ε·τ , and define F (V) :=

∑K
k=1⌊

Fk(V)
2+2N ·ηk−1 ⌋. Recall that τ ≥ 16K

ε , which means

that 16K
τε ≤ 1, and η ≤ 1

2 . We now show the following.

Proposition 54 Suppose that V,V′ ∈ [−1, 1]N×N only differ either in a single row or in a single
column. If F (V) ≤ K/ε, then |F (V)− F (V′)| ≤ K.

Proof Again, by symmetry of Fk with respect to rows and columns, assume WLOG that V,V′ only
differ in a single row i. It suffices to show that for all k ∈ [K], |Fk(V)− Fk(V′)| ≤ 2 + 2N · ηk−1.
This would imply that ⌊ Fk(V)

2+2N ·ηk−1 ⌋ and ⌊ Fk(V′)
2+2N ·ηk−1 ⌋ differ by at most 1 for all k ∈ [K], which is

sufficient.
For k = 1, we have that F1(V), F1(V′) are trivially between 0 and 2N , and since 2+2N ·ηk−1 =

2 + 2N , the claim is immediate.
For k ≥ 2, note that |Fk(V)−Fk(V′)| ≤ 1+ 4

τ ·Fk−1(V) by Proposition 53. In addition, since
F (V) ≤ K

ε , we have that Fk−1(V) ≤ (2+2N ·ηk−2) · (Kε +1) ≤ (2+2N ·ηk−2) · 2Kε . Therefore,

|Fk(V)−Fk(V′)| ≤ 1+
4

τ
· (2+2N · ηk−2) · 2K

ε
≤ 1+

16K

τε
+2N · 8K

τε
· ηk−2 ≤ 2+2N · ηk−1.

Next, we consider the piecewise linear function

g(x) :=


x |x| ≤ (K + 2) · τ
2(K + 2) · τ − x x ≥ (K + 2) · τ
−2(K + 2) · τ − x x ≤ −(K + 2) · τ

and define

G(V) :=

N∑
i=1

g

( N∑
j=1

Vi,j

)
+

N∑
j=1

g

( N∑
i=1

Vi,j

)
.

First note that for any real numbers x, y, that |(g(x)− g(y))− (y − x)| ≤ 4(K+2) ·τ . In addition,
note that g is a 1-Lipschitz function, meaning |g(x)− g(y)| ≤ |x− y| for all x, y ∈ R. Given this,
we can prove the following.
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Proposition 55 Suppose that V,V′ ∈ [−1, 1]N×N only differ either in a single row or in a single
column. If F (V) ≤ K/ε, then |G(V)−G(V′)| ≤ 4(K + 2)τ + 48K

ε .

Proof Again, by symmetry of G with respect to rows and columns, assume WLOG that V,V′

only differ in a single row i. To compute G(V) − G(V′), note that we only have to consider how
the ith row changes, and how each column sum changes due to the ith row position. For each
j ∈ [N ], define aj := V ′

i,j − Vi,j . Then,
∑N

j=1 V
′
i,j −

∑N
j=1 Vi,j =

∑N
j=1 aj , which means that

g
(∑N

j=1 V
′
i,j

)
− g

(∑N
j=1 Vi,j

)
= −

∑N
j=1 aj ± 4(K + 2)τ .

Next, we consider how each column j changes. We note that for any fixed j ∈ [N ],
∑N

i′=1 V
′
i′,j−∑N

i′=1 Vi′,j = aj . In addition, if
∣∣∣∑N

i′=1 Vi′,j

∣∣∣ ≤ (K+1) · τ, then g(x) = x for x =
∑N

i′=1 Vi′,j and

x =
∑N

i′=1 V
′
i′,j , since

∣∣∣∑N
i′=1 V

′
i′,j

∣∣∣ ≤ (K+1) ·τ+ |aj | ≤ (K+1) ·τ+2 ≤ (K+2) ·τ . Therefore,

if
∣∣∣∑N

i′=1 Vi′,j

∣∣∣ ≤ (K+1) · τ, then g
(∑N

i′=1 V
′
i′,j

)
− g

(∑N
i′=1 Vi′,j

)
= aj . Alternatively, because

g is 1-Lipschitz, we still have that
∣∣∣g (∑N

i′=1 V
′
i′,j

)
− g

(∑N
i′=1 Vi′,j

)∣∣∣ ≤ 2, which means that

g
(∑N

i′=1 V
′
i′,j

)
− g

(∑N
i′=1 Vi′,j

)
= aj ± 4.

Now, note that since F (V) ≤ K/ε, this means that FK(V) ≤ (2 + 2N · ηK−1) ·
(
K
ε + 1

)
≤

(2 + 2N · ηK−1) · 2Kε . Since η ≤ 1
2 and K = log2N , this means that FK(V) ≤ 12K

ε . This, in turn,

implies that the number of columns j such that
∣∣∣∑N

j=1 Vi,j

∣∣∣ > (K + 1) · τ is at most 12K
ε . So, we

have that
N∑
j=1

[
g

(
N∑

i′=1

V ′
i′,j

)
− g

(
N∑

i′=1

Vi′,j

)]
=

 N∑
j=1

aj

± 4 · 12K
ε

.

So, overall, we have that

G(V)−G(V′) = −
N∑
j=1

aj ± 4(K + 2)τ +

N∑
j=1

aj ± 4 · 12K
ε

= ±
[
4(K + 2)τ +

48K

ε

]
.

The algorithmAwill work as follows. First, we compute F (V). With probability min
(
1, F (V) · ε

K

)
,

we will automatically output 1. Alternatively, if we have not yet output 1, we compute G̃(V) :=

G(V) + Lap
(
4(K+2)τ

ε + 48K
ε2

)
. If G̃(T ) is more than γ ·N2, we output 1; otherwise we output 0.

We will prove that this algorithm is private up to changing an entire row or column of V, and
then we prove that this algorithm is accurate. Together, these complete the proof of Theorem 52.

Proposition 56 For any matrices V,V′ ∈ [−1, 1]N×N that only differ on a single row (or only
differ on a single column), |P[A(V) = 0]− P[A(V′) = 0]| ≤ 2ε.

Proof First, note that if both F (V) ≥ K
ε and F (V′) ≥ K

ε , then A automatically outputs 1 with
probability 1 for both V and V′.

So, we assume that either F (V) < K
ε or F (V′) < K

ε . In this case, Proposition 54 tells us
that |F (V) − F (V′)| ≤ K, which means that the probability of automatically outputting 1 be-
fore even computing G̃(T ) does not change by more than ε. Next, we note that by Proposition
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55, |G(V) − G(V′)| ≤ 4(K + 2)τ + 48K
ε . Hence, by applying a Laplace mechanism scaled by

1
ε ·
(
4(K + 2)τ + 48K

ε

)
, we have that the probability of G̃(V) being more than γ · N2 and the

probability of G̃(V′) being more than γ · N2 do not differ by more than ε. Overall, we have that
|P[A(V) = 0]− P[A(V′) = 0]| ≤ 2ε, as desired.

Proposition 57 Suppose that V ∈ [−1, 1]N×N has every row and column sum at most L in absolute
value. Also, suppose that γ · N2 ≥ C

(
L·logN

ε + log2 N
ε2

)
. Then, if the sum of the entries of V is

at most γ·N2

4 , then P[A(T ) = 0] ≥ 0.99, and if the sum of the entries of V is at least 3γ·N2

4 , then
P[A(T ) = 1] ≥ 0.99.

Proof Note that since every row and column sum is at most L ≤ τ in absolute value, we have
that for all k ∈ [K], fk(

∑N
j=1 Vi,j) = 0 for all rows i, and fk(

∑N
i=1 Vi,j) = 0 for all columns j.

Therefore, Fk(V) = 0 for all k ∈ [K], so with probability 1 we compute G̃(T ).
Likewise, we have that g(

∑N
j=1 Vi,j) =

∑N
j=1 Vi,j for all rows i, and g(

∑N
i=1 Vi,j) =

∑N
j=1 Vi,j

for all columns j. Therefore,

G(V) =
N∑
i=1

N∑
j=1

Vi,j +
N∑
j=1

N∑
i=1

Vi,j = 2 ·
N∑
i=1

N∑
j=1

Vi,j .

In other words, G(V) is just twice the sum of the entries of V.
So, if the sum of all entries in V is at most γN2

4 , then G(V) ≤ γN2

2 . So, assuming that γ ·N2 ≥
10
(
4(K+2)τ

ε + 48K
ε2

)
, we have that the probability that G̃(V) ≥ γN2 is at most e−5 ≤ 0.01.

Likewise, if the sum of all entries in V is at least 3γN2

4 , then G(V) ≤ 3γN2

2 . So, assuming that

γ · N2 ≥ 10
(
4(K+2)τ

ε + 48K
ε2

)
, we have that the probability that G̃(V) ≤ γN2 is at most e−5 ≤

0.01. But since τ = L+ 16K
ε , it suffices for

γ ·N2 ≥ 10

(
4(K + 2)L

ε
+

64(K + 2)K

ε2
+

48K

ε2

)
= O

(
L · logN

ε
+

log2N

ε2

)
.

Thus, A succeeds with at least 0.99 probability either if the sum of the entries is at least 3γN2

4 or if
the sum of the entries is at most γN2

4 .

We now return to the scenario of having N samples X(1), . . . , X(N). We first note the following
corollary of Theorem 37.

Given N samples X(1), . . . , X(N) ∈ Rd, we define the matrix T ∈ RN×N such that Ti,j =
⟨X(i), X(j)⟩ for all i, j ∈ [N ]. Next, we modify the matrix to create a matrix V such that Vi,i =
Ti,i−d

R for all i ∈ [N ] and Vi,j =
Ti,j

R for all i ̸= j ∈ [N ], where R = Õ(
√
d) is a sufficiently large

poly-logarithmic multiple of
√
d. As a direct corollary of Theorem 37, we have the following.

Corollary 58 Suppose that X(i) i.i.d.∼ N (µ, Id) for all i ∈ [N ], where 0 ≤ ∥µ∥2 ≤ 2α. Then, with
probability at least 0.99,

42



PRIVATE HIGH-DIMENSIONAL HYPOTHESIS TESTING

• The sum of the entries of V equals N2·∥µ∥22
R ±O

(
N
√
d+αN

√
N

R

)
.

• All individual entries in V are in the range [−1, 1].

• The sum of each row and each column is at most
√
N + α · N√

d
in absolute value.

Proof of Theorem 7: Our computationally efficient algorithm works as follows. First, sample
X(1), . . . , X(N) ∈ Rd, and construct the matrix V as above. Now, let γ = α2

R and L =
√
N+α· N√

d
.

Finally, we apply the algorithm A in Theorem 52 on V.
Suppose that N2 · α2 ≥ C(N

√
d + αN

√
N) for some sufficiently large constant C and that

γ · N2 ≥ C
(
L logN

ε + log2 N
ε2

)
. Then, for any X,X′ ∈ (Rd)N that differ in a single row, the

respective matrices V,V′ differ in a single row and a single column, so |P[A(V) = 0]−P[A(V′) =

0]| ≤ 4ε, i.e., the algorithm is (0, 4ε)-differentially private. Next, if X(1), . . . , X(N) i.i.d.∼ N (0, I),
then the sum of the entries of V is at most C

4 ·
N
√
d+αN

√
N

R ≤ 1
4 ·

N2·α2

R = 1
4 · γ · N

2 with
probability at least 0.99, which means the algorithm outputs 0 with probability at least 0.97. Finally,
if X(1), . . . , X(N) i.i.d.∼ N (µ, I), for some α ≤ ∥µ∥2 ≤ 2α, then the sum of the entries of V is at
least N2·α2

R − C
4 ·

N
√
d+αN

√
N

R ≥ N2·α2

R − 1
4 ·

N2·α2

R = 3
4 ·γ ·N

2, which means the algorithm outputs
1 with probability at least 0.97.

Therefore, we just need N to satisfy N2·α2 ≥ C(N
√
d+αN

√
N) and γ·N2 ≥ C

(
L logN

ε + log2 N
ε2

)
.

Recalling that R = Õ(
√
d) and that L =

√
N + α · N√

d
, it is sufficient for

N = Õ

(√
d

α2
+

1

α2
+

d1/3

α4/3ε2/3
+

d1/4

α · ε
+

1

α · ε

)
= Õ

(√
d

α2
+

d1/4

α · ε

)
,

where we note that 1
α2 ,

1
α·ε are smaller terms, and that d1/3

α4/3ε2/3
is a weighted geometric average of

√
d

α2 and d1/4

α·ε and therefore can be omitted.

Appendix F. Generalizations

In this section, we prove theorems 8, 9, and 10. We will also restate these theorems more formally
while proving them. We note that the theorems proceed very similarly to Theorems 5, 6, and 7, so
we will focus on the parts of these new theorems that differ, and simply sketch the remaining parts.

F.1. Lower Bounds

We start with the easiest part, the lower bound. In the case of unknown covariance Gaussians, the
lower bound we have in the known-covariance case immediately implies the same lower bound in
the unknown-covariance case (where we are promised ∥Σ∥2 ≤ 1). Indeed, we can assume that
Σ = I and the same lower bound applies.

For the case of identity testing for balanced product distributions, we remark that there is a
known reduction (Canonne et al., 2020b, Theorem 3.1) which reduces the problem of identity testing
of Gaussians with identity covariance to uniformity testing of product distributions over {−1, 1}d.
The reduction also holds for reducing to identity testing of product distributions over {−1, 1}d,
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where the null hypothesis distribution Pµ∗ satisfies |µ∗
i | ≤ 1 − Ω(1) for all i ∈ [d], i.e., if the null

hypothesis distribution is balanced. Because this reduction shows that identity testing of Gaussians
is easier than identity testing of balanced product distributions, it implies that any lower bound for
identity testing of Gaussians implies the same lower bound for identity testing of balanced product
distributions.

Finally, we note that tolerant testing only expands the possible null hypotheses, so any lower
bounds for standard identity testing also imply the same lower bounds for the tolerant version.

Hence, we have the following theorem, which encompasses all lower bounds.

Theorem 59 Any (0, ε)-private algorithm that can distinguish betweenH0 andH1 requires at least
Ω
(
d1/2

α2 + d1/3

α4/3·ε2/3 + 1
α·ε

)
samples, for the following choices ofH0 andH1:

1. (Theorem 8, lower bound)H0 consists ofN (µ∗,Σ) over all covariance matrices with bounded
spectral norm ∥Σ∥2 ≤ 1, andH1 consists ofN (µ,Σ) over all covariance matrices ∥Σ∥2 ≤ 1
and µ : ∥µ− µ∗∥ ≥ α, where µ∗ ∈ Rd is fixed.

2. (Theorem 9, lower bound) H0 consists of the product distribution P∗ over {−1, 1}d with
mean µ∗, andH1 consists of all product distributionsP over {−1, 1}d such that dTV(P,P∗) ≥
α, where µ∗ ∈ [−1/2, 1/2]d is fixed.

3. (Theorem 10, lower bound for Gaussians) H0 consists of the Gaussians N (µ,Σ) over all
µ such that the Mahalanobis distance

√
(µ− µ∗)TΣ−1(µ− µ∗) ≤ α

2 and H1 consists of
N (µ,Σ) over all µ such that

√
(µ− µ∗)TΣ−1(µ− µ∗) ≥ α, where µ∗ ∈ Rd and Σ ∈ Rd×d

are fixed (and Σ is positive definite).

4. (Theorem 10, lower bound for Products) H0 consists of all Boolean product distributions
P(µ) such that dTV(P(µ),P(µ∗)) ≤ α

C andH1 consists of allP(µ) such that dTV(P(µ),P(µ∗)) ≥
α, where µ∗ ∈ [−1/2, 1/2]d is fixed and C is a sufficiently large constant.

F.2. Upper Bounds: Unknown Covariance Case

We next consider scenario of identity mean testing where the samples come from a Gaussian with
unknown but bounded covariance. In other words, we want to (ε, 0)-privately distinguish between
H0, where we are given N samples from N (µ∗,Σ) for some ∥Σ∥2 ≤ 1, and H1, where we are
given N samples from N (µ,Σ) for some ∥Σ∥2 ≤ 1 and ∥µ− µ∗∥2 ≥ α.

Specifically, we show the following theorem.

Theorem 60 Let µ∗ ∈ Rd be fixed, and let H0 consist of N (µ∗,Σ) over all covariance matrices
with bounded spectral norm ∥Σ∥2 ≤ 1, and H1 consist of N (µ,Σ) over all covariance matrices
∥Σ∥2 ≤ 1 and µ : ∥µ− µ∗∥ ≥ α. Then:

1. (Theorem 8, computationally inefficient case) There exists a computationally inefficient al-
gorithm that, using

N = Õ

(
d1/2

α2
+

d1/3

α4/3 · ε2/3
+

1

α · ε

)
samples, can (ε, 0)-privately distinguish betweenH0 andH1.
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2. (Theorem 8, computationally efficient case) There exists a computationally efficient algo-
rithm that, using

N = Õ

(
d1/2

α2
+

d1/4

α · ε

)
samples, can (ε, 0)-privately distinguish betweenH0 andH1.

Recall (by Proposition 23 and Remark 24) that we may think of H1 as being given N i.i.d.
samples fromN (µ,Σ) for some ∥Σ∥2 ≤ 1 and α ≤ ∥µ−µ∗∥2 ≤ 2α. Also, by shifting, we assume
WLOG that µ∗ = 0, but since Σ is unknown, we may not assume WLOG that Σ = I . Instead, we
note that if we sample Y, Z

i.i.d.∼ N (µ,Σ), then even if µ is unknown, W := Y−Z√
2
∼ N (0,Σ). So,

by using 3N samples, we can generate X(1), . . . , X(N) i.i.d.∼ N (µ,Σ), and W (1), . . . ,W (N) i.i.d.∼
N (0,Σ). We start by considering the matrix U where Ui,j = ⟨X(i), X(j)⟩ − ⟨W (i),W (j)⟩. As-
suming that ∥µ∥ ≤ 2α where α ≤ 1

2 , we can apply Theorem 40 for some appropriate choice of
L = poly log(N) to obtain that with probability at least 0.98,

•
∑N

i=1

∑N
j=1 Ui,j = N2∥µ∥2 ±O(N

√
d+ αN

√
N).

• For all i, j ∈ [N ] (including if i = j), Ui,j = ±L ·
√
d.

• For all i,
∑N

j=1 Ui,j = ±L(
√
Nd+ α ·N), and for all j,

∑N
i=1 Ui,j = ±L(

√
Nd+ α ·N).

• For all subsets S ⊂ [N ], if |S| = K, then
∑

i,j∈S Ui,j = K · L · (
√
Kd+K).

Then, if we let T be the matrix where add d to every diagonal entry in U, we have that with
probability at least 0.98,

•
∑N

i=1

∑N
j=1 Ti,j = Nd+N2∥µ∥2 ±O(N

√
d+ αN

√
N).

• For all i ̸= j, Ti,j = ±L ·
√
d, and for all i, Vi,i = d± L ·

√
d.

• For all i,
∑N

j=1 Ti,j = d±L(
√
Nd+α ·N), and for all j,

∑N
i=1 Ti,j = d±L(

√
Nd+α ·N).

• For all subsets S ⊂ [N ], if |S| = K, then
∑

i,j∈S Ti,j = K ·
[
d± L · (

√
Kd+K)

]
.

These are precisely the bounds we used for the matrix to distinguish between µ = 0 and α ≤
∥µ∥2 ≤ 2α in Section C. Hence, we can apply the same algorithm using this matrix T instead.
Indeed, we define C to be the set of datasets (X,Y,Z) ∈ (Rd)3N that satisfy the second, third, and
fourth properties above. Then, the same proof as in Lemmas 44 and 45 imply that for any datasets
(X,Y,Z) ∈ C and (X′,Y′,Z′) ∈ C that differ in K rows, |T̃ (X,Y,Z) − T̃ (X′,Y′,Z′)| ≤ K · D,
assuming that ∆ := 6L

(√
Nd+ αN + C

ε

)
≤ ε

C · α
2 ·N2 =: D. Here, T̃ (X,Y,Z) is the statistic

that adds up the entries of the corresponding matrix T ∈ RN×N , subtracts Nd, and clips the result
by 0 from below and α2 ·N2 from above.

Therefore, we can create our D-Lipschitz extension T̂ of T̃ that sends all datasets (X,Y,Z) ∈
(Rd)3N to R. Finally, because we also have that the sum of all entries in T equals Nd+N2∥µ∥2±
O(N

√
d + αN

√
N) with probability at least 0.98 if each X(i), Y (i), Z(i) is drawn i.i.d. from
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N (µ, I), we can apply the same algorithm as in Theorem 5 to obtain a private algorithm that suc-
ceeds with high probability using the same number of samples, up to a factor of 3. This completes
the proof in the computationally inefficient case.

For the computationally efficient case, we let V be the matrix where we divide each entry of
U by R, where R = Õ(

√
d) is a sufficiently large polylogarithmic multiple of

√
d. Then, with

probability at least 0.98,

•
∑N

i=1

∑N
j=1 Vi,j =

N2∥µ∥2
R ±O(N

√
d+ αN

√
N).

• For all i, j ∈ [N ], Vi,j ∈ [−1, 1].

• For all i,
∑N

j=1 Vi,j = ±(
√
N + α · N√

d
), and for all j,

∑N
i=1 Vi,j = ±L(

√
N + α · N√

d
).

These are the same guarantees as in Corollary 58. In addition, we again have that if we change
exactly one entry among (X,Y,Z), this changes at most one row and one column. Because of this,
we can apply Theorem 52 in the same way that we prove Theorem 7 to complete the proof in the
computationally efficient case.

F.3. Upper Bounds: Product Distributions

We establish the following theorem.

Theorem 61 Let µ∗ ∈ [−1/2, 1/2]d be fixed, and letH0 consist of P(µ∗), andH1 consist of P(µ)
over all µ with dTV(P(µ),P(µ∗)) ≥ α. Then:

1. (Theorem 9, computationally inefficient case) There exists a computationally inefficient al-
gorithm that, using

N = Õ

(
d1/2

α2
+

d1/3

α4/3 · ε2/3
+

1

α · ε

)
samples, can (ε, 0)-privately distinguish betweenH0 andH1.

2. (Theorem 9, computationally efficient case) There exists a computationally efficient algo-
rithm that, using

N = Õ

(
d1/2

α2
+

d1/4

α · ε

)
samples, can (ε, 0)-privately distinguish betweenH0 andH1.

The product distribution case will be remarkably similar to the identity-covariance Gaussian
case. First, by Lemma 21, we may assume WLOG that µ∗ = 0. In addition, we can use Proposition
15 to state that for any distribution µ with dTV(P(µ),P(µ∗)) ≥ α, then ∥µ∥2 ≥ α

C0
for some fixed

absolute constant C0. So, it suffices to distinguish between the null hypothesis of µ = µ∗ = 0
and ∥µ∥ ≥ α

C0
. We can replace α

C0
with α, up to a constant factor loss in our sample complexity.

We can again apply Remark 24 to say that H1 is being given N i.i.d. samples from P(µ), where
α ≤ ∥µ∥ ≤ 2α.

Now, we note that Theorem 37 works for both identity-covariance Gaussians and product dis-
tributions. Because of this, we obtain the same concentration bounds as in the known identity
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covariance case. Hence, for the computationally inefficient case, Lemmas 44 and 45 can be trivially
adapted to the product case, as can Theorem 5. Likewise, in the computationally efficient case,
we can generate the matrix V and apply Theorem 52 in the same way as we did in the identity
covariance case.

F.4. Upper Bounds: Tolerant Testing

We start with the known-covariance Gaussian case. Specifically, we establish the following theorem.

Theorem 62 Let µ∗ ∈ Rd and Σ ∈ Rd×d be fixed (with Σ positive definite). Let H0 consist of
N (µ,Σ) over all µ with

√
(µ− µ∗)TΣ−1(µ− µ∗) ≤ α

2 , and H1 consist of N (µ,Σ) over all µ
with

√
(µ− µ∗)TΣ−1(µ− µ∗) ≥ α. Then:

1. (Theorem 10, computationally inefficient Gaussian case) There exists a computationally
inefficient algorithm that, using

N = Õ

(
d1/2

α2
+

d1/3

α4/3 · ε2/3
+

1

α · ε

)

samples, can (ε, 0)-privately distinguish betweenH0 andH1.

2. (Theorem 10, computationally efficient Gaussian case) There exists a computationally effi-
cient algorithm that, using

N = Õ

(
d1/2

α2
+

d1/4

α · ε

)
samples, can (ε, 0)-privately distinguish betweenH0 andH1.

We may assume WLOG that µ∗ = 0 and Σ = I . First, we recall Lemma 25, which tells
us that if X(1), . . . , X(N) i.i.d.∼ N (µ, I) and X̄ = X(1) + · · · + X(N), then if ∥µ∥ ≤ α

2 then
E[∥X̄∥2] ≤ Nd+N2 · α2

4 and if ∥µ∥ ≥ α then E[∥X̄∥2] ≥ Nd+N2 · α2. In addition, assuming
∥µ∥ ≤ 2α and α ≤ 1, then V ar[∥X̄∥2] = O(N2d+N3α2).

Indeed, we will see that the same algorithms as in Theorem 5 and Theorem 7 will exactly apply
in the tolerant case. Of course, the algorithms will still be (ε, 0)-differentially private and will still
output 1 with probability at least 2/3 if the data is drawn i.i.d. from N (µ, I) with α ≤ ∥µ∥ ≤ 2α.
So, it suffices to show that the algorithm outputs 0 with probability at least 2/3 even if the data is
drawn i.i.d. from N (µ, I) with ∥µ∥ ≤ α

2 .

To see why this holds in the computationally inefficient case, we recall that if X(1), . . . , X(N) i.i.d.∼
N (µ, I) for some ∥µ∥ ≤ α

2 , then with probability at least 0.99, X = (X(1), . . . , X(N)) ∈ C. This
implies that with probability at least 0.98, T̂ (X) ≤ N2 · ∥µ∥2 + C(N

√
d + αN

√
N) for some

sufficiently large constant C by Chebyshev’s inequality. So, with probability at least 0.9, we have
our final private estimate T̂ (X)+Lap(D/ε) ≤ N2 · α2

4 +C(N
√
d+αN

√
N)+ 10 · Dε . Recalling

that D = ε
C · α

2N2, this is less than N2 · α2

2 as long as

N ≥ Ω

(√
d

α2

)
.
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But recall that we also needed ∆ = Õ(
√
Nd+ αN + C

ε ) ≤ D, and this holds as long as

N ≥ Õ

(
d1/3

α4/3 · ε2/3
+

1

α · ε

)
.

Hence, we still obtain the same number of samples required for our inefficient upper bound.
In the computationally efficient case, we note that with probability at least 0.99, the matrix

V generated from X(1), . . . , X(N) i.i.d.∼ N (µ, I) has the sum of all entries equal to N2·∥µ∥2
R ±

O
(
N
√
d+αN

√
N

R

)
by Corollary 58, where R = Õ(

√
d). Recalling that ∥µ∥ ≤ α

2 and γ = α2

R , this

is at most γ·N2

4 +O
(
N
√
d+αN

√
N

R

)
≤ 1.01·γ·N2

4 , assuming that N ≥ C
(√

d
α2

)
for some sufficiently

large constant C. Hence, we can apply Theorem 52 (with a slight modification to replace γ·N2

4 with
1.01·γ·N2

4 , for which the proof is nearly unaffected) to get that as long as γ ·N2 ≥ Õ
(
L
ε + 1

ε2

)
, the

algorithm works, where γ = α2

Õ(
√
d)

and L =
√
N +α · N√

d
. As in the proof of Theorem 7, it suffices

for N ≥ Ω̃
(√

d
α2 + d1/4

α·ε

)
.

Next, we move to the Boolean Product case. Here, we establish the following theorem.

Theorem 63 Let µ∗ ∈ [−1/2, 1/2]d and C be a sufficiently large constant. LetH0 consist of P(µ)
over all µ with dTV(P(µ),P(µ∗)) ≤ α

C , andH1 consist ofP(µ) over all µ with dTV(P(µ),P(µ∗)) ≥
α. Then:

1. (Theorem 10, computationally inefficient Product case) There exists a computationally in-
efficient algorithm that, using

N = Õ

(
d1/2

α2
+

d1/3

α4/3 · ε2/3
+

1

α · ε

)

samples, can (ε, 0)-privately distinguish betweenH0 andH1.

2. (Theorem 10, computationally efficient Product case) There exists a computationally effi-
cient algorithm that, using

N = Õ

(
d1/2

α2
+

d1/4

α · ε

)
samples, can (ε, 0)-privately distinguish betweenH0 andH1.

Again, we may assume WLOG that µ∗ = 0, by Lemma 21. In addition, by Proposition 15, we
have that dTV(P(0),P(µ)) ∈

[
min(∥µ∥,1)

C0
, C0 ·min(∥µ∥, 1)

]
for all µ ∈ [−1, 1]d, for some fixed

absolute constant C0. So, if we set C = 2C2
0 , it suffices to distinguish between ∥µ∥ ≤ α

C ·C0 =
α

2C0

and ∥µ∥ ≥ α
C0

. By replacing α with α
C0

, up to an asymptotic factor it suffices to distinguish between
∥µ∥2 ≤ α

2 and ∥µ∥2 ≥ α for all α ≤ 1
2 . Again, we may assume WLOG (by Proposition 23 and

Remark 24) that we are distinguishing between ∥µ∥2 ≤ α
2 and α ≤ ∥µ∥2 ≤ 2α.

At this point, the proof of Theorem 63 proceeds almost identically to the proof of Theorem 62.
Indeed, we have the same concentration bounds for ∥X̄∥2 where X̄ = X(1) + · · ·+X(N), as well
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as the same required bounds on the row and column sums, the individual entries, and the sums of
submatrices in the matrix T where Ti,j = ⟨X(i), X(j)⟩, assuming that X(1), . . . , X(N) i.i.d.∼ P(µ).
Hence, the same proof as for Theorem 62 will apply to Theorem 63.
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