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Do you pay for Privacy in Online learning?
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Online learning, in the mistake bound model, is one of the most fundamental concepts in learn-
ing theory. Differential privacy, instead, is the most widely used statistical concept of privacy in the
machine learning community. It is then clear that defining problems which are online differential
privacy learnable is of great interest. In this paper, we pose the question on if the two problems are

the same from a learning perspective, i.e., is privacy for free in the online learning framework?
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1. Introduction

Online learning, in the mistake bound model, is one of the most fundamental concepts in learning
theory. Let X = [J X, be the instance space. The learner, in this model, receives at each timestep
t an unlabelled example x; € X, predicts a label 7, corresponding to x;, and then receives the true
label y; for x;. During this interaction, the learner maintains a working hypothesis h;, which it uses
to predict y; = hy(z;), and then uses the true label y; to update the working hypothesis to ~;41. The
performance of the learner is measured by the number of mistakes the algorithm makes, i.e.,:

T
Mistakes (T, (¢, y1)52y) == Y (he(1) # ur) -
t=1
Given this definition of performance, a hypothesis class C on the instance space X = |J X, is said
to be online learnable in the mistake bound model if there exists a learner L that makes at most
poly (n, size (c)) mistakes on any sequence of samples consistent with a concept ¢ € C, where p is
some polynomial. This is also known as the realisable setting.

Another relevant concept in learning theory is privacy. The most widely used statistical notion
of privacy in the machine learning literature is differential privacy. An (e, d)-differentially pri-
vate (randomised) algorithm is guaranteed to output similar distributions over the output space of
the algorithm when presented with inputs that only differ in one element. More formally, in the of-
fline setting, a learning algorithm A : X — ) is said to be (e, §)-differentially private if, for any two
datasets S1, So that differ in just one element, we have that P [A (S7) € Q] < e‘P[A(S2) € Q]+ 6
where () C ) is any subset of the output space of the algorithm. We define differential privacy in
the online setting in Definition 3.

Some previous works (Jain et al., 2012; Agarwal and Singh, 2017; Abernethy et al., 2019) treat
the problem of constructing online learning algorithms (mostly in the regret minimization setting
(Shalev-Shwartz and Singer, 2007)) maintaining the differential-privacy properties. However, it is
still not clear how these two problems (non-private mistake bound and private mistake-bound) are
connected and if there exists some problem which is online learnable in the mistake bound model
but not private online learnable in the mistake bound model. In other words, the open problem
presented in this paper concerns a fundamental question about learning:

“Is privacy for free in the online learning framework?”
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Figure 1: The figure summerizes the relation between the mentioned four online learning problems:
Non-Private Oflline Learning (NP-Off), Non-Private Mistake Bound Learning (NP-MB),
Private-Offline Learning (P-Off) and Private Mistake-Bound model (P-MB).

2. Related works on learnability

In this section we discuss relevant literature on characterising the different learning problems intro-
duced in the previous section and establishing the connections between them. We summarise these
relations in Figure 1.

Non-Private Offline Learning The (non-private) offline learning (NP-off) is the most classical
learning problem in learning theory. This was formalised by the seminal paper of Valiant (1984)
as Probably approximately correct (PAC) learnability. A hypothesis class is said to be («, 3)-PAC
learnable if there is an algorithm that when given access to a number of samples polynomial in
5 %, and the problem size returns a hypothesis that achieves error less than o with probability
greater than 1 — 3. Here, the problem size simply refers to the minimal size of a representation
of a hypothesis from the hypothesis class. It is now well known that the Vapnik—Chervonenkis
dimension (VC) dimension (Vapnik, 1999) exactly characterises non-private offline learnability in

that any hypothesis class with finite VC dimension is learnable in the PAC model (and vice versa).

Non-Private Online Learning As discussed before, a hypothesis class 7 is said to be learnable
in the online mistake bound model if there is a finite M and an online algorithm .4 such that A
makes at most M mistakes on any sequence of data labelled with some h € H. Interestingly,
it is also possible to characterise online learnability using a different combinatorial measure of
the hypothesis class called the Littlestone dimension, which we define in Definition 1. Littlestone
(1988) proved that for any hypothesis class H, there exists an online learning algorithm that makes
at most Ldim (#) mistakes on any sequence labelled by some h € H, thereby characterising online
learnability.
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Definition 1 (Littlestone dimension (Littlestone, 1988)) The littlestone dimension of a hypothe-
sis class H, denoted as Ldim (H) is the depth of the largest tree that can be shattered by H, where
we define “shattering a tree” in Definition 2.

Definition 2 (Shattering a tree) Consider a full binary tree of depth d such that each node is
labelled by some x € X. For a set of labels {yi}?zl, define its corresponding path as starting from
the root and taking the left child when y = —1 and the right child when y = +1. The tree is said
to be shattered by some h € H if for every set of labels in {—1, 1}d, its corresponding path can be
shattered by some h € H i.e. for all z; in the path, h (z;) = y.

Private Offline Learning The non-private offline PAC learnability definition was extended to
the case of differentially private learnability by Raskhodnikova et al. (2008). A hypothesis class
is (e, 0, a, B)-differentially private PAC learnable if there exists an («, 3)-PAC learning algorithm
that is also (e, §)-differentially private. Raskhodnikova et al. (2008) showed that any problem that
is PAC learnable is also learnable by a differentially private learning algorithm but the required
number of samples is dependant on the size of the input space in addition to the VC dimension,
which can be arbitrarily larger than the VC dimension. This left open the question of whether the
sample complexity can be characterised exactly by a combinatorial measure of the complexity of
the hypothesis class.

Alon et al. (2019) resolved a part of the question by answering that the required number of sam-
ples is at least 2 (log™ (Ldim (#))) where log™ is the iterated logarithm. Alon et al. (2022) proved
the reverse side and concluded that any class with finite littlestone dimension can be learned offline
privately with a finite number of samples. More specifically they showed that any hypothesis class
with a finite Littlestone dimension d is private learnable with number of samples double exponen-
tial in d. This concludes that private offline learnability is exactly characterised by the littlestone
dimension (Littlestone, 1988), which in turn exactly characterises online learnability in the mistake
bound model thereby showing an equivalence between the two learning regimes. However, this
leaves open the question of whether private learnability, with a suitable definition, is harder than
non-private offline learnability.

3. Open Problem

In this section we expose the research question introduced in this paper. Before it, we introduce the
concept of {e, J }-differentially private online learning algorithm.

Definition 3 ({¢, 0 }-differential online privacy) Let H be a set of hypotheses H = | ;- | H,, over
the input space X = \J,;° | X,. Then an online algorithm A is {e,d}-online differentially private
if for all T € N, for any two sequences of points St and S’. that differs in at most one entry the
following holds:

Pr(A(St) € S) < e Pr(A(S;) € S) +6

The question that we pose is if every problem that is online learnable it is also online privately
learnable, in other words, if the set of problems solvable in these two learnability classes are the
same. This question can be solved proving one of the two following theorems, where theorem 1
implies that there exists a problem which is online learnable but non-online private learnable and
theorem 2 implies, instead, the opposite.
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Theorem 1 There exists a set of hypotheses H = \J,- | Hn over the input space X = ;- | Xy,
such that for all T € N, for any sequence of points St = {(x1,h* (z1)),..., (zr,h* (7))}, such
that h* € H,

1. (Online learnable) there exists an online algorithm A that does not make more than M
mistakes on the sequence St for some M < oo.

2. (Not privately online learnable) any (e, d)-differentially private online algorithm makes at
least M' > M + « (€, 9, T) mistakes,

where o : R x [0, 1] — N is such that « (¢,0,T) 25

S

Theorem 1 claims that there exists some hypothesis class that is non-privately online learnable but
any private online algorithm makes infinite mistakes when ¢ < /7. Here, the symbols > and <
mean greater than or less than upto a multiplicative constant and 25 ignores the dependance on §.
As we know that a non-private algorithm can solve the problem with small number of mistakes,
it is natural to expect that any hardness result would only hold for a sufficiently small e. We next
state another hypothesis which states that any non-privately online learnable hypothesis class is also
privately online learnable as long as the privacy parameter € is bounded away from zero. We state
this in Theorem 2 below.

Theorem 2 Let H be any hypothesis class that is online learnable. Then, there exists a positive
monotonically decreasing function vy : Ry — Ry such that for all h € H,T € N, and v(T') 2,
€ > /T there exists an (e, §)-differentially private online algorithm that makes a finite number of
mistakes for any sequence of points St = {(z1,h* (x1)), ..., (xr, h* (x1))} of length T labelled
by h € H, where v (z) < \/z forall z € R,.

Theorem 2 states, instead, that for every hypothesis class that is online learnable, there exists an
(e, 0)-differentially private online learning algorithm as long as € is not too small. The lower bound
on ¢ is natural to consider as imposing the condition that ¢ goes to zero essentially necessitates a
trivial algorithm where we cannot hope to have any reasonable mistake bound.

By definition, all privately online learnable problems are also non-privately online learnable (take
€ — 0). Therefore, one possible implication of a proof for Theorem 1 would be the definition of
a combinatorial measure that is even more restrictive than littlestone definition (Ldim is more re-
strictive than VC), which we are not aware of and is perhaps of even wider interest to the learning
theory community.

However, recent results from Bousquet et al. (2021) in the context of universal learning (which
is another definition of learnability in the same spirit as PAC learning) suggests that a combinatorial
measure that is more restrictive than the Littlestone dimension is unlikely. In particular, they show
that there are only three possible rates in universal learning with the fastest being characterised by
the littlestone dimension and the slowest by VC dimension. This makes Theorem 2 more likely.
Some initiali progress towards this has been made by Golowich and Livni (2021). An interesting
outcome of a proof for Theorem 2 is a general algorithm to convert an online learner to a private
online learner. Another interesting implication of this could be a characterisation of v which would
establish a lower bound for privacy in online learning algorithms. We promise a wheel of parmigiano
reggiano to whoever proves Theorem 1 or a tub of biriyani for solving Theorem 2.
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