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Abstract
Who reads the search results beyond the first page in Google Search? An exaggerated answer to
this question is nearly nobody. This motivates approximate personalized ranking of web-pages that
are only immediately relevant to a user instead of ranking all web pages that exist. The results
in Google Search, Twitter and other popular search engines traditionally utilize the Personalized
PageRank (PPR) vector to rank the results in their search engines. Additionally, there is a plethora
of applications beyond the web (Gleich, 2015) which are modelled using PPR. In recent work
by Andersen et al. (2006); Gleich and Mahoney (2014); Fountoulakis et al. (2019), it was shown
that small probabilities in PPR vector, e.g., web pages beyond the first page in Google Search, can
be thresholded out automatically by utilizing `1-regularization or equivalently by early termination.
Both versions result in approximate computation of PPR. The current fastest method for computing
the `1-regularized PPR uses proximal gradient method and requires Õ((αρ)−1) total running time,
where α is the teleportation parameter and ρ is a parameter which controls the level of sparsity in
the `1-regularized PPR. It is important to note that the running time complexity does not depend on
the size of the underlying graph (e.g. the length of the PPR vector). Such property has become a
prerequisite to probe modern large scale networks. A seemingly natural way to build an even faster
algorithm for computing the `1-regularized PPR is to accelerate the proximal gradient method and
consequently reduce the running time complexity to Õ((

√
αρ)−1). This will lead to a speed-up by

a factor of 1/
√
α and improve the running time of various network analytic methods which build

upon PPR. However, the original analysis of the proximal gradient method in Fountoulakis et al.
(2019) does not apply to the accelerated version. While we have empirical evidence that indicates
accelerated proximal gradient requires less total running time, it is not even clear if acceleration
would not lead to a worse running time complexity in the worst case.
Keywords: PageRank, convex optimization, network analysis

1. Introduction

Consider an undirected and unweighted graph G = (V,E) where V is a set of n nodes and E is
a set of m edges. Also, consider a seed node v ∈ V . The Personalized PageRank (PPR) vector
assigns values to the nodes such that nodes that are “close” to the seed node get higher values. The
PPR vector can be computed by solving the following linear system

x = αs+ (1− α)Wx, (1)

where α ∈ (0, 1] is the teleportation parameter, s ∈ Rn is an indicator vector that is equal to 1 for
the seed node v and zero elsewhere. W is a random walk transition matrix. We will consider the
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lazy random walk transition W = 1
2

(
I +AD−1

)
. Normally, W is defined as W = AD−1, our

choice of lazy random walk is done for convenience. It is known that lazy random walk version of
PPR is equivalent to the standard random walk version of PPR up to a change in α (Andersen et al.,
2006). In particular, let x(α) be the PPR vector in (1) with W = 1

2

(
I +AD−1

)
and x̃(α) be the

PPR vector in (1) with W = AD−1, we have x(α) = x̃
(

2α
1+α

)
. The linear equation in (1) can

be also thought as the eigenvector with eigenvalue equal to 1 of the personalized transition matrix
αs1T + (1− α)W where 1 is the all-ones vector of length n.

1.1. Notations

We assume without loss of generality that nodes are ordered from 1 to n. We denote by di the degree
of node i, which equals the number of neighbors of node i. We denote by D ∈ Rn×n the diagonal
matrix of degrees, i.e., Dii = di. We define

Q := D−1/2

{
D − 1− α

2
(D +A)

}
D−1/2,

and
f(x) :=

1

2
xTQx− αxTD−1/2s. (2)

The matrix Q is also equivalent to Q = αI + 1−α
2 L, where L := I − D−1/2AD−1/2 is the

symmetric normalized Laplacian matrix. One can easily see that the gradient ∇f is 1-Lipschitz
continuous w.r.t. the `2-norm. Moreover, f is α-strongly-convex with respect to the `2-norm.

2. `1-regularized Personalized PageRank

In the seminal work of Andersen et al. (2006) it was shown that one can compute the PPR vector
(1) approximately and still recover approximately the values for nodes that are “close” to the seed
node. Moreover, in Andersen et al. (2006) it was shown that small probabilities in the PPR vector
can be thresholded to zero automatically, without even having to compute them. This property is
crucial because it implies that the running time of the approximate PPR (APPR) algorithm finds an
approximate PPR vector in Õ((αρ)−1) time and the output vector has at most 1/ρ non-zero entries,
where ρ is a tolerance parameter of APPR.

In Fountoulakis et al. (2019) it was shown that APPR can be replaced with `1-regularization. In
particular, instead of applying the APPR to solve (1) approximately, one can solve the `1-regularized
PPR problem

minimize ρα‖D1/2x‖1 +
1

2
xTQx− αxTD−1/2s (3)

using proximal gradient descent. It was shown in Fountoulakis et al. (2019) that the `1-regularized
PPR problem also maintains the values of nodes that are “close” to the seed node and at the same it
sets nodes with very small probability in the PPR vector (1) to zero. More importantly, it was shown
in Fountoulakis et al. (2019) that the solution of `1-regularized PPR and the output of APPR have
the same guarantees for the local graph clustering problem. Moreover, it was shown that a black-
box proximal gradient descent algorithm can solve the `1-regularized PPR problem in Õ((αρ)−1)
time. The proof of the running time result relies on showing that the standard proximal gradient
method of (3) updates at most 1/ρ number of coordinates (instead of n number of coordinates) at
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each iteration. Then the worst-case running time bound follows from standard analysis of proximal
gradient descent (Beck and Teboulle, 2009) that the iteration complexity to obtain an ε-accurate
solution is O

(
1
α log 1

ε

)
.

3. Acceleration and Open Question

If we apply accelerated gradient methods, e.g., FISTA (Beck and Teboulle, 2009), Linear Cou-
pling (Allen-Zhu and Orecchia, 2017), to solve (3), the iteration complexity is reduced to

O
(√

1
α log 1

ε

)
for obtaining an ε-accurate solution. Unfortunately, since there is no known upper

bound on the number of coordinates updated by the accelerated methods at each iteration, we only

know of a pessimistic running time bound O
(
n
√

1
α log 1

ε

)
for accelerated methods. This bound

easily becomes worse than the unaccelerated version if 1/ρ < n. In fact, for most practical applica-
tions such as web-page ranking and local community detection, we usually have 1/ρ � n or even
1/ρ = O(1). On the other hand, a series of numerical experiments in Hu, Chufeng (2020) (see, e.g.,
Figure 5.1 and Figure 5.2 thereof) show that accelerated methods update at most δ/ρ number of co-
ordinates at every iteration, where δ ≤ 2. These simulations suggest that while accelerated methods
update more number of coordinates at every iteration, this number remains a constant times 1/ρ as
opposed to growing with n. If this was true, then accelerated methods would enjoy a faster running
time complexity Õ((

√
αρ)−1) and consequently speed up numerous graph analytic methods which

build on PPR. Furthermore, an affirmative answer will not only improve the currently fastest algo-
rithm for approximately computing PPR, but also likely inspire more algorithmic developments that
apply numerical optimization techniques to solve graph-based learning problems scalably.
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