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Abstract

Both asymptotic and non-asymptotic instance-dependent regret bounds are known for the stochastic
multi-armed bandit problem. Such regret bounds are known to be tight up to lower order terms in
the setting of Gaussian rewards (Garivier et al., 2019). We revisit the related problem of stochastic
online learning with feedback graphs, where asymptotically optimal instance dependent algorithms
are known. Surprisingly, the notion of optimal finite-time regret is not a uniquely defined property
in this context and in general, it is decoupled from the asymptotic rate. We pose two open problems.
First we ask for a characterization of the finite-time instance-dependent optimal regret. Next, we
ask for a characterization of the set of graphs for which the finite time regret is bounded by the
asymptotically optimal rate, for reasonable values of the time horizon.

1. Introduction

The problem of stochastic online learning with feedback graphs is modeled as a sequential game.
At every step of the game, the player selects an action/arm from a finite action set [ K | and then
receives feedback. Each arm i € [ K] admits a reward distribution with mean p;. The feedback
consists of a random sample from the reward distributions of a subset of [K]. This feedback is
specified by a graph G = (V, E) with vertex set V = [ K], where an edge (i,j) € E indicates that
the player observed the reward of arm j when selecting arm ¢. The goal of the player is to maximize
their expected cumulative gain after 7" rounds of the game. The learning scenario above, introduced
by (Mannor and Shamir, 2011), interpolates between the two classical settings of online learning
with expert advice (Littlestone and Warmuth, 1994; Freund and Schapire, 1997), and the bandit
setting (Lai et al., 1985; Auer et al., 2002a,b). The expert (full information) setting corresponds
to an undirected complete feedback graph with self-loops, and the bandit setting corresponds to a
feedback graph with edge set consisting only of self-loops.

The literature for both the full information and bandit settings is very rich. In the full informa-
tion setting, it is possible to obtain instance dependent regret bounds, which only depend on the
reward distribution of the arms (Mourtada and Gaiffas, 2019) and have no dependence on the time-
horizon T'. In the bandit setting it is possible to obtain similar regret bounds with only logarithmic
dependence on T (Auer et al., 2002a). Further, tight asymptotic and non-asymptotic lower bounds
are known for both settings (Mourtada and Gaiffas, 2019; Garivier et al., 2019) in the case when the
reward distributions are Gaussian with constant variance. In both settings the algorithms also enjoy
good finite time guarantees, matching the known lower bounds up to constant factors.
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In the feedback graphs setting, algorithms which enjoy instance dependent bounds are also
known Caron et al. (2012); Buccapatnam et al. (2014); Wu et al. (2015); Cohen et al. (2016); Buc-
capatnam et al. (2017); Lykouris et al. (2020); Li et al. (2020). Such bounds are more favorable
than the optimal bounds in the bandit setting, and depend on the structure of the feedback graph.
Furthermore, Wu et al. (2015); Li et al. (2020) propose algorithms which enjoy asymptotically opti-
mal regret bounds. However, unlike in the bandit setting, the finite time component of these bounds
might dominate the time-dependent component for exponentially many steps in K (Marinov et al.,
2022). Surprisingly, it turns out that there exists feedback graphs on which any algorithm will fail to
match the asymptotically optimal rate in finite time, for a large class of problem instances. Thus, we
pose the question of characterizing the finite time instance-dependent rates for the stochastic online
learning problem with feedback graphs.

2. Problem setup

In this note we are interested in fixed undirected feedback graphs, with self-loops at every arm. We
assume that the distribution of the reward of each arm i € [K] is Gaussian with variance -~ and

V2

mean /;'. We assume that the means are in [0, 1]. For each arm i we define the gap A; = p* — ;.
where p* = max;e[g) p; is the mean of the optimal round. We also denote the minimum gap by
Apin. At each round ¢ € [T] the player selects an arm ¢; and observes a sample r; ;, drawn from
the distribution of arm ¢;. The player also observes samples 7 ; for all neighbors j € N (i;) of i,
according to the feedback graph G. The objective of the player is to minimize their cumulative
pseudo-regret®:

T
Reg(T) =p'T'-E [Z Tt,z't] .
t=1

For simplicity, we assume that there exists a unique optimal arm with index ¢*. Further, we assume
the informed setting, in which the player has access to the full feedback graph at the start of the
game.

2.1. Prior work

Caron et al. (2012) designed a UCB-type algorithm with guarantees which depend on the most
favorable clique covering of the graph, that is guaranteed to be at least as favorable as the optimal
bandit bound of order O(log(T") ;. A%) However, the bound depends on the ratio of the max-
imum and minimum mean reward gaps within each clique, which can be very large. Cohen et al.
(2016) presented an action-elimination style algorithm (Even-Dar et al., 2006) and showed a re-
gret bound of order O(log(T') Xjez. fi*y A%), where Z is the least favorable independent set. Later,
Lykouris et al. (2018) showed that the UCB-type algorithm from (Caron et al., 2012) also enjoys a
similar guarantee up to a logarithmic factor in 7". Marinov et al. (2022) show very simple instances
in which these bounds are suboptimal. Buccapatnam et al. (2014) derive an asymptotic lower bound

1. We make the Gaussian assumption, because it is easier to state instance-dependent optimality in terms of the reward

gaps.
2. For the rest of the note we refer to pseudo-regret simply as regret.
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for the problem which is characterized by the value of the following LP

c*(A,G):=min (z,A) st > xj>—, Vie[K]\I". (LP1)
xR jeN;

The lower bound states that the regret of any algorithm must satisfy lim7_, logg)) > c(AG).
Furthermore, Buccapatnam et al. (2014, 2017) design algorithms which solve a version of the above
LP, and show a regret bound which depends on the domination number of G, as long as the fraction
of minimum and maximum gaps is constant. There exist instances where the proposed algorithms
are sub-optimal and would incur K-times more regret than an instance optimal algorithm. Wu
et al. (2015); Li et al. (2020) also design algorithms based on LP1. These algorithms indeed enjoy
asymptotically tight regret bounds, however, there are instances on which the finite time component
dominates the bound for reasonable values of 1. More precisely, the finite part of the regret bound is
of order (K /A2, ), which dominates the time-dependent component of order O(log(T)/Amin)
for T' < O(exp(K/Amin))-

3. Instance-dependent finite-time bounds

We look for instance-dependent, finite-time bounds of the following form Reg(7T) < f(T, A, G),
where f can be decomposed into a finite-time component and the asymptotically optimal rate
¢ (A,G)log(T), thatis f(T) = c*(A,G)log(T) + d(A,G) for some function d which only de-
pends on the instance. We note that such a d exists both for the bandit setting, as bounds with
d < Yiir A% are readily available (Lattimore and Szepesvari, 2020), and in the full information
setting, where ¢* =0 and d = © (IOA"%I(DK)) (Mourtada and Gaiffas, 2019).

For a family of graphs G and gap-vectors D we pose the following open problem:

Open problem: Characterize the functions d € RP*Y for which the following holds. For any
graph G € G, gap vector A € D, and algorithm A, there exists a stochastic online learning problem
instance with feedback graph G and rewards with means consistent with A so that the regret of 4
is lower bounded by

Reg(T)
c*(A,G)log(T) + x

>d(G,A)AT*

mln

forall > 0,7 € N.

The family of graphs, G, we are interested in is all undirected graphs with self-loops and the
family of gap-vectors is D = [0,1]%~!. We are also interested in algorithms which admit regret
bounds of the order Reg(7") = O(c*log(T) + d(A,G)). The term T is needed in the statement
above due to the following. Because d(G, A) is independent of 7', and Reg(7") might have polyno-
mial behavior in T for small 7" (e.g. Theorem 3 (Garivier et al., 2019)), we would like to take the
smaller of the polynomial behavior of Reg(7") and d(G, A) as the lower bound. For example, in
the full information setting, where ¢* = 0, the characterization of d becomes d < O(log(K)), as for
any d > w(log(K')) we can find a T" and « such that the above inequality is not satisfied.

3.1. Preliminary progress

Marinov et al. (2022) show the following result.
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Theorem 1 For any Ay and K, there exists a graph G such that for any algorithm, there exists
an instance with a unique optimal arm, such that the regret of the algorithm satisfies

Reg(T)

c*log(T) + 1

- Q(KF),

forany T s.t. O(exp(Kl/g)) >T > Q( i{:j )

The above theorem shows that there exists at least one family of problem instances in which
¢*(A,G) is dominated by d(A,G) for T = O(exp(K'/®)). The construction in the theorem is
general in the sense that the smallest gap A, is independent of the graph G, however, G is fixed
and has very specific properties. Marinov et al. (2022) also give the following characterization of d.
For a fixed problem instance let ;2 denote the vector of rewards with ¢-th coordinate ;.

Lemma 2 Fix any instance with rewards vector p € [0,1/ 2]K and arbitrary feedback graph G. Let
As(p1) be the set of problem instances with means 1’ € yu + [0,1/257115. Then for any algorithm
and all s € R, there exists an instance in As(p) such that the regret of the algorithm is bounded by
the following LP

1
min (A% x s.t. x> —, Yiely., LP2
min (A%,z) ];V i 2 55 . (LP2)

where Ty = {i e [K]:A; <1/2571).

The result in the above lemma can now be used by taking a maximum over all s € [0,1logy(1/€)] to
characterize finite time rates. However, this result has a min-max flavor in the sense that all possible
instances which are close to  are considered and thus does not really answer the more complicated
question of a purely instance dependent quantity.

Marinov et al. (2022) also show a family of graphs, different from the bandit graph, for which
d(A,G) < c¢*(A,G) for all gap vectors A. This motivates our second open problem.

Open problem: What is a necessary and sufficient condition on G for which we can guarantee
d=0(c")?
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