
Proceedings of Machine Learning Research vol 178:1–13, 2022 35th Annual Conference on Learning Theory

Improved Parallel Algorithm for Minimum Cost Submodular Cover
Problem

Yingli Ran RANYINGLI@ZJNU.EDU.CN and Zhao Zhang∗ HXHZZ@SINA.COM
College of Mathematics and Computer Sciences, Zhejiang Normal University

Shaojie Tang SHAOJIE.TANG@UTDALLAS.EDU

Naveen Jindal School of Management, University of Texas at Dallas

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
In the minimum cost submodular cover problem (MinSMC), we are given a monotone nondecreas-
ing submodular function f : 2V → Z+, a linear cost function c : V → R+, and an integer k ≤
f(V), the goal is to find a subsetA ⊆ V with the minimum cost such that f(A) ≥ k. The MinSMC
can be found at the heart of many machine learning and data mining applications. In this paper, we
design a parallel algorithm for the MinSMC that takes at most O(log(km) log k(log m+log log(mk))

ε4)

adaptive rounds, and it achieves an approximation ratio of H(min{∆,k})
1−5ε with probability at least

1 − 3ε, where ∆ = maxv∈V f(v), H(·) is the Harmonic number, m = |V |, and ε is a constant in
(0, 1

5).
Keywords: minimum cost submodular cover; approximation algorithm; parallel algorithm.

1. Introduction

Recently, submodular optimization has attracted considerable interest in machine learning and
data mining, and optimizing a submodular function can be found in a variety of applications, in-
cluding viral marketing (Kempe et al., 2003), information gathering (Krause and Guestrin, 2009),
and active learning (Golovin and Krause, 2011). In this paper, we design parallel approximation
algorithms for the fundamental problem of minimum cost submodular cover (MinSMC). The input
of MinSMC is a set V of m elements. Given a monotonically nondecreasing submodular function
f : 2V → Z+, a linear cost function c : V → R+, and an integer k ≤ f(V), the goal of the
MinSMC is to find a subset A ⊆ V with the minimum cost such that f(A) ≥ k, where the cost
of A is c(A) =

∑
v∈A

c(v). The MinSMC has numerous applications, including data summarization

(Tschiatschek et al., 2014) and recommender systems (El-Arini and Guestrin, 2011). In the example
of data summarization, we are given a set of data, our goal is to select a cheapest set of data, whose
representativeness meets some minimum requirement. Many commonly used utility functions ex-
hibit submodularity, a natural diminishing returns property, leading to the formulation of a MinSMC
(Mirzasoleiman et al., 2015). To solve MinSMC, Wolsey (1982) developed a centralized sequential
greedy algorithm which achieves an approximation ratio of H(∆), where H(∆) =

∑∆
i=1 1/i is the

∆-th Harmonic number and ∆ = maxv∈V f(v).
Unfortunately, the aforementioned centralized sequential greedy method requires Ω(n) adap-

tive rounds. A formal definition of adaptive round is presented in Definition 4. To this end, we

∗ Corresponding author

c© 2022 Y. Ran, Z. Zhang & S. Tang.

RAN ZHANG TANG

are interested designing effective parallel algorithms for MinSMC. The state-of-the-art parallel al-
gorithm for the unweighted MinSMC was presented in (Fahrbach et al., 2019); it takes at most
O(log(m log k) log k) adaptive rounds to produce a solution sized at most O(log k|OPT |), where
OPT is the optimal solution. Note that their approximation ratio is dependent on k which might
be as large as Θ(n), whereas ∆ might be much smaller than k. In this work we consider a general
weighted MinSMC and we develop an effective and efficient parallel algorithm, whose approxima-
tion ratio is arbitrarily close to H(∆).

1.1. Related Works

Recently, Balkanski and Singer (2018) introduced the concept of “adaptive complexity” which
is defined as the number of parallel rounds required to achieve a constant factor approximation ratio.
We use the same notation to measure the running time of a parallel algorithm. Chekuri and Quan-
rud (2019) describe parallel algorithms for approximately maximizing the multilinear relaxation
of a monotone submodular function subject to packing constraints. Both aforementioned studies
focus on developing effective parallel algorithms for constrained submodular maximization prob-
lem, whereas we study the MinSMC. For the MinSMC, Wolsey (Wolsey, 1982) presented a greedy
algorithm that achieves an approximation ratio ofH(∆). For the unweighted version of the MinSM-
C, Fahrbach et al. (2019) developed a parallel algorithm whose approximation ratio is at most of
O(log k) and it takes O(log(m log k) log k) adaptive rounds. For the set cover problem (finding
the smallest subcollection of sets that covers all elements), a special case of the MinSMC, Berger
et al. (1989) provided the first parallel algorithm whose approximation guarantee is similar to that
of the centralized greedy algorithm. They used the bucketing technique to obtain a (1 + ε)H(n)-
approximation in O(log5M) rounds, where M is the total sum of the sets’ sizes. Rajagopalan and
Vazirani (1998) improved the number of rounds to O(log3(Mn)) at the cost of a larger approxi-
mation ratio of 2(1 + ε)H(n). Blelloch et al. (2011) further enhanced these results by obtaining a
(1 + ε)H(n)-approximation algorithm in O(log2M) rounds. We list the performance bounds of
the closely related studies in Table 1.

Source Approximation ratio # of adaptive rounds
Minimum submodular cover

Our algorithm H(min{∆,k})
1−5ε

O(log(km) log k(log m+log log(mk))

ε4
)

(Wolsey, 1982)(sequential) H(∆) Ω(m)

(Fahrbach et al., 2019)(unweighted MinSMC) O(log k) O(log(m log k) log k)

Minimum set cover
(Berger et al., 1989) (1 + ε)H(n) O(log5 M)

(Rajagopalan and Vazirani, 1998) 2(1 + ε)H(n) O(log3(Mn))

(Blelloch et al., 2011) (1 + ε)H(n) O(log2 M)

Table 1: Performance bounds of the closely related studies.

1.2. Our contributions and technical overview

In this paper, we design a parallel algorithm for the MinSMC. Our algorithm achieves a near-
optimal H(min{∆,k})

1−5ε -approximation with probability of at least 1−3ε, and it takes poly-logarithmic

O(log(km) log k(logm+log log(mk))
ε4

) adaptive rounds, where ε is a constant in (0, 1
5). Note that the

2

IMPROVED PARALLEL ALGORITHM FOR MINIMUM COST SUBMODULAR COVER PROBLEM

aforementioned O(log k)-approximation algorithm (Fahrbach et al., 2019) only works for the un-
weighted MinSMC, and ∆ might be much smaller than k. One naive approach to solve our problem
is to iteratively call a parallel algorithm for the submodular maximization problem with a knapsack
constraint (Chekuri and Quanrud, 2019) until we find a feasible solution to the MinSMC. Unfortu-
nately, the approximation ratio of this method is O(log k). Nonetheless, further effort is needed to
improve this ratio to O(log ∆). We build our algorithm through novel combinations of the ideas
of multilayer bucket (Berger et al., 1989), maximal nearly independent set (Blelloch et al., 2011),
and random sample (Fahrbach et al., 2019). Note that both Berger et al. (1989) and Blelloch et al.
(2011) focus on the set cover problem, which is a special case of the MinSMC. Their approach can
not be applied to solving the MinSMC directly. When applied separately, both of them encounter
some structural difficulties.

High-Level Intuition of Our Proposed Approach: Inspired by the parallel algorithm (Blelloch
et al., 2011) for the minimum set cover problem, we design a parallel mechanism to imitate the
sequential greedy algorithm. In each iteration of our algorithm, we only consider those elements
with similar marginal profit-to-cost ratios. We find a nearly independent set from those elements
such that the profit-to-cost ratio of the nearly independent set is almost the same as that of a best
single element. Unfortunately, it is not clear how to adapt the solution from (Blelloch et al., 2011)
to find a nearly independent set in the context of MinSMC. To overcome this challenge, we are
inspired by (Fahrbach et al., 2019) to use a randomized selection and guessing technique. Note that
the original solution developed in (Fahrbach et al., 2019) only works for the unweighted MinSMC.
To deal with the weighted case, we further group elements into buckets such that all elements from
the same bucket have similar profit-to-cost ratios and marginal profits. In this way, all elements from
the same bucket have similar costs. This idea of a multi-layer-bucket originated in (Berger et al.,
1989) for solving the minimum set cover problem, we extend their idea to the general MinSMC.

The remaining part of this paper is organized as follows. The design of our parallel algorithm
and its analysis are presented in Section 2 and 3. Section 4 concludes the paper with some discus-
sions on future work. All missing proofs can be found at (Ran et al., 2021).

2. Parallel Algorithm and Analysis for MinSMC

2.1. Preliminaries

Definition 1 (Submodular and monotone nondecreasing function) Given a set V consisting of
elements v1, v2 . . . , vm, and a function f : 2V → R+, f is submodular if f(A) + f(B) ≥ f(A ∩
B) + f(A ∪ B) for any A,B ⊆ V ; f is monotone non-decreasing if f(A) ≥ f(B) for any
B ⊆ A ⊆ V .

For any two sets A,B ⊆ V , denote fA(B) = f(A ∪ B)− f(A) to be the marginal profit of B
over A. Assume f(V) = n. In this paper, f is always assumed to be an integer-valued, monotone
nondecreasing, submodular function. It can be verified that for any A ⊆ V , the marginal profit
function fA(·) is also a monotone nondecreasing, submodular function.

Definition 2 (Minimum Submodular Cover Problem (MinSMC)) Given a monotone nondecreas-
ing integer submodular function f : 2V → Z+, a cost function c : V → R+, an integer k ≤ n,
MinSMC can be formulated as follows:

min{c(A) : A ⊆ V, f(A) ≥ k}, (1)

3

RAN ZHANG TANG

where c(A) =
∑
v∈A

c(v).

Define a function g as g(A) = min{f(A), k} for any subset A ⊆ V . When f is a monotone
nondecreasing submodular function, it can be verified that g is also a monotone nondecreasing
submodular function. Note that max{g(A) : A ⊆ V } = k = g(V), and for the modified MinSMC

min{c(A) : g(A) = g(V)}, (2)

a setA is feasible to (2) if and only ifA is feasible to (1). Hence, problems (1) and (2) are equivalent
in terms of approximability, that is, A is an α-approximate solution to problem (2) if and only if
A is an α-approximate solution to problem (1). In the following, we concentrate on the modified
MinSMC (2).

We next introduce the notation of ε-nearly independent set, which is adapted from the concept
of ε-maximal nearly independent set (ε-MaxNIS) (Blelloch et al., 2011).

Definition 3 (ε-nearly independent set (ε-NIS)) For a real number ε > 0 and a set S ⊆ V , we
say that a set J ⊆ V \ S is an ε-NIS with respect to S and ε if J satisfies the following nearly
independent property:

gS(J) ≥ (1− ε)2
∑
v∈J

gS(v). (3)

At last, we introduce the notation of adaptive round from (Balkanski and Singer, 2018). For
simplicity, we use adaptive round and round interchangeably in the rest of this paper.

Definition 4 (Adaptive round) Given a value oracle f , which receives a set S ⊆ N and returns
its value f(S), we say an algorithm takes γ adaptive rounds if (1) every query to f in round i ∈ [γ]
depends only on the answers to queries in rounds 1 to i− 1, and (2) it performs polynomially-many
parallel queries in each adaptive round.

2.2. Outline of Our Algorithm

We first present an outline of our algorithm. The main algorithm is presented in Algorithm
1, which can be viewed as a parallel implementation of the sequential greedy algorithm (Wolsey,
1982). The overall design of our algorithm follows the framework of adaptive greedy cover al-
gorithm presented in (Fahrbach et al., 2019) for the unweighted MinSMC. However, we need to
design a new algorithm and perform more sophisticated analysis to achieve a better approximation
ratio for the general MinSMC. Our basic idea is to process elements in batches in accordance with
their profit-to-cost ratio and profits. Specifically, in each iteration of our algorithm, we first collect
a group of elements with similar profit-to-cost ratio and profits, then we pick an ε-NIS from them
using Algorithm 2 and add it to the solution. The main idea of Algorithm 2 is to guess the size of a
largest ε-NIS, and for each guess, we use a mean function (Algorithm 3) to verify whether it is an
ε-NIS or not. Let cmax and cmin be the maximum and the minimum cost of elements, respectively.
Unfortunately, the running time of Algorithm 1 is dependent on cmax/cmin, whose value could be
arbitrarily large. In order to achieve the running time of O(log(km) log k(logm+log log(mk))

ε4
), we add

a preprocessing stage to Algorithm 1 to ensure that cmax/cmin is upper bounded by O(log(mk)).
Our final algorithm is presented in Algorithm 4.

4

IMPROVED PARALLEL ALGORITHM FOR MINIMUM COST SUBMODULAR COVER PROBLEM

Algorithm 1 MinSMC-Par(V, g, c, k, ε)
Input: MinSMC-Par instance (V, g, c, k, ε).
Output: A subset B ⊆ V with g(B) ≥ k.

1: t← 1
2: β = maxv∈V g(v)/c(v)
3: τ = maxv∈V g(v)
4: T = log1/(1−ε)(kcmax/cmin)
5: ` = log1/(1−ε) k
6: t′ ← 1
7: B1

1 ← ∅
8: while t ≤ T do
9: while t′ ≤ ` do

10: At
′
t =

{
v ∈ V :

(1− ε)tβ ≤ g
Bt′

t
(v)/c(v) ≤ (1− ε)t−1β,

(1− ε)t′τ ≤ g
Bt′

t
(v) ≤ (1− ε)t′−1τ

}
11: if At′t = ∅ then
12: break and go to line 18
13: end if
14: J t

′
t ← NIS(At

′
t , B

t′
t , ε, `, (1− ε)t−1β, (1− ε)t′−1τ)

15: Bt′+1
t ← Bt′

t ∪ J t
′
t

16: t′ ← t′ + 1
17: end while
18: if g(Bt′

t) ≥ k then
19: break and go to line 24
20: end if
21: B1

t+1 ← Bt′
t

22: t← t+ 1
23: end while
24: return B ← Bt′

t

2.3. Design of Algorithm 1

Now we are ready to present the details of Algorithm 1. We defer the description of the final
Algorithm 4 to the next section. Let β = maxv∈V g(v)/c(v) denote the largest profit-to-cost ratio
of a single element. In each round (line 10 of Algorithm 1), we construct a bucket At

′
t such that all

elements in At
′
t have similar marginal profits and marginal profit-to-cost ratio, e.g.,

At
′
t =

{
v ∈ V :

(1− ε)tβ ≤ g
Bt′

t
(v)/c(v) ≤ (1− ε)t−1β,

(1− ε)t′τ ≤ g
Bt′

t
(v) ≤ (1− ε)t′−1τ

}
,

where Bt′
t denotes the set of already selected elements before this round, and τ = maxv∈V g(v)

is the largest profit of a single element; then it picks an ε-NIS with respect to Bt′
t from At

′
t using

Algorithm 2 (see line 14 and line 15 of Algorithm 1) and adds it to the solution. A detailed descrip-
tion of Algorithm 2 will be provided in the next paragraph. In the process of selecting elements, we
give higher priority to those elements with higher profit-to-cost ratio. For those elements with the

5

RAN ZHANG TANG

Algorithm 2 NIS(A,B, ε, `, β, τ)

Input: Two sets A and B, two threshold values β and τ , a constant 0 < ε < 1/4, a parameter `.
Output: An ε-nearly independent set J ⊆ A with respect to B.

1: J1 ← ∅
2: p← 1
3: i← −1
4: A0 ← A
5: B1 ← B
6: ε̄← 1

3(1− 1
2T`)ε

7: r ← log 1
1−ε̄

(2mT`)/ε

8: δ ← ε/(2rkT 2`)
9: while p ≤ r do

10: Ap ← {v ∈ Ap−1 : (1− ε)β ≤ gBp(v)/c(v) ≤ β, (1− ε)τ ≤ gBp(v) ≤ τ}
11: if Ap ← ∅ then
12: break (exit the while loop)
13: end if
14: for i ≤ log1+ε̄m do
15: tp ← min{b(1 + ε̄)ic, |Ap|}
16: µ̄p ←Mean(Bp, Ap, tp, τ, ε̄, δ)
17: if µ̄p ≤ 1− 1.5ε̄ then
18: break (exit the for loop)
19: end if
20: i← i+ 1
21: end for
22: select a tp-set Tp from Ap uniformly at random, and let Jp+1 ← Jp ∪ Tp
23: Bp+1 ← Bp ∪ Jp+1

24: if g(Bp+1) ≥ k then
25: break (exit the while loop)
26: end if
27: p← p+ 1
28: end while
29: Return Jp

same profit-to-cost ratio, we give higher priority to those with higher marginal profit. We can prove
that when the algorithm terminates, with high probability, it outputs a feasible solution with a good
approximation.

We next explain Algorithm 2 in details. Given two sets A and B, a constant 0 < ε < 1/4, the
goal of Algorithm 2 is to compute an ε-NIS with respect to B from A. For ease of presentation, we
call a set consisting of t elements t-set. Starting with p = 1, B1 = B and A0 = A. In the p-th
round of the while loop (line 9), we compute a “good” ε-NIS with respect to Bp from Ap, where
Bp is the set of selected elements before round p and Ap is defined in line 10. Then we add this
ε-NIS to Bp to obtain Bp+1. This process takes at most r rounds, where r = log 1

1−ε̄
(2mT`)/ε. To

compute the ε-NIS in each round p, we use a for loop (line 14) to guess its size tp. For each guess,

6

IMPROVED PARALLEL ALGORITHM FOR MINIMUM COST SUBMODULAR COVER PROBLEM

we use Algorithm 3 to measure the expected quality of a tp-set that is sampled from Ap uniformly
at random. Note that we can try all log1+ε̄m guesses in parallel.

We next introduce the design of Algorithm 3. We first define a function It,B,A,τ,ε as follows.
Given two sets A,B, a parameter τ , and a real number 0 < ε < 1, for a t-set X , and an element x
from A \X , define

It,B,A,τ,ε(X,x) = I[gB∪X(x) ≥ (1− ε)τ], where I[·] is an indicator function,

that is, It,B,A,τ,ε(X,x) = 1 if gB∪X(x) ≥ (1 − ε)τ , and It,B,A,τ,ε(X,x) = 0 otherwise. As a
convention,

if A \X = ∅, define It,B,A,τ,ε(X,x) = 0. (4)

With the above function, Algorithm 3 computes µ̄p, which is the estimated expectation of
Itp,Bp,Ap,τ,ε(X,x) assuming that X is a tp-set that is selected from Ap uniformly at random, and x
is an element that is drawn uniformly at random from Ap \X . It will become clear later that there
exists a tp which ensures that (1) µ̄p ≤ 1− 1.5ε̄, and (2) the random set Tp returned from line 22 of
Algorithm 2 is an ε-NIS with respect to Bp, with high probability.

Algorithm 3 Mean(B,A, t, τ, ε̄, δ)
Input: (B,A, t, τ, ε̄, δ).
Output: µ̄.

1: set the number of samples m′ ← 8dlog(2/δ)/ε̄2e
2: sample m′ sets X1, . . . , Xm′ and m′ elements x1, . . . , xm′ , where each Xi is a t-set selected

from A uniformly at random, and xi is an element sampled from A \Xi uniformly at random
3: return µ̄← 1

m′
∑m′

i=1 It,B,A,τ,ε(Xi, xi)

Unless specified otherwise, we assume X (resp. X ′) is a t-set (resp. t′-set) that is selected
from A uniformly at random, and x (resp. x′) is an element that is drawn uniformly at random
from A \X (resp. A \X ′). We next present a useful lemma to show that EX,x[It,B,A,τ,ε(X,x)] is
monotone non-increasing with respect to the sample size t. In the rest of this paper, we will omit
the subscript from EX,x[·] if it is clear from the context, and use a shorthand notation It(X,x) to
denote It,B,A,τ,ε(X,x).

Lemma 5 Given B,A, τ, ε, suppose t and t′ are two integers with t < t′. Then

E[It(X,x)] ≥ E[It′(X
′, x′)].

The following lemma reveals the relation between µ̄p and E[Itp,Bp,Ap,τ,ε(X,x)].

Lemma 6 With probability at least 1 − δ, E[Itp,Bp,Ap,τ,ε(X,x)] ≤ 1 − ε̄ if µ̄p ≤ 1 − 1.5ε̄, and
E[Itp,Bp,Ap,τ,ε(X,x)] ≥ 1− 2ε̄ if µ̄p > 1− 1.5ε̄.

2.4. Performance analysis

In this section, we analyze the running time and the approximation ratio of Algorithm 1. We first
provide some technical lemmas. The first lemma shows that the expected size of Ap in Algorithm 2
decreases exponentially as p grows, which implies that Ap will become empty in at most log1+ε̄m
rounds. Note that in line 14 of Algorithm 2, if i = log1+ε̄m, then tp = |Ap|, which implies µ̄p = 0
and thus µ̄p ≤ 1− 1.5ε̄. This indicates that line 18 in Algorithm 2 is guaranteed to be triggered.

7

RAN ZHANG TANG

Lemma 7 If line 18 in Algorithm 2 is triggered (the for loop is exited), then E[|Ap+1|] ≤ (1−ε)|Ap|
with probability at least 1− δ, where E[|Ap+1|] denotes the expected size of Ap+1 conditioned on a
fixed Ap.

Proof The inequality is obvious if Ap+1 = ∅. In the following, assume Ap+1 6= ∅.
By the assumption of this lemma, we have µ̄p ≤ 1− 1.5ε̄. Then by Lemma 6, with probability

at least 1− δ,
E[Itp,Bp,Ap,τ,ε(X,x)] ≤ 1− ε̄. (5)

Note that once Tp is picked, for any element x ∈ Ap, we move x toAp+1 only if I[gBp∪Tp(x) ≥ (1−
ε)τ, gBp∪Tp(x)/c(x) ≥ (1 − ε)β] = 1; also note that I[gBp∪Tp(x) ≥ (1 − ε)τ, gBp∪Tp(x)/c(x) ≥
(1− ε)β] = 0 if x ∈ Tp. It follows that

E[|Ap+1|] =
∑

x∈Ap\Tp

I[gBp∪Tp(x) ≥ (1− ε)τ, gBp∪Tp(x)/c(x) ≥ (1− ε)β]

≤
∑

x∈Ap\Tp

I[gBp∪Tp(x) ≥ (1− ε)τ].

It follows that

E
[
|Ap+1|
|Ap \ Tp|

]
=
∑
Tp

Pr[Tp is picked]E
[
|Ap+1|
|Ap \ Tp|

|Tp
]

≤
∑
Tp

Pr[Tp is picked]

 ∑
x∈Ap\Tp

Pr[x is picked|Tp]
I[gBp∪Tp(x) ≥ (1− ε)τ]

|Ap \ Tp|


=

∑
Tp,x∈Ap\Tp

Pr[Tp, x are picked]
I[gBp∪Tp(x) ≥ (1− ε)τ]

|Ap \ Tp|

≤
∑

Tp,x∈Ap\Tp

Pr[Tp, x are picked]I[gBp∪Tp(x) ≥ (1− ε)τ]

= E[Itp,Bp,Ap,τ,ε(T, x)],

where the second inequality uses the observation that |Ap \ Tp| ≥ 1 (since Ap+1 6= ∅). Combining

this with inequality (5), we have E
[
|Ap+1|
|Ap\Tp|

]
≤ 1 − ε̄. Thus E[|Ap+1|] ≤ (1 − ε)E[|Ap \ Tp|] ≤

(1− ε̄)|Ap|. The lemma is proved.

For ease of presentation, we call At
′
t (line 10 of Algorithm 2) as a subordinate bucket and

At = {v ∈ V : (1 − ε)tβ ≤ g
Bt′

t
(v)/c(v) ≤ (1 − ε)t−1β} as a primary bucket. The following

lemma says that for any t ≤ T and t′ ≤ `, when line 14 of Algorithm 1 returns a set J t
′
t , the

subordinate bucket At
′
t becomes empty with probability at least 1− ε/(T 2`).

Lemma 8 When Algorithm 2 reaches line 29, the subordinate bucket Ap (line 10) becomes empty
with probability at least 1− ε/(T 2`).

The following corollary shows that when the inner while loop of Algorithm 1 halts, the primary
bucket At becomes empty with probability at least 1− ε/T 2.

8

IMPROVED PARALLEL ALGORITHM FOR MINIMUM COST SUBMODULAR COVER PROBLEM

Corollary 9 After J `t is computed (line 14 of Algorithm 1), the primary bucket At becomes empty
with probability at least 1− ε/T 2.

The next lemma shows that with probability at least 1− δkr, the set J t
′
t computed in line 14 of

Algorithm 1 satisfies the nearly independent property defined in (3).

Lemma 10 E[g
Bt′

t
(J t
′
t)] ≥ (1− ε)2

∑
v∈Jt′

t
g
Bt′

t
(v) with probability at least 1− δkr.

Proof Consider the case when the input B of Algorithm 2 is Bt′
t . That is, B1 = Bt′

t (line 5 of
Algorithm 2). We first prove that for any round p, with probability at least 1 − nδ, the random set
Tp (line 22 of Algorithm 2) satisfies

E[gBp(Tp)] ≥ (1− ε)2
∑
v∈Tp

gB1(v), (6)

where Bp is computed in line 23 of Algorithm 2. We consider a fixed round p in the rest of this
proof. For ease of presentation, denote the size of Tp as t∗. Inequality (6) is obviously true if t∗ = 0
or 1. Next, suppose t∗ ≥ 2. Note that line 22 of Algorithm 2 is executed after we jumped out
of the for loop. Further note that this jump out is always due to line 17. In fact, if the number of
iterations the for loop takes has reached log1+ε̄m, then tp = |Ap|, and every Xi in Algorithm 3 is
Ap, resulting in µ̄p = 0 (see (4)), in which case the condition of line 17 is satisfied. In the previous
round of the for loop, that is, when tp tries the value t̄ = t∗/(1 + ε̄), we must have µ̄p > 1− 1.5ε̄,
and thus

E[It̄,Bp,Ap,τ,ε(X,x)] ≥ 1− 2ε̄ (7)

by Lemma 6. Assume that Tp = {v1, . . . , vt∗}, and for any i ≤ t∗, denote T ip = {v1, . . . , vi}. By
the monotonicity of g, we have

E[gBp(Tp)] ≥ E[gBp(T t̄p)] =
t̄∑
i=1

E[gBp∪T i−1
p

(vi)]. (8)

By the definition of Ii,Bp,Ap,τ,ε(X,x) and Markov’s inequality,

E[Ii,Bp,Ap,τ,ε(T
i
p, vi+1)] = Pr[gBp∪T i

p
(vi+1) ≥ (1− ε)τ] ≤

E[gBp∪T i
p
(vi+1)]

(1− ε)τ
. (9)

Combining inequalities (8) and (9), we have

E[gBp(Tp)] ≥ (1− ε)τ ·
t̄∑
i=1

E[Ii,Bp,Ap,τ,ε(T
i
p, vi+1)]. (10)

For any i ≤ t̄, by Lemma 5 and inequality (7), with probability at least 1− δ,

E[Ii,Bp,Ap,τ,ε(T
i
p, vi+1)] ≥ 1− 2ε̄. (11)

9

RAN ZHANG TANG

Combining inequalities (10), (11), and the union bound, with probability at least 1− nδ,

E[gBp(Tp)] ≥ (1− 2ε̄)t̄(1− ε)τ (12)

=
t∗

1 + ε̄
(1− 2ε̄)(1− ε)τ

≥ (1− ε)2t∗τ,

where the last inequality is due to the choice of ε̄. According to line 10 and line 14 of Algorithm
1, when Algorithm 2 is triggered, we have gB1(v) ≤ τ for any v ∈ A, with respect to the input
parameter τ . It follows that gB1(v) ≤ τ holds for every v ∈ Tp. Combining this with (12),
inequality (6) is proved.

Then, by the union bound, and a proof similar to the proof of Corollary 9, with probability at
least 1− δkr,

r∑
p=1

E[gBp(Tp)] ≥ (1− ε)2
r∑
i=p

∑
v∈Tp

gB1(v) (13)

Combining this with J t
′
t =

⋃r
p=1 Tp, with probability at least 1− δkr,

E[g
Bt′

t
(J t
′
t)] =

r∑
p=1

E[gBp(Tp)]

≥ (1− ε)2
r∑
p=1

∑
v∈Tp

gB1(v)

= (1− ε)2
∑
v∈Jt′

t

g
Bt′

t
(v),

where the last inequality is due to B1 = Bt′
t and J t

′
t =

⋃r
p=1 Tp.

Without loss of generality, we assume that every inner while loop of Algorithm 1 is executed `
times. Denote by Dt = J1

t ∪ J2
t ∪ . . . ∪ J `t for any t ≤ T . The following corollary shows that the

expected cost effectiveness of Dt decreases geometrically as t grows.

Corollary 11 For any t ≤ T ,
E[g

B1
t

(Dt)]

c(Dt)
≥ (1− ε)t+2β with probability at least 1− δkr`.

Now, we are ready to analyze the expected performance of Algorithm 1.

Theorem 12 For any constant 0 < ε < 1/4, with probability at least 1 − 3ε, Algorithm 1
achieves an approximation ratio of H(min{∆,k})

1−4ε , where ∆ = maxv∈V f(v). It takes at most

O(T log k(logm+log(T log k))
ε3

) rounds.

Proof We first analyze the running time of Algorithm 1. The two layers of while loops takes at most
T` iterations, where T = log1/(1−ε)(kcmax/cmin) and ` = log1/(1−ε) k. In each iteration, it calls
Algorithm 2 to find an ε-NIS. Recall that the for loop in Algorithm 2 can be processed in parallel.
Moreover, Algorithm 3 can also be parallelized using m′ parallel queries. It follows that Algorithm
2 takes at most r rounds, where r = log 1

1−ε̄
(2mT`)/ε. Hence, the running time of Algorithm 1 is

10

IMPROVED PARALLEL ALGORITHM FOR MINIMUM COST SUBMODULAR COVER PROBLEM

Algorithm # of adaptive rounds
Algorithm 1 O(T`× number of rounds of Algorithm 2)

Algorithm 2 O(r × number of rounds of Algorithm 3)

Algorithm 3 O(1)

Table 2: Summary of Running Time Analysis

O(T`r) = O(T log k(logm+log(T log k))
ε3

). A summary of running time analysis is presented in Table
2.

Next we analyze the approximation ratio of Algorithm 1. Let B be the output of Algorithm 1,
thenB = D1∪ . . .∪DT ,B1

t = D1∪· · ·Dt−1 for t ≥ 2 andB1
1 = ∅, whereDt = J1

t ∪J2
t ∪ . . .∪J `t

for t ≤ T . The following claim shows that we can group B = D1 ∪ . . . ∪ DT into a sequence of
sets whose expected cost-effectiveness is monotonically increasing.

Claim 1. We can groupB = D1∪ . . .∪DT into a sequence of sets D′1, D
′
2, . . . , D

′
p with p ≤ T

such that with probability at least 1− 3ε/2,

E[gB′i(D
′
i+1)]

c(D′i+1)
≤

E[gB′i−1
(D′i)]

c(D′i)
(14)

holds for any i ≤ p, where B′i = D′1 ∪ . . . ∪D′i for i ≤ p.

For a set S, denote by β(S) = maxv∈V
gS(v)
c(v) the maximum marginal profit-to-cost ratio with

respect to S. The next claim shows that the expected cost-effectiveness of D′i is close to β(B′i−1).

Claim 2. For any 1 ≤ i ≤ p− 1, with probability at least 1− 3ε/2,

E[gB′i(D
′
i+1)]

c(D′i+1)
≥ (1− ε)4β(B′i).

To prove the approximation ratio, we consider an optimal solutionA∗, and construct an auxiliary
weight w as follows. Denote ri = E[gB′i−1

(D′i)] and zv,i = E[gB′i−1
(v)] for 1 ≤ i ≤ p and v ∈ A∗.

For any v ∈ A∗, define

w(v) =

p∑
i=1

(zv,i − zv,i+1)
c(D′i)

ri
,

where zv,p+1 = 0.

Claim 3. With probability at least 1− 3ε/2, c(B′p) ≤
∑

v∈A∗ w(v).

Claim 4. With probability at least 1− 3ε/2, w(v) ≤ c(v) · H(min{∆,k})
1−4ε .

Combining Claim 3, Claim 4, and the union bound, with probability at least 1 − 3ε, c(B′p) ≤
H(min{∆,k})

1−4ε c(A∗). The approximation ratio is proved.

11

RAN ZHANG TANG

3. Completing the Last Piece of the Puzzle: Bounding cmax/cmin

Note that the running time in Theorem 12 depends on T = log1/(1−ε)(kcmax/cmin), where
cmax/cmin could be arbitrarily large. To this end, we add a preprocessing step to Algorithm 1 in
order to create a modified instance with bounded cmax/cmin. The complete algorithm is presented
in Algorithm 4. We first sort all elements in non-decreasing order of their costs such that c(v1) ≤
c(v2) ≤ . . . ≤ c(vm). Then we compute the the minimum j such that g({v1, . . . , vj}) ≥ k. Notice
that {v1, . . . , vj} must be a feasible solution to our problem. Let V0 ← {v ∈ V : c(v) < ε

mkc(vj)}
and V1 ← {v ∈ V : c(v) > jc(vj)}. That is, V0 contains all elements with low cost and V1 contains
all elements with high cost. Let V mod ← V − (V0∪V1) denote the set of elements with “moderate”
cost. Then we apply Algorithm 1 to V mod to obtain an output Bmod. Because V mod contains all
elements with moderate cost, we can bound the ratio cmax/cmin as cmax/cmin ≤ kmj/ε, where we
abuse the notations to use cmax and cmin to denote the highest and lowest cost in V mod respectively.
At last, Bmod∪V0 is returned as the final solution. We next present the main theorem of this paper.

Theorem 13 With probability at least 1 − 3ε for any 0 < ε < 1/5, Algorithm 4 achieves an
approximation ratio of at most H(min{∆,k})

1−5ε . It takes O(log(km) log k(logm+log log(mk))
ε4

) rounds.

Algorithm 4 MinSMC-Main
Input: MinSMC instance I = (V, g, c, k) and a constant 0 < ε < 1/4.
Output: A subset V ′ ⊆ V such that g(V ′) ≥ k.

1: index all elements in non-decreasing order of their costs
2: j ← arg min{i : g({v1, . . . , vi}) ≥ k}
3: V0 ← {v ∈ V : c(v) < ε

mkc(vj)}
4: V1 ← {v ∈ V : c(v) > jc(vj)}
5: V mod ← V − (V0 ∪ V1)
6: gmod ← gV0 where gV0 is the marginal profit function of the set over V0

7: kmod ← max{0, k − g(V0)}
8: Let Imod = (V mod, gmod, c, kmod, ε)
9: Bmod ←MinSMC-Par(Imod)

10: V ′ ← Bmod ∪ V0

4. Conclusion and Discussion

In this paper, we present a parallel algorithm for the MinSMC to achieve an approximation ratio
of H(min{∆,k})

1−5ε , with probability at least 1 − 3ε, in O(log(km) log k(logm+log log(mk))
ε4

) rounds, where
0 < ε < 1/5 is a constant. How to obtain a near H(min{∆, k})-approximation parallel algorithm
using less number of rounds is a topic deserving further exploration.

Acknowledgments

This research is supported in part by National Natural Science Foundation of China (11901533,
U20A2068, 11771013), Zhejiang Provincial Natural Science Foundation of China (LD19A010001).

12

IMPROVED PARALLEL ALGORITHM FOR MINIMUM COST SUBMODULAR COVER PROBLEM

References

Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular function.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
1138–1151. ACM, 2018.

B. Berger, J. Rompel, and P.W. Shor. Efficient nc algorithms for set cover with applications to
learning and geometry. In 30th Annual Symposium on Foundations of Computer Science, pages
54–59, 1989. doi: 10.1109/SFCS.1989.63455.

Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work greedy parallel approximate
set cover and variants. In SPAA’11: Proceedings of the twenty-third annual ACM symposium on
Parallelism in algorithms and architectures, pages 23–32, 2011.

C. Chekuri and K. Quanrud. Submodular function maximization in parallel via the multilinear
relaxation. In ACM-SIAM Symposium on Discrete Algorithms (SODA19), pages 303–322. SIAM,
2019.

K. El-Arini and C. Guestrin. Beyond keyword search: discovering relevant scientific literature.
In KDD’11: Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 439–447, 2011.

M. Fahrbach, V. Mirrokni, and M. Zadimoghaddam. Submodular maximization with nearly optimal
approximation, adaptivity and query complexity. In SODA’19, pages 255–273. SIAM, 2019.

D. Golovin and A. Krause. Adaptive submodularity: theory and applications in active learning and
stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social net-
work. In KDD’03: Proceedings of the ninth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 137–146, 2003.

A. Krause and C. Guestrin. Intelligent information gathering and submodular function optimization.
In Tutorial at the International Joint Cgoonference in Artificial Intelligence, 2009.

B. Mirzasoleiman, A. Karbasi, A. Badanidiyuru, and A. Krause. Distributed submodular cover:
succinctly summarizing massive data. In NIPS’15: Proceedings of the 28th International Con-
ference on Neural Information Processing Systems, 2015.

Sridhar Rajagopalan and Vijay V. Vazirani. Primal-dual rnc approximation algorithms for set cover
and covering integer programs. SIAM Journal on Computing, 28(2):525–540, 1998.

Yingli Ran, Zhao Zhang, and Shaojie Tang. Improved parallel algorithm for minimum cost sub-
modular cover problem, 2021. URL https://arxiv.org/abs/2108.04416.

S. Tschiatschek, R. Iyer, H. Wei, and J. Bilmes. Learning mixtures of submodular functions for
image collection summarization. In NIPS, 2014.

L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Com-
binatorica, 2(4):385–393, 1982.

13

https://arxiv.org/abs/2108.04416

	Introduction
	Related Works
	Our contributions and technical overview

	Parallel Algorithm and Analysis for MinSMC
	Preliminaries
	Outline of Our Algorithm
	Design of Algorithm 1
	Performance analysis

	Completing the Last Piece of the Puzzle: Bounding cmax/cmin
	Conclusion and Discussion

