
Proceedings of Machine Learning Research vol 178:1–36, 2022 35th Annual Conference on Learning Theory

Clustering with Queries under Semi-Random Noise

Alberto Del Pia DELPIA@WISC.EDU

Mingchen Ma MMA54@WISC.EDU

Christos Tzamos TZAMOS@WISC.EDU

University of Wisconsin-Madison

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
The seminal paper by Mazumdar and Saha (2017a) introduced an extensive line of work on

clustering with noisy queries. Yet, despite significant progress on the problem, the proposed meth-
ods depend crucially on knowing the exact probabilities of errors of the underlying fully-random
oracle. In this work, we develop robust learning methods that tolerate general semi-random noise
obtaining qualitatively the same guarantees as the best possible methods in the fully-random model.

More specifically, given a set of n points with an unknown underlying partition, we are allowed
to query pairs of points u, v to check if they are in the same cluster, but with probability p, the an-
swer may be adversarially chosen. We show that information theoretically O

(
nk logn
(1−2p)2

)
queries

suffice to learn any cluster of sufficiently large size. Our main result is a computationally efficient
algorithm that can identify large clusters withO

(
nk logn
(1−2p)2

)
+poly

(
log n, k, 1

1−2p

)
queries, match-

ing the guarantees of the best known algorithms in the fully-random model. As a corollary of our
approach, we develop the first parameter-free algorithm for the fully-random model, answering an
open question in Mazumdar and Saha (2017a).
Keywords: Clustering, Semi-random noise, Polynomial-time algorithm

1. Introduction

In a typical graph clustering problem, we are given a graphG = (V,E) and we want to partition the
vertices V into several clusters that satisfy certain properties. Clustering is ubiquitous in machine
learning, theoretical computer science and statistics as this simple formulation has many applica-
tions in both theory and practice. Many theoretical problems can be formulated as clustering and
it is a common NP-complete problem. Moreover, many practical problems where we want to put
data or people that are similar together can be viewed as clustering, like record linkage and entity
resolution (Fellegi and Sunter, 1969) in databases, or community detection in social networks.

However, in many applications, one may not have direct access to the full graph, and it may
be costly to query the relationship between two nodes. For example, in entity resolution where the
goal is to find records in a database that refer to the same underlying entity, it is common to use
crowdsourcing to develop human in the loop systems for labeling the edges (Green Larsen et al.,
2020; Karger et al., 2011; Wang et al., 2012; Dalvi et al., 2013; Gokhale et al., 2014; Vesdapunt
et al., 2014; Mazumdar and Saha, 2017b). Asking humans requires effort, time, and money, so one
would want to cluster the items efficiently without asking workers to compare every pair of items.

Motivated by these applications, the work of Mazumdar and Saha (2017a) introduced a theo-
retical model of clustering with queries. In this model, we don’t have access to the edges of the
graph in advance but may query a similarity oracle that may not always give the correct answer.
The problem is defined as follows.

© 2022 A. Del Pia, M. Ma & C. Tzamos.

DEL PIA MA TZAMOS

Definition 1 (Clustering with a faulty oracle) We are given a set of points V = [n], which contains
k latent clusters V ∗i ⊆ V for i ∈ [k] such that

⋃
i∈[k] V

∗
i = V and for every 1 ≤ i < j ≤ k,

V ∗i ∩ V ∗j = ∅. For every pair of points u, v ∈ V , the edge (u, v) is labeled by 1, if u, v are in the
same cluster, and is labeled by 0, if u, v are in different clusters. The number k and the clusters
V ∗i for i ∈ [k] are unknown. We are given an oracle O : V × V → {0, 1} to query point pairs of
V . Every time the oracle O is invoked it takes a pair of points u, v as an input and outputs a label
for the edge (u, v) which may be erroneous. Our goal is to recover the latent clustering with high
probability, minimizing the queries to the oracle O.

While the above formulation of Definition 1 does not specify how the errors are introduced by
the oracle, the work of Mazumdar and Saha (2017a) focused specifically on a fully-random faulty
oracle that gives incorrect answers with a fixed probability of error p ∈ [0, 1/2) known in advance.

Definition 2 (Fully-random model of clustering with a faulty oracle) Under the fully-random model,
the oracle O of Definition 1 behaves as follows. There is a known error parameter p ∈ [0, 1/2)
such that, for every point pair u, v, O(u, v) outputs the true label of (u, v) with probability 1 − p
and outputs the wrong label of (u, v) with probability p.

Mazumdar and Saha (2017a) showed that in this model Ω
(

nk
(1−2p)2

)
queries are necessarily

needed to recover the underlying clustering while O
(
nk logn
(1−2p)2

)
queries suffice to learn any large

enough cluster. They also designed a computationally-efficient algorithm with query complexity
O
(
nk2 logn
(1−2p)4

)
to recover large clusters. Since then, follow-up papers Green Larsen et al. (2020);

Peng and Zhang (2021) extended their results and obtained efficient algorithms with lower query
complexity O

(
nk logn
(1−2p)2

)
+ poly

(
log n, k, 1

1−2p

)
.

While these works pin down the query complexity of the problem in the fully-random model,
they crucially rely both on the fully-random model and the exact knowledge of the error probability
parameter p. In fact, Mazumdar and Saha (2017a) posed as an open problem whether one can design
a parameter-free algorithm with the same guarantees.

Motivated by these shortcomings of the fully-random model, our goal in this work is to obtain
more robust algorithms that work beyond the fully-random model and do not rely on the knowledge
of the error probabilities. Removing these crucial assumptions will enable broader applicability
of the algorithms as in practice, the amount of noise may depend on the particular nodes being
compared and may vary significantly from query to query making it impossible to know it or predict
it in advance.

Our work focuses on a significantly more general semi-random model that allows the oracle
answers to be given adversarially with some probability.

Definition 3 (Semi-random model of clustering with a faulty oracle) Under Definition 1, the oracle
O is defined in the following way. There is a known error parameter p ∈ (0, 1/2) such that, for every
point pair u, v, with probability 1− p, O(u, v) outputs the true label of (u, v) and with probability
p, (u, v) is corrupted and O(u, v) outputs an arbitrary label given by an adversary, depending on
the sequential output of O and the latent clustering.

An important special case of the semi-random model corresponds to the case where every edge
(u, v) has a fixed and unknown probability of error p(u,v) chosen in advance that is upper bounded

2

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

by the known bound p. We refer to this case as non-adaptive semi-random noise and note that the
more general Definition 3 can handle more adaptive instantiations of noise where the answers of the
oracle may depend on the answers given in advance.

The main contribution of our work is the design of novel algorithms that can tolerate semi-
random noise essentially matching the guarantees obtained for the fully-random model. Before
formally presenting our results, we give an overview of the existing methods and guarantees for the
fully-random model.

1.1. Prior work on the fully-random model

In Table 1, we summarize previous results, as well as our main results, for the fully-random model
and the semi-random model.

Model Query Complexity Reference Remark
Fully-random Ω

(
nk

(1−2p)2

)
Mazumdar and Saha (2017a) Lower bound

O
(
nk logn

(1−2p)2

)
Mazumdar and Saha (2017a) Time inefficient

O
(
nk2 logn

(1−2p)4

)
Mazumdar and Saha (2017a)

O
(
n logn

(1−2p)2
+ log2 n

(1−2p)6

)
Green Larsen et al. (2020) k = 2

O
(
nk logn

(1−2p)2
+ k4 log2 n

(1−2p)4

)
Peng and Zhang (2021) Nearly balanced

O
(
nk logn

(1−2p)2
+ k10 log2 n

(1−2p)4

)
Peng and Zhang (2021) k is known

O
(
nk logn

(1−2p)2
+ k9 log k log2 n

(1−2p)12

)
Theorem 6 Parameter-free

Semi-random O
(
nk logn

(1−2p)2

)
Theorem 4 Time inefficient

O
(
nk logn

(1−2p)2
+ k9 log k log2 n

(1−2p)12

)
Theorem 5

O
(
n logn

(1−2p)2
+ log2 n

(1−2p)6

)
Theorem 15 k = 2

Table 1: Query complexity of algorithms under the fully-random and the semi-random model

Previous work that studied the query complexity of the clustering problem focused on the fully-
random model. Mazumdar and Saha (2017a) gave an information theoretical algorithm that can
recover all clusters of size Ω

(
logn

(1−2p)2

)
with query complexity O

(
nk logn
(1−2p)2

)
, which matches the

information theoretical lower bound of Ω
(

nk
(1−2p)2

)
in the same paper within a O(log n) factor.

They also designed an efficient algorithm that can recover all clusters of size at least Ω(k logn
(1−2p)4

)

with query complexity O(nk
2 logn

(1−2p)4
). Followed by their work, Green Larsen et al. (2020) gave an

efficient algorithm with an improved query complexityO
(
n logn

(1−2p)2
+ log2 n

(1−2p)6

)
. More recently, Peng

and Zhang (2021) designed an efficient algorithm that recovers all clusters of size Ω
(
k4 logn
(1−2p)2

)
with query complexity O

(
nk logn

(1−2p)2
+ k10 log2 n

(1−2p)4

)
for known k. For every constant k, their query

complexity matches the information lower bound within a O(log n) factor. Their algorithm can

3

DEL PIA MA TZAMOS

even exactly recover the underlying clustering with query complexity O
(
nk logn

(1−2p)2
+ k4 log2 n

(1−2p)4

)
if

each underlying cluster has size Ω
(
n
k

)
.

1.2. Our contributions

We now present our contributions for the semi-random model in more detail.

An information-theoretically tight algorithm We first give an information theoretical algorithm
for the problem presented in Section 3.

Theorem 4 There is an algorithm ESTIMATION(V, p) such that under the semi-random model,
ESTIMATION(V, p) has query complexity O

(
nk logn
(1−2p)2

)
and recovers all clusters of size at least

Ω
(

logn
(1−2p)2

)
with probability at least 1− 1/poly(n).

Theorem 4 shows even under the semi-random model, O
(
nk logn
(1−2p)2

)
queries suffice to learn all

clusters of size Ω
(

logn
(1−2p)2

)
. This matches the performance of the information theoretical algo-

rithm proposed in Mazumdar and Saha (2017a). Furthermore, since the fully-random model is a
special case of our semi-random model and the information theoretical lower bound for the fully-
random model is Ω

(
nk

(1−2p)2

)
, our query complexity matches the information theoretical lower

bound within a O(log n) factor.
While Theorem 4 gives a nearly-tight information theoretical bound for the problem, the un-

derlying algorithm is not computationally efficient. This is expected as there is a conjectured
computational-statistical gap even in the case of fully-random noise (Peng and Zhang, 2021).

A computationally efficient algorithm We next turn to the question of what can be achieved
using a computationally efficient algorithm. We obtain the following performance guarantee.

Theorem 5 There is an algorithm CLUSTERING(V, p), such that under the semi-random model,
with probability at least 1 − 1/poly(n), CLUSTERING(V, p) recovers all V ∗i , such that |V ∗i | =

Ω
(
k4 logn

(1−2p)6

)
in polynomial time. Furthermore, the query complexity of CLUSTERING(V, p) is

O
(
nk logn

(1−2p)2
+ k9 log k log2 n

(1−2p)12

)
.

Our algorithm, presented in Section 4, can recover all large clusters under the semi-random
model with a query complexity of O

(
nk logn
(1−2p)2

)
+ poly(k, 1/(1 − 2p), log n). This bound quali-

tatively matches the best known bound from Peng and Zhang (2021) for the fully-random model,
and even achieves a slightly better dependence on k. We note that a bound of Ω

(
nk

(1−2p)2

)
+

poly(k, 1/(1 − 2p)) is conjectured by Peng and Zhang (2021) to be necessary for computationally
efficient estimation even in the fully-random model.

A parameter-free algorithm for the fully-random model As a corollary of our approach, we
design the first efficient parameter-free algorithm under the fully-random model whose performance
is given by the following theorem and solves the open question given by Mazumdar and Saha
(2017a).

4

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Theorem 6 Under the fully-random model, there is a parameter-free algorithm such that with
probability at least 1 − 1/poly(n), recovers all clusters of size at least Ω

(
k4 logn

(1−2p)6

)
. Furthermore,

the query complexity of the algorithm is O
(
nk logn

(1−2p)2
+ k9 log k log2 n

(1−2p)12

)
.

1.3. Technical overview

The main approach in developing algorithms with low query complexity is to first identify a small,
but large enough, subset of vertices B that mostly come from the same cluster V ∗i and then com-
pare all vertices in the graph to the vertices of B to fully identify the whole cluster V ∗i with high
probability. Such a set B is called biased, and is computed by first subsampling a subgraph T of the
whole graph and solving a clustering problem in the subgraph. Then, once we identify a cluster V ∗i ,
we can repeat the process to recover the remaining clusters as well. This is a common technique of
the prior work (Mazumdar and Saha, 2017a; Green Larsen et al., 2020; Peng and Zhang, 2021) as
well as our work. The main challenge which leads to the difference between the methods is how
one can arrive at such a biased set.

To get an information theoretical algorithm, Mazumdar and Saha (2017a) found the largest
subcluster of T by computing the heaviest subgraph of T . However, as we show in Appendix C.3,
this method fails under the semi-random model even if we have two clusters. To get an efficient
algorithm, Peng and Zhang (2021) did this by filtering small subclusters of T via counting degree
of each vertex and running an algorithm proposed by Vu (2018) for a community detection problem
under the Stochastic Block Model, which highly depends on the fully-random noise. On the other
hand, Mazumdar and Saha (2017a); Green Larsen et al. (2020) used a simple disagreement counting
method to cluster the subgraph T . While this simple technique is again very tailored to the fully-
random model, we can extend this to the semi-random model but only in a very special case. We
obtain an algorithm for semi-random noise where there are k = 2 clusters and the noise is non-
adaptive (see Theorem 15 in Appendix B.1). As we show, this technique breaks down completely
once any of these two restricting assumptions are removed. In general, previous efficient algorithms
on fully random models can fail easily under semi-random models, because they all use techniques
such as counting disagreements or counting degrees locally to obtain information from a single
vertex or a pair of vertices. These statistics highly depend on the exact knowledge of the noise
rate and thus under the semi-random model, an adversary can easily make the algorithms fail. A
detailed discussion can be found in Appendix B. To obtain more robust efficient algorithms under
the semi-random model, a key challenge is to design a statistic that can obtain information from a
larger neighborhood of vertices and can be computed efficiently.

Our Approach To obtain robust algorithms for clustering under more than 2 clusters and more
general semi-random noise we require a more involved clustering procedure for the subsampled
graph T which we carefully choose.

For our information theoretical algorithm, our method computes the largest subset of T that has
no negative cut (assuming edges that are labeled 0 contribute as -1). As we show, such a set must
correspond a set of vertices all coming from the same cluster in the underlying partition, provided
that T is large enough.

As this step is computationally intractable, to obtain a computationally-efficient algorithm, our
method relies on efficiently computing an (approximate) correlation clustering of T . Our key ob-
servation is that when T is large enough, every clustering that has a small cost must be close to the

5

DEL PIA MA TZAMOS

underlying clustering and must have a special structure. To make this more specific, such a cluster-
ing function must contain some very large cluster and each of these large clusters must be biased to
contain a majority of points from the same true cluster. This implies if we can compute a correlation
clustering T̃ of T then we can use those large clusters in T̃ to recover the corresponding underlying
clusters.

To obtain an approximation to the correlation clustering of the sample set T , we rely on an
approximation algorithm developed by Mathieu and Schudy (2010); Ailon et al. (2008) that obtains
an SDP relaxation of the clustering problem and then performs a rounding step. We show that the
resulting clustering that the algorithm obtains has a sufficiently small an additive error O

(
|T |3/2
(1−2p)

)
that enables us to identify heavily biased clusters efficiently. By carefully choosing the size of T ,
we show that with high probability, the clustering we obtain must contain at least one big cluster,
which is a biased set for a true cluster V ∗i for i ∈ [k].

1.4. Further related work

There has been a lot of work in developing algorithms for clustering. A lot of research has focused
specifically on clustering under random graphs. Typical problems include community detection un-
der stochastic block models (SBM) (Abbe, 2017) and clique detection under planted clique models
(Alon et al., 1998). In these problems, a hidden structure such as a clustering or a clique is planted
in advance, a random graph is generated according to some distribution and we are asked to recover
the hidden structure efficiently using the given random graph.

Another popular clustering problem is correlation clustering, which was proposed in Bansal
et al. (2004). In this problem, we are given an undirected graph G and our goal is to partition the
vertices into clusters so that we minimize the number of disagreements or maximize the number of
agreements. As the correlation clustering problem is NP-hard and many works develop efficient ap-
proximation algorithms (Bansal et al., 2004; Demaine and Immorlica, 2003; Giotis and Guruswami,
2006; Swamy, 2004; Charikar et al., 2005; Ailon and Karnin, 2012; Makarychev et al., 2015; Math-
ieu and Schudy, 2010) for worst case instances, while others (Shamir and Tsur, 2007; Joachims and
Hopcroft, 2005) focus on the average case complexity of clustering when the graph is generated
according to some underlying distribution.

A popular application of clustering is the signed edge prediction problem (Leskovec et al., 2010;
Burke and Kraut, 2008; Brzozowski et al., 2008; Chen et al., 2014). In this problem, we are given
a social network, where each edge is labeled by ‘+’ or ‘-’ to indicate if two nodes have positive
relations or negative relations. The goal here is to use a small amount of information to recover the
sign of the edges, which implies we want to reconstruct the network by partial information.

Besides the large body of work on clustering problems with access to the full graph, recently
other papers studied clustering problems with queries under different settings. (Ashtiani et al., 2016;
Gamlath et al., 2018) study the k-means problem with same-cluster queries. (Saha and Subrama-
nian, 2019; Ailon et al., 2018) study the correlation clustering problem with same-cluster queries.
Some other recent works on clustering with queries include (Huleihel et al., 2019; Li et al., 2021;
Bressan et al., 2020).

Beyond clustering, there are also other settings in learning theory where semi-random noise
makes the problem significantly more challenging and requires more sophisticated algorithms than
the corresponding fully-random case. Semi-random noise corresponds to the popular Massart noise
model (Massart and Nédélec, 2006) in the context of robust classification. While classification

6

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

under fully-random noise was known for many years (Blum et al., 1998), robust learning methods
that can tolerate Massart noise were only recently discovered (Diakonikolas et al., 2019; Chen et al.,
2020).

2. Preliminaries and notation

Let V = [n] be a set of points, which contains k underlying clusters V ∗i ⊆ V , for i ∈ [k], such that⋃
i∈[k] V

∗
i = V and V ∗i ∩ V ∗j = ∅, for every 1 ≤ i < j ≤ k. We say a set S ⊆ V is a subcluster

if S ⊆ V ∗i for some i ∈ [k]. We say Ṽ : V × V → {0, 1} is a clustering function over V based on
{Ṽ1, . . . , Ṽt}, if {Ṽ1, . . . , Ṽt} is a partition of V and, for every (u, v) ∈ V × V ,

Ṽ (u, v) =

{
1 if ∃i = j, s.t.u ∈ Ṽi, v ∈ Ṽj ,
0 if ∃i 6= j, s.t.u ∈ Ṽi, v ∈ Ṽj .

In particular, throughout the paper, we denote by V ∗ the clustering function over V based on the un-
derlying clusters and we denote by V̄ the binary function over V ×V corresponding to a realization
of O over all point pairs of V . Given a binary function F : V × V → {0, 1}, the adjacency matrix
of F is the matrix M(F) ∈ {0, 1}|V |×|V |, such that M(F)uv = F (u, v) for every u, v ∈ V . For
convenience, when it does not create confusion, we use the same notation for a clustering function,
the set of clusters it is based on, and its adjacency matrix.

Given A,B ∈ Rn×n, we define the distance between A,B to be d(A,B) :=
∑

1≤i≤j≤n |Aij −
Bij |. Let F,H be two binary functions over V × V . We define the distance between F,H to be

d(F,H) := d(M(F),M(H)) =
∑

1≤u≤v≤|V |

|F (u, v)−H(u, v)|.

Given a binary function E over V × V , a correlation clustering Ṽ of E is a clustering of V that
minimizes d(V ′, E) among all clustering V ′ of V .

Next, we introduce two definitions that will be heavily used throughout the paper.

Definition 7 Let η ∈ (0, 1/2] and C ⊆ V . A subset B of V is called an (η, C)-biased set if

|B ∩ C| ≥ (
1

2
+ η)|B|.

Intuitively, an (η, C)-biased set is a set whose majority of points come from C. On the other
hand, if a set does not contain a significant fraction of points that come from an underlying cluster,
we call it an η-bad set. Formally, we have the following definition.

Definition 8 Let η ∈ (0, 1/2]. A subset B of V is called an η-bad set if for every i ∈ [k], B is not
an (η, V ∗i)-biased set.

The importance of Definition 7 is that, under the semi-random model, we can recover an under-
lying cluster V ∗i from an (η, V ∗i)-biased set using the following simple procedure, which has been
proposed in Ben-Dor et al. (1999); Mazumdar and Saha (2017a); Green Larsen et al. (2020); Peng
and Zhang (2021).

7

DEL PIA MA TZAMOS

Algorithm 1 DEGREETEST(v,B) (Test if v ∈ V ∗i using an (η, V ∗i)-biased set B)
if S =

∑
u∈B O(u, v) ≥ |B|/2 then return “Yes” else return “No”

The intuition behind Algorithm 1 is that if more than half of the points ofB come from V ∗i , then
we can useB to distinguish if a point v is in V ∗i or not, by looking at the query results. According to
Peng and Zhang (2021), for every constant η ∈ (0, 1/2], we can use an (η, V ∗i)-biased set B of size
Ω(logn

η2(1−2p)2
) to recover V ∗i via DEGREETEST(v,B) with high probability under the fully-random

model. However, under the semi-random model, to recover V ∗i using B, B needs to be sufficient
large and biased so that it can be used to find the corresponding true cluster. To state this formally,
we have the following Lemma 9. We leave the proof to Appendix A.

Lemma 9 Under the semi-random model, let η ∈ (p, 1/2] and let B be an (η, V ∗i)-biased set for
some i ∈ [k]. If |B| ≥ max{ 80 logn

η2(1−2p)2
, 5 logn

(η−p)2 }, then with probability 1 − 1/poly(n), for every

v ∈ V , DEGREETEST(v,B) returns “Yes” if v ∈ V ∗i , and it returns “No” if v 6∈ V ∗i .

3. Information theoretical algorithm

Before designing efficient algorithms, we first need to figure out how many queries are needed in
order to recover the underlying clusters under the semi-random model. In this section, we answer
this question formally and we propose an information theoretical algorithm. Our algorithm has a
structure similar to the information theoretical algorithm in Mazumdar and Saha (2017a), but we
use a different statistic to overcome the semi-random noise. In particular, our algorithm can achieve
query complexityO

(
nk logn

(1−2p)2

)
under the semi-random model, which matches the information theo-

retical lower bound Ω
(

nk
(1−2p)2

)
within a O(log n) factor. Our main algorithm is Algorithm 2. The

theoretical guarantee of Algorithm 2 is stated in Theorem 4 presented in the introduction. The proof
of Theorem 4 is in Appendix C.1.

Algorithm 2 ESTIMATION(V, p) (Recover all large clusters of V)
Let C = ∅
Randomly select T ⊆ V with |T | = c logn

(1−2p)2
, V ← V \ T . c is a large enough constant

while V 6= ∅ do
while FINDBIGCLUSTERS(T) = ∅ do . Find subsets T ∩ V ∗i of size Ω

(
logn

(1−2p)2

)
exactly.

Randomly select v from V ,
T ← T ∪ {v}, V ← V \ T . Enlarge T until T has a subcluster of size Ω

(
logn

(1−2p)2

)
.

for A ∈ FINDBIGCLUSTERS(T) do . Each A ∈ FINDBIGCLUSTERS(T) is a subcluster.
Randomly select B ⊆ A, such that |B| = 320 logn

(1−2p)2

A← A ∪ {v ∈ V | DEGREETEST(v, b) = “Yes”} . Grow up A into a full cluster.
C ← C ∪ {A}, V ← V \A

return C

ESTIMATION(V, p) outputs a set of clusters C. Each element in C is an underlying cluster.
Each point v ∈ V is a point that we cannot assign to a cluster in C. In the algorithm, we maintain

8

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

a set of points T as a sample set. If we can find all sets of the form T ∗i = T ∩ V ∗i such that |T ∗i | =
Ω
(

logn
(1−2p)2

)
, then we can use T ∗i to recover V ∗i with high probability, according to Lemma 9. If

such Ti does not exist, we enlarge T until there is such a set. In this way, we can recover all large
underlying clusters. To find these sets T ∗i , we an use the following Algorithm 3 with unlimited
computational power.

Algorithm 3 FINDBIGCLUSTERS(T) (Extract all subsets T ∩ V ∗i , i ∈ [k], of large size)
Query every point pair in T and assign weight wuv = 2O(u, v)− 1 to each point pair
Let C = ∅
while |T | ≥ 320 logn

(1−2p)2
do

Find the largest subset S ⊆ T such that valS := minA⊆S
∑

u∈A
∑

v∈S\Awuv > 0

if |S| < 320 logn

(1−2p)2
then return C

T ← T \ S,C ← C ∪ {S}
return C

FINDBIGCLUSTERS(T) assigns a weight wuv = 2O(u, v) − 1 to each point pair and extracts
the largest subset S ⊆ T such that S has no negative cut. We summarize the theoretical guarantee
of Algorithm 3 via the following Theorem 10, which plays a key role in the proof of Theorem 4.

Theorem 10 Let T ⊆ V be a set of points. Under the semi-random model, with probability at
least 1− 1/poly(n), FINDBIGCLUSTERS(T) = {T ∩ V ∗i | |T ∩ V ∗i | ≥

320 logn
(1−2p)2

}.

We sketch the proof of Theorem 10 here. We will show that if T contains a large subcluster,
then with high probability, the largest subcluster will not contain a negative cut. On the other hand,
with high probability, any large subset of T that is not a subcluster must contain a negative cut.
Therefore, every time we find a large subset that contains no negative cut, we must find the largest
subcluster contained in T . We summarize the above argument in Lemma 16 and Lemma 17 in
Appendix C.2. A complete proof of Theorem 10 can also be found in Appendix C.2.

We remark that this information theoretical result is nontrivial. In our algorithm we process the
sampled set T by finding the largest subset that has no negative cut, while in Mazumdar and Saha
(2017a), the authors did this by computing the heaviest subgraph. A simple example with k = 2 can
be used to show that their algorithm fails to recover the underlying clusters under the semi-random
model. Suppose we have two underlying clusters with the same size. We run the algorithm in
Mazumdar and Saha (2017a) to recover the two clusters. Every time we sample a set T of Ω(log n)
size, the adversary always outputs the true label for (u, v) if u, v are in the same underlying cluster,
but outputs a wrong label if u, v are in different underlying clusters. When the noise level is high,
in expectation, the heaviest subgraph of T is T itself and we have failed to recover the underlying
clusters. We present this example in detail in Appendix C.3.

4. Computationally efficient algorithm

In this section, we develop a computationally efficient algorithm for our clustering problem under
semi-random noise, presented in Algorithm 4. We analyze the performance of Algorithm 4 in
Theorem 5 presented in the introduction. The full proof of Theorem 5 is in Appendix D.4.

9

DEL PIA MA TZAMOS

Algorithm 4 CLUSTERING(V, p) (Recover all large clusters in V efficiently)

Let C = ∅, st = c′t3 logn

(1−2p)6
. c′ is a large enough constant

while V 6= ∅ do
t = 1, h = 0
while h = 0 and |V | ≥ tst do

Randomly select T ⊆ V of size tst
Let T̃ = APPROXCORRELATIONCLUSTER(T, 1/poly(n)) . Compute an approximation

of the correlation clustering of T , w.p. 1− 1/poly(n)
Let {T̂1, . . . , T̂h} := {T̃i ∈ APPROXCORRELATIONCLUSTER(T) | |T̃i| > st/2}, t← 2t

if |V | < tst and h = 0 then return C . Stop when V only contains small clusters
for i ∈ [h] do . Recover underlying clusters via η-biased sets

Randomly select Bi ⊆ T̂i of size 720 logn

(1−2p)2

Let Ṽi = {v ∈ V | DEGREETEST(v,Bi) = “Yes”}, C ← C ∪ {Ṽi}, V ← V \ Ṽi
return C

The output of CLUSTERING(V, p) is a set of underlying clusters C. The set V contains points
that we have not assigned to a cluster in C. In the algorithm, we maintain a variable t to estimate
the number of underlying clusters in V . In each round, we sample a set of points T , whose size
depends on t, and we compute a clustering T̃ of T to approximate the correlation clustering of T
via APPROXCORRELATIONCLUSTER(T, 1/poly(n)). As we will see, when |T | is large enough,
with high probability, we can find (η, V ∗i)-biased sets from this approximate correlation clustering.
Thus, we can use these biased sets to recover the corresponding underlying clusters. In this way, we
can recover all large underlying clusters until V contains a small number of points.

Next, we present the outline of the remainder of this section. In Section 4.1, we give APPROX-
CORRELATIONCLUSTER and show how well it can approximate the correlation clustering of T . In
Section 4.2, we present the structure of the approximate correlation clustering. Finally, we sketch
the proof of Theorem 5 in Section 4.3.

4.1. Approximate correlation clustering

Let T be a set of points and let F be a binary function over T × T . We consider the following
natural SDP relaxation of the correlation clustering problem, which has been used for designing the
approximate algorithm in Mathieu and Schudy (2010).

min d(X,F) =
∑

1≤u≤v≤|T |

|Xuv − F (u, v)|

s.t. Xuv +Xvw −Xuw ≤ 1 ∀u, v, w ∈ T
Xuu = 1 ∀u ∈ T, Xuv ≥ 0 ∀u, v ∈ T
X � 0.

(SDP(F))

10

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Algorithm 5 APPROXCORRELATIONCLUSTER(T, δ) (Approximate correlation clustering of T)
Query all point pairs of T ⊆ V and construct the corresponding binary function T̄
Compute X∗, a near optimal solution to SDP(T̄), with additive error at most 1/poly(n)
Use X∗ to do rounding O

(
log 1

δ

)
times and return the clustering T̃ that minimizes d(T̃ ,X∗)

(Compute a clustering T̃ by rounding around X∗): Start with T̃ = ∅
while T 6= ∅ do

Randomly select a point v from T and let U = {v}
for u ∈ T \ {v} do add u to U with probability X∗uv
T̃ ← T̃ ∪ {U}, T ← T \ {U}

return T̃

Theorem 11 Let T ⊆ V and δ ∈ (0, 1). Then T̃ = APPROXCORRELATIONCLUSTER(T, δ)
can be computed in poly

(
|T |, log 1

δ

)
time. Furthermore, under the semi-random model, there is a

constant c1 > 0 such that with probability at least 1−O(δ + exp (−|T |),

d(T̃ , T̄) ≤ d(T ∗, T̄) +
c1|T |

3
2

1− 2p
,

where T ∗ is the underlying clustering of T and T̄ is the query result over T × T .

We remark that Theorem 11 is implicit in the proof of Theorem 1 in Mathieu and Schudy (2010).
Here, we list the differences between the two results. First, the goal of Mathieu and Schudy (2010) is
to design a (1 + on(1))-approximate algorithm, while here we focus on the additive error. Second,
in Mathieu and Schudy (2010), Mathieu and Schudy used the optimal solution to the SDP to do
rounding. However, to the best of our knowledge, it is unknown if such solution can be obtained in
polynomial time. This is why, in this paper, we consider a near optimal solution and we show that it
is sufficient to achieve the same theoretical guarantee. Finally, in Mathieu and Schudy (2010), the
authors studied the performance of the algorithm in expectation, while here we give an exact bound
for the probability that Algorithm 5 succeeds. The proof of Theorem 11 is given in to Appendix D.1.

4.2. Structure of the approximate correlation clustering

In Section 4.1, we have seen that, from Theorem 11, with high probability, the output of Algorithm 5
is close to the underlying clustering function. In this section, we study the structure of the output
of Algorithm 5. We will see that, if we run Algorithm 5 over T with a large enough size, then the
clusters in the output must contain some big clusters and all such big clusters are distinct (η, V ∗i)-
biased sets. We summarize the main result of this section in the following theorem.

Theorem 12 Let T ⊆ V be a set of points such that |T | = tst, where st = c′t3 logn

(1−2p)6
, c′ is a large

enough constant and t ∈ N+. Let T̃ = APPROXCORRELATIONCLUSTER(T) and {T̂1, . . . , T̂h} :=
{T̃i ∈ T̃ | |T̃i| > st/2}. Let η = 1

4 + p
2 . Under the semi-random model, with probability at least

1− 1/poly(n) the following events happen.

• If there is some i ∈ [k] such that |T ∗i | > st, where T ∗i = T ∩ V ∗i , then h > 0.

• For every i ∈ [h], T̂i is an
(
η, V ∗j

)
-biased set for some j ∈ [k].

11

DEL PIA MA TZAMOS

• For every i, j ∈ [h], i 6= j, there is no ` ∈ [k] such that T̂i, T̂j are both (η, V ∗`)-biased sets.

We sketch the proof of Theorem 12 here and leave the full proof to Appendix D.3. The key
point of the proof of Theorem 12 is to show that, with high probability, any clustering function that
is far from the underlying clustering function will have a large additive error. We summarize this
result in Theorem 19 in Appendix D.2. Based on this technical theorem, we will show that if any
event in the statement of Theorem 12 does not happen, then T̃ must be significantly far from T ∗.
By Theorem 11, we know that, with high probability, T̃ has a small additive error and cannot be too
far from T ∗. Thus, the three events in the statement of Theorem 12 must happen together with high
probability.

4.3. Sketch of the proof of Theorem 5

According to Theorem 12, with probability at least 1− 1/poly(n), once the sampled set T contains
a subcluster of size st, APPROXCORRELATIONCLUSTER(T, 1/poly(n)) will contain some large
clusters T̂i. Each of them is an (η, V ∗i)-biased set and corresponds to a different underlying cluster.
Here, we choose η = 1

4 + p
2 . By Hoeffding’s inequality, with probability at least 1 − 1/poly(n),

the corresponding subset Bi of T̂i is a (η′, V ∗i)-biased set, where η′ = p+1
3 ∈ (p, η). Lemma 9

then implies that we can use Bi to recover V ∗i . This shows that every element in the output is an

underlying cluster. On the other hand, if there is an underlying cluster of size Ω
(
k4 logn

(1−2p)6

)
that has

not been recovered, then at the end of the algorithm we have |V | = Ω
(
k4 logn

(1−2p)6

)
. However, after

sampling T from V at most O(log k) times, T contains a subcluster of size st and the output will
be updated. This gives the correctness of Algorithm 4. From the above argument, we can see that,
throughout Algorithm 4, we have t = O(k), and thus |T | = O(ksk). This also implies that we
sample T at most O(k log k) times. So the number of queries we spend on constructing sample
sets is O

(
k log k|T |2

)
. From the correctness of the algorithm, we invoke Algorithm 1 a total of

O(nk) times to recover the underlying clusters. The total number of queries we perform to recover
the underlying clusters is O

(
nk logn
(1−2p)2

)
. Therefore, the query complexity of the algorithm can be

bounded by O
(
nk logn
(1−2p)2

)
+O

(
k log k|T |2

)
= O

(
nk logn

(1−2p)2
+ k9 log k log2 n

(1−2p)12

)
.

5. An efficient parameter-free algorithm under the fully-random model

In this section, we explain how Algorithm 4 can be used to design a parameter-free algorithm for the
fully-random model. Since we have an efficient algorithm for the semi-random model, in principle,
we can design an algorithm by guessing the parameter (1−2p) from 0 to 1 and applying Algorithm 4
for each guess, until we are very close to the true parameter. However, in this way we will need
to pay an extra log(1

1−2p) factor for the query complexity and it will require us to test when to
stop the guess. To overcome these problems, we sample a constant number of points A ⊆ V , and
query A × V before doing clustering. We will see that, by counting the disagreements of point
pairs in A, we can estimate a good upper bound p̄ for the true error parameter p. Then, we can
run CLUSTERING(V, p̄) to recover large underlying clusters efficiently. We present the following
algorithm whose performance is stated in Theorem 6 presented in the introduction and we leave the
proof of Theorem 6 to Appendix E.1.

12

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Algorithm 6 FCLUSTERING(V) (Parameter-free algorithm under fully-random model)
Randomly select A ⊆ V such that |A| = 9.
for any pair of vertices u, v ∈ A do

Set countuv to be the number of vertices w ∈ V such that O(u,w) 6= O(v, w).

Let p̄ := 1
2 −

1
4

√
1− 2M

n for M := min{countuv | u, v ∈ A, u 6= v}.
return CLUSTERING(V, p̄)

Acknowledgments

A. Del Pia is partially funded by ONR grant N00014-19-1-2322. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and do not neces-
sarily reflect the views of the Office of Naval Research.

References

Emmanuel Abbe. Community detection and stochastic block models: recent developments. The
Journal of Machine Learning Research, 18(1):6446–6531, 2017.

Nir Ailon and Zohar Karnin. A note on: No need to choose: How to get both a ptas and sublinear
query complexity. arXiv preprint arXiv:1204.6588, 2012.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: ranking
and clustering. Journal of the ACM (JACM), 55(5):1–27, 2008.

Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering with
same-cluster queries. In 9th Innovations in Theoretical Computer Science Conference (ITCS
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Farid Alizadeh. Interior point methods in semidefinite programming with applications to combina-
torial optimization. SIAM journal on Optimization, 5(1):13–51, 1995.

Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a random
graph. Random Structures & Algorithms, 13(3-4):457–466, 1998.

Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries.
Advances in neural information processing systems, 29, 2016.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56(1):
89–113, 2004.

Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal of
computational biology, 6(3-4):281–297, 1999.

Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. A polynomial-time algorithm for
learning noisy linear threshold functions. Algorithmica, 22(1):35–52, 1998.

Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. Exact recovery of
mangled clusters with same-cluster queries. Advances in Neural Information Processing Systems,
33:9324–9334, 2020.

13

DEL PIA MA TZAMOS

Michael J Brzozowski, Tad Hogg, and Gabor Szabo. Friends and foes: ideological social network-
ing. In Proceedings of the SIGCHI conference on human factors in computing systems, pages
817–820, 2008.

Moira Burke and Robert Kraut. Mopping up: modeling wikipedia promotion decisions. In Pro-
ceedings of the 2008 ACM conference on Computer supported cooperative work, pages 27–36,
2008.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative informa-
tion. Journal of Computer and System Sciences, 71(3):360–383, 2005.

Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Classification under misspecifica-
tion: Halfspaces, generalized linear models, and evolvability. Advances in Neural Information
Processing Systems, 33:8391–8403, 2020.

Yudong Chen, Ali Jalali, Sujay Sanghavi, and Huan Xu. Clustering partially observed graphs via
convex optimization. The Journal of Machine Learning Research, 15(1):2213–2238, 2014.

Nilesh Dalvi, Anirban Dasgupta, Ravi Kumar, and Vibhor Rastogi. Aggregating crowdsourced
binary ratings. In Proceedings of the 22nd international conference on World Wide Web, pages
285–294, 2013.

Erik D Demaine and Nicole Immorlica. Correlation clustering with partial information. In Approx-
imation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques, pages
1–13. Springer, 2003.

Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. Distribution-independent PAC learn-
ing of halfspaces with Massart noise. Advances in Neural Information Processing Systems, 32,
2019.

Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of the American Statistical
Association, 64(328):1183–1210, 1969.

Buddhima Gamlath, Sangxia Huang, and Ola Svensson. Semi-supervised algorithms for approx-
imately optimal and accurate clustering. In 45th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of clusters.
In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
1167–1176, 2006.

Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan Rampalli, Jude
Shavlik, and Xiaojin Zhu. Corleone: Hands-off crowdsourcing for entity matching. In Pro-
ceedings of the 2014 ACM SIGMOD international conference on Management of data, pages
601–612, 2014.

Kasper Green Larsen, Michael Mitzenmacher, and Charalampos Tsourakakis. Clustering with a
faulty oracle. In Proceedings of The Web Conference 2020, pages 2831–2834, 2020.

14

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

Wasim Huleihel, Arya Mazumdar, Muriel Médard, and Soumyabrata Pal. Same-cluster querying
for overlapping clusters. Advances in Neural Information Processing Systems, 32, 2019.

Thorsten Joachims and John Hopcroft. Error bounds for correlation clustering. In Proceedings of
the 22nd international conference on Machine learning, pages 385–392, 2005.

David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowdsourcing
systems. Neural Information Processing Systems, 2011.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in
online social networks. In Proceedings of the 19th international conference on World wide web,
pages 641–650, 2010.

Yi Li, Yan Song, and Qin Zhang. Learning to cluster via same-cluster queries. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, pages 978–987,
2021.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Correlation clustering
with noisy partial information. In Conference on Learning Theory, pages 1321–1342. PMLR,
2015.

Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of Statistics,
34(5):2326–2366, 2006.

Claire Mathieu and Warren Schudy. Correlation clustering with noisy input. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 712–728. SIAM, 2010.

Arya Mazumdar and Barna Saha. Clustering with noisy queries. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, pages 5790–5801, 2017a.

Arya Mazumdar and Barna Saha. A theoretical analysis of first heuristics of crowdsourced entity
resolution. In Thirty-First AAAI Conference on Artificial Intelligence, 2017b.

Pan Peng and Jiapeng Zhang. Towards a query-optimal and time-efficient algorithm for clustering
with a faulty oracle. In Proceedings of Thirty Fourth Conference on Learning Theory, pages
3662–3680, 2021.

Barna Saha and Sanjay Subramanian. Correlation clustering with same-cluster queries bounded by
optimal cost. In 27th Annual European Symposium on Algorithms (ESA 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

Ron Shamir and Dekal Tsur. Improved algorithms for the random cluster graph model. Random
Structures & Algorithms, 31(4):418–449, 2007.

Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite programming.
In SODA, volume 4, pages 526–527. Citeseer, 2004.

15

DEL PIA MA TZAMOS

Roman Vershynin. High-dimensional probability: An introduction with applications in data sci-
ence, volume 47. Cambridge university press, 2018.

Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. Crowdsourcing algorithms for entity resolu-
tion. Proceedings of the VLDB Endowment, 7(12):1071–1082, 2014.

Van Vu. A simple svd algorithm for finding hidden partitions. Combinatorics, Probability and
Computing, 27(1):124–140, 2018.

Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crowder: Crowdsourcing entity
resolution. Proceedings of the VLDB Endowment, 5(11), 2012.

Appendix A. Proof of Lemma 9

For u ∈ B, v ∈ V let xuv be the random variable such that

xuv =

{
1 if (u, v) is not corrupted
0 otherwise.

We first assume v ∈ V ∗i . It is sufficient to show
∑

u∈B∩V ∗i
xuv > |B|/2 with high probability,

because for every realization of O, we have∑
u∈B
O(u, v) =

∑
u∈B∩V ∗i

O(u, v) +
∑

u∈B\V ∗i

O(u, v) ≥
∑

u∈B∩V ∗i

xuv.

In expectation, we have

E
∑

u∈B∩V ∗i

xuv = (1− p)|B ∩ V ∗i | ≥ (1− p)
(

1

2
+ η

)
|B| =

(
1

2
− 1

2
p+ η(1− p)

)
|B| > 1

2
|B|,

(1)

where the first inequality holds because B is an (η, V ∗i)-biased set. The second inequality holds by
the following calculation.(

1

2
− 1

2
p+ η(1− p)

)
|B| − 1

2
|B| =

(
η − ηp− 1

2
p

)
|B| = 1

2
(p+ η)

(
1

2
− p
)
|B|+

(
3

4
− 1

2
p

)
(η − p) |B|

≥ η

2

(
1

2
− p
)
|B| > 0,

(2)
where the first inequality holds because 0 < p < η ≤ 1

2 .
Since for every u ∈ B ∩ V ∗i , (u, v) is corrupted independently, by Hoeffding’s inequality and

(1), we have

Pr

 ∑
u∈B∩V ∗i

xuv <
1

2
|B|

 ≤ exp

−2

(
E
∑

u∈B∩V ∗i
xuv − 1

2 |B|
)2

|B ∩ V ∗i |


≤ exp

(
−1

8
η2(1− 2p)2|B|

)
≤ 1

n10
.

16

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Here, the second inequality holds by (2) and the last inequality follows by |B| > 80 logn
η2(1−2p)2

. So every
single point v ∈ V ∗i has probability at most 1/n10 to be misclassified by DEGREETEST(v,B).

Next, we assume that v ∈ V ∗j for some j 6= i. It is sufficient to show with high probability∑
u∈B\V ∗j

(1− xuv) ≤ η|B|, because∑
u∈B
O(u, v) =

∑
u∈B∩V ∗j

O(u, v) +
∑

u∈B\V ∗j

O(u, v) ≤ |B ∩ V ∗j |+
∑

u∈B\V ∗j

(1− xuv)

≤
(

1

2
− η
)
|B|+

∑
u∈B\V ∗j

(1− xuv) .

In expectation, we have

E
∑

u∈B\V ∗j

(1− xuv) = p|B \ V ∗j | < η|B|. (3)

Since for every u ∈ B ∩ V ∗j , (u, v) is corrupted independently, by Hoeffding’s inequality and (3),
we have

Pr

 ∑
u∈B\V ∗j

(1− xuv) > η|B|

 ≤ exp

−2

(
η|B| − p|B \ V ∗j |

)2

|B \ V ∗j |


≤ exp

(
−2 (η − p)2 |B|

)
≤ 1

n10
.

Thus, for every v ∈ V , with probability at most 1/n10, v will be misclassified by DEGREETEST(v,B).
By union bound, we know DEGREETEST(v,B) correctly classifies every v ∈ V with probability at
least 1− 1/n9. �

Appendix B. Technical discussion of efficient algorithm

In this section, we give a discussion of previous techniques for designing efficient algorithms under
the noise model. We will take a disagreement counting method as an example and show how it can
be applied to design algorithms under the semi-random model and where its limitation is. We will
consider a slightly weaker model here.

Definition 13 (Non-adaptive semi-random model of clustering with the faulty oracle) Under def-
inition 1, the oracle O is defined in the following way. There is a set of unknown parameter
{puv ≥ 0 | u, v ∈ V } and a known error parameter p ∈ (0, 1/2) such that, for every point
pair u, v, with probability 1− puv,O(u, v) outputs the true label of (u, v) and with probability puv,
O(u, v) outputs the wrong label of (u, v), where 0 ≤ puv ≤ p.

B.1. A disagreement counting method to obtain (η, V ∗i)-biased sets

From Lemma 9, we know if we get an (η, V ∗i)-biased set of size O(log n), we can use it to recover
V ∗i , by making O(n log n) queries. Thus, the key technique for designing an efficient algorithm is
to obtain such (η, V ∗i)-biased sets by making a small number of queries. To address this problem,

17

DEL PIA MA TZAMOS

we start with a simple disagreement counting method, which has been heavily used under the fully-
random model Bansal et al. (2004); Mazumdar and Saha (2017a); Green Larsen et al. (2020). We
consider the following simple procedure. Lemma 14 gives the theoretical guarantee for this simple
procedure.

Algorithm 7 DISAGREEMENTTEST(u, v, T) (Check if u, v are in the same cluster via a set T ⊆ V)

if countv = |{w ∈ T | O(u,w) 6= O(v, w)}| > |T |
2 then return “No” else return “Yes”

Lemma 14 Under the non-adaptive semi-random model, suppose k = 2. If |T | ≥ 100 logn

(1−2p)4
, then

for every point pair (u, v), with probability at least 1− 1/poly(n), the following event happens.

• If u, v ∈ V ∗i for some i ∈ [2], DISAGREEMENTTEST(u, v, T) returns “Yes”.

• If u ∈ V ∗i , v ∈ V ∗j for i 6= j, DISAGREEMENTTEST(u, v, T) returns “No”.

Proof We first assume u, v ∈ V ∗i for some i ∈ [2]. We have for every point pair (u, v) and for
every w ∈ V ,

Pr (O(u,w) 6= O(v, w)) = puw(1− pvw) + pvw(1− puw) ≤ 2p(1− p) =
1

2
− 1

2
(1− 2p)2,

since O(u,w) 6= O(v, w) happens if and only if O gives a wrong answer to exactly one of (u,w)
and (v, w). So when u, v in the same cluster V ∗i , in expectation, we have

Ecountv ≤
|T |
2
− 1

2
(1− 2p)2|T |.

By Hoeffding’s inequality, we have

Pr

(
countv >

|T |
2

)
≤ exp

(
−(1− 2p)4 |T |

2

)
≤ 1

n50
.

Next, we assume that u, v belong to different clusters. For every such point pair (u, v) and for every
w ∈ V , we have

Pr (O(u,w) 6= O(v, w)) = puwpvw + (1− puw) (1− pvw) ≥ 1− 2p(1− p) =
1

2
+

1

2
(1− 2p)2 .

By Hoeffding’s inequality, we have

Pr

(
countv ≤

|T |
2

)
≤ exp

(
−(1− 2p)4 |T |

2

)
≤ 1

n50
.

Based on Lemma 14, we get the following simple algorithm for the special case where k = 2
under the non-adaptive semi-random model.

18

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Algorithm 8 BICLUSTERING(V, p) (Exactly recover 2 underlying clusters)
Randomly select a point u ∈ V
Let T1 = {u}, T2 = ∅
for i ∈ [640 logn

(1−2p)2
] do

Randomly select a subset T ⊆ V of size 100 logn

(1−2p)4

Select v ∈ V \ (T1 ∪ T2)
if DISAGREEMENTTEST(u, v, T)=“Yes” then

T1 ← T1 ∪ {v}
else

T2 ← T2 ∪ {v}
Let B = argmax{|T1|, |T2|}
Let Ṽ1 = {v ∈ V | DEGREETEST(v, T1) = “Yes”} Ṽ2 = {v ∈ V | DEGREETEST(v, T1) =
“No”}
return Ṽ1, Ṽ2

Theorem 15 There is an algorithm BICLUSTERING(V, p), such that under the non-adaptive semi-
random model, suppose k = 2, with probability at least 1 − 1/poly(n), BICLUSTERING(V, p) ex-
actly recovers V ∗. Furthermore, the query complexity of BICLUSTERING(V, p) isO

(
n logn

(1−2p)2
+ log2 n

(1−2p)6

)
and the running time of BICLUSTERING(V, p) is O

(
n logn

(1−2p)2
+ log2 n

(1−2p)6

)
.

B.2. Proof of Theorem 15

According to Lemma 14 and union bound, we know that with probability at least 1 − 1/poly(n),
every point v ∈ T1 belongs to the same underlying cluster as u and every point v ∈ T2 belongs to
the different underlying cluster from u. Thus, we know thatB ⊆ V ∗i for some i ∈ [2]. Furthermore,
since |B| ≥ 320 logn

(1−2p)2
, according to Lemma 9, with η = 1/2, we know that with probability at least

1 − 1/poly(n), all points in Ṽi, for i ∈ [2], come from the same underlying cluster. Combine the
above argument together, with probability at least 1 − 1/poly(n), BICLUSTERING(V, p) exactly
recover V ∗.

It is simple to check the running time and the query complexity of BICLUSTERING(V, p) are the
same. Since in BICLUSTERING(V, p), we invoke DISAGREEMENTTEST(u, v, T) at mostO

(
640 logn

(1−2p)2

)
times, and each time DISAGREEMENTTEST(u, v, T) queries O

(
logn

(1−2p)4

)
times. The total number

of queries is O
(

log2 n
(1−2p)6

)
in this stage. Since |B| ≤ 640 logn

(1−2p)2
and we invoke DEGREETEST n times,

in this stage the total number of queries is O
(
n logn

(1−2p)2

)
. Thus, the query complexity of BICLUS-

TERING(V, p) is O
(
n logn

(1−2p)2
+ log2 n

(1−2p)6

)
. �

We can see that our algorithm achieves the same query complexity as the algorithm in Green Larsen
et al. (2020) does, but our algorithm can succeed in a stronger model. It seems that using similar
ideas we can design an efficient algorithm for more general settings. Unfortunately, as it turns out,
this is a wrong approach. Although the naive disagreement counting method works very well under
the fully-random model, under the semi-random model it only works on some very restrictive cases.

19

DEL PIA MA TZAMOS

B.3. Disagreement counting method fails under general semi-random model

In fact, we can construct examples to show the disagreement counting method can easily fail, even
if we have a small number of clusters and a constant level of noise rate. In the first example, we will
show in Lemma 14, the assumption of the non-adaptive model is necessary. If we run Algorithm 7
under the adaptive semi-random model, we will fail even if we have only two clusters.

Example 1 Under the adaptive semi-random model, suppose k = 2 and p ≥ 1−
√

2
2 . There is an

instance such that for every subset T ⊆ V and for every point pair u, v, with probability 1/2, the
following event happens

• If u, v ∈ V ∗i for some i ∈ [2], DISAGREEMENTTEST(u, v, T) returns “No”.

• If u ∈ V ∗i , v ∈ V ∗j for i 6= j, DISAGREEMENTTEST(u, v, T) returns “Yes”.

Proof It is sufficient to show that for every q ∈ [(1−p)2, 1−p+p2] and r ∈ [p(1−p), p(2−p)], there
is an adversary such that for every u, v in the same underlying cluster, Pr (O(u,w) = O(v, w)) =
q,∀w ∈ V and for every u, v in different underlying clusters, Pr (O(u,w) = O(v, w)) = r, ∀w ∈
V. This is because when p ≥ 1−

√
2

2 , we have

p(1− p) ≤ (1− p)2 ≤ 1

2
≤ p(2− p) ≤ 1− p+ p2.

By setting q = r = 1/2, we know for every tuple u, v, w, Pr (O(u,w) = O(v, w)) = 1/2, which
directly implies that

Pr

(
countv >

|T |
2

)
= Pr (DISAGREEMENTTEST(u, v, T) = “No”)

= Pr (DISAGREEMENTTEST(u, v, T) = “Yes”) = Pr

(
countv ≤

|T |
2

)
=

1

2
,

for every choice of u, v, T . This implies the adversary can make it impossible to distinguish if two
point u, v in the same underlying cluster or not by counting the disagreement. Now we show this.

We consider an adversary that works in the following way. For every point pair u, v in a same
underlying cluster and any point w ∈ V , let (u,w) be the first point pair we query. The adversary
always chooses to output a wrong label of (u,w), when (u,w) is corrupted. If O(u,w) outputs the
correct label, the adversary chooses to output a correct label of (v, w) with probability pcc ∈ [0, 1],
when (v, w) is corrupted. If O(u,w) outputs the wrong label, the adversary chooses to output a
correct label of (v, w) with probability pnc ∈ [0, 1], when (v, w) is corrupted. Thus,

Pr (O(u,w) = O(v, w)) = (1− p)(1− p+ ppcc) + p2(1− pnc) ∈ [(1− p)2, 1− p+ p2],

where both the upper bound and the lower bound are achievable. By continuity, for every q ∈
[(1 − p)2, 1 − p + p2], we can select proper parameters pcc, pnc to exactly match the probability.
Similarly, for every (u, v) in different clusters, let (u,w) be the first point pair we query. The
adversary always chooses to output a wrong label of (u,w), when (u,w) is corrupted. If O(u,w)
outputs the correct label, the adversary chooses to output a correct label of (v, w) with probability

20

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

p′cc ∈ [0, 1], when (v, w) is corrupted. If O(u,w) outputs the wrong label, the adversary chooses to
output a correct label of (v, w) with probability p′nc ∈ [0, 1], when (v, w) is corrupted. Thus,

Pr (O(u,w) = O(v, w)) = (1− p)p(1− p′cc) + p(1− p+ pp′nc) ∈ [p(1− p), p(2− p)],

where both the upper bound and the lower bound are achievable. By continuity, for every r ∈
[p(1− p), p(2− p)], we can select proper parameter p′cc, p

′
nc to exactly match the probability.

We have seen Algorithm 7 can easily fail under the adaptive semi-random model, because of
the power of the adversary. However, even if we work on the non-adaptive semi-random model, it
is still hard to apply the disagreement counting technique to cases where we have more clusters.

Example 2 Under the non-adaptive semi-random model, there is an instance with k = 3, |V ∗i | =
n/3, for i ∈ [3] and p = 1/3 such that for a subset T uniformly selected from V and for every
u, v that are in different underlying clusters, with probability 1/2, DISAGREEMENTTEST(u, v, T)
returns “Yes”.

Proof We design the oracle in the following way. O(u, v) = 0 with probability pin for every
u, v in the same underlying cluster. O(u, v) = 1 with probability pout for every u, v in different
underlying clusters. Let (u, v) be a pair of points in different underlying clusters. Denote by V ∗u the
underlying cluster that u belongs to and denote by V ∗v the underlying cluster that v belongs to. Let
w ∈ V ∗u ∪ V ∗v , Then

Pr (O(u,w) = O(v, w)) = (1− pin) pout + (1− pout) pin.

Let w ∈ V \ (V ∗u ∪ V ∗v), then

Pr (O(u,w) = O(v, w)) = p2
out + (1− pout)2 .

We pick pin = 1
2−

1
4
√

2
and pout = 1

2−
√

2
4 . It can be checked that pout < pin < 1/3. If we uniform

pick some w ∈ V , we have

Pr (O(u,w) = O(v, w)) =
2

3
((1− pin) pout + (1− pout) pin) +

1

3

(
p2
out + (1− pout)2

)
=

1

2
.

This implies for every subset T uniformly selected from V and every u, v in different underlying
clusters,

Pr (DISAGREEMENTTEST(u, v, T) = “Yes”) = Pr

(
countv ≤

|T |
2

)
=

1

2
.

21

DEL PIA MA TZAMOS

Appendix C. Missing proofs in Section 3

C.1. Proof of Theorem 4

We first show the correctness of Algorithm 2. Let ESTIMATION(V, p) = {Ṽ1, . . . , Ṽ`}. We start
by showing every Ṽi is an underlying cluster. Every Ṽi is constructed by adding points from V to
some T ′ ∈ FINDBIGCLUSTERS(T), for some T through the algorithm. According to Theorem 10,
T ′ = T ∩ V ∗i for some i ∈ [k] and |T ′| ≥ 320 logn

(1−2p)2
. Thus, according to Lemma 9, a point v is added

to T ′ if and only if v ∈ V ∗i , which implies Ṽi ⊆ V ∗i . On the other hand, every v ∈ V ∗i must be
added to Ṽi. This is because at the time the first T ′ = T ∩ V ∗i is found by FINDBIGCLUSTERS(T),
v is in either T or V . If v ∈ T , then v ∈ T ′, otherwise, v will be added to T ′ according to
Lemma 9. So every element in the output of Algorithm 2 is an underlying cluster. Next, if there
is an underlying cluster V ∗i of size at least 321 logn

(1−2p)2
that is not recovered, then V ∗i ⊆ T at the

end of the algorithm. However, in this case, according to Theorem 10, with probability at least
1 − 1/poly(n), FINDBIGCLUSTERS(T) 6= ∅ and the output will be updated. Thus, Algorithm 2
recovers all underlying clusters of size at least Ω

(
logn

(1−2p)2

)
with probability at least 1− 1/poly(n).

Finally, we show the query complexity of Algorithm 2. Given a point v, before we put v into
T , we check if we can assign v to some cluster in C and suppose |C| = k′. To check if v can be
assigned to a cluster in C, we need to query at most O

(
k′ logn
(1−2p)2

)
times. If v can be assigned to

a cluster in C, we do not need to query v with other points anymore. If v cannot be assigned to a
cluster in C, we add v to T and query O(T) times. We notice that |T | = O

(
(k−k′) logn

(1−2p)2

)
, because

otherwise T will contain a subcluster of size Ω
(

logn
(1−2p)2

)
and T will be updated. This implies to

assign a given point v, we need to query

O

(
k′ log n

(1− 2p)2

)
+O

(
(k − k′) log n

(1− 2p)2

)
= O

(
k log n

(1− 2p)2

)
times. Thus, the query complexity of Algorithm 2 is O

(
nk logn
(1−2p)2

)
. �

C.2. Proof of Theorem 10

In this part, we give the proof of Theorem 10. We first state two technical lemmas and use these two
lemmas to prove Theorem 10. Then we give a full proof for the two technical lemmas.

The key part for the proof of Theorem 10 is to show the following two technical lemmas. In-
tuitively, we want to show if T ⊆ V contains a large subcluster, then with high probability, this
subcluster has no negative cut, while on the other hand, with high probability, any large subset of T
that is not a subcluster must have a negative cut.

Lemma 16 Under the semi-random model, let S ⊆ V ∗i for some i ∈ [k] such that |S| ≥ 320 logn
(1−2p)2

,
then with probability at least 1− 1/poly(n), valS = minA⊆S

∑
u∈A

∑
v∈S\Awuv > 0.

Lemma 17 Let T ⊆ V such that |T | ≥ 320 logn
(1−2p)2

. For i ∈ [k], let Ti := T ∩ V ∗i . Denote by

t := maxi∈[k] |Ti| and s := 320 logn
(1−2p)2

. Under the semi-random model, with probability at least
1 − 1/poly(n), any subset S ⊆ T such that |S| ≥ max{t, s} and S is not a subcluster satisfies
valS = minA⊆S

∑
u∈A

∑
v∈S\Awuv ≤ 0.

22

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Now we prove Theorem 10 using Lemma 16 and Lemma 17.
Proof of Theorem 10 For i ∈ [k], let Ti := T∩V ∗i . Denote by t := maxi∈[k] |Ti| and s := 320 logn

(1−2p)2
.

If t < s, according to Lemma 17, with probability at least 1 − 1/poly(n), any subset S of T , such
that |S| ≥ s must have valS ≤ 0. In this case, no element will be added to the output. If t ≥ s,
let T ′ be the largest subcluster contained in T . According to Lemma 16, valT ′ > 0. Furthermore,
according to Lemma 17, any subset of T that has a larger size than T ′ will contain a negative cut.
Thus, the largest subcluster T ′ is the largest subset of T that contains no negative cut and will be
added to the output. Since there are k ≤ n underlying clusters, by union bound, we know with
probability at least 1− 1/poly(n), the output of Algorithm 3 is {T ∩ V ∗i | |T ∩ V ∗i | ≥

320 logn
(1−2p)2

}.

C.2.1. PROOF OF LEMMA 16

Let (A,S \ A) be a partition of S such that |A| ≤ |S|/2. For u ∈ A, v ∈ S \ A, let xuv be the
random variable such that

xuv =

{
1 if (u, v) is not corrupted
−1 otherwise.

Clearly, for every realization of the query result,∑
u∈A

∑
v∈S\A

wuv ≥
∑
u∈A

∑
v∈S\A

xuv.

Since

E
∑
u∈A

∑
v∈S\A

xuv = (1− 2p) |A||S \A|,

by Hoeffding’s inequality, we have

Pr

∑
u∈A

∑
v∈S\A

wuv ≤ 0

 ≤ Pr

∑
u∈A

∑
v∈S\A

xuv ≤ 0

 ≤ exp

(
−(1− 2p)2 (|A||S \A|)

2

)
.

Suppose |A| = t, where t ∈ [|S|/2]. By union bound, we have

Pr

∃A ⊆ S, |A| = t,
∑
u∈A

∑
v∈S\A

wuv ≤ 0

 ≤ (|S|t) exp

(
−(1− 2p)2 (|A||S \A|)

2

)

≤ exp

(
t log |S| − (1− 2p)2 t(|S| − t)

2

)

≤ exp

(
−t
(

(1− 2p)2|S|
4

− log |S|
))

≤ exp (−24 log n) =
1

n24
,

23

DEL PIA MA TZAMOS

where the third inequality follows by t ≤ |S|/2 and the last inequality holds because 320 logn
(1−2p)2

≤
|S| ≤ n and t ≥ 1. Using union bound again, we can get

Pr (valS ≤ 0) ≤
|S|/2∑
t=1

Pr

∃A ⊆ S, |A| = t,
∑
u∈A

∑
v∈S\A

wuv ≤ 0

 ≤ 1

poly(n)
.

So with probability at least 1− 1/poly(n), valS > 0. �

C.2.2. PROOF OF LEMMA 17

Let S ⊆ T . Denote by m = |S| ≥ max{t, s}. Denote by S∗ the largest subcluster contained in
S. Let (A,S \ A) be a partition of S such that |A| ≤ |S|/2. For u ∈ A, v ∈ S \ A, let xuv be the
random variable such that

xuv =

{
1 if (u, v) is not corrupted
−1 otherwise.

We first show with probability at least 1 − 1/poly(n), any subset S that satisfies the statement
of Lemma 17 and |S∗| ≤ m/4, must have valS ≤ 0. We first fix such a set S. We show with high
probability we can construct a subset A ⊆ S such that

∑
u∈A

∑
v∈S\Awuv ≤ 0. Without loss of

generality, we assume that 0 ≤ |S ∩ V ∗1 | ≤ · · · ≤ |S ∩ V ∗k | ≤ |S|/4.

We define A := ∪i∗j=1

(
S ∩ V ∗j

)
, where i∗ is the largest index such that | ∪i∗j=1

(
S ∩ V ∗j

)
| ≤

|S|/2. We can see |A| > |S|/4, otherwise, we can put S ∩V ∗i∗+1 into A and keep |A| ≤ |S|/2. This
implies |A||S \A| ≥ |S|2/8. In expectation, we have

E
∑
u∈A

∑
v∈S\A

−xuv = − (1− 2p) |A||S \A|.

By Hoeffding’s inequality, we have

Pr (valS ≥ 0) ≤ Pr

∑
u∈A

∑
v∈S\A

wuv ≥ 0

 ≤ Pr

∑
u∈A

∑
v∈S\A

−xuv ≥ 0


≤ exp

(
−(1− 2p)2|A||S \A|

2

)
≤ exp

(
−(1− 2p)2m2

16

)
.

By union bound, we have

Pr (∃S, |S| = m, |S∗| ≤ m/4, valS > 0) ≤
(
n
m

)
exp

(
−(1− 2p)2m2

16

)
≤ exp

(
m log n− (1− 2p)2m2

16

)
= exp

(
−m

(
(1− 2p)2m

16
− log n

))
≤ exp(−4m log n) ≤ 1

n80
,

24

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

where in the third inequality, we use the fact (1−2p)2m
16 ≥ (1−2p)2s

16 ≥ 5 log n.
Again, using union bound over m, we get

Pr (∃S, |S| ≥ max{t, s}, |S∗| ≤ |S|/4, valS > 0) ≤ nPr (∃S, |S| = m, |S∗| ≤ m/4, valS > 0) ≤ 1

poly(n)
.

Thus, with probability at least 1 − 1/poly(n), any subset S that satisfies the statement of
Lemma 17 and |S∗| ≤ m/4 must have valS ≤ 0.

Next, we show with probability at least 1− 1/poly(n), any subset S that satisfies the statement
of Lemma 17 and m/4 ≤ |S∗| ≤ m − 1 must have valS ≤ 0. To simplify the notation, we denote
by r := |S \ S∗|. We fix such a set S. We show with high probability

∑
u∈S∗

∑
v∈S\S∗ wuv ≤ 0.

By Hoeffding’s inequality, we have

Pr (valS ≥ 0) ≤ Pr

∑
u∈S∗

∑
v∈S\S∗

wuv ≥ 0

 ≤ Pr

∑
u∈S∗

∑
v∈S\S∗

−xuv ≥ 0


≤ exp

(
−(1− 2p)2|S∗||S \ S∗|

2

)
= exp

(
−(1− 2p)2(m− r)r

16

)
.

Then we upper bound the number of such S. We first choose an index i ∈ [k] such that S∩V ∗i = S∗.
The number of choices of the index is at most k. Then we choose m− r points from T ∩ V ∗i . The
number of choices of the points is at most

(
t

m−r
)
. Finally, we choose r points from the rest points

in T . The number of such choices is at most
(|T |
r

)
. So the number of such S is at most

k
(

t
m−r

)(|T |
r

)
≤ k

(
m
m−r

)(
n
r

)
= k

(
m
r

)(
n
r

)
≤ k exp (r(logm+ log n)) ≤ n exp(2r log n),

where the first inequality follows by t ≤ m and |T | ≤ n and the last inequality follows by k ≤ n
and m ≤ n. By union bound, we have

Pr (∃S, |S| = m, |S∗| = m− r, valS > 0) ≤ n exp

(
2r log n− (1− 2p)2(m− r)r

16

)
= n exp

(
−2r

(
(1− 2p)2(m− r)

32
− log n

))
≤ n exp

(
−2r

(
3(1− 2p)2m

128
− log n

))
≤ n exp (−10r log n) ≤ 1

n9
.

Here, the second inequality follows by 1 ≤ r ≤ m/4. The third inequality holds because m ≥ s
and the last inequality holds since r ≥ 1. Since 1 ≤ r ≤ m ≤ n, by applying union bound over r
and m, we have

Pr (∃S, |S| ≥ max{t, s}, |S|/4 < |S∗| < |S|, valS > 0) ≤ n2 Pr (∃S, |S| = m, |S∗| = m− r, valS > 0) ≤ 1

poly(n)
.

Thus, with probability at least 1− 1/poly(n), any subset S ⊆ T such that |S| ≥ max{t, s} and
S is not a subcluster satisfies valS = minA⊆S

∑
u∈A

∑
v∈S\Awuv ≤ 0. �

25

DEL PIA MA TZAMOS

C.3. Example where Algorithm 1 in Mazumdar and Saha (2017a) fails

In this part, we present an example where Algorithm 1 in Mazumdar and Saha (2017a) fails. We
remark that the main difference of Algorithm 2 in this paper and Algorithm 1 in Mazumdar and
Saha (2017a) is that given a sampled set T , we find the largest subset of T that contains no negative
cut, while they compute the heaviest subgraph of T .

Example 3 Under the semi-random model, there is an instance with k = 2 and p ≥ 2
5 such that

with probability at least 1−on(1), Algorithm 1 in Mazumdar and Saha (2017a) fails to recover any
cluster.

Proof Consider V = V ∗1 ∪ V ∗2 , where |V ∗1 | = |V ∗2 | = n
2 . Let p = 2/5 be the error parameter. We

run Algorithm 1 in Mazumdar and Saha (2017a) on this example. The first step of the algorithm
is to sample a set T of size s = 16 logn

(1−2p)2
. By Chernoff bound, with probability at least 1 − on(1),

|T ∩ V ∗1 | ≥ 3s
7 and |T ∩ V ∗1 | ≥ 3s

7 . After getting such a sampled set T , the adversary works in the
following way. For every corrupted point pair (u, v), the adversary outputs the true label if u, v are
in the same underlying clusters and otherwise outputs a wrong label.

We will next show with probability at least 1−on(1), the largest subgraph of T is T . To simplify
the notation, let A = T ∩ V ∗1 and B = T ∩ V ∗2 . We know for every (u, v) such that u ∈ A and
v ∈ B, wuv = −1 with probability p. By Hoeffding’s inequality and union bound, with probability
at least 1 − on(1), for every u ∈ A, we have

∑
v∈B wuv ≥ −

|B|
3 and for every v ∈ B, we have∑

u∈Awuv ≥ −
|A|
3 . Now, let S be an arbitrary subset of T and assume of V ∗i is the underlying

cluster that the majority of points of S come from. It is not hard to see, adding another point
v ∈ T ∩ V ∗i will not decrease the total weight of S. So we can without loss of generality assume
A ⊆ S or B ⊆ S. We deal with the case when A ⊆ S and the proof is the same when B ⊆ S.
Suppose |S ∩B| = x|B|, where x ∈ [0, 1]. Now we add the rest (1−x)|B| points from B to S and
we get T . Since for every v ∈ B, we have

∑
u∈Awuv ≥ −

|A|
3 , we know the increment of weight is

at least

x(1− x)|B|2 +
(1− x)2|B|2

2
− (1− x)|A||B|

3
≥ x(1− x)|B|2 +

(1− x)2|B|2

2
− 4(1− x)|B|2

9
> 0,

where the first inequality follows by the fact |A||B| ≤
4
3 . This implies, with probability at least

1− on(1), T itself is the largest subset of T . Furthermore, since |T | ≥ s, we will extract T . In this
case, we have already fail to recover any cluster.

Appendix D. Missing proof and discussion in Section 4

D.1. Proof of Theorem 11

In this part, we discuss Theorem 11 in detail. We will see where Theorem 11 and the results in
Mathieu and Schudy (2010) are different and why Theorem 11 is true. To start with, we summarize
the rounding step in Algorithm 5 in the following algorithm. Let T ⊆ V be a set of points and F be
a binary function over T × T . We say a symmetric matrix X̂ is good if

• 0 ≤ X̂uv ≤ 1 for every u, v ∈ T ,

26

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

• The distance between X̂ and the feasible region of (SDP(F)) is at most 1/poly(|T |),

• d(X̂, F) ≤ d(X∗, F) + 1/poly(|T |), where X∗ is an optimal solution to (SDP(F)).

Algorithm 9 SDPCLUSTER(T, F) (Algorithm 2 in Mathieu and Schudy (2010))
Let C = ∅
Let X̂ be a good solution to (SDP(F)).
while T 6= ∅ do . Use X̂ to do rounding

Randomly select a point T from V
Let U = {v}
for u ∈ T \ {v} do

Add u to U with probability X̂uv

C ← C ∪ {U}, T ← T \ {U}
return C.

We remark that the only difference between Algorithm 9 and Algorithm 2 in Mathieu and
Schudy (2010) is that we use a good solution to do rounding, while they use an optimal solution to
do rounding. Currently, we do not know a polynomial time algorithm that can solve general semi-
definite programmings exactly. This is to say we do not know how to obtain an optimal solution
to (SDP(F)) in polynomial time. Current theoretical guarantee for solving an SDP Grötschel et al.
(1981); Alizadeh (1995) is that for every ε ∈ (0, 1), we can find a solution ε-close to the feasible
region with additive error at most ε in polynomial time. In our case, by choosing ε = 1/poly(n),
this implies we can obtain a good solution to (SDP(F)) in polynomial time via a naive rounding
step to make sure the first condition in the definition of a good solution holds. This tiny change can
ensure Algorithm 9 definitely runs in polynomial time. In the following discussion, we will show
Theorem 11 is still true even if we do not use an optimal solution to do rounding.

Theorem 18 (Theorem 5 in Mathieu and Schudy (2010)) For every input (T, F), letA = SDPCLUSTER(T, F).
For every clustering function C ′ over T , we have

Ed(A, X̂) ≤ 3d(C ′, X̂),

where X̂ is the good solution used in SDPCLUSTER(T, F).

The proof of Theorem 18 can be found in Mathieu and Schudy (2010). Readers may notice that
the statement of Theorem 18 is slightly different from the original statement in Mathieu and Schudy
(2010). In the original statement, Mathieu and Schudy, restricted X̂ to be an optimal solution to
(SDP(F)), while we relax this restriction to good solutions. We remark that, as Mathieu and Schudy
claimed in their proof, as long as X̂ is a symmetric matrix in [0, 1]|V |×|V |, Theorem 18 holds. An
immediately corollary of Theorem 18 is if we do rounding Ω(log 1

δ) times and pick A∗ to be the
clustering that is closest to X̂ , then with probability 1 − δ, d(A∗, X̂) ≤ 4d(C ′, X̂). Next, we will
see why A∗ can achieve an additive error O

(
|T |3/2
1−2p

)
with high probability.

27

DEL PIA MA TZAMOS

Let M,N ∈ R|T |×|T |. We define M · N :=
∑

u,vMuvNuv. For F ∈ {0, 1}|T |×|T |, We define
F̂ ∈ {−1, 1}|T |×|T | as follows:

F̂uv =

{
−1 if Fuv = 1

1 if Fuv = 0.

Claim 1 (Claim 16 in Mathieu and Schudy (2010)) For every M ∈ {0, 1}|T |×|T | and N ∈
[0, 1]|T |×|T |, we have

d(M,N) =
1

2

(
M̂ ·N − M̂ ·M

)
.

Under the semi-random model, we define a symmetric random matrix E ∈ {0, 1}|T |×|T | in the
following way. For every (u, v) such that u, v are in the same cluster in V ∗, Euv = 0 if and only
if (u, v) is corrupted. For every (u, v) such u, v are in the different clusters in V ∗, Euv = 1 if and
only if (u, v) is corrupted. Intuitively, Euv = O(u, v) for every u, v, where the adversary in the
oracle always gives the wrong answer.

Claim 2 (Lemma 23 in Mathieu and Schudy (2010)) Under the semi-random model, there is a
constant c > 0, such that with probability at least 1− 4 exp(−|T |),

|Ê ·X −EÊ ·X| ≤ c|T |
3
2

for every symmetric matrixX with trace at most 2|T | and smallest eigenvalue at least−1/poly(|T |).

We remark that the statement of Claim 2 is slightly different from the statement of Lemma 23 in
Mathieu and Schudy (2010). In the original statement, Mathieu and Schudy didn’t give a concrete
bound of the probability of success and X is forced to be positive semi-definite with trace to be |T |.
We remark that every good solution satisfies the statement of the claim. Here we give a short proof
of the claim by slightly modifying the proof of Lemma 23 in Mathieu and Schudy (2010).

Proof of Claim. Write M = Ê − EÊ. Write X =
∑|T |

i=1 λiviv
T
i by doing spectral decomposition

of X . Without loss of generality, we assume that λ1 ≥ . . . λr ≥ 0 ≥ λr+1 ≥ λ|T | ≥ −1/poly(|T |).
Notice that

|M ·X| = |
|T |∑
i=1

λiv
T
i Mvi| ≤

r∑
i=1

λi|vTi Mvi| −
|T |∑

i=r+1

λi|vTi Mvi|

≤
r∑
i=1

λiρ(M)−
|T |∑

i=r+1

λiρ(M)

=

|T |∑
i=1

λiρ(M)− 2

|T |∑
i=r+1

λiρ(M)

≤ (2|T |+ 1

poly(|T |)
)ρ(M) ≤ 3|T |ρ(M).

28

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

It is sufficient to show ρ(M) = O(
√
T) with probability at least 1 − 4 exp(|T |). We notice that

M is symmetric matrix whose entries on and above the diagonal are independent mean-zero sub-
gaussian random variables. By Corollary 4.4.8 in Vershynin (2018), there is a constant c such that
ρ(M) ≤ c

√
T with probability at least 1− 4 exp(|T |).

�

We know with probability 1− δ, d(A∗, X̂) ≤ 4d(C ′, X̂) for every clustering C ′ over T . So we
have

d(A∗, T̄) ≤ d(A∗, X̂) + d(X̂, T̄) ≤ d(A∗, X̂) + d(T ∗, T̄) +
1

poly(|T |)
≤ d(T ∗, T̄) + 4d(T ∗, X̂) +

1

poly(|T |)
,

where the first inequality holds by triangle inequality, the second inequality holds since X̂ is a good
solution to SDP(T̄), and T ∗ is a feasible solution to SDP(T̄). It remains to upper bound d(T ∗, X̂).
It can be checked easily that

EÊ = (1− 2p)T ∗.

By Claim 1, we know

d(T ∗, X̂) =
1

2

(
T̂ ∗ · X̂ − T̂ ∗ · T ∗

)
=

1

2(1− 2p)

(
EÊ · X̂ −EÊ · T ∗

)
=

1

2(1− 2p)

(
EÊ · X̂ − Ê · X̂ + Ê · X̂ − Ê · T ∗ + Ê · T ∗ −EÊ · T ∗

)
≤ 1

2(1− 2p)

(
Ê · X̂ − Ê · T ∗ + 2c|T |

3
2

)
=

1

2(1− 2p)

(
Ê · X̂ − Ê · E + Ê · E − Ê · T ∗ + 2c|T |

3
2

)
=

1

2(1− 2p)

(
2
(
d(X̂, E)− d(T ∗, E)

)
+ 2c|T |

3
2

)
≤ 1

2(1− 2p)

(
2
(
d(X̂, T̄)− d(V ∗, T̄)

)
+ 2c|T |

3
2

)
≤ c′|T |

3
2

(1− 2p)
.

Here, the first inequality follows by Claim 2, the last equality follows by Claim 1 and the last
inequality holds because X̂ is a good solution. To see why the second last inequality holds, we
suppose that the adversary gets the chance to give a wrong label of e = (u, v) but chooses to give
the correct label. Then we have

|T ∗e − Ee| = |T ∗e − T̄e|+ 1,

while

|X̂e − Ee| ≤ |X̂e − V̄e|+ 1,

because X̂e ∈ [0, 1]. So we know for every point pair e,

|X̂e − Ee| − |T ∗e − Ee| ≤ |X̂e − T̄e| − |T ∗e − T̄e|.

29

DEL PIA MA TZAMOS

By sum all these inequalities over point pair e, we get the second last inequality. So far, we have
shown with probability at least 1 − δ − 4 exp(−|T |), d(A∗, T̄) ≤ d(V ∗, T̄) + O

(
|T |3/2
1−2p

)
. In par-

ticular, since we do not need to solve (SDP(F)) exactly, T̃ = APPROXCORRELATIONCLUSTER(T)
can be obtained in polynomial time.

D.2. Missing technical theorem

In this section, we prove the following technical theorem, which will be used to prove Theorem 12.

Theorem 19 Let V be a set of points such that |V | = ts, where t, s > 0. Let c > 0, ε ≥ 0
be two numbers such that c (1− 2p)2 s2/2 > ε. Under the semi-random model, with probability
at least 1 − exp

(
ts log ts− c (1− 2p)3 s2/8

)
, for every clustering function V ′ over V such that

d(V ′, V ∗) ≥ c (1− 2p) s2, we have

d(V̄ , V ′) > d(V̄ , V ∗) + ε,

where V̄ is the binary function over V corresponding to the results that we query every point pair
of V and V ∗ is the underlying clustering function of V .

We first introduce the following notations to simplify the proof. Let V ′, Ṽ be two clustering
functions over V . We let DV ′Ṽ := {(u, v) | V ′(u, v) 6= Ṽ (u, v)} be set of point pairs that are
labeled differently by V ′ and Ṽ . In particular, for every clustering function V ′, we define Dn

V ′V ∗ =
{(u, v) ∈ DV ′V ∗ | V ∗(u, v) 6= V̄ (u, v)} and Dc

V ′V ∗ = {(u, v) ∈ DV ′V ∗ | V ∗(u, v) = V̄ (u, v)}.
To prove Theorem 19, we first prove the following lemma.

Lemma 20 Let V = [n] be a set of points. Let V ∗ be the underlying clustering function of V . Let
V̄ be the binary function corresponding to the results that we query all point pairs of V . Let V ′ be
a clustering function over V . Then

d(V̄ , V ∗)− d(V̄ , V ′) = |Dn
V ′V ∗ | − |Dc

V ′V ∗ |

Proof Since V ∗(u, v) 6= V ′(u, v) if and only if (u, v) ∈ DV ′V ∗ , we know

d(V̄ , V ∗)− d(V̄ , V ′) =
∑

(u,v)∈DV ′V ∗

(
|V̄ (u, v)− V ∗(u, v)| − |V̄ (u, v)− V ′(u, v)|

)
.

For every (u, v) ∈ Dn
V ′V ∗ , we have |V̄ (u, v)−V ∗(u, v)| = 1 and |V̄ (u, v)−V ′(u, v)| = 0. On the

other hand, for every (u, v) ∈ Dc
V ′V ∗ , we have |V̄ (u, v)−V ∗(u, v)| = 0 and |V̄ (u, v)−V ′(u, v)| =

1. Thus, we have

d(V̄ , V ∗)− d(V̄ , V ′) = |Dn
V ′V ∗ | − |Dc

V ′V ∗ |.

Now we use Lemma 20 to prove Theorem 19.

30

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Proof of Theorem 19 We first fix a clustering function V ′ over V such that d(V ′, V ∗) ≥ c (1− 2p) s2.
We first show that with high probability, d(V̄ , V ′) > d(V̄ , V ∗) + ε. For every point pair (u, v), we
define random variable

xuv =

{
1 if (u, v) is not corrupted
−1 otherwise.

We observe that for every realization of V̄ , we always have

|Dc
V ′V ∗ | − |Dn

V ′V ∗ | ≥
∑

e∈DV ′V ∗

xe. (4)

This is because if an adversary gets a chance to output a wrong label of e, but does not do that,
|Dn

V ′V ∗ | will increase by 1, while |Dc
V ′V ∗ | will decrease by 1.

In expectation, we have

E
∑

e∈DV ′V ∗

xe = (1− 2p) |DV ′V ∗ | = (1− 2p) d(V ′, V ∗) ≥ c (1− 2p)2 s2 > 2ε. (5)

Thus, we have

Pr (|Dc
V ′V ∗ | − |Dn

V ′V ∗ | ≤ ε) ≤ Pr

 ∑
e∈DV ′V ∗

xe ≤ ε


≤ Pr

 ∑
e∈DV ′V ∗

xe ≤
E
∑

e∈DV ′V ∗
xe

2


≤ exp

(
−(1− 2p)2 d(V ′, V ∗)2

8d(V ′, V ∗)

)

≤ exp

(
−c (1− 2p)3 s2

8

)
.

Here, the first inequality follows by (4), the second inequality follows by (5), the third inequality fol-
lows by the Hoeffding’s inequality and in the last inequality, we use the assumption that d(V ′, V ∗) ≥
c (1− 2p) s2. By Lemma 20, we know that with probability most exp

(
c (1− 2p)3 s2/8

)
,

d(V̄ , V ′) = d(V̄ , V ∗) + |Dc
V ′V ∗ | − |Dn

V ′V ∗ | ≤ d(V̄ , V ∗) + ε.

Since the number of clustering function over V is at most (ts)ts, we know that

Pr
(
∃V ′, d(V ′, V ∗) ≥ c (1− 2p) s2, d(V̄ , V ′) ≤ d(V̄ , V ∗) + ε

)
≤ (ts)ts exp

(
−c (1− 2p)3 s2

8

)

= exp

(
ts log ts− c (1− 2p)3 s2

8

)
.

31

DEL PIA MA TZAMOS

Thus, with probability at least 1−exp
(
ts log ts− c (1− 2p)3 s2/8

)
, for every clustering func-

tion V ′ over V such that d(V ′, V ∗) ≥ c (1− 2p) s2, we have

d(V̄ , V ′) > d(V̄ , V ∗) + ε.

D.3. Proof of Theorem 12

The key part of the proof of Theorem 12, is to show the following three claims.

Claim 3 In Algorithm 5, if there is some i ∈ [k] such that |T ∗i | > st, but h = 0, then d(T̃ , T ∗) >
s2
t /8.

Proof of Claim. Without loss of generality, we assume that |T ∗1 | > st. We denote byAi := T̃i∩T ∗1 .
Without loss of generality, we can assume Ai 6= ∅ if and only if i ∈ [`], where ` is a positive integer.
We say T̃ makes a negative mistake on (u, v) if T ∗(u, v) = 1 and T̃ (u, v) = 0. It is easy to see that
the number of negative mistakes made by T̃i over T ∗1 × T ∗1 is

∑̀
i=1

∑̀
j=i+1

|Ai||Aj |.

Since h = 0, for every i ∈ [`], |Ai| ≤ st/2. To lower bound the number of negative mistakes, we
consider the following family of quadratic programming problems, parameterized by `.

min
∑̀
i=1

∑̀
j=i+1

xixj

s.t.
∑̀
i=1

xi ≥ st

1 ≤ xi ≤
st
2
∀i ∈ [`].

(QP(`))

Clearly every choice of {Ai}i∈[`] is corresponding to a feasible solution to QP(`). Thus, we will
show that for every ` ≥ 2, the optimal value of QP(`) is at least s2

t /8.
We prove this by induction. For the base case, it is easy to check the optimal value of QP(2) is

s2
t /4. Now suppose that the optimal value of QP(`) is at least s2

t /8, we show this also correct for
`+ 1. Let x = (x1, . . . , x`+1) be a feasible solution to QP(`+ 1). We consider two cases.

In the first case, there exist i, j ∈ [` + 1], such that y = xi + xj ≤ st/2. Without loss of
generality, we can assume that i = `, j = ` + 1. Then we know that x′ = (x1, . . . , x`−1, y) is a
feasible solution to QP(`). It can be checked that the objective value of x is at least that of x′ and
thus at least s2

t /8.
In the second case, for every i, j ∈ [`+1], xi+xj > st/2. So we know there is some i ∈ [`+1]

such that st/4 < xi ≤ st/2. This implies the objective value of x is at least s2
t /8.

32

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

Thus, by induction the number of negative mistakes is at least s2
t /8. So we know

d(T̃ , T ∗) ≥ s2
t

8
,

as long as h = 0. �

Claim 4 In Algorithm 5, if there is some i ∈ [k] such that |T̃i| > st/2 and T̃i is an η-bad set, where
η = 1/4 + p/2, then d(T̃ , T ∗) > (1− 2p)s2

t /64.

Proof of Claim. We consider separately two cases. In the first case, we assume that for every
j ∈ [k], |T̃i ∩ T ∗j | ≤ |T̃i|/4. Let S := ∪i∗j=1T̃i ∩ T ∗j , where i∗ is the largest index such that
|S| ≤ |T̃i|/2. Thus we know |T̃1 \ S| ≥ |T̃i|/2. By the choice of i∗, we know that |S| ≥ |T̃i|/4. So
every point pair (u, v) such that u ∈ S and v ∈ T̃i \ S is labeled 1 by T̃ but labeled 0 by T ∗. The
total number of such point pairs is at least |T̃i|2/8 > s2

t /32.
In the second case, we assume that there is some j ∈ [k] such that |T̃i ∩T ∗j | > |T̃i|/4. We know

|T̃i \ T ∗j | ≥ (1− 2p)|T̃i|/4, since T̃i is an η-bad set. We notice that every point pair (u, v) such that
u ∈ T̃i ∩ T ∗j and v ∈ T̃i \ T ∗j is labeled 1 by T̃ but labeled 0 by T ∗. The total number of such point

pairs is at least (1− 2p)|T̃i
2|/16 > (1− 2p)s2

t /64. �

Claim 5 In Algorithm 5, if there is some i, j, ` ∈ [k], and i 6= j such that |T̃i|, |T̃j | > st/2 and
T̃i, T̃j are both (η, V ∗`)-biased sets, then d(T̃ , T ∗) > (1− 2p)s2

t /16.

Proof of Claim. We notice that for every point pair (u, v) such that u ∈ T̃i ∩ V ∗` and v ∈ T̃j ∩ V ∗` ,
(u, v) is labeled 0 by T̃ but is labeled 1 by T ∗. The total number of such point pairs is at least
s2
t /16, since T̃i, T̃j are both (η, V ∗`)-biased sets and |T̃i|, |T̃j | > st/2. Thus, we have d(T̃ , T ∗) >

(1− 2p)s2
t /16. �

Now we are able to use the above claims to prove Theorem 12.
Proof We first apply Theorem 19 on the sample set T with s = st, ε = c1 (tst)

3
2 / (1− 2p) and

c = 1/64, where c1 is a constant that satisfies Theorem 11. We first show that the choice of
parameter satisfies the statement of Theorem 19. On the one hand, we have

ε =
c1 (tst)

3
2

(1− 2p)
=
c1(c′)

3
2 t6 log

3
2 n

(1− 2p)10 .

On the other hand, we have

c(1− 2p)2s2
t

2
=

(1− 2p)2 s2
t

128
=

(c′)2t6 log2 n

128 (1− 2p)10 > ε,

because c′ is a large enough constant. So with probability at least

1− exp

(
tst log tst −

(1− 2p)3 s2
t

1024

)
≥ 1− exp

(
−
(

(c′)2 − c′

1024

)
t6 log

3
2 n

(1− 2p)9

)
≥ 1− 1

poly(n)
,

(6)

33

DEL PIA MA TZAMOS

any clustering T ′ such that d(T ′, T ∗) > (1− 2p)s2
t /64 will satisfy

d(T̄ , T ′) > d(T̄ , T ∗) +
c1 (tst)

3
2

(1− 2p)
.

Here in (6), the first inequality follows by log tst ≤
√
tst and the second inequality holds because

c′ is a large enough constant.
By Claim 3, Claim 4 and Claim 5, we know that if any one of the events in the statement of

Theorem 12 does not happen, we will have d(T ′, T ∗) > (1− 2p)s2
t /64. However, by Theorem 11,

we know that with probability at least 1− 1/poly(n), we have

d(T̄ , T̃) ≤ d(T̄ , T ∗) +
c1 (tst)

3
2

(1− 2p)
.

This implies d(T̃ , T ∗) ≤ (1− 2p) s2
t /64, with probability at least 1 − 1/poly(n). And thus, the

three events must happen together.

D.4. Proof of Theorem 5

We first prove the correctness of Algorithm 4. Let C = {Ṽ1, . . . , Ṽ`} be the output of Algo-
rithm 4. We first show each element in C is an underlying cluster. We know each Ṽi = {v ∈ V |
Test(v,Bi) = “Yes”}. Also, we knowBi ⊆ T̂i,where T̂i ∈ APPROXCORRELATIONCLUSTER(T, 1/poly(n))
in a certain stage of the algorithm and |T̂i| ≥ st/2. According to Theorem 5, we know with prob-
ability at least 1 − 1/poly(n), T̂i is an (η, V ∗i)-biased set, where η = 1

4 + p
2 . By Hoeffding’s

inequality, by setting η′ = p+1
3 , we know

Pr
(
Bi is not an (η′, V ∗i)-biased set

)
≤ exp

(
−2|Bi|

(
1− 2p

12

)2
)
≤ 1/poly(n).

So with probability at least 1 − 1/poly(n), Bi is an (η′, V ∗i)-biased set. According to Lemma 9,
with probability at least 1− 1/poly(n), we have

Ṽi = {v ∈ V | Test(v,Bi) = “Yes”} = V ∗i ∩ V = V ∗i .

Here the last equality follows by the fact that V ∗i ⊆ V at the time when Bi is created. This is
because no point in V ∗i is put into other underlying clusters before Bi is created. So each element
in C is an underlying cluster.

It remains to show every underlying cluster of size Ω
(
k4 logn
(1−2p)6

)
must be recovered with high

probability. Suppose there is some underlying cluster V ∗i such that |V ∗i | ≥ 2ks2k = Ω
(
k4 logn
(1−2p)6

)
not recovered by Algorithm 4. Then at the end of the algorithm, V ∗i ⊆ V and |V | ≥ 2ks2k. Assume
|C| = h < k. Then as long as k − h ≤ t < 2k, the sampled set T of size tst must contain some
underlying cluster of size t

h−tst ≥ st. By Theorem 12, with probability at least 1− 1/poly(n), we
will update C again. However, at this time the algorithm has terminated. This gives a contradiction.
So every underlying cluster of size at least O

(
k4 logn
(1−2p)6

)
must be recovered by Algorithm 5.

34

CLUSTERING WITH QUERIES UNDER SEMI-RANDOM NOISE

We next prove the sample complexity of Algorithm 4. To show this, we first show that every
time we invoke Algorithm 5, we must have parameter t < 2k. Suppose t ≥ 2k, we know that
t/2 ≥ k. Since T is partitioned into at most k underlying clusters, we know that there must be at
least one i ∈ [k] such that |T ∗i | ≥ tst/2/2k ≥ st/2. According to Theorem 12, with probability at
least 1 − 1/poly(n), h > 0. In this case, we will not invoke Algorithm 5 after updating t/2 by t.
This implies every time we invoke Algorithm 5, we query O

(
|T |2

)
= O

(
k8 log2 n

(1−2p)12

)
times and in

each round we will call Algorithm 5 O(log k) times. Since there are at most k rounds, the number
of queries we spend on Algorithm 5 is O

(
k9 log k log2 n

(1−2p)12

)
.

Next, we see each time we update C, we invoke Algorithm 1 at most n times and each time we
query O

(
logn

(1−2p)2

)
times. Since we update C at most k times, the number of queries we spend on

updatingC isO
(
nk logn
(1−2p)2

)
. So the query complexity of Algorithm 4 isO

(
nk logn

(1−2p)2
+ k9 log k log2 n

(1−2p)12

)
.

�

Appendix E. Missing proof in Section 5

E.1. Proof of Theorem 6

It is sufficient to show with high probability p̄ ≥ p and (1− 2p̄) = O ((1− 2p)), since in this case
p̄ is an appropriate upper bound of p and we can use Algorithm 4 to solve the problem. We can
assume (1 − 2p)4 ≥ 10 logn

n , because if (1 − 2p)4 < 10 logn
n , there is no underlying cluster of size

Ω
(
k4 logn

(1−2p)6

)
and Theorem 6 holds naturally.

We first analyze the set A. For a given point v, denote by V ∗v the underlying cluster that v
belongs to. We first show for every sampled set A, either there are two points u, v in the same
underlying cluster or there are two points u, v such that |V ∗u | + |V ∗v | ≤ n

4 . For simplicity, we say a
such a point pair is good. Let S be the set of points w such that |V ∗w | ≤ n

8 . We know there are at
most 8 underlying clusters that have size more than n

8 . We can without loss of generality assume
they are V ∗1 , . . . , V

∗
i , i ≤ 8. Since |A| = 9, we know there must be two points in S or in the same

underlying cluster. In the first case, we have |V ∗u |+ |V ∗v | ≤ n
4 , according to the definition of S. So

A must contain a good pair.
Next, we show with probability at least 1 − 1/poly(n), p̄ ≥ p. Denote by δ = 1 − 2p and

δ̄ = 1− 2p̄. For every u, v ∈ A such that u, v in same underlying cluster, we have

Ecountuv = 2p(1− p)|V | = 2p(1− p)n =
1− δ2

2
n ≤

(
1

2
− δ2

4

)
n.

On the other hand, for every u, v ∈ A such that u, v in different underlying clusters, but |V ∗u | +
|V ∗v | ≤ n

4 , we have

Ecountuv = 2p(1− p)|V |+ (1− 2p)2 (|V ∗u |+ |V ∗v |) ≤
(

1

2
− δ2

4

)
n.

This implies if point pair (u, v) is good, then(
1

2
− δ2

2

)
n ≤ Ecountuv ≤

(
1

2
− δ2

4

)
n.

35

DEL PIA MA TZAMOS

In particular, the lower bound holds for every u, v ∈ A.
Let (u, v) be a point pair in A, by Hoeffding’s inequality, we know that

Pr

(
countuv ≤

1− 4δ2

2
n

)
≤ exp

(
−2

(
3δ2

2
n

)2
1

n

)
= exp

(
−9

2
δ4n

)
.

By union bound, we know that

Pr

(
M ≤ 1− 4δ2

2
n

)
≤ Pr

(
∃u 6= v ∈ A, countuv ≤

1− 4δ2

2
n

)
≤ n exp

(
−9

2
δ4n

)
≤ 1

n44
,

where the last inequality follows by δ4 ≥ 10 logn
n .

So with probability at least 1− 1/n44, we have

p̄ :=
1

2
− 1

4

√
1− 2M

n
>

1

2
− 1

4

√
1− 2

n

1− 4δ2

2
n =

1

2
(1− δ) = p,

where the inequality follows by M > 1−4δ2

2

√
n. Since p̄ > p, and we know that the fully-random

model with parameter p is a special case of the semi-random model with parameter p̄, we know that
with probability at least 1 − 1/poly(n), Algorithm 4 will recover all clusters of size Ω

(
k4 logn

(1−2p̄)6

)
and the query complexity is O

(
nk logn

(1−2p̄)2
+ k9 log k log2 n

(1−2p̄)12

)
.

And it remains to show p̄ is not too larger than p, so that we get the correct query complexity.
We will show that with probability at least 1 − 1/poly(n), we have δ̄ > δ/4, which implies that
1/ (1− 2p̄) ≤ 4/ (1− 2p). Let u, v be a good point pair in A. We have

Pr

(
M ≥

1− 1
4δ

2

2
n

)
≤ Pr

(
countuv ≥

1− 1
4δ

2

2
n

)
≤ exp

(
−2

(
1

8
δ2n

)2 1

n

)
= exp

(
− 1

32
δ4n

)
.

Thus, with high probability we have

δ̄ =
1

2

√
1− 2M

n
>

1

2

√
1− 2

n

1− 1
4δ

2

2
n =

δ

4
.

�

36

	Introduction
	Prior work on the fully-random model
	Our contributions
	Technical overview
	Further related work

	Preliminaries and notation
	Information theoretical algorithm
	Computationally efficient algorithm
	Approximate correlation clustering
	Structure of the approximate correlation clustering
	Sketch of the proof of Theorem 5

	An efficient parameter-free algorithm under the fully-random model
	Proof of Lemma 9
	Technical discussion of efficient algorithm
	A disagreement counting method to obtain (,V*i)-biased sets
	Proof of Theorem 15
	Disagreement counting method fails under general semi-random model

	Missing proofs in Section 3
	Proof of Theorem 4
	Proof of Theorem 10
	Proof of Lemma 16
	Proof of Lemma 17

	Example where Algorithm 1 in mazumdar2017clustering fails

	Missing proof and discussion in Section 4
	Proof of Theorem 11
	Missing technical theorem
	Proof of Theorem 12
	Proof of Theorem 5

	Missing proof in Section 5
	Proof of Theorem 6

