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Open Problem: Properly learning decision trees in polynomial time?
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Abstract
The authors recently gave an nO(log logn) time membership query algorithm for properly learning
decision trees under the uniform distribution (Blanc et al., 2021). The previous fastest algorithm
for this problem ran in nO(logn) time, a consequence of Ehrenfeucht and Haussler (1989)’s classic
algorithm for the distribution-free setting. In this article we highlight the natural open problem
of obtaining a polynomial-time algorithm, discuss possible avenues towards obtaining it, and state
intermediate milestones that we believe are of independent interest.
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1. Introduction

Decision trees are one of the most intensively studied concept classes in learning theory. In this
article we focus on the problem of properly learning decision trees, where the learning algorithm
is expected to return a hypothesis that is itself a decision tree. Decision tree hypotheses are of par-
ticular interest because of their simple structure, and they are the canonical example of a highly
interpretable model. Indeed, it is natural to seek decision tree hypotheses even when learning con-
cepts that are not themselves decision trees. Algorithms such as ID3, CART, and C4.5 that construct
decision tree representations of datasets are among the most popular and empirically successful al-
gorithms in everyday machine learning practice.

We focus on the setting of PAC learning under the uniform distribution with membership queries,
where the learner is given query access to an unknown size-s decision tree target f : {0, 1}n →
{0, 1} and is expected to construct a decision tree hypothesis h : {0, 1}n → {0, 1} satisfying
Prx∼{0,1}n [f(x) ̸= h(x)] ≤ ε, where x ∼ {0, 1}n is uniform random.

The main open problem of this article is the following:

Open Problem 1 Design a poly(n, s, 1/ε)-time membership query algorithm for properly learn-
ing size-s decision trees over n variables to error ε under the uniform distribution.
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Regarding the use of membership queries, it would of course be preferable if the algorithm
does not require them and instead only uses uniform random labeled examples. However, there are
two significant barriers to such an algorithm. First, no such statistical query algorithm (SQ) exists:
any SQ algorithm for learning size-s decision trees has to make at least nΩ(log s) SQs (Blum et al.,
1994), and therefore run in at least that much time. Second, since every k-junta is a decision tree
of size 2k, a poly(n, s) time algorithm for learning size-s decision trees yields a polynomial-time
algorithm for leaning log(n)-juntas. Designing such an algorithm that uses only random examples
would represent a breakthrough on one of the central and longstanding open problems of learning
theory (Blum and Langley, 1997); indeed, it is reasonable to conjecture that there are no polynomial
time algorithms for learning k-juntas from random examples for any k = ωn(1).

We also mention here the distinction between a strictly proper versus weakly proper algorithm:
the former returns a size-s decision tree hypothesis for a size-s target, whereas the latter can return
a decision tree of any size. Open Problem 1 is open even for weakly proper algorithms.

2. Background and current status

Ehrenfeucht and Haussler (1989) were the first to study the problem of properly learning deci-
sion trees. They gave an nO(log s)-time weakly proper algorithm that works in the more general
distribution-free setting and relies only on random examples. Subsequently, two additional algo-
rithms were designed in the uniform-distribution setting, both of which being substantially different
from Ehrenfeucht and Haussler (1989)’s and from each other. First, Mehta and Raghavan (2002)
gave an nO(log s) time strongly proper algorithm. More recently, Blanc et al. (2020) designed a
membership query algorithm that runs in poly(n) · sO(log s) time. For the standard setting where
s = poly(n), all three algorithms run in quasipolynomial time, nO(logn).

Recent work of the authors gives a uniform-distribution membership query algorithm that runs
in almost-polynomial time, nO(log logn), bringing us a step closer to the resolution of Open Prob-
lem 1. The algorithm is strongly proper and additionally works in the agnostic setting (Haussler,
1992; Kearns et al., 1994):

Theorem 2 (Blanc et al. (2021)) There is an algorithm which, given as input ε > 0 and s ∈ N,
and query access to f : {0, 1}n → {0, 1} that is promised to be opts-close to a size-s decision tree,
runs in time

Õ(n2) · (s/ε)O(log((log s)/ε))

and outputs a size-s decision tree T that is w.h.p. (opts + ε)-close to f . If f is monotone, the
algorithm does not need membership queries and relies only on random examples.

Table 1 summarizes the performance guarantees of the algorithms discussed in this section.

3. Possible approaches

In this section we discuss how the techniques of Blanc et al. (2021) could lead to further progress
on Open Problem 1.
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Reference Running time Hypothesis size Access to target Agnostic?

Ehrenfeucht and Haussler (1989) nO(log s) nO(log s) Random examples ×

Mehta and Raghavan (2002) nO(log s) s Random examples ✓

Blanc et al. (2020) poly(n) · sO(log s) sO(log s) Queries ×

Blanc et al. (2021) poly(n) · sO(log log s) s Queries ✓

Table 1: Algorithms for properly learning size-s decision trees. Ehrenfeucht and Haussler (1989)’s
algorithm works in the more general distribution-free setting, whereas all others work in
the uniform-distribution setting.

Adaptive greediness. The algorithm of Blanc et al. (2020) is a greedy algorithm: At each step,
it places the variable with the largest influence, a natural measure of variable importance, as the
root. This idea is extended in Blanc et al. (2021): Rather than greedily place down the variable with
largest influence, that work proposes a brute force search of the top-k most influential variables to
find the best root. They are able to show that, setting k = polylog(s) and building a tree of depth
log s, the algorithm will build a high accuracy tree. The resulting runtime is kO(log s) = sO(log log s).

Perhaps k need not be so big at every iteration? Can algorithms that choose a different amount
of greediness (different k) at each step maintain accuracy while improving runtime? For example,
it’s not hard to show that an algorithm that uses k = polylog(s) for the first log s

log log s levels, and then

k = O(1) for the remaining log s − log s
log log s would run in poly-time. Is such adaptive greediness

sufficient to learn an accurate tree?

New splitting criteria. The algorithm of Mehta and Raghavan (2002) is based on a dynamic
programming approach—to build an accurate decision tree for function f , we first solve the sub-
problems of building trees for restrictions of f to at most O(log s) variables. A priori, there are
nO(log s) such restrictions, and this is the main bottleneck in the runtime. The algorithm of Blanc
et al. (2021) can then be viewed as a refinement of this approach: Their structural result states that
for each restricted function fπ, there exists a subset of polylog(s) ≪ n variables that contains a
near-optimal choice for the variable to be queried at the root. Furthermore, this subset can be iden-
tified by estimating the influence of each variable w.r.t. fπ. This allows us to reduce the number of
subproblems to (polylog(s))O(log s) = sO(log log s).

We note that even slightly strengthening this structural result would immediately give a polynomial-
time algorithm. Suppose that at each step, the algorithm tries to find the variables to be queried at the
first ℓ levels of the tree (rather than only the root). Assuming that the number of such choices is at
most Nℓ, the number of subproblems is at most (Nℓ · 2ℓ)O(log(s))/ℓ, which is poly(s) if Nℓ = 2O(ℓ).
More concretely, can we pin down ℓ = Θ(log log s) levels at once, while exploring only polylog(s)
different choices at each step? If the influence itself is not enough for identifying a small subset of
near-optimal choices, would a slightly “higher-order” splitting criterion suffice?
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4. Intermediate milestones

In this section we state a couple of intermediate milestones towards Open Problem 1 that we believe
are of independent interest.

Monotone targets. A function f is monotone if for any x ≺ x′ in the partial order on {0, 1}n,
we have f(x) ≤ f(x′). Monotone functions have some complexity restrictions that can allow
for stronger learning algorithms. For example, in the improper setting, polynomial-time learning
algorithms exist for both monotone functions (O’Donnell and Servedio, 2007) and general func-
tions (Kushilevitz and Mansour, 1993), but the learner for general functions requires membership
queries whereas the learner for monotone functions requires only random examples. A promising
and independently interesting intermediate step towards Open Problem 1 is to design a polynomial-
time proper learner under the assumption that the target function is monotone; potentially even one
that uses only random examples.

More expressive hypotheses. An algorithm for properly learning decision trees returns a decision
tree hypothesis. As an intermediate step towards such an algorithm, one could consider allowing the
algorithm return more expressive hypotheses that nevertheless share the desirability of decision trees
(e.g. interpretability). Two concrete examples are branching programs—generalizations of decision
trees where the underlying graph is a DAG—and generalized decision trees whose internal nodes
branch on the outcomes of halfspaces instead of singleton variables. Both these representations
are easily seen to be exponentially more succinct than decision trees. In the context of boosting,
branching program hypotheses have been shown to be enable exponential improvements over the
decision tree hypotheses (Mansour and McAllester, 2002; Long and Servedio, 2005).
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